
 Database Access and Management 8-1

Learn Visual Basic 6.0

© KIDware (206) 721-2556

This copy of Learn Visual Basic 6.0 is
licensed to a single user. Copies of the
course are not to be distributed or
provided to any other user. Multiple
copy licenses are available for
businesses and educational institutions.
Please contact KIDware for license
information.

 Database Access and Management 8-2

Course Description:

Learn Visual Basic 6.0 is a 10 week, self-paced overview of the Visual Basic
programming language and environment. Upon completion of the course, you
will:

1. Understand the benefits of using Microsoft Visual Basic 6.0 as an

application development tool.
2. Understand the Visual Basic event-driven programming concepts,

terminology, and available tools.
3. Learn the fundamentals of designing, implementing, and distributing a

wide variety of Visual Basic applications.

Learn Visual Basic 6.0 is presented using a combination of course notes
(written in Microsoft Word format) and over 60 Visual Basic examples and
applications.

Course Prerequisites:

To grasp the concepts presented in Learn Visual Basic 6.0, you should possess
a working knowledge of Windows 95 and have had some exposure to
programming concepts. If you have never programmed a computer before, you’ll
have to put in a little more effort - perhaps, find a book in your local library on
programming using QBasic or some other dialect of the Basic computer
language.

You will also need the ability to view and print documents saved in Microsoft
Word for Windows 95 format. This can be accomplished in one of two ways.
The first, and easiest, is that you already have Microsoft Word for Windows 95 on
your computer. The second way, and a bit more difficult, is that you can
download Word Viewer for Windows 95. This is a free Microsoft product that
allows viewing Word documents - it is available for download at all the major
shareware internet sites (ZDNet, Download.Com, SoftSeek).

Finally, and most obvious, you need to have Microsoft Visual Basic 6.0,
preferably the Professional Edition. Learn Visual Basic 6.0 does not cover the
rudiments of navigating in Visual Basic 6.0. You should be familiar with the
simple tasks of using the menus, the toolbar, resizing windows, and moving
windows around. Visual Basic 6.0 provides an excellent tutorial with instruction
on such tasks.

 Database Access and Management 8-3

Installing Learn Visual Basic 6.0:

The course notes and code for Learn Visual Basic 6.0 are included in two ZIP
files (LVB61.ZIP and LVB62.ZIP) on separate disks. Use your favorite
‘unzipping’ application to write all files to your computer. After unzipping, the
course is included in the folder entitled LearnVB6. This folder contains two other
folders: VB Notes and VB Code.

The VB Notes folder includes all the notes needed for the class. Each file in this
folder has a DOC extension and is in Word for Windows 95 format. The files are:

Start Here.doc This file in Word format
Contents.doc Course Table of Contents
Class 1.doc Class 1. Introduction to the Visual Basic Language and

Environment
Class 2.doc Class 2. The Visual Basic Language
Class 3.doc Class 3. Exploring the Visual Basic Toolbox
Class 4.doc Class 4. More Exploration of the Visual Basic Toolbox
Class 5.doc Class 5. Creating a Stand-Alone Visual Basic Application
Class 6.doc Class 6. Error-Handling, Debugging and File Input/Output
Class 7.doc Class 7. Graphics Techniques with Visual Basic
Class 8.doc Class 8. Database Access and Management
Class 9.doc Class 9. Dynamic Link Libraries and the Windows API
Class 10.doc Class 10. Other Visual Basic Topics
Appendix I.doc Appendix I. Visual Basic Symbolic Constants
Appendix II.doc Appendix II. Common Dialog Box Constants

The VB Code folder includes all the Visual Basic applications developed during
the course. The applications are further divided into Class folders.

How To Take the Course:

Learn Visual Basic 6.0 is a self-paced course. The suggested approach is to do
one class a week for ten weeks. Each week’s class should require about 4 to 8
hours of your time to grasp the concepts completely. Prior to doing a particular
week’s work, open the class notes file for that week and print it out. Then, work
through the notes at your own pace. Try to do each example as they are
encountered in the notes. If you need any help, all solved examples are included
in the VB Code folder. After completing each week’s notes, a homework
exercise is given, covering many of the topics taught that week. Like the
examples, try to work through the homework exercise, or some variation thereof,
on your own. Refer to the completed project in the VB Code folder, if necessary.

 Database Access and Management 8-4

What If You Have Questions?

It is recognized there may be times when you need clarification on some point
about the notes, examples, or Visual Basic. We will gladly help. The preferred
method of relaying your questions to us is via E-Mail. The E-Mail address is:

KIDware@jetcity.com

Please include a clearly defined subject for all questions to get past our anti-
spamming filters. All questions should be sent to the attention of Lou.

Who Produces Learn Visual Basic 6.0?

This course has been developed by Lou Tylee, a partner in KIDware, a producer
of quality children’s educational programs for over 15 years. The course notes
have evolved based on Lou’s experience in writing children’s software and in
teaching a similar course at the university level for over four years. KIDware may
be contacted via:

KIDware
15600 NE 8 th, Suite B1-314
Bellevue, WA 98008
(206) 721-2556
FAX (425) 746-4655
E-Mail: KIDware@jetcity.com
Web Site: http://www.jetcity.com/~kidware

Course Notes for:

Learn Visual Basic 6.0

 Database Access and Management 8-5

© Lou Tylee, 1998

KIDware
15600 NE 8th, Suite B1-314

Bellevue, WA 98008
(206) 721-2556

FAX (425) 746-4655

 Database Access and Management 8-6

Notice

These notes were developed for the course, “Learn
Visual Basic 6.0” They are not intended to be a
complete reference to Visual Basic. Consult the
Microsoft Visual Basic Programmer’s Guide and
Microsoft Visual Basic Language Reference
Manual for detailed reference information.

The notes refer to several software and hardware
products by their trade names. These references are
for informational purposes only and all trademarks
are the property of their respective companies.

 Lou Tylee
 Course Instructor

 Database Access and Management 8-7

Learn Visual Basic 6.0

Contents

1. Introduction to the Visual Basic Language and Environment

 Preview ..1-1
 Course Objectives ..1-1
 What is Visual Basic? ..1-2
 Visual Basic 6.0 versus Other Versions of Visual Basic1-3
 16 Bits versus 32 Bits ..1-3
 Structure of a Visual Basic Application...1-4
 Steps in Developing Application ..1-4
 Drawing the User Interface and Setting Properties ..1-5
 Example 1-1: Stopwatch Application - Drawing Controls1-9
 Setting Properties of Objects at Design Time..1-10
 Setting Properties at Run Time ..1-11
 How Names Are Used in Object Events ...1-11
 Example 1-2: Stopwatch Application - Setting Properties1-12
 Variables..1-14
 Visual Basic Data Types ...1-14
 Variable Declaration...1-14
 Example 1-3: Stopwatch Application - Attaching Code................................1-18
 Quick Primer on Saving Visual Basic Applications1-20
 Exercise 1: Calendar/Time Display...1-21

 Database Access and Management 8-8

2. The Visual Basic Language

 Review and Preview ..2-1
 A Brief History of Basic..2-1
 Visual Basic Statements and Expressions ...2-2
 Visual Basic Operators ..2-3
 Visual Basic Functions ..2-4
 A Closer Look at the Rnd Function...2-5
 Example 2-1: Savings Account ..2-6
 Visual Basic Symbolic Constants ..2-10
 Defining Your Own Constants ..2-10
 Visual Basic Branching - If Statements...2-11
 Key Trapping ...2-12
 Example 2-2: Savings Account - Key Trapping ...2-14
 Select Case - Another Way to Branch..2-16
 The GoTo Statement ...2-17
 Visual Basic Looping ...2-17
 Visual Basic Counting ..2-19
 Example 2-3: Savings Account - Decisions ...2-20
 Exercise 2-1: Computing a Mean and Standard Deviation2-23
 Exercise 2-2: Flash Card Addition Problems...2-28

3. Exploring the Visual Basic Toolbox

 Review and Preview ..3-1
 The Message Box ..3-1
 Object Methods...3-3
 The Form Object...3-4
 Command Buttons ...3-5
 Label Boxes...3-5
 Text Boxes...3-6
 Example 3-1: Password Validation..3-8
 Check Boxes ...3-11
 Option Buttons ..3-11
 Arrays ...3-12
 Control Arrays ...3-13
 Frames ...3-14
 Example 3-2: Pizza Order ...3-15
 List Boxes ..3-20
 Combo Boxes ...3-21
 Example 3-3: Flight Planner...3-23
 Exercise 3: Customer Database Input Screen ..3-27

 Database Access and Management 8-9

4. More Exploration of the Visual Basic Toolbox

 Review and Preview ..4-1
 Display Layers ..4-1
 Line Tool..4-2
 Shape Tool ..4-3
 Horizontal and Vertical Scroll Bars..4-4
 Example 4-1: Temperature Conversion..4-7
 Picture Boxes ..4-12
 Image Boxes ...4-14
 Quick Example: Picture and Image Boxes ...4-14
 Drive List Box..4-15
 Directory List Box ...4-15
 File List Box ...4-16
 Synchronizing the Drive, Directory, and File List Boxes4-17
 Example 4-2: Image Viewer ...4-18
 Common Dialog Boxes..4-23
 Open Common Dialog Box ...4-24
 Quick Example: The Open Dialog Box...4-25
 Save As Common Dialog Box..4-27
 Quick Example: The Save As Dialog Box ..4-28
 Exercise 4: Student Database Input Screen..4-29

5. Creating a Stand-Alone Visual Basic Application

 Review and Preview ..5-1
 Designing an Application...5-1
 Using General Sub Procedures in Applications ..5-2
 Creating a Code Module ...5-5
 Using General Function Procedures in Applications5-5
 Quick Example: Temperature Conversion...5-7
 Quick Example: Image Viewer (Optional) ..5-8
 Adding Menus to an Application ..5-8
 Example 5-1: Note Editor..5-12
 Using Pop-Up Menus ...5-16
 Assigning Icons to Forms..5-17
 Designing Your Own Icon with IconEdit ...5-17
 Creating Visual Basic Executable Files ..5-19
 Example 5-2: Note Editor - Building an Executable
 and Attaching an Icon..5-21
 Using the Visual Basic Package & Deployment Wizard5-22
 Example 5-3: Note Editor - Creating a Distribution Disk..............................5-25
 Exercise 5: US Capitals Quiz...5-27

 Database Access and Management 8-10

6. Error-Handling, Debugging and File Input/Output

 Review and Preview ..6-1
 Error Types..6-1
 Run-Time Error Trapping and Handling ...6-2
 General Error Handling Procedure ..6-4
 Example 6-1: Simple Error Trapping ...6-7
 Debugging Visual Basic Programs..6-9
 Example 6-2: Debugging Example ..6-10
 Using the Debugging Tools ..6-11
 Debugging Strategies ..6-16
 Sequential Files ..6-17
 Sequential File Output (Variables)...6-17
 Quick Example: Writing Variables to Sequential Files6-19
 Sequential File Input (Variables)..6-20
 Quick Example: Reading Variables from Sequential Files6-21
 Writing and Reading Text Using Sequential Files...6-22
 Random Access Files ..6-24
 User-Defined Variables ...6-25
 Writing and Reading Random Access Files...6-26
 Using the Open and Save Common Dialog Boxes.......................................6-29
 Example 6-3: Note Editor - Reading and Saving Text Files6-31
 Exercise 6-1: Information Tracking..6-35
 Exercise 6-2: ‘Recent Files’ Menu Option ..6-41

7. Graphics Techniques with Visual Basic

 Review and Preview ..7-1
 Graphics Methods ..7-1
 Using Colors..7-8
 Mouse Events ...7-10
 Example 7-1: Blackboard ..7-13
 Drag and Drop Events ...7-18
 Example 7-2: Letter Disposal...7-20
 Timer Tool and Delays ..7-23
 Animation Techniques ...7-24
 Quick Example: Simple Animation ..7-25
 Quick Example: Animation with the Timer Tool...7-26
 Random Numbers (Revisited) and Games ..7-28
 Randomly Sorting N Integers ...7-29
 Example 7-3: One-Buttoned Bandit...7-30
 User-Defined Coordinates ..7-35
 Simple Function Plotting (Line Charts)...7-36
 Simple Bar Charts ..7-38

 Database Access and Management 8-11

7. Graphics Techniques with Visual Basic (continued)

 Example 7-4: Line Chart and Bar Chart Application.....................................7-40
 Exercise 7-1: Blackjack ...7-43
 Exercise 7-2: Information Tracking Plotting ...7-54

8. Database Access and Management

 Review and Preview ..8-1
 Database Structure and Terminology...8-1
 ADO Data Control ..8-6
 Data Links..8-8
 Assigning Tables ..8-9
 Bound Data Tools ...8-10
 Example 8-1: Accessing the Books Database...8-12
 Creating a Virtual Table ...8-14
 Quick Example: Forming a Virtual Table ..8-14
 Finding Specific Records ..8-16
 Example 8-2: ‘Rolodex’ Searching of the Books Database8-18
 Data Manager ...8-21
 Example 8-3: Phone Directory - Creating the Database..............................8-22
 Database Management ...8-24
 Example 8-4: Phone Directory - Managing the Database8-26
 Custom Data Aware Controls ...8-31
 Creating a Data Report ...8-33
 Example 8-5: Phone Directory - Building a Data Report8-34
 Exercise 8: Home Inventory Database ...8-39

9. Dynamic Link Libraries and the Windows API

 Review and Preview ..9-1
 Dynamic Link Libraries (DLL)...9-1
 Accessing the Windows API With DLL ...9-2

Timing with DLL Calls ..9-4
Quick Example 1: Using GetTickCount to Build a Stopwatch......................9-5
Quick Example 2: Using GetTickCount to Implement a Delay....................9-6
Drawing Ellipses ...9-7
Quick Example 3: Drawing Ellipses ...9-7
Drawing Lines ...9-8
Quick Example 4: Drawing Lines..9-9

 Drawing Polygons ..9-10
 Quick Example 5: Drawing Polygons ...9-11
 Sounds with DLL Calls - Other Beeps ..9-14

Quick Example 6: Adding Beeps to Message Box Displays9-15

 Database Access and Management 8-12

9. Dynamic Link Libraries and the Windows API (continued)

More Elaborate Sounds...9-16
Quick Example 7: Playing WAV Files ..9-16
Playing Sounds Quickly...9-17
Quick Example 8: Playing Sounds Quickly...9-18

 Fun With Graphics ...9-19
Quick Example 9: Bouncing Ball With Sound!..9-20

 Flicker Free Animation...9-22
 Quick Example 10: Flicker Free Animation...9-23
 Quick Example 11: Horizontally Scrolling Background9-24
 A Bit of Multimedia ...9-26
 Quick Example 12: Multimedia Sound and Video..9-26
 Exercise 9: The Original Video Game - Pong!...9-27

10. Other Visual Basic Topics

 Review and Preview ..10-1
 Custom Controls ...10-1
 Masked Edit Control...10-3
 Chart Control...10-4
 Multimedia Control ...10-6
 Rich Textbox Control ...10-8
 Slider Control ..10-9
 Tabbed Dialog Control..10-12
 UpDown Control ..10-13
 Toolbar Control..10-14
 Using the Windows Clipboard ...10-17
 Printing with Visual Basic...10-18
 Multiple Form Visual Basic Applications ..10-21
 Visual Basic Multiple Document Interface (MDI) ..10-25
 Creating a Help File ..10-29
 Class Summary...10-36
 Exercise 10: The Ultimate Application ...10-37

Appendix I: Visual Basic Symbolic Constants...................................... I-1

Appendix II: Common Dialog Box Constants.. II-1

Learn Visual Basic 6.0

1. Introduction to the Visual Basic Language and Environment

 Database Access and Management 8-13

Preview

• In this first class, we will do a quick overview of how to build an application in

Visual Basic. You’ll learn a new vocabulary, a new approach to
programming, and ways to move around in the Visual Basic environment.
You will leave having written your first Visual Basic program.

Course Objectives

⇒ Understand the benefits of using Microsoft Visual Basic 6.0 for

Windows as an application tool
⇒ Understand the Visual Basic event-driven programming concepts,

terminology, and available tools
⇒ Learn the fundamentals of designing, implementing, and distributing a

Visual Basic application
⇒ Learn to use the Visual Basic toolbox
⇒ Learn to modify object properties
⇒ Learn object methods
⇒ Use the menu design window
⇒ Understand proper debugging and error-handling procedures
⇒ Gain a basic understanding of database access and management

using databound controls
⇒ Obtain an introduction to ActiveX controls and the Windows Application

Programming Interface (API)

 Database Access and Management 8-14

What is Visual Basic?

• Visual Basic is a tool that allows you to develop Windows (Graphic User

Interface - GUI) applications. The applications have a familiar appearance to
the user.

• Visual Basic is event-driven, meaning code remains idle until called upon to

respond to some event (button pressing, menu selection, ...). Visual Basic is
governed by an event processor. Nothing happens until an event is detected.
Once an event is detected, the code corresponding to that event (event
procedure) is executed. Program control is then returned to the event
processor.

 Event
 Procedures

• Some Features of Visual Basic

⇒ Full set of objects - you 'draw' the application
⇒ Lots of icons and pictures for your use
⇒ Response to mouse and keyboard actions
⇒ Clipboard and printer access
⇒ Full array of mathematical, string handling, and graphics functions
⇒ Can handle fixed and dynamic variable and control arrays
⇒ Sequential and random access file support
⇒ Useful debugger and error-handling facilities
⇒ Powerful database access tools
⇒ ActiveX support
⇒ Package & Deployment Wizard makes distributing your applications

simple

Event? Event processor

Basic
Code

Basic
Code

Basic
Code

 Database Access and Management 8-15

Visual Basic 6.0 versus Other Versions of Visual Basic

• The original Visual Basic for DOS and Visual Basic For Windows were

introduced in 1991.

• Visual Basic 3.0 (a vast improvement over previous versions) was released in

1993.

• Visual Basic 4.0 released in late 1995 (added 32 bit application support).
•
• Visual Basic 5.0 released in late 1996. New environment, supported creation

of ActiveX controls, deleted 16 bit application support.

• And, now Visual Basic 6.0 - some identified new features of Visual Basic 6.0:

⇒ Faster compiler
⇒ New ActiveX data control object
⇒ Allows database integration with wide variety of applications
⇒ New data report designer
⇒ New Package & Deployment Wizard
⇒ Additional internet capabilites

16 Bits versus 32 Bits

• Applications built using the Visual Basic 3.0 and the 16 bit version of

Visual Basic 4.0 will run under Windows 3.1, Windows for Workgroups,
Windows NT, or Windows 95

• Applications built using the 32 bit version of Visual Basic 4.0, Visual

Basic 5.0 and Visual Basic 6.0 will only run with Windows 95 or
Windows NT (Version 3.5.1 or higher).

• In this class, we will use Visual Basic 6.0 under Windows 95,

recognizing such applications will not operate in 16 bit environments.

 Database Access and Management 8-16

Control

Control

Control

Form 2 (.FRM)

Control

Control
3

Control

Form 3 (.FRM) Module 1 (.BAS)

Structure of a Visual Basic Application

Project (.VBP, .MAK)

Application (Project) is made up of:

⇒ Forms - Windows that you create for user interface
⇒ Controls - Graphical features drawn on forms to allow user interaction

(text boxes, labels, scroll bars, command buttons, etc.) (Forms and
Controls are objects.)

⇒ Properties - Every characteristic of a form or control is specified by a
property. Example properties include names, captions, size, color,
position, and contents. Visual Basic applies default properties. You
can change properties at design time or run time.

⇒ Methods - Built-in procedure that can be invoked to impart some
action to a particular object.

⇒ Event Procedures - Code related to some object. This is the code
that is executed when a certain event occurs.

⇒ General Procedures - Code not related to objects. This code must be
invoked by the application.

⇒ Modules - Collection of general procedures, variable declarations, and
constant definitions used by application.

Steps in Developing Application

• There are three primary steps involved in building a Visual Basic application:

1. Draw the user interface
2. Assign properties to controls
3. Attach code to controls

We’ll look at each step.

Control

Control
3

Control

Form 1 (.FRM)

 Database Access and Management 8-17

Drawing the User Interface and Setting Properties

• Visual Basic operates in three modes.

⇒ Design mode - used to build application
⇒ Run mode - used to run the application
⇒ Break mode - application halted and debugger is available

We focus here on the design mode.

• Six windows appear when you start Visua l Basic.

⇒ The Main Window consists of the title bar, menu bar, and toolbar.
The title bar indicates the project name, the current Visual Basic
operating mode, and the current form. The menu bar has drop-
down menus from which you control the operation of the Visual
Basic environment. The toolbar has buttons that provide shortcuts
to some of the menu options. The main window also shows the
location of the current form relative to the upper left corner of the
screen (measured in twips) and the width and length of the current
form.

New
form

Add
projec

Open
project

Save
project

Menu
editor

Propertie
s window

Code Editor

Form
Layout

Run

Pause
Stop

Project
Explorer

Object
Browser

Toolbox

Form position

Form
dimensions

 Database Access and Management 8-18

⇒ The Form Window is central to developing Visual Basic
applications. It is where you draw your application.

⇒ The Toolbox is the selection menu for controls used in your
application.

Pointer
Label

Frame

Check Box

Combo Box

Horizontal Scroll

Timer

Directory List Box

Shapes

Image Box

Object Linking

Picture Box

Text Box

Command Button

Option Button

List Box

Vertical Scroll Bar

Drive List Box

File List Box

Lines
Data Tool

 Database Access and Management 8-19

⇒ The Properties Window is used to establish initial property values
for objects. The drop-down box at the top of the window lists all
objects in the current form. Two views are available: Alphabetic
and Categorized. Under this box are the available properties for
the currently selected object.

⇒ The Form Layout Window shows where (upon program
execution) your form will be displayed relative to your monitor’s
screen:

 Database Access and Management 8-20

⇒ The Project Window displays a list of all forms and modules making
up your application. You can also obtain a view of the Form or Code
windows (window containing the actual Basic coding) from the Project
window.

• As mentioned, the user interface is ‘drawn’ in the form window. There are two

ways to place controls on a form:

1. Double-click the tool in the toolbox and it is created with a default size
on the form. You can then move it or resize it.

2. Click the tool in the toolbox, then move the mouse pointer to the form

window. The cursor changes to a crosshair. Place the crosshair at the
upper left corner of where you want the control to be, press the left
mouse button and hold it down while dragging the cursor toward the
lower right corner. When you release the mouse button, the control is
drawn.

• To move a control you have drawn, click the object in the form window and

drag it to the new location. Release the mouse button.

• To resize a control, click the object so that it is select and sizing handles

appear. Use these handles to resize the object.

Click here
to move
object

Use sizing
handles to
resize

 Database Access and Management 8-21

Example 1-1

Stopwatch Application - Drawing Controls

1. Start a new project. The idea of this project is to start a timer, then stop the

timer and compute the elapsed time (in seconds).

2. Place three command buttons and six labels on the form. Move and size the

controls and form so it looks something like this:

 Database Access and Management 8-22

Setting Properties of Objects at Design Time

• Each form and control has properties assigned to it by default when you start

up a new project. There are two ways to display the properties of an object.
The first way is to click on the object (form or control) in the form window.
Then, click on the Properties Window or the Properties Window button in the
tool bar. The second way is to first click on the Properties Window. Then,
select the object from the Object box in the Properties Window. Shown is the
Properties Window for the stopwatch application:

The drop-down box at the top of the
Properties Window is the Object box. It
displays the name of each object in the
application as well as its type. This display
shows the Form object. The Properties list
is directly below this box. In this list, you can
scroll through the list of properties fo r the
selected object. You may select a property
by clicking on it. Properties can be changed
by typing a new value or choosing from a list
of predefined settings (available as a drop
down list). Properties can be viewed in two
ways: Alphabetic and Categorized.

A very important property for each object is
its name. The name is used by Visual Basic
to refer to a particular object in code.

• A convention has been established for naming Visual Basic objects. This
convention is to use a three letter prefix (depending on the object) followed by
a name you assign. A few of the prefixes are (we’ll see more as we progress
in the class):

Object Prefix Example
Form frm frmWatch
Command Button cmd, btn cmdExit, btnStart
Label lbl lblStart, lblEnd
Text Box txt txtTime, txtName
Menu mnu mnuExit, mnuSave
Check box chk chkChoice

 Database Access and Management 8-23

• Object names can be up to 40 characters long, must start with a letter, must
contain only letters, numbers, and the underscore (_) character. Names are
used in setting properties at run time and also in establishing procedure
names for object events.

Setting Properties at Run Time

• You can also set or modify properties while your application is running. To do

this, you must write some code. The code format is:

ObjectName.Property = NewValue

Such a format is referred to as dot notation. For examp le, to change the
BackColor property of a form name frmStart, we'd type:

frmStart.BackColor = BLUE

How Names are Used in Object Events

• The names you assign to objects are used by Visual Basic to set up a

framework of event-driven procedures for you to add code to. The format for
each of these subroutines (all object procedures in Visual Basic are
subroutines) is:

Sub ObjectName_Event (Optional Arguments)
 .
 .
End Sub

• Visual Basic provides the Sub line with its arguments (if any) and the End

Sub statement. You provide any needed code.

 Database Access and Management 8-24

Example 1-2

Stopwatch Application - Setting Properties

1. Set properties of the form, three buttons, and six labels:

Form1:
 BorderStyle 1-Fixed Single
 Caption Stopwatch Application
 Name frmStopWatch

Command1:
 Caption &Start Timing
 Name cmdStart

Command2:
 Caption &End Timing
 Name cmdEnd

Command3:
 Caption E&xit
 Name cmdExit

Label1:
 Caption Start Time

Label2:
 Caption End Time

Label3:
 Caption Elapsed Time

Label4:
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblStart

Label5:
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblEnd

 Database Access and Management 8-25

Label6:
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblElapsed

In the Caption properties of the three command buttons, notice the
ampersand (&). The ampersand precedes a button's access key. That
is, in addition to clicking on a button to invoke its event, you can also press
its access key (no need for a mouse). The access key is pressed in
conjunction with the Alt key. Hence, to invoke 'Begin Timing', you can
either click the button or press Alt+B. Note in the button captions on the
form, the access keys appear with an underscore (_).

2. Your form should now look something like this:

 Database Access and Management 8-26

Variables

• We’re now ready to attach code to our application. As objects are added to

the form, Visual Basic automatically builds a framework of all event
procedures. We simply add code to the event procedures we want our
application to respond to. But before we do this, we need to discuss
variables.

• Variables are used by Visual Basic to hold information needed by your

application. Rules used in naming variables:

⇒ No more than 40 characters
⇒ They may include letters, numbers, and underscore (_)
⇒ The first character must be a letter
⇒ You cannot use a reserved word (word needed by Visual Basic)

Visual Basic Data Types

Data Type Suffix
Boolean None
Integer %
Long (Integer) &
Single (Floating) !
Double (Floating) #
Currency @
Date None
Object None
String $
Variant None

Variable Declaration

• There are three ways for a variable to be typed (declared):

1. Default
2. Implicit
3. Explicit

• If variables are not implicitly or explicitly typed, they are assigned the variant

type by default. The variant data type is a special type used by Visual Basic
that can contain numeric, string, or date data.

 Database Access and Management 8-27

• To implicitly type a variable, use the corresponding suffix shown above in
the data type table. For example,

TextValue$ = "This is a string"

creates a string variable, while

Amount% = 300

creates an integer variable.

• There are many advantages to explicitly typing variables. Primarily, we
insure all computations are properly done, mistyped variable names are
easily spotted, and Visual Basic will take care of insuring consistency in upper
and lower case letters used in variable names. Because of these
advantages, and because it is good programming practice, we will explicitly
type all variables.

• To explicitly type a variable, you must first determine its scope. There are
four levels of scope:

⇒ Procedure level
⇒ Procedure level, static
⇒ Form and module level
⇒ Global level

• Within a procedure, variables are declared using the Dim statement:

Dim MyInt as Integer
Dim MyDouble as Double
Dim MyString, YourString as String

Procedure level variables declared in this manner do not retain their value
once a procedure terminates.

• To make a procedure level variable retain its value upon exiting the

procedure, replace the Dim keyword with Static :

Static MyInt as Integer
Static MyDouble as Double

 Database Access and Management 8-28

• Form (module) level variables retain their value and are available to all
procedures within that form (module). Form (module) level variables are
declared in the declarations part of the general object in the form's
(module's) code window. The Dim keyword is used:

Dim MyInt as Integer
Dim MyDate as Date

• Global level variables retain their value and are available to all procedures

within an application. Module level variables are declared in the declarations
part of the general object of a module's code window. (It is advisable to keep
all global variables in one module.) Use the Global keyword:

Global MyInt as Integer
Global MyDate as Date

• What happens if you declare a variable with the same name in two or more

places? More local variables shadow (are accessed in preference to) less
local variables. For example, if a variable MyInt is defined as Global in a
module and declared local in a routine MyRoutine, while in MyRoutine, the
local value of MyInt is accessed. Outside MyRoutine, the global value of
MyInt is accessed.

 Database Access and Management 8-29

• Example of Variable Scope:

 Module1
Global X as Integer

Form1 Form2
Dim Y as Integer Dim Z as Single

Sub Routine1() Sub Routine3()
 Dim A as Double Dim C as String
 . .
 . .
End Sub End Sub

Sub Routine2()
 Static B as Double
 .
 .
End Sub

Procedure Routine1 has access to X, Y, and A (loses value upon
termination)
Procedure Routine2 has access to X, Y, and B (retains value)
Procedure Routine3 has access to X, Z, and C (loses value)

 Database Access and Management 8-30

Example 1-3

Stopwatch Application - Attaching Code

All that’s left to do is attach code to the application. We write code for every
event a response is needed for. In this application, there are three such events:
clicking on each of the command buttons.

1. Double-click anywhere on the form to open the code window. Or, select

‘View Code’ from the project window.

2. Click the down arrow in the Object box and select the object named

(general). The Procedure box will show (declarations). Here, you declare
three form level variables:

Option Explicit
Dim StartTime As Variant
Dim EndTime As Variant
Dim ElapsedTime As Variant

The Option Explicit statement forces us to declare all variables. The other lines

establish StartTime, EndTime, and ElapsedTime as variables global within
the form.

3. Select the cmdStart object in the Object box. If the procedure that appears is

not the Click procedure, choose Click from the procedure box. Type the
following code which begins the timing procedure. Note the Sub and End
Sub statements are provided for you:

Sub cmdStart_Click ()
‘Establish and print starting time
StartTime = Now
lblStart.Caption = Format(StartTime, "hh:mm:ss")
lblEnd.Caption = ""
lblElapsed.Caption = ""
End Sub

In this procedure, once the Start Timing button is clicked, we read the current

time and print it in a label box. We also blank out the other label boxes. In
the code above (and in all code in these notes), any line beginning with a
single quote (‘) is a comment. You decide whether you want to type these
lines or not. They are not needed for proper application operation.

 Database Access and Management 8-31

4. Now, code the cmdEnd button.

Sub cmdEnd_Click ()
‘Find the ending time, compute the elapsed time
‘Put both values in label boxes
EndTime = Now
ElapsedTime = EndTime - StartTime
lblEnd.Caption = Format(EndTime, "hh:mm:ss")
lblElapsed.Caption = Format(ElapsedTime, "hh:mm:ss")
End Sub

Here, when the End Timing button is clicked, we read the current time (End

Time), compute the elapsed time, and put both values in their corresponding
label boxes.

5. And, finally the cmdExit button.

Sub cmdExit_Click ()
End
End Sub

This routine simply ends the application once the Exit button is clicked.

6. Did you notice that as you typed in the code, Visual Basic does automatic

syntax checking on what you type (if you made any mistakes, that is)?

7. Run your application by clicking the Run button on the toolbar, or by pressing

<f5>. Pretty easy, wasn’t it?

8. Save your application - see the Primer on the next page. Use the Save

Project As option under the File menu. Make sure you save both the form
and the project files.

 Database Access and Management 8-32

9. If you have the time, some other things you may try with the Stopwatch
Application:

A. Try changing the form color and the fonts used in the label boxes

and command buttons.

B. Notice you can press the ‘End Timing’ button before the ‘Start

Timing’ button. This shouldn’t be so. Change the application so
you can’t do this. And make it such that you can’t press the ‘Start
Timing’ until ‘End Timing’ has been pressed. Hint: Look at the
command button Enabled property.

C. Can you think of how you can continuously display the ‘End Time’

and ‘Elapsed Time’? This is a little tricky because of the event-
driven nature of Visual Basic. Look at the Timer tool. Ask me for
help on this one.

Quick Primer on Saving Visual Basic Applications:

When saving Visual Basic applications, you need to be concerned with saving
both the forms (.FRM) and modules (.BAS) and the project file (.VBP). In either
case, make sure you are saving in the desired directory. The current directory is
always displayed in the Save window. Use standard Windows techniques to
change the current directory.

There are four Save commands available under the File menu in Visual Basic:

Save [Form Name] Save the currently selected form or module with the

current name. The selected file is identified in the
Project window.

Save [Form Name] As Like Save File, however you have the option to change
the file name

Save Project Saves all forms and modules in the current project
using their current names and also saves the project
file.

Save Project As Like Save Project, however you have the option to
change file names. When you choose this option, if
you have not saved your forms or modules, you will
also be prompted to save those files. I always use this
for new projects.

 Database Access and Management 8-33

Exercise 1

Calendar/Time Display

Design a window that displays the current month, day, and year. Also, display
the current time, updating it every second (look into the Timer control). Make the
window look something like a calendar page. Play with object properties to make
it pretty.

My Solution:

Form:

Properties:

Form frmCalendar:
 Caption = My Calendar
 BorderStyle = 1 - Fixed Single

Timer timDisplay :
 Interval = 1000

Label lblDay:
 Caption = Sunday
 FontName = Times New Roman
 FontBold = True
 FontSize = 24

lblDay

lblTime

timDispl
ay

lblMonth

lblNumb
er

lblYear

 Database Access and Management 8-34

Label lblTime:
 Caption = 00:00:00 PM
 FontName = Times New Roman
 FontBold = True
 FontSize = 24

Label lblYear:
 Alignment = 2 - Center
 Caption = 1998
 FontName = Times New Roman
 FontBold = True
 FontSize = 24

Label lblNumber:
 Alignment = 2 - Center
 Caption = 31
 FontName = Arial
 FontBold = True
 FontSize = 72

Label lblMonth:
 Alignment = 2 - Center
 Caption = March
 FontName = Times New Roman
 FontBold = True
 FontSize = 24

Code:

General Declarations:

Option Explicit

timDisplay Timer Event:

Private Sub timDisplay_Timer()
Dim Today As Variant
Today = Now
lblDay.Caption = Format(Today, "dddd")
lblMonth.Caption = Format(Today, "mmmm")
lblYear.Caption = Format(Today, "yyyy")
lblnumber.Caption = Format(Today, "d")
lblTime.Caption = Format(Today, "h:mm:ss ampm")
End Sub

 Database Access and Management 8-35

Learn Visual Basic 6.0

2. The Visual Basic Language

Review and Preview

• Last week, we found there were three primary steps involved in developing an

application using Visual Basic:

1. Draw the user interface
2. Assign properties to controls
3. Attach code to events

This week, we are primarily concerned with Step 3, attaching code. We will

become more familiar with moving around in the Code window and learn
some of the elements of the Basic language.

A Brief History of Basic

• Language developed in early 1960's at Dartmouth College:

B (eginner's)
A (All-Purpose)
S (Symbolic)
I (Instruction)
C (Code)

• Answer to complicated programming languages (FORTRAN, Algol, Cobol ...).

First timeshare language.

• In the mid-1970's, two college students write first Basic for a microcomputer

(Altair) - cost $350 on cassette tape. You may have heard of them: Bill
Gates and Paul Allen!

• Every Basic since then essentially based on that early version. Examples

include: GW-Basic, QBasic, QuickBasic.

• Visual Basic was introduced in 1991.

 Database Access and Management 8-36

Visual Basic Statements and Expressions

• The simplest statement is the assignment statement. It consists of a

variable name, followed by the assignment operator (=), followed by some
sort of expression.

 Examples:

 StartTime = Now
 Explorer.Caption = "Captain Spaulding"
 BitCount = ByteCount * 8
 Energy = Mass * LIGHTSPEED ^ 2
 NetWorth = Assets - Liabilities

The assignment statement stores information.

• Statements normally take up a single line with no terminator. Statements can

be stacked by using a colon (:) to separate them. Example:

StartTime = Now : EndTime = StartTime + 10

(Be careful stacking statements, especially with If/End If structures. You may
not get the response you desire.)

• If a statement is very long, it may be continued to the next line using the

continuation character, an underscore (_). Example:

Months = Log(Final * IntRate / Deposit + 1) _
/ Log(1 + IntRate)

• Comment statements begin with the keyword Rem or a single quote ('). For

example:

Rem This is a remark
' This is also a remark
x = 2 * y ' another way to write a remark or comment

You, as a programmer, should decide how much to comment your code.
Consider such factors as reuse, your audience, and the legacy of your code.

 Database Access and Management 8-37

Visual Basic Operators

• The simplest operators carry out arithmetic operations. These operators in

their order of precedence are:

Operator Operation
 ̂ Exponentiation
 * / Multiplication and division
 \ Integer division (truncates)
 Mod Modulus
 + - Addition and subutraction

• Parentheses around expressions can change precedence.

• To concatentate two strings, use the & symbol or the + symbol:

lblTime.Caption = "The current time is" & Format(Now, “hh:mm”)
txtSample.Text = "Hook this “ + “to this”

• There are six comparison operators in Visual Basic:

Operator Comparison
 > Greater than
 < Less than
 >= Greater than or equal to
 <= Less than or equal to
 = Equal to
 <> Not equal to

• The result of a comparison operation is a Boolean value (True or False).

 Database Access and Management 8-38

• We will use three logical operators

Operator Operation
 Not Logical not
 And Logical and
 Or Logical or

• The Not operator simply negates an operand.

• The And operator returns a True if both operands are True. Else, it returns a

False.

• The Or operator returns a True if either of its operands is True, else it returns

a False.

• Logical operators follow arithmetic operators in precedence.

Visual Basic Functions

• Visual Basic offers a rich assortment of built-in functions. The on-line help

utility will give you information on any or all of these functions and their use.
Some examples are:

 Function Value Returned
 Abs Absolute value of a number
 Asc ASCII or ANSI code of a character
 Chr Character corresponding to a given ASCII or ANSI code
 Cos Cosine of an angle
 Date Current date as a text string
 Format Date or number converted to a text string
 Left Selected left side of a text string
 Len Number of characters in a text string
 Mid Selected portion of a text stri ng
 Now Current time and date
 Right Selected right end of a text string
 Rnd Random number
 Sin Sine of an angle
 Sqr Square root of a number
 Str Number converted to a text string
 Time Current time as a text string
 Timer Number of seconds elapsed since midnight
 Val Numeric value of a given text string

 Database Access and Management 8-39

A Closer Look at the Rnd Function

• In writing games and learning software, we use the Rnd function to introduce

randomness. This insures different results each time you try a program. The
Visual Basic function Rnd returns a single precision, random number between
0 and 1 (actually greater than or equal to 0 and less than 1). To produce
random integers (I) between Imin and Imax, use the formula:

I = Int((Imax - Imin + 1) * Rnd) + Imin

• The random number generator in Visual Basic must be seeded. A Seed

value initializes the generator. The Randomize statement is used to do this:

Randomize Seed

 If you use the same Seed each time you run your application, the same

sequence of random numbers will be generated. To insure you get different
numbers every time you use your application (preferred for games), use the
Timer function to seed the generator:

Randomize Timer

 Place this statement in the Form_Load event procedure.

• Examples:

 To roll a six-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

 To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

 Database Access and Management 8-40

Example 2-1

Savings Account

1. Start a new project. The idea of this project is to determine how much you

save by making monthly deposits into a savings account. For those
interested, the mathematical formula used is:

F = D [(1 + I)M - 1] / I

where

 F - Final amount
 D - Monthly deposit amount
 I - Monthly interest rate
 M - Number of months

2. Place 4 label boxes, 4 text boxes, and 2 command buttons on the form. It

should look something like this:

 Database Access and Management 8-41

3. Set the properties of the form and each object.

Form1:
 BorderStyle 1-Fixed Single
 Caption Savings Account
 Name frmSavings

Label1:
 Caption Monthly Deposit

Label2:
 Caption Yearly Interest

Label3:
 Caption Number of Months

Label4:
 Caption Final Balance

Text1:
 Text [Blank]
 Name txtDeposit

Text2:
 Text [Blank]
 Name txtInterest

Text3:
 Text [Blank]
 Name txtMonths

Text4:
 Text [Blank]
 Name txtFinal

Command1:
 Caption &Calculate
 Name cmdCalculate

Command2:
 Caption E&xit
 Name cmdExit

 Database Access and Management 8-42

Now, your form should look like this:

4. Declare four variables in the general declarations area of your form. This

makes them available to all the form procedures:

 Option Explicit
 Dim Deposit As Single
 Dim Interest As Single
 Dim Months As Single
 Dim Final As Single

 The Option Explicit statement forces us to declare all variables.

5. Attach code to the cmdCalculate command button Click event.

 Private Sub cmdCalculate_Click ()
 Dim IntRate As Single
 ‘Read values from text boxes
 Deposit = Val(txtDeposit.Text)
 Interest = Val(txtInterest.Text)
 IntRate = Interest / 1200
 Months = Val(txtMonths.Text)
 ‘Compute final value and put in text box
 Final = Deposit * ((1 + IntRate) ^ Months - 1) / IntRate
 txtFinal.Text = Format(Final, "#####0.00")
 End Sub

 Database Access and Management 8-43

This code reads the three input values (monthly deposit, interest rate, number
of months) from the text boxes, computes the final balance using the provided
formula, and puts that result in a text box.

6. Attach code to the cmdExit command button Click event.

 Private Sub cmdExit_Click ()
 End
 End Sub

7. Play with the program. Make sure it works properly. Save the project.

 Database Access and Management 8-44

Visual Basic Symbolic Constants

• Many times in Visual Basic, functions and objects require data arguments that

affect their operation and return values you want to read and interpret. These
arguments and values are constant numerical data and difficult to interpret
based on just the numerical value. To make these constants more
understandable, Visual Basic assigns names to the most widely used values -
these are called symbolic constants. Appendix I lists many of these
constants.

• As an example, to set the background color of a form named frmExample to

blue, we could type:

frmExample.BackColor = 0xFF0000

or, we could use the symbolic constant for the blue color (vbBlue):

frmExample.BackColor = vbBlue

• It is strongly suggested that the symbolic constants be used instead of the

numeric values, when possible. You should agree that vbBlue means more
than the value 0xFF0000 when selecting the background color in the above
example. You do not need to do anything to define the symbolic constants -
they are built into Visual Basic.

Defining Your Own Constants

• You can also define your own constants for use in Visual Basic. The format

for defining a constant named PI with a value 3.14159 is:

Const PI = 3.14159

• User-defined constants should be written in all upper case letters to

distinguish them from variables. The scope of constants is established the
same way a variables’ scope is. That is, if defined within a procedure, they
are local to the procedure. If defined in the general declarations of a form,
they are global to the form. To make constants global to an application, use
the format:

Global Const PI = 3.14159

within the general declarations area of a module.

 Database Access and Management 8-45

Visual Basic Branching - If Statements

• Branching statements are used to cause certain actions within a program if a

certain condition is met.

• The simplest is the If/Then statement:

 If Balance - Check < 0 Then Print "You are overdrawn"

Here, if and only if Balance - Check is less than zero, the statement “You are
overdrawn” is printed.

• You can also have If/Then/End If blocks to allow multiple statements:

 If Balance - Check < 0 Then
 Print "You are overdrawn"
 Print "Authorities have been notified"
 End If

 In this case, if Bala nce - Check is less than zero, two lines of information are

printed.

• Or, If/Then/Else/End If blocks:

 If Balance - Check < 0 Then
 Print "You are overdrawn"
 Print "Authorities have been notified"
 Else
 Balance = Balance - Check
 End If

Here, the same two lines are printed if you are overdrawn (Balance - Check <
0), but, if you are not overdrawn (Else), your new Balance is computed.

 Database Access and Management 8-46

• Or, we can add the ElseIf statement:

 If Balance - Check < 0 Then
 Print "You are overdrawn"
 Print "Authorities have been notified"
 ElseIf Balance - Check = 0 Then
 Print "Whew! You barely made it"
 Balance = 0
 Else
 Balance = Balance - Check
 End If

Now, one more condition is added. If your Balance equals the Check amount
(ElseIf Balance - Check = 0), a different message appears.

• In using branching statements, make sure you consider all viable possibilities
in the If/Else/End If structure. Also, be aware that each If and ElseIf in a block
is tested sequentially. The first time an If test is met, the code associated with
that condition is executed and the If block is exited. If a later condition is also
True, it will never be considered.

Key Trapping

• Note in the previous example, there is nothing to prevent the user from typing

in meaningless characters (for example, letters) into the text boxes expecting
numerical data. Whenever getting input from a user, we want to limit the
available keys they can press. The process of interecepting unacceptable
keystrokes is key trapping.

• Key trapping is done in the KeyPress procedure of an object. Such a

procedure has the form (for a text box named txtText):

Sub txtText_KeyPress (KeyAscii as Integer)
 .
 .
 .
End Sub

What happens in this procedure is that every time a key is pressed in the
corresponding text box, the ASCII code for the pressed key is passed to this
procedure in the argument list (i.e. KeyAscii). If KeyAscii is an acceptable
value, we would do nothing. However, if KeyAscii is not acceptable, we
would set KeyAscii equal to zero and exit the procedure. Doing this has the
same result of not pressing a key at all. ASCII values for all keys are
available via the on-line help in Visual Basic. And some keys are also defined

 Database Access and Management 8-47

by symbolic constants. Where possible, we will use symbolic constants; else,
we will use the ASCII values.

• As an example, say we have a text box (named txtExample) and we only

want to be able to enter upper case letters (ASCII codes 65 through 90, or,
correspondingly, symbolic constants vbKeyA through vbKeyZ). The key
press procedure would look like (the Beep causes an audible tone if an
incorrect key is pressed):

Sub txtExample_KeyPress(KeyAscii as Integer)
 If KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ Then
 Exit Sub
 Else
 KeyAscii = 0
 Beep
 End If
End Sub

• In key trapping, it's advisable to always allow the backspace key (ASCII code
8; symbolic constant vbKeyBack) to pass through the key press event. Else,
you will not be able to edit the text box properly.

 Database Access and Management 8-48

Example 2-2

Savings Account - Key Trapping

1. Note the acceptable ASCII codes are 48 through 57 (numbers), 46 (the

decimal point), and 8 (the backspace key). In the code, we use symbolic
constants for the numbers and backspace key. Such a constant does not
exist for the decimal point, so we will define one with the following line i n the
general declarations area:

 Const vbKeyDecPt = 46

2. Add the following code to the three procedures: txtDeposit_KeyPress,

txtInterest_KeyPress, and txtMonths_KeyPress.

 Private Sub txtDeposit_KeyPress (KeyAscii As Integer)
 ‘Only allow number keys, decimal point, or backspace
 If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or

KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
 Exit Sub
 Else
 KeyAscii = 0
 Beep
 End If
 End Sub

 Private Sub txtInterest_KeyPress (KeyAscii As Integer)
 ‘Only allow number keys, decimal point, or backspace
 If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or

KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
 Exit Sub
 Else
 KeyAscii = 0
 Beep
 End If
 End Sub

 Database Access and Management 8-49

 Private Sub txtMonths_KeyPress (KeyAscii As Integer)
 ‘Only allow number keys, decimal point, or backspace
 If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or

KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
 Exit Sub
 Else
 KeyAscii = 0

 Beep
 End If
 End Sub

(In the If statements above, note the word processor causes a line break
where there really shouldn’t be one. That is, there is no line break
between the words Or KeyAscii and = vbKeyDecPt. One appears due to
page margins. In all code in these notes, always look for such things.)

3. Rerun the application and test the key trapping performance.

 Database Access and Management 8-50

Select Case - Another Way to Branch

• In addition to If/Then/Else type statements, the Select Case format can be

used when there are multiple selection possibilities.

• Say we've written this code using the If statement:

 If Age = 5 Then
 Category = "Five Year Old"
 ElseIf Age >= 13 and Age <= 19 Then
 Category = "Teenager"
 ElseIf (Age >= 20 and Age <= 35) Or Age = 50 Or (Age >= 60 and Age <=

65) Then
 Category = "Special Adult"
 ElseIf Age > 65 Then
 Category = "Senior Citizen"
 Else
 Category = "Everyone Else"
 End If

The corresponding code with Select Case would be:

 Select Case Age
 Case 5
 Category = "Five Year Old"
 Case 13 To 19
 Category = "Teenager"
 Case 20 To 35, 50, 60 To 65
 Category = "Special Adult"
 Case Is > 65
 Category = "Senior Citizen"
 Case Else
 Category = "Everyone Else"
 End Select

Notice there are several formats for the Case statement. Consult on-line help
for discussions of these formats.

 Database Access and Management 8-51

The GoTo Statement

• Another branching statement, and perhaps the most hated statement in

programming, is the GoTo statement. However, we will need this to do Run-
Time error trapping. The format is GoTo Label, where Label is a labeled
line. Labeled lines are formed by typ ing the Label followed by a colon.

• GoTo Example:

Line10:
 .
 .
GoTo Line10

When the code reaches the GoTo statement, program control transfers to the
line labeled Line10.

Visual Basic Looping

• Looping is done with the Do/Loop format. Loops are used for operations are

to be repeated some number of times. The loop repeats until some specified
condition at the beginning or end of the loop is met.

• Do While/Loop Example:

Counter = 1
Do While Counter <= 1000
 Debug.Print Counter
 Counter = Counter + 1
Loop

This loop repeats as long as (While) the variable Counter is less than or
equal to 1000. Note a Do While/Loop structure will not execute even once if
the While condition is violated (False) the first time through. Also note the
Debug.Print statement. What this does is print the value Counter in the
Visual Basic Debug window. We'll learn more about this window later in the
course.

 Database Access and Management 8-52

• Do Until/Loop Example:

Counter = 1
Do Until Counter > 1000
 Debug.Print Counter
 Counter = Counter + 1
Loop

This loop repeats Until the Counter variable exceeds 1000. Note a Do
Until/Loop structure will not be entered if the Until condition is already True on
the first encounter.

• Do/Loop While Example:

Sum = 1
Do
 Debug.Print Sum
 Sum = Sum + 3
Loop While Sum <= 50

This loop repeats While the Variable Sum is less than or equal to 50. Note,
since the While check is at the end of the loop, a Do/Loop While structure is
always executed at least once.

• Do/Loop Until Example:

Sum = 1
Do
 Debug.Print Sum
 Sum = Sum + 3
Loop Until Sum > 50

This loop repeats Until Sum is greater than 50. And, like the previous
example, a Do/Loop Until structure always executes at least once.

• Make sure you can always get out of a loop! Infinite loops are never nice. If
you get into one, try Ctrl+Break. That sometimes works - other times the
only way out is rebooting your machine!

• The statement Exit Do will get you out of a loop and transfer program control

to the statement following the Loop statement.

 Database Access and Management 8-53

Visual Basic Counting

• Counting is accomplished using the For/Next loop.

Example

For I = 1 to 50 Step 2
 A = I * 2
 Debug.Print A
Next I

In this example, the variable I initializes at 1 and, with each iteration of the
For/Next loop, is incremented by 2 (Step). This looping continues until I
becomes greater than or equal to its final value (50). If Step is not included,
the default value is 1. Negative values of Step are allowed.

• You may exit a For/Next loop using an Exit For statement. This will transfer

program control to the statement following the Next statement.

 Database Access and Management 8-54

Example 2-3

Savings Account - Decisions

1. Here, we modify the Savings Account project to allow entering any three

values and computing the fourth. First, add a third command button that will
clear all of the text boxes. Assign the following properties:

 Command3:
 Caption Clear &Boxes
 Name cmdClear

 The form should look something like this when you’re done:

2. Code the cmdClear button Click event:

 Private Sub cmdClear_Click ()
 ‘Blank out the text boxes
 txtDeposit.Text = ""
 txtInterest.Text = ""
 txtMonths.Text = ""
 txtFinal.Text = ""
 End Sub

This code simply blanks out the four text boxes when the Clear button is
clicked.

 Database Access and Management 8-55

3. Code the KeyPress event for the txtFinal object:

Private Sub txtFinal_KeyPress (KeyAscii As Integer)
 ‘Only allow number keys, decimal point, or backspace
 If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or

KeyAscii = vbKeyDecPt Or KeyAscii = vbKeyBack Then
 Exit Sub
Else
 KeyAscii = 0
 Beep
End If
End Sub

We need this code because we can now enter information into the Final
Value text box.

4. The modified code for the Click event of the cmdCalculate button is:

Private Sub cmdCalculate_Click()
Dim IntRate As Single
Dim IntNew As Single
Dim Fcn As Single, FcnD As Single
‘Read the four text boxes
Deposit = Val(txtDeposit.Text)
Interest = Val(txtInterest.Text)
IntRate = Interest / 1200
Months = Val(txtMonths.Text)
Final = Val(txtFinal.Text)
‘Determine which box is blank
‘Compute that missing value and put in text box
If txtDeposit.Text = "" Then
‘Deposit missing
 Deposit = Final / (((1 + IntRate) ^ Months - 1) /

IntRate)
 txtDeposit.Text = Format(Deposit, "#####0.00")
ElseIf txtInterest.Text = "" Then
‘Interest missing - requires iterative solution
 IntNew = (Final / (0.5* Months * Deposit) - 1) / Months
 Do
 IntRate = IntNew
 Fcn = (1 + IntRate) ^ Months - Final * IntRate /

Deposit - 1
 FcnD = Months * (1 + IntRate) ^ (Months - 1) - Final /

Deposit
 IntNew = IntRate - Fcn / FcnD
 Loop Until Abs(IntNew - IntRate) < 0.00001 / 12
 Interest = IntNew * 1200

 Database Access and Management 8-56

 txtInterest.Text = Format(Interest, "##0.00")
ElseIf txtMonths.Text = "" Then
‘Months missing
 Months = Log(Final * IntRate / Deposit + 1) / Log(1 +

IntRate)
 txtMonths.Text = Format(Months, "###.0")
ElseIf txtFinal.Text = "" Then
‘Final value missing
 Final = Deposit * ((1 + IntRate) ^ Months - 1) / IntRate
 txtFinal.Text = Format(Final, "#####0.00")
End If
End Sub

In this code. we first read the text information from all four text boxes and

based on which one is blank, compute the missing information and display
it in the corresponding text box. Solving for missing Deposit, Months, or
Final information is a straightforward manipulation of the equation given in
Example 2-2.

If the Interest value is missing, we have to solve an Mth-order polynomial using

something called Newton-Raphson iteration - a good example of using a Do
loop. Finding the Interest value is straightforward. What we do is guess at
what the interest is, compute a better guess (using Newton-Raphson
iteration), and repeat the process (loop) until the old guess and the new
guess are close to each other. You can see each step in the code.

5. Test and save your application. Go home and relax.

 Database Access and Management 8-57

Exercise 2-1

Computing a Mean and Standard Deviation

Develop an application that allows the user to input a sequence of numbers.
When done inputting the numbers, the program should compute the mean of that
sequence and the standard deviation. If N numbers are input, with the ith
number represented by xi, the formula for the mean (x) is:

x = (xi
i

N

=
∑

1

)/ N

and to compute the standard deviation (s), take the square root of this equation:

s2 = [N xi
i

N
2

1=
∑ - (xi

i

N

=
∑

1

)2]/[N(N - 1)]

The Greek sigmas in the above equations simply indicate that you add up all the
corresponding elements ne xt to the sigma.

My Solution:

Form:

Label1

Label2

cmdAccept

cmdNew

Label6

Label4

lblNumber

txtInput

cmdComput
e
cmdExit

lblMean

lblStdDev

 Database Access and Management 8-58

Properties:

Form frmStats:
 Caption = Mean and Standard Deviation

CommandButton cmdExit:
 Caption = E&xit

CommandButton cmdAccept:
 Caption = &Accept Number

CommandButton cmdCompute:
 Caption = &Compute

CommandButton cmdNew :
 Caption = &New Sequence

TextBox txtInput:
 FontName = MS Sans Serif
 FontSize = 12

Label lblStdDev:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 12

Label Label6 :
 Caption = Standard Deviation

Label lblMean:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 12

Label Label4 :
 Caption = Mean

 Database Access and Management 8-59

Label lblNumber:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 12

Label Label2 :
 Caption = Enter Number

Label Label1 :
 Caption = Number of Values

Code:

General Declarations:

Option Explicit
Dim NumValues As Integer
Dim SumX As Single
Dim SumX2 As Single
Const vbKeyMinus = 45
Const vbKeyDecPt = 46

cmdAccept Click Event:

Private Sub cmdAccept_Click()
Dim Value As Single
txtInput.SetFocus
NumValues = NumValues + 1
lblNumber.Caption = Str(NumValues)
‘Get number and sum number and number-squared
Value = Val(txtInput.Text)
SumX = SumX + Value
SumX2 = SumX2 + Value ^ 2
txtInput.Text = ""
End Sub

 Database Access and Management 8-60

cmdCompute Click Event:

Private Sub cmdCompute_Click()
Dim Mean As Single
Dim StdDev As Single
txtInput.SetFocus
‘Make sure there are at least two values
If NumValues < 2 Then
 Beep
 Exit Sub
End If
‘Compute mean
Mean = SumX / NumValues
lblMean.Caption = Str(Mean)
‘Compute standard deviation
StdDev = Sqr((NumValues * SumX2 - SumX ^ 2) / (NumValues *
(NumValues - 1)))
lblStdDev.Caption = Str(StdDev)
End Sub

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()
'Initialize all variables
txtInput.SetFocus
NumValues = 0
lblNumber.Caption = "0"
txtInput.Text = ""
lblMean.Caption = ""
lblStdDev.Caption = ""
SumX = 0
SumX2 = 0
End Sub

 Database Access and Management 8-61

txtInput KeyPress Event:

Private Sub txtInput_KeyPress(KeyAscii As Integer)
'Only allow numbers, minus sign, decimal point, backspace,
return keys
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii
= vbKeyMinus Or KeyAscii = vbKeyDecPt Or KeyAscii =
vbKeyBack Then
 Exit Sub
ElseIf KeyAscii = vbKeyReturn Then
 Call cmdAccept_Click
Else
 KeyAscii = 0
End If
End Sub

 Database Access and Management 8-62

Exercise 2-2

Flash Card Addition Problems

Write an application that generates random addition problems. Provide some
kind of feedback and scoring system as the problems are answered.

My Solution:

Form:

Properties:

Form frmAdd:
 BorderStyle = 1 - Fixed Single
 Caption = Flash Card Addition

CommandButton cmdNext:
 Caption = &Next Problem
 Enabled = False

CommandButton cmdExit:
 Caption = E&xit

TextBox txtAnswer:
 FontName = Arial
 FontSize = 48
 MaxLength = 2

lblNum1

Label2

lblNum2 Label4

txtAnswer

Label1

lblScore

lblMessag
e

cmdNex cmdExit

 Database Access and Management 8-63

Label lblMessage:
 Alignment = 2 - Center
 BackColor = &H00FFFF00& (Cyan)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 24
 FontItalic = True

Label lblScore:
 Alignment = 2 - Center
 BackColor = &H0000FFFF& (Yellow)
 BorderStyle = 1 - Fixed Single
 Caption = 0
 FontName = Times New Roman
 FontBold = True
 FontSize = 36

Label Label1 :
 Alignment = 2 - Center
 Caption = Score:
 FontName = MS Sans Serif
 FontSize = 18

Label Label4 :
 Alignment = 2 - Center
 Caption = =
 FontName = Arial
 FontSize = 48

Label lblNum2:
 Alignment = 2 - Center
 FontName = Arial
 FontSize = 48

Label Label2 :
 Alignment = 2 - Center
 Caption = +
 FontName = Arial
 FontSize = 48

Label lblNum1:
 Alignment = 2 - Center
 FontName = Arial
 FontSize = 48

 Database Access and Management 8-64

Code:

General Declarations:

Option Explicit
Dim Sum As Integer
Dim NumProb As Integer, NumRight As Integer

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

cmdNext Click Event:

Private Sub cmdNext_Click()
'Generate next addition problem
Dim Number1 As Integer
Dim Number2 As Integer
txtAnswer.Text = ""
lblMessage.Caption = ""
NumProb = NumProb + 1
'Generate random numbers for addends
Number1 = Int(Rnd * 21)
Number2 = Int(Rnd * 21)
lblNum1.Caption = Format(Number1, "#0")
lblNum2.Caption = Format(Number2, "#0")
'Find sum
Sum = Number1 + Number2
cmdNext.Enabled = False
txtAnswer.SetFocus
End Sub

Form Activate Event:

Private Sub Form_Activate()
Call cmdNext_Click
End Sub

 Database Access and Management 8-65

Form Load Event:

Private Sub Form_Load()
Randomize Timer
NumProb = 0
NumRight = 0
End Sub

txtAnswer KeyPress Event:

Private Sub txtAnswer_KeyPress(KeyAscii As Integer)
Dim Ans As Integer
'Check for number only input and for return key
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii
= vbKeyBack Then
 Exit Sub
ElseIf KeyAscii = vbKeyReturn Then
'Check answer
 Ans = Val(txtAnswer.Text)
 If Ans = Sum Then
 NumRight = NumRight + 1
 lblMessage.Caption = "That's correct!"
 Else
 lblMessage.Caption = "Answer is " + Format(Sum, "#0")
 End If
 lblScore.Caption = Format(100 * NumRight / NumProb,
"##0")
 cmdNext.Enabled = True
 cmdNext.SetFocus
Else
 KeyAscii = 0
End If
End Sub

 Database Access and Management 8-66

This page intentionally not left blank.

Learn Visual Basic 6.0

3. Exploring the Visual Basic Toolbox

Review and Preview

• In this class, we begin a journey where we look at each tool in the Visual

Basic toolbox. We will revisit some tools we already know and learn a lot of
new tools. First, though, we look at an important Visual Basic functions.

The Message Box

• One of the best functions in Visual Basic is the message box. The message

box displays a message, optional icon, and selected set of command buttons.
The user responds by clicking a button.

• The statement form of the message box returns no value (it simply displays

the box):

MsgBox Message, Type, Title

 Database Access and Management 8-67

where

Message Text message to be displayed
Type Type of message box (discussed in a bit)
Title Text in title bar of message box

You have no control over where the message box appears on the screen.

• The function form of the message box returns an integer value
(corresponding to the button clicked by the user). Example of use (Response
is returned value):

Dim Response as Integer
Response = MsgBox(Message, Type, Title)

• The Type argument is formed by summing four values corresponding to the

buttons to display, any icon to show, which button is the default response,
and the modality of the message box.

• The first component of the Type value specifies the buttons to display:

Value Meaning Symbolic Constant
0 OK button only vbOKOnly
1 OK/Cancel buttons vbOKCancel
2 Abort/Retry/Ignore buttons vbAbortRetryIgnore
3 Yes/No/Cancel buttons vbYesNoCancel
4 Yes/No buttons vbYesNo
5 Retry/Cancel buttons vbRetryCancel

• The second component of Type specifies the icon to display in the message
box:

Value Meaning Symbolic Constant
0 No icon (None)
16 Critical icon vbCritical
32 Question mark vbQuestion
48 Exclamation point vbExclamation
64 Information icon vbInformation

• The third component of Type specifies which button is default (i.e. pressing

Enter is the same as clicking the default button):

Value Meaning Symbolic Constant
0 First button default vbDefaultButton1
256 Second button default vbDefaultButton2
512 Third button default vbDefaultButton3

 Database Access and Management 8-68

• The fourth and final component of Type specifies the modality:

Value Meaning Symbolic Constant
0 Application modal vbApplicationModal
4096 System modal vbSystemModal

If the box is Application Modal, the user must respond to the box before
continuing work in the current application. If the box is System Modal, all
applications are suspended until the user responds to the message box.

• Note for each option in Type, there are numeric values listed and symbolic

constants. Recall, it is strongly suggested that the symbolic constants be
used instead of the numeric values. You should agree that vbOKOnly
means more than the number 0 when selecting the button type.

 Database Access and Management 8-69

• The value returned by the function form of the message box is related to the
button clicked:

Value Meaning Symbolic Constant
1 OK button selected vbOK
2 Cancel button selected vbCancel
3 Abort button selected vbAbort
4 Retry button selected vbRetry
5 Ignore button selected vbIgnore
6 Yes button selected vbYes
7 No button selected vbNo

• Message Box Example:

MsgBox “This is an example of a message box”, vbOKCancel +
vbInformation, “Message Box Example”

• You've seen message boxes if you've ever used a Windows application.
Think of all the examples you've seen. For example, message boxes are
used to ask you if you wish to save a file before exiting and to warn you if a
disk drive is not ready.

Object Methods

• In previous work, we have seen that each object has properties and events

associated with it. A third concept associated with objects is the method. A
method is a procedure or function that imparts some action to an object.

• As we move through the toolbox, when appropriate, we'll discuss object

methods. Methods are always enacted at run-time in code. The format for
invoking a method is:

ObjectName.Method {optional arguments}

Note this is another use of the dot notation.

 Database Access and Management 8-70

The Form Object

• The Form is where the user interface is drawn. It is central to the

development of Visual Basic applications.

• Form Properties:

Appearance Selects 3-D or flat appearance.
BackColor Sets the form background color.
BorderStyle Sets the form border to be fixed or sizeable.
Caption Sets the form window title.
Enabled If True, allows the form to respond to mouse and

keyboard events; if False, disables form.
Font Sets font type, style, size.
ForeColor Sets color of text or graphics.
Picture Places a bitmap picture in the form.
Visible If False, hides the form.

• Form Events:

Activate Form_Activate event is triggered when form
becomes the active window.

Click Form_Click event is triggered when user clicks on
form.

DblClick Form_DblClick event is triggered when user
double-clicks on form.

Load Form_Load event occurs when form is loaded.
This is a good place to initialize variables and set
any run-time properties.

• Form Methods:

Cls Clears all graphics and text from form. Does not
clear any objects.

Print Prints text string on the form.

Examples

frmExample.Cls ' clears the form
frmExample.Print "This will print on the form"

 Database Access and Management 8-71

Command Buttons

• We've seen the command button before. It is probably the most widely used

control. It is used to begin, interrupt, or end a particular process.

• Command Button Properties:

Appearance Selects 3-D or flat appearance.
Cancel Allows selection of button with Esc key (only one

button on a form can have this property True).
Caption String to be displayed on button.
Default Allows selection of button with Enter key (only one

button on a form can have this property True).
Font Sets font type, style, size.

• Command Button Events:

Click Event triggered when button is selected either by
clicking on it or by pressing the access key.

Label Boxes

• A label box is a control you use to display text that a user can't edit directly.

We've seen, though, in previous examples, that the text of a label box can be
changed at run-time in response to events.

• Label Properties:

Alignment Aligns caption within border.
Appearance Selects 3-D or flat appearance.
AutoSize If True, the label is resized to fit the text specifed

by the caption property. If False, the label will
remain the size defined at design time and the text
may be clipped.

BorderStyle Determines type of border.
Caption String to be displayed in box.
Font Sets font type, style, size.

 Database Access and Management 8-72

WordWrap Works in conjunction with AutoSize property. If
AutoSize = True, WordWrap = True, then the text
will wrap and label will expand vertically to fit the
Caption. If AutoSize = True, WordWrap = False,
then the text will not wrap and the label expands
horizontally to fit the Caption. If AutoSize = False,
the text will not wrap regardless of WordWrap
value.

• Label Events:

Click Event triggered when user clicks on a label.
DblClick Event triggered when user double-clicks on a

label.

Text Boxes

• A text box is used to display information entered at design time, by a user at

run-time, or assigned within code. The displayed text may be edited.

• Text Box Properties:

Appearance Selects 3-D or flat appearance.
BorderStyle Determines type of border.
Font Sets font type, style, size.
MaxLength Limits the length of displayed text (0 value

indicates unlimited length).
MultiLine Specifies whether text box displays single line or

multiple lines.
PasswordChar Hides text with a single character.
ScrollBars Specifies type of displayed scroll bar(s).
SelLength Length of selected text (run-time only).
SelStart Starting position of selected text (run-time only).
SelText Selected text (run-time only).
Tag Stores a string expression.
Text Displayed text.

 Database Access and Management 8-73

• Text Box Events:

Change Triggered every time the Text property changes.
LostFocus Triggered when the user leaves the text box. This

is a good place to examine the contents of a text
box after editing.

KeyPress Triggered whenever a key is pressed. Used for
key trapping, as seen in last class.

• Text Box Methods:

SetFocus Places the cursor in a specified text box.

Example

txtExample.SetFocus ' moves cursor to box named txtExample

 Database Access and Management 8-74

Example 3-1

Password Validation

1. Start a new project. The idea of this project is to ask the user to input a

password. If correct, a message box appears to validate the user. If
incorrect, other options are provided.

2. Place a two command buttons, a label box, and a text box on your form so it

looks something like this:

3. Set the properties of the form and each object.

Form1:
 BorderStyle 1-Fixed Single
 Caption Password Validation
 Name frmPassword

Label1:
 Alignment 2-Center
 BorderStyle 1-Fixed Single
 Caption Please Enter Your Password:
 FontSize 10
 FontStyle Bold

Text1:
 FontSize 14
 FontStyle Regular
 Name txtPassword
 PasswordChar *
 Tag [Whatever you choose as a password]
 Text [Blank]

 Database Access and Management 8-75

Command1:
 Caption &Validate
 Default True
 Name cmdValid

Command2:
 Cancel True
 Caption E&xit
 Name cmdExit

Your form should now look like this:

4. Attach the following code to the cmdValid_Click event.

Private Sub cmdValid_Click()
'This procedure checks the input password
Dim Response As Integer
If txtPassword.Text = txtPassword.Tag Then
'If correct, display message box
 MsgBox "You've passed security!", vbOKOnly +

vbExclamation, "Access Granted"
Else
'If incorrect, give option to try again
 Response = MsgBox("Incorrect password", vbRetryCancel +

vbCritical, "Access Denied")
 If Response = vbRetry Then
 txtPassword.SelStart = 0
 txtPassword.SelLength = Len(txtPassword.Text)
 Else
 End
 End If
End If
txtPassword.SetFocus
End Sub

 Database Access and Management 8-76

This code checks the input password to see if it matches the stored value. If so,
it prints an acceptance message. If incorrect, it displays a message box to
that effect and asks the user if they want to try again. If Yes (Retry), another
try is granted. If No (Cancel), the program is ended. Notice the use of
SelLength and SelStart to highlight an incorrect entry. This allows the user
to type right over the incorrect response.

5. Attach the following code to the Form_Activate event.

Private Sub Form_Activate()
txtPassword.SetFocus
End Sub

6. Attach the following code to the cmdExit_ Click event.

Private Sub cmdExit_Click()
End
End Sub

7. Try running the program. Try both options: input correct password (note it is

case sensitive) and input incorrect password. Save your project.

If you have time, define a constant, TRYMAX = 3, and modify the code to
allow the user to have just TRYMAX attempts to get the correct password.
After the final try, inform the user you are logging him/her off. You’ll also
need a variable that counts the number of tries (make it a Static variable).

 Database Access and Management 8-77

Check Boxes

• Check boxes provide a way to make choices from a list of potential

candidates. Some, all, or none of the choices in a group may be selected.

• Check Box Properties:

Caption Identifying text next to box.
Font Sets font type, style, size.
Value Indicates if unchecked (0, vbUnchecked), checked

(1, vbChecked), or grayed out (2, vbGrayed).

• Check Box Events:

Click Triggered when a box is clicked. Value property is
automatically changed by Visual Basic.

Option Buttons

• Option buttons provide the capability to make a mutually exclusive choice

among a group of potential candidate choices. Hence, option buttons work as
a group, only one of which can have a True (or selected) value.

• Option Button Properties:

Caption Identifying text next to button.
Font Sets font type, style, size.
Value Indicates if selected (True) or not (False). Only

one option button in a group can be True. One
button in each group of option buttons should
always be initialized to True at design time.

• Option Button Events:

Click Triggered when a button is clicked. Value
property is automatically changed by Visua l
Basic.

 Database Access and Management 8-78

Arrays

• Up to now, we've only worked with regular variables, each having its own

unique name. Visual Basic has powerful facilities for handling multi-
dimensional variables, or arrays. For now, we'll only use single, fixed-
dimension arrays.

• Arrays are declared in a manner identical to that used for regular variables.

For example, to declare an integer array named 'Items', with dimension 9 , at
the procedure level, we use:

Dim Items(9) as Integer

If we want the array variables to retain their value upon leaving a procedure,
we use the keyword Static:

Static Items(9) as Integer

At the form or module level, in the general declarations area of the Code
window, use:

Dim Items(9) as Integer

And, at the module level, for a global declaration, use:

Global Items(9) as Integer

• The index on an array variable begins at 0 and ends at the dimensioned

value. For example, the Items array in the above examples has ten
elements, ranging from Items(0) to Items(9). You use array variables just like
any other variable - just remember to include its name and its index. For
example, to set Item(5) equal to 7, you simply write:

 Item(5) = 7

 Database Access and Management 8-79

Control Arrays

• With some controls, it is very useful to define control arrays - it depends on

the application. For example, option buttons are almost always grouped in
control arrays.

• Control arrays are a convenient way to handle groups of controls that perform

a similar function. All of the events available to the single control are still
available to the array of controls, the only difference being an argument
indicating the index of the selected array element is passed to the event.
Hence, instead of writing individual procedures for each control (i.e. not using
control arrays), you only have to write one procedure for each array.

• Another advantage to control arrays is that you can add or delete array

elements at run-time. You cannot do that with controls (objects) not in arrays.
Refer to the Load and Unload statements in on-line help for the proper way
to add and delete control array elements at run-time.

• Two ways to create a control array:

1. Create an individual control and set desired properties. Copy the control
using the editor, then paste it on the form. Visual Basic will pop-up a
dialog box that will ask you if you wish to create a control array. Respond
yes and the array is created.

2. Create all the controls you wish to have in the array. Assign the desired

control array name to the first control. Then, try to name the second
control with the same name. Visual Basic will prompt you, asking if you
want to create a control array. Answer yes. Once the array is created,
rename all remaining controls with that name.

• Once a control array has been created and named, elements of the array are

referred to by their name and index. For example, to set the Caption
property of element 6 of a label box array named lblExample , we would use:

lblExample(6).Caption = “This is an example”

We'll use control arrays in the next example.

 Database Access and Management 8-80

Frames

• We've seen that both option buttons and check boxes work as a group.

Frames provide a way of grouping related controls on a form. And, in the
case of option buttons, frames affect how such buttons operate.

• To group controls in a frame, you first draw the frame. Then, the associated

controls must be drawn in the frame. This allows you to move the frame and
controls together. And, once a control is drawn within a frame, it can be
copied and pasted to create a control array within that frame. To do this, first
click on the object you want to copy. Copy the object. Then, click on the
frame. Paste the object. You will be asked if you want to create a control
array. Answer Yes .

•
• Drawing the controls outside the frame and dragging them in, copying them

into a frame, or drawing the frame around existing controls will not result in a
proper grouping. It is perfectly acceptable to draw frames within other
frames.

• As mentioned, frames affect how option buttons work. Option buttons within

a frame work as a group, independently of option buttons in other frames.
Option buttons on the form, and not in frames, work as another independent
group. That is, the form is itself a frame by default. We'll see this in the next
example.

• It is important to note that an independent group of option buttons is defined

by physical location within frames, not according to naming convention. That
is, a control array of option buttons does not work as an independent group
just because it is a control array. It would only work as a group if it were the
only group of option buttons within a frame or on the form. So, remember
physical location, and physical location only, dictates independent operation
of option button groups.

• Frame Properties:

Caption Title information at top of frame.
Font Sets font type, style, size.

 Database Access and Management 8-81

Example 3-2

Pizza Order

1. Start a new project. We'll build a form where a pizza order can be entered by
simply clicking on check boxes and option buttons.

2. Draw three frames. In the first, draw three option buttons, in the second,

draw two option buttons, and in the third, draw six check boxes. Draw two
option buttons on the form. Add two command buttons. Make things look
something like this.

3. Set the properties of the form and each control.

Form1:
 BorderStyle 1-Fixed Single
 Caption Pizza Order
 Name frmPizza

Frame1:
 Caption Size

Frame2:
 Caption Crust Type

Frame3
 Caption Toppings

 Database Access and Management 8-82

Option1:
 Caption Small
 Name optSize
 Value True

Option2:
 Caption Medium
 Name optSize (yes, create a control array)

Option3:
 Caption Large
 Name optSize

Option4:
 Caption Thin Crust
 Name optCrust
 Value True

Option5:
 Caption Thick Crust
 Name optCrust (yes, create a control array)

Option6:
 Caption Eat In
 Name optWhere
 Value True

Option7:
 Caption Take Out
 Name optWhere (yes, create a control array)

Check1:
 Caption Extra Cheese
 Name chkTop

Check2:
 Caption Mushrooms
 Name chkTop (yes, create a control array)

Check3:
 Caption Black Olives
 Name chkTop

 Database Access and Management 8-83

Check4:
 Caption Onions
 Name chkTop

Check5:
 Caption Green Peppers
 Name chkTop

Check6:
 Caption Tomatoes
 Name chkTop

Command1:
 Caption &Build Pizza
 Name cmdBuild

Command2:
 Caption E&xit
 Name cmdExit

The form should look like this now:

4. Declare the following variables in the general declarations area:

Option Explicit
Dim PizzaSize As String
Dim PizzaCrust As String
Dim PizzaWhere As String

This makes the size, crust, and location variables global to the form.

 Database Access and Management 8-84

5. Attach this code to the Form_Load procedure. This initializes the pizza size,
crust, and eating location.

Private Sub Form_Load()
'Initialize pizza parameters
PizzaSize = "Small"
PizzaCrust = "Thin Crust"
PizzaWhere = "Eat In"
End Sub

Here, the global variables are initialized to their default values, corresponding to

the default option buttons.

6. Attach this code to the three option button array Click events. Note the use

of the Index variable:

Private Sub optSize_Click(Index As Integer)
‘Read pizza size
PizzaSize = optSize(Index).Caption
End Sub

Private Sub optCrust_Click(Index As Integer)
‘Read crust type
PizzaCrust = optCrust(Index).Caption
End Sub

Private Sub optWhere_Click(Index As Integer)
‘Read pizza eating location
PizzaWhere = optWhere(Index).Caption
End Sub

In each of these routines, when an option button is clicked, the value of the

corresponding button’s caption is loaded into the respective variable.

 Database Access and Management 8-85

7. Attach this code to the cmdBuild_Click event.

Private Sub cmdBuild_Click()
'This procedure builds a message box that displays your

pizza type
Dim Message As String
Dim I As Integer
Message = PizzaWhere + vbCr
Message = Message + PizzaSize + " Pizza" + vbCr
Message = Message + PizzaCrust + vbCr
For I = 0 To 5
 If chkTop(I).Value = vbChecked Then Message = Message +

chkTop(I).Caption + vbCr
Next I
MsgBox Message, vbOKOnly, "Your Pizza"
End Sub

This code forms the first part of a message for a message box by concatenating

the pizza size, crust type, and eating location (vbCr is a symbolic constant
representing a ‘carriage return’ that puts each piece of orderi ng information
on a separate line). Next, the code cycles through the six topping check
boxes and adds any checked information to the message. The code then
displays the pizza order in a message box.

8. Attach this code to the cmdExit_Click event.

Private Sub cmdExit_Click()
End
End Sub

9. Get the application working. Notice how the different selection buttons work

in their individual groups. Save your project.

10. If you have time, try these modifications:

A. Add a new program button that resets the order form to the initial

default values. You’ll have to reinitialize the three global variables,
reset all check boxes to unchecked, and reset all three option button
groups to their default values.

B. Modify the code so that if no toppings are selected, the message

“Cheese Only” appears on the order form. You’ll need to figure out a
way to see if no check boxes were checked.

 Database Access and Management 8-86

List Boxes

• A list box displays a list of items from which the user can select one or more

items. If the number of items exceeds the number that can be displayed, a
scroll bar is automatically added.

• List Box Properties:

Appearance Selects 3-D or flat appearance.
List Array of items in list box.
ListCount Number of items in list.
ListIndex The number of the most recently selected item in

list. If no item is selected, ListIndex = -1.
MultiSelect Controls how items may be selected (0 -no multiple

selection allowed, 1-multiple selection allowed, 2 -
group selection allowed).

Selected Array with elements set equal to True or False,
depending on whether corresponding list item is
selected.

Sorted True means items are sorted in 'Ascii' order, else
items appear in order added.

Text Text of most recently selected item.

• List Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-clicked.

Primary way used to process selection.

• List Box Methods:

AddItem Allows you to insert item in list.
Clear Removes all items from list box.
RemoveItem Removes item from list box, as identified by index

of item to remove.

Examples

lstExample.AddItem "This is an added item" ' adds text string to list
lstExample.Clear ' clears the list box
lstExample.RemoveItem 4 ' removes lstExample.List(4) from list box

 Database Access and Management 8-87

• Items in a list box are usually initialized in a Form_Load procedure. It's
always a good idea to Clear a list box before initializing it.

• You've seen list boxes before. In the standard 'Open File' window, the

Directory box is a list box with MultiSelect equal to zero.

Combo Boxes

• The combo box is similar to the list box. The differences are a combo box

includes a text box on top of a list box and only allows selection of one item.
In some cases, the user can type in an alternate response.

• Combo Box Properties:

Combo box properties are nearly identical to those of the list box, with the
deletion of the MultiSelect property and the addition of a Style property.

Appearance Selects 3-D or flat appearance.
List Array of items in list box portion.
ListCount Number of items in list.
ListIndex The number of the most recently selected item in

list. If no item is selected, ListIndex = -1.
Sorted True means items are sorted in 'Ascii' order, else

items appear in order added.
Style Selects the combo box form.
 Style = 0, Dropdown combo; user can change

selection.
 Style = 1, Simple combo; user can change

selection.
 Style = 2, Dropdown combo; user cannot change

selection.
Text Text of most recently selected item.

• Combo Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-clicked.

Primary way used to process selection.

 Database Access and Management 8-88

• Combo Box Methods:

AddItem Allows you to insert item in list.
Clear Removes all items from list box.
RemoveItem Removes item from list box, as identified by index

of item to remove.

Examples

cboExample.AddItem "This is an added item" ' adds text string to list
cboExample.Clear ' clears the combo box
cboExample.RemoveItem 4 ' removes cboExample.List(4) from list box

• You've seen combo boxes before. In the standard 'Open File' window, the

File Name box is a combo box of Style 2, while the Drive box is a combo box
of Style 3.

 Database Access and Management 8-89

Example 3-3

Flight Planner

1. Start a new project. In this example, you select a destination city, a seat

location, and a meal preference for airline passengers.

2. Place a list box, two combo boxes, three label boxes and two command

buttons on the form. The form should appear similar to this:

3. Set the form and object properties:

Form1:
 BorderStyle 1-Fixed Single
 Caption Flight Planner
 Name frmFlight

List1:
 Name lstCities
 Sorted True

Combo1:
 Name cboSeat
 Style 2-Dropdown List

 Database Access and Management 8-90

Combo2:
 Name cboMeal
 Style 1-Simple
 Text [Blank]

(After setting properties for this combo box, resize it until it is large enough to

hold 4 to 5 entries.)

Label1:
 Caption Destination City

Label2:
 Caption Seat Location

Label3:
 Caption Meal Preference

Command1:
 Caption &Assign
 Name cmdAssign

Command2:
 Caption E&xit
 Name cmdExit

Now, the form should look like this:

 Database Access and Management 8-91

4. Attach this code to the Form_Load procedure:

Private Sub Form_Load()
‘Add city names to list box
lstCities.Clear
lstCities.AddItem "San Diego"
lstCities.AddItem "Los Angeles"
lstCities.AddItem "Orange County"
lstCities.AddItem "Ontario"
lstCities.AddItem "Bakersfield"
lstCities.AddItem "Oakland"
lstCities.AddItem "Sacramento"
lstCities.AddItem "San Jose"
lstCities.AddItem "San Francisco"
lstCities.AddItem "Eureka"
lstCities.AddItem "Eugene"
lstCities.AddItem "Portland"
lstCities.AddItem "Spokane"
lstCities.AddItem "Seattle"
lstCities.ListIndex = 0

‘Add seat types to first combo box
cboSeat.AddItem "Aisle"
cboSeat.AddItem "Middle"
cboSeat.AddItem "Window"
cboSeat.ListIndex = 0

‘Add meal types to second combo box
cboMeal.AddItem "Chicken"
cboMeal.AddItem "Mystery Meat"
cboMeal.AddItem "Kosher"
cboMeal.AddItem "Vegetarian"
cboMeal.AddItem "Fruit Plate"
cboMeal.Text = "No Preference"
End Sub

This code simply initializes the list box and the list box portions of the two combo

boxes.

 Database Access and Management 8-92

5. Attach this code to the cmdAssign_Click event:

Private Sub cmdAssign_Click()
‘Build message box that gives your assignment
Dim Message As String
Message = "Destination: " + lstCities.Text + vbCr
Message = Message + "Seat Location: " + cboSeat.Text + vbCr
Message = Message + "Meal: " + cboMeal.Text + vbCr
MsgBox Message, vbOKOnly + vbInformation, "Your Assignment"
End Sub

When the Assign button is clicked, this code forms a message box message by

concatenating the selected city (from the list box lstCities), seat choice (from
cboSeat), and the meal preference (from cboMeal).

6. Attach this code to the cmdExit_Click event:

Private Sub cmdExit_Click()
End
End Sub

7. Run the application. Save the project.

 Database Access and Management 8-93

Exercise 3

Customer Database Input Screen

A new sports store wants you to develop an input screen for its customer
database. The required input information is:

1. Name
2. Age
3. City of Residence
4. Sex (Male or Female)
5. Activities (Running, Walking, Biking, Swimming, Skiing and/or In-Line

Skating)
6. Athletic Level (Extreme, Advanced, Intermediate, or Beginner)

Set up the screen so that only the Name and Age (use text boxes) and, perhaps,
City (use a combo box) need to be typed; all other inputs should be set with
check boxes and option buttons. When a screen of information is complete,
display the summarized profile in a message box. This profile message box
should resemble this:

 Database Access and Management 8-94

My Solution:

Form:

Properties:

Form frmCustomer:
 BorderStyle = 1 - Fixed Single
 Caption = Customer Profile

CommandButton cmdExit:
 Caption = E&xit

Frame Frame3:
 Caption = City of Residence
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

ComboBox cboCity:
 Sorted = True
 Style = 1 - Simple Combo

cmdShow

cmdExit

cboCity

txtAge

Frame4 optLevel chkAct Frame2

Frame1

optSex

Frame3

Label1

txtName

cmdNew

Label2

 Database Access and Management 8-95

CommandButton cmdNew :
 Caption = &New Profile

CommandButton cmdShow:
 Caption = &Show Profile

Frame Frame4:
 Caption = Athletic Level
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

OptionButton optLevel:
 Caption = Beginner
 Index = 3

OptionButton optLevel:
 Caption = Intermediate
 Index = 2
 Value = True

OptionButton optLevel:
 Caption = Advanced
 Index = 1

OptionButton optLevel:
 Caption = Extreme
 Index = 0

Frame Frame1:
 Caption = Sex
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

OptionButton optSex:
 Caption = Female
 Index = 1

OptionButton optSex:
 Caption = Male
 Index = 0
 Value = True

 Database Access and Management 8-96

Frame Frame2:
 Caption = Activities
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

CheckBox chkAct:
 Caption = In-Line Skating
 Index = 5

CheckBox chkAct:
 Caption = Skiing
 Index = 4

CheckBox chkAct:
 Caption = Swimming
 Index = 3

CheckBox chkAct:
 Caption = Biking
 Index = 2

CheckBox chkAct:
 Caption = Walking
 Index = 1

CheckBox chkAct:
 Caption = Running
 Index = 0

TextBox txtName:
 FontName = MS Sans Serif
 FontSize = 12

Label Label1 :
 Caption = Name
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

TextBox txtAge:
 FontName = MS Sans Serif
 FontSize = 12

 Database Access and Management 8-97

Label Label2 :
 Caption = Age
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

Code:

General Declarations:

Option Explicit
Dim Activity As String

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()
'Blank out name and reset check boxes
Dim I As Integer
txtName.Text = ""
txtAge.Text = ""
For I = 0 To 5
 chkAct(I).Value = vbUnchecked
Next I
End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()
Dim NoAct As Integer, I As Integer
Dim Msg As String, Pronoun As String

'Check to make sure name entered
If txtName.Text = "" Then
 MsgBox "The profile requires a name.", vbOKOnly +
vbCritical, "No Name Entered"
 Exit Sub

 Database Access and Management 8-98

End If

'Check to make sure age entered
If txtAge.Text = "" Then
 MsgBox "The profile requires an age.", vbOKOnly +
vbCritical, "No Age Entered"
 Exit Sub
End If

'Put together customer profile message
Msg = txtName.Text + " is" + Str$(txtAge.Text) + " years
old." + vbCr
If optSex(0).Value = True Then Pronoun = "He " Else Pronoun
= "She "
Msg = Msg + Pronoun + "lives in " + cboCity.Text + "." +
vbCr
Msg = Msg + Pronoun + "is a"
If optLevel(3).Value = False Then Msg = Msg + "n " Else Msg
= Msg + " "
Msg = Msg + Activity + " level athlete." + vbCr
NoAct = 0
For I = 0 To 5
 If chkAct(I).Value = vbChecked Then NoAct = NoAct + 1
Next I
If NoAct > 0 Then
 Msg = Msg + "Activities include:" + vbCr
 For I = 0 To 5
 If chkAct(I).Value = vbChecked Then Msg = Msg +
String$(10, 32) + chkAct(I).Caption + vbCr
 Next I
Else
 Msg = Msg + vbCr
End If
MsgBox Msg, vbOKOnly, "Customer Profile"
End Sub

Form Load Event:

Private Sub Form_Load()
'Load combo box with potential city names
cboCity.AddItem "Seattle"
cboCity.Text = "Seattle"
cboCity.AddItem "Bellevue"
cboCity.AddItem "Kirkland"
cboCity.AddItem "Everett"
cboCity.AddItem "Mercer Island"

 Database Access and Management 8-99

cboCity.AddItem "Renton"
cboCity.AddItem "Issaquah"
cboCity.AddItem "Kent"
cboCity.AddItem "Bothell"
cboCity.AddItem "Tukwila"
cboCity.AddItem "West Seattle"
cboCity.AddItem "Edmonds"
cboCity.AddItem "Tacoma"
cboCity.AddItem "Federal Way"
cboCity.AddItem "Burien"
cboCity.AddItem "SeaTac"
cboCity.AddItem "Woodinville"
Activity = "intermediate"
End Sub

optLevel Click Event:

Private Sub optLevel_Click(Index As Integer)
‘Determine activity level
Select Case Index
Case 0
 Activity = "extreme"
Case 1
 Activity = "advanced"
Case 2
 Activity = "intermediate"
Case 3
 Activity = "beginner"
End Select
End Sub

txtAge KeyPress Event:

Private Sub txtAge_KeyPress(KeyAscii As Integer)
'Only allow numbers for age
If (KeyAscii >= vbKey0 And KeyAscii <= vbKey9) Or KeyAscii
= vbKeyBack Then
 Exit Sub
Else
 KeyAscii = 0
End If
End Sub

 Database Access and Management 8-100

This page intentionally not left blank.

Learn Visual Basic 6.0

4. More Exploration of the Visual Basic Toolbox

Review and Preview

• In this class, we continue looking at tools in the Visual Basic toolbox. We will look

at some drawing tools, scroll bars, and tools that allow direct interaction with drives,
directories, and files. In the examples, try to do as much of the building and
programming of the applications you can with minimal reference to the notes. This
will help you build your programming skills.

Display Layers

• In this class, we will look at our first graphic type controls: line tools, shape tools,

picture boxes, and image boxes. And, with this introduction, we need to discuss the
idea of display layers .

• Items shown on a form are not necessarily all on the same layer of display. A form's

display is actually made up of three layers as sketched below. All information

 Database Access and Management 8-101

displayed directly on the form (by printing or drawing with graphics methods)
appears on the bottom-layer. Information from label boxes, image boxes, line tools,
and shape tools, appears on the middle-layer. And, all other objects are displayed on
the top-layer.

Bottom-layer: form
Middle-layer : label,
image, shape, line

Top-layer : other controls
and objects

 Database Access and Management 8-102

• What this means is you have to be careful where you put things on a form or
something could be covered up. For example, text printed on the form would be
hidden by a command button placed on top of it. Things drawn with the shape tool
are covered by all controls except the image box.

• The next question then is what establishes the relative location of objects in the same

layer. That is, say two command buttons are in the same area of a form - which one
lies on top of which one? The order in which objects in the same layer overlay each
other is called the Z-order. This order is first established when you draw the form.
Items drawn las t lie over items drawn earlier. Once drawn, however, the Z-order can
be modified by clicking on the desired object and choosing Bring to Front from
Visual Basic's Edit menu. The Send to Back command has the opposite effect. Note
these two commands only work within a layer; middle-layer objects will always
appear behind top-layer objects and lower layer objects will always appear behind
middle- layer objects.

Line Tool

• The line tool creates simple straight line segments of various width and color.

Together with the shape tool discussed next, you can use this tool to 'dress up' your
application.

• Line Tool Properties:

BorderColor Determines the line color.
BorderStyle Determines the line 'shape'. Lines can be transparent,

solid, dashed, dotted, and combinations.
BorderWidth Determines line width.

• There are no events or methods associated with the line tool.

• Since the line tool lies in the middle- layer of the form display, any lines drawn will be

obscured by all controls except the shape tool or image box.

 Database Access and Management 8-103

Shape Tool

• The shape tool can create circles, ovals, squares, rectangles, and rounded squares and

rectangles. Colors can be used and various fill patterns are available.

• Shape Tool Properties:

BackColor Determines the background color of the shape (only
used when FillStyle not Solid.

BackStyle Determines whether the background is transparent or
opaque.

BorderColor Determines the color of the shape's outline.
BorderStyle Determines the style of the shape's outline. The border

can be transparent, solid, dashed, dotted, and
combinations.

BorderWidth Determines the width of the shape border line.
FillColor Defines the interior color of the shape.
FillStyle Determines the interior pattern of a shape. Some

choices are: solid, transparent, cross, etc.
Shape Determines whether the shape is a square, rectangle,

circle, or some other choice.

• Like the line tool, events and methods are not used with the shape tool.

• Shapes are covered by all objects except perhaps line tools and image boxes (depends

on their Z-order) and printed or drawn information. This is a good feature in that you
usually use shapes to contain a group of control objects and you'd want them to lie on
top of the shape.

 Database Access and Management 8-104

Horizontal and Vertical Scroll Bars

• Horizontal and vertical scroll bars are widely used in Windows applications. Scroll

bars provide an intuitive way to move through a list of information and make great
input devices.

• Both type of scroll bars are comprised of three areas that can be clicked, or dragged,

to change the scroll bar value. Those areas are:

Clicking an end arrow increments the scroll box a small amount, clicking the bar
area increments the scroll box a large amount, and dragging the scroll box (thumb)
provides continuous motion. Using the properties of scroll bars, we can completely
specify how one works. The scroll box position is the only output information from a
scroll bar.

• Scroll Bar Properties:

LargeChange Increment added to or subtracted from the scroll bar
Value property when the bar area is clicked.

Max The value of the horizontal scroll bar at the far right
and the value of the vertical scroll bar at the bottom.
Can range from -32,768 to 32,767.

Min The other extreme value - the horizontal scroll bar at
the left and the vertical scroll bar at the top. Can range
from -32,768 to 32,767.

SmallChange The increment added to or subtracted from the scroll
bar Value property when either of the scroll arrows is
clicked.

Value The current position of the scroll box (thumb) within
the scroll bar. If you set this in code, Visual Basic
moves the scroll box to the proper position.

End arrow

Scroll box (thumb) Bar area

 Database Access and Management 8-105

Properties for horizontal scroll bar:

Properties for vertical scroll bar:

• A couple of important notes about scroll bars:

1. Note that although the extreme values are called Min and Max, they do not
necessarily represent minimum and maximum values. There is nothing to keep
the Min value from being greater than the Max value. In fact, with vertical scroll
bars, this is the usual case. Visual Basic automatically adjusts the sign on the
SmallChange and LargeChange properties to insure proper movement of the
scroll box from one extreme to the other.

2. If you ever change the Value , Min, or Max properties in code, make sure Value

is at all times between Min and Max or and the program will stop with an error
message.

SmallChange

SmallChange

LargeChange

LargeChange

Value

Max

Min

Min

SmallChange

SmallChange LargeChange

LargeChange Value

Max

 Database Access and Management 8-106

• Scroll Bar Events:

Change Event is triggered after the scroll box's position has
been modified. Use this event to retrieve the Value
property after any changes in the scroll bar.

Scroll Event triggered continuously whenever the scroll box
is being moved.

 Database Access and Management 8-107

Example 4-1

Temperature Conversion

Start a new project. In this project, we convert temperatures in degrees Fahrenheit (set
using a scroll bar) to degrees Celsius. As mentioned in the Review and Preview section,
you should try to build this application with minimal reference to the notes. To that end,
let's look at the project specifications.

Temperature Conversion Application Specifications

The application should have a scroll bar which adjusts temperature in
degrees Fahrenheit from some reasonable minimum to some maximum.
As the user changes the scroll bar value, both the Fahrenheit temperature
and Celsius temperature (you have to calculate this) in integer format
should be displayed. The formula for converting Fahrenheit (F) to Celsius
(C) is:

C = (F - 32)*5/9

To convert this number to a rounded integer, use the Visual Basic CInt()
function. To change numeric information to strings for display in label or
text boxes, use the Str() or Format() function. Try to build as much of
the application as possible before looking at my approach. Try
incorporating lines and shapes into your application if you can.

 Database Access and Management 8-108

One Possible Approach to Temperature Conversion Application:

1. Place a shape, a vertical scroll bar, four labels, and a command button on the form.

Put the scroll bar within the shape - since it is in the top- layer of the form, it will lie in
the shape. It should resemble this:

2. Set the properties of the form and each object:

Form1 :
 BorderStyle 1-Fixed Single
 Caption Temperature Conversion
 Name frmTemp

Shape1:
 BackColor White
 BackStyle 1-Opaque
 FillColor Red
 FillStyle 7-Diagonal Cross
 Shape 4-Rounded Rectangle

VScroll1:
 LargeChange 10
 Max -60
 Min 120
 Name vsbTemp
 SmallChange 1
 Value 32

Shape1

 Database Access and Management 8-109

Label1:
 Alignment 2-Center
 Caption Fahrenheit
 FontSize 10
 FontStyle Bold

Label2:
 Alignment 2-Center
 AutoSize True
 BackColor White
 BorderStyle 1-Fixed Single
 Caption 32
 FontSize 14
 FontStyle Bold
 Name lblTempF

Label3:
 Alignment 2-Center
 Caption Celsius
 FontSize 10
 FontStyle Bold

Label4:
 Alignment 2-Center
 AutoSize True
 BackColor White
 BorderStyle 1-Fixed Single
 Caption 0
 FontSize 14
 FontStyle Bold
 Name lblTempC

Command1:
 Cancel True
 Caption E&xit
 Name cmdExit

Note the temperatures are initialized at 32F and 0C, known values.

 Database Access and Management 8-110

When done, the form should look like this:

3. Put this code in the general declarations of your code window.

Option Explicit
Dim TempF As Integer
Dim TempC As Integer

This makes the two temperature variables global.

4. Attach the following code to the scroll bar Scroll event.

Private Sub vsbTemp_Scroll()
'Read F and convert to C
TempF = vsbTemp.Value
lblTempF.Caption = Str(TempF)
TempC = CInt((TempF - 32) * 5 / 9)
lblTempC.Caption = Str(TempC)
End Sub

This code determines the scroll bar Value as it scrolls, takes that value as Fahrenheit

temperature, computes Celsius temperature, and displays both values.

 Database Access and Management 8-111

5. Attach the following code to the scroll bar Change event.

Private Sub vsbTemp_Change()
'Read F and convert to C
TempF = vsbTemp.Value
lblTempF.Caption = Str(TempF)
TempC = CInt((TempF - 32) * 5 / 9)
lblTempC.Caption = Str(TempC)
End Sub

Note this code is identical to that used in the Scroll event. This is almost always the case

when using scroll bars.

6. Attach the following code to the cmdExit_Click procedure.

Private Sub cmdExit_Click()
End
End Sub

7. Give the program a try. Make sure it provides correct information at obvious points.

For example, 32 F better always be the same as 0 C! Save the project - we’ll return to
it briefly in Class 5.

Other things to try:

A. Can you find a point where Fahrenheit temperature equals Celsius temperature?

If you don't know this off the top of your head, it's obvious you've never lived in
extremely cold climates. I've actually witnessed one of those bank temperature
signs flashing degrees F and degrees C and seeing the same number!

B. Ever wonder why body temperature is that odd figure of 98.6 degrees F? Can

your new application give you some insight to an answer to this question?

C. It might be interesting to determine how wind affects perceived temperature - the

wind chill. Add a second scroll bar to input wind speed and display both the
actual and wind adjusted temperatures. You would have to do some research to
find the mathematics behind wind chill computations. This is not a trivial
extension of the application.

 Database Access and Management 8-112

Picture Boxes

• The picture box allows you to place graphics information on a form. It is best suited

for dynamic environments - for example, when doing animation.

• Picture boxes lie in the top layer of the form display. They behave very much like

small forms within a form, possessing most of the same properties as a form.

• Picture Box Properties:

AutoSize If True, box adjusts its size to fit the displayed graphic.
Font Sets the font size, style, and size of any printing done

in the picture box.
Picture Establishes the graphics file to display in the picture

box.

• Picture Box Events:

Click Triggered when a picture box is clicked.
DblClick Triggered when a picture box is double-clicked.

• Picture Box Methods:

Cls Clears the picture box.
Print Prints information to the picture box.

Examples

picExample.Cls ' clears the box picExample
picExample.Print "a picture box" ' prints text string to picture box

 Database Access and Management 8-113

• Picture Box LoadPicture Procedure:

An important function when using picture boxes is the LoadPicture procedure. It is
used to set the Picture property of a picture box at run-time.

Example

 picExample.Picture = LoadPicture("c:\pix\sample.bmp")

This command loads the graphics file c:\pix\sample.bmp into the Picture property of
the picExample picture box. The argument in the LoadPicture function must be a
legal, complete path and file name, else your program will stop with an error
message.

• Five types of graphics files can be loaded into a picture box:

Bitmap An image represented by pixels and stored as a
collection of bits in which each bit corresponds to one
pixel. Usually has a .bmp extension. Appears in
original size.

Icon A special type of bitmap file of maximum 32 x 32 size.
Has a .ico extension. We’ll create icon files in Class 5.
Appears in original size.

Metafile A file that stores an image as a collection of graphical
objects (lines, circles, polygons) rather than pixels.
Metafiles preserve an image more accurately than
bitmaps when resized. Has a .wmf extension. Resizes
itself to fit the picture box area.

JPEG JPEG (Joint Photographic Experts Group) is a
compressed bitmap format which supports 8 and 24 bit
color. It is popular on the Internet. Has a .jpg
extension and scales nicely.

GIF GIF (Graphic Interchange Format) is a compressed
bitmap format originally developed by CompuServe. It
supports up to 256 colors and is popular on the Internet.
Has a .gif extension and scales nicely.

 Database Access and Management 8-114

Image Boxes

• An image box is very similar to a picture box in that it allows you to place graphics

information on a form. Image boxes are more suited for static situations - that is,
cases where no modifications will be done to the displayed graphics.

• Image boxes appear in the middle-layer of form display, hence they could be

obscured by picture boxes and other objects. Image box graphics can be resized by
using the Stretch property.

• Image Box Properties:

Picture Establishes the graphics file to display in the image
box.

Stretch If False, the image box resizes itself to fit the graphic.
If True, the graphic resizes to fit the control area.

• Image Box Events:

Click Triggered when a image box is clicked.
DblClick Triggered when a image box is double-clicked.

• The image box does not support any methods, however it does use the LoadPicture

function. It is used in exactly the same manner as the picture box uses it. And image
boxes can load the same file types: bitmap (.bmp), icon (.ico), metafiles (.wmf), GIF
files (.gif), and JPEG files (.jpg). With Stretch = True, all three graphic types will
expand to fit the image box area.

Quick Example: Picture and Image Boxes

1. Start a new project. Draw one picture box and one image box.

2. Set the Picture property of the picture and image box to the same file. If you have

graphics files installed with Visual Basic, bitmap files can be found in the bitmaps
folder, icon files in the icons folder, and metafiles are in the metafile folder.

3. Notice what happens as you resize the two boxes. Notice the layer effect when you

move one box on top of the other. Notice the effect of the image box Stretch
property. Play around with different file types - what differences do you see?

 Database Access and Management 8-115

Drive List Box

• The drive list box control allows a user to select a valid disk drive at run-time. It

displays the available drives in a drop-down combo box. No code is needed to load a
drive list box; Visual Basic does this for us. We use the box to get the current drive
identification.

• Drive List Box Properties:

Drive Contains the name of the currently selected drive.

• Drive List Box Events:

Change Triggered whenever the user or program changes the
drive selection.

Directory List Box

• The directory list box displays an ordered, hierarchical list of the user's disk

directories and subdirectories. The directory structure is displayed in a list box. Like,
the drive list box, little coding is needed to use the directory list box - Visual Basic
does most of the work for us.

• Directory List Box Properties:

Path Contains the current directory path.

• Directory List Box Events:

Change Triggered when the directory selection is changed.

 Database Access and Management 8-116

File List Box

• The file list box locates and lists files in the directory specified by its Path property at

run-time. You may select the types of files you want to display in the file list box.

• File List Box Properties:

FileName Contains the currently selected file name.
Path Contains the current path directory.
Pattern Contains a string that determines which files will be

displayed. It supports the use of * and ? wildcard
characters. For example, using *.dat only displays files
with the .dat extension.

• File List Box Events:

DblClick Triggered whenever a file name is double-clicked.
PathChange Triggered whenever the path changes in a file list box.

• You can also use the MultiSelect property of the file list box to allow multiple file

selection.

 Database Access and Management 8-117

Synchronizing the Drive, Directory, and File List Boxes

• The drive, directory, and file list boxes are almost always used together to obtain a

file name. As such, it is important that their operation be synchronized to insure the
displayed information is always consistent.

• When the drive selection is changed (drive box Change event), you should update the

directory path. For example, if the drive box is named drvExample and the directory
box is dirExample, use the code:

dirExample.Path = drvExample.Drive

• When the directory selection is changed (directory box Change event), you should

update the displayed file names. With a file box named filExample, this code is:

filExample.Path = dirExample.Path

• Once all of the selections have been made and you want the file name, you need to

form a text string that correctly and completely specifies the file identifier. This
string concatenates the drive, directory, and file name information. This should be an
easy task, except for one problem. The problem involves the backslash (\) character.
If you are at the root directory of your drive, the path name ends with a backslash. If
you are not at the root directory, there is no backslash at the end of the path name and
you have to add one before tacking on the file name.

• Example code for concatenating the available information into a proper file name and

then loading it into an image box is:

Dim YourFile as String

If Right(filExample.Path,1) = "\" Then
 YourFile = filExample.Path + filExample.FileName
Else
 YourFile = filExample.Path + "\" + filExample.FileName
End If
imgExample.Picture = LoadPicture(YourFile)

Note we only use properties of the file list box. The drive and directory box properties

are only used to create changes in the file list box via code.

 Database Access and Management 8-118

Example 4-2

Image Viewer

Start a new project. In this application, we search our computer's file structure for
graphics files and display the results of our search in an image box.

Image Viewer Application Specifications

Develop an application where the user can search and find graphics files
(*.ico, *.bmp, *.wmf) on his/her computer. Once a file is selected, print
the corresponding file name on the form and display the graphic file in an
image box using the LoadPicture () function.

 Database Access and Management 8-119

One possible solution to the Image Viewer Application:

1. Place a drive list box, directory list box, file list box, four label boxes, a line (use the

line tool) and a command button on the form. We also want to add an image box, but
make it look like it's in some kind of frame. Build this display area in these steps:
draw a 'large shape', draw another shape within this first shape that is the size of the
image display area, and lastly, draw an image box right on top of this last shape.
Since the two shapes and image box are in the same display layer, the image box is on
top of the second shape which is on top of the first shape, providing the desired effect
of a kind of picture frame. The form should look like this:

Note the second shape is directly beneath the image box.

2. Set properties of the form and each object.

Form1:
 BorderStyle 1-Fixed Single
 Caption Image Viewer
 Name frmImage

Drive1:
 Name drvImage

Dir1:
 Name dirImage

Line1

Image1

Shape1

Shape2

 Database Access and Management 8-120

File1:
 Name filImage
 Pattern *.bmp;*.ico;*.wmf;*gif;*jpg
 [type this line with no spaces]

Label1 :
 Caption [Blank]
 BackColor Yellow
 BorderStyle 1-Fixed Single
 Name lblImage

Label2 :
 Caption Files:

Label3 :
 Caption Directories:

Label4:
 Caption Drives:

Command1:
 Caption &Show Image
 Default True
 Name cmdShow

Command2:
 Cancel True
 Caption E&xit
 Name cmdExit

Line1:
 BorderWidth 3

Shape1:
 BackColor Cyan
 BackStyle 1-Opaque
 FillColor Blue
 FillStyle 4-Upward Diagonal
 Shape 4-Rounded Rectangle

Shape2:
 BackColor White
 BackStyle 1-Opaque

 Database Access and Management 8-121

Image1:
 BorderStyle 1-Fixed Single
 Name imgImage
 Stretch True

3. Attach the following code to the drvImage_Change procedure.

Private Sub drvImage_Change()
'If drive changes, update directory
dirImage.Path = drvImage.Drive
End Sub

When a new drive is selected, this code forces the directory list box to display directories

on that drive.

4. Attach this code to the dirImage_Change procedure.

Private Sub dirImage_Change()
'If directory changes, update file path
filImage.Path = dirImage.Path
End Sub

Likewise, when a new directory is chosen, we want to see the files on that directory.

5. Attach this code to the cmdShow_Click event.

Private Sub cmdShow_Click()
'Put image file name together and
'load image into image box
Dim ImageName As String
'Check to see if at root directory
If Right(filImage.Path, 1) = "\" Then
 ImageName = filImage.Path + filImage.filename
Else
 ImageName = filImage.Path + "\" + filImage.filename
End If
lblImage.Caption = ImageName
imgImage.Picture = LoadPicture(ImageName)
End Sub

This code forms the file name (ImageName) by concatenating the directory path with the

file name. It then displays the complete name and loads the picture into the image
box.

 Database Access and Management 8-122

6. Copy the code from the cmdShow_Click procedure and paste it into the
filImage_DblClick procedure. The code is identical because we want to display the
image either by double-clicking on the filename or clicking the command button once
a file is selected. Those of you who know how to call routines in Visual Basic should
note that this duplication of code is unnecessary - we could simply have the
filImage_DblClick procedure call the cmdShow_Click procedure. We’ll learn more
about this next class.

7. Attach this code to the cmdExit_Click procedure.

Private Sub cmdExit_Click()
End
End Sub

8. Save your project. Run and try the application. Find bitmaps, icons, and metafiles.

Notice how the image box Stretch property affects the different graphics file types.
Here’s how the form should look when displaying one example metafile:

 Database Access and Management 8-123

Common Dialog Boxes

• The primary use for the drive, directory, and file name list boxes is to develop custom

file access routines. Two common file access routines in Windows-based
applications are the Open File and Save File operations. Fortunately, you don’t have
to build these routines.

• To give the user a standard interface for common operations in Windows-based

applications, Visual Basic provides a set of common dialog boxes, two of which are
the Open and Save As dialog boxes. Such boxes are familiar to any Windows user
and give your application a professional look. And, with Windows 95, some context-
sensitive help is available while the box is displayed. Appendix II lists many
symbolic constants used with common dialog boxes.

• The Common Dialog control is a ‘custom control’ which means we have to make

sure some other files are present to use it. In normal setup configurations, Visual
Basic does this automatically. If the common dialog box does not appear in the
Visual Basic toolbox, you need to add it. This is done by selecting Components
under the Project menu. When the selection box appears, click on Microsoft
Common Dialog Control, then click OK.

• The common dialog tool, although it appears on your form, is invisible at run-time.

You cannot control where the common dialog box appears on your screen. The tool
is invoked at run-time using one of five ‘Show’ methods. These methods are:

Method Common Dialog Box
 ShowOpen Open dialog box
ShowSave Save As dialog box
ShowColor Color dialog box
ShowFont Font dialog box
ShowPrinter Printer dialog box

• The format for establishing a common dialog box named cdlExample so that an

Open box appears is:

cdlExample.ShowOpen

Control to the program returns to the line immediately following this line, once the dialog

box is closed in some manner. Common dialog boxes are system modal.

 Database Access and Management 8-124

• Learning proper use of all the common dialog boxes would require an extensive
amount of time. In this class, we’ll limit ourselves to learning the basics of getting
file names from the Open and Save As boxes in their default form.

Open Common Dialog Box

• The Open common dialog box provides the user a mechanism for specifying the

name of a file to open. We’ll worry about how to open a file in Class 6. The box is
displayed by using the ShowOpen method. Here’s an example of an Open common
dialog box:

• Open Dialog Box Properties:

CancelError If True, generates an error if the Cancel button is
clicked. Allows you to use error-handling procedures
to recognize that Cancel was clicked.

DialogTitle The string appearing in the title bar of the dialog box.
Default is Open. In the example, the DialogTitle is
Open Example.

FileName Sets the initial file name that appears in the File name
box. After the dialog box is closed, this property can be
read to determine the name of the selected file.

 Database Access and Management 8-125

Filter Used to restrict the filenames that appear in the file list
box. Complete filter specifications for forming a Filter
can be found using on- line help. In the example, the
Filter was set to allow Bitmap (*.bmp), Icon (*.ico),
Metafile (*.wmf), GIF (*.gif), and JPEG (*.jpg) types
(only the Bitmap choice is seen).

FilterIndex Indicates which filter component is default. The
example uses a 1 for the FilterIndex (the default value).

Flags Values that control special features of the Open dialog
box (see Appendix II). The example uses no Flags
value.

• When the user closes the Open File box, you should check the returned file name to

make sure it meets the specifications your application requires before you try to open
the file.

Quick Example: The Open Dialog Box

1. Start a new project. Place a common dialog control, a label box, and a command

button on the form. Set the following properties:

Form1:
 Caption Common Dialo g Examples
 Name frmCommon

CommonDialog1:
 DialogTitle Open Example
 Filter Bitmaps (*.bmp)|*.bmp|
 Icons (*.ico)|*.ico|Metafiles (*.wmf)|*.wmf
 GIF Files (*.gif)|*.gif|JPEG Files (*,jpg)|*.jpg
 (all on one line)
 Name cdlExample

Label1 :
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblExample

Command1 :
 Caption &Display Box
 Name cmdDisplay

 Database Access and Management 8-126

When done, the form should look like this (make sure your label box is very long):

2. Attach this code to the cmdDisplay_Click procedure.

Private Sub cmdDisplay_Click()
cdlExample.ShowOpen
lblExample.Caption = cdlExample.filename
End Sub

This code brings up the Open dialog box when the button is clicked and shows the
file name selected by the user once it is closed.

3. Save the application. Run it and try selecting file names and typing file names.

Notice names can be selected by highlighting and clicking the OK button or just by
double-clicking the file name. In this example, clicking the Cancel button is not
trapped, so it has the same effect as clicking OK.

4. Notice once you select a file name, the next time you open the dialog box, that

selected name appears as default, since the FileName property is not affected in code.

 Database Access and Management 8-127

Save As Common Dialog Box

• The Save As common dialog box provides the user a mechanism for specifying the

name of a file to save. We’ll worry about how to save a file in Class 6. The box is
displayed by using the ShowSave method.. Here’s an example of a Save As common
dialog box:

• Save As Dialog Box Properties (mostly the same as those for the Open box):

CancelError If True, generates an error if the Cancel button is
clicked. Allows you to use error-handling procedures
to recognize that Cancel was clicked.

DefaultExt Sets the default extension of a file name if a file is listed
without an extension.

DialogTitle The string appearing in the title bar of the dialog box.
Default is Save As. In the example, the DialogTitle is
Save As Example.

FileName Sets the initial file name that appears in the File name
box. After the dialog box is closed, this property can be
read to determine the name of the selected file.

Filter Used to restrict the filenames that appear in the file list
box.

FilterIndex Indicates which filter component is default.
Flags Values that control special features of the dialog box

(see Appendix II).

 Database Access and Management 8-128

• The Save File box is commonly configured in one of two ways. If a file is being
saved for the first time, the Save As configuration, with some default name in the
FileName property, is used. In the Save configuration, we assume a file has been
previously opened with some name. Hence, when saving the file again, that same
name should appear in the FileName property. You’ve seen both configuration types
before.

• When the user closes the Save File box, you should check the returned file name to

make sure it meets the specifications your application requires before you try to save
the file. Be especially aware of whether the user changed the file extension to
something your application does not allow.

Quick Example: The Save As Dialog Box

1. We’ll just modify the Open example a bit. Change the DialogTitle property of the

common dialog control to “Save As Example” and set the DefaultExt property equal
to “bmp”.

2. In the cmdDisplay_Click procedure, change the method to ShowSave (opens Save

As box).

3. Save the application and run it. Try typing names without extensions and note how

.bmp is added to them. Notice you can also select file names by double-clicking
them or using the OK button. Again, the Cancel button is not trapped, so it has the
same effect as clicking OK.

 Database Access and Management 8-129

Exercise 4

Student Database Input Screen

You did so well with last week’s assignment that, now, a school wants you to develop the
beginning structure of an input screen for its students. The required input information is:

1. Student Name
2. Student Grade (1 through 6)
3. Student Sex (Male or Female)
4. Student Date of Birth (Month, Day, Year)
5. Student Picture (Assume they can be loaded as bitmap files)

Set up the screen so that only the Name needs to be typed; all other inputs should be set
with option buttons, scroll bars, and common dialog boxes. When a screen of
information is complete, display the summarized profile in a message box. This profile
message box should resemble this:

Note the student’s age must be computed from the input birth date - watch out for pitfalls
in doing the computation. The student’s picture does not appear in the profile, only on
the input screen.

 Database Access and Management 8-130

My Solution:

Form:

Properties:

Form frmStudent:
 BorderStyle = 1- Fixed Single
 Caption = Student Profile

CommandButton cmdLoad:
 Caption = &Load Picture

Frame Frame3:
 Caption = Picture
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

txtName

Label1

optLevel Frame4

Frame2

optSex

lblMonth lblDay lblYear Frame1

Frame3

imgStudent

cmdLoad

vsbMonth

vsbDay

vsbYear

cmdShow cmdNew cmdExit

cdlBox

 Database Access and Management 8-131

Image imgStudent :
 BorderStyle = 1 - Fixed Single
 Stretch = True

CommandButton cmdExit:
 Caption = E&xit

CommandButton cmdNew:
 Caption = &New Profile

CommandButton cmdShow:
 Caption = &Show Profile

Frame Frame4:
 Caption = Grade Level
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

OptionButton optLevel:
 Caption = Grade 6
 Index = 5

OptionButton optLevel:
 Caption = Grade 5
 Index = 4

OptionButton optLevel:
 Caption = Grade 4
 Index = 3

OptionButton optLevel:
 Caption = Grade 3
 Index = 2

OptionButton optLevel:
 Caption = Grade 2
 Index = 1

OptionButton optLevel:
 Caption = Grade 1
 Index = 0

 Database Access and Management 8-132

Frame Frame2:
 Caption = Sex
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

OptionButton optSex:
 Caption = Female
 Index = 1

OptionButton optSex:
 Caption = Male
 Index = 0

Frame Frame1:
 Caption = Date of Birth
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

VScrollBar vsbYear:
 Max = 1800
 Min = 2100
 Value = 1960

VScrollBar vsbDay :
 Max = 1
 Min = 31
 Value = 1

VScrollBar vsbMonth:
 Max = 1
 Min = 12
 Value = 1

Label lblYear:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 10.8

 Database Access and Management 8-133

Label lblDay:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 10.8

Label lblMonth:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 10.8

TextBox txtName:
 FontName = MS Sans Serif
 FontSize = 10.8

CommonDialog cdlBox :
 Filter = Bitmaps (*.bmp)|*.bmp

Label Label1:
 Caption = Name
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 9.75
 FontItalic = True

Code:

General Declarations:

Option Explicit
Dim Months(12) As String
Dim Days(12) As Integer
Dim Grade As String

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

 Database Access and Management 8-134

cmdLoad Click Event:

Private Sub cmdLoad_Click()
cdlbox.ShowOpen
imgStudent.Picture = LoadPicture(cdlbox.filename)
End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()
'Blank out name and picture
txtName.Text = ""
imgStudent.Picture = LoadPicture("")
End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()
Dim Is_Leap As Integer
Dim Msg As String, Age As Integer, Pronoun As String
Dim M As Integer, D As Integer, Y As Integer

'Check for leap year and if February is current month
If vsbMonth.Value = 2 And ((vsbYear.Value Mod 4 = 0 And
vsbYear.Value Mod 100 <> 0) Or vsbYear.Value Mod 400 = 0)
Then
 Is_Leap = 1
Else
 Is_Leap = 0
End If
'Check to make sure current day doesn't exceed number of
days in month
If vsbDay.Value > Days(vsbMonth.Value) + Is_Leap Then
 MsgBox "Only" + Str(Days(vsbMonth.Value) + Is_Leap) + "
days in " + Months(vsbMonth.Value), vbOKOnly + vbCritical,
"Invalid Birth Date"
 Exit Sub
End If
'Get current date to compute age
M = Val(Format(Now, "mm"))
D = Val(Format(Now, "dd"))
Y = Val(Format(Now, "yyyy"))
Age = Y - vsbYear
If vsbMonth.Value > M Or (vsbMonth.Value = M And vsbDay >
D) Then Age = Age - 1

 Database Access and Management 8-135

'Check for valid age
If Age < 0 Then
 MsgBox "Birth date is before current date.", vbOKOnly +
vbCritical, "Invalid Birth Date"
 Exit Sub
End If

'Check to make sure name entered
If txtName.Text = "" Then
 MsgBox "The profile requires a name.", vbOKOnly +
vbCritical, "No Name Entered"
 Exit Sub
End If

'Put together student profile message
Msg = txtName.Text + " is a student in the " + Grade + "
grade." + vbCr
If optSex(0).Value = True Then Pronoun = "He " Else Pronoun
= "She "
Msg = Msg + Pronoun + " is" + Str(Age) + " years old." +
vbCr
MsgBox Msg, vbOKOnly, "Student Profile"
End Sub

Form Load Event:

Private Sub Form_Load()
'Set arrays for dates and initialize labels
Months(1) = "January": Days(1) = 31
Months(2) = "February": Days(2) = 28
Months(3) = "March": Days(3) = 31
Months(4) = "April": Days(4) = 30
Months(5) = "May": Days(5) = 31
Months(6) = "June": Days(6) = 30
Months(7) = "July": Days(7) = 31
Months(8) = "August": Days(8) = 31
Months(9) = "September": Days(9) = 30
Months(10) = "October": Days(10) = 31
Months(11) = "November": Days(11) = 30
Months(12) = "December": Days(12) = 31
lblMonth.Caption = Months(vsbMonth.Value)
lblDay.Caption = Str(vsbDay.Value)
lblYear.Caption = Str(vsbYear.Value)
Grade = "first"
End Sub

 Database Access and Management 8-136

 Database Access and Management 8-137

optLevel Click Event:

Private Sub optLevel_Click(Index As Integer)
Select Case Index
Case 0
 Grade = "first"
Case 1
 Grade = "second"
Case 2
 Grade = "third"
Case 3
 Grade = "fourth"
Case 4
 Grade = "fifth"
Case 5
 Grade = "sixth"
End Select
End Sub

vsbDay Change Event:

Private Sub vsbDay_Change()
lblDay.Caption = Str(vsbDay.Value)
End Sub

vsbMonth Change Event:

Private Sub vsbMonth_Change()
lblMonth.Caption = Months(vsbMonth.Value)
End Sub

vsbYear Change Event:

Private Sub vsbYear_Change()
lblYear.Caption = Str(vsbYear.Value)
End Sub

Learn Visual Basic 6.0

5. Creating a Stand-Alone Visual Basic Application

 Database Access and Management 8-138

Review and Preview

• We've finished looking at most of the Visual Basic tools and been introduced to most

of the Basic language features. Thus far, to run any of the applications studied, we
needed Visual Basic. In this class, we learn the steps of developing a stand-alone
application that can be run on any Windows-based machine. We’ll also look at some
new components that help make up applications.

Designing an Application

• Before beginning the actual process of building your application by drawing the

Visual Basic interface, setting the object properties, and attaching the Basic code,
many things should be considered to make your application useful.

• A first consideration should be to determine what processes and functions you want

your application to perform. What are the inputs and outputs? Develop a framework
or flow chart of all your application's processes.

• Decide what tools you need. Do the built- in Visual Basic tools and functions meet

your needs? Do you need to develop some tools or functions of your own?

• Design your user interface. What do you want your form to look lik e? Consider

appearance and ease of use. Make the interface consistent with other Windows
applications. Familarity is good in program design.

• Write your code. Make your code readable and traceable - future code modifiers will

thank you. Consider developing reusable code - modules with utility outside your
current development. This will save you time in future developments.

 Database Access and Management 8-139

• Make your code 'user-friendly.' Try to anticipate all possible ways a user can mess up
in using your application. It's fairly easy to write an application that works properly
when the user does everything correctly. It's difficult to write an application that can
handle all the possible wrong things a user can do and still not bomb out.

• Debug your code completely before distrib uting it. There's nothing worse than

having a user call you to point out flaws in your application. A good way to find all
the bugs is to let several people try the code - a mini beta-testing program.

Using General Sub Procedures in Applications

• So far in this class, the only procedures we have studied are the event-driven

procedures associated with the various tools. Most applications have tasks not related
to objects that require some code to perform these tasks. Such tasks are usually coded
in a general Sub procedure (essentially the same as a subroutine in other languages).

• Using general Sub procedures can help divide a complex application into more

manageable units of code. This helps meet the above stated goals of readability and
reusability.

• Defining a Sub Procedure:

The form for a general Sub procedure named GenlSubProc is:

Sub GenlSubProc(Arguments) 'Definition header
 .
 .
End Sub

The definition header names the Sub procedure and defines any arguments passed to
the procedure. Arguments are a comma-delimited list of variables passed to and/or
from the procedure. If there are arguments, they must be declared and typed in the
definition header in this form:

Var1 As Type1, Var2 As Type2, ...

 Database Access and Management 8-140

• Sub Procedure Example:

Here is a Sub procedure (USMexConvert) that accepts as inputs an amount in US
dollars (USDollars) and an exchange rate (UStoPeso). It then outputs an amount in
Mexican pesos (MexPesos).

Sub USMexConvert (USDollars As Single, UStoPeso As Single,
MexPesos As Single)
MexPesos = UsDollars * UsToPeso
End Sub

• Calling a Sub Procedure:

There are two ways to call or invoke a Sub procedure. You can also use these to call
event-driven procedures.

Method 1:

Call GenlSubProc(Arguments) (if there are no Arguments, do not type the
parentheses)

Method 2:

GenlSubProc Arguments

I prefer Method 1 - it's more consistent with calling protocols in other languages and
it cleanly delineates the argument list. It seems most Visual Basic programmers use
Method 2, though. I guess they hate typing parentheses! Choose the method you feel
more comfortable with.

Example

To call our dollar exchange routine, we could use:

Call USMexConvert (USDollars, UStoMex, MexPesos)

or

USMexConvert USDollars, UStoMex, MexPesos

 Database Access and Management 8-141

• Locating General Sub Procedures:

General Sub procedures can be located in one of two places in your application:
attached to a form or attached to a module. Place the procedure in the form if it has a
purpose specifically related to the form. Place it in a module if it is a general purpose
procedure that might be used by another form or module or another application.

Whether placing the procedure in a form or module, the methods of creating the
procedure are the same. Select or open the form or module's code window. Make
sure the window's Object list says (General) and the Procedure list says
(Declarations). You can now create the procedure by selecting Add Procedure
from Visual Basic's Tools menu. A window appears allowing you to select Type Sub
and enter a name for your procedure. Another way to create a Sub is to go to the last
line of the General Declarations section, type Sub followed by a space and the name
of your procedure. Then, hit Enter. With either method for establishing a Sub,
Visual Basic will form a template for your procedure. Fill in the Argument list and
write your Basic code. In selecting the Insert Procedure menu item, note another
option for your procedure is Scope. You have the choice of Public or Private. The
scope word appears before the Sub word in the definition heading. If a module
procedure is Public, it can be called from any other procedure in any other module. If
a module procedure is Private, it can only be called from the module it is defined in.
Note, scope only applies to procedures in modules. By default, all event procedures
and general procedures in a form are Private - they can only be called from within the
form. You must decide the scope of your procedures.

• Passing Arguments to Sub Procedures:

A quick word on passing arguments to procedures. By default, they are passed by
reference. This means if an argument is changed within the procedure, it will remain
changed once the procedure is exited.

C programmers have experienced the concept of passing by value , where a parameter
changed in a procedure will retain the value it had prior to calling the routine. Visual
Basic also allows calling by value. To do this, place the word ByVal in front of each
such variable in the Argument list.

 Database Access and Management 8-142

Creating a Code Module

• If you're going to put code in a module, you'll need to know how to create and save a

module. A good way to think about modules is to consider them forms without any
objects, just code.

• To create a module, click on the New Module button on the toolbar, or select the

Module option from the Insert menu. The module will appear. Note any modules
appear in the Project Window, along with your form(s). You use the Project Window
to move among forms and modules.

• Once the module is active, establish all of your procedures as outlined above. To

name the module, click on the properties window while the module is active. Note
Name is the only property associated with a module. Saving a module is just like
saving a form - use the Save File and Save File As options.

Using General Function Procedures in Applications

• Related to Sub procedures are Function procedures. A Function procedure, or

simply Function, performs a specific task within a Visual Basic program and returns a
value. We've seen some built- in functions such as the MsgBox and the Format
function.

• Defining a Function:

The form for a general Function named GenlFcn is:

Function GenlFcn(Arguments) As Type 'Definition header
 .
 .
GenlFcn = ...
End Function

The definition header names the Function and specifies its Type (the type of the
returned value) and defines any input Arguments passed to the function. Note that
somewhere in the function, a value for GenlFcn must be computed for return to the
calling procedure.

 Database Access and Management 8-143

• Function Example:

Here is a Function named CylVol that computes the volume of a cylinder of known
height (Height) and radius (Radius).

Function CylVol(Height As Single, Radius As Single) As Single
Dim Area As Single
Const PI = 3.1415926
Area = PI * Radius ^ 2
CylVol = Area * Height
End Sub

• Calling a Function:

To call or use a Function, you equate a variable (of proper type) to the Function, with
its arguments. That is, if the Function GenlFunc is of Type Integer, then use the
code segment:

Dim RValue as Integer
 .
 .
RValue = GenlFunc(Arguments)

Example

To call the volume computation function, we could use:

Dim Volume As Single
 .
 .
Volume = CylVol(Height, Radius)

• Locating Function Procedures:

Like Sub procedures, Functions can be located in forms or modules. They are created
using exactly the same process described for Sub procedures, the only difference
being you use the keyword Function.

And, like Sub procedures, Functions (in modules) can be Public or Private.

 Database Access and Management 8-144

Quick Example: Temperature Conversion

1. Open the Temperature Conversion application from last class. Note in the

vsbTemp_Change and vsbTemp_Scroll procedures, there is a lot of repeated code.
We'll replace this code with a Sub procedure that prints the values and a Function
procedure that does the temperature conversion.

2. Add a module to your application. Create a Function (Public by default) named

DegF_To_DegC.

Public Function DegF_To_DegC(DegF As Integer) As Integer
DegF_To_DegC = CInt((DegF - 32) * 5 / 9)
End Function

3. Go back to your form. Create a Sub procedure named ShowTemps . Fill in the code

by cutting from an old procedure. Note this code uses the new Function to convert
temperature and prints both values in their respective label boxes.

Private Sub ShowTemps()
lblTempF.Caption = Str(TempF)
TempC = DegF_To_DegC(TempF)
lblTempC.Caption = Str(TempC)
End Sub

No arguments are needed since TempF and TempC are global to the form.

4. Rewrite the vsbTemp_Change and vsbTemp_Scroll procedures such that they call

the new Sub procedure:

Private Sub vsbTemp_Change()
TempF = vsbTemp.Value
Call ShowTemps
End Sub

Private Sub vsbTemp_Scroll()
Call vsbTemp_Change
End Sub

Note how vsbTemp_Scroll simply calls vsbTemp_Change since they use the same

code. This is an example of calling an event procedure.

5. Save the application and run it. Note how much neater and modular the code is.

 Database Access and Management 8-145

Quick Example: Image Viewer (Optional)

1. Open the Image Viewer application from last class. Note the code in the

cmdShow_Click and filImage_DblClick events is exactly the same. Delete the code
in the filImage_DblClick procedure and simply have it call the cmdShow_Click
procedure. That is, replace the filImage_DblClick procedure with:

Private Sub filImage_DblClick()
Call cmdShow_Click
End Sub

2. This is another example of calling an event procedure. Save your application.

Adding Menus to an Application

• As mentioned earlier, it is important that the interface of your application be familar

to a seasoned, or not-so-seasoned, Windows user. One such familiar application
component is the Menu bar. Menus are used to provide a user with choices that
control the application. Menus are easily incorporated into Visual Basic programs
using the Menu Editor.

• A good way to think about elements of a menu structure is to consider them as a

hierarchical list of command buttons that only appear when pulled down from the
menu bar. When you click on a menu item, some action is taken. Like command
buttons, menu items are named, have captions, and have properties.

Example

Here is a typical menu structure:

File Edit Format
 New Cut Bold
 Open Copy Italic
 Save Paste Underline
 Size
 Exit 10
 15
 20

 Database Access and Management 8-146

The underscored characters are access keys, just like those on command buttons. The
level of indentation indicates position of a menu item within the hierarchy. For
example, New is a sub-element of the File menu. The line under Save in the File
menu is a separator bar (separates menu items).

With this structure, the Menu bar would display:

File Edit Format

The sub-menus appear when one of these ‘top’ level menu items is selected. Note the
Size sub-menu under Format has another level of hierarchy. It is good practice to
not use more than two levels in menus. Each menu element will have a Click event
associated with it.

• The Menu Editor allows us to define the menu structure, adding access keys and
shortcut keys, if desired. We then add code to the Click events we need to respond
to. The Menu Editor is selected from the Tools menu bar or by clicking the Menu
Editor on the toolbar. This selection can only be made when the form needing the
menu is active. Upon selecting the editor, and entering the example menu structure,
the editor window looks like this:

Each item in the menu structure requires several entries in this design box.

 Database Access and Management 8-147

• The Caption box is where you type the text that appears in the menu bar. Access
keys are defined in the standard way using the ampersand (&). Separator bars (a
horizontal line used to separate menu items) are defined by using a Caption of a
single hyphen (-). When assigning captions and access keys, try to use conform to
any established Windows standards.

• The Name box is where you enter a control name for each menu item. This is

analogous to the Name property of command buttons and is the name used to set
properties and establish the Click event procedure for each menu item. Each menu
item must have a name, even separator bars! The prefix mnu is used to name menu
items. Sub-menu item names usually refer back to main menu headings. For
example, if the menu item New is under the main heading File menu, use the name
mnuFileNew.

• The Index box is used for indexing any menu items defined as control arrays.

• The Shortcut dropdown box is used to assign shortcut keystrokes to any item in a

menu structure. The shortcut keystroke will appear to the right of the caption for the
menu item. An example of such a keystroke is using Ctrl+X to cut text.

• The HelpContextID and NegotiatePosition boxes relate to using on-line help and

object linking embedding, and are beyond the scope of this discussion.

• Each menu item has four properties associated with it. These properties can be set at

design time using the Menu Editor or at run-time using the standard dot notation.
These properties are:

Checked Used to indicate whether a toggle option is turned on

or off. If True, a check mark appears next to the menu
item.

Enabled If True, menu item can be selected. If False, menu
item is grayed and cannot be selected.

Visible Controls whether the menu item appears in the
structure.

WindowList Used with Multiple Document Interface (MDI) - not
discussed here.

• At the bottom of the Menu Editor form is a list box displaying the hierarchical list of

menu items. Sub-menu items are indented to their level in the hierarchy. The right
and left arrows adjust the levels of menu items, while the up and down arrows move
items within the same level. The Next, Insert, and Delete buttons are used to move
the selection down one line, insert a line above the current selection, or delete the
current selection, respectively.

 Database Access and Management 8-148

• Let’s look at the process of entering the example menu structure. To do this, we
‘stack’ the three menus on top of each other, that is enter items as a long list. For
each item in this list, we provide a Caption (with access key, if any), a Name
(indicative of where it is in the structure), a shortcut key (if any), and provide proper
indentation to indication hierarchical location (use the left and right arrows to move
in and out).

• After entering this structure, the complete list box at the bottom of the Menu Editor

would look like this (notice access keys are indicated with ampersands and shortcut
keys are listed at the right, and, the assigned names are shown at the left - these don’t
really appear in the Menu Editor list box; they are shown to illustrate one possible
naming convention):

Name
mnuFile &File
mnuFileNew&New
mnuFileOpen&Open
mnuFileSave &Save
mnuFileBar-
mnuFileExitE&xit
mnuEdit &Edit
mnuEditCutCu&t Ctrl+X
mnuEditCopy&Copy Ctrl+C
mnuEditPaste&Paste Ctrl+V
mnuFmt F&ormat
mnuFmtBold Bold
mnuFmtItalicItalic
mnuFmtUnderlineUnderline
mnuFmtSizeSize
mnuFmtSize1010
mnuFmtSize1515
mnuFmtSize2020

• At first, using the Menu Editor may seem a little clunky. After you’ve done a couple

of menu structures, however, its use becomes obvious. A neat thing is: after setting
up your menu, you can look at it in the Visual Basic design mode and see if it looks
like it should. In the next example, you’ll get practice setting up a similar menu
structure.

 Database Access and Management 8-149

Example 5-1

Note Editor

1. Start a new project. We will use this application the rest of this class. We will build

a note editor with a menu structure that allows us to control the appearance of the text
in the editor box. Since this is the first time we’ve built menus, I’ll provide the steps
involved.

2. Place a large text box on a form. Set the properties of the form and text box:

Form1:
 BorderStyle 1-Fixed Single
 Caption Note Editor
 Name frmEdit

Text1:
 BorderStyle 1-Fixed Single
 MultiLine True
 Name txtEdit
 ScrollBars 2-Vertical
 Text [Blank]

The form should look something like this when you’re done:

 Database Access and Management 8-150

3. We want to add this menu structure to the Note Editor:

File Format
 New Bold
 Italic
 Exit Underline
 Size
 Small
 Medium
 Large

Note the identified access keys. Bring up the Menu Editor and assign the following

Captions, Names, and Shortcut Keys to each item. Make sure each menu item is at is
proper location in the hierarchy.

Caption Name Shortcut
&File mnuFile [None]
&New mnuFileNew [None]
- mnuFileBar [None]
E&xit mnuFileExit [None]
F&ormat mnuFmt [None]
& Bold mnuFmt Bold Ctrl+B
&Italic mnuFmtItalic Ctrl+I
&Underline mnuFmtUnderline Ctrl+U
&Size mnuFmtSize [None]
&Small mnuFmtSizeSmall Ctrl+S
&Medium mnuFmtSizeMedium Ctrl+M
&Large mnuFmtSizeLarge Ctrl+L

The Small item under the Size sub-menu should also be Checked to indicate the initial

font size. When done, look through your menu structure in design mode to make sure
it looks correct. With a menu, the form will appear like:

 Database Access and Management 8-151

4. Each menu item that performs an action requires code for its Click event. The only
menu items that do not have events are the menu and sub-menu headings, namely
File, Format, and Size. All others need code. Use the following code for each menu
item Click event. (This may look like a lot of typing, but you should be able to use a
lot of cut and paste.)

If mnuFileNew is clicked, the program checks to see if the user really wants a new file

and, if so (the default response), clears out the text box:

Private Sub mnuFileNew_Click()
'If user wants new file, clear out text
Dim Response As Integer
Response = MsgBox("Are you sure you want to start a new

file?", vbYesNo + vbQuestion, "New File")
If Response = vbYes Then txtEdit.Text = ""
End Sub

If mnuFileExit is clicked, the program checks to see if the user really wants to exit. If

not (the default response), the user is returned to the program:

Private Sub mnuFileExit_Click()
'Make sure user really wants to exit
Dim Response As Integer
Response = MsgBox("Are you sure you want to exit the note

editor?", vbYesNo + vbCritical + vbDefaultButton2, "Exit
Editor")

If Response = vbNo Then
 Exit Sub
Else
 End
End If
End Sub

If mnuFmtBold is clicked, the program toggles the current bold status:

Private Sub mnuFmtBold_Click()
'Toggle bold font status
mnuFmtBold.Checked = Not (mnuFmtBold.Checked)
txtEdit.FontBold = Not (txtEdit.FontBold)
End Sub

 Database Access and Management 8-152

If mnuFmtItalic is clicked, the program toggles the current italic status:

Private Sub mnuFmtItalic_Click()
'Toggle italic font status
mnuFmtItalic.Checked = Not (mnuFmtItalic.Checked)
txtEdit.FontItalic = Not (txtEdit.FontItalic)
End Sub

If mnuFmtUnderline is clicked, the program toggles the current underline status:

Private Sub mnuFmtUnderline_Click()
'Toggle underline font status
mnuFmtUnderline.Checked = Not (mnuFmtUnderline.Checked)
txtEdit.FontUnderline = Not (txtEdit.FontUnderline)
End Sub

If either of the three size sub-menus is clicked, indicate the appropriate check mark

location and change the font size:

Private Sub mnuFmtSizeSmall_Click()
'Set font size to small
mnuFmtSizeSmall.Checked = True
mnuFmtSizeMedium.Checked = False
mnuFmtSizeLarge.Checked = False
txtEdit.FontSize = 8
End Sub

Private Sub mnuFmtSizeMedium_Click()
'Set font size to medium
mnuFmtSizeSmall.Checked = False
mnuFmtSizeMedium.Checked = True
mnuFmtSizeLarge.Checked = False
txtEdit.FontSize = 12
End Sub

Private Sub mnuFmtSizeLarge_Click()
'Set font size to large
mnuFmtSizeSmall.Checked = False
mnuFmtSizeMedium.Checked = False
mnuFmtSizeLarge.Checked = True
txtEdit.FontSize = 18
End Sub

 Database Access and Management 8-153

5. Save your application. We will use it again in Class 6 where we’ll learn how to save
and open text files created with the Note Editor. Test out all the options. Notice how
the toggling of the check marks works. Try the shortcut keys.

Using Pop-Up Menus

• Pop-up menus can show up anywhere on a form, usually being activated by a single

or double-click of one of the two mouse buttons. Most Windows applications, and
Windows itself, use pop-up menus. For example, using the right hand mouse button
on almost any object in Windows 95 will display a pop-up menu. In fact, with the
introduction of such pop-up menus with Windows 95, the need for adding such
menus to Visual Basic applications has been reduced.

• Adding pop-up menus to your Visual Basic application is a two step process. First,

you need to create the menu using the Menu Editor (or, you can use any existing
menu structure with at least one sub-menu). If creating a unique pop-up menu (one
that normally does not appear on the menu bar), it’s Visible property is set to be
False at design time. Once created, the menu is displayed on a form using the
PopupMenu method.

• The PopupMenu method syntax is:

ObjectName.PopupMenu MenuName, Flags, X, Y

The ObjectName can be omitted if working with the current form. The arguments
are:

MenuName Full-name of the pop-up menu to display.
Flags Specifies location and behavior of menu (optional).
X, Y (X, Y) coordinate of menu in twips (optional; if either

value is omitted, the current mouse coordinate is used).

• The Flags setting is the sum of two constants. The first constant specifies location:

Value Meaning Symbolic Constant
0 Left side of menu is at X coordinate vbPopupMenuLeftAlign
4 Menu is centered at X coordinate vbPopupMenuCenterAlign
8 Right side of menu is at X coordinate vbPopupMenuRightAlign

 Database Access and Management 8-154

The second specifies behavior:

Value Meaning Symbolic Constant
0 Menu reacts only to left mouse button vbPopupMenuLeftButton
2 Menu reacts to either mouse button vbPopupMenuRightButton

• You need to decide where to put the code that displays the pop-up menu, that is the

PopupMenu method. Usually, a pop-up menu is displayed in response to a Click
event or MouseDown event. The standard (starting with Windows 95) seems to be
leaning toward displaying a pop-up menu in response to a right mouse button click.

• Just like other menus, each item on your pop-up menu will need code for the

corresponding Click event. Many times, though, the code is simply a call to an
existing menu item’s Click event.

Assigning Icons to Forms

• Notice that whenever you run an application, a small icon appears in the upper left

hand corner of the form. This icon is also used to represent the form when it is
minimized at run-time. The icon seen is the default Visual Basic icon for forms.
Using the Icon property of a form, you can change this displayed icon.

• The idea is to assign a unique icon to indicate the form’s function. To assign an icon,

click on the Icon property in the Property Window for the form. Click on the ellipsis
(...) and a window that allows selection of icon files will appear.

• The icon file you load must have the .ico filename extension and format. When you

first assign an icon to a form (at design t ime), it will not appear on the form. It will
only appear after you have run the application once.

Designing Your Own Icon with IconEdit

• Visual Basic offers a wealth of icon files from which you could choose an icon to

assign to your form(s). But, it’s also fun to design your own icon to add that personal
touch.

• PC Magazine offers a free utility called IconEdit that allows you to design and save

icons. Included with these notes is this program and other files (directory IconEdit).
To install these files on your machine, copy the folder to your hard drive.

 Database Access and Management 8-155

• To run IconEdit, click Start on the Windows 95 task bar, then click Run. Find the
IconEdit.exe program (use Browse mode). You can also establish an shortcut to start
IconEdit from your desktop, if desired. The following Editor window will appear:

• The basic idea of IconEdit is to draw an icon in the 32 x 32 grid displayed. You can

draw single points, lines, open rectangles and ovals, and filled rectangles and ovals.
Various colors are available. Once completed, the icon file can be saved for attaching
to a form.

• Another fun thing to do with IconEdit is to load in Visual Basic icon files and see

how much artistic talent really goes into creating an icon.

• We won’t go into a lot of detail on using the IconEdit program here - I just want you

to know it exists and can be used to create and save icon files. Its use is fairly
intuitive. Consult the on- line help of the program for details. And, there is a .txt file
included that is very helpful.

 Database Access and Management 8-156

Creating Visual Basic Executable Files

• Up to now, to run any of the applications created, we needed Visual Basic. The goal

of creating an application is to let others (without Visual Basic) use it. This is
accomplished by creating an executable version of the application.

• Before creating an executable, you should make sure your program is free of bugs

and operating as desired. Save all forms, modules, and project files. Any later
changes to the application will require re-creating the executable file.

• The executable file will have the extension .exe. To create an exe file for your

application, select Make [Project name] exe from Visual Basic’s File menu. This
will display the Make EXE File dialog box, where you name the exe file. To open
the Options box, click that button. The EXE Options dialog box will appear:

• We’ll only concern ourselves with two pieces of information in this box: Title and

Icon. The Title is the name you want to give your application. It does not have to be
the same as the Project name. The Icon is selected from icons assigned to form(s) in
your application. The selected icon is used to identify the application everywhere it is
needed in Windows 95.

• Once you have selected these options, return to the Make EXE File dialog box, select

a directory (best to use the same directory your application files are in) and name for
your executable file. Click OK and the exe file is created.

 Database Access and Management 8-157

• Use Windows Explorer to confirm creation of the file. And, while there, double-click
the executable file name and the program will run!

 Database Access and Management 8-158

Example 5-2

Note Editor - Building an Executable and Attaching an Icon

1. Open your Note Editor project. Attach an icon to the form by setting the Icon

property. If you want to, open up the Image Viewer project from last class to take a
look at icon files. The icon I used is note.ico

2. Create an executable version of your Note Editor. Confirm creation of the exe file

and run it under the Windows Explorer.

3. Something you might want to try with your application is create a Windows 95

shortcut to run your program, that is, display a clickable icon. To get started, click
the Start button on the taskbar, then Settings , then Taskbar. Here, you can add
programs to those that show up when you select Start. The process is straightforward.
Find your application, specify the folder you want the shortcut to appear in, and name
your application. When done, the icon will appear in the specified location.

 Database Access and Management 8-159

Using the Visual Basic Package & Deployment Wizard

• We were able to run the Note Editor executable file because Visual Basic is installed

on our system. If you gave someone a copy of your exe file and they tried to run it, it
wouldn’t work (unless they have Visual Basic installed also). The reason it wouldn’t
run is that the executable file also needs some ancillary files (primarily, so-called
dynamic link libraries) to run properly. These libraries provide most of the code
associated with keeping things on a form working properly.

• So to allow others to run your application, you need to give them the executable file

(exe) and at least two dynamic link libraries. Unfortunately, these dynamic link
libraries take up over 1 Meg of disk space, so it’s hard to move those around on a
floppy disk.

• Visual Basic solves this ‘distribution problem’ by providing a very powerful tool

called the Visual Basic Package & Deployment Wizard. This wizard is installed
along with Visual Basic.

• The Package & Deployment Wizard prepares your application for distribution. It

helps you determine which files to distribute, creates a Setup program (written in
Visual Basic) that works like all other Windows Setup programs (setup.exe),
compresses all required files to save disk space, and writes the compressed files to the
distribution media of choice, usually floppy disk(s).

• To start the Package & Deployment Wizard, click the Start button in Windows, then

find the Visual Basic program folder - click on Visual Basic Tools, then choose
Package & Deployment Wizard The setup follows several steps. The directions
provided with each step pertain to the simple applications we develop in class. For
more complicated examples, you need to modify the directions, especially regarding
what files you need to distribute with your application.

 Database Access and Management 8-160

Step 1. Initial Information. Enter the path and file name for your project file
(.vbp). Click the ellipsis (...) to browse vbp files. If an executable (.exe) file does not
exist, one will be created. Click the ‘Package’ button to continue. If you have
previously saved a setup package for the selected project, it will load the package file
created during that session.

Step 2. Package Type. Choose the Standard Setup Package (we want a standard
setup program). Click Next to continue.

Step 3. Package Folder. Select a directory where you want the application
distribution package to be saved. Click Next to continue. Click Back to return to the
previous step.

Step 4. Included Files. The Package & Deployment Wizard will list all files it
believes are required for your application to function properly. If your application
requires any files not found by the wizard (for example, external data files you have
created), you would add them to the setup list here (click Add). To continue, click
Next. Click Back to return to the previous step.

Step 5. Cab Options. Distribution files are called cab files (have a cab
extension). You can choose a Single cab file written to your hard drive (if you use
CD ROM distribution), or Multiple cab files (to allow distribution on floppy disks).
If you choose, Multiple, you also specify the capacity of the disks you will use to
write your distribution file(s). Make your choice. Click Next to Continue. Click
Back to return to the previous step.

 Database Access and Management 8-161

Step 6. Installation Title. Enter a title you want your application to have. Click
Next to Continue. Click Back to return to previous step.

Step 7. Start Menu Items. This step determines where your installed application
will be located on the user’s Start menu. We will use the default choice. Click Next
to Continue. Click Back to return to previous step.

Step 8. Install Locations. The wizard gives you an opportunity to change the
locations of installed files. Click Next to Continue. Click Back to return to previous
step.

Step 9. Shared Files. Some files in your application may be shared by other
applications. Shared files will not be removed if the application is uninstalled.
Decide if you have shared files. Click Next to Continue. Click Back to return to
previous step.

Step 10. Finished! Provide a name for saving the script for this wizard session (a
file that saves answers to all the questions you just answered). Click Finish to
Continue. Click Back to return to previous step. The wizard will create and write the
cab files and tell you where they are saved. Click Close. You will be returned to the
Package & Deployment Wizard opening window. Click Close.

Step 11. Write Distribution Media. This is not a step in the wizard, but one you
must take. The cab files (distribution files) the wizard wrote must now be copied to
your distribution media. If you wrote a single cab file (for CD ROM), copy that file,
the setup.exe file (the setup application), and the setup.lst file to your CD ROM). If
you wrote multiple files (for floppy disks), copy the setup.exe, setup.lst, and first cab
file (1 at end of file name) to floppy number 1. Copy the second cab file (2 at end of
file name) to floppy number 2. Copy all subsequent cab files to as many floppies as
needed. Properly label all floppies.

• To install the application using the distribution CD ROM or floppy disk(s), a user
simply puts CD ROM or floppy number 1 in a drive. Then, through the Windows
Explorer, run the setup.exe program. The user will be taken through the installation
procedure step-by-step. The procedure is nearly identical to the installation process
for all Microsoft products.

• The Package & Deployment Wizard is a very powerful tool. We’ve only looked at

using it for simple applications. As your programming skills begin to include
database access and other advanced topics, you will need to become familiar with
other files that should be distributed with your applications.

 Database Access and Management 8-162

Example 5-3

Note Editor - Creating a Distribution Disk

1. Open your Note Editor project again. Create a distribution disk using the Package &

Deployment Wizard.

2. Try installing the application on your computer. Better yet, take the disk to another

Windows 95/98/NT-based machine, preferably without Visual Basic installed. Install
the application using the distribution disk and test its operation.

 Database Access and Management 8-163

This page intentionally not left blank.

 Database Access and Management 8-164

Exercise 5

US Capitals Quiz

Develop an application that quizzes a user on states and capitals in the United States.
Use a menu structure that allows the user to decide whether they want to name states or
capitals and whether they want mulitple choice or type- in answers. Throughly test your
application. Design an icon for your program using IconEdit or some other program.
Create an executable file. Create a distribution disk using the Application Setup Wizard.
Give someone your application disk and have them install it on their computer and try out
your nifty little program.

My Solution:

Form:

mnuFile

mnuOptions

lblHeadGiven

cmdNext
lblScore

lblComment

lblAnswer(0)
(under txtAnswer)

txtAnswer

cmdExit

lblAnswer(1)

lblAnswer(2)

lblAnswer(3)

lblHeadAnswer

lblGiven

 Database Access and Management 8-165

Properties:

Form frmCapitals :
 BorderStyle = 1 - Fixed Single
 Caption = US Capitals

CommandButton cmdNext:
 Caption = &Next Question
 Enabled = False

CommandButton cmdExit:
 Caption = E&xit

TextBox txtAnswer:
 FontName = MS Sans Serif
 FontSize = 13.2
 Visible = False

Label lblComment:
 Alignment = 2 - Center
 BackColor = &H00C00000& (Blue)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 13.2
 FontItalic = True
 ForeColor = &H0000FFFF& (Yellow)

Label lblScore :
 Alignment = 2 - Center
 AutoSize = True
 BackColor = &H0000FFFF& (Yellow)
 BorderStyle = 1 - Fixed Single
 Caption = 0%
 FontName = MS Sans Serif
 FontSize = 15.6
 FontBold = True

Label lblAnswer (control array):
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 13.2
 Index = 0, 1, 2, 3

 Database Access and Management 8-166

Label lblHeadAnswer:
 Caption = Capital:
 FontName = MS Sans Serif
 FontSize = 13.2
 FontBold = True

Label lblHeadGiven:
 Caption = State:
 FontName = MS Sans Serif
 FontSize = 13.2
 FontBold = True

Menu mnuFile :
 Caption = &File

Menu mnuFileNew:
 Caption = &New

Menu mnuFileBar:
 Caption = -

Menu mnuFileExit:
 Caption = E&xit

Menu mnuOptions :
 Caption = &Options

Menu mnuOptionsCapitals:
 Captio n = Name &Capitals
 Checked = True

Menu mnuOptionsState:
 Caption = Name &State

Menu mnuOptionsBar:
 Caption = -

Menu mnuOptionsMC:
 Caption = &Multiple Choice Answers
 Checked = True

Menu mnuOptionsType :
 Caption = &Type In Answers

 Database Access and Management 8-167

Code:

General Declarations:

Option Explicit
Dim CorrectAnswer As Integer
Dim NumAns As Integer, NumCorrect As Integer
Dim Wsound(26) As Integer
Dim State(50) As String, Capital(50) As String

SoundEx General Function (this is a neat little function to check if spelling of two words
is similar):

Private Function SoundEx(W As String, Wsound() As Integer)
As String
‘Generates Soundex code for W
‘Allows answers whose spelling is close, but not exact
Dim Wtemp As String, S As String
Dim L As Integer, I As Integer
Dim Wprev As Integer, Wsnd As Integer, Cindex As Integer
Wtemp = UCase(W)
L = Len(W)
If L <> 0 Then
 S = Left(Wtemp, 1)
 Wprev = 0
 If L > 1 Then
 For I = 2 To L
 Cindex = Asc(Mid(Wtemp, I, 1)) - 64
 If Cindex >= 1 And Cindex <= 26 Then
 Wsnd = Wsound(Cindex) + 48
 If Wsnd <> 48 And Wsnd <> Wprev Then S = S +
Chr(Wsnd)
 Wprev = Wsnd
 End If
 Next I
 End If
Else
 S = ""
End If
SoundEx = S
End Function

 Database Access and Management 8-168

Update_Score General Procedure:

Private Sub Update_Score(Iscorrect As Integer)
Dim I As Integer
'Check if answer is correct
cmdNext.Enabled = True
cmdNext.SetFocus
If Iscorrect = 1 Then
 NumCorrect = NumCorrect + 1
 lblComment.Caption = "Correct!"
Else
 lblComment.Caption = "Sorry ..."
End If
'Display correct answer and update score
If mnuOptionsMC.Checked = True Then
 For I = 0 To 3
 If mnuOptionsCapitals.Checked = True Then
 If lblAnswer(I).Caption <> Capital(CorrectAnswer)
Then
 lblAnswer(I).Caption = ""
 End If
 Else
 If lblAnswer(I).Caption <> State(CorrectAnswer) Then
 lblAnswer(I).Caption = ""
 End If
 End If
 Next I
Else
 If mnuOptionsCapitals.Checked = True Then
 txtAnswer.Text = Capital(CorrectAnswer)
 Else
 txtAnswer.Text = State(CorrectAnswer)
 End If
End If
lblScore.Caption = Format(NumCorrect / NumAns, "##0%")
End Sub

cmdExit Click Event:

Private Sub cmdExit_Click()
'Exit program
Call mnuFileExit_Click
End Sub

 Database Access and Management 8-169

cmdNext Click Event:

Private Sub cmdNext_Click()
'Generate the next question
cmdNext.Enabled = False
Call Next_Question(CorrectAnswer)
End Sub

Form Activate Event:

Private Sub Form_Activate()
Call mnufilenew_click
End Sub

Form Load Event:

Private Sub Form_Load()
Randomize Timer
'Load soundex function array
Wsound(1) = 0: Wsound(2) = 1: Wsound(3) = 2: Wsound(4) = 3
Wsound(5) = 0: Wsound(6) = 1: Wsound(7) = 2: Wsound(8) = 0
Wsound(9) = 0: Wsound(10) = 2: Wsound(11) = 2: Wsound(12) =
4
Wsound(13) = 5: Wsound(14) = 5: Wsound(15) = 0: Wsound(16)
= 1
Wsound(17) = 2: Wsound(18) = 6: Wsound(19) = 2: Wsound(20)
= 3
Wsound(21) = 0: Wsound(22) = 1: Wsound(23) = 0: Wsound(24)
= 2
Wsound(25) = 0: Wsound(26) = 2
'Load state/capital arrays
State(1) = "Alabama": Capital(1) = "Montgomery"
State(2) = "Alaska": Capital(2) = "Juneau"
State(3) = "Arizona": Capital(3) = "Phoenix"
State(4) = "Arkansas": Capital(4) = "Little Rock"
State(5) = "California": Capital(5) = "Sacramento"
State(6) = "Colorado": Capital(6) = "Denver"
State(7) = "Connecticut": Capital(7) = "Hartford"
State(8) = "Delaware": Capital(8) = "Dover"
State(9) = "Florida": Capital(9) = "Tallahassee"
State(10) = "Georgia": Capital(10) = "Atlanta"
State(11) = "Hawaii": Capital(11) = "Honolulu"
State(12) = "Idaho": Capital(12) = "Boise"
State(13) = "Illinois": Capital(13) = "Springfield"
State(14) = "Indiana": Capital(14) = "Indianapolis"

 Database Access and Management 8-170

State(15) = "Iowa": Capital(15) = "Des Moines"
State(16) = "Kansas": Capital(16) = "Topeka"
State(17) = "Kentucky": Capital(17) = "Frankfort"
State(18) = "Louisiana": Capital(18) = "Baton Rouge"
State(19) = "Maine": Capital(19) = "Augusta"
State(20) = "Maryland": Capital(20) = "Annapolis"
State(21) = "Massachusetts": Capital(21) = "Boston"
State(22) = "Michigan": Capital(22) = "Lansing"
State(23) = "Minnesota": Capital(23) = "Saint Paul"
State(24) = "Mississippi": Capital(24) = "Jackson"
State(25) = "Missouri": Capital(25) = "Jefferson City"
State(26) = "Montana": Capital(26) = "Helena"
State(27) = "Nebraska": Capital(27) = "Lincoln"
State(28) = "Nevada": Capital(28) = "Carson City"
State(29) = "New Hampshire": Capital(29) = "Concord"
State(30) = "New Jersey": Capital(30) = "Trenton"
State(31) = "New Mexico": Capital(31) = "Santa Fe"
State(32) = "New York": Capital(32) = "Albany"
State(33) = "North Carolina": Capital(33) = "Raleigh"
State(34) = "North Dakota": Capital(34) = "Bismarck"
State(35) = "Ohio": Capital(35) = "Columbus"
State(36) = "Oklahoma": Capital(36) = "Oklahoma City"
State(37) = "Oregon": Capital(37) = "Salem"
State(38) = "Pennsylvania": Capital(38) = "Harrisburg"
State(39) = "Rhode Island": Capital(39) = "Providence"
State(40) = "South Carolina": Capital(40) = "Columbia"
State(41) = "South Dakota": Capital(41) = "Pierre"
State(42) = "Tennessee": Capital(42) = "Nashville"
State(43) = "Texas": Capital(43) = "Austin"
State(44) = "Utah": Capital(44) = "Salt Lake City"
State(45) = "Vermont": Capital(45) = "Montpelier"
State(46) = "Virginia": Capital(46) = "Richmond"
State(47) = "Washington": Capital(47) = "Olympia"
State(48) = "West Virginia": Capital(48) = "Charleston"
State(49) = "Wisconsin": Capital(49) = "Madison"
State(50) = "Wyoming": Capital(50) = "Cheyenne"
End Sub

 Database Access and Management 8-171

lblAnswer Click Event:

Private Sub lblAnswer_Click(Index As Integer)
'Check multiple choice answers
Dim Iscorrect As Integer
'If already answered, exit
If cmdNext.Enabled = True Then Exit Sub
Iscorrect = 0
If mnuOptionsCapitals.Checked = True Then
 If lblAnswer(Index).Caption = Capital(CorrectAnswer) Then
Iscorrect = 1
Else
 If lblAnswer(Index).Caption = State(CorrectAnswer) Then
Iscorrect = 1
End If
Call Update_Score(Iscorrect)
End Sub

mnuFileExit Click Event:

Private Sub mnuFileExit_Click()
'End the application
End
End Sub

mnuFileNew Click Event:

Private Sub mnufilenew_click()
'Reset the score and start again
NumAns = 0
NumCorrect = 0
lblScore.Caption = "0%"
lblComment.Caption = ""
cmdNext.Enabled = False
Call Next_Question(CorrectAnswer)
End Sub

 Database Access and Management 8-172

mnuOptionsCapitals Click Event:

Private Sub mnuOptionsCapitals_Click()
'Set up for providing capital, given state
mnuOptionsState.Checked = False
mnuOptionsCapitals.Checked = True
lblHeadGiven.Caption = "State:"
lblHeadAnswer.Caption = "Capital:"
Call mnufilenew_click
End Sub

mnuOptionsMC Click Event:

Private Sub mnuOptionsMC_Click()
'Set up for multiple choice answers
Dim I As Integer
mnuOptionsMC.Checked = True
mnuOptionsType.Checked = False
For I = 0 To 3
 lblAnswer(I).Visible = True
Next I
txtAnswer.Visible = False
Call mnufilenew_click
End Sub

mnuOptionsState Click Event:

Private Sub mnuOptionsState_Click()
'Set up for providing state, given capital
mnuOptionsState.Checked = True
mnuOptionsCapitals.Checked = False
lblHeadGiven.Caption = "Capital:"
lblHeadAnswer.Caption = "State:"
Call mnufilenew_click
End Sub

 Database Access and Management 8-173

mnuOptionsType Click Event:

Private Sub mnuOptionsType_Click()
'Set up for type in answers
Dim I As Integer
mnuOptionsMC.Checked = False
mnuOptionsType.Checked = True
For I = 0 To 3
 lblAnswer(I).Visible = False
Next I
txtAnswer.Visible = True
Call mnufilenew_click
End Sub

Next_Question General Procedure:

Private Sub Next_Question(Answer As Integer)
Dim VUsed(50) As Integer, I As Integer, J As Integer
Dim Index(3)
lblComment.Caption = ""
NumAns = NumAns + 1
'Generate the next question based on selected options
Answer = Int(Rnd * 50) + 1
If mnuOptionsCapitals.Checked = True Then
 lblGiven.Caption = State(Answer)
Else
 lblGiven.Caption = Capital(Answer)
End If
If mnuOptionsMC.Checked = True Then
'Multiple choice answers
'Vused array is used to see which states have
'been selected as possible answers
 For I = 1 To 50
 VUsed(I) = 0
 Next I
'Pick four different state indices (J) at random
'These are used to set up multiple choice answers
'Stored in the Index array
 I = 0
 Do
 Do
 J = Int(Rnd * 50) + 1
 Loop Until VUsed(J) = 0 And J <> Answer
 VUsed(J) = 1
 Index(I) = J
 I = I + 1

 Database Access and Management 8-174

 Loop Until I = 4
'Now replace one index (at random) with correct answer
 Index(Int(Rnd * 4)) = Answer
'Display multiple choice answers in label boxes
 For I = 0 To 3
 If mnuOptionsCapitals.Checked = True Then
 lblAnswer(I).Caption = Capital(Index(I))
 Else
 lblAnswer(I).Caption = State(Index(I))
 End If
 Next I
Else
'Type-in answers
 txtAnswer.Locked = False
 txtAnswer.Text = ""
 txtAnswer.SetFocus
End If
End Sub

 Database Access and Management 8-175

txtAnswer KeyPress Event:

Private Sub txtAnswer_KeyPress(KeyAscii As Integer)
'Check type in answer'
Dim Iscorrect As Integer
Dim YourAnswer As String, TheAnswer As String
'Exit if already answered
If cmdNext.Enabled = True Then Exit Sub
If (KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ) _
Or (KeyAscii >= vbKeyA + 32 And KeyAscii <= vbKeyZ + 32) _
Or KeyAscii = vbKeySpace Or KeyAscii = vbKeyBack Or
KeyAscii = vbKeyReturn Then
'Acceptable keystroke
 If KeyAscii <> vbKeyReturn Then Exit Sub
'Lock text box once answer entered
 txtAnswer.Locked = True
 Iscorrect = 0
'Convert response and correct answers to all upper
'case for typing problems
 YourAnswer = UCase(txtAnswer.Text)
 If mnuOptionsCapitals.Checked = True Then
 TheAnswer = UCase(Capital(CorrectAnswer))
 Else
 TheAnswer = UCase(State(CorrectAnswer))
 End If
'Check for both exact and approximate spellings
 If YourAnswer = TheAnswer Or _
 SoundEx(YourAnswer, Wsound()) = SoundEx(TheAnswer,
Wsound()) Then Iscorrect = 1
 Call Update_Score(Iscorrect)
Else
'Unacceptable keystroke
 KeyAscii = 0
End If
End Sub

Learn Visual Basic 6.0

6. Error-Handling, Debugging and File Input/Output

 Database Access and Management 8-176

Review and Preview

• In this class, we expand on our Visual Basic knowledge from past classes and

examine a few new topics. We first look at handling errors in programs, using both
run-time error trapping and debugging techniques. We then study input and output to
disks using sequential files and random access files.

Error Types

• No matter how hard we try, errors do creep into our programs. These errors can be

grouped into three categories:

1. Syntax errors
2. Run-time errors
3. Logic errors

• Syntax errors occur when you mistype a command or leave out an expected phrase

or argument. Visual Basic detects these errors as they occur and even provides help
in correcting them. You cannot run a Visual Basic program until all syntax errors
have been corrected.

• Run-time errors are usually beyond your program's control. Examples include:

when a variable takes on an unexpected value (divide by zero), when a drive door is
left open, or when a file is not found. Visual Basic allows you to trap such errors and
make attempts to correct them.

• Logic errors are the most difficult to find. With logic errors, the program will

usually run, but will produce incorrect or unexpected results. The Visual Basic
debugger is an aid in detecting logic errors.

 Database Access and Management 8-177

• Some ways to minimize errors:

⇒ Design your application carefully. More design time means less debugging time.
⇒ Use comments where applicable to help you remember what you were trying to

do.
⇒ Use consistent and meaningful naming conventions for your variables, objects,

and procedures.

Run-Time Error Trapping and Handling

• Run-time errors are trappable. That is, Visual Basic recognizes an error has

occurred and enables you to trap it and take corrective action. If an error occurs and
is not trapped, your program will usually end in a rather unceremonious manner.

• Error trapping is enabled with the On Error statement:

On Error GoTo errlabel

Yes, this uses the dreaded GoTo statement! Any time a run-time error occurs
following this line, program control is transferred to the line labeled errlabel. Recall
a labeled line is simply a line with the label followed by a colon (:).

• The best way to explain how to use error trapping is to look at an outline of an

example procedure with error trapping.

Sub SubExample()
 .
 . [Declare variables, ...]
 .
On Error GoTo HandleErrors
 .
 . [Procedure code]
 .
Exit Sub
HandleErrors:
 .
 . [Error handling code]
 .
End Sub

 Database Access and Management 8-178

Once you have set up the variable declarations, constant definitions, and any other
procedure preliminaries, the On Error statement is executed to enable error trapping.
Your normal procedure code follows this statement. The error handling code goes at
the end of the procedure, following the HandleErrors statement label. This is the
code that is executed if an error is encountered anywhere in the Sub procedure. Note
you must exit (with Exit Sub) from the code before reaching the HandleErrors line to
avoid inadvertent execution of the error handling code.

• Since the error handling code is in the same procedure where an error occurs, all

variables in that procedure are available for possible corrective action. If at some
time in your procedure, you want to turn off error trapping, that is done with the
following statement:

On Error GoTo 0

• Once a run-time error occurs, we would like to know what the error is and attempt to

fix it. This is done in the error handling code.

• Visual Basic offers help in identifying run-time errors. The Err object returns, in its

Number property (Err.Number), the number associated with the current error
condition. (The Err function has other useful properties that we won’t cover here -
consult on- line help for further information.) The Error() function takes this error
number as its argument and returns a string description of the error. Consult on- line
help for Visual Basic run-time error numbers and their descriptions.

• Once an error has been trapped and some action taken, control must be returned to

your application. That control is returned via the Resume statement. There are three
options:

Resume Lets you retry the operation that caused the error. That

is, control is returned to the line where the error
occurred. This could be dangerous in that, if the error
has not been corrected (via code or by the user), an
infinite loop between the error handler and the
procedure code may result.

Resume Next Program control is returned to the line immediately
following the line where the error occurred.

Resume label Program control is returned to the line labeled label.

 Database Access and Management 8-179

• Be careful with the Resume statement. When executing the error handling portion of
the code and the end of the procedure is encountered before a Resume, an error
occurs. Likewise, if a Resume is encountered outside of the error handling portion of
the code, an error occurs.

General Error Handling Procedure

• Development of an adequate error handling procedure is application dependent.

You need to know what type of errors you are looking for and what corrective actions
must be taken if these errors are encountered. For example, if a 'divide by zero' is
found, you need to decide whether to skip the operation or do something to reset the
offending denominator.

• What we develop here is a generic framework for an error ha ndling procedure. It

simply informs the user that an error has occurred, provides a description of the error,
and allows the user to Abort, Retry, or Ignore. This framework is a good starting
point for designing custom error handling for your applications.

• The generic code (begins with label HandleErrors) is:

HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetryIgnore, "Error
Number" + Str(Err.Number))
 Case vbAbort
 Resume ExitLine
 Case vbRetry
 Resume
 Case vbIgnore
 Resume Next
End Select
ExitLine:
Exit Sub

Let’s look at what goes on here. First, this routine is only executed when an error
occurs. A message box is displayed, using the Visual Basic provided error
description [Error(Err.Number)] as the message, uses a critical icon along with the
Abort, Retry, and Ignore buttons, and uses the error number [Err.Number] as the
title. This message box returns a response indicating which button was selected by
the user. If Abort is selected, we simply exit the procedure. (This is done using a
Resume to the line labeled ExitLine . Recall all error trapping must be terminated
with a Resume statement of some kind.) If Retry is selected, the offending program
line is retried (in a real application, you or the user would have to change something
here to correct the condition causing the error). If Ignore is selected, program
operation continues with the line following the error causing line.

 Database Access and Management 8-180

• To use this generic code in an existing procedure, you need to do three things:

1. Copy and paste the error handling code into the end of your procedure.
2. Place an Exit Sub line immediately preceding the HandleErrors labeled line.
3. Place the line, On Error GoTo HandleErrors , at the beginning of your

procedure.

For example, if your procedure is the SubExample seen earlier, the modified code
will look like this:

Sub SubExample()
 .
 . [Declare variables, ...]
 .
On Error GoTo HandleErrors
 .
 . [Procedure code]
 .
Exit Sub
HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetryIgnore, "Error
Number" + Str(Err.Number))
 Case vbAbort
 Resume ExitLine
 Case vbRetry
 Resume
 Case vbIgnore
 Resume Next
End Select
ExitLine:
Exit Sub
End Sub

Again, this is a very basic error-handling routine. You must determine its utility in your
applications and make any modifications necessary. Specifically, you need code to clear
error conditions before using the Retry option.

 Database Access and Management 8-181

• One last thing. Once you've written an error handling routine, you need to test it to
make sure it works properly. But, creating run-time errors is sometimes difficult and
perhaps dangerous. Visual Basic comes to the rescue! The Visual Basic Err object
has a method (Raise) associated with it that simulates the occurrence of a run-time
error. To cause an error with value Number, use:

Err.Raise Number

• We can use this function to completely test the operation of any error handler we

write. Don’t forget to remove the Raise statement once testing is completed, though!
And, to really get fancy, you can also use Raise to generate your own ‘application-
defined’ errors. There are errors specific to your application that you want to trap.

• To clear an error condition (any error, not just ones generated with the Raise method),

use the method Clear:

Err.Clear

 Database Access and Management 8-182

Example 6-1

Simple Error Trapping

1. Start a new project. Add a text box and a command button.

2. Set the properties of the form and each control:

Form1:
 BorderStyle 1-Fixed Single
 Caption Error Generator
 Name frmError

Command1:
 Caption Generate Error
 Default True
 Name cmdGenError

Text1:
 Name txtError
 Text [Blank]

The form should look something like this:

 Database Access and Management 8-183

3. Attach this code to the cmdGenError_Click event.

Private Sub cmdGenError_Click()
On Error GoTo HandleErrors
Err.Raise Val(txtError.Text)
Err.Clear
Exit Sub
HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical +

vbAbortRetryIgnore, "Error Number" + Str(Err.Number))
 Case vbAbort
 Resume ExitLine
 Case vbRetry
 Resume
 Case vbIgnore
 Resume Next
End Select
ExitLine:
Exit Sub
End Sub

In this code, we simply generate an error using the number input in the text box. The

generic error handler then displays a message box which you can respond to in one of
three ways.

4. Save your application. Try it out using some of these typical error numbers (or use

numbers found with on-line help). Notice how program control changes depending
on which button is clicked.

Error Number Error Description
 6 Overflow
 9 Subscript out of range
 11 Division by zero
 13 Type mismatch
 16 Expression too complex
 20 Resume without error
 52 Bad file name or number
 53 File not found
 55 File already open
 61 Disk full
 70 Permission denied
 92 For loop not initialized

 Database Access and Management 8-184

Debugging Visual Basic Programs

• We now consider the search for, and elimination of, logic errors. These are errors

that don’t prevent an application from running, but cause incorrect or unexpected
results. Visual Basic provides an excellent set of debugging tools to aid in this
search.

• Debugging a code is an art, not a science. There are no prescribed processes that you

can follow to eliminate all logic errors in your program. The usual approach is to
eliminate them as they are discovered.

• What we’ll do here is present the debugging tools available in the Visual Basic

environment (several of which appear as buttons on the toolbar) and describe their
use with an example. You, as the program designer, should select the debugging
approach and tools you feel most comfortable with.

• The interface between your application and the debugging tools is via three different

debug windows: the Immediate Window, the Locals Window, and the Watch
Window. These windows can be accessed from the View menu (the Immediate
Window can be accessed by pressing Ctrl+G). Or, they can be selected from the
Debug Toolbar (accessed using the Toolbars option under the View menu):

•

• All debugging using the debug windows is done when your application is in break
mode . You can enter break mode by setting breakpoints, pressing Ctrl+Break, or
the program will go into break mode if it encounters an untrapped error or a Stop
statement.

• Once in break mode, the debug windows and other tools can be used to:

⇒ Determine values of variables
⇒ Set breakpoints
⇒ Set watch variables and expressions
⇒ Manually control the application
⇒ Determine which procedures have been called
⇒ Change the values of variables and properties

Immediate Locals
Watch

 Database Access and Management 8-185

Example 6-2

Debugging Example

1. Unlike other examples, we’ll do this one as a group. It will be used to demonstrate

use of the debugging tools.

2. The example simply has a form with a single command button. The button is used to

execute some code. We won’t be real careful about proper naming conventions and
such in this example.

3. The code attached to this button’s Click event is a simple loop that evaluates a

function at several values.

Private Sub Command1_Click()
Dim X As Integer, Y As Integer
X = 0
Do
Y = Fcn(X)
X = X + 1
Loop While X <= 20
End Sub

This code begins with an X value of 0 and computes the Y value using the general integer

function Fcn. It then increments X by 1 and repeats the Loop. It continues looping
While X is less than or equal to 20. The function Fcn is computed using:

Function Fcn(X As Integer) As Integer
Fcn = CInt(0.1 * X ^ 2)
End Function

Admittedly, this code doesn’t do much, especially without any output, but it makes a
good example for looking at debugger use. Set up the application and get ready to try
debugging.

 Database Access and Management 8-186

Using the Debugging Tools

• There are several debugging tools available for use in Visual Basic. Access to these

tools is provided with both menu options and buttons on the Debug toolbar. These
tools include breakpoints, watch points, calls, step into, step over, and step out.

• The simplest tool is the use of direct prints to the immediate window.

• Printing to the Immediate Window:

You can print directly to the immediate window while an application is running.
Sometimes, this is all the debugging you may need. A few carefully placed print
statements can sometimes clear up all logic errors, especially in small applications.

To print to the immediate window, use the Print method:

Debug.Print [List of variables separated by commas or semi-colons]

• Debug.Print Example:

1. Place the following statement in the Command1_Click procedure after
the line calling the general procedure Fcn:

Debug.Print X; Y

and run the application.

2. Examine the immediate window. Note how, at each iteration of the loop,

the program prints the value of X and Y. You could use this information
to make sure X is incrementing correctly and that Y values look
acceptable.

3. Remove the Debug.Print statement.

 Database Access and Management 8-187

• Breakpoints:

In the above examples, the program ran to completion before we could look at the
debug window. In many applications, we want to stop the application while it is
running, examine variables and then continue running. This can be done with
breakpoints.

A breakpoint is a line in the code where you want to stop (temporarily) the execution
of the program, that is force the program into break mode. To set a breakpoint, put
the cursor in the line of code you want to break on. Then, press <F9> or click the
Breakpoint button on the toolbar or select Toggle Breakpoint from the Debug
menu. The line will be highlighted.

When you run your program, Visual Basic will stop when it reaches lines with
breakpoints and allow you to use the immediate window to check variables and
expressions. To continue program operation after a breakpoint, press <F5>, click the
Run button on the toolbar, or choose Start from the Run menu.

You can also change variable values using the immediate window. Simply type a
valid Basic expression. This can sometimes be dangerous, though, as it may change
program operation completely.

• Breakpoint Example:

1. Set a breakpoint on the X = X + 1 line in the sample program. Run the

program.

2. When the program stops, display the immediate window and type the

following line:

Print X;Y

3. The values of these two variables will appear in the debug window. You

can use a question mark (?) as shorthand for the command Print, if you’d
like. Restart the application. Print the new variable values.

4. Try other breakpoints if you have time. Once done, all breakpoints can be

cleared by Ctrl+Shift+<F9> or by choosing Clear All Breakpoints from
the Debug menu. Individual breakpoints can be toggled using <F9> or
the Breakpoint button on the toolbar.

 Database Access and Management 8-188

• Viewing Variables in the Locals Window:

The locals window shows the value of any variables within the scope of the current
procedure. As execution switches from procedure to procedure, the contents of this
window changes to reflect only the variables applicable to the current procedure.
Repeat the above example and notice the values of X and Y also appear in the locals
window.

• Watch Expressions:

The Add Watch option on the Debug menu allows you to establish watch
expressions for your application. Watch expressions can be variable values or
logical expressions you want to view or test. Values of watch expressions are
displayed in the watch window.

In break mode, you can use the Quick Watch button on the toolbar to add watch
expressions you need. Simply put the cursor on the variable or expression you want
to add to the watch list and click the Quick Watch button.

Watch expressions can be edited using the Edit Watch option on the Debug menu.

• Watch Expression Example:

1. Set a breakpoint at the X = X + 1 line in the example.

2. Set a watch expression for the variable X. Run the application. Notice

X appears in the watch window. Every time you re-start the application,
the value of X changes.

3. At some point in the debug procedure, add a quick watch on Y. Notice it

is now in the watch window.

4. Clear the breakpo int. Add a watch on the expression: X = Y. Set

Watch Type to ‘Break When Value Is True.’ Run the application.
Notice it goes into break mode and displays the watch window whenever
X = Y. Delete this last watch expression.

 Database Access and Management 8-189

• Call Stack:

Selecting the Call Stack button from the toolbar (or pressing Ctrl+L or selecting
Call Stack from the View menu) will display all active procedures, that is those that
have not been exited.

Call Stack helps you unravel situations with nested procedure calls to give you some
idea of where you are in the application.

• Call Stack Example:

1. Set a breakpoint on the Fcn = Cint() line in the general function

procedure. Run the application. It will break at this line.

2. Press the Call Stack button. It will indicate you are currently in the Fcn

procedure which was called from the Command1_Click procedure. Clear
the breakpoint.

• Single Stepping (Step Into):

While at a breakpoint, you may execute your program one line at a time by pressing
<F8>, choosing the Step Into option in the Debug menu, or by clicking the Step Into
button on the toolbar.

This process is single stepping . It allows you to watch how variables change (in the
locals window) or how your form changes, one step at a time.

You may step through several lines at a time by using Run To Cursor option. With
this option, click on a line below your current point of execution. Then press
Ctrl+<F8> (or choose Run To Cursor in the Debug menu). the program will run
through every line up to the cursor location, then stop.

 Database Access and Management 8-190

• Step Into Example:

1. Set a breakpoint on the Do line in the example. Run the application.

2. When the program breaks, use the Step Into button to single step through

the program.

3. At some point, put the cursor on the Loop While line. Try the Run To

Cursor option (press Ctrl+<F8>).

• Procedure Stepping (Step Over):

While single stepping your program, if you come to a procedure call you know
functions properly, you can perform procedure stepping. This simply executes the
entire procedure at once, rather than one step at a time.

To move through a procedure in this manner, press Shift+<F8>, choose Step Over
from the Debug menu, or press the Step Over button on the toolbar.

• Step Over Example:

1. Run the previous example. Single step through it a couple of times.

2. One time through, when you are at the line calling the Fcn function, press

the Step Over button. Notice how the program did not single step through
the function as it did previously.

• Function Exit (Step Out):

While stepping through your program, if you wish to complete the execution of a
function you are in, without stepping through it line-by- line, choose the Step Out
option. The function will be completed and you will be returned to the procedure
accessing that function.

To perform this step out, press Ctrl+Shift+<F8>, choose Step Out from the Debug
menu, or press the Step Out button on the toolbar. Try this on the previous example.

 Database Access and Management 8-191

Debugging Strategies

• We’ve looked at each debugging tool briefly. Be aware this is a cursory introduction.

Use the on- line help to delve into the details of each tool described. Only through
lots of use and practice can you become a proficient debugger. There are some
guidelines to doing a good job, though.

• My first suggestion is: keep it simple. Many times, you only have one or two bad

lines of code. And you, knowing your code best, can usually quickly narrow down
the areas with bad lines. Don’t set up some elaborate debugging procedure if you
haven’t tried a simple approach to find your error(s) first. Many times, just a few
intelligently-placed Debug.Print statements or a few examinations of the immediate
and locals windows can solve your problem.

• A tried and true approach to debugging can be called Divide and Conquer. If you’re

not sure where your error is, guess somewhere in the middle of your application code.
Set a breakpoint there. If the error hasn’t shown up by then, you know it’s in the
second half of your code. If it has shown up, it’s in the first half. Repeat this division
process until you’ve narrowed your search.

• And, of course, the best debugging strategy is to be careful when you first design and

write your application to minimize searching for errors later.

 Database Access and Management 8-192

Sequential Files

• In many applications, it is helpful to have the capability to read and write information

to a disk file. This information could be some computed data or perhaps information
loaded into a Visual Basic object.

• Visual Basic supports two primary file formats: sequential and random access. We

first look at sequential files.

• A sequential file is a line-by-line list of data. You can view a sequential file with any

text editor. When using sequential files, you must know the order in which
information was written to the file to allow proper reading of the file.

• Sequential files can handle both text data and variable values. Sequential access is

best when dealing with files that have lines with mixed information of different
lengths. I use them to transfer data between applications.

Sequential File Output (Variables)

• We first look at writing values of variables to sequential files. The first step is to

Open a file to write information to. The syntax for opening a sequential file for
output is:

Open SeqFileName For Output As #N

where SeqFileName is the name of the file to open and N is an integer file number.
The filename must be a complete path to the file.

• When done writing to the file, Close it using:

Close N

Once a file is closed, it is saved on the disk under the path and filename used to open
the file.

• Information is written to a sequential file one line at a time. Each line of output
requires a separate Basic statement.

 Database Access and Management 8-193

• There are two ways to wr ite variables to a sequential file. The first uses the Write
statement:

Write #N, [variable list]

where the variable list has variable names delimited by commas. (If the variable list
is omitted, a blank line is printed to the file.) This statement will write one line of
information to the file, that line containing the variables specified in the variable list.
The variables will be delimited by commas and any string variables will be enclosed
in quotes. This is a good format for exporting files to o ther applications like Excel.

Example

Dim A As Integer, B As String, C As Single, D As Integer
 .
 .
Open TestOut For Output As #1
Write #1, A, B, C
Write #1, D
Close 1

After this code runs, the file TestOut will have two lines. The first will have the
variables A, B, and C, delimited by commas, with B (a string variable) in quotes. The
second line will simply have the value of the variable D.

• The second way to write variables to a sequential file is with the Print statement:

Print #N, [variable list]

This statement will write one line of information to the file, that line containing the
variables specified in the variable list. (If the variable list is omitted, a blank line will
be printed.) If the variables in the list are separated with semicolons (;), they are
printed with a single space between them in the file. If separated by commas (,), they
are spaced in wide columns. Be careful using the Print statement with string
variables. The Print statement does not enclose string variables in quotes, hence,
when you read such a variable back in, Visual Basic may have trouble knowing
where a string ends and begins. It’s good practice to ‘tack on’ quotes to string
variables when using Print.

 Database Access and Management 8-194

Example

Dim A As Integer, B As String, C As Single, D As Integer
 .
 .
Open TestOut For Output As #1
Print #1, A; Chr(34) + B + Chr(34), C
Print #1, D
Close 1

After this code runs, the file TestOut will have two lines. The first will have the
variables A, B, and C, delimited by spaces. B will be enclosed by quotes [Chr(34)].
The second line will simply have the value of the variable D.

Quick Example: Writing Variables to Sequential Files

1. Start a new project.

2. Attach the following code to the Form_Load procedure. This code simply writes a

few variables to sequential files.

Private Sub Form_Load()
Dim A As Integer, B As String, C As Single, D As Integer
A = 5
B = "Visual Basic"
C = 2.15
D = -20
Open "Test1.Txt" For Output As #1
Open "Test2.Txt" For Output As #2
Write #1, A, B, C
Write #1, D
Print #2, A, B, C
Print #2, D
Close 1
Close 2
End Sub

3. Run the program. Use a text editor (try the Windows 95 Notepad) to examine the

contents of the two files, Test1.Txt and Test2.Txt. They are probably in the Visual
Basic main directory. Note the difference in the two files, especially how the
variables are delimited and the fact that the string variable is not enclosed in quotes in
Test2.Txt. Save the application, if you want to.

 Database Access and Management 8-195

Sequential File Input (Variables)

• To read variables from a sequential file, we essentially reverse the write procedure.

First, open the file using:

Open SeqFileName For Input As #N

where N is an integer file number and SeqFileName is a complete file path. The file is

closed using:

Close N

• The Input statement is used to read in variables from a sequential file. The format is:

Input #N, [variable list]

The variable names in the list are separated by commas. If no variables are listed, the

current line in the file N is skipped.

• Note variables must be read in exactly the same ma nner as they were written. So,

using our previous example with the variables A, B, C, and D, the appropriate
statements are:

Input #1, A, B, C
Input #1, D

These two lines read the variables A, B, and C from the first line in the file and D
from the second line. It doesn’t matter whether the data was originally written to the
file using Write or Print (i.e. commas are ignored).

 Database Access and Management 8-196

Quick Example: Reading Variables from Sequential Files

1. Start a new project or simply modify the previous quick example.

2. Attach the following code to the Form_Load procedure. This code reads in files

created in the last quick example.

Private Sub Form_Load()
Dim A As Integer, B As String, C As Single, D As Integer
Open "Test1.Txt" For Input As #1
Input #1, A, B, C
Debug.Print "A="; A
Debug.Print "B="; B
Debug.Print "C="; C
Input #1, D
Debug.Print "D="; D
Close 1
End Sub

Note the Debug.Print statements and how you can add some identifiers (in quotes) for

printed information.

3. Run the program. Look in the debug window and note the variable values. Save the

application, if you want to.

4. Rerun the program using Test2.Txt as in the input file. What differences do you see?

Do you see the problem with using Print and string variables? Because of this
problem, I almost always use Write (instead of Print) for saving variable information
to files. Edit the Test2.Txt file (in Notepad), putting quotes around the words Visual
Basic. Rerun the program using this file as input - it should work fine now.

 Database Access and Management 8-197

Writing and Reading Text Using Sequential Files

• In many applications, we would like to be able to save text information and retrieve it

for later reference. This information could be a text file created by an application or
the contents of a Visual Basic text box.

• Writing Text Files:

To write a sequential text file, we follow the simple procedure: open the file, write the

file, close the file. If the file is a line-by- line text file, each line of the file is written
to disk using a single Print statement:

Print #N, Line

where Line is the current line (a text string). This statement should be in a loop that

encompasses all lines of the file. You must know the number of lines in your file,
beforehand.

If we want to write the contents of the Text property of a text box named txtExample to

a file, we use:

Print #N, txtExample.Text

Example

We have a text box named txtExample . We want to save the contents of the Text

property of that box in a file named MyText.ned on the c: drive in the \MyFiles
directory. The code to do this is:

Open “c:\MyFiles\MyText.ned” For Output As #1
Print #1, txtExample.Text
Close 1

The text is now saved in the file for later retrieval.

• Reading Text Files:

To read the contents of a previously-saved text file, we follow similar steps to the writing

process: open the file, read the file, close the file. If the file is a text file, we read
each individual line with the Line Input command:

Line Input #1, Line

 Database Access and Management 8-198

This line is usually placed in a Do/Loop structure that is repeated untill all lines of the
file are read in. The EOF() function can be used to detect an end-of-file condition, if
you don’t know, a prioiri, how many lines are in the file.

To place the contents of a file opened with number N into the Text property of a text box

named txtExample we use the Input function:

txtExample.Text = Input(LOF(N), N)

This Input function has two arguments: LOF(N), the length of the file opened as N and
N, the file number.

Example

We have a file named MyText.ned stored on the c: drive in the \MyFiles directory. We

want to read that text file into the text property of a text box named txtExample. The
code to do this is:

Open “c:\MyFiles\MyText.ned” For Input As #1
txtExample.Text = Input(LOF(1), 1)
Close 1

The text in the file will now be displayed in the text box.

 Database Access and Management 8-199

Random Access Files

• Note that to access a particular data item in a sequential file, you need to read in all

items in the file prior to the item of interest. This works acceptably well for small
data files of unstructured data, but for large, structured files, this process is time-
consuming and wasteful. Sometimes, we need to access data in nonsequential ways.
Files which allow nonsequential access are random access files.

• To allow nonsequential access to information, a random access file has a very definite

structure. A random access file is made up of a number of records , each record
having the same length (measured in bytes). Hence, by knowing the length of each
record, we can easily determine (or the computer can) where each record begins. The
first record in a random access file is Record 1, not 0 as used in Visual Basic arrays.
Each record is usually a set of variables, of different types, describing some item.
The structure of a random access file is:

• A good analogy to illustrate the differences between sequential files and random

access files are cassette music tapes and compact discs. To hear a song on a tape (a
sequential device), you must go past all songs prior to your selection. To hear a song
on a CD (a random access device), you simply go directly to the desired selection.
One difference here though is we require all of our random access records to be the
same length - not a good choice on CD’s!

Record 1
N bytes

Record 2
N bytes

Record 3
N bytes

.

.

.

Record Last
N bytes

 Database Access and Management 8-200

• To write and read random access files, we must know the record length in bytes.
Some variable types and their length in bytes are:

Type Length (Bytes)
Integer 2
Long 4
Single 4
Double 8
String 1 byte per character

So, for every variable that is in a file’s record, we need to add up the individual
variab le length’s to obtain the total record length. To ease this task, we introduce the
idea of user-defined variables.

User-Defined Variables

• Data used with random access files is most often stored in user-defined variables.

These data types group variables of different types into one assembly with a single,
user-defined type associated with the group. Such types significantly simplify the use
of random access files.

• The Visual Basic keyword Type signals the beginning of a user-defined type

declaration and the words End Type signal the end. An example best illustrates
establishing a user-defined variable. Say we want to use a variable that describes
people by their name, their city, their height, and their weight. We would define a
variable of Type Person as follows:

Type Person
 Name As String
 City As String
 Height As Integer
 Weight As Integer
End Type

These variable declarations go in the same code areas as normal variable declarations,
depending on desired scope. At this point, we have not reserved any storage for the
data. We have simply described to Visual Basic the layout of the data.

 Database Access and Management 8-201

• To create variables with this newly defined type, we employ the usual Dim statement.
For our Person example, we would use:

Dim Lou As Person
Dim John As Person
Dim Mary As Person

And now, we have three variables, each containing all the components of the variable
type Person. To refer to a single component within a user-defined type, we use the
dot-notation:

 VarName.Component

As an example, to obtain Lou’s Age , we use:

 Dim AgeValue as Integer

.

.
 AgeValue = Lou.Age

Note the similarity to dot-notation we’ve been using to set properties of various
Visual Basic tools.

Writing and Reading Random Access Files

• We look at writing and reading random access files using a user-defined variable.

For other variable types, refer to Visual Basic on-line help. To open a random access
file named RanFileName , use:

Open RanFileName For Random As #N Len = RecordLength

where N is an available file number and RecordLength is the length of each record.
Note you don’t have to specify an input or output mode. With random access files, as
long as they’re open, you can write or read to them.

• To close a random access file, use:

 Close N

 Database Access and Management 8-202

• As mentioned previously, the record length is the sum of the lengths of all variables
that make up a record. A problem arises with String type variables. You don’t know
their lengths ahead of time. To solve this problem, Visual Basic lets you declare
fixed lengths for strings. This allows you to determine record length. If we have a
string variable named StrExample we want to limit to 14 characters, we use the
declaration:

 Dim StrExample As String * 14

Recall each character in a string uses 1 byte, so the length of such a variable is 14
bytes.

• Recall our example user-defined variable type, Person. Let’s revisit it, now with

restricted string lengths:

Type Person
 Name As String * 40
 City As String * 35
 Height As Integer
 Weight As Integer
End Type

The record length for this variable type is 79 bytes (40 + 35 +2 + 2). To open a file
named PersonData as File #1, with such records, we would use the statement:

 Open PersonData For Random As #1 Len = 79

• The Get and Put statements are used to read from and write to random access files,

respectively. These statements read or write one record at a time. The syntax for
these statements is simple:

 Get #N, [RecordNumber], variable

 Put #N, [RecordNumber], variable

The Get statement reads from the file and stores data in the variable, whereas the
Put statement writes the contents of the specified variable to the file. In each case,
you can optionally specifiy the record number. If you do not specify a record
number, the next sequential position is used.

 Database Access and Management 8-203

• The variable argument in the Get and Put statements is usually a single user-defined
variable. Once read in, you obtain the component parts of this variable using dot-
notation. Prior to writing a user-defined variable to a random access file, you ‘load’
the component parts using the same dot-notation.

• There’s a lot more to using random access files; we’ve only looked at the basics.

Refer to your Visual Basic documentation and on- line help for further information.
In particular, you need to do a little cute programming when deleting records from a
random access file or when ‘resorting’ records.

 Database Access and Management 8-204

Using the Open and Save Common Dialog Boxes

• Note to both write and read sequential and random access files, we need a file name

for the Open statement. To ensure accuracy and completeness, it is suggested that
common dialog boxes (briefly studied in Class 4) be used to get this file name
information from the user. I’ll provide you with a couple of code segments that do
just that. Both segments assume you have a common dialog box on your form
named cdlFiles, with the CancelError property set equal to True . With this
property True, an error is generated by Visual Basic when the user presses the Cancel
button in the dialog box. By trapping this error, it allows an elegant exit from the
dialog box when canceling the operation is desired.

• The code segment to obtain a file name (MyFileName with default extension Ext)

for opening a file to read is:

Dim MyFileName As String, Ext As String
 .
 .
cdlFiles.Filter = "Files (*." + Ext + ")|*." + Ext
cdlFiles.DefaultExt = Ext
cdlFiles.DialogTitle = "Open File"
cdlFiles.Flags = cdlOFNFileMustExist + cdlOFNPathMustExist
On Error GoTo No_Open
cdlFiles.ShowOpen
MyFileName = cdlFiles.filename
 .
 .
Exit Sub
No_Open:
Resume ExitLIne
ExitLine:
Exit Sub
End Sub

A few words on what’s going on here. First, some properties are set such that only
files with Ext (a three letter string variable) extensions are displayed (Filter
property), the default extension is Ext (DefaultExt property), the title bar is set
(DialogTitle property), and some Flags are set to insure the file and path exist (see
Appendix II for more common dialog flags). Error trapping is enabled to trap the
Cancel button. Finally, the common dialog box is displayed and the filename
property returns with the desired name. That name is put in the string variable
MyFileName . What you do after obtaining the file name depends on what type of
file you are dealing with. For sequential files, you would open the file, read in the
information, and close the file. For random access files, we just open the file here.
Reading and writing to/from the file would be handled elsewhere in your coding.

 Database Access and Management 8-205

• The code segment to retrieve a file name (MyFileName) for writing a file is:

Dim MyFileName As String, Ext As String
 .
 .
cdlFiles.Filter = "Files (*." + Ext + ")|*." + Ext
cdlFiles.DefaultExt = Ext
cdlFiles.DialogTitle = "Save File"
cdlFiles.Flags = cdlOFNOverwritePrompt + cdlOFNPathMustExist
On Error GoTo No_Save
cdlFiles.ShowSave
MyFileName = cdlFiles.filename
 .
 .
Exit Sub
No_Save:
Resume ExitLine
ExitLine:
Exit Sub

 End Sub

Note this code is essentially the same used for an Open file name. The Flags
property differs slightly. The user is prompted if a previously saved file is selected
for overwrite. After obtaining a valid file name for a sequential file, we would open
the file for output, write the file, and close it. For a random access file, things are
trickier. If we want to save the file with the same name we opened it with, we simply
close the file. If the name is different, we must open a file (using a different number)
with the new name, write the complete random access file, then close it. Like I said,
it’s trickier.

• We use both of these code segments in the final example where we write and read
sequential files.

 Database Access and Management 8-206

Example 6-3

Note Editor - Reading and Saving Text Files

1. We now add the capability to read in and save the contents of the text box in the Note

Editor application from last class. Load that application. Add a common dialog box
to your form. Name it cdlFiles and set the CancelError property to True.

2. Modify the File menu (use the Menu Editor and the Insert button) in your

application, such that Open and Save options are included. The File menu should
now read:

File
 New
 Open
 Save

 Exit

Properties for these new menu items should be:

Caption Name Shortcut
&Open mnuFileOpen [None]
&Save mnuFileSave [None]

 Database Access and Management 8-207

3. The two new menu options need code. Attach this code to the mnuFileOpen_Click
event. This uses a modified ve rsion of the code segment seen previously. We assign
the extension ned to our note editor files.

Private Sub mnuFileOpen_Click()
cdlFiles.Filter = "Files (*.ned)|*.ned"
cdlFiles.DefaultExt = "ned"
cdlFiles.DialogTitle = "Open File"
cdlFiles.Flags = cdlOFNFileMustExist + cdlOFNPathMustExist
On Error GoTo No_Open
cdlFiles.ShowOpen
Open cdlFiles.filename For Input As #1
txtEdit.Text = Input(LOF(1), 1)
Close 1
Exit Sub
No_Open:
Resume ExitLine
ExitLine:
Exit Sub
End Sub

And for the mnuFileSave_Click procedure, use this code. Much of this can be copied

from the previous procedure.

Private Sub mnuFileSave_Click()
cdlFiles.Filter = "Files (*.ned)|*.ned"
cdlFiles.DefaultExt = "ned"
cdlFiles.DialogTitle = "Save File"
cdlFiles.Flags = cdlOFNOverwritePrompt +

cdlOFNPathMustExist
On Error GoTo No_Save
cdlFiles.ShowSave
Open cdlFiles.filename For Output As #1
Print #1, txtEdit.Text
Close 1
Exit Sub
No_Save:
Resume ExitLine
ExitLine:
Exit Sub
End Sub

 Database Access and Management 8-208

Each of these procedures is similar. The dialog box is opened and, if a filename is
returned, the file is read/written. If Cancel is pressed, no action is taken. These
routines can be used as templates for file operations in other applications.

4. Save your application. Run it and test the Open and Save functions. Note you have

to save a file before you can open one. Check for proper operation of the Cancel
button in the common dialog box.

5. If you have the time, there is one major improvement that should be made to this

application. Notice that, as written, only the text information is saved, not the
formatting (bold, italic, underline, size). Whenever a file is opened, the text is
displayed based on current settings. It would be nice to save formatting information
along with the text. This can be done, but it involves a fair amount of
reprogramming. Suggested steps:

A. Add lines to the mnuFileSave_Click routine that write the text box

properties FontBold, FontItalic, FontUnderline , and FontSize to a
separate sequential file. If your text file is named TxtFile.ned, I would
suggest naming the formatting file TxtFile.fmt. Use string functions to
put this name together. That is, chop the ned extension off the text file
name and tack on the fmt extension. You’ll need the Len() and Left()
functions.

B. Add lines to the mnuFileOpen_Click routine that read the text box

properties FontBold, FontItalic, FontUnderline, and FontSize from your
format sequential file. You’ll need to define some intermediate variables
here because Visual Basic won’t allow you to read properties directly
from a file. You’ll also need logic to set/reset any check marks in the
menu structure to correspond to these input properties.

C. Add lines to the mnuFileNew_Click procedure that, when the user

wants a new file, reset the text box properties FontBo ld, FontItalic,
FontUnderline, and FontSize to their default values and set/reset the
corresponding menu check marks.

D. Try out the modified application. Make sure every new option works as

it should.

Actually, there are ‘custom’ tools (we’ll look at custom tools in Class 10) that do what

we are trying to do with this modification, that is save text box contents with
formatting information. Such files are called ‘rich text files’ or rtf files. You may
have seen these before when transferring files from one word processor to another.

 Database Access and Management 8-209

6. Another thing you could try: Modify the message box that appears when you try to
Exit. Make it ask if you wish to save your file before exiting - provide Yes, No,
Cancel buttons. Program the code corresponding to each possible response. Use
calls to existing procedures, if possible.

 Database Access and Management 8-210

Exercise 6-1

Information Tracking

Design and develop an application that allows the user to enter (on a daily basis) some
piece of information that is to be saved for future review and reference. Examples could
be stock price, weight, or high temperature for the day. The input screen should display
the current date and an input box for the desired information. all values should be saved
on disk for future retrieval and update. A scroll bar should be available for reviewing all
previously-stored values.

My Solution:

Form:

Properties:

Form frmWeight:
 BorderStyle = 1 - Fixed Single
 Caption = Weight Program

VScrollBar vsbControl:
 Min = 1
 Value = 1

mnuFile

Label1
Label2

lblDate
txtWeight

vsbControl

lblFile cdlFiles

 Database Access and Management 8-211

TextBox txtWeight :
 Alignment = 2 - Center
 FontName = MS Sans Serif
 FontSize = 13.5

Label lblFile:
 BackColor = &H0000FFFF& (White)
 BorderStyle = 1 - Fixed Single
 Caption = New File
 FontName = MS Sans Serif
 FontBold = True
 FontItalic = True
 FontSize = 8.25

Label lblDate :
 Alignment = 2 - Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 13.5

Label Label2:
 Alignment = 2 - Center
 Caption = Weight
 FontName = MS Sans Serif
 FontSize = 13.5
 FontBold = True

Label Label1:
 Alignment = 2 - Center
 Caption = Date
 FontName = MS Sans Serif
 FontSize = 13.5
 FontBold = True

CommonDialog cdlFiles:
 CancelError = True

Menu mnuFile :
 Caption = &File

Menu mnuFileNew:
 Caption = &New

 Database Access and Management 8-212

Menu mnuFileOpen:
 Caption = &Open

Menu mnuFileSave:
 Caption = &Save

Menu mnuLine :
 Caption = -

Menu mnuFileExit:
 Caption = E&xit

Code:

General Declarations:

Option Explicit
Dim Dates(1000) As Date
Dim Weights(1000) As String
Dim NumWts As Integer

Init General Procedure:

Sub Init()
NumWts = 1: vsbControl.Value = 1: vsbControl.Max = 1
Dates(1) = Format(Now, "mm/dd/yy")
Weights(1) = ""
lblDate.Caption = Dates(1)
txtWeight.Text = Weights(1)
lblFile.Caption = "New File"
End Sub

Form Load Event:

Private Sub Form_Load()
frmWeight.Show
Call Init
End Sub

 Database Access and Management 8-213

mnufileExit Click Event:

Private Sub mnuFileExit_Click()
'Make sure user really wants to exit
Dim Response As Integer
Response = MsgBox("Are you sure you want to exit the weight
program?", vbYesNo + vbCritical + vbDefaultButton2, "Exit
Editor")
If Response = vbNo Then
 Exit Sub
Else
 End
End If
End Sub

mnuFileNew Click Event:

Private Sub mnuFileNew_Click()
'User wants new file
Dim Response As Integer
Response = MsgBox("Are you sure you want to start a new
file?", vbYesNo + vbQuestion, "New File")
If Response = vbNo Then
 Exit Sub
Else
 Call Init
End If
End Sub

mnuFileOpen Click Event:

Private Sub mnuFileOpen_Click()
Dim I As Integer
Dim Today As Date
Dim Response As Integer
Response = MsgBox("Are you sure you want to open a new
file?", vbYesNo + vbQuestion, "New File")
If Response = vbNo Then Exit Sub
cdlFiles.Filter = "Files (*.wgt)|*.wgt"
cdlFiles.DefaultExt = "wgt"
cdlFiles.DialogTitle = "Open File"
cdlFiles.Flags = cdlOFNFileMustExist + cdlOFNPathMustExist
On Error GoTo No_Open
cdlFiles.ShowOpen
Open cdlFiles.filename For Input As #1

 Database Access and Management 8-214

lblFile.Caption = cdlFiles.filename
Input #1, NumWts
For I = 1 To NumWts
 Input #1, Dates(I), Weights(I)
Next I
Close 1
Today = Format(Now, "mm/dd/yy")
If Today <> Dates(NumWts) Then
 NumWts = NumWts + 1
 Dates(NumWts) = Today
 Weights(NumWts) = ""
End If
vsbControl.Max = NumWts
vsbControl.Value = NumWts
lblDate.Caption = Dates(NumWts)
txtWeight.Text = Weights(NumWts)
Exit Sub
No_Open:
Resume ExitLine
ExitLine:
Exit Sub
End Sub

mnuFileSave Click Event:

Private Sub mnuFileSave_Click()
Dim I As Integer
cdlFiles.Filter = "Files (*.wgt)|*.wgt"
cdlFiles.DefaultExt = "wgt"
cdlFiles.DialogTitle = "Save File"
cdlFiles.Flags = cdlOFNOverwritePrompt +
cdlOFNPathMustExist
On Error GoTo No_Save
cdlFiles.ShowSave
Open cdlFiles.filename For Output As #1
lblFile.Caption = cdlFiles.filename
Write #1, NumWts
For I = 1 To NumWts
 Write #1, Dates(I), Weights(I)
Next I
Close 1
Exit Sub
No_Save:
Resume ExitLine
ExitLine:
Exit Sub

 Database Access and Management 8-215

End Sub

 Database Access and Management 8-216

txtWeight Change Event:

Private Sub txtWeight_Change()
Weights(vsbControl.Value) = txtWeight.Text
End Sub

txtWeight KeyPress Event:

Private Sub txtWeight_KeyPress(KeyAscii As Integer)
If KeyAscii >= vbKey0 And KeyAscii <= vbKey9 Then
 Exit Sub
Else
 KeyAscii = 0
End If
End Sub

vsbControl Change Event:

Private Sub vsbControl_Change()
lblDate.Caption = Dates(vsbControl.Value)
txtWeight.Text = Weights(vsbControl.Value)
txtWeight.SetFocus
End Sub

 Database Access and Management 8-217

Exercise 6-2

‘Recent Files’ Menu Option

Under the File menu on nearly every application (that opens files) is a list of the four
most recently-used files (usually right above the Exit option). Modify your information
tracker to implement such a feature. This is not trivial -- there are lots of things to
consider. For example, you’ll need a file to store the last four file names. You need to
open that file and initialize the corresponding menu entries when you run the application
-- you need to rewrite that file when you exit the application. You need logic to re-order
file names when a new file is opened or saved. You need logic to establish new menu
items as new files are used. You’ll need additional error-trapping in the open procedure,
in case a file selected from the menu no longer exists. Like I said, a lot to consider here.

My Solution:

These new menu items immediately precede the existing Exit menu item:

Menu mnuFileRecent:
 Caption = [Blank]
 Index = 0, 1, 2, 3 (a control array)
 Visible = False

Menu mnuFileBar:
 Caption = -
 Visible = False

Code Modifications (new code is bold and italicized):

General Declarations:

Option Explicit
Dim Dates(1000) As Date
Dim Weights(1000) As String
Dim NumWts As Integer
Dim NFiles As Integer, RFile(3) As String, MenuOpen As
Integer, FNmenu As String

 Database Access and Management 8-218

Rfile Update General Procedure:

Sub RFile_Update(NewFile As String)
‘Routine to place newest file name in proper order
‘in menu structure
Dim I As Integer, J As Integer, InList As Integer
'Convert name to all upper case letters
NewFile = UCase(NewFile)
'See if file is already in list
InList = 0
For I = 0 To NFiles - 1
 If RFile(I) = NewFile Then InList = 1: Exit For
Next I
'If file not in list, increment number of items with
'a maximum of 4. Then, move others down, then place
'new name at top of list
If InList = 0 Then
 NFiles = NFiles + 1
 If NFiles > 4 Then
 NFiles = 4
 Else
 If NFiles = 1 Then mnuFileBar.Visible = True
 mnuFileRecent(NFiles - 1).Visible = True
 End If
 If NFiles <> 1 Then
 For I = NFiles - 1 To 1 Step -1
 RFile(I) = RFile(I - 1)
 Next I
 End If
 RFile(0) = NewFile
Else
'If file already in list, put name at top and shift
'others accordingly
 If I <> 0 Then
 For J = I - 1 To 0 Step -1
 RFile(J + 1) = RFile(J)
 Next J
 RFile(0) = NewFile
 End If
End If
'Set menu captions according to new list
For I = 0 To NFiles - 1
 mnuFileRecent(I).Caption = "&" + Format(I + 1, "# ") +
RFile(I)
Next I
End Sub

 Database Access and Management 8-219

Form Load Event:

Private Sub Form_Load()
Dim I As Integer
'Open .ini file and load in recent file names
Open "weight.ini" For Input As #1
NFiles = 0: MenuOpen = 0
For I = 0 To 3
 Input #1, RFile(I)
 If RFile(I) <> "" Then
 NFiles = NFiles + 1
 mnuFileBar.Visible = True
 mnuFileRecent(I).Caption = "&" + Format(I + 1, "# ") +
RFile(I)
 mnuFileRecent(I).Visible = True
 End If
Next I
Close 1
frmWeight.Show
Call Init
End Sub

mnuFileExit Click Event:

Private Sub mnuFileExit_Click()
'Make sure user really wants to exit
Dim Response As Integer, I As Integer
Response = MsgBox("Are you sure you want to exit the weight
program?", vbYesNo + vbCritical + vbDefaultButton2, "Exit
Editor")
If Response = vbNo Then
 Exit Sub
Else
 'Write out .ini file when done
 Open "weight.ini" For Output As #1
 For I = 0 To 3
 Write #1, RFile(I)
 Next I
 Close 1
 End
End If
End Sub

 Database Access and Management 8-220

mnuFileOpen Click Event:

Private Sub mnuFileOpen_Click()
Dim I As Integer
Dim Today As Date
Dim Response As Integer
Dim File_To_Open As String
Response = MsgBox("Are you sure you want to open a new
file?", vbYesNo + vbQuestion, "New File")
If Response = vbNo Then Exit Sub
If MenuOpen = 0 Then
 cdlFiles.Filter = "Files (*.wgt)|*.wgt"
 cdlFiles.DefaultExt = "wgt"
 cdlFiles.DialogTitle = "Open File"
 cdlFiles.Flags = cdlOFNFileMustExist +
cdlOFNPathMustExist
 On Error GoTo No_Open
 cdlFiles.ShowOpen
 File_To_Open = cdlFiles.filename
Else
 File_To_Open = FNmenu
End If
MenuOpen = 0
On Error GoTo BadOpen
Open File_To_Open For Input As #1
lblFile.Caption = File_To_Open
Input #1, NumWts
For I = 1 To NumWts
 Input #1, Dates(I), Weights(I)
Next I
Close 1
Call RFile_Update(File_To_Open)
Today = Format(Now, "mm/dd/yy")
If Today <> Dates(NumWts) Then
 NumWts = NumWts + 1
 Dates(NumWts) = Today
 Weights(NumWts) = ""
End If
vsbControl.Max = NumWts
vsbControl.Value = NumWts
lblDate.Caption = Dates(NumWts)
txtWeight.Text = Weights(NumWts)
Exit Sub
No_Open:
Resume ExitLine
ExitLine:
Exit Sub

 Database Access and Management 8-221

BadOpen:
Select Case MsgBox(Error(Err.Number), vbCritical +
vbRetryCancel, "File Open Error")
Case vbRetry
 Resume
Case vbCancel
 Resume No_Open
End Select
End Sub

mnuFileRecent Click Event:

Private Sub mnuFileRecent_Click(Index As Integer)
 FNmenu = RFile(Index): MenuOpen = 1
 Call mnuFileOpen_Click
End Sub

mnuFileSave Click Event:

Private Sub mnuFileSave_Click()
Dim I As Integer
cdlFiles.Filter = "Files (*.wgt)|*.wgt"
cdlFiles.DefaultExt = "wgt"
cdlFiles.DialogTitle = "Save File"
cdlFiles.Flags = cdlOFNOverwritePrompt +
cdlOFNPathMustExist
On Error GoTo No_Save
cdlFiles.ShowSave
Open cdlFiles.filename For Output As #1
lblFile.Caption = cdlFiles.filename
Write #1, NumWts
For I = 1 To NumWts
 Write #1, Dates(I), Weights(I)
Next I
Close 1
Call RFile_Update(cdlFiles.filename)
Exit Sub
No_Save:
Resume ExitLine
ExitLine:
Exit Sub
End Sub

 Database Access and Management 8-222

This page intentionally not left blank.

Learn Visual Basic 6.0

7. Graphics Techniques with Visual Basic

Review and Preview

• In past classes, we've used some graphics tools: line tools, shape tools, image boxes,

and picture boxes. In this class, we extend our graphics programming skills to learn
how to draw lines and circles, do drag and drop, perform simple animation, and study
some basic plotting routines.

Graphics Methods

• Graphics methods apply to forms and picture boxes (remember a picture box is like

a form within a form). With these methods, we can draw lines, boxes, and circles.
Before discussing the commands that actually perform the graphics drawing, though,
we need to look at two other topics: screen management and screen coordinates.

• In single program environments (DOS, for example), when something is drawn on the

screen, it stays there. Windows is a multi- tasking environment. If you switch from a
Visual Basic application to some other application, your Visual Basic form may
become partially obscured. When you return to your Visual Basic application, you

 Database Access and Management 8-223

would like the form to appear like it did before being covered. All controls are
automatically restored to the screen. Graphics methods drawings may or may not be
restored - we need them to be, though. To accomplish this, we must use proper
screen management.

• The simplest way to maintain graphics is to set the form or picture box's

AutoRedraw property to True. In this case, Visual Basic always maintains a copy of
graphics output in memory (creates persistent graphics). Another way to maintain
drawn graphics is (with AutoRedraw set to False) to put all graphics commands in the
form or picture box's Paint event. This event is called whenever an obscured object
becomes unobscured. There are advantages and disadvantages to both approaches
(beyond the scope of discussion here). For now, we will assume our forms won't get
obscured and, hence, beg off the question of persistent graphics and using the
AutoRedraw property and/or Paint event.

 Database Access and Management 8-224

• All graphics methods described here will use the default coordinate system:

Note the x (horizontal) coordinate runs from left to right, starting at 0 and extending
to ScaleWidth - 1. The y (vertical) coordinate goes from top to bottom, starting at 0
and ending at ScaleHeight - 1. Points in this coordinate system will always be
referred to by a Cartesian pair, (x, y). Later, we will see how we can use any
coordinate system we want.

ScaleWidth and ScaleHeight are object properties representing the “graphics”
dimensions of an object. Due to border space, they are not the same as the Width and
Height properties. For all measurements in twips (default coordinates), ScaleWidth is
less than Width and ScaleHeight is less than Height. That is, we can’t draw to all
points on the form.

• PSet Method:

To set a single point in a graphic object (form or picture box) to a particular color, use
the PSet method. We usually do this to designate a starting point for other graphics
methods. The syntax is:

ObjectName.PSet (x, y), Color

where ObjectName is the object name, (x, y) is the selected point, and Color is the
point color (discussed in the next section). If the ObjectName is omitted, the current
form is assumed to be the object. If Colo r is omitted, the object's ForeColor property
establishes the color. PSet is usually used to initialize some further drawing process.

ScaleWidth
(0, 0)

Scale
Height

y

x

 Database Access and Management 8-225

• Pset Method Example:

This form has a ScaleWidth of 3975 (Width 4095) and a ScaleHeight of 2400 (Height
2805). The command:

PSet (1000, 500)

will have the result:

The marked point (in color ForeColor, black in this case) is pointed to by the
Cartesian coordinate (1000, 500) - this marking, of course, does not appear on the
form. If you want to try this example, and the other graphic methods, put the code in
the Form_Click event. Run the project and click on the form to see the results
(necessary because of the AutoRedraw problem).

• CurrentX and CurrentY:

After each drawing operation, the coordinate of the last point drawn to is maintained
in two Visual Basic system variables, CurrentX and CurrentY. This way we
always know where the next drawing operation will begin. We can also change the
values of these variables to move this last point. For example, the code:

CurrentX = 1000
CurrentY = 500

is equivalent to:

PSet(1000, 500)

(1000, 500)

4095

3975

2805
2400

 Database Access and Management 8-226

• Line Method:

The Line method is very versatile. We can use it to draw line segments, boxes, and
filled boxes. To draw a line, the syntax is:

ObjectName.Line (x1, y1) - (x2, y2), Color

where ObjectName is the object name, (x1, y1) the starting coordinate, (x2, y2) the
ending coordinate, and Color the line color. Like PSet, if ObjectName is omitted,
drawing is done to the current form and, if Color is omitted, the object’s ForeColor
property is used.

To draw a line from (CurrentX, CurrentY) to (x2, y2), use:

ObjectName.Line - (x2, y2), Color

There is no need to specify the start point since CurrentX and CurrentY are known.

To draw a box bounded by opposite corners (x1, y1) and (x2, y2), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, B

and to fill that box (using the current FillPattern), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, BF

 Database Access and Management 8-227

• Line Method Examples:

Using the previous example form, the commands:

Line (1000, 500) - (3000, 2000)
Line - (3000, 1000)

draws these line segments:

The command:

Line (1000, 500) - (3000, 2000), , B

draws this box (note two commas after the second coordinate - no color is specified):

(3000, 2000)

(3000,2000)

(1000, 500)

(1000, 500)

(3000, 1000)

 Database Access and Management 8-228

• Circle Method:

The Circle method can be used to draw circles, ellipses, arcs, and pie slices. We'll
only look at drawing circles - look at on- line help for other drawing modes. The
syntax is:

ObjectName.Circle (x, y), r, Color

This command will draw a circle with center (x, y) and radius r, using Color.

• Circle Example:

With the same example form, the command:

Circle (2000, 1000), 800

produces the result:

• Print Method:

Another method used to 'draw' to a form or picture box is the Print method. Yes, for
these objects, printed text is drawn to the form. The syntax is:

ObjectName.Print [information to print]

Here the printed information can be variables, text, or some combination. If no object
name is provided, printing is to the current form.

Information will print beginning at the object's CurrentX and CurrentY value. The
color used is specified by the object's ForeColor property and the font is specified by
the object's Font characteristics.

(2000, 1000)

800

 Database Access and Management 8-229

• Print Method Example:

The code (can’t be in the Form_Load procedure because of that pesky AutoRedraw
property):

CurrentX=200
CurrentY=200
Print "Here is the line of text"

will produce this result (I’ve used a large font):

• Cls Method:

To clear the graphics drawn to an object, use the Cls method. The syntax is:

ObjectName.Cls

If no object name is given, the current form is cleared. Recall Cls only clears the lowest

of the three display layers. This is where graphics methods draw.

• For each graphic method, line widths, fill patterns, and other graphics features can be

controlled via other object properties. Consult on- line help for further information.

 Database Access and Management 8-230

Using Colors

• Notice that all the graphics methods can use a Color argument. If that argument is

omitted, the ForeColor property is used. Color is actually a hexadecimal (long
integer) representation of color - look in the Properties Window at some of the values
of color for various object properties. So, one way to get color values is to cut and
paste values from the Properties Window. There are other ways, though.

• Symbolic Constants:

Visual Basic offers eight symbolic constants (see Appendix I) to represent some
basic colors. Any of these constants can be used as a Color argument.

Constant Value Color
vbBlack 0x0 Black
vbRed 0xFF Red
vbGreen 0xFF00 Green
vbYellow 0xFFFF Yellow
vbBlue 0xFF0000 Blue
vbMagenta 0xFF00FF Magenta
vbCyan 0xFFFF00 Cyan
vbWhite 0xFFFFFF White

• QBColor Function:

For Microsoft QBasic, GW -Basic and QuickBasic programmers, Visual Basic
replicates the sixteen most used colors with the QBColor function. The color is
specified by QBColor(Index), where the colors corresponding to the Index are:

Index Color Index Color
0 Black 8 Gray
1 Blue 9 Light blue
2 Green 10 Light green
3 Cyan 11 Light cyan
4 Red 12 Light red
5 Magenta 13 Light magenta
6 Brown 14 Yellow
7 White 15 Light (bright) white

 Database Access and Management 8-231

• RGB Function:

The RGB function can be used to produce one of 224 (over 16 million) colors! The
syntax for using RGB to specify the color property is:

RGB(Red, Green, Blue)

where Red, Green, and Blue are integer measures of intensity of the corresponding
primary colors. These measures can range from 0 (least intensity) to 255 (greatest
intensity). For example, RGB(255, 255, 0) will produce yellow.

• Any of these four representations of color can be used anytime your Visual Basic

code requires a color value.

• Color Examples:

frmExample.BackColor = vbGreen
picExample.FillColor = QBColor(3)
lblExample.ForeColor = RGB(100, 100, 100)

 Database Access and Management 8-232

Mouse Events

• Related to graphics methods are mouse events. The mouse is a primary interface to

performing graphics in Visual Basic. We've already used the mouse to Click and
DblClick on objects. Here, we see how to recognize other mouse events to allow
drawing in forms and picture boxes.

• MouseDown Event:

The MouseDown event procedure is triggered whenever a mouse button is pressed
while the mouse cursor is over an object. The form of this procedure is:

Sub ObjectName_MouseDown(Button As Integer, Shift As Integer, X As Single,
Y As Single)
 .
 .
End Sub

The arguments are:

Button Specifies which mouse button was pressed.
Shift Specifies state of Shift, Ctrl, and Alt keys.
X, Y Coordinate of mouse cursor when button was pressed.

Values for the Button argument are:

Symbolic Constant Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.

Only one button press can be detected by the MouseDown event. Values for the Shift
argument are:

Symbolic Constant Value Description
vbShiftMask 1 Shift key is pressed.
vbCtrlMask 2 Ctrl key is pressed.
vbAltMask 4 Alt key is pressed.

The Shift argument can represent multiple key presses. For example, if Shift = 5
(vbShiftMask + vbAltMask), both the Shift and Alt keys are being pressed when the
MouseDown event occurs.

 Database Access and Management 8-233

• MouseUp Event:

The MouseUp event is the opposite of the MouseDown event. It is triggered
whenever a previously pressed mouse button is released. The procedure outline is:

Sub ObjectName_MouseUp(Button As Integer, Shift As Integer, X As Single, Y
As Single)
 .
 .
End Sub

The arguments are:

Button Specifies which mouse button was released.
Shift Specifies state of Shift, Ctrl, and Alt keys.
X, Y Coordinate of mouse cursor when button was released.

The Button and Shift constants are the same as those for the MouseDown event.

• MouseMove Event:

The MouseMove event is continuously triggered whenever the mouse is being
moved. The procedure outline is:

Sub ObjectName_MouseMove(Button As Integer, Shift As Integer, X As Single,
Y As Single)
 .
 .
End Sub

The arguments are:

Button Specifies which mouse button(s), if any, are pressed.
Shift Specifies state of Shift, Ctrl, and Alt keys
X, Y Current coordinate of mouse cursor

 Database Access and Management 8-234

The Button and Shift constants are the same as those for the MouseDown event. A
difference here is that the Button argument can also represent multiple button presses
or no press at all. For example, if Button = 0, no button is pressed as the mouse is
moved. If Button = 3 (vbLeftButton + vbRightButton), both the left and right buttons
are pressed while the mouse is being moved.

 Database Access and Management 8-235

Example 7-1

Blackboard

1. Start a new application. Here, we will build a blackboard we can scribble on with the

mouse (using colored ‘chalk’).

2. Set up a simple menu structure for your application using the Menu Editor. The

menu should be:

File
 New

 Exit

Properties for these menu items should be:

Caption Name
&File mnuFile
&New mnuFileNew
- mnuFileSep
E&xit mnuFileExit

3. Put a picture box and a single label box (will be used to set color) on the form. Set

the following properties:

Form1 :
 BorderStyle 1-Fixed Single
 Caption Blackboard
 Name frmDraw

Picture1:
 Name picDraw

Label1 :
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblColor

 Database Access and Management 8-236

The form should look something like this:

4. Now, copy and paste the label box (create a control array named lblColor) until there

are eight boxes on the form, lined up vertically under the original box. When done,
the form will look just as above, except there will be eight label boxes.

5. Type these lines in the general declarations area. DrawOn will be used to indicate

whether you are drawing or not.

Option Explicit
Dim DrawOn As Boolean

 Database Access and Management 8-237

6. Attach code to each procedure.

The Form_Load procedure loads colors into each of the label boxes to allow choice of

drawing color. It also sets the BackColor to black and the ForeColor to Bright
White.

Private Sub Form_Load()
'Load drawing colors into control array
Dim I As Integer
For I = 0 To 7
 lblColor(I).BackColor = QBColor(I + 8)
Next I
picDraw.ForeColor = QBColor(15) ‘ Bright White
picDraw.BackColor = QBColor(0) ‘ Black
End Sub

In the mnuFileNew_Click procedure, we check to see if the user really wants to start

over. If so, the picture box is cleared with the Cls method.

Private Sub mnuFileNew_Click()
'Make sure user wants to start over
Dim Response As Integer
Response = MsgBox("Are you sure you want to start a new

drawing?", vbYesNo + vbQuestion, "New Drawing")
If Response = vbYes Then picDraw.Cls
End Sub

In the mnuFileExit_Click procedure, make sure the user really wants to stop the

application.

Private Sub mnuFileExit_Click()
'Make sure user wants to quit
Dim Response As Integer
Response = MsgBox("Are you sure you want to exit the

Blackboard?", vbYesNo + vbCritical + vbDefaultButton2,
"Exit Blackboard")

If Response = vbYes Then End
End Sub

 Database Access and Management 8-238

When the left mouse button is clicked, drawing is initialized at the mouse cursor location
in the picDraw_MouseDown procedure.

Private Sub picDraw_MouseDown(Button As Integer, Shift As

Integer, X As Single, Y As Single)
'Drawing begins
If Button = vbLeftButton Then
DrawOn = True
 picDraw.CurrentX = X
 picDraw.CurrentY = Y
End If
End Sub

When drawing ends, the DrawOn switch is toggled in picDraw_MouseUp.

Private Sub picDraw_MouseUp(Button As Integer, Shift As

Integer, X As Single, Y As Single)
'Drawing ends
If Button = vbLeftButton Then DrawOn = False
End Sub

While mouse is being moved and DrawOn is True, draw lines in current color in the

picDraw_MouseMove procedure.

Private Sub picDraw_MouseMove(Button As Integer, Shift As

Integer, X As Single, Y As Single)
'Drawing continues
If DrawOn Then picDraw.Line -(X, Y), picDraw.ForeColor
End Sub

Finally, when a label box is clicked, the drawing color is changed in the lblColor_Click

procedure.

Private Sub lblColor_Click(Index As Integer)
'Make audible tone and reset drawing color
Beep
picDraw.ForeColor = lblColor(Index).BackColor
End Sub

7. Run the application. Click on the label boxes to change the color you draw with.

Fun, huh? Save the application.

 Database Access and Management 8-239

8. A challenge for those who like challenges. Add Open and Save options that allow
you to load and save pictures you draw. Suggested steps (may take a while - I
suggest trying it outside of class):

A. Change the picture box property AutoRedraw to True. This is necessary

to save pictures. You will notice the drawing process slows down to
accommodate persistent graphics.

B. Add the Open option. Write code that brings up a common dialog box to

get a filename to open (will be a .bmp file) and put that picture in the
picDraw.Picture property using the LoadPicture function.

C. Add the Save option. Again, add code to use a common dialog box to get

a proper filename. Use the SavePicture method to save the Image
property of the picDraw object. We save the Image property, not the
Picture property, since this is where Visual Basic maintains the persistent
graphics.

D. One last change. The Cls method in the mnuFileNew_Click code will not

clear a picture loaded in via the Open code (has to do with using
AutoRedraw). So, replace the Cls statement with code that manually
erases the picture box. I'd suggest using the BF option of the Line method
to simply fill the space with a box set equal to the BackColor (white). I
didn't say this would be easy.

 Database Access and Management 8-240

Drag and Drop Events

• Related to mouse events are drag and drop events. This is the process of using the

mouse to pick up some object on a form and move it to another location. We use
drag and drop all the time in Visual Basic design mode to locate objects on our
application form.

• Drag and drop allows you to design a simple user interface where tasks can be

performed without commands, menus, or buttons. Drag and drop is very intuitive
and, at times, faster than other methods. Examples include dragging a file to another
folder or dragging a document to a printer queue.

• Any Visual Basic object can be dragged and dropped, but we usually use picture and

image boxes. The item being dragged is called the source object. The item being
dropped on (if there is any) is called the target.

• Object Drag Properties:

If an object is to be dragged, two properties must be set:

DragMode Enables dragging of an object (turns off ability to
receive Click or MouseDown events). Usually use 1-
Automatic (vbAutomatic).

DragIcon Specifies icon to display as object is being dragged.

As an object is being dragged, the object itself does not move, only the DragIcon. To
move the object, some additional code using the Move method (discussed in a bit)
must be used.

• DragDrop Event:

The DragDrop event is triggered whenever the source object is dropped on the target

object. The procedure form is:

Sub ObjectName_DragDrop(Source As Control, X As Single, Y As Single)
 .
 .
End Sub

The arguments are:

Source Object being dragged.
X, Y Current mouse cursor coordinates.

 Database Access and Management 8-241

• DragOver Event:

The DragOver event is triggered when the source object is dragged over
another object. Its procedure form is:

Private Sub ObjectName_DragOver(Source As Control, X As Single, Y
As Single, State As Integer)
 .
 .
End Sub

The first three arguments are the same as those for the DragDrop event. The State
argument tells the object where the source is. Its values are 0-Entering (vbEnter), 1-
Leaving (vbLeave), 2-Over (vbOver).

• Drag and Drop Methods:

Drag Starts or stops manual dragging (won't be addressed here -
we use Automatic dragging)

Move Used to move the source object, if desired.

Example

To move the source object to the location specified by coordinates X and Y, use:

Source.Move X, Y

The best way to illustrate the use of drag and drop is by example.

 Database Access and Management 8-242

Example 7-2

Letter Disposal

1. We'll build a simple application of drag and drop where unneeded correspondence is

dragged and dropped into a trash can. Start a new application. Place four image
boxes and a single command button on the form. Set these properties:

Form1 :
 BackColor White
 BorderStyle 1-Fixed Single
 Caption Letter Disposal
 Name frmDispose

Command1 :
 Caption &Reset
 Name cmdReset

Image1:
 Name imgCan
 Picture trash01.ico
 Stretch True

Image2:
 Name imgTrash
 Picture trash01.ico
 Visible False

Image3:
 Name imgBurn
 Picture trash02b.ico
 Visible False

Image4:
 DragIcon drag1pg.ico
 DragMode 1-Automatic
 Name imgLetter
 Picture mail06.ico
 Stretch True

 Database Access and Management 8-243

The form will look like this:

Some explanation about the images on this form is needed. The letter image is the

control to be dragged and the trash can (at Image1 location) is where it will be
dragged to. The additional images (the other trash can and burning can) are not
visible at run-time and are used to change the state of the trash can, when needed.
We could load these images from disk files at run-time, but it is much quicker to
place them on the form and hide them, then use them when required.

2. The code here is minimal. The Form_DragDrop event simply moves the letter

image if it is dropped on the form.

Private Sub Form_DragDrop(Source As Control, X As Single, Y

As Single)
Source.Move X, Y
End Sub

3. The imgCan_DragDrop event changes the trash can to a burning pyre if the letter is

dropped on it.

Private Sub imgCan_DragDrop(Index As Integer, Source As

Control, X As Single, Y As Single)
'Burn mail and make it disappear
imgCan.Picture = imgBurn.Picture
Source.Visible = False
End Sub

Image1

Image2

Image4

Image3

 Database Access and Management 8-244

4. The cmdReset_Click event returns things to their original state.

Private Sub cmdReset_Click()
'Reset to trash can picture
imgCan.Picture = imgTrash.Picture
imgLetter.Visible = True
End Sub

5. Save and run the application. Notice how only the drag icon moves. Notice the letter

moves once it is dropped. Note, too, that the letter can be dropped anywhere. The
fire appears only when it is dropped in the trash.

 Database Access and Management 8-245

Timer Tool and Delays

• Many times, especially in using graphics, we want to repeat certain operations at

regular intervals. The timer tool allows such repetition. The timer tool does not
appear on the form while the application is running.

• Timer tools work in the background, only being invoked at time intervals you specify.

This is multi- tasking - more than one thing is happening at a time.

• Timer Properties:

Enabled Used to turn the timer on and off. When on, it
continues to operate until the Enabled property is set to
False.

Interval Number of milliseconds between each invocation of the
Timer Event.

• Timer Events:

The timer tool only has one event, Timer. It has the form:

Sub TimerName_Timer()
 .
 .
End Sub

This is where you put code you want repeated every Interval seconds.

• Timer Example:

To make the computer beep every second, no matter wha t else is going on, you add a
timer tool (named timExample) to the form and set the Interval property to 1000.
That timer tool's event procedure is then:

Sub timExample_Timer()
Beep
End Sub

• In complicated applications, many timer tools are often used to control numerous

simultaneous operations. With experience, you will learn the benefits and advantages
of using timer tools.

 Database Access and Management 8-246

• Simple Delays:

If you just want to use a simple delay in your Visual Basic application, you might
want to consider the Timer function. This is not related to the Timer tool. The
Timer function simply returns the number of seconds elapsed since midnight.

To use the Timer function for a delay of Delay seconds (the Timer function seems to
be accurate to about 0.1 seconds, at best), use this code segment:

Dim TimeNow As Single
 .
 .
TimeNow = Timer
Do While Timer - TimeNow < Delay
Loop

One drawback to this kind of coding is that the application cannot be interrupted
while in the Do loop. So, keep delays to small values.

Animation Techniques

• One of the more fun things to do with Visual Basic programs is to create animated

graphics. We'll look at a few simple animation techniques here. I'm sure you'll
come up with other ideas for animating your application.

• One of the simplest animation effects is achieved by toggling between two images.

For example, you may have a picture of a stoplight with a red light. By quickly
changing this picture to one with a green light, we achieve a dynamic effect -
animation. Picture boxes and image boxes are used to achieve this effect.

• Another approach to animation is to rotate through several pictures - each a slight

change in the previous picture - to obtain a longer animation. This is the principle
motion pictures are based on - pictures are flashed by us at 24 frames per second and
our eyes are tricked into believing things are smoothly moving. Control arrays are
usually used to achieve this type of animation.

• More elaborate effects can be achieved by moving an image while, at the same, time

changing the displayed picture. Effects such as a little guy walking across the screen
are easily achieved. An object is moved using the Move method. You can do both
absolute and relative motion (using an object's Left and Top properties).

 Database Access and Management 8-247

For example, to move a picture box named picExample to the coordinate (100, 100),
use:

picExample.Move 100, 100

To move it 20 twips to the right and 50 twips down, use:

picExample.Move picExample.Left + 20, picExample.Top + 50

Quick Example: Simple Animation

1. Start a new application. Place three image boxes on the form. Set the following

properties:

Image1:
 Picture mail02a.ico
 Visible False

Image2:
 Picture mail02b.ico
 Visible False

Image3:
 Picture mail02a.ico
 Stretch True

Make Image3 larger than default size, using the ‘handles.’

A few words about what we're going to do. Image1 holds a closed envelope, while
Image2 holds an opened one. These images are not visible - they will be selected for
display in Image3 (which is visible) as Image3 is clicked. (This is similar to hiding
things in the drag and drop example.) It will seem the envelope is being torn opened,
then repaired.

2. Attach the following code to the Image3_Click procedure.

Private Sub Image3_Click()
Static PicNum As Integer
If PicNum = 0 Then
 Image3.Picture = Image2.Picture : PicNum = 1
Else
 Image3.Picture = Image1.Picture : PicNum = 0
End If
End Sub

 Database Access and Management 8-248

When the envelope is clicked, the image displayed in Image3 is toggled (based on the
value of the static variable PicNum).

3. Run and save the application.

Quick Example: Animation with the Timer Tool

1. In this example, we cycle through four different images using timer controlled

animation. Start a new application. Put two image boxes, a timer tool, and a
command button on the form. Set these properties:

Image1:
 Picture trffc01.ico
 Visible False

Now copy and paste this image box three times, so there are four elements in the

Image1 control array. Set the Picture properties of the other three elements to:

Image1(1) :
 Picture trffc02.ico

Image1(2) :
 Picture trffc03.ico

Image1(3) :
 Picture trffc04.ico

Image2:
 Picture trffc01.ico
 Stretch True

Command1 :
 Caption Start/Stop

Timer1 :
 Enabled False
 Interval 200

 Database Access and Management 8-249

The form should resemble this:

2. Attach this code to the Command1_Click procedure.

Private Sub Command1_Click()
Timer1.Enabled = Not (Timer1.Enabled)
End Sub

The timer is turned on or off each time this code is invoked.

3. Attach this code to the Timer1_Timer procedure.

Private Sub Timer1_Timer()
Static PicNum As Integer
PicNum = PicNum + 1
If PicNum > 3 Then PicNum = 0
Image2.Picture = Image1(PicNum).Picture
End Sub

This code changes the image displayed in the Image2 box, using the static variable

PicNum to keep track of what picture is next.

4. Save and run the application. Note how the timer tool and the four small icons do not

appear on the form at run-time. The traffic sign appears to be spinning, with the
display updated by the timer tool every 0.2 seconds (200 milliseconds).

5. You can make the sign ‘walk off’ one side of the screen by adding this line after

setting the Picture property:

Image2.Move Image2.Left + 150

 Database Access and Management 8-250

Random Numbers (Revisited) and Games

• Another fun thing to do with Visual Basic is to create games. You can write games

that you play against the computer or against another opponent.

• To introduce chaos and randomness in games, we use random numbers . Random

numbers are used to have the computer roll a die, spin a roulette wheel, deal a deck of
cards, and draw bingo numbers. Visual Basic develops random numbers using its
built- in random number generator.

• Randomize Statement:

The random number generator in Visual Basic must be seeded. A Seed value
initializes the generator. The Randomize statement is used to do this:

Randomize Seed

If you use the same Seed each time you run your application, the same sequence of
random numbers will be generated. To insure you get different numbers every time
you use your application (preferred for games), use the Timer function to seed the
generator:

Randomize Timer

With this, you will always obtain a different sequence of random numbers, unless you
happen to run the application at exactly the same time each day.

• Rnd Function:

The Visual Basic function Rnd returns a single precision, random number between 0
and 1 (actually greater than or equal to 0 and less than 1). To produce random
integers (I) between Imin and Imax (again, what we usually do in games), use the
formula:

I = Int((Imax - Imin + 1) * Rnd) + Imin

• Rnd Example:

To roll a six-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

 Database Access and Management 8-251

Randomly Sorting N Integers

• In many games, we have the need to randomly sort a number of intege rs. For

example, to shuffle a deck of cards, we sort the integers from 1 to 52. To randomly
sort the state names in a states/capitals game, we would randomize the values from 1
to 50.

• Randomly sorting N integers is a common task. Here is a ‘self-documenting’ general

procedure that does that task. Calling arguments for the procedure are N (the largest
integer to be sorted) and an array, NArray, dimensioned to N elements. After calling
the routine N_Integers , the N randomly sorted integers are returned in NArray. Note
the procedure randomizes the integers from 1 to N, not 0 to N - the zeroth array
element is ignored.

Private Sub N_Integers(N As Integer, Narray() As Integer)
'Randomly sorts N integers and puts results in Narray
Dim I As Integer, J As Integer, T As Integer
'Order all elements initially
For I = 1 To N: Narray(I) = I: Next I
'J is number of integers remaining
For J = N to 2 Step -1
 I = Int(Rnd * J) + 1
 T = Narray(J)
 Narray(J) = Narray(I)
 Narray(I) = T
Next J
End Sub

 Database Access and Management 8-252

Example 7-3

One-Buttoned Bandit

1. Start a new application. In this example, we will build a computer version of a slot

machine. We'll use random numbers and timers to display three random pictures.
Certain combinations of pictures win you points. Place two image boxes, two label
boxes, and two command buttons on the form.

2. Set the following properties:

Form1 :
 BorderStyle 1-Fixed Single
 Caption One-Buttoned Bandit
 Name frmBandit

Command1 :
 Caption &Spin It
 Default True
 Name cmdSpin

Command2 :
 Caption E&xit
 Name cmdExit

Timer1 :
 Enabled False
 Interval 100
 Name timSpin

Timer2 :
 Enabled False
 Interval 2000
 Name timDone

Label1 :
 Caption Bankroll
 FontBold True
 FontItalic True
 FontSize 14

 Database Access and Management 8-253

Label2 :
 Alignment 2-Center
 AutoSize True
 BorderStyle 1-Fixed Single
 Caption 100
 FontBold True
 FontSize 14
 Name lblBank

Image1:
 Name imgChoice
 Picture earth.ico
 Visible False

Copy and paste this image box three times, creating a control element

(imgChoice) with four elements total. Set the Picture property of the
other three boxes.

Image1(1) :
 Picture snow.ico

Image1(2) :
 Picture misc44.ico

Image1(3) :
 Picture face03.ico

Image2:
 BorderStyle 1-Fixed single
 Name imgBandit
 Stretch True

Copy and paste this image box two times, creating a three element control array

(Image2). You don't have to change any properties of the newly created
image boxes.

 Database Access and Management 8-254

When done, the form should look something like this:

A few words on what we're doing. We will randomly fill the three large image
boxes by choosing from the four choices in the non-visible image boxes. One
timer (timSpin) will be used to flash pictures in the boxes. One timer
(timDone) will be used to time the entire process.

3. Type the following lines in the general declarations area of your form's code

window. Bankroll is your winnings.

Option Explicit
Dim Bankroll As Integer

4. Attach this code to the Form_Load procedure.

Private Sub Form_Load()
Randomize Timer
Bankroll = Val(lblBank.Caption)
End Sub

Here, we seed the random number generator and initialize your bankroll.

5. Attach the following code to the cmdExit_Click event.

Private Sub cmdExit_Click()
MsgBox "You ended up with" + Str(Bankroll) + " points.",

vbOKOnly, "Game Over"
End
End Sub

When you exit, your final earnings are displayed in a message box.

Image1
control
array
(not

visible)

Image2
control
array

(visible)

 Database Access and Management 8-255

6. Attach this code to the cmdSpin_Click event.

Private Sub cmdSpin_Click()
If Bankroll = 0 Then
 MsgBox "Out of Cash!", vbOKOnly, "Game Over"
 End
End If
Bankroll = Bankroll - 1
lblBank.Caption = Str(Bankroll)
timSpin.Enabled = True
timDone.Enabled = True
End Sub

Here, we first check to see if you're out of cash. If so, the game ends. If not, you are

charged 1 point and the timers are turned on.

7. This is the code for the timSpin_Timer event.

Private Sub timSpin_Timer()
imgBandit(0).Picture = imgChoice(Int(Rnd * 4)).Picture
imgBandit(1).Picture = imgChoice(Int(Rnd * 4)).Picture
imgBandit(2).Picture = imgChoice(Int(Rnd * 4)).Picture
End Sub

Every 0.1 seconds, the three visible image boxes are filled with a random image. This

gives the effect of the spinning slot machine.

8. And, the code for the timDone_Timer event. This event is triggered after the bandit

spins for 2 seconds.

Private Sub timDone_Timer()
Dim P0 As Integer, P1 As Integer, P2 As Integer
Dim Winnings As Integer
Const FACE = 3
timSpin.Enabled = False
timDone.Enabled = False
P0 = Int(Rnd * 4)
P1 = Int(Rnd * 4)
P2 = Int(Rnd * 4)
imgBandit(0).Picture = imgChoice(P0).Picture
imgBandit(1).Picture = imgChoice(P1).Picture
imgBandit(2).Picture = imgChoice(P2).Picture

 Database Access and Management 8-256

If P0 = FACE Then
 Winnings = 1
 If P1 = FACE Then
 Winnings = 3
 If P2 = FACE Then
 Winnings = 10
 End If
 End If
ElseIf P0 = P1 Then
 Winnings = 2
 If P1 = P2 Then Winnings = 4
End If
Bankroll = Bankroll + Winnings
lblBank.Caption = Str(Bankroll)
End Sub

First, the timers are turned off. Final pictures are displayed in each position. Then, the

pictures are checked to see if you won anything.

9. Save and run the application. See if you can become wealthy.

10. If you have time, try these things.

A. Rather than display the three final pictures almost simultaneously, see if
you can stop each picture from spinning at a different time. You'll need a
few more Timer tools.

B. Add some graphics and/or printing to the form when you win. You'll need

to clear these graphics with each new spin - use the Cls method.

C. See if you can figure out the logic I used to specify winning. See if you

can show the one-buttoned bandit returns 95.3 percent of all the 'money'
put in the machine. This is higher than what Vegas machines return. But,
with truly random operation, Vegas is guaranteed their return. They can't
lose!

 Database Access and Management 8-257

User-Defined Coordinates

• Another major use for graphics in Visual Basic is to generate plots of data. Line

charts, bar charts, and pie charts can all be easily generated.

• We use the Line tool and Circle tool to generate charts. The difficult part of using

these tools is converting our data into the Visual Basic coordinate system. For
example, say we wanted to plot the four points given by:

x = 0, y = 2
x = 2, y = 7
x = 5, y = 11
x = 6, y = 13

To draw such a plot, for each point, we would need to scale each (x, y) pair to fit within

the dimensions of the form specified by the ScaleWidth and ScaleHeight properties.
This is a straightforward, but tedious computation.

• An easier solution lies in the ability to incorporate user-defined coordinates in a

Visual Basic form. The simplest way to define such coordinates is with the Scale
method. The form for this method is:

ObjectName.Scale (x1, y1) - (x2, y2)

The point (x1, y1) represents the top left corner of the newly defined coordinate system,

while (x2, y2) represents the lower right corner. If ObjectName is omitted, the
scaling is associated with the current form.

• Once the coordinate sys tem has been redefined, all graphics methods must use

coordinates in the new system. To return to the default coordinates, use the Scale
method without any arguments.

(0,2)

(2,7)
(5,11)

(6,13)

 Database Access and Management 8-258

• Scale Example:

Say we wanted to plot the data from above. We would first define the following

coordinate system:

Scale (0, 13) - (6, 2)

This shows that x ranges from 0 (left side of plot) to 6 (right side of plot), while y ranges

from 2 (bottom of plot) to 13 (top of plot). The graphics code to plot this function is
then:

Pset (0, 2)
Line - (2, 7)
Line - (5, 11)
Line - (6, 13)

Note how much easier this is than would be converting each number pair to twips.

Simple Function Plotting (Line Charts)

• Assume we have a function specified by a known number of (x, y) pairs. Assume N

points in two arrays dimensioned to N - 1: x(N - 1), and y(N - 1). Assume the points
are sorted in the order they are to be plotted. Can we set up a general procedure to
plot these functions, that is create a line chart? Of course!

• The process is:

1. Go through all of the points and find the minimum x value (Xmin) ,
maximum x value (Xmax), minimum y value (Ymin) and the maximum y
value (Ymax). These will be used to define the coordinate system.
Extend each y extreme (Ymin and Ymax) a little bit - this avoids having a
plotted point ending up right on the plot border.

2. Define a coordinate system using Scale:

Scale (Xmin, Ymax) - (Xmax, Ymin)

Ymax is used in the first coordinate because, recall, it defines the upper left
corner of the plot region.

 Database Access and Management 8-259

3. Initialize the plotting procedure at the first point using PSet:

PSet (x(0), y(0))

4. Plot subsequent points with the Line procedure:

Line - (x(i), y(i))

• Here is a general procedure that does this plotting using these steps. It can be
used as a basis for more elaborate plotting routines. The arguments are
ObjectName the name of the object (form or picture box) you are plotting on,
N the number of points, X the array of x points, and Y the array of y points.

Sub LineChart(ObjectName As Control, N As Integer, X() As Single, Y() As

Single)
Dim Xmin As Single, Xmax As Single
Dim Ymin As Single, Ymax As Single
Dim I As Integer
Xmin = X(0): Xmax = X(0)
Ymin = Y(0): Ymax = Y(0)
For I = 1 To N - 1
 If X(I) < Xmin Then Xmin = X(I)
 If X(I) > Xmax Then Xmax = X(I)
 If Y(I) < Ymin Then Ymin = Y(I)
 If Y(I) > Ymax Then Ymax = Y(I)
Next I
Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin ‘ Extend Ymin by 5 percent
Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax ‘ Extend Ymax by 5 percent
ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)
ObjectName.Cls
ObjectName.PSet (X(0), Y(0))
For I = 1 To N - 1
 ObjectName.Line - (X(I), Y(I))
Next I
End Sub

 Database Access and Management 8-260

Simple Bar Charts

• Here, we have a similar situation, N points in arrays X(N - 1) and Y(N - 1). Can we

draw a bar chart using these points? The answer again is yes.

• The procedure to develop a bar chart is similar to that for line charts:

1. Find the minimum x value (Xmin), the maximum x value (Xmax), the
minimum y value (Ymin) and the maximum y value (Ymax). Extend the
y extremes a bit.

2. Define a coordinate system using Scale:

Scale (Xmin, Ymax) - (Xmax, Ymin)

3. For each point, draw a bar using the Line procedure:

Line (x(i), 0) - (x(i), y(i))

Here, we assume the bars go from 0 to the corresponding y value. You may want
to modify this. You could also add color and widen the bars by using the
DrawWidth property (the example uses blue bars).

 Database Access and Management 8-261

• Here is a general procedure that draws a bar chart. Note its similarity to the
line chart procedure. Modify it as you wish. The arguments are ObjectName
the name of the object (form or picture box) you are plotting on, N the number
of points, X the array of x points, and Y the array of y points.

Sub BarChart(ObjectName As Control, N As Integer, X() As Single, Y() As Single)
Dim Xmin As Single, Xmax As Single
Dim Ymin As Single, Ymax As Single
Dim I As Integer
Xmin = X(0): Xmax = X(0)
Ymin = Y(0): Ymax = Y(0)
For I = 1 To N - 1
 If X(I) < Xmin Then Xmin = X(I)
 If X(I) > Xmax Then Xmax = X(I)
 If Y(I) < Ymin Then Ymin = Y(I)
 If Y(I) > Ymax Then Ymax = Y(I)
Next I
Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin ‘ Extend Ymin by 5 percent
Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax ‘ Extend Ymax by 5 percent
ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)
ObjectName.Cls
For I = 0 To N - 1
 ObjectName.Line (X(I), 0) - (X(I), Y(I)), vbBlue
Next I
End Sub

 Database Access and Management 8-262

Example 7-4

Line Chart and Bar Chart Application

1. Start a new application. Here, we’ll use the general line chart and bar chart

procedures to plot a simple sine wave.

2. Put a picture box on a form. Set up this simple menu structure using the Menu

Editor:

Plot
 Line Chart
 Bar Chart
 Spiral Chart

 Exit

Properties for these menu items should be:

Caption Name
&Plot mnuPlot
&Line Chart mnuPlotLine
&Bar Chart mnuPlotBar
&Spiral Chart mnuPlotSpiral
- mnuPlotSep
E&xit mnuPlotExit

Other properties should be:

Form1 :
 BorderStyle 1-Fixed Single
 Caption Plotting Examples
 Name frmPlot

Picture1:
 BackColor White
 Name picPlot

 Database Access and Management 8-263

The form should resemble this:

3. Place this code in the general declarations area. This makes the x and y arrays and

the number of points global.

Option Explicit
Dim N As Integer
Dim X(199) As Single
Dim Y(199) As Single
Dim YD(199) As Single

4. Attach this code to the Form_Load procedure. This loads the arrays with the points

to plot.

Private Sub form_Load()
Dim I As Integer
Const PI = 3.14159
N = 200
For I = 0 To N - 1
 X(I) = I
 Y(I) = Exp(-0.01 * I) * Sin(PI * I / 10)
 YD(I) = Exp(-0.01 * I) * (PI * Cos(PI * I / 10) / 10 -

0.01 * Sin(PI * I / 10))
Next I
End Sub

5. Attach this code to the mnuPlotLine_Click event. This draws the line chart.

Private Sub mnuPlotLine_Click()
Call LineChart(picPlot, N, X, Y)
End Sub

 Database Access and Management 8-264

6. Attach this code to the mnuPlotBar_Click event. This draws the bar chart.

Private Sub mnuPlotBar_Click()
Call BarChart(picPlot, N, X, Y)
End Sub

7. Attach this code to the mnuPlotSpiral_Click event. This draws a neat little spiral.

[Using the line chart, it plots the magnitude of the sine wave (Y array) on the x axis
and its derivative (YD array) on the y axis, in case you are interested.]

Private Sub mnuPlotSpiral_Click()
Call LineChart(picPlot, N, Y, YD)
End Sub

8. And, code for the mnuPlotExit_Click event. This stops the application.

Private Sub mnuPlotExit_Click()
End
End Sub

9. Put the LineChart and BarChart procedures from these notes in your form as

general procedures.

10. Finally, save and run the application. You’re ready to tackle any plotting job now.

11. These routines just call out for enhancements. Some things you might try.

A. Label the plot axes using the Print method.

B. Draw grid lines on the plots. Use dotted or dashed lines at regular

intervals.

C. Put titling information on the axes and the plot.

D. Modify the line chart routine to allow plotting more than one function.

Use colors or different line styles to differentiate the lines. Add a legend
defining each plot.

E. See if you can figure out how to draw a pie chart. Use the Circle method to draw

the pie segments. Figure out how to fill these segments with different colors and
patterns. Label the pie segments.

 Database Access and Management 8-265

Exercise 7-1

Blackjack

Develop an application that simulates the playing of the card game Blackjack. The idea
of Blackjack is to score higher than a Dealer’s hand without exceeding twenty-one.
Cards count their value, except face cards (jacks, queens, kings) count for ten, and aces
count for either one or eleven (your pick). If you beat the Dealer, you get 10 points. If
you get Blackjack (21 with just two cards) and beat the Dealer, you get 15 points.

The game starts by giving two cards (from a standard 52 card deck) to the Deale r (one
face down) and two cards to the player. The player decides whether to Hit (get another
card) or Stay. The player can choose as many extra cards as desired. If the player
exceeds 21 before staying, it is a loss (-10 points). If the player does no t exceed 21, it
becomes the dealer’s turn. The Dealer add cards until 16 is exceeded. When this occurs,
if the dealer also exceeds 21 or if his total is less than the player’s, he loses. If the dealer
total is greater than the player total (and under 21), the dealer wins. If the dealer and
player have the same total, it is a Push (no points added or subtracted). There are lots of
other things you can do in Blackjack, but these simple rules should suffice here. The
cards should be reshuffled whenever there are fewer than fifteen (or so) cards remaining
in the deck.

 Database Access and Management 8-266

My Solution (not a trivial problem):

Form:

There are so many things here, I won’t label them all. The button names are obvious.
The definition of the cards is not so obvious. Each card is made up of three different
objects (each a control array). The card itself is a shape (shpDealer for dealer cards,
shpPlayer for player cards), the number on the card is a label box (lblDealer for dealer
cards, lblPlayer for player cards), and the suit is an image box (imgDealer for dealer
cards, imgPlayer for player cards). There are six elements (one for each card) in each of
these control arrays, ranging from element 0 at the left to element 5 at the right. The zero
elements of the dealer card controls are obscured by shpBack (used to indicate a face
down card).

lblResults lblWinnings

imgSuit

 Database Access and Management 8-267

Properties:

Form frmBlackJack:
 BackColor = &H00FF8080& (Light Blue)
 BorderStyle = 1 - Fixed Single
 Caption = Blackjack Game

CommandButton cmdDeal:
 Caption = &DEAL
 FontName = MS Sans Serif
 FontSize= 13.5

CommandButton cmdExit:
 Caption = E&xit

CommandButton cmdStay:
 Caption = &STAY
 FontName = MS Sans Serif
 FontSize= 13.5

CommandButton cmdHit:
 Caption = &HIT
 FontName = MS Sans Serif
 FontSize= 13.5

Image imgSuit:
 Index = 3
 Picture = misc37.ico
 Visible = False

Image imgSuit:
 Index = 2
 Picture = misc36.ico
 Visible = False

Image imgSuit:
 Index = 1
 Picture = misc35.ico
 Visible = False

Image imgSuit:
 Index = 0
 Picture = misc34.ico
 Visible = False

 Database Access and Management 8-268

Shape shpBack:
 BackColor = &H00FF00FF& (Magenta)
 BackStyle = 1 - Opaque
 BorderWidth = 2
 FillColor = &H0000FFFF& (Yellow)
 FillStyle = 7 - Diagonal Cross
 Shape = 4 - Rounded Rectangle

Label lblPlayer:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF&
 Caption = 10
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18
 ForeColor = &H00C00000& (Blue)
 Index = 5, 4, 3, 2, 1, 0

Image imgPlayer:
 Picture = misc35.ico
 Stretch = True
 Index = 5, 4, 3, 2, 1, 0

Shape shpPlayer:
 BackColor = &H00FFFFFF& (White)
 BackStyle = 1 - Opaque
 BorderWidth = 2
 Shape = 4 - Rounded Rectangle
 Index = 5, 4, 3, 2, 1, 0

Label lblDealer:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF&
 Caption = 10
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18
 ForeColor = &H00C00000& (Blue)
 Index = 5, 4, 3, 2, 1, 0

Image imgDealer:
 Picture = misc35.ico
 Stretch = True
 Index = 5, 4, 3, 2, 1, 0

 Database Access and Management 8-269

Shape shpDealer:
 BackColor = &H00FFFFFF& (White)
 BackStyle = 1 - Opaque
 BorderWidth = 2
 Shape = 4 - Rounded Rectangle
 Index = 5, 4, 3, 2, 1, 0

Label Label2:
 BackColor = &H00FF8080& (Light Blue)
 Caption = Player:
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18

Label lblResults:
 Alignment = 2 - Center
 BackColor = &H0080FFFF& (Light Yellow)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 18

Label Label3:
 BackColor = &H00FF8080& (Light Blue)
 Caption = Won
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18

Label lblWinnings :
 Alignment = 2 - Center
 BackColor = &H0080FFFF& (Light Yellow)
 BorderStyle = 1 - Fixed Single
 Caption = 0
 FontName = MS Sans Serif
 FontSize = 18

 Database Access and Management 8-270

Code:

General Declarations:

Option Explicit
Dim CardName(52) As String
Dim CardSuit(52) As Integer
Dim CardValue(52) As Integer
Dim Winnings As Integer, CurrentCard As Integer
Dim Aces_Dealer As Integer, Aces_Player As Integer
Dim Score_Dealer As Integer, Score_Player As Integer
Dim NumCards_Dealer As Integer, NumCards_Player As Integer

Add_Dealer General Procedure:

Sub Add_Dealer()
Dim I As Integer
'Adds a card at index I to dealer hand
NumCards_Dealer = NumCards_Dealer + 1
I = NumCards_Dealer - 1
lblDealer(I).Caption = CardName(CurrentCard)
imgDealer(I).Picture =
imgSuit(CardSuit(CurrentCard)).Picture
Score_Dealer = Score_Dealer + CardValue(CurrentCard)
If CardValue(CurrentCard) = 1 Then Aces_Dealer =
Aces_Dealer + 1
CurrentCard = CurrentCard + 1
lblDealer(I).Visible = True
imgDealer(I).Visible = True
shpDealer(I).Visible = True
End Sub

Add_Player General Procedure:

Sub Add_Player()
Dim I As Integer
'Adds a card at index I to player hand
NumCards_Player = NumCards_Player + 1
I = NumCards_Player - 1
lblPlayer(I).Caption = CardName(CurrentCard)
imgPlayer(I).Picture =
imgSuit(CardSuit(CurrentCard)).Picture
Score_Player = Score_Player + CardValue(CurrentCard)
If CardValue(CurrentCard) = 1 Then Aces_Player =
Aces_Player + 1

 Database Access and Management 8-271

lblPlayer(I).Visible = True
imgPlayer(I).Visible = True
shpPlayer(I).Visible = True
CurrentCard = CurrentCard + 1
End Sub

 Database Access and Management 8-272

End_Hand General Procedure:

Sub End_Hand(Msg As String, Change As Integer)
shpBack.Visible = False
lblResults.Caption = Msg
'Hand has ended - update winnings
Winnings = Winnings + Change
lblwinnings.Caption = Str(Winnings)
cmdHit.Enabled = False
cmdStay.Enabled = False
cmdDeal.Enabled = True
End Sub

New_Hand General Procedure:

Sub New_Hand()
'Deal a new hand
Dim I As Integer
'Clear table of cards
For I = 0 To 5
 lblDealer(I).Visible = False
 imgDealer(I).Visible = False
 shpDealer(I).Visible = False
 lblPlayer(I).Visible = False
 imgPlayer(I).Visible = False
 shpPlayer(I).Visible = False
Next I
lblResults.Caption = ""
cmdHit.Enabled = True
cmdStay.Enabled = True
cmdDeal.Enabled = False
If CurrentCard > 35 Then Call Shuffle_Cards
'Get two dealer cards
Score_Dealer = 0: Aces_Dealer = 0: NumCards_Dealer = 0
shpBack.Visible = True
Call Add_Dealer
Call Add_Dealer
'Get two player cards
Score_Player = 0: Aces_Player = 0: NumCards_Player = 0
Call Add_Player
Call Add_Player
'Check for blackjacks
If Score_Dealer = 11 And Aces_Dealer = 1 Then Score_Dealer
= 21
If Score_Player = 11 And Aces_Player = 1 Then Score_Player
= 21

 Database Access and Management 8-273

If Score_Dealer = 21 And Score_Player = 21 Then
 Call End_Hand("Two Blackjacks!", 0)
 Exit Sub
ElseIf Score_Dealer = 21 Then
 Call End_Hand("Dealer Blackjack!", -10)
 Exit Sub
ElseIf Score_Player = 21 Then
 Call End_Hand("Player Blackjack!", 15)
 Exit Sub
End If
End Sub

N_Integers General Procedure:

Private Sub N_Integers(N As Integer, Narray() As Integer)
'Randomly sorts N integers and puts results in Narray
Dim I As Integer, J As Integer, T As Integer
'Order all elements initially
For I = 1 To N: Narray(I) = I: Next I
'J is number of integers remaining
For J = N to 2 Step -1
 I = Int(Rnd * J) + 1
 T = Narray(J)
 Narray(J) = Narray(I)
 Narray(I) = T
Next J
End Sub

Shuffle_Cards General Procedure:

Sub Shuffle_Cards()
'Shuffle a deck of cards. That is, randomly sort
'the integers from 1 to 52 and convert to cards.
'Cards 1-13 are the ace through king of hearts
'Cards 14-26 are the ace through king of clubs
'Cards 27-39 are the ace through king of diamonds
'Cards 40-52 are the ace through king of spades
'When done:
'The array element CardName(i) has the name of the ith card
'The array element CardSuit(i) is the index to the ith card
suite
'The array element CardValue(i) has the point value of the
ith card
Dim CardUsed(52) As Integer
Dim J As Integer

 Database Access and Management 8-274

Call N_Integers(52, CardUsed())
For J = 1 to 52
 Select Case (CardUsed(J) - 1) Mod 13 + 1
 Case 1
 CardName(J) = "A"
 CardValue(J) = 1
 Case 2
 CardName(J) = "2"
 CardValue(J) = 2
 Case 3
 CardName(J) = "3"
 CardValue(J) = 3
 Case 4
 CardName(J) = "4"
 CardValue(J) = 4
 Case 5
 CardName(J) = "5"
 CardValue(J) = 5
 Case 6
 CardName(J) = "6"
 CardValue(J) = 6
 Case 7
 CardName(J) = "7"
 CardValue(J) = 7
 Case 8
 CardName(J) = "8"
 CardValue(J) = 8
 Case 9
 CardName(J) = "9"
 CardValue(J) = 9
 Case 10
 CardName(J) = "10"
 CardValue(J) = 10
 Case 11
 CardName(J) = "J"
 CardValue(J) = 10
 Case 12
 CardName(J) = "Q"
 CardValue(J) = 10
 Case 13
 CardName(J) = "K"
 CardValue(J) = 10
 End Select
 CardSuit(J) = Int((CardUsed(J) - 1) / 13)
Next J
CurrentCard = 1
End Sub

 Database Access and Management 8-275

cmdDeal Click Event:

Private Sub cmdDeal_Click()
Call New_Hand
End Sub

 Database Access and Management 8-276

cmdExit Click Event:

Private Sub cmdExit_Click()
'Show final winnings and quit
If Winnings > 0 Then
 MsgBox "You won" + Str(Winnings) + " points!", vbOKOnly,
"Game Over"
ElseIf Winnings = 0 Then
 MsgBox "You broke even.", vbOKOnly, "Game Over"
Else
 MsgBox "You lost" + Str(Abs(Winnings)) + " points!",
vbOKOnly, "Game Over"
End If
End
End Sub

cmdHit Click Event:

Private Sub cmdHit_Click()
'Add a card if player requests
Call Add_Player
If Score_Player > 21 Then
 Call End_Hand("Player Busts!", -10)
 Exit Sub
End If
If NumCards_Player = 6 Then
 cmdHit.Enabled = False
 Call cmdStay_Click
 Exit Sub
End If
End Sub

cmdStay Click Event:

Private Sub cmdStay_Click()
Dim ScoreTemp As Integer, AcesTemp As Integer
'Check for aces in player hand and adjust score
'to highest possible
cmdHit.Enabled = False
cmdStay.Enabled = False
If Aces_Player <> 0 Then
 Do
 Score_Player = Score_Player + 10
 Aces_Player = Aces_Player - 1
 Loop Until Aces_Player = 0 Or Score_Player > 21

 Database Access and Management 8-277

 If Score_Player > 21 Then Score_Player = Score_Player -
10
End If
'Uncover dealer face down card and play dealer hand
shpBack.Visible = False
NextTurn:
ScoreTemp = Score_Dealer: AcesTemp = Aces_Dealer
'Check for aces and adjust score
If AcesTemp <> 0 Then
 Do
 ScoreTemp = ScoreTemp + 10
 AcesTemp = AcesTemp - 1
 Loop Until AcesTemp = 0 Or ScoreTemp > 21
 If ScoreTemp > 21 Then ScoreTemp = ScoreTemp - 10
End If
'Check if dealer won
If ScoreTemp > 16 Then
 If ScoreTemp > Score_Player Then
 Call End_Hand("Dealer Wins!", -10)
 Exit Sub
 ElseIf ScoreTemp = Score_Player Then
 Call End_Hand("It's a Push!", 0)
 Exit Sub
 Else
 Call End_Hand("Player Wins!", 10)
 Exit Sub
 End If
End If
'If six cards shown and dealer hasn't won, player wins
If NumCards_Dealer = 6 Then
 Call End_Hand("Player Wins!", 10)
 Exit Sub
End If
'See if hit is needed
If ScoreTemp < 17 Then Call Add_Dealer
If Score_Dealer > 21 Then
 Call End_Hand("Dealer Busts!", 10)
 Exit Sub
End If
GoTo NextTurn
End Sub

Form_Load Event:

Private Sub Form_Load()
'Seed random number generator, shuffle cards, deal new hand

 Database Access and Management 8-278

Randomize Timer
Call Shuffle_Cards
Call New_Hand
End Sub

 Database Access and Management 8-279

Exercise 7-2

Information Tracking Plotting

Add plotting capabilities to the information tracker you developed in Class 6. Plot
whatever information you stored versus the date. Use a line or bar chart.

My Solution:

Form (like form in Homework 6, with a picture box and Plot menu item added):

New Properties:

Form frmWeight:
 FontName = MS Sans Serif
 FontSize = 10

PictureBox picPlot :
 BackColor = &H00FFFFFF& (White)
 DrawWidth = 2

Menu mnuFilePlot:
 Caption = &Plot

picPlot

 Database Access and Management 8-280

New Code:

mnuFilePlot Click Event:

Private Sub mnuFilePlot_Click()
Dim X(100) As Integer, Y(100) As Integer
Dim I As Integer
Dim Xmin As Integer, Xmax As Integer
Dim Ymin As Integer, Ymax As Integer
Dim Legend As String
Xmin = 0: Xmax = 0
Ymin = Val(Weights(1)): Ymax = Ymin
For I = 1 To NumWts
 X(I) = DateDiff("d", Dates(1), Dates(I))
 Y(I) = Val(Weights(I))
 If X(I) < Xmin Then Xmin = X(I)
 If X(I) > Xmax Then Xmax = X(I)
 If Y(I) < Ymin Then Ymin = Y(I)
 If Y(I) > Ymax Then Ymax = Y(I)
Next I
Xmin = Xmin - 1: Xmax = Xmax + 1
Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin
Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax
picplot.Scale (Xmin, Ymax)-(Xmax, Ymin)
Cls
picplot.Cls
For I = 1 To NumWts
 picplot.Line (X(I), Ymin)-(X(I), Y(I)), QBColor(1)
Next I
Legend = Str(Ymax)
CurrentX = picplot.Left - TextWidth(Legend)
CurrentY = picplot.Top - 0.5 * TextHeight(Legend)
Print Legend
Legend = Str(Ymin)
CurrentX = picplot.Left - TextWidth(Legend)
CurrentY = picplot.Top + picplot.Height - 0.5 *
TextHeight(Legend)
Print Legend
End Sub

 Database Access and Management 8-281

This page intentionally not left blank.

Learn Visual Basic 6.0

8. Database Access and Management

Review and Preview

• In past classes, we’ve seen the power of the built-in Visual Basic tools. In this class,

we look at one of the more powerful tools, the Data Control. Using this tool, in
conjunction with associated ‘data-aware’ tools, allows us to access and manage
databases. We only introduce the ideas of database access and management - these
topics alone could easily take up a ten week course.

• A major change in Visual Basic, with the introduction of Version 6.0, is in its

database management tools. New tools based on ActiveX Data Object (ADO)
technology have been developed. These new tools will eventually replace the older
database tools, called DAO (Data Access Object) tools. We will only discuss the
ADO tools. Microsoft still includes the DAO tools for backward compatibility. You
might want to study these on your own, if desired.

Database Structure and Terminology

 Database Access and Management 8-282

• In simplest terms, a database is a collection of information. This collection is stored

in well-defined tables, or matrices.

• The rows in a database table are used to describe similar items. The rows are referred

to as database records . In general, no two rows in a database table will be alike.

• The columns in a database table provide characteristics of the records. These

characteristics are called database fields . Each field contains one specific piece of
information. In defining a database field, you specify the data type, assign a length,
and describe other attributes.

 Database Access and Management 8-283

• Here is a simple database example:

In this database table, each record represents a single individual. The fields
(descriptors of the individuals) include an identification number (ID No), Name, Date
of Birth, Height, and Weight.

• Most databases use indexes to allow faster access to the information in the database.

Indexes are sorted lists that point to a particular row in a table. In the example just
seen, the ID No field could be used as an index.

• A database using a single table is ca lled a flat database. Most databases are made up

of many tables. When using multiple tables within a database, these tables must have
some common fields to allow cross-referencing of the tables. The referral of one
table to another via a common field is called a relation. Such groupings of tables are
called relational databases.

• In our first example, we will use a sample database that comes with Visual Basic.

This database (BIBLIO.MDB) is found in the main Visual Basic directory (try
c:\Program Files\Microsoft Visual Studio \VB98). It is a database of books about
computers. Let’s look at its relational structure. The BIBLIO.MDB database is made
up of four tables:

Authors Table (6246 Records, 3 Fields)

ID No

Au_ID

1

2

3

Bob Jones

Mary Rodgers

Sue Williams

Name

Author

Date of Birth

Year Born

01/04/58

Weight Height

Field

Record

Table

11/22/61

06/11/57

72

65

68

170

125

130

 Database Access and Management 8-284

Publishers Table (727 Records, 10 Fields)

Title Author Table (16056 Records, 2 Fields)

Titles Table (8569 Records, 8 Fields)

The Authors table consists of author identification numbers, the author’s name, and
the year born. The Publishers table has information regarding book publishers.
Some of the fields include an identification number, the publisher name, and pertinent
phone numbers. The Title Author table correlates a book’s ISBN (a universal
number assigned to books) with an author’s identification number. And, the Titles
table has several fields describing each individual book, including title, ISBN, and
publisher identification.

PubID

ISBN

Title

Name

Au_ID

Year Pub

Company

ISBN

Fax

PubID

Comments

Comments

 Database Access and Management 8-285

Note each table has two types of information: source data and relational data.
Source data is actual information, such as titles and author names. Relational data are
references to data in other tables, such as Au_ID and PubID. In the Authors,
Publishers and Title Author tables, the first column is used as the table index. In the
Titles table, the ISBN value is the index.

• Using the relational data in the four tables, we should be able to obtain a complete

description of any book title in the database. Let’s look at one example:

Titles

Title Author

Publishers

Authors

Title

ISBN

PubID

Au_ID Au_ID

Publisher

Author

ISBN PubID

171 Wraye, Toby

52 McGraw-Hill

0-0280095-2-5 171

Step-by-step dBase IV 0-0280095-2-5 52

 Database Access and Management 8-286

Here, the book in the Titles table, entitled “Step-by-step dBase IV,” has an ISBN of
0-0280095-2-5 and a PubID of 52. Taking the PubID into the Publishers table,
determines the book is published by McGraw-Hill and also allows us to access all
other information concerning the publisher. Using the ISBN in the Title Author
table provides us with the author identification (Au_ID) of 171, which, when used in
the Authors table, tells us the book’s author is Toby Wraye.

• We can form alternate tables from a database’s inherent tables. Such virtual tables,
or logical views , are made using queries of the database. A query is simply a request
for information from the database tables. As an example with the BIBLIO.MDB
database, using pre-defined query languages, we could ‘ask’ the database to form a
table of all authors and books published after 1992, or provide all author names
starting with B. We’ll look briefly at queries.

 Database Access and Management 8-287

• Keeping track of all the information in a database is handled by a database
management system (DBMS). They are used to create and maintain databases.
Examples of commercial DBMS programs are Microsoft Access, Microsoft FoxPro,
Borland Paradox, Borland dBase, and Claris FileMaker. We can also use Visual
Basic to develop a DBMS. Visual Basic shares the same ‘engine’ used by Microsoft
Access, known as the Jet engine. In this class, we will see how to use Visual Basic to
access data, display data, and perform some elementary management operations.

 Database Access and Management 8-288

ADO Data Control

• The ADO (ActiveX Data Object) data control is the primary interface between a

Visual Basic application and a database. It can be used without writing any code at
all! Or, it can be a central part of a complex database management system. This icon
may not appear in your Visual Basic toolbox. If it doesn’t, select Project from the
main menu, then click Components. The Components window will appear. Select
Microsoft ADO Data Control, then click OK. The control will be added to your
toolbox.

• As mentioned in Review and Preview, previous versions of Visual Basic used another

data control. That control is still included with Visual Basic 6.0 (for backward
compatibility) and has as its icon:

Make sure you are not using this data control for the work in this class. This control is

suitable for small databases. You might like to study it on your own.

• The data control (or tool) can access databases created by several other programs

besides Visual Basic (or Microsoft Access). Some other formats supported include
Btrieve, dBase, FoxPro, and Paradox databases.

• The data control can be used to perform the following tasks:

1. Connect to a database.
2. Open a specified database table.
3. Create a virtual table based on a database query.
4. Pass database fields to other Visual Basic tools, for display or editing.

Such tools are bound tools (controls), or data aware.
5. Add new records or update a database.
6. Trap any errors that may occur while accessing data.
7. Close the database.

 Database Access and Management 8-289

• Data Control Properties:

Align Determines where data control is displayed.
Caption Phrase displayed on the data control.
ConnectionString Contains the information used to establish a

connection to a database.
LockType Indicates the type of locks placed on records during

editing (default setting makes databases read-only).
Recordset A set of records defined by a data control’s

ConnectionString and RecordSource properties.
Run-time only.

RecordSource Determines the table (or virtual table) the data
control is attached to.

• As a rule, you need one data control for every database table, or virtual table, you

need access to. One row of a table is accessible to each data control at any one time.
This is referred to as the current record.

• When a data control is placed on a form, it appears with the assigned caption and four

arrow buttons:

The arrows are used to navigate through the table rows (records). As indicated, the
buttons can be used to move to the beginning of the table, the end of the table, or
from record to record.

Move to first row
Move to last row

Move to next row Move to previous row

 Database Access and Management 8-290

Data Links

• After placing a data control on a form, you set the ConnectionString property. The

ADO data control can connect to a variety of database types. There are three ways to
connect to a database: using a data link, using an ODBC data source, or using a
connection string. In this class, we will look only at connection to a Microsoft
Access database using a data link. A data link is a file with a UDL extension that
contains information on database type.

• If your database does not have a data link, you need to create one. This process is

best illustrated by example. We will be using the BIBLIO.MDB database in our first
example, so these steps show you how to create its data link:

1. Open Windows Explorer.
2. Open the folder where you will store your data link file.
3. Right-click the right side of Explorer and choose New. From the list of files,

select Microsoft Data Link.
4. Rename the newly created file BIBLIO.UDL
5. Right-click this new UDL file and click Properties.
6. Choose the Provider tab and select Microsoft Jet 3.51 OLE DB Provider (an

Access database).
7. Click the Next button to go to the Connection tab.
8. Click the ellipsis and use the Select Access Database dialog box to choose the

BIBLIO.MDB file which is in the Visual Basic main folder. Click Open.
9. Click Test Connection. Then, click OK (assuming it passed). The UDL file is

now created and can be assigned to ConnectionString, using the steps below.

• If a data link has been created and exists for your database, click the ellipsis that

appears next to the ConnectionString property. Choose Use Data Link File. Then,
click Browse and find the file. Click Open. The data link is now assigned to the
property. Click OK.

 Database Access and Management 8-291

Assigning Tables

• Once the ADO data control is connected to a database, we need to assign a table to

that control. Recall each data control is attached to a single table, whether it is a table
inherent to the database or the virtual table we discussed. Assigning a table is done
via the RecordSource property.

• Tables are assigned by making queries of the database. The language used to make a

query is SQL (pronounced ‘sequel,’ meaning structured query language). SQL is an
English- like language that has evolved into the most widely used database query
language. You use SQL to formulate a question to ask of the database. The data base
‘answers’ that question with a new table of records and fields that match your criteria.

• A table is assigned by placing a valid SQL statement in the RecordSource property

of a data control. We won’t be learning any SQL here. There are many texts on the
subject - in fact, many of them are in the BIBLIO.MDB database we’ve been using.
Here we simply show you how to use SQL to have the data control ‘point’ to an
inherent database table.

• Click on the ellipsis next to RecordSource in the property box. A Property Pages

dialog box will appear. In the box marked Command Text (SQL), type this line:

 SELECT * FROM TableName

This will select all fields (the * is a wildcard) from a table named TableName in the
database. Click OK.

• Setting the RecordSource property also establishes the Recordset property, which

we will see later is a very important property.

• In summary, the relationship between the data control and its two primary properties

(ConnectionString and RecordSource) is:

 ConnectionString RecordSource

Database file
Database table

 Current record

ADO Data control

 Database Access and Management 8-292

Bound Data Tools

• Most of the Visual Basic tools we’ve studied can be used as bound, or data-aware ,

tools (or controls). That means, certain tool properties can be tied to a particular
database field. To use a bound control, one or more data controls must be on the
form.

• Some bound data tools are:

Label Can be used to provide display-only access to a

specified text data field.
Text Box Can be used to provide read/write access to a

specified text data field. Probably, the most widely
used data bound tool.

Check Box Used to provide read/wr ite access to a Boolean
field.

Combo Box Can be used to provide read/write access to a text
data field.

List Box Can be used to provide read/write access to a text
data field.

Picture Box Used to display a graphical image from a bitmap,
icon, or metafile on your form. Provides read/write
access to a image/binary data field.

Image Box Used to display a graphical image from a bitmap,
icon, or metafile on your form (uses fewer resources
than a picture box). Provides read/write access to a
image/binary data field.

• There are also three ‘custom’ data aware tools, the DataCombo (better than using the

bound combo box), DataList (better than the bound list box), and DataGrid tools,
we will look at later.

• Bound Tool Properties:

DataChanged Indicates whether a value displayed in a bound
control has changed.

DataField Specifies the name of a field in the table pointed to
by the respective data control.

DataSource Specifies which data control the control is bound to.

 Database Access and Management 8-293

If the data in a data-aware control is changed and then the user changes focus to
another control or tool, the database will automatically be updated with the new data
(assuming LockType is set to allow an update).

• To make using bound controls easy, follow these steps (in order listed) in placing the

controls on a form:

1. Draw the bound control on the same form as the data control to which it
will be bound.

2. Set the DataSource property. Click on the drop-down arrow to list the
data controls on your form. Choose one.

3. Set the DataField property. Click on the drop-down arrow to list the
fields associated with the selected data control records. Make your choice.

4. Set all other properties, as required.

By following these steps in order, we avoid potential data access errors.

• The relationships between the bound data control and the data control are:

DataField

Database table ADO Data control

DataSource

Bound data
control

(field in current record)

 Database Access and Management 8-294

Example 8-1

Accessing the Books Database

1. Start a new application. We’ll develop a form where we can skim through the books

database, examining titles and ISBN values. Place an ADO data control, two label
boxes, and two text boxes on the form.

2. If you haven’t done so, create a data link for the BIBLIO.MDB database following

the steps given under Data Links in these notes.

3. Set the following properties for each control. For the data control and the two text

boxes, make sure you set the properties in the order given.

Form1:
BorderStyle 1-Fixed Single
Caption Books Database
Name frmBooks

Adodc1:

Caption Book Titles
ConnectionString BIBLIO.UDL (in whatever folder you saved it in -

 select, don’t type)
RecordSource SELECT * FROM Titles
Name dtaTitles

Label1:

Caption Title

Label2:

Caption ISBN

Text1:
DataSource dtaTitles (select, don’t type)
DataField Title (select, don’t type)
Locked True
MultiLine True
Name txtTitle

Text [Blank]

 Database Access and Management 8-295

Text2:
DataSource dtaTitles (select, don’t type)
DataField ISBN (select, don’t type)

Locked True
Name txtISBN
Text [Blank]

When done, the form will look something like this (try to space your controls as shown;

we’ll use all the blank space as we continue with this example):

4. Save the application. Run the application. Cycle through the various book titles
using the data control. Did you notice something? You didn’t have to write one line
of Visual Basic code! This indicates the power behind the data tool and bound tools.

 Database Access and Management 8-296

Creating a Virtual Table

• Many times, a database table has more information than we want to display. Or,

perhaps a table does not have all the information we want to display. For instance, in
Example 8-1, seeing the Title and ISBN of a book is not real informative - we would
also like to see the Author, but that information is not provided by the Titles table. In
these cases, we can build our own virtual table, displaying only the information we
want the user to see.

• We need to form a different SQL statement in the RecordSource property. Again, we

won’t be learning SQL here. We will just give you the proper statement.

Quick Example: Forming a Virtual Table

1. We’ll use the results of Example 8-1 to add the Author name to the form. Replace

the RecordSource property of the dtaTitles control with the following SQL
statement:

SELECT Author,Titles.ISBN,Title FROM Authors,[Title Author],Titles

WHERE Authors.Au_ID=[Title Author].Au_ID AND Titles.ISBN=[Title
Author].ISBN ORDER BY Author

This must be typed as a single line in the Command Text (SQL) area that appears when

you click the ellipsis by the RecordSource property. Make sure it is typed in exactly
as shown. Make sure there are spaces after ‘SELECT’, after
‘Author,Titles.ISBN,Title’, after ‘FROM’, after ‘Authors,[Title Author],Titles’, after
‘WHERE’, after ‘Authors.Au_ID=[Title Author].Au_ID’, after ‘AND’, after
‘Titles.ISBN=[Title Author].ISBN’, and separating the final three words ‘ORDER
BY Author’. The program will tell you if you have a syntax error in the SQL
statement, but will give you little or no help in telling you what’s wrong.

Here’s what this statement does: It selects the Author, Titles.ISBN, and Title fields from

the Authors, Title Author, and Titles tables, where the respective Au_ID and ISBN
fields match. It then orders the resulting virtual table, using authors as an index.

 Database Access and Management 8-297

2. Add a label box and text box to the form, for displaying the author name. Set the
control properties.

Label3:

Caption Author

Text1:
DataSource dtaTitles (select, don’t type)
DataField Author (select, don’t type)

Locked True
Name txtAuthor
Text [Blank]

When done, the form should resemble this:

3. Save, then rerun the application. The author’s names will now appear with the book

titles and ISBN values. Did you notice you still haven’t written any code? I know
you had to type out that long SQL statement, but that’s not code, technically
speaking. Notice how the books are now ordered based on an alphabetical listing of
authors’ last names.

 Database Access and Management 8-298

Finding Specific Records

• In addition to using the data control to move through database records, we can write

Visual Basic code to accomplish the same, and other, tasks. This is referred to as
programmatic control. In fact, many times the data control Visible property is set
to False and all data manipulations are performed in code. We can also use
programmatic control to find certain records.

• There are four methods used for moving in a database. These methods replicate the

capabilities of the four arrow buttons on the data control:

MoveFirst Move to the first record in the table.
MoveLast Move to the last record in the table.
MoveNext Move to the next record (with respect to the current

record) in the table.
MovePrevious Move to the previous record (with respect to the

current record) in the table.

• When moving about the database programmatically, we need to test the BOF

(beginning of file) and EOF (end of file) properties. The BOF property is True when
the current record is positioned before any data. The EOF property is True when the
current record has been positioned past the end of the data. If either property is True,
the current record is invalid. If both properties are True, then there is no data in the
database table at all.

• These properties, and the programmatic control methods, operate on the Recordset

property of the data control. Hence, to move to the first record in a table attached to a
data control named dtaExample, the syntax is:

dtaExample.Recordset.MoveFirst

• There is a method used for searching a database:

Find Find a record that meets the specified search
criteria.

This method also operates on the Recordset property and has three arguments we
will be concerned with. To use Find with a data control named dtaExample :

dtaExample.Recordset.Find Criteria,NumberSkipped,SearchDirection

• The search Criteria is a string expression like a WHERE clause in SQL. We won’t
go into much detail on such criteria here. Simply put, the criteria describes what
particular records it wants to look at. For example, using our book database, if we
want to look at books with titles (the Title field) beginning with S, we would use:

 Database Access and Management 8-299

Criteria = “Title >= ‘S’”

Note the use of single quotes around the search letter. Single quotes are used to
enclose strings in Criteria statements. Three logical operators can be used: equals
(=), greater than (>), and less than (<).

• The NumberSkipped argument tells how many records to skip before beginning the
Find. This can be used to exclude the current record by setting NumberSkipped to 1.

• The SearchDirection argument has two possible values: adSearchForward or
adSearchBackward. Note, in conjunction with the four Move methods, the
SearchDirection argument can be used to provide a variety of search types (search
from the top, search from the bottom, etc.)

• If a search fails to find a record that matches the criteria, the Recordset’s EOF or
BOF property is set to True (depending on search direction). Another property used
in searches is the Bookma rk property. This allows you to save the current record
pointer in case you want to return to that position later. The example illustrates its
use.

 Database Access and Management 8-300

Example 8-2

‘Rolodex’ Searching of the Books Database

1. We expand the book database application to allow searching for certain author names.

We’ll use a ‘rolodex’ approach where, by pressing a particular letter button, books
with author last names corresponding to that button appear on the form.

2. We want a row of buttons starting at ‘A’ and ending at ‘Z’ to appear on the lower part

of our form. Drawing each one individually would be a big pain, so we’ll let Visual
Basic do all the work in the Form_Load procedure. What we’ll do is create one
command button (the ‘A’), make it a control array, and then dynamically create 25
new control array elements at run-time, filling each with a different letter. We’ll even
let the code decide on proper spacing.

So, add one command button to the previous form. Name it cmdLetter and give it a

Caption of A. Set its Index property to 0 to make it a control array element. On my
form, things at this point look like this:

 Database Access and Management 8-301

3. Attach this code to the Form_Load procedure. This code sets up the rolodex control
array and draws the additional 25 letter buttons on the form. (Sorry, you have to type
some code now!)

Private Sub Form_Load()
Dim I As Integer
‘Size buttons
cmdLetter(0).Width = (frmBooks.ScaleWidth - 2*

cmdLetter(0).Left) / 26
For I = 1 To 25
Load cmdLetter(I) ' Create new control array element
'Position new letter next to previous one
cmdLetter(I).Left = cmdLetter(I - 1).Left +

cmdLetter(0).Width
'Set caption and make visible
cmdLetter(I).Caption = Chr(vbKeyA + I)
cmdLetter(I).Visible = True
Next I
End Sub

At this point, even though all the code is not in place, you could run your application to

check how the letter buttons look. My finished form (at run-time) looks like this:

Notice how Visual Basic adjusted the button widths to fit nicely on the form.

 Database Access and Management 8-302

4. Attach this code to the cmdLetter_Click procedure. In this procedure, we use a
search criteria that finds the first occurrence of an author name that begins with the
selected letter command button. If the search fails, the record displayed prior to the
search is retained (using the Bookmark property).

Private Sub cmdLetter_Click(Index As Integer)
Dim BookMark1 As Variant
'Mark your place in case no match is found
BookMark1 = dtaTitles.Recordset.Bookmark
'Move to top of table to start search
dtaTitles.Recordset.MoveFirst
dtaTitles.Recordset.Find "Author >= '" +

cmdLetter(Index).Caption + "'", 0, adSearchForward
If dtaTitles.Recordset.EOF = True Then
 dtaTitles.Recordset.Bookmark = BookMark1
End If
txtAuthor.SetFocus
End Sub

Let’s look at the search a little closer. We move to the top of the database using

Move First. Then, the Find is executed (notice the selected letter is surrounded by
single quotes). If EOF is True after the Find, it means we didn’t find a match to the
Criteria and Bookmark is returned to its saved value.

5. Save your application. Test its operation. Note once the program finds the first

occurrence of an author name beginning with the selected letter (or next highest letter
if there is no author with the pressed letter), you can use the data control navigation
buttons (namely the right arrow button) to find other author names beginning with
that letter.

 Database Access and Management 8-303

Data Manager

• At this point, we know how to use the data control and associated data bound tools to

access a database. The power of Visual Basic lies in its ability to manipulate records
in code. Such tasks as determining the values of particular fields, adding records,
deleting records, and moving from record to record are easily done. This allows us to
build a complete database management system (DBMS).

• We don’t want to change the example database, BIBLIO.MDB. Let’s create our own

database to change. Fortunately, Visual Basic helps us out here. The Visual Data
Manager is a Visual Basic Add-In that allows the creation and management of
databases. It is simple to use and can create a database compatible with the Microsoft
Jet (or Access) database engine.

• To examine an existing database using the Data Manager, follow these steps:

1. Select Visual Data Manager from Visual Basic’s Add-In menu (you may
be asked if you want to add SYSTEM.MDA to the .INI file - answer No.)

2. Select Open Database from the Data Manager File menu.
3. Select the database type and name you want to examine.

Once the database is opened, you can do many things. You can simply look through
the various tables. You can search for particular records. You can apply SQL
queries. You can add/delete records. The Data Manager is a DBMS in itself. You
might try using the Data Manager to look through the BIBLIO.MDB example
database.

• To create a new database, follow these steps:

1. Select Visual Data Manager from Visual Basic’s Add-In menu (you may
be asked if you want to add SYSTEM.MDA to the .INI file - answer No.)

2. Select New from the Data Manager File menu. Choose database type
(Microsoft Access, Version 7.0), then select a directory and enter a name
for your database file. Click OK.

3. The Database window will open. Right click the window and select New
Table. In the Name box, enter the name of your table. Then define the
table’s fields, one at a time, by clicking Add Field, then entering a field
name, selecting a data type, and specifying the size of the field, if
required. Once the field is defined, click the OK button to add it to the
field box. Once all fields are defined, click the Build the Table button to
save your table.

 Database Access and Management 8-304

Example 8-3

Phone Directory - Creating the Database

1. With this example, we begin the development of a simple phone directory. In the

directory, we will keep track of names and phone numbers. We’ll be able to edit, add
and delete names and numbers from the directory. And, we’ll be able to search the
directory for certain names. In this first step, we’ll establish the structure for the
database we’ll use. The directory will use a single table, with three fields: Name ,
Description, and Phone. Name will contain the name of the person or company,
Description will contain a descriptive phrase (if desired) of who the person or
company is, and Phone will hold the phone number.

2. Start the Data Manager. Use the previously defined steps to establish a new database

(this is a Microsoft Access, Version 7.0 database). Use PhoneList as a Name for
your database table. Define the three fields. Each should be a Text data type.
Assign a size of 40 to the Name and Description fields, a size of 15 to the Phone
field. When all fields have been defined, the screen should look like this:

 Database Access and Management 8-305

When done with the field definitions, click Build the Table to save your new
table. You will be returned to the Database Tables window.

3. We’re now ready to enter some data in our database. From the Database Tables

window, right click the PhoneList table and select Open. The following window
will appear:

At this point, add several (at least five - make them up or whatever) records to your

database. The steps for each record are: (1) click Add to add a record, (2) fill in the
three fields (or, at least the Name and Phone fields), and (3) click Update to save the
contents.

You can also Delete records and Find records, if desired. You can move through

the records using the scroll bar at the bottom of the screen. When done
entering records, click Close to save your work. Select Exit from the Data
Manager File menu. Your database has been created.

 Database Access and Management 8-306

Database Management

• The Data Manager is a versatile utility for creating and viewing databases. However,

its interface is not that pretty and its use is somewhat cumbersome. We would not
want to use it as a database management system (DBMS). Nor, would we expect
users of our programs to have the Data Manager available for their use. The next step
in our development of our database skills is to use Visual Basic to manage our
databases, that is develop a DBMS.

• We will develop a simple DBMS. It will allow us to view records in an existing

database. We will be able to edit records, add records, and delete records. Such
advanced tasks as adding tables and fields to a database and creating a new database
can be done with Visual Basic, but are far beyond the scope of the discussion here.

• To create our DBMS, we need to define a few more programmatic control methods

associated with the data control Recordset property. These methods are:

AddNew A new record is added to the table. All fields are
set to Null and this record is made the current
record.

Delete The current record is deleted from the table. This
method must be immediately followed by one of the
Move methods because the current record is invalid
after a Delete.

Update Saves the current contents of all bound tools.

• To edit an existing record, you simply display the record and make any required

changes. The LockType property should be set to adLockPessimistic (locks each
record as it is edited). Then, when you move off of that record, either with a
navigation button or through some other action, Visual Basic will automatically
update the record. If desired, or needed, you may invoke the Update method to force
an update (use LockType = asLockOptimistic). For a data control named
dtaExample, the syntax for this statement is:

dtaExample.Recordset.Update

• To add a record to the database, we invoke the AddNew method. The syntax for our

example data control is:

dtaExample.Recordset.AddNew

This statement will blank out any bound data tools and move the current record to the
end of the database. At this point, you enter the new values. When you move off of
this record, the changes are automatically made to the database. Another way to
update the database with the changes is via the Update method.

 Database Access and Management 8-307

After adding a record to a database, you should invoke the Refresh property of the
data control to insure proper sorting (established by RecordSource SQL statement) of
the new entry. The format is:

dtaExample.Refresh

• To delete a record from the database, make sure the record to delete is the current
record. Then, we use the Delete method. The syntax for the example data control is:

dtaExample.Recordset.Delete

Once we execute a Delete, we must move (using one of the ‘Move’ methods) off of
the current record because it no longer exists and an error will occur if we don’t
move. This gets particularly tricky if deleting the last record (check the EOF
property). If EOF is true, you must move to the top of the database (MoveFirst).
You then must make sure there is a valid record there (check the BOF property). The
example code demonstrates proper movement.

 Database Access and Management 8-308

Example 8-4

Phone Directory - Managing the Database

1. Before starting, make a copy of your phone database file using the Windows

Explorer. That way, in case we mess up, you still have a good copy. And, create a
data link to the database. Here, we develop a simple DBMS for our phone number
database. We will be able to display individual records and edit them. And, we will
be able to add or delete records. Note this is a simple system and many of the fancy
‘bells and whistles’ (for example, asking if you really want to delete a record) that
should really be here are not. Adding such amenities is left as an exercise to the
student.

2. Load your last Books Database application (Example 8-2 - the one with the ‘Rolodex’

search). We will modify this application to fit the phone number DBMS. Resave
your form and project with different names. Add three command buttons to the upper
right corner of the form. Modify/set the following properties for each tool. For the
data control and text boxes, make sure you follow the order shown.

frmBooks (this is the old name):

Caption Phone List
Name frmPhone

dtaTitles (this is the old name):

Caption Phone Numbers
ConnectionString [your phone database data link] (select, don’t type)
RecordSource SELECT * FROM PhoneList ORDER BY Name (the

 ORDER keyword sorts the database by the given
 field)

Name dtaPhone
LockType adLockOptimistic

Label1:

Caption Description

Label2:

Caption Phone

Label3:
Caption Name

 Database Access and Management 8-309

txtAuthor (this is the old name):
DataSource dtaPhone (select, don’t type)
DataField Name (select, don’t type)
Locked False
Name txtName

MaxLength 40
TabIndex 1

txtISBN (this is the old name) :

DataSource dtaPhone (select, don’t type)
DataField Phone (select, don’t type)
Locked False
Name txtPhone
MaxLength 15
TabIndex 3

txtTitle (this is the old name):
DataSource dtaPhone (select, don’t type)
DataField Description (select, don’t type)
Locked False
Name txtDesc

MaxLength 40
TabIndex 2

Command1:

Caption &Add
Name cmdAdd

Command2:

Caption &Save
Enabled False
Name cmdSave

Command3:

Caption &Delete
Name cmdDelete

 Database Access and Management 8-310

When done, my form looked like this:

At this point, you can run your application and you should be able to navigate through

your phone database using the data control. Don’t try any other options, though. We
need to do some coding.

3. In Form_Load, replace the word frmBooks with frmPhone . This will allow the

letter keys to be displayed properly.

4. In the cmdLetter_Click procedure, replace all occurrences of the word dtaTitles

with dtaPhone. Replace all occurrences of Author with Name . The modified code
will be:

Private Sub cmdLetter_Click(Index As Integer)
Dim BookMark1 As Variant
'Mark your place in case no match is found
BookMark1 = dtaPhone.Recordset.Bookmark
dtaPhone.Recordset.MoveFirst
dtaPhone.Recordset.Find "Name >= '" +

cmdLetter(Index).Caption + "'"
If dtaPhone.Recordset.EOF = True Then
 dtaPhone.Recordset.Bookmark = BookMark1
End If
txtName.SetFocus
End Sub

 Database Access and Management 8-311

5. Attach this code to the cmdAdd_Click procedure. This code invokes the code
needed to add a record to the database. The Add and Delete buttons are disabled.
Click the Save button when done adding a new record.

Private Sub cmdAdd_Click()
cmdAdd.Enabled = False
cmdSave.Enabled = True
cmdDelete.Enabled = False
dtaPhone.Recordset.AddNew
txtName.SetFocus
End Sub

6. Add this code to the cmdSave_Click procedure. When done entering a new record,

the command button status’s are toggled, the Recordset updated, and the data control
Refresh method invoked to insure proper record sorting.

Private Sub cmdSave_Click()
dtaPhone.Recordset.Update
dtaPhone.Refresh
cmdAdd.Enabled = True
cmdSave.Enabled = False
cmdDelete.Enabled = True
txtName.SetFocus
End Sub

7. Attach this code to the cmdDelete_Click procedure. This deletes the current record

and moves to the next record. If we bump into the end of file, we need to check if
there are no records remaining. If no records remain in the table, we display a
message box. If records remain, we move around to the first record.

Private Sub cmdDelete_Click()
dtaPhone.Recordset.Delete
dtaPhone.Recordset.MoveNext
If dtaPhone.Recordset.EOF = True Then
 dtaPhone.Refresh
 If dtaPhone.Recordset.BOF = True Then
 MsgBox "You must add a record.", vbOKOnly +

vbInformation, "Empty file"
 Call cmdAdd_Click
 Else
 dtaPhone.Recordset.MoveFirst
 End If
End If
txtName.SetFocus
End Sub

 Database Access and Management 8-312

8. Save the application. Try running it. Add records, delete records, edit records. If
you’re really adventurous, you could add a button that dials your phone (via modem)
for you! Look at the custom communications control.

 Database Access and Management 8-313

Custom Data Aware Controls

• As mentioned earlier, there are three custom data aware tools, in addition to the

standard Visual Basic tools: the DataList, DataCombo, and DataGrid ADO tools.
We’ll present each of these, giving their suggested use, some properties and some
events. If the icons for these tools are not in the toolbox, select Project from the
main menu, then click Components. Select Microsoft DataList Controls 6.0
(OLEDB) and Microsoft DataGrid 6.0 (OLEDB) in the Components window.
Click OK - the controls will appear.

• Like the data control, previous versions of Visual Basic used DAO versions of the

list, combo, and grid controls, named DBList, DBCombo, and DBGrid. Make sure
you are not using these tools.

• DataList Box:

The first bound data custom tool is the DataList Box. The list box is automatically
filled with a field from a specified data control. Selections from the list box can then
be used to update another field from the same data control or, optionally, used to
update a field from another data control.

Some properties of the DataList box are:

DataSource Name of data control that is updated by the
selection.

DataField Name of field updated in Recordset specified by
DataSource.

RowSource Name of data control used as source of items in list
box.

ListField Name of field in Recordset specified by RowSource
used to fill list box.

BoundColumn Name of field in Recordset specified by RowSource
to be passed to DataField, once selection is made.
This is usually the same as ListField.

BoundText Text value of BoundColumn field. This is the value
passed to DataField property.

Text Text value of selected item in list. Usually the same
as BoundText.

The most prevalent use of the DataList box is to fill the list from the database, then
allow selections. The selection can be used to fill any tool on a form, whether it is
data aware or not.

 Database Access and Management 8-314

As a quick example, here is a DataList box filled with the Title (ListField) field
from the dtaExample (RowSource) data control. The data control is bound to the
Titles table in the BIBLIO.MDB database.

• DataCombo Box:

The DataCombo Box is nearly identical to the DataList box, hence we won’t look at
a separate set of properties. The only differences between the two tools is that, with
the DataCombo box, the list portion appears as a drop-down box and the user is given
the opportunity to change the contents of the returned Text property.

• DataGrid Tool:

The DataGrid tool is, by far, the most useful of the custom data bound tools. It can
display an entire database table, referenced by a data control. The table can then be
edited as desired.

The DataGrid control is in a class by itself, when considering its capabilities. It is
essentially a separate, highly functional program. The only property we’ll be
concerned with is the DataSource property, which, as always, identifies the table
associated with the respective data control. Refer to the Visual Basic Programmer’s
Guide and other references for complete details on using the DataGrid control.

 Database Access and Management 8-315

As an example of the power of the DataGrid control, here’s what is obtained by
simply setting the DataSource property to the dtaExample data control, which is
bound to the Titles table in the BIBLIO.MDB database:

At this point, we can scroll through the table and edit any values we choose. Any
changes are automatically reflected in the underlying database. Column widths can
be changed at run-time! Multiple row and column selections are possible! Like we
said, a very powerful tool.

Creating a Data Report

• Once you have gone to all the trouble of developing and managing a database, it is

nice to have the ability to obtain printed or displayed information from your data.
The process of obtaining such information is known as creating a data report.

• There are two steps to creating a data report. First, we need to create a Data

Environment. This is designed within Visual Basic and is used to tell the data report
what is in the database. Second, we create the Data Report itself. This, too, is done
within Visual Basic. The Data Environment and Data Report files then become part
of the Visual Basic project developed as a database management system.

• The Visual Basic 6.0 data report capabilities are vast and using them is a detailed

process. The use of these capabilities is best demonstrated by example. We will look
at the rudiments of report creation by building a tabular report for our phone database.

 Database Access and Management 8-316

Example 8-5

Phone Directory - Building a Data Report

We will build a data report that lists all the names and phone numbers in our phone
database. We will do this by first creating a Data Environment, then a Data Report. We
will then reopen the phone database management project and add data reporting
capabilities.

Creating a Data Environment

1. Start a new Standard EXE project.

2. On the Project menu, click Add Data Environment. If this item is not on the menu,

click Components. Click the Designers tab, and choose Data Environment and
click OK to add the designer to your menu.

3. We need to point to our database. In the Data Environment window, right-click the

Connection1 tab and select Properties. In the Data Link Properties dialog box,
choose Microsoft Jet 3.51 OLE DB Provider. Click Next to get to the Connection
tab. Click the ellipsis button. Find your phone database (mdb) file. Click OK to
close the dialog box.

4. We now tell the Data Environment what is in our database. Right-click the

Connection1 tab and click Rename . Change the name of the tab to Phone . Right-
click this newly named tab and click Add Command to create a Command1 tab.
Right-click this tab and choose Properties. Assign the following properties:

Command Name PhoneList
Connection Phone
DataBase Object Table
ObjectName PhoneList

5. Click OK. All this was needed just to connect the environment to our database.

 Database Access and Management 8-317

6. Display the properties window and give the data environment a name property of
denPhone . Click File and Save denPhone As. Save the environment in an
appropriate folder. We will eventually add this file to our phone database
management system. At this point, my data environment window looks like this (I
expanded the PhoneList tab by clicking the + sign):

Creating a Data Report

Once the Data Environment has been created, we can create a Data Report. We will drag
things out of the Data Environment onto a form created for the Data Report, so make sure
your Data Environment window is still available.

1. On the Project menu, click Add Data Report and one will be added to your project.

If this item is not on the menu, click Components . Click the Designers tab, and
choose Data Report and click OK to add the designer to your menu.

2. Set the following properties for the report:

Name rptPhone
Caption Phone Directory
DataSource denPhone (your phone data environment - choose, don’t

type)
DataMember PhoneList (the table name - choose don’t type)

3. Right-click the Data Report and click Retrieve Structure . This establishes a report
format based on the Data Environment.

4. Note there are five sections to the data report: a Report Header, a Page Header, a

Detail section, a Page Footer, and a Report Footer. The headers and footers contain
information you want printed in the report and on each page. To place information in
one of these regions, right-click the selected region, click Add Control, then choose
the control you wish to place. These controls are called data report controls and

 Database Access and Management 8-318

properties are established just like you do for usual controls. Try adding some
headers.

5. The Detail section is used to layout the information you want printed for each record

in your database. We will place two field listings (Name , Phone) there. Click on the
Name tab in the Data Environment window and drag it to the Detail section of the
Data Report. Two items should appear: a text box Name and a text box Name
(PhoneList). The first text box is heading information. Move this text box into the
Page Header section. The second text box is the actual value for Name from the
PhoneList table. Line this text box up under the Name header. Now, drag the Phone
tab from the Data Environment to the Data Report. Adjust the text boxes in the same
manner. Our data report will have page headers Name and Phone. Under these
headers, these fields for each record in our database will be displayed. When done,
the form should look something like this:

In this form, I’ve resized the labels a bit and added a Report Header. Also, make sure

you close up the Detail section to a single line. Any space left in this section will be
inserted after each entry.

6. Click File and Save rptPhone As. Save the environment in an appropriate folder.

We will now reopen our phone database manager and attach this and the data
environment to that project and add capabilities to display the report.

 Database Access and Management 8-319

Accessing the Data Report

1. Reopen the phone directory project. Add a command button named cmdReport and

give it a Caption of Show Report. (There may be two tabs in your toolbox, one
named General and one named DataReport. Make sure you select from the General
tools.)

2. We will now add the data environment and data report files to the project. Click the

Project menu item, then click Add File. Choose denPhone and click OK. Also add
rptPhone. Look at your Project Window. Those files should be listed under
Designers .

3. Use this code in cmdReport_Click :

Private Sub cmdReport_Click()
rptPhone.Show
End Sub

4. This uses the Show method to display the data report.

5. Save the application and run it. Click the Show Report button and this should appear:

You now have a printable copy of the phone directory. Just click the Printer icon.
Notice the relationship with this displayed report and the sections available in the
Data Report designer.

 Database Access and Management 8-320

This page intentionally not left blank.

 Database Access and Management 8-321

Exercise 8

Home Inventory Database

Design and develop an application that manages a home inventory database. Add the
option of obtaining a printed list of your inventoried property.

My Solution:

Database Design:

The first step is to design a database using Data Manager (or Access). My database is a
single table (named M YSTUFF). Its specifications are:

Field Name Field Type Field Length
Item Text 40
Serial Number Text 20
Date Purchased Text 20
New Value Currency <N/A>
Location Text 40

This database is saved as file HomeInv.mdb. Create a data link to your database. The
link is saved as HomeInv.udl.

 Database Access and Management 8-322

Report Design:

The second step is to use the Data Environment and Data Report designers to setup how
you want the printed home inventory to appear. Use your discretion here. My final
report design is saved in denHomeInv and rptHomeInv. We will access this report
from our Visual Basic application. My Data Report design looks like this:

 Database Access and Management 8-323

Project Design:

Form:

Properties:

Form frmHome :
 BorderStyle = 1 - Fixed Single
 Caption = Home Inventory

CommandButton cmdExit:
 Caption = E&xit

ADO Data Control dtaHome:

Caption = Book Titles
ConnectionString = HomeInv.udl (in whatever folder you saved it in -
 select, don’t type)
RecordSource = SELECT * FROM MyStuff
Visible = False

CommandButton cmdShow:
 Caption = Show &Report

CommandButton cmdPrevious :
 Caption = &Previous Item

Label1

Label2

Label3

Label4

Label5

txtDate txtSerial txtItem txtValue

cmdNext

cmdPrevious

txtLocation

cmdShow

dtaHome cmdDelete cmdAdd cmdExit

 Database Access and Management 8-324

CommandButton cmdNext:
 Caption = &Next Item

CommandButton cmdDelete :
 Caption = &Delete Item

CommandButton cmdAdd:
 Caption = &Add Item

TextBox txtLocation:
 DataField = Location
 DataSource = dtaHome
 FontName = MS Sans Serif
 FontSize = 9.75
 MaxLength = 40

TextBox txtValue:
 DataField = New Value
 DataSource = dtaHome
 FontName = MS Sans Serif
 FontSize = 9.75

TextBox txtDate:
 DataField = Date Purchased
 DataSource = dtaHome
 FontName = MS Sans Serif
 FontSize = 9.75
 MaxLength = 20

TextBox txtSerial:
 DataField = Serial Number
 DataSource = dtaHome
 FontName = MS Sans Serif
 FontSize = 9.75
 MaxLength = 20

TextBox txtItem:
 DataField = Item
 DataSource = dtaHome
 FontName = MS Sans Serif
 FontSize = 9.75
 MaxLength = 40

 Database Access and Management 8-325

Label Label5:
 Caption = Location
 FontName = Times New Roman
 FontSize = 12

Label Label4:
 Caption = New Value
 FontName = Times New Roman
 FontSize = 12

Label Label3:
 Caption = Purchase Date
 FontName = Times New Roman
 FontSize = 12

Label Label2:
 Caption = Serial Number
 FontName = Times New Roman
 FontSize = 12

Label Label1:
 Caption = Item
 FontName = Times New Roman
 FontSize = 12

Code:

General Declarations:

Option Explicit

cmdAdd Click Event:

Private Sub cmdAdd_Click()
'Add new item to database
dtaHome.Recordset.AddNew
txtItem.SetFocus
End Sub

 Database Access and Management 8-326

cmdDelete Click Event:

Private Sub cmdDelete_Click()
'Delete item from database
Dim Rvalue As Integer
Rvalue = MsgBox("Are you sure you want to delete this
item?", vbQuestion + vbYesNo, "Delete Item")
If Rvalue = vbNo Then Exit Sub
dtaHome.Recordset.Delete
dtaHome.Recordset.MoveNext
If dtaHome.Recordset.EOF Then
 If dtaHome.Recordset.BOF Then
 MsgBox "You must add an item.", vbOKOnly +
vbInformation, "Empty Database"
 Call cmdAdd_Click
 Else
 dtaHome.Recordset.MoveFirst
 End If
End If
txtItem.SetFocus
End Sub

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub

cmdNext Click Event:

Private Sub cmdNext_Click()
'Move to next item - if at end-of-file, backup one item
dtaHome.Recordset.MoveNext
If dtaHome.Recordset.EOF Then
dtaHome.Recordset.MovePrevious
txtItem.SetFocus
End Sub

 Database Access and Management 8-327

cmdPrevious Click Event:

Private Sub cmdPrevious_Click()
'Move to previous item - if at beginning-of-file, go down
one item
dtaHome.Recordset.MovePrevious
If dtaHome.Recordset.BOF Then dtaHome.Recordset.MoveNext
txtItem.SetFocus
End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()
rptHomeInv.Show
End Sub

 Database Access and Management 8-328

This page intentionally not left blank.

Learn Visual Basic 6.0

9. Dynamic Link Libraries and the Windows API

Review and Preview

• In our last class, we saw how using the data control and bound data tools allowed us

to develop a simple database management system. Most of the work done by that
DBMS, though, was done by the underlying Jet database engine, not Visual Basic. In
this class, we learn how to interact with another underlying set of code by
programming the Windows applications interface (API) using dynamic link libraries
(DLL). Alphabet soup!

Dynamic Link Libraries (DLL)

• All Windows applications at their most basic level (even ones written using Visual

Basic) interact with the computer environment by using calls to dynamic link
libraries (DLL). DLL’s are libraries of routines, usually written in C, C++, or
Pascal, that you can link to and use at run-time.

• Each DLL usually performs a specific function. By using DLL routines with Visual

Basic, you are able to extend your application’s capabilities by making use of the

 Database Access and Management 8-329

many hundreds of functions that make up the Windows Application Programming
Interface (Windows API). These functions are used by virtually every application to
perform functions like displaying windows, file manipulation, printer control, menus
and dialog boxes, multimedia, string manipulation, graphics, and managing memory.

• The advantage to using DLL’s is that you can use available routines without having to

duplicate the code in Basic. In many cases, there isn’t even a way to do a function in
Basic and calling a DLL routine is the only way to accomplish the task. Or, if there is
an equivalent function in Visual Basic, using the corresponding DLL routine may be
faster, more efficient, or more adaptable. Reference material on DLL calls and the
API run thousands of pages - we’ll only scratch the surface here. A big challenge is
just trying to figure out what DLL procedures exist, what they do, and how to call
them.

 Database Access and Management 8-330

• There is a price to pay for access to this vast array of code. Once you leave the
protective surroundings of the Visual Basic environment, as you must to call a DLL,
you get to taunt and tease the dreaded general protection fault (GPF) monster, which
can bring your entire computer system to a screeching halt! So, be careful. And, if
you don’t have to use DLL’s, don’t.

Accessing the Windows API With DLL

• Using a DLL procedure from Visual Basic is not much different from calling a

general basic function or procedure. Just make sure you pass it the correct number
and correct type of arguments. Say DLLFcn is a DLL function and DLLProc is a
DLL procedure. Proper syntax to invoke these is, respectively (ignoring arguments
for now):

ReturnValue = DLLFcn()
Call DLLProc()

• Before you call a DLL procedure, it must be declared in your Visual Basic program

using the Declare statement. Declare statements go in the general declarations area
of form and code modules. The Declare statement informs your program about the
name of the procedure, and the number and type of arguments it takes. This is nearly
identical to function prototyping in the C language. For a DLL function (DLLFcn),
the syntax is:

Declare Function DLLFcn Lib DLLname [(argument list)] As type

where DLLname is a string specifying the name of the DLL file that contains the
procedure and type is the returned value type.

For a procedure (DLLProc), use:

Declare Sub DLLProc Lib DLLname [(argument list)]

In code modules, you need to preface the Declare statements with the keywords
Public or Private to indicate the procedure scope. In form modules, preface the
Declare statement with Private, the default (and only possible) scope in a form
module.

• Nearly all arguments to DLL procedures are passed by value (use the ByVal

keyword), so the argument list has the syntax:

ByVal argname1 As type, ByVal argname2 As type, ...

 Database Access and Management 8-331

Again, it is very important, when calling DLL procedures, that the argument lists be
correct, both regarding number and type. If the list is not correct, very bad things can
happen.

• And, it is critical that the Declare statement be exactly correct or very bad things can

happen. Fortunately, there is a program included with Visual Basic called the API
Text Viewer, which provides a complete list of Declare statements for all API
procedures. The viewer is available from the Start Menu folder for Visual Basic 6.0
(choose Visual Basic 6.0 Tools folder, then API Text Viewer). Most of the Declare
statements are found in a file named win32api.txt (load this from the File menu).

Always use this program to establish Declare statements for your DLL calls. The

procedure is simple. Scroll through the listed items and highlight the desired routine.
Choose the scope (Public or Private). Click Add to move it to the Selected Items
area. Once all items are selected, click Copy. This puts the desired Declare
statements in the Windows clipboard area. Then move to the General Declarations
area of your application and choose Paste from the Edit menu. The Declare
statements will magically appear. The API Text Viewer can also be used to obtain
any constants your DLL routine may need.

 Database Access and Management 8-332

• To further confuse things, unlike Visual Basic routine names, DLL calls are case-
sensitive, we must pay attention to proper letter case when accessing the API.

• Lastly, always, always, always save your Visual Basic application before testing any

DLL calls. More good code has gone down the tubes with GPF’s - they are very
difficult to recover from. Sometimes, the trusty on-off switch is the only recovery
mechanism.

Timing with DLL Calls

• Many times you need some method of timing within an application. You may want

to know how long a certain routine (needed for real-time simulations) takes to
execute or want to implement some sort of delay in your code. The DLL function
GetTickCount is very useful for such tasks.

• The DLL function GetTickCount is a measure of the number of milliseconds that

have elapsed since Windows was started on your machine. GetTickCount is 85
percent faster than the Visual Basic Timer or Now functions. The GetTickCount
function has no arguments. The returned value is a long integer. The usage syntax is:

Dim TickValue as Long
 .
 .
TickValue = GetTickCount()

Let’s look at a couple of applications of this function.

 Database Access and Management 8-333

Quick Example 1: Using GetTickCount to Build a Stopwatch

Remember way back in Class 1, where we built a little stop watch. We’ll modify that
example here using GetTickCount to do our timing.

1. Load Example 1-3 from long, long ago.

2. Use the API Text Viewer to obtain the Declare statement for the GetTickCount

function. Choose Private scope. Copy and paste it into the applications General
Declarations area (new code is italicized).

Option Explicit
Dim StartTime As Variant
Dim EndTime As Variant
Dim ElapsedTime As Variant
Private Declare Function GetTickCount Lib "kernel32" () As

Long

3. Modify the cmdStart_Click procedure as highlighted:

Private Sub cmdStart_Click()
'Establish and print starting time
StartTime = GetTickCount() / 1000
lblStart.Caption = Format(StartTime, "#########0.000")
lblEnd.Caption = ""
lblElapsed.Caption = ""
End Sub

4. Modify the cmdEnd_Click procedure as highlighted:

Private Sub cmdEnd_Click()
'Find the ending time, compute the elapsed time
'Put both values in label boxes
EndTime = GetTickCount() / 1000
ElapsedTime = EndTime - StartTime
lblEnd.Caption = Format(EndTime, "#########0.000")
lblElapsed.Caption = Format(ElapsedTime, "#########0.000")
End Sub

5. Run the application. Note we now have timing with millisecond (as opposed to one

second) accuracy.

 Database Access and Management 8-334

Quick Example 2: Using GetTickCount to Implement a Delay

Many times, you want some delay in a program. We can use GetTickCount to form a
user routine to implement such a delay. We’ll write a quick example that delays two
seconds between beeps.

1. Start a new project. Put a command button on the form. Copy and paste the proper

Declare statement.

2. Use this for the Command1_Click event:

Private Sub Command1_Click()
Beep
Call Delay(2#)
Beep
End Sub

3. Add the routine to implement the delay. The routine I use is:

Private Sub Delay(DelaySeconds As Single)
Dim T1 As Long
T1 = GetTickCount()
Do While GetTickCount() - T1 < CLng(DelaySeconds * 1000)
Loop
End Sub

To use this routine, note you simply call it with the desired delay (in seconds) as the

argument. This example delays two seconds. One drawback to this routine is that the
application cannot be interrupted and no other events can be processed while in the
Do loop. So, keep delays to small values.

4. Run the example. Click on the command button. Note the delay between beeps.

 Database Access and Management 8-335

Drawing Ellipses

• There are several DLL routines that support graphic methods (similar to the Line and

Circle methods studied in Class 7). The DLL function Ellipse allows us to draw an
ellipse bounded by a pre-defined rectangular region.

• The Declare statement for the Ellipse function is:

Private Declare Function Ellipse Lib "gdi32" Alias "Ellipse" (ByVal hdc As Long,
ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As Long, ByVal Y2 As Long) As
Long

Note there are five arguments: hdc is the hDC handle for the region (Form or Picture
Box) being drawn to, (X1, Y1) define the upper left hand corner of the rectangular
region surrounding the ellipse and (X2,Y2) define the lower right hand corner. The
region drawn to must have its ScaleMode property set to Pixels (all DLL drawing
routine use pixels for coordinates).

• Any ellipse drawn with this routine is drawn using the currently selected DrawWidth
and ForeColor properties and filled according to FillColor and FillStyle.

Quick Example 3 - Drawing Ellipses

1. Start a new application. Set the form’s ScaleMode property to Pixels.

2. Use the API Text Viewer to obtain the Declare statement for the Ellipse function and

copy it into the General Declarations area:

Option Explicit
Private Declare Function Ellipse Lib "gdi32" (ByVal hdc As

Long, ByVal X1 As Long, ByVal Y1 As Long, ByVal X2 As
Long, ByVal Y2 As Long) As Long

3. Attach the following code to the Form_Resize event:

Private Sub Form_Resize()
Dim RtnValue As Long
Form1.Cls
RtnValue = Ellipse(Form1.hdc, 0.1 * ScaleWidth, 0.1 *

ScaleHeight, 0.9 * ScaleWidth, 0.9 * ScaleHeight)
End Sub

 Database Access and Management 8-336

4. Run the application. Resize the form and see how the drawn ellipse takes on new
shapes. Change the form’s DrawWidth, ForeColor, FillColor, and FillStyle
properties to obtain different styles of ellipses.

Drawing Lines

• Another DLL graphic function is Polyline . It is used to connect a series of connected

line segments. This is useful for plotting information or just free hand drawing.
Polyline uses the DrawWidth and DrawStyle properties. This function is similar to
the Line method studied in Class 7, however the last point drawn to (CurrentX and
CurrentY) is not retained by this DLL function.

• The Declare statement for Polyline is:

Private Declare Function Polyline Lib "gdi32" Alias "Polyline" (ByVal hdc As Long,
lpPoint As POINTAPI, ByVal nCount As Long) As Long

Note it has three arguments: hdc is the hDC handle of the region (Form or Picture
Box-again, make sure ScaleMode is Pixels) being drawn to, lpPoint is the first point
in an array of points defining the endpoints of the line segments - it is of a special
user-defined type POINTAPI (we will talk about this next), and nCount is the
number of points defining the line segments.

• As mentioned, Polyline employs a special user-defined variable (a data structure) of
type POINTAPI. This definition is made in the general declarations area and looks
like:

Private Type POINTAPI
 X As Long
 Y As Long
End Type

Any variable defined to be of type POINTAPI will have two coordinates, an X value
and a Y value. As an example, say we define variable A to be of type POINTAPI
using:

Dim A As POINTAPI

A will have an X value referred to using the dot notation A.X and a Y value referred
to as A.Y. Such notation makes using the Polyline function simpler. We will use this
variable type to define the array of line segment endpoints.

 Database Access and Management 8-337

• So, to draw a sequence of line segments in a picture box, first decide on the (X, Y)
coordinates of each segment endpoint. Then, decide on line color and line pattern and
set the corresponding properties for the picture box. Then, using Polyline to draw the
segments is simple. And, as usual, the process is best illustrated using an example.

Quick Example 4 - Drawing Lines

1. Start a new application. Add a command button. Set the form’s ScaleMode property

to Pixels:

2. Set up the General Declarations area to include the user-defined variable

(POINTAPI) and the Declare statement for Polyline . Also define a variable for the
line endpoints:

Option Explicit
Private Type POINTAPI
X As Long
Y As Long
End Type
Private Declare Function Polyline Lib "gdi32" (ByVal hdc As

Long, lpPoint As POINTAPI, ByVal nCount As Long) As Long

Dim V(20) As POINTAPI
Dim Index As Integer

 Database Access and Management 8-338

3. Establish the Form_MouseDown event (saves the points):

Private Sub Form_MouseDown(Button As Integer, Shift As

Integer, X As Single, Y As Single)
If Index = 0 Then Form1.Cls
Index = Index + 1
V(Index).X = X
V(Index).Y = Y
End Sub

4. Establish the Command1_Click event (draws the segments):

Private Sub Command1_Click()
Dim RtnValue As Integer
Form1.Cls
RtnValue = Polyline(Form1.hdc, V(1), Index)
Index = 0
End Sub

5. Run the application. Click on the form at different points, then click the command

button to connect the ‘clicked’ points. Try different colors and line styles.

Drawing Polygons

• We could try to use the Polyline function to draw closed regions, or polygons. One

drawback to this method is that drawing filled regions is not possible. The DLL
function Polygon allows us to draw any closed region defined by a set of (x, y)
coordinate pairs.

• Let’s look at the Declare statement for Polygon (from the API Text Viewer):

Private Declare Function Polygon Lib "gdi32" Alias "Polygon" (ByVal hdc As Long,
lpPoint As POINTAPI, ByVal nCount As Long) As Long

Note it has three arguments: hdc is the hDC handle of the region (Form or Picture
Box) being drawn to, lpPoint is the first point in an array of points defining the
vertices of the polygon - it is of type POINTAPI, and nCount is the number of
points defining the enclosed region.

• So, to draw a polygon in a picture box, first decide on the (X, Y) coordinates of each
vertex in the polygon. Then, decide on line color, line pattern, fill color and fill
pattern and set the corresponding properties for the picture box. Then, using Polygon
to draw the shape is simple.

 Database Access and Management 8-339

Quick Example 5 - Drawing Polygons

1. Start a new application and establish a form with the following controls: a picture

box (ScaleMode set to Pixels), a control array of five option buttons, and a command
button:

2. Set up the General Declarations area to include the user-defined variable

(POINTAPI) and the Declare statement for Polygon:

Option Explicit
Private Type POINTAPI
X As Long
Y As Long
End Type
Private Declare Function Polygon Lib "gdi32" (ByVal hdc As

Long, lpPoint As POINTAPI, ByVal nCount As Long) As Long

3. Establish the Command1_Click event:

Private Sub Command1_Click()
Dim I As Integer
For I = 0 To 4
If Option1(I).Value = True Then
Exit For
End If
Next I
Picture1.Cls
Call Draw_Shape(Picture1, I)
End Sub

 Database Access and Management 8-340

4. Set up a general procedure to draw a particular shape number (PNum) in a general
control (PBox). This procedure can draw one of five shapes (0-Square, 1-Rectangle,
2-Triangle, 3-Hexagon, 4-Octagon). For each shape, it establishes some margin area
(DeltaX and DeltaY) and then defines the vertices of the shape using the V array (a
POINTAPI type variable).

Private Sub Draw_Shape(PBox As Control, PNum As Integer)
Dim V(1 To 8) As POINTAPI, Rtn As Long
Dim DeltaX As Integer, DeltaY As Integer
Select Case PNum
Case 0
'Square
 DeltaX = 0.05 * PBox.ScaleWidth
 DeltaY = 0.05 * PBox.ScaleHeight
 V(1).X = DeltaX: V(1).Y = DeltaY
 V(2).X = PBox.ScaleWidth - DeltaX: V(2).Y = V(1).Y
 V(3).X = V(2).X: V(3).Y = PBox.ScaleHeight - DeltaY
 V(4).X = V(1).X: V(4).Y = V(3).Y
 Rtn = Polygon(PBox.hdc, V(1), 4)
Case 1
'Rectangle
 DeltaX = 0.3 * PBox.ScaleWidth
 DeltaY = 0.05 * PBox.ScaleHeight
 V(1).X = DeltaX: V(1).Y = DeltaY
 V(2).X = PBox.ScaleWidth - DeltaX: V(2).Y = V(1).Y
 V(3).X = V(2).X: V(3).Y = PBox.ScaleHeight - DeltaY
 V(4).X = V(1).X: V(4).Y = V(3).Y
 Rtn = Polygon(PBox.hdc, V(1), 4)
Case 2
'Triangle
 DeltaX = 0.05 * PBox.ScaleWidth
 DeltaY = 0.05 * PBox.ScaleHeight
 V(1).X = DeltaX: V(1).Y = PBox.ScaleHeight - DeltaY
 V(2).X = 0.5 * PBox.ScaleWidth: V(2).Y = DeltaY
 V(3).X = PBox.ScaleWidth - DeltaX: V(3).Y = V(1).Y
 Rtn = Polygon(PBox.hdc, V(1), 3)
Case 3
'Hexagon
 DeltaX = 0.05 * PBox.ScaleWidth
 DeltaY = 0.05 * PBox.ScaleHeight
 V(1).X = DeltaX: V(1).Y = 0.5 * PBox.ScaleHeight
 V(2).X = 0.25 * PBox.ScaleWidth: V(2).Y = DeltaY
 V(3).X = 0.75 * PBox.ScaleWidth: V(3).Y = V(2).Y
 V(4).X = PBox.ScaleWidth - DeltaX: V(4).Y = V(1).Y
 V(5).X = V(3).X: V(5).Y = PBox.ScaleHeight - DeltaY
 V(6).X = V(2).X: V(6).Y = V(5).Y
 Rtn = Polygon(PBox.hdc, V(1), 6)

 Database Access and Management 8-341

Case 4
'Octagon
 DeltaX = 0.05 * PBox.ScaleWidth
 DeltaY = 0.05 * PBox.ScaleHeight
 V(1).X = DeltaX: V(1).Y = 0.3 * PBox.ScaleHeight
 V(2).X = 0.3 * PBox.ScaleWidth: V(2).Y = DeltaY
 V(3).X = 0.7 * PBox.ScaleWidth: V(3).Y = V(2).Y
 V(4).X = PBox.ScaleWidth - DeltaX: V(4).Y = V(1).Y
 V(5).X = V(4).X: V(5).Y = 0.7 * PBox.ScaleHeight
 V(6).X = V(3).X: V(6).Y = PBox.ScaleHeight - DeltaY
 V(7).X = V(2).X: V(7).Y = V(6).Y
 V(8).X = V(1).X: V(8).Y = V(5).Y
 Rtn = Polygon(PBox.hdc, V(1), 8)
End Select
End Sub

5. Run the application. Select a shape and click the command button to draw it. Play

with the picture box properties to obtain different colors and fill patterns.

6. To see the importance of proper variable declarations when using DLL’s and the API,

make the two components (X and Y) in the POINTAPI variable of type Integer rather
than Long. Rerun the program and see the strange results.

 Database Access and Management 8-342

Sounds with DLL Calls - Other Beeps

• As seen in the above example and by perusing the Visual Basic literature, only one

sound is available in Visual Basic - Beep. Not real exciting. By using available
DLL’s, we can add all kinds of sounds to our applications.

• A DLL routine like the Visual Basic Beep function is MessageBeep. It also beeps

the speaker but, with a sound card, you can hear different kinds of beeps. Message
Beep has a single argument, that being an long integer that describes the type of beep
you want. MessageBeep returns a long integer. The usage syntax is:

Dim BeepType As Long, RtnValue as Long
.
.
.
RtnValue = MessageBeep(BeepType)

• BeepType has five possible values. Sounds are related to the four possible icons

available in the Message Box (these sounds are set from the Windows 95 control
panel). The DLL constants available are:

MB_ICONSTOP - Play sound associated with the critical icon
MB_ICONEXCLAMATION - Play sound associated with the exclamation icon
MB_ICONINFORM ATION - Play sound associated with the information icon
MB_ICONQUESTION - Play sound associated with the question icon
MB_OK - Play sound associated with no icon

 Database Access and Management 8-343

Quick Example 6 - Adding Beeps to Message Box Displays

We can use MessageBeep to add beeps to our display of message boxes.

1. Start a new application. Add a text box and a command button.

2. Copy and paste the Declare statement for the MessageBeep function to the General

Declarations area. Also, copy and paste the following seven constants (we need
seven since some of the ones we use are equated to other constants):

Private Declare Function MessageBeep Lib "user32" (ByVal

wType As Long) As Long
Private Const MB_ICONASTERISK = &H40&
Private Const MB_ICONEXCLAMATION = &H30&
Private Const MB_ICONHAND = &H10&
Private Const MB_ICONINFORMATION = MB_ICONASTERISK
Private Const MB_ICONSTOP = MB_ICONHAND
Private Const MB_ICONQUESTION = &H20&
Private Const MB_OK = &H0&

3. In the above constant definitions, you will have to change the word Public (which

comes from the text viewer) with the word Private.

4. Use this code to the Command1_Click event.

Private Sub Command1_Click()
Dim BeepType As Long, RtnValue As Long
Select Case Val(Text1.Text)
Case 0

BeepType = MB_OK
Case 1

BeepType = MB_ICONINFORMATION
Case 2

BeepType = MB_ICONEXCLAMATION
Case 3

BeepType = MB_ICONQUESTION
Case 4

BeepType = MB_ICONSTOP
End Select
RtnValue = MessageBeep(BeepType)
MsgBox "This is a test", BeepType, "Beep Test"
End Sub

5. Run the application. Enter values from 0 to 4 in the text box and click the command

button. See if you get different beep sounds.

 Database Access and Management 8-344

More Elaborate Sounds

• Beeps are nice, but many times you want to play more elaborate sounds. Most

sounds you hear played in Windows applications are saved in WAV files (files with
WAV extensions). These are the files formed when you record using one of the many
sound recorder programs available.

• WAV files are easily played using DLL functions. There is more than one way to

play such a file. We’ll use the sndPlaySound function. This is a long function that
requires two arguments, a string argument with the name of the WAV file and a long
argument indicating how to play the sound. The usage syntax is:

Dim WavFile As String, SndType as Long, RtnValue as Long
.
.
.
RtnValue = sndPlaysound(WavFile, SndType)

• SndType has many possible values. We’ll just look at two:

SND_SYNC - Sound is played to completion, then execution continues
SND_ASYNC - Execution continues as sound is played

Quick Example 7 - Playing WAV Files

1. Start a new application. Add a command button and a common dialog box. Copy

and paste the sndPlaySound Declare statement from the API Text Viewer program
into your application. Also copy the SND_SYNC and SND_ASYNC constants.
When done copying and making necessary scope modifications, you should have:

Private Declare Function sndPlaySound Lib "winmm.dll" Alias

"sndPlaySoundA" (ByVal lpszSoundName As String, ByVal
uFlags As Long) As Long

Private Const SND_ASYNC = &H1
Private Const SND_SYNC = &H0

 Database Access and Management 8-345

2. Add this code to the Command1_Click procedure:

Private Sub Command1_Click()
Dim RtnVal As Integer
'Get name of .wav file to play
CommonDialog1.Filter = "Sound Files|*.wav"
CommonDialog1.ShowOpen
RtnVal = sndPlaySound(CommonDialog1.filename, SND_SYNC)
End Sub

3. Run the application. Find a WAV file and listen to the lovely results.

Playing Sounds Quickly

• Using the sndPlaySound function in the previous example requires first opening a

file, then playing the sound. If you want quick sounds, say in games, the loading
procedure could slow you down quite a bit. What would be nice would be to have a
sound file ‘saved’ in some format that could be played quickly. We can do that!

• What we will do is open the sound file (say in the Form_Load procedure) and write

the file to a string variable. Then, we just use this string variable in place of the file
name in the sndPlaySound argument list. We also need to ‘Or’ the SndType
argument with the constant SND_MEMORY (this tells sndPlaySound we are playing
a sound from memory as opposed to a WAV file). This technique is borrowed from
“Black Art of Visual Basic Game Programming,” by Mark Pruett, published by The
Waite Group in 1995. Sounds played using this technique must be short sounds (less
than 5 seconds) or mysterious results could happen.

 Database Access and Management 8-346

Quick Example 8 - Playing Sounds Quickly

We’ll write some code to play a quick ‘bonk’ sound.

1. Start a new application. Add a command button.

2. Copy and paste the sndPlaySound Declare statement and the two needed constants

(see Quick Example 4). Declare a variable (BongSound) for the sound file. Add
SND_MEMORY to the constants declarations. The two added statements are:

Dim BongSound As String
Private Const SND_MEMORY = &H4

3. Add the following general function, StoreSound, that will copy a WAV file into a

string variable:

Private Function StoreSound(ByVal FileName) As String
'---
' Load a sound file into a string variable.
' Taken from:
' Mark Pruett
' Black Art of Visual Basic Game Programming
' The Waite Group, 1995
'---
Dim Buffer As String
Dim F As Integer
Dim SoundBuffer As String
On Error GoTo NoiseGet_Error
Buffer = Space$(1024)
SoundBuffer = ""
F = FreeFile
Open FileName For Binary As F
Do While Not EOF(F)

Get #F, , Buffer
SoundBuffer = SoundBuffer & Buffer

Loop
Close F
StoreSound = Trim(SoundBuffer)
Exit Function
NoiseGet_Error:
SoundBuffer = ""
Exit Function
End Function

 Database Access and Management 8-347

4. Write the following Form_Load procedure:

Private Sub Form_Load()
BongSound = StoreSound("bong.wav")
End Sub

5. Use this as the Command1_Click procedure:

Private Sub Command1_Click()
Call sndPlaySound(BongSound, SND_SYNC Or SND_MEMORY)
End Sub

6. Make sure the sound (BONK.WAV) is in the same directory as your application.

Run the application. Each time you click the command button, you should hear a
bonk!

Fun With Graphics

• One of the biggest uses of the API is for graphics, whether it be background scrolling,

sprite animation, or many other special effects. A very versatile API function is
BitBlt, which stands for Bit Block Transfer. It is used to copy a section of one
bitmap from one place (the source) to another (the destination).

• Let’s look at the Declaration statement for BitBlt (from the API Text Viewer):

PrivateDeclare Function BitBlt Lib "gdi32" Alias "BitBlt"
(ByVal hDestDC As Long,
ByVal x As Long,
ByVal y As Long,
ByVal nWidth As Long,
ByVal nHeight As Long,
ByVal hSrcDC As Long,
ByVal xSrc As Long,
ByVal ySrc As Long,
ByVal dwRop As Long) As
Long

Lots of stuff here, but fairly straightforward. hDestDC is the device context handle,
or hDC of the destination bitmap. The coordinate pair (X, Y) specifies the upper left
corner in the destination bitmap to copy the source. The parameters nWidth and
nHeight are, respectively, the width and height of the copied bitmap. hSrcDC is the
device context handle for the source bitmap and (Xsrc, Ysrc) is the upper left corner
of the region of the source bitmap being copied. Finally, dwRop is a constant that
defines how the bitmap is to be copied. We will do a direct copy or set dwRop equal

 Database Access and Management 8-348

to the constant SRCCOPY. The BitBlt function expects all geometric units to be
pixels.

 Database Access and Management 8-349

• BitBlt returns an long integer value -- we won’t be concerned with its use right now.
So, the syntax for using BitBlt is:

Dim RtnValue As Long
 .
 .
RtnValue = BitBlt(Dest.hDC, X, Y, Width, Height,
 Src.hDC, Xsrc, Ysrc, SRCCOPY)

This function call takes the Src bitmap, located at (Xsrc, Ysrc), with width Width and
height Height, and copies it directly to the Dest bitmap at (X, Y).

Quick Example 9 - Bouncing Ball With Sound!

We’ll build an application with a ball bouncing from the top to the bottom as an
illustration of the use of BitBlt.

1. Start a new application. Add two picture boxes, a shape (inside the smaller picture

box), a timer control, and a command button.:

Picture1

Picture2

Command1

Timer1

Shape1

 Database Access and Management 8-350

2. For Picture1 (the destination), set the ScaleMode property to Pixel. For Shape1, set
the FillStyle property to Solid, the Shape property to Circle , and choose a FillColor.
For Picture2 (the ball), set the ScaleMode property to Pixel and the BorderStyle
property to None . For Timer1, set the Enabled property to False and the Interval
property to 100.

3. Copy and paste constants for the BitBlt Declare statement and constants. Also copy

and paste the necessary sndPlaySound statements and declare some variables. The
general declarations area is thus:

Option Explicit
Dim BongSound As String
Dim BallY As Long, BallDir As Integer
Private Declare Function sndPlaySound Lib "winmm.dll" Alias

"sndPlaySoundA" (ByVal lpszSoundName As String, ByVal
uFlags As Long) As Long

Private Const SND_ASYNC = &H1
Private Const SND_SYNC = &H0
Private Const SND_MEMORY = &H4
Private Declare Function BitBlt Lib "gdi32" (ByVal hDestDC

As Long, ByVal x As Long, ByVal y As Long, ByVal nWidth
As Long, ByVal nHeight As Long, ByVal hSrcDC As Long,
ByVal xSrc As Long, ByVal ySrc As Long, ByVal dwRop As
Long) As Long

Private Const SRCCOPY = &HCC0020

4. Add a Form_Load procedure:

Private Sub Form_Load()
BallY = 0
BallDir = 1
BongSound = StoreSound("bong.wav")
End Sub

5. Write a Command1_Click event procedure to toggle the timer:

Private Sub Command1_Click()
Timer1.Enabled = Not (Timer1.Enabled)
End Sub

 Database Access and Management 8-351

6. The Timer1_Timer event controls the bouncing ball position:

Private Sub Timer1_Timer()
Static BallY As Long
Dim RtnValue As Long
Picture1.Cls
BallY = BallY + BallDir * Picture1.ScaleHeight / 50
If BallY < 0 Then
BallY = 0
BallDir = 1
Call sndPlaySound(BongSound, SND_ASYNC Or SND_MEMORY)
ElseIf BallY + Picture2.ScaleHeight > Picture1.ScaleHeight

Then
BallY = Picture1.ScaleHeight - Picture2.ScaleHeight
BallDir = -1
Call sndPlaySound(BongSound, SND_ASYNC Or SND_MEMORY)
End If
RtnValue = BitBlt(Picture1.hDC, CLng(0.5 *

(Picture1.ScaleWidth - Picture2.ScaleWidth)), _
BallY, CLng(Picture2.ScaleWidth),

CLng(Picture2.ScaleHeight), Picture2.hDC, CLng(0),
CLng(0), SRCCOPY)

End Sub

7. We also need to make sure we include the StoreSound procedure from the last

example so we can hear the bong when the ball bounces.

8. Once everything is together, run it and follow the bouncing ball!

Flicker Free Animation

• You may notice in the bouncing ball example that there is a bit of flicker as it

bounces. Much smoother animation can be achieved with just a couple of changes.

• The idea behind so-called flicker free animation is to always work with two picture

boxes for the animation (each with the same properties, but one is visible and one is
not). The non-visible picture box is our working area where ever ything is positioned
where it needs to be at each time point in the animation sequence. Once everything is
properly positioned, we then copy (using BitBlt) the entire non-visible picture box
into the visible picture box. The results are quite nice.

 Database Access and Management 8-352

Quick Example 10 - Flicker Free Animation

We modify the previous example to make it flicker free.

1. Change the Index property of Picture1 to 0 (zero). This makes it a control array

which we can make a copy of. Once this copy is made. Picture1(0) will be our
visible area and Picture1(1) will be our non-visible, working area.

2. Add these statements to the Form_Load procedure to create Picture1(1):

Load Picture1(1)
Picture1(1).AutoRedraw = True

3. Make the italicized changes to the Timer1_Timer event. The ball is now drawn to

Picture1(1). Once drawn, the last statement in the procedure copies Picture1(1) to
Picture1(0).

Private Sub Timer1_Timer()
Static BallY As Long
Dim RtnValue As Long
Picture1(1).Cls
BallY = BallY + BallDir * Picture1(1).ScaleHeight / 50
If BallY < 0 Then
 BallY = 0
 BallDir = 1
 Call sndPlaySound(BongSound, SND_ASYNC Or SND_MEMORY)
ElseIf BallY + Picture2.ScaleHeight >

Picture1(1).ScaleHeight Then
 BallY = Picture1(1).ScaleHeight - Picture2.ScaleHeight
 BallDir = -1
 Call sndPlaySound(BongSound, SND_ASYNC Or SND_MEMORY)
End If
RtnValue = BitBlt(Picture1(1).hDC, CLng(0.5 *

(Picture1(1).ScaleWidth - Picture2.ScaleWidth)), _
 BallY, CLng(Picture2.ScaleWidth),

CLng(Picture2.ScaleHeight), Picture2.hDC, CLng(0),
CLng(0), SRCCOPY)

RtnValue = BitBlt(Picture1(0).hDC, CLng(0), CLng(0),
CLng(Picture1(1).ScaleWidth),
CLng(Picture1(1).ScaleHeight), Picture1(1).hDC, CLng(0),
CLng(0), SRCCOPY)

End Sub

4. Run the application and you should notice the smoother ball motion.

 Database Access and Management 8-353

Quick Example 11 - Horizontally Scrolling Background

Most action arcade games employ scrolling backgrounds. What they really use is one
long background picture that wraps around itself. We can use the BitBlt API function to
generate such a background. Here’s the idea. Say we have one long bitmap of some
background (here, an underseascape created in a paint program and saved as a bitmap
file):

At each program cycle, we copy a bitmap of the size shown to a destination location. As
X increases, the background appears to scroll. Note as X reaches the end of this source
bitmap, we need to copy a little of both ends to the destination bitmap.

1. Start a new application. Add a horizontal scroll bar, two picture boxes, and a timer

control. Your form should resemble:

HScroll1

Height

Picture1

Width

Timer1

X

Picture2

 Database Access and Management 8-354

2. For Picture1 (the destination), set the ScaleMode property to Pixel. For Picture2, set
ScaleMode to Pixel, AutoSize and AutoRedraw to True , and Picture to
Undrsea1.bmp (provided on class disk). Set Picture1 Height property to the same as
Picture2. Set Timer1 Interval property to 50. Set the Hscroll1 Max property to 20
and LargeChange property to 2. After setting properties, resize the form so Picture2
does not appear.

3. Copy and paste the BitBlt Declare statement from the API text viewer. Also, copy

the SRCCOPY constant:

4. Attach the following code to the Timer1_Timer event:

Private Sub Timer1_Timer()
Static x As Long
Dim AWidth As Long
Dim RC As Long
'Find next location on Picture2
x = x + HScroll1.Value
If x > Picture2.ScaleWidth Then x = 0
'When x is near right edge, we need to copy
'two segments of Picture2 into Picture1
If x > (Picture2.ScaleWidth - Picture1.ScaleWidth) Then

AWidth = Picture2.ScaleWidth - x
RC = BitBlt(Picture1.hDC, CLng(0), CLng(0), AWidth,

CLng(Picture2.ScaleHeight), Picture2.hDC, x, CLng(0),
SRCCOPY)

RC = BitBlt(Picture1.hDC, AWidth, CLng(0),
CLng(Picture1.ScaleWidth - AWidth),
CLng(Picture2.ScaleHeight), Picture2.hDC, CLng(0),
CLng(0), SRCCOPY)

Else
RC = BitBlt(Picture1.hDC, CLng(0), CLng(0),

CLng(Picture1.ScaleWidth), CLng(Picture2.ScaleHeight),
Picture2.hDC, x, CLng(0), SRCCOPY)

End If
End Sub

5. Run the application. The scroll bar is used to control the speed of the scrolling (the

amount X increases each time a timer event occurs).

 Database Access and Management 8-355

A Bit of Multimedia

• The computer of the 90’s is the multimedia computer (graphics, sounds, video).

Windows provides a set of rich multimedia functions we can use in our Visual Basic
applications. Of course, to have access to this power, we use the API. We’ll briefly
look at using the API to play video files with the AVI (audio -visual interlaced)
extension.

• In order to play AVI files, your computer needs to have software such as Video for

Windows (from Microsoft) or QuickTime for Windows (from Apple) loaded on your
machine. When a video is played from Visual Basic, a new window is opened with
the title of the video file shown. When the video is complete, the window is
automatically closed.

• The DLL function mciExecute is used to play video files (note it will also play WAV

files). The syntax for using this function is:

Dim RtnValue as Long
 .
 .
RtnValue = mciExecute (Command)

where Command is a string argument consisting of the keyword ‘Play’ concatenated
with the complete pathname to the desired file.

Quick Example 12 - Multime dia Sound and Video

1. Start a new application. Add a command button and a common dialog box. Copy

and paste the mciExecute Declare statement from the API Text Viewer program into
your application. It should read:

Private Declare Function mciExecute Lib "winmm.dll" (ByVal

lpstrCommand As String) As Long

2. Add this code to the Command1_Click procedure:

Private Sub Command1_Click()
Dim RtnVal As Long
'Get name of .avi file to play
CommonDialog1.Filter = "Video Files|*.avi"
CommonDialog1.ShowOpen
RtnVal = mciExecute("play " + CommonDialog1.filename)
End Sub

3. Run the application. Find a AVI file and see and hear the lovely results.

 Database Access and Management 8-356

Exercise 9

The Original Video Game - Pong!

In the early 1970’s, Nolan Bushnell began the video game revolution with Atari’s Pong
game -- a very simple Ping-Pong kind of game. Try to replicate this game using Visual
Basic. In the game, a ball bounces from one end of a court to another, bouncing off side
walls. Players try to deflect the ball at each end using a controllable paddle. Use sounds
where appropriate (look at my solution for some useful DLL’s for sound).

My solution freely borrows code and techniques from several reference sources. The
primary source is a book on game programming, by Mark Pruett, entitled “Black Ar t of
Visual Basic Game Programming,” published by The Waite Group in 1995. In my
simple game, the left paddle is controlled with the A and Z keys on the keyboard, while
the right paddle is controlled with the K and M keys.

My Solution:

Form:

Label1 lblScore1 cmdNew cmdPause cmdExit Label3 lblScore2

Shape1

picField

picBall

timGame
picPaddle

picBlank

 Database Access and Management 8-357

Properties:

Form frmPong :
 BackColor = &H00FFC0C0& (Light blue)
 Caption = The Original Video Game - Pong!

Timer timGame :
 Enabled = False
 Interval = 25 (may need different values for different machines)

PictureBox picPaddle:
 Appearance = Flat
 AutoRedraw = True
 AutoSize = True
 Picture = paddle.bmp
 ScaleMode = Pixel
 Visible = False

CommandButton cmdPause:
 Caption = &Pause
 Enabled = 0 'False

CommandButton cmdExit:
 Caption = E&xit

CommandButton cmdNew:
 Caption = &New Game
 Default = True

PictureBox picField:
 BackColor = &H0080FFFF& (Light yellow)
 BorderStyle = None
 FontName = MS Sans Serif
 FontSize = 24
 ForeColor = &H000000FF& (Red)
 ScaleMode = Pixel

PictureBox picBlank :
 Appearance = Flat
 AutoRedraw = True
 BackColor = &H0080FFFF& (Light yellow)
. BorderStyle = None
 FillStyle = Solid
 Visible = False

 Database Access and Management 8-358

PictureBox picBall:
 Appearance = Flat
 AutoRedraw = True
 AutoSize = True
 BorderStyle = None
 Picture = ball.bmp
 ScaleMode = Pixel
 Visible = False

Shape Shape1:
 BackColor = &H00404040& (Black)
 BackStyle = Opaque

Label lblScore2:
 Alignment = Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = Fixed Single
 Caption = 0
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18

Label Label3:
 BackColor = &H00FFC0C0& (Light blue)
 Caption = Player 2
 FontName = MS Sans Serif
 FontSize = 13.5

Label lblScore1:
 Alignment = Center
 BackColor = &H00FFFFFF& (White)
 BorderStyle = Fixed Single
 Caption = 0
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18

Label Label1:
 BackColor = &H00FFC0C0& (Light blue)
 Caption = Player 1
 FontName = MS Sans Serif
 FontSize = 13.5

 Database Access and Management 8-359

Code:

General Declarations:

Option Explicit
'Sound file strings
Dim wavPaddleHit As String
Dim wavWall As String
Dim wavMissed As String
'A user-defined variable to position bitmaps
Private Type tBitMap
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
 Width As Long
 Height As Long
End Type
'Ball information
Dim bmpBall As tBitMap
Dim XStart As Long, YStart As Long
Dim XSpeed As Long, YSpeed As Long
Dim SpeedUnit As Long
Dim XDir As Long, YDir As Long
'Paddle information
Dim bmpPaddle1 As tBitMap, bmpPaddle2 As tBitMap
Dim YStartPaddle1 As Long, YStartPaddle2 As Long
Dim XPaddle1 As Long, XPaddle2 As Long
Dim PaddleIncrement As Long

Dim Score1 As Integer, Score2 As Integer
Dim Paused As Boolean
'Number of points to win
Const WIN = 10
'Number of bounces before speed increases
Const BOUNCE = 10
Dim NumBounce As Integer
'API Functions and constants
Private Declare Function BitBlt Lib "gdi32" (ByVal hDestDC
As Long, ByVal x As Long, ByVal y As Long, ByVal nWidth As
Long, ByVal nHeight As Long, ByVal hSrcDC As Long, ByVal
xSrc As Long, ByVal ySrc As Long, ByVal dwRop As Long) As
Long
Const SRCCOPY = &HCC0020 ' (DWORD) dest = source
Private Declare Function sndPlaySound Lib "winmm.dll" Alias
"sndPlaySoundA" (ByVal lpszSoundName As String, ByVal
uFlags As Long) As Long

 Database Access and Management 8-360

Private Declare Function sndStopSound Lib "winmm.dll" Alias
"sndPlaySoundA" (ByVal lpszNull As String, ByVal uFlags As
Long) As Long
Const SND_ASYNC = &H1
Const SND_SYNC = &H0
Const SND_MEMORY = &H4
Const SND_LOOP = &H8
Const SND_NOSTOP = &H10
' Windows API rectangle function
Private Declare Function IntersectRect Lib "user32"
(lpDestRect As tBitMap, lpSrc1Rect As tBitMap, lpSrc2Rect
As tBitMap) As Long

NoiseGet General Function:

Function NoiseGet(ByVal FileName) As String
'--
--
' Load a sound file into a string variable.
' Taken from:
' Mark Pruett
' Black Art of Visual Basic Game Programming
' The Waite Group, 1995
'--
--
Dim buffer As String
Dim f As Integer
Dim SoundBuffer As String
 On Error GoTo NoiseGet_Error
 buffer = Space$(1024)
 SoundBuffer = ""
 f = FreeFile
 Open FileName For Binary As f
 Do While Not EOF(f)
 Get #f, , buffer ' Load in 1K chunks
 SoundBuffer = SoundBuffer & buffer
 Loop
 Close f
 NoiseGet = Trim$(SoundBuffer)
Exit Function
NoiseGet_Error:
 SoundBuffer = ""
 Exit Function
End Function

 Database Access and Management 8-361

NoisePlay General Procedure:

Sub NoisePlay(SoundBuffer As String, ByVal PlayMode As
Integer)
'--
--
' Plays a sound previously loaded into memory with function
' NoiseGet().
' Taken from:
' Mark Pruett
' Black Art of Visual Basic Game Programming
' The Waite Group, 1995
'--
--
Dim retcode As Integer
 If SoundBuffer = "" Then Exit Sub
' Stop any sound that may currently be playing.
 retcode = sndStopSound(0, SND_ASYNC)
' PlayMode should be SND_SYNC or SND_ASYNC
 retcode = sndPlaySound(ByVal SoundBuffer, PlayMode Or
SND_MEMORY)
End Sub

Bitmap_Move General Procedure:

Private Sub Bitmap_Move(ABitMap As tBitMap, ByVal NewLeft
As Integer, ByVal NewTop As Integer, SourcePicture As
PictureBox)
' Move bitmap from one location to the next
' Modified from:
' Mark Pruett
' Black Art of Visual Basic Game Programming
' The Waite Group, 1995
Dim RtnValue As Integer
'First erase at old location
RtnValue = BitBlt(picField.hDC, ABitMap.Left, ABitMap.Top,
ABitMap.Width, ABitMap.Height, picBlank.hDC, 0, 0, SRCCOPY)
'Then, establish and redraw at new location
ABitMap.Left = NewLeft
ABitMap.Top = NewTop
RtnValue = BitBlt(picField.hDC, ABitMap.Left, ABitMap.Top,
ABitMap.Width, ABitMap.Height, SourcePicture.hDC, 0, 0,
SRCCOPY)
End Sub

 Database Access and Management 8-362

ResetPaddles General Procedure:

Private Sub ResetPaddles()
'Reposition paddles
bmpPaddle1.Top = YStartPaddle1
bmpPaddle2.Top = YStartPaddle2
Call Bitmap_Move(bmpPaddle1, bmpPaddle1.Left,
bmpPaddle1.Top, picPaddle)
Call Bitmap_Move(bmpPaddle2, bmpPaddle2.Left,
bmpPaddle2.Top, picPaddle)
End Sub

Update_Score General Procedure:

Private Sub Update_Score(Player As Integer)
Dim Winner As Integer, RtnValue As Integer
Winner = 0
'Update scores and see if game over
timGame.Enabled = False
Call NoisePlay(wavMissed, SND_SYNC)
Select Case Player
Case 1
 Score2 = Score2 + 1
 lblScore2.Caption = Format(Score2, "#0")
 lblScore2.Refresh
 If Score2 = WIN Then Winner = 2
Case 2
 Score1 = Score1 + 1
 lblScore1.Caption = Format(Score1, "#0")
 lblScore1.Refresh
 If Score1 = WIN Then Winner = 1
End Select
If Winner = 0 Then
 Call ResetBall
 timGame.Enabled = True
Else
 cmdNew.Enabled = False
 cmdPause.Enabled = False
 cmdExit.Enabled = False
 RtnValue = sndPlaySound(App.Path + "\cheering.wav",
SND_SYNC)
 picField.CurrentX = 0.5 * (picField.ScaleWidth -
picField.TextWidth("Game Over"))
 picField.CurrentY = 0.5 * picField.ScaleHeight -
picField.TextHeight("Game Over")
 picField.Print "Game Over"
 cmdNew.Enabled = True

 Database Access and Management 8-363

 cmdExit.Enabled = True
End If
End Sub

 Database Access and Management 8-364

ResetBall General Procedure:

Sub ResetBall()
'Set random directions
XDir = 2 * Int(2 * Rnd) - 1
YDir = 2 * Int(2 * Rnd) - 1
bmpBall.Left = XStart
bmpBall.Top = YStart
End Sub

cmdExit_Click Event:

Private Sub cmdExit_Click()
'End game
End
End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()
'New game code
'Reset scores
lblScore1.Caption = "0"
lblScore2.Caption = "0"
Score1 = 0
Score2 = 0
'Reset ball
SpeedUnit = 1
XSpeed = 5 * SpeedUnit
YSpeed = XSpeed
Call ResetBall
'Reset paddles
picField.Cls
PaddleIncrement = 5
NumBounce = 0
Call ResetPaddles
cmdPause.Enabled = True
timGame.Enabled = True
picField.SetFocus
End Sub

 Database Access and Management 8-365

Collided General Function:

Private Function Collided(A As tBitMap, B As tBitMap) As
Integer
'--
' Check if the two rectangles (bitmaps) intersect,
' using the IntersectRect API call.
' Taken from:
' Mark Pruett
' Black Art of Visual Basic Game Programming
' The Waite Group, 1995
'--

' Although we won't use it, we need a result
' rectangle to pass to the API routine.
Dim ResultRect As tBitMap

 ' Calculate the right and bottoms of rectangles needed
by the API call.
 A.Right = A.Left + A.Width - 1
 A.Bottom = A.Top + A.Height - 1

 B.Right = B.Left + B.Width - 1
 B.Bottom = B.Top + B.Height - 1

 ' IntersectRect will only return 0 (false) if the
 ' two rectangles do NOT intersect.
 Collided = IntersectRect(ResultRect, A, B)
End Function

cmdPause Click Event:

Private Sub cmdPause_Click()
If Not (Paused) Then
 timGame.Enabled = False
 cmdNew.Enabled = False
 Paused = True
 cmdPause.Caption = "&UnPause"
Else
 timGame.Enabled = True
 cmdNew.Enabled = True
 Paused = False
 cmdPause.Caption = "&Pause"
End If
picField.SetFocus
End Sub

 Database Access and Management 8-366

 Database Access and Management 8-367

Form Load Event:

Private Sub Form_Load()
Randomize Timer
'Place from at middle of screen
frmPong.Left = 0.5 * (Screen.Width - frmPong.Width)
frmPong.Top = 0.5 * (Screen.Height - frmPong.Height)
'Load sound files into strings from fast access
wavPaddleHit = NoiseGet(App.Path + "\paddle.wav")
wavMissed = NoiseGet(App.Path + "\missed.wav")
wavWall = NoiseGet(App.Path + "\wallhit.wav")
'Initialize ball and paddle locations
XStart = 0.5 * (picField.ScaleWidth - picBall.ScaleWidth)
YStart = 0.5 * (picField.ScaleHeight - picBall.ScaleHeight)
XPaddle1 = 5
XPaddle2 = picField.ScaleWidth - picPaddle.ScaleWidth - 5
YStartPaddle1 = 0.5 * (picField.ScaleHeight -
picPaddle.ScaleHeight)
YStartPaddle2 = YStartPaddle1
'Get ball dimensions
bmpBall.Left = XStart
bmpBall.Top = YStart
bmpBall.Width = picBall.ScaleWidth
bmpBall.Height = picBall.ScaleHeight
'Get paddle dimensions
bmpPaddle1.Left = XPaddle1
bmpPaddle1.Top = YStartPaddle1
bmpPaddle1.Width = picPaddle.ScaleWidth
bmpPaddle1.Height = picPaddle.ScaleHeight
bmpPaddle2.Left = XPaddle2
bmpPaddle2.Top = YStartPaddle2
bmpPaddle2.Width = picPaddle.ScaleWidth
bmpPaddle2.Height = picPaddle.ScaleHeight
'Get ready to play
Paused = False
frmPong.Show
Call ResetPaddles
End Sub

 Database Access and Management 8-368

picField KeyDown Event:

Private Sub picField_KeyDown(KeyCode As Integer, Shift As
Integer)
Select Case KeyCode
'Player 1 Motion
Case vbKeyA
 If (bmpPaddle1.Top - PaddleIncrement) > 0 Then
 Call Bitmap_Move(bmpPaddle1, bmpPaddle1.Left,
bmpPaddle1.Top - PaddleIncrement, picPaddle)
 End If
Case vbKeyZ
 If (bmpPaddle1.Top + bmpPaddle1.Height + PaddleIncrement)
< picField.ScaleHeight Then
 Call Bitmap_Move(bmpPaddle1, bmpPaddle1.Left,
bmpPaddle1.Top + PaddleIncrement, picPaddle)
 End If
'Player 2 Motion
Case vbKeyK
 If (bmpPaddle2.Top - PaddleIncrement) > 0 Then
 Call Bitmap_Move(bmpPaddle2, bmpPaddle2.Left,
bmpPaddle2.Top - PaddleIncrement, picPaddle)
 End If
Case vbKeyM
 If (bmpPaddle2.Top + bmpPaddle2.Height + PaddleIncrement)
< picField.ScaleHeight Then
 Call Bitmap_Move(bmpPaddle2, bmpPaddle2.Left,
bmpPaddle2.Top + PaddleIncrement, picPaddle)
 End If
End Select
End Sub

timGame Timer Event:

Private Sub timGame_Timer()
'Main routine
Dim XInc As Integer, YInc As Integer
Dim Collision1 As Integer, Collision2 As Integer, Collision
As Integer
Static Previous As Integer
'If paused, do nothing
If Paused Then Exit Sub
'Determine ball motion increments
XInc = XDir * XSpeed
YInc = YDir * YSpeed
'Ball hits top wall

 Database Access and Management 8-369

If (bmpBall.Top + YInc) < 0 Then
 YDir = -YDir
 YInc = YDir * YSpeed
 Call NoisePlay(wavWall, SND_ASYNC)
End If
'Ball hits bottom wall
If (bmpBall.Top + bmpBall.Height + YInc) >
picField.ScaleHeight Then
 YDir = -YDir
 YInc = YDir * YSpeed
 Call NoisePlay(wavWall, SND_ASYNC)
End If
'Ball goes past left wall - Player 2 scores
If (bmpBall.Left) > picField.ScaleWidth Then
 Call Update_Score(2)
End If
'Ball goes past right wall - Player 1 scores
If (bmpBall.Left + bmpBall.Width) < 0 Then
 Call Update_Score(1)
End If
'Check if either paddle and ball collided
Collision1 = Collided(bmpBall, bmpPaddle1)
Collision2 = Collided(bmpBall, bmpPaddle2)
'Move ball
Call Bitmap_Move(bmpBall, bmpBall.Left + XInc, bmpBall.Top
+ YInc, picBall)
'If paddle hit, redraw paddle
If Collision1 Then
 Call Bitmap_Move(bmpPaddle1, bmpPaddle1.Left,
bmpPaddle1.Top, picPaddle)
 Collision = Collision1
ElseIf Collision2 Then
 Call Bitmap_Move(bmpPaddle2, bmpPaddle2.Left,
bmpPaddle2.Top, picPaddle)
 Collision = Collision2
End If
'If we hit a paddle, change ball direction
If Collision And (Not Previous) Then
 NumBounce = NumBounce + 1
 If NumBounce = BOUNCE Then
 NumBounce = 0
 XSpeed = XSpeed + SpeedUnit
 YSpeed = YSpeed + SpeedUnit
 End If
 XDir = -XDir
 Call NoisePlay(wavPaddleHit, SND_ASYNC)
End If

 Database Access and Management 8-370

Previous = Collision
End Sub

Learn Visual Basic 6.0

10. Other Visual Basic Topics

Review and Preview

• In this last class, we look at a lot of relatively unrelated topics - a Visual Basic

playground. We’ll cover lots of things, each with enough detail to allow you, as a
now-experienced Visual Basic programmer, to learn more about the topics that
interest you.

Custom Controls

• A custom control is an extension to the standard Visual Basic toolbox. You use

custom controls just as you would any other control. In fact, you’ve used (or at least
seen) custom controls before. The common dialog box, the DBList box, the
DBCombo box, and the DBGrid tool, are all examples of custom controls. Custom
controls can be used to add some really cool features to your applications.

• Custom controls are also referred to as ActiveX controls. ActiveX is a technology

newly introduced by Microsoft to describe what used to be known as OLE
Automation. Prior to Visual Basic 5.0, the only way to create your own controls was
to use C or C++. Now, with ActiveX technology, you can create your own controls
knowing only Visual Basic! Of course, this would be a course by itself (and is).

• To use a custom control, you must load it into the toolbox. To do this, choose

Components from the Visual Basic Project menu. The Components (custom
controls) dialog box is displayed.

 Database Access and Management 8-371

• To add a control, select the check box next to the desired selection. When done,

choose OK and the selected controls will now appear in the toolbox.

• Each custom control has its own set of properties, events, and methods . The best

reference for each control is the Microsoft Visual Basic Component Tools Guide
manual that comes with Visual Basic 6.0. And, each tool also features on-line help.

• Here, we’ll look at several custom controls and brief examples of their usage. And,

we’ll give some of the more important and unique prope rties, events, and methods for
each. The main purpose here is to expose you to a few of these controls. You are
encouraged to delve into the toolbox and look at all the tools and find ones you can
use in your applications.

 Database Access and Management 8-372

Masked Edit Control

• The masked edit control is used to prompt users for data input using a mask pattern.
The mask allows you to specify exactly the desired input format. With a mask, the
control acts like a standard text box. This control is loaded by selecting the
Microsoft Masked Edit Control from the Components dialog box.

• Possible uses for this control include:

◊ To prompt for a date, a time, number, or currency value.
◊ To prompt for something that follows a pattern, like a phone number

or social security number.
◊ To format the display and printing of mask input data.

• Masked Edit Properties:

Mask Determines the type of information that is input into
the control. It uses characters to define the type of
input (see on-line help for complete descriptions).

Text Contains data entered into the control (including all
prompt characters of the input mask).

• Masked Edit Events:

Change Event called when the data in the control changes.
Validation Error Event called when the data being entered by the

user does not match the input mask.

 Database Access and Management 8-373

• Masked Edit Example:

We’ll use the masked edit control to obtain a phone number. Place a masked edit
control on a form. Set the masked edit controls Mask property equal to:

(###)-###-####

Set the Font Size property to 12. My form now looks like this:

Run the example and notice how simple it is to fill in the phone number. Break the
application and examine the Text property of the control in the Immediate Window.

Chart Control

• The chart control is an amazing tool. In fact, it’s like a complete program in itself.

It allows you to design all types of graphs interactively on your form. Then, at run-
time, draw graphs, print them, copy them, and change their styles. The control is
loaded by selecting Microsoft Chart Control from the Components dialog box.

• Possible uses for this control include:

◊ To display data in one of many 2D or 3D charts.
◊ To load data into a grid from an array.

• Chart Control Properties:

ChartType Establishes the type of chart to display.
RandomFill Used to fill chart with random values (good for

chcking out chart at design-time). Data is normally
loaded from a data grid object associated with the
chart control (consult on- line help).

 Database Access and Management 8-374

Obviously, there are many more properties used with the chart control. We
only look at these two to illustrate what can be done with this powerful
control.

• Chart Control Examples:

Start a new application. Add a chart control to the form. A default bar graph will
appear:

Change the ChartType property to a 3 and obtain a line chart:

 Database Access and Management 8-375

or obtain a fancy 3D chart by using a ChartType of 8:

These few quick examples should give you an appreciation for the power and ease of
use of the chart control.

Multimedia Control

• The multimedia control allows you to manage Media Control Interface (MCI)

devices. These devices include: sound boards, MIDI sequencers, CD-ROM drives,
audio players, videodisc players, and videotape recorders and players. This control is
loaded by selecting the Microsoft Multimedia Control from the Components dialog
box.

• The primary use for this control is:

◊ To manage the recording and playback of MCI devices. This
includes the ability to play CD’s, record WAV files, and playback
WAV files.

• When placed on a form, the multimedia control resembles the buttons you typically

see on a VCR:

You should recognize buttons such as Play, Rewind, Pause, etc.

 Database Access and Management 8-376

• Programming the Multimedia Control:

The multimedia control uses a set of high- level, device-independent commands,
known as MCI (media control interface) commands, to control various multimedia
devices. Our example will show you what these commands look like. You are
encouraged to further investigate the control (via on- line help) for further functions.

• Multimedia Control Example:

We’ll use the multimedia control to build a simple audio CD player. Put a
multimedia control on a form. Place the following code in the Form_Load Event:

Private Sub Form_Load()
'Set initial properties
Form1.MMControl1.Notify = False
Form1.MMControl1.Wait = True
Form1.MMControl1.Shareable = False
Form1.MMControl1.DeviceType = "CDAudio"
'Open the device
Form1.MMControl1.Command = "Open"
End Sub

This code initializes the device at run time. If an audio CD is loaded into the CD
drive, the appropriate buttons on the Multimedia control are enabled:

This button enabling is an automatic process - no coding is necessary. Try playing a
CD with this example and see how the button status changes.

 Database Access and Management 8-377

Rich Textbox Control

• The rich textbox control allows the user to enter and edit text, providing more

advanced formatting features than the conventional textbox control. You can use
different fonts for different text sections. You can even control indents, hanging
indents, and bulleted paragraphs. This control is loaded by selecting the Microsoft
Rich Textbox Control from the Components dialog box.

• Possible uses for this control include:

◊ Read and view large text files.
◊ Implement a full-featured text editor into any applications.

• Rich Textbox Properties, Events, and Methods:

Most of the properties, events, and methods associated with the conventional textbox
are available with the rich text box. A major difference between the two controls is
that with the rich textbox, multiple font sizes, styles, and colors are supported. Some
unique properties of the rich textbox are:

FileName Can be used to load the contents of a .txt or .rtf file

into the control.
SelFontName Set the font name for the selected text.
SelFontSize Set the font size for the selected text.
SelFontColor Set the font color for the selected text.

Some unique methods of the rich textbox are:

LoadFile Open a file and load the contents into the control.
SaveFile Save the control contents into a file.

• Rich Textbox Example:

Put a rich textbox control on a form. Put a combo box on the form (we will use this
to display the fonts available for use). Use the following code in the Form_Load
event:

Private Sub Form_Load()
Dim I As Integer
For I = 0 To Screen.FontCount - 1
 Combo1.AddItem Screen.Fonts(I)
Next I
End Sub

 Database Access and Management 8-378

Use the following code in the Combo1_Click event:

Private Sub Combo1_Click()
RichTextBox1.SelFontName = Combo1.Text
End Sub

Run the application. Type some text. Highlight text you want to change the font on.
Go to the combo box and select the font. Notice that different areas within the text
box can have different fonts:

Slider Control

• The slider control is similar to a scroll bar yet allows the ability to select a range of

values, as well as a single value. This control is part of a group of controls loaded by
selecting the Microsoft Windows Common Controls from the Components dialog
box.

• Possible uses for this control include:

◊ To set the value of a point on a graph.
◊ To select a range of numbers to be passed into an array.
◊ To resize a form, field, or other graphics object.

 Database Access and Management 8-379

• Slider Control Properties:

Value Current slider value.
Min, Max Establish upper and lower slider limits.
TickFrequency Determines how many ticks appear on slider.
TickStyle Determines how and where ticks appear.
SmallChange Amount slider value changes when user presses left

or right arrow keys.
LargeChange Amount slider value changes when user clicks the

slider or presses PgUp or PgDn arrow keys.
SelectRange Enable selecting a range of values.
SelStart Starting selected value.
SelLength Length of select range of values.

• Slider Control Example:

We’ll build a slider that lets us select a range of number somewhere between the
extreme values of 0 to 100. Put two label boxes and a slider on a form:

Set the slider control SmallChange to 1, LargeChange to 10, Min to 0, Max to 100,
TickFrequency to 10, and SelectRange to True . Use the following in the
Slider1_MouseDown event:

Private Sub Slider1_MouseDown(Button As Integer, Shift As
Integer, x As Single, y As Single)
If Shift = 1 Then
 Slider1.SelStart = Slider1.Value
 Label1.Caption = Slider1.Value
 Slider1.SelLength = 0
 Label2.Caption = ""
End If
End Sub

 Database Access and Management 8-380

and this code in the Slider1_MouseUp event:

Private Sub Slider1_MouseUp(Button As Integer, Shift As
Integer, x As Single, y As Single)
On Error Resume Next
If Shift = 1 Then
 Slider1.SelLength = Slider1.Value - Slider1.SelStart
 Label2.Caption = Slider1.Value
Else
 Slider1.SelLength = 0
End If
End Sub

Run the application. Establish a starting value for the selected range by moving the
slider to a desired point. Then, click the slider thumb while holding down the Shift
key and move it to the desired upper value.

 Database Access and Management 8-381

Tabbed Dialog Control

• The tabbed dialog control provides an easy way to present several dialogs or screens

of information on a single form using the same interface seen in many commercial
Windows applications. This control is loaded by selecting the Sheridan Tabbed
Dialog Control from the Components dialog box.

• The tabbed dialog control provides a group of tabs, each of which acts as a container

(works just like a frame or separate form) for other controls. Only one tab can be
active at a time. Using this control is easy. Just build each tab container as separate
applications: add controls, set properties, and write code like you do for any
application. Navigation from one container to the next is simple: just click on the
corresponding tab.

• Tabbed Dialog Control Example:

Start an application and put a tabbed dialog control on the form:

Design each tab with some controls, then run the application. Note how each tab in
the folder has its own working space.

 Database Access and Management 8-382

UpDown Control

• The updown control is a pair of arrow buttons that the user can click to increment or

decrement a value. It works with a buddy control which uses the updown control’s
value property. This control is part of a group of controls loaded by selecting the
Microsoft Windows Common Controls from the Components dialog box.

• UpDown Control Properties:

Value Current control value.
Min, Max Establish upper and lower control limits.
Increment Amount control value changes each time an arrow

is clicked.
Orientation Determines whether arrows lie horizontally or

vertically.

• UpDown Control Events:

Change Invoked when value property changes.
UpClick Invoked when up arrow is clicked.
DownClick Invoked when down arrow is clicked.

• UpDown Control Example:

We’ll build an example that lets us establish a number between 1 and 25. Add a
updown control and a label box to a form. Set the updown control’s Min property to
1 and Max property to 25. The form should resemble:

Use this simple code in the UpDown1_Change event, then give it a try:

Private Sub UpDown1_Change()
Label1.Caption = UpDown1.Value
End Sub

 Database Access and Management 8-383

Toolbar Control

• Almost all Windows applications these days use toolbars. A toolbar provides quick

access to the most frequently used menu commands in an application. The toolbar
control is a mini-application in itself. It provides everything you need to design and
implement a toolbar into your application. This control is part of a group of controls
loaded by selecting the Microsoft Windows Common Controls from the
Components dialog box.

• Possible uses for this control include:

◊ Provide a consistent interface between applications with matching
toolbars.

◊ Place commonly used functions in an easily-accessed space.
◊ Provide an intuitive, graphical interface for your application.

• To create a basic toolbar, you need to follow a sequence of steps. You add

buttons to a Button collection - each button can have optional text and/or an
image, supplied by an associated ImageList control (another custom
control). Buttons can have tooltips . In more advanced applications, you can
even allow your user to customize the toolbar to their liking!

• After setting up the toolbar, you need to write code for the ButtonClick event.

The index of the clicked button is passed as an argument to this event. Since
toolbar buttons provide quick access to already coded menu options, the code
in this event is usually jus t a call to the respective menu item’s Click
procedure.

• Toolbar Control Example

We’ll look at the simplest use of the toolbar control - building a fixed format
toolbar (pictures only) at design time. We’ll create a toolbar with five
buttons: one to create a new file, one to open a file, one to save a file, one
to print a file, and one for help. Place a toolbar and imagelist control on a
form. Right click on the imagelist control to set the pictures to be used.
Using the Images tab, assign the following five images: Image 1 -
NEW.BMP, Image 2 - OPEN.BMP, Image 3 - SAVE.BMP, Image 4 -
PRINT.BMP, and Image 5 - HELP.BMP

 Database Access and Management 8-384

When done, the image control should look like this:

Click OK to close this box. Now, right mouse click on the toolbar control.
The Property Pages dialog box will appear. Using the General tab, select
the imagelist control just formed. Now, choose the Buttons tab to define
each button:

 Database Access and Management 8-385

A new button is added to the toolbar by clicking Insert Button. At a
minimum, for each button, specify the ToolTipText property, and the
Image number. Values I used are:

 Index ToolTipText Image

1 New File 1
2 Open File 2
3 Save File 3
4 Print File 4
5 -None- 0
6 Help me! 5

Note button 5 is a placeholder (set Style property to tbrPlaceholder) that puts some
space between the first four buttons and the Help button. When done, my form
looked like this:

Save and run the application. Note the button’s just click - we didn’t write any code
(as mentioned earlier, the code is usually just a call to an existing menu item’s click
event). Check out how the tool tips work.

• Quick Note on Tooltips:

Many of the Visual Basic controls support tooltips to inform the user of what a
particular control. Simply set individual control’s ToolTipText property to a non-
blank text string to enable this capability.

 Database Access and Management 8-386

Using the Windows Clipboard

• The Clipboard object has no properties or events, but it has several methods that

allow you to transfer data to and from the Windows clipboard. Some methods
transfer text, some transfer graphics.

• A method that works with both text and graphics is the Clear method:

Clipboard.Clear Clear the clipboard contents.

• To move text information to and from the clipboard, use the SetText and GetText

methods:

Clipboard.SetText Places text in clipboard.
Clipboard.GetText Returns text stored in clipboard.

These methods are most often used to implement cutting, copying, and pasting
operations.

• To move graphics to and from the clipboard, use the SetData and GetData methods:

Clipboard.SetData Places a picture in clipboard.
Clipboard.GetData Returns a picture stored in clipboard.

• When using the clipboard methods, you need to know what type of data you are

transferring (text or graphics). The GetFormat method allows that:

Clipboard.GetFormat(datatype) Returns True if the clipboard contents are of
the type specified by datatype.

Possible datatypes are:

Type Value Symbolic Constant
DDE conversation info HBF00 vbCFLink
Rich text format HBF01 vbCFRTF
Text 1 vbCFText
Bitmap 2 vbCFBitmap
Metafile 3 vbCFMetafile
Device- independent bitmap 8 vbCFDIB
Color palette 9 vbCFPalette

 Database Access and Management 8-387

Printing with Visual Basic

• Any serious Visual Basic application will need to use the printer to provide the user
with a hard copy of any work done or results (text or graphics) obtained. Printing is
one of the more complex programming tasks within Visual Basic.

• Visual Basic uses two primary approaches to printing text and graphics:

⇒ You can produce the output you want on a form and then print the entire

form using the PrintForm method.
⇒ You can send text and graphics to the Printer object and then print them

using the NewPage and EndDoc methods.

We’ll look at how to use each approach, examining advantages and disadvantages of
both. All of these techniques use the system default printer. You can also select a
printer in Visual Basic, but we won’t look at that here.

• The PrintForm method sends a pixel-by-pixel image of the specified form to the
printer. To print, you first display the form as desired and via code invoke the
command: PrintForm. This command will print the entire form, using its selected
dimensions, even if part of the form is not visible on the screen. If a form contains
graphics, they will be printed only if the form’s AutoRedraw property is True.

• The PrintForm method is by far the easiest way to print from an application. But,
graphics results may be disappointing because they are reproduced in the resolution
of the screen, not the printer. And small forms are still small when printed.

• PrintForm Example:

Start a new application. Put an image box on the form. Size it and set the Stretch
property to True . Set the Picture property to some picture (metafiles are best, you
choose). Add a label box. Put some formatted text in the box. My form looks like
this:

 Database Access and Management 8-388

Add this code to the Form_Click event:

Private Sub Form_Click()
PrintForm
End Sub

Run the application. Click on the form (not the image or label) and things should
print. Not too hard, huh?

• Using the Printer object to print in Visual Basic is more complicated, but usually
provides superior results. But, to get these better results requires a bit (and, at times,
more than a bit) of coding.

• The Printer object is a drawing space that supports many methods, like Print, PSet,

CurrentX, CurrentY, Line , PaintPicture (used to print contents of Picture boxes),
and Circle , to create text and graphics. You use these methods just like you would on
a form. When you finish placing information on the Printer object, use the EndDoc
method to send the output to the printer. The NewPage method allows printing
multi-page documents.

• The Printer object also has several properties that control print quality, page size,

number of copies, scaling, page numbers, and more. Consult Visual Basic on- line
help for further information.

• The usual approach to using the Printer object is to consider each printed page to be a

form with its own coordinate system. Use this coordinate system and the above listed
methods to place text and graphics on the page. When complete, use the EndDoc
method (or NewPage method if there are more pages). At that point, the page will
print. The main difficulty in using the Printer object is planning where everything
goes. I usually use the Scale method to define an 8.5” by 11” sheet of standard paper
in 0.01” increments:

Printer.Scale (0, 0) - (850, 1100)

I then place everything on the page relative to these coordinates. The example
illustrates the use of a few of these techniques. Consult other Visual Basic
documentation for advanced printing techniques.

 Database Access and Management 8-389

• Printer Object Example:

In this example, we’ll first define a standard sheet of paper. Then, we’ll use the Line
method to draw a box, the Circle method to draw a circle, and the Print method to
‘draw’ some text. Start a new application. We don’t need any controls on the form -
all the printing is done in the Form_Click procedure.

Private Sub Form_Click()
Printer.Scale (0, 0)-(850, 1100)
Printer.Line (100, 100)-(400, 300), , B
Printer.Circle (425, 550), 300
Printer.CurrentX = 100
Printer.CurrentY= 800
Printer.Print "This is some text."
Printer.EndDoc
End Sub

A few words on each line in this code.
First, we establish the printing area to
be 850 units wide by 1100 units long.
This allows us to place items on a
standard page within 0.01 inches.
Next, we draw a box, starting 1 inch
from the left and 1 inch from the top,
that is 3 inches wide and 2 inches high.
Then, a circle, centered at mid-page,
with radius of 3 inches is drawn.
Finally, a line of text is printed near the
bottom of the page. The EndDoc
method does the printing for us. The
printed page is shown to the right.

Run the application. Click the form to
start the printing. Relate the code to the finished drawing.

• The best way to learn how to print in Visual Basic is to do lots of it. You’ll develop
your own approaches and techniques as you gain familiarity. Use FormPrint for
simple jobs. For detailed, custom printing, you’ll need to use the Printer object.

 Database Access and Management 8-390

Multiple Form Visual Basic Applications

• All applications developed in this class use a single form. In reality, most Visual

Basic applications use multiple forms . The About window associated with most
applications is a common example of using a second form in an application. We need
to learn how to manage multiple forms in our projects.

• To add a form to an application, click the New Form button on the toolbar or select

Form under the Insert menu. Each form is designed using exactly the same
procedure we always use: draw the controls, assign properties, and write code.
Display of the different forms is handled by code you write. You need to decide
when and how you want particular forms to be displayed. The user always interacts
with the ‘active’ form.

• The first decision you need to make is to determine which form will be your startup

form. This is the form that appears when your application first begins. The startup
form is designated using the Project Properties window, activated using the Visual
Basic Project menu:

Startup Form

 Database Access and Management 8-391

• As mentioned, the startup form automatically loads when your application is run.
When you want another form to appear, you write code to load and display it.
Similarly, when you want a form to disappear, you write code to unload or hide it.
This form management is performed using various keywords :

Keyword Task
Load Loads a form into memory, but does not display it.
Show vbModeless Loads (if not already loaded) and displays a modeless

form (default Show form style).
Show vbModal Loads (if not already loaded) and displays a modal form.
Hide Sets the form’s Visible property to False. Form remains

in memory.
Unload Hides a form and removes it from memory.

A modeless form can be left to go to other forms. A modal form must be closed
before going to other forms. The startup form is modeless.

Examples

Load Form1 ‘ Loads Form1 into memory, but does not display it
Form1.Show ‘ Loads (if needed) and shows Form1 as modeless
Form1.Show vbModal ‘ Loads (if needed) and shows Form1 as modal.
Form1.Hide ‘ Sets Form1’s Visible property to False
Hide ‘ Hides the current form
Unload Form1 ‘ Unloads Form1 from memory and hides it.

• Hiding a form allows it to be recalled quickly, if needed. Hiding a form retains any

data attached to it, including property values, print output, and dynamically created
controls. You can still refer to properties of a hidden form. Unload a form if it is not
needed any longer, or if memory space is limited.

• If you want to speed up display of forms and memory is not a problem, it is a good

idea to Load all forms when your application first starts. That way, they are in
memory and available for fast recall.

 Database Access and Management 8-392

• Multiple Form Example:

Start a new application. Put two command buttons on the form (Form1). Set one’s
Caption to Display Form2 and the other’s Caption to Display Form3 . The form
will look like this:

Attach this code to the two command buttons Click events.

Private Sub Command1_Click()
Form2.Show vbModeless
End Sub

Private Sub Command2_Click()
Form3.Show vbModal
End Sub

Add a second form to the application (Form2). This form will be modeless. Place a
command button on the form. Set its Caption to Hide Form.

Attach this code to the button’s Click event.

Private Sub Command1_Click()
Form2.Hide
Form1.Show
End Sub

 Database Access and Management 8-393

Add a third form to the application (Form3). This form will be modal. Place a
command button on the form. Set its Caption to Hide Form.

Attach this code to the button’s Click event.

Private Sub Command1_Click()
Form3.Hide
Form1.Show
End Sub

Make sure Form1 is the startup form (check the Project Properties window under
the Project menu). Run the application. Note the difference between modal (Form3)
and modeless (Form2) forms.

 Database Access and Management 8-394

Visual Basic Multiple Document Interface (MDI)

• In the previous section, we looked at using multiple forms in a Visual Basic

application. Visual Basic actually provides a system for maintaining multiple- form
applications, known as the Multiple Document Interface (MDI). MDI allows you
to maintain multiple forms within a single container form. Examples of MDI
applications are Word, Excel, and the Windows Explorer program.

• An MDI application allows the user to display many forms at the same time. The

container window is called the parent form, while the individual forms within the
parent are the child forms. Both parent and child forms are modeless, meaning you
can leave one window to move to another. An application can have only one parent
form. Creating an MDI application is a two-step process. You first create the MDI
form (choose Add MDI Form from Project menu) and define its menu structure.
Next, you design each of the application’s child forms (set MDIChild property to
True).

• Design-Time Features of MDI Child Forms:

At design time, child forms are not restricted to the area inside the parent form. You
can add controls, set properties, write code, and design the features of child forms
anywhere on the desktop.

You can determine whether a form is a child by examining its MDIChild property, or
by examining the project window. The project window uses special icons to
distinguish standard forms, MDI child forms, and MDI parent forms:

• Run-Time Features of MDI Child Forms:

At run-time , the parent and child forms take on special characteristics and abilities.
Some of these are:

1. At run-time all child forms are displayed within the parent form’s internal

area. The user can move and size child forms like any other form, but
they must stay in this internal area.

Parent form

Standard form

Child form

 Database Access and Management 8-395

2. When a child is minimized, its icon appears on the MDI parent form
instead of the user’s desktop. When the parent form is minimized, the
entire application is represented by a single icon. When restored, all forms
are redisplayed as they were.

3. When a child form is maximized, its caption is combined with the parent

form’s caption and displayed in the parent title bar.

4. By setting the AutoShowChildren property, you can display child forms

automatically when forms are loaded (True), or load child forms as
hidden (False).

5. The active child form’s menus (if any) are displayed on the parent form’s

menu bar, not the child form.

6. New child forms can be created at run-time using a special form of the

Dim statement and the Show statement (the example illustrates this
process).

7. The parent form’s ActiveForm property indicates which child form is

currently active. The ActiveControl property indicates which control on
the active child form has focus.

8. The Arrange command can be used to determine how the child forms and

their icons (if closed) are displayed. The syntax is:

Arrange style

where style can take on these values:

Style Symbolic Constant Effect
0 vbCascade Cascade all nonminimized MDI

child forms.
1 vbTileHorizontal Horizontally tile all nonminimized

MDI child forms.
2 vbTileVertical Vertically tile all nonminimized MDI

child forms.
3 vbArrangeIcons Arrange icons for minimized MDI

child forms.

 Database Access and Management 8-396

• Multiple-Document Application (MDI) Example:

We’ll create an MDI application which uses a simple, text box-based, editor as the
child application. There are a lot of steps, even for a simple example. Start a new
application. Create a parent form by selecting MDI Form from the Insert menu. At
this point, the project will contain an MDI parent form (MDIForm1) and a standard
form (Form1) which we will use as a child form. Make MDIForm1 the startup form.
We work with the parent form first:

1. Set the following properties:

Caption MDI Example
Name frmParent
WindowState 2-Maximized

2. Set up the following menu structure:

Caption Name Indented
&File mnuFile No
&New mnuFileNew Yes
&Arrange mnuArrange No
&Cascade mnuArrangeItem Yes Index = 0
&Horizontal Tile mnuArrangeItem Yes Index = 1
&Vertical Tile mnuArrangeItem Yes Index = 2
&Arrange Icons mnuArrangeItem Yes Index = 3

3. Attach this code to the mnuFileNew_Click procedure. This code creates

new child forms (named frmChild - developed next).

Private Sub mnuFileNew_Click()
Dim NewDoc As New frmChild
NewDoc.Show
End Sub

4. Attach this code to the mnuArrangeItem_Click procedure. This

establishes how child forms are displayed.

Private Sub mnuArrangeItem_Click(Index As Integer)
Arrange Index
End Sub

 Database Access and Management 8-397

Now, we’ll work with Form1 which will hold the child application:

5. Draw a text box on the form. Set the following properties for the form and

the text box:

Form1:
 Caption Child Form
 MDIChild True
 Name frmChild
 Visible False

Text1:
 Left 0
 MultiLine True
 ScrollBars 2-Vertical
 Text [Blank]
 Top 0

My form resembles this:

6. Attach this code to the Form_Resize procedure. This insures that
whenever a child window is resized, the text box fills up the entire
window.

Private Sub Form_Resize()
Text1.Height = ScaleHeight
Text1.Width = ScaleWidth
End Sub

Run the application. Create new forms by selecting New from the File menu.
Try resizing forms, maximizing forms (notice how the parent form title bar
changes), minimizing forms, closing forms. Try all the Arrange menu
options.

 Database Access and Management 8-398

Creating a Help File

• During this course, we’ve made extensive use of the Visual Basic on-line help

system. In fact, one of the major advances in software in the past few years has been
improvements in such interactive help. Adding a help file to your Visual Basic
application will give it real polish, as well as making it easier to use.

• Your help file will contain text and graphics information needed to be able to run

your application. The help file will be displayed by the built- in Windows help utility
that you use with every Windows application, hence all functions available with that
utility are available with your help system. For example, each file can contain one or
more topics that your user can select by clicking a hot spot, using a keyword search,
or browsing through text. And, it’s easy for your user to print any or all help topics.

• Creating a comp lete help file is a major task and sometimes takes as much time as

creating the application itself! Because of this, we will only skim over the steps
involved, generate a simple example, and provide guidance for further reference.

• There are five major steps involved in building your own help file:

1. Create your application and develop an outline of help system topics.
2. Create the Help Text File (or Topic File) in RTF format.
3. Create the Help Project File (HPJ).
4. Compile the Help File using the Help Compiler and Project File.
5. Attach the Help File to your Visual Basic application.

Step 1 is application-dependent. We’ll look briefly at the last four steps here. More
complete details, including formatting and file structure requirements, are available in
many Visual Basic references..

• Creating a Help Text File:

To create a Help Text File, you need to use a word processor capable of saving
documents in rich-text format (RTF). Word and WordPerfect do admirable jobs.
You must also be familiar with text formatting procedures such as underlining,
double-underlining, typing hidden text, and using footnotes. This formatting is used
to delineate different parts of the help file. You should make sure all formatting
options are visible when creating the Help Text File.

 Database Access and Management 8-399

The Help Text File is basically a cryptically encoded list of hypertext jumps (jump
phrases) and context strings. These are items that allow navigation through the topics
in your help file. Some general rules of Help Text Files:

∗ Topics are separated by hard page breaks.
∗ Each topic must have a unique context string.
∗ Each topic can have a title.
∗ A topic can have many keywords attached to it to enable quick access

utilizing a search facility.
∗ Topics can have build-tag indicators and can be assigned a browse

sequence.
∗ Jumps can be to another secondary window or to another file.

Once completed, your Help Text File must be saved as an RTF file.

• Help Text File Example:

We’ll create a very simple help text file with three topics. I used Word 6.0 in this
example. Create a document with the following structure and footnotes:

 Database Access and Management 8-400

Some things to note: Topic1 and Topic3 (hypertext jumps) are double-underlined to
indicate clickable jumps to topics. Topic2 is single-underlined to indicate a jump to a
pop-up topic. The words HID_TOPIC1, HID_TOPIC2, and HID_TOPIC3
(context strings) are formatted as hidden text. Note page breaks separate each
section. Do not put a page break at the end of the file.

Also, note the use of footnotes. The # footnote is used to specify a Help context ID,
the $ provides Topic Titles for searching, and K yields search keywords. The
footnotes for this example are:

When done, save this file as SIMPLE.RTF (Rich Text Format).

• Creating the Help Project File:

The Help Project File contains the information required by the Help Compiler to
create the Help file. The file is created using any text editor and must be saved as
unformatted text (ASCII). The file extension is HPJ.

The Help Project File can contain up to nine sections, each of which supplies
information about the source file to compile. Sections names are placed within
square brackets []. Semicolons are used to indicate a comment. Sections can be in
any order. The sections are:

[OPTIONS] Specifies options for build (optional).
[FILES] Specifies Help Text Files (RTF) (required).
[BUILDTAGS] Specifies any build tags (optional).
[CONFIG] Author defined menus, macros, etc. (optional)

 Database Access and Management 8-401

[BITMAPS] Specifies any bitmaps needed for build.
[ALIAS] Can be used to specify context strings to topics (optional).
[MAP] Associates context strings with numbers. Used with context-

sensitive help (optional).
[WINDOWS] Defines primary and secondary windows (required only if

secondary windows used).
[BAGGAGE] Lists files to be included in HLP file.

• Help Project File Example:

For our simple example, the Help Project File is equally simple:

[OPTIONS]
CONTENTS=HID_CONTENTS
TITLE=SIMPLE Application Help
[FILES]
SIMPLE.RTF

This file specifies the context ID of the Table of Contents screen and the name of the
RTF file that contains the help text. Save this file as SIMPLE.HPJ (in Text, or
ASCII format).

• Compiling the Help File:

This is the easiest step. The help compiler is located in the c:\Program
Files\DevStudio\vb\hc directory and is the program hc.exe. Your file is compiled
within the DOS window. Once in that window, move to the directory containing your
HPJ file and type:

c:\Program Files \DevStudio \vb\hc\hc filename.HPJ

where filename is your Help Project File. This process generates a binary help
resource file and may take a long time to complete. Any errors are probably due to
problems in the RTF file(s). The created file has the same name as your Help Project
File with an HLP extension.

• Help File Example:

To compile the exa mple, at a DOS prompt, type:

c:\Program Files\DevStudio\vb\hc\hc SIMPLE.HPJ

The help file SIMPLE.HLP will be created (if no errors occur) and saved in the same

directory as your HPJ file.

 Database Access and Management 8-402

• Attaching the Help File:

The final step is to attach the compiled help file to your application. As a first step,
open the Project Properties window under the Project menu. Under Help File ,
select the name of your HLP file by clicking the ellipsis (...). This ties the help file to
the application, enabling the user to press F1 for help.

You can also add a Help item somewhere in your menu structure that invokes help
via its Click event. If you do this, you must write code to invoke the help file. The
code involves a call to the Windows API function, WinHelp. But, after last class,
we’re not daunted by such functions, are we? First, we need the function declaration
(from the API Text Viewer):

Declare Function WinHelp Lib "user32" Alias "WinHelpA" (ByVal hwnd
As Long, ByVal lpHelpFile As String, ByVal wCommand As Long,
ByVal dwData As Long) As Long

We also need a constant (also from the API Text Viewer):

Const HELP_INDEX = &H3 ' Display index

This constant will declare the Help files index page upon invocation of WinHelp.
There are other constants that can be used with WinHelp - this is just a simple
example. The Declare statement and constant definitions usually go in the general
declarations area of a code module and made Public. If you only have one form in
your application, then put these statements in the general declarations area of your
form (and declare them Private). Once everything is in-place, to invoke the Help file
from code, use the function call:

Dim R As Long
 .
 .
R = WinHelp(startupform.hWnd, filename.HLP, HELP_INDEX, CLng(0))

where startupform is the name of your application main form and filename is the help
file name, including path information.

 Database Access and Management 8-403

• Help File Example:

We can now try our example help file in a Visual Basic application. We’ll only use
the F1 option here. Start a new application. Bring up the Project Properties
window via the Project menu. Select the correct Help File by clicking the ellipsis
and finding your newly created file. Click OK. Now, run your application (I know
there’s nothing in the application, but that’s all right). Once, it’s running press F1.
This Help screen should appear:

Move the mouse cursor to Topic1 and notice the cursor changes to a hand. Click
there and the corresponding Topic 1 screen appears:

The HID_TOPIC1 text in the Table of Contents screen links to the corresponding
context ID (the # footnote) in the topic page. This link is a jump. The link to Topic
2 is a pop-up jump, try it and you’ll see.

 Database Access and Management 8-404

Go back to the Table of Contents screen and click the Search button. A dialo g box
displaying the help file’s list of keywords appears. In our example, the three topics
all have the same keyword (the K footnotes), SIMPLE Topics. When you double-
click on this keyword, you see all the associated topic titles (the $ footnotes):

You can now select your topic of choice.

• More Help File Topics:

After all this work, you will still only have a simple help file, nothing that rivals those
seen in most applications. To improve your help system, you need to add some more
stuff. Information on these advanced help topics is found in many Visual Basic
references.

A big feature of help systems is context-sensitive help. With this, you place the
cursor on or in something your interested in knowing about and press F1. A Help
topic, if one exists, shows up. The application is smart enough to know what you
want help with. Graphics always spiff up a help system. Help systems use a special
type of graphics called hypergraphics. Lastly, Help macros add functionality to
your help system. There are over 50 macro routines built into the DLL WinHelp
application.

• If, after seeing the rather daunting tasks involved in creating a help system, you don’t

want to tackle the job, take heart. There are several third party software packages that
assist in help system authoring and development. Look at computer magazine
advertisements (especially the Visual Basic Programmer’s Journal) for potential
leads.

 Database Access and Management 8-405

Class Summary

• That’s all I know about Visual Basic. You should now have a good breadth of

knowledge concerning the Visual Basic environment and language. This breadth
should serve as a springboard into learning more as you develop your own
applications. Feel free to contact me, if you think I can answer any questions you
might have.

• Where do you go from here? With Visual Basic 6.0, you can extend your knowledge

to write Web-based applications, develop massive database front-ends using Visual
Basic’s powerful database tools and techniques, and even develop your own ActiveX
(custom) controls. Other classes cover such topics.

• And, the last example:

 Database Access and Management 8-406

Exercise 10

The Ultimate Application

Design an application in Visual Basic that everyone on the planet wants to buy. Draw
objects, assign properties, attach code. Thoroughly debug and test your application.
Create a distribution disk. Find a distributor or distribute it yourself through your newly
created company. Become fabulously wealthy. Remember those who made it all
possible by rewarding them with jobs and stock options.

My Solution:

Still working on it ...

 Database Access and Management 8-407

This page intentionally not left blank.

Learn Visual Basic 6.0

Appendix I. Visual Basic Symbolic Constants

Contents

Alignment Constants.. I-4
 Align Property ... I-4
 Alignment Property... I-4
Border Property Constants ... I-4
 BorderStyle Property (Form) .. I-4
 BorderStyle Property (Shape and Line).. I-4
Clipboard Object Constants .. I-5
Color Constants .. I-5
 Colors ... I-5
 System Colors... I-5
Control Constants ... I-6
 ComboBox Control... I-6

 Database Access and Management 8-408

 ListBox Control ... I-6
 ScrollBar Control .. I-6
 Shape Control ... I-7
Data Control Constants ... I-7
 Error Event Constants ... I-7
 EditMode Property Constants .. I-7
 Options Property Constants ... I-7
 Validate Event Action Constants ... I-8
 Beginning -of-File Constants ... I-8
 End-of-File Constants .. I-8
 Recordset-Type Constants ... I-8
Date Constants ... I-9
 firstdayofweek Argument Values ... I-9
 firstweekofyear Argument Values ... I-9
 Return Values ... I-9

 Database Access and Management 8-409

DBGrid Control Constants .. I-9
 Alignment Constants .. I-9
 BorderStyle Constants...I-10
 DataMode Constants ...I-10
 DividerStyle Constants ..I-10
 RowDividerStyle Constants ..I-10
 Scroll Bar Constants ..I-20
DDE Constants ...I-11
 linkerr (LinkError Event) ..I-11
 LinkMode Property (Forms and Controls) ..I-11
Dir, GetAttr, and SetAttr Constants ...I-11
Drag-and-Drop Constants ...I-12
 DragOver Event..I-12
 Drag Method (Controls) ...I-12
 DragMode Property..I-12
Drawing Constants ...I-12
 DrawMode Property ...I-12
 DrawStyle Property ..I-13
Form Constants ..I-13
 Show Parameters...I-13
 Arrange Method for MDI Forms ...I-13
 WindowState Property...I-13
Graphics Constants ...I-14
 FillStyle Property ..I-14
 ScaleMode Property ..I-14
Grid Control Constants ..I-14
 ColAlignment, FixedAlignment Properties ..I-14
 FillStyle Property ..I-14
Help Constants ...I-15
Key Code Constants ..I-15
 Key Codes ...I-15
 KeyA Through KeyZ...I-16
 Key0 Through Key9 ...I-17
 Keys on the Numeric Keypad...I-17
 Function Keys ...I-18
Menu Accelerator Constants ..I-18
Menu Control Constants ...I-22
 PopupMenu Method Alignment..I-22
 PopupMenu Mouse Button Recognition...I-22

 Database Access and Management 8-410

Miscellaneous Constants ..I-22
 ZOrder Method ...I-22
 QueryUnload Method...I-22
 Shift Parameter Masks ..I-22
 Button Parameter Masks...I-23
 Application Start Mode ..I-23
 LoadResPicture Method ..I-23
 Check Value ..I-23
Mouse Pointer Constants..I-24
MsgBox Constants ...I-25
 MsgBox Arguments ..I-25
 MsgBox Return Values ..I-25
OLE Container Control Constants ...I-25
 OLEType Property ...I-25
 OLETypeAllowed Property ...I-26
 UpdateOptions Property..I-26
 AutoActivate Property..I-26
 SizeMode Property...I-26
 DisplayType Property ..I-27
 Updated Event Constants ...I-27
 Special Verb Values...I-27
 Verb Flag Bit Masks ...I-28
 VBTranslateColor/OLETranslateColor Constants ...I-28
Picture Object Constants ..I-28
Printer Object Constants ...I-29
 Printer Color Mode ...I-29
 Duplex Printing ...I-29
 Printer Orientation..I-29
 Print Quality...I-29
 PaperBin Property ..I-29
 PaperSize Property..I-30
RasterOp Constants ..I-31
Shell Constants ...I-32
StrConv Constants ...I-33
Variant Type Constants ...I-33
VarType Constants ..I-34

 Database Access and Management 8-411

Alignment Constants

Align Property
Constant Value Description
vbAlignNone 0 Size and location set at

design time or in code.
vbAlignTop 1 Picture box at top of form.
vbAlignBottom 2 Picture box at bottom of form.
vbAlignLeft 3 Picture box at left of form.
vbAlignRight 4 Picture box at right of form.

Alignment Property
Constant Value Description
vbLeftJustify 0 Left align.
vbRightJustify 1 Right align.
vbCenter 2 Center.

Border Property Constants

BorderStyle Property (Form)
Constant Value Description
vbBSNone 0 No border.
vbFixedSingle 1 Fixed single.
vbSizable 2 Sizable (forms only)
vbFixedDouble 3 Fixed double (forms only)

BorderStyle Property (Shape and Line)
Constant Value Description
vbTransparent 0 Transparent.
vbBSSolid 1 Solid.
vbBSDash 2 Dash.
vbBSDot 3 Dot.
vbBSDashDot 4 Dash-dot.
vbBSDashDotDot 5 Dash-dot-dot.
vbBSInsideSolid 6 Inside solid.

 Database Access and Management 8-412

Clipboard Object Constants

Constant Value Description
vbCFLink 0xBF00 DDE conversation

information.
vbCFRTF 0xBF01 Rich Text Format (.RTF file)
vbCFText 1 Text (.TXT file)
vbCFBitmap 2 Bitmap (.BMP file)
vbCFMetafile 3 Metafile (.WMF file)
vbCFDIB 8 Device-independent bitmap.
vbCFPalette 9 Color palette.

Color Constants

Colors
Constant Value Description
vbBlack 0x0 Black.
vbRed 0xFF Red.
vbGreen 0xFF00 Green.
vbYellow 0xFFFF Yellow.
vbBlue 0xFF0000 Blue.
vbMagenta 0xFF00FF Magenta.
vbCyan 0xFFFF00 Cyan.
vbWhite 0xFFFFFF White.

System Colors
Constant Value Description
vbScrollBars 0x80000000 Scroll bar color.
vbDesktop 0x80000001 Desktop color.
vbActiveTitleBar 0x80000002 Color of the title bar for the

active window.
vbInactiveTitleBar 0x80000003 Color of the title bar for the

inactive window.
vbMenuBar 0x80000004 Menu background color.
vbWindowBackground 0x80000005 Window background color.
vbWindowFrame 0x80000006 Window frame color.
vbMenuText 0x80000007 Color of text on menus.
vbWindowText 0x80000008 Color of text in windows.
vbTitleBarText 0x80000009 Color of text in caption, size

box, and scroll arrow.
vbActiveBorder 0x8000000A Border color of active window.
vbInactiveBorder 0x8000000B Border color of inactive

window.
vbApplicationWorkspace 0x8000000C Background color of multiple-

document interface (MDI)

 Database Access and Management 8-413

System Colors (continued)
Constant Value Description
vbHighlight 0x8000000D Background color of items

selected in a control.
vbHighlightText 0x8000000E Text color of items selected in

a control.
vbButtonFace 0x8000000F Color of shading on the face

of command buttons.
vbButtonShadow 0x80000010 Color of shading on the edge

of command buttons.
vbGrayText 0x80000011 Grayed (disabled)
vbButtonText 0x80000012 Text color on push buttons.
vbInactiveCaptionText 0x80000013 Color of text in an inactive

caption.
vb3DHighlight 0x80000014 Highlight color for 3D display

elements.
vb3DDKShadow 0x80000015 Darkest shadow color for 3D

display elements.
vb3DLight 0x80000016 Second lightest of the 3D

colors after vb3DHighlight.
vbInfoText 0x80000017 Color of text in ToolTips.
vbInfoBackground 0x80000018 Background color of ToolTips.

Control Constants

ComboBox Control
Constant Value Description
vbComboDropdown 0 Dropdown Combo.
vbComboSimple 1 Simple Combo.
vbComboDropdownList 2 Dropdown List.

ListBox Control
Constant Value Description
vbMultiSelectNone 0 None.
vbMultiSelectSimple 1 Simple.
vbMultiSelectExtended 2 Extended.

ScrollBar Control
Constant Value Description
vbSBNone 0 None.
vbHorizontal 1 Horizontal.
vbVertical 2 Vertical.
vbBoth 3 Both.

 Database Access and Management 8-414

Shape Control
Constant Value Description
vbShapeRectangle 0 Rectangle.
vbShapeSquare 1 Square.
vbShapeOval 2 Oval.
vbShapeCircle 3 Circle.
vbShapeRoundedRectangle 4 Rounded rectangle.
vbShapeRoundedSquare 5 Rounded square.

Data Control Constants

Error Event Constants
Constant Value Description
vbDataErrContinue 0 Continue.
vbDataErrDisplay 1 (Default)

EditMode Property Constants
Constant Value Description
vbDataEditNone 0 No editing operation in

progress.
vbDataEditMode 1 Edit method invoked; current

record in copy buffer.
vbDataEditAdd 2 AddNew method invoked;

current record hasn't been
saved.

Options Property Constants
Constant Value Description
vbDataDenyWrite 1 Other users can't change

records in recordset.
vbDataDenyRead 2 Other users can't read records

in recordset.
vbDataReadOnly 4 No user can change records

in recordset.
vbDataAppendOnly 8 New records can be added to

the recordset, but existing
records can't be read.

vbDataInconsistent 16 Updates can apply to all fields
of the recordset.

vbDataConsistent 32 Updates apply only to those
fields that will not affect other
records in the recordset.

vbDataSQLPassThrough 64 Sends an SQL statement to
an ODBC database.

 Database Access and Management 8-415

Validate Event Action Constants
Constant Value Description
vbDataActionCancel 0 Cancel the operation when

the Sub exits.
vbDataActionMoveFirst 1 MoveFirst method.
vbDataActionMovePrevious 2 MovePrevious method.
vbDataActionMoveNext 3 MoveNext method.
vbDataActionMoveLast 4 MoveLast method.
vbDataActionAddNew 5 AddNew method.
vbDataActionUpdate 6 Update operation (not

UpdateRecord)
vbDataActionDelete 7 Delete method.
vbDataActionFind 8 Find method.
vbDataActionBookmark 9 The Bookmark property is set.
vbDataActionClose 10 Close method.
vbDataActionUnload 11 The form is being unloaded.

Beginning-of-File Constants
Constant Value Description
vbMoveFirst 0 Move to first record.
vbBOF 1 Move to beginning of file.

End-of-File Constants
Constant Value Description
vbMoveLast 0 Move to last record.
vbEOF 1 Move to end of file.
vbAddNew 2 Add new record to end of file.

Recordset-Type Constants
Constant Value Description
vbRSTypeTable 0 Table-type recordset.
vbRSTypeDynaset 1 Dynaset-type recordset.
vbRSTypeSnapShot 2 Snapshot-type recordset.

 Database Access and Management 8-416

Date Constants

firstdayofweek Argument Values
Constant Value Description
vbUseSystem 0 Use NLS API setting.
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

firstweekofyear Argument Values
Constant Value Description
vbUseSystem 0 Use application setting if one

exists; otherwise use NLS API
setting.

vbFirstJan1 1 Start with week in which
January 1 occurs (default)

vbFirstFourDays 2 Start with the first week that
has at least four days in the
new year.

vbFirstFullWeek 3 Start with the first full week of
the year.

Return Values
Constant Value Description
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

DBGrid Control Constants

Alignment Constants
Constant Value Description
dbgLeft 0 Left.
dbgRight 1 Right.
dbgCenter 2 Center.
dbgGeneral 3 General.

 Database Access and Management 8-417

BorderStyle Constants
Constant Value Description
dbgNone 0 None.
dbgFixedSingle 1 FixedSingle.

DataMode Constants
Constant Value Description
dbgBound 0 Bound.
dbgUnbound 1 Unbound.

DividerStyle Constants
Constant Value Description
dbgNoDividers 0 NoDividers.
dbgBlackLine 1 BlackLine.
dbgDarkGrayLine 2 DarkGrayLine.
dbgRaised 3 Raised.
dbgInset 4 Inset.
dbgUseForeColor 5 UseForeColor.

RowDividerStyle Constants
Constant Value Description
dbgNoDividers 0 NoDividers.
dbgBlackLine 1 BlackLine.
dbgDarkGrayLine 2 DarkGrayLine.
dbgRaised 3 Raised.
dbgInset 4 Inset.
dbgUseForeColor 5 UseForeColor.

Scroll Bar Constants
Constant Value Description
dbgNone 0 None.
dbgHorizontal 1 Horizontal.
dbgVertical 2 Vertical.
dbgBoth 3 Both.
dbgAutomatic 4 Automatic.

 Database Access and Management 8-418

DDE Constants

linkerr (LinkError Event)
Constant Value Description
vbWrongFormat 1 Another application requested

data in wrong format.
vbDDESourceClosed 6 Destination application

attempted to continue after
source closed.

vbTooManyLinks 7 All source links are in use.
vbDataTransferFailed 8 Failure to update data in

destination.

LinkMode Property (Forms and Controls)
Constant Value Description
vbLinkNone 0 None.
vbLinkSource 1 Source (forms only)
vbLinkAutomatic 1 Automatic (controls only)
vbLinkManual 2 Manual (controls only)
vbLinkNotify 3 Notify (controls only)

Dir, GetAttr, and SetAttr Constants

Constant Value Description
vbNormal 0 Normal (default for Dir and

SetAttr)
vbReadOnly 1 Read-only.
vbHidden 2 Hidden.
vbSystem 4 System file.
vbVolume 8 Volume label.
vbDirectory 16 Directory.
vbArchive 32 File has changed since last

backup.

 Database Access and Management 8-419

Drag-and-Drop Constants

DragOver Event
Constant Value Description
vbEnter 0 Source control dragged into

target.
vbLeave 1 Source control dragged out of

target.
vbOver 2 Source control dragged from

one position in target to
another.

Drag Method (Controls)
Constant Value Description
vbCancel 0 Cancel drag operation.
vbBeginDrag 1 Begin dragging control.
vbEndDrag 2 Drop control.

DragMode Property
Constant Value Description
vbManual 0 Manual.
vbAutomatic 1 Automatic.

Drawing Constants

DrawMode Property
Constant Value Description
vbBlackness 1 Black.
vbNotMergePen 2 Not Merge pen.
vbMaskNotPen 3 Mask Not pen.
vbNotCopyPen 4 Not Copy pen.
vbMaskPenNot 5 Mask pen Not.
vbInvert 6 Invert.
vbXorPen 7 Xor pen.
vbNotMaskPen 8 Not Mask pen.
vbMaskPen 9 Mask pen.
vbNotXorPen 10 Not Xor pen.
vbNop 11 No operation; output remains

unchanged.
vbMergeNotPen 12 Merge Not pen.
vbCopyPen 13 Copy pen.
vbMergePenNot 14 Merge pen Not.
vbMergePen 15 Merge pen.
vbWhiteness 16 White.

 Database Access and Management 8-420

DrawStyle Property
Constant Value Description
vbSolid 0 Solid.
vbDash 1 Dash.
vbDot 2 Dot.
vbDashDot 3 Dash-dot.
vbDashDotDot 4 Dash-dot-dot.
vbInvisible 5 Invisible.
vbInsideSolid 6 Inside solid.

Form Constants

Show Parameters
Constant Value Description
vbModal 1 Modal form.
vbModeless 0 Modeless form.

Arrange Method for MDI Forms
Constant Value Description
vbCascade 0 Cascade all nonminimized

MDI child forms.
vbTileHorizontal 1 Horizontally tile all

nonminimized MDI child
forms.

vbTileVertical 2 Vertically tile all nonminimized
MDI child forms.

vbArrangeIcons 3 Arrange icons for minimized
MDI child forms.

WindowState Property
Constant Value Description
vbNormal 0 Normal.
vbMinimized 1 Minimized.
vbMaximized 2 Maximized.

 Database Access and Management 8-421

Graphics Constants

FillStyle Property
Constant Value Description
vbFSSolid 0 Solid.
vbFSTransparent 1 Transparent.
vbHorizontalLine 2 Horizontal line.
vbVerticalLine 3 Vertical line.
vbUpwardDiagonal 4 Upward diagonal.
vbDownwardDiagonal 5 Downward diagonal.
vbCross 6 Cross.
vbDiagonalCross 7 Diagonal cross.

ScaleMode Property
Constant Value Description
vbUser 0 User.
vbTwips 1 Twips.
vbPoints 2 Points.
vbPixels 3 Pixels.
vbCharacters 4 Characters.
vbInches 5 Inches.
vbMillimeters 6 Millimeters.
vbCentimeters 7 Centimeters.

Grid Control Constants

ColAlignment, FixedAlignment Properties
Constant Value Description
grdAlignCenter 2 Center data in column.
grdAlignLeft 0 Left-align data in column.
grdAlignRight 1 Right-align data in column.

FillStyle Property
Constant Value Description
grdSingle 0 Changing Text property

setting affects only active cell.
grdRepeat 1 Changing Text property

setting affects all selected
cells.

 Database Access and Management 8-422

Help Constants

Constant Value Description
cdlHelpContext 0x1 Displays Help for a particular

topic.
cdlHelpQuit 0x2 Notifies the Help application

that the specified Help file is
no longer in use.

cdlHelpIndex 0x3 Displays the index of the
specified Help file.

cdlHelpContents 0x3 Displays the contents topic in
the current Help file.

cdlHelpHelpOnHelp 0x4 Displays Help for using the
Help application itself.

cdlHelpSetIndex 0x5 Sets the current index for
multi-index Help.

cdlHelpSetContents 0x5 Designates a specific topic as
the contents topic.

cdlHelpContextPopup 0x8 Displays a topic identified by a
context number.

cdlHelpForceFile 0x9 Creates a Help file that
displays text in only one font.

cdlHelpKey 0x101 Displays Help for a particular
keyword.

cdlHelpCommandHelp 0x102 Displays Help for a particular
command.

cdlHelpPartialKey 0x105 Calls the search engine in
Windows Help.

Key Code Constants

Key Codes
Constant Value Description
vbKeyLButton 0x1 Left mouse butto n.
vbKeyRButton 0x2 Right mouse button.
vbKeyCancel 0x3 CANCEL key.
vbKeyMButton 0x4 Middle mouse button.
vbKeyBack 0x8 BACKSPACE key.
vbKeyTab 0x9 TAB key.
vbKeyClear 0xC CLEAR key.
vbKeyReturn 0xD ENTER key.
vbKeyShift 0x10 SHIFT key.
vbKeyControl 0x11 CTRL key.
vbKeyMenu 0x12 MENU key.

 Database Access and Management 8-423

Key Codes (continued)
Constant Value Description
vbKeyPause 0x13 PAUSE key.
vbKeyCapital 0x14 CAPS LOCK key.
vbKeyEscape 0x1B ESC key.
vbKeySpace 0x20 SPACEBAR key.
vbKeyPageUp 0x21 PAGE UP key.
vbKeyPageDown 0x22 PAGE DOWN key.
vbKeyEnd 0x23 END key.
vbKeyHome 0x24 HOME key.
vbKeyLeft 0x25 LEFT ARROW key.
vbKeyUp 0x26 UP ARROW key.
vbKeyRight 0x27 RIGHT ARROW key.
vbKeyDown 0x28 DOWN ARROW key.
vbKeySelect 0x29 SELECT key.
vbKeyPrint 0x2A PRINT SCREEN key.
vbKeyExecute 0x2B EXECUTE key.
vbKeySnapshot 0x2C SNAPSHOT key.
vbKeyInsert 0x2D INS key.
vbKeyDelete 0x2E DEL key.
vbKeyHelp 0x2F HELP key.
vbKeyNumlock 0x90 NUM LOCK key.

KeyA Through KeyZ Are the Same as Their ASCII Equivalents: 'A' Through
'Z'
Constant Value Description
vbKeyA 65 A key.
vbKeyB 66 B key.
vbKeyC 67 C key.
vbKeyD 68 D key.
vbKeyE 69 E key.
vbKeyF 70 F key.
vbKeyG 71 G key.
vbKeyH 72 H key.
vbKeyI 73 I key.
vbKeyJ 74 J key.
vbKeyK 75 K key.
vbKeyL 76 L key.
vbKeyM 77 M key.
vbKeyN 78 N key.
vbKeyO 79 O key.
vbKeyP 80 P key.
vbKeyQ 81 Q key.
vbKeyR 82 R key.
vbKeyS 83 S key.
vbKeyT 84 T key.

 Database Access and Management 8-424

KeyA Through KeyZ (continued)
Constant Value Description
vbKeyU 85 U key.
vbKeyV 86 V key.
vbKeyW 87 W key.
vbKeyX 88 X key.
vbKeyY 89 Y key.
vbKeyZ 90 Z key.

Key0 Through Key9 Are the Same as Their ASCII Equivalents: '0' Through
'9'
Constant Value Description
vbKey0 48 0 key.
vbKey1 49 1 key.
vbKey2 50 2 key.
vbKey3 51 3 key.
vbKey4 52 4 key.
vbKey5 53 5 key.
vbKey6 54 6 key.
vbKey7 55 7 key.
vbKey8 56 8 key.
vbKey9 57 9 key.

Keys on the Numeric Keypad
Constant Value Description
vbKeyNumpad0 0x60 0 key.
vbKeyNumpad1 0x61 1 key.
vbKeyNumpad2 0x62 2 key.
vbKeyNumpad3 0x63 3 key.
vbKeyNumpad4 0x64 4 key.
vbKeyNumpad5 0x65 5 key.
vbKeyNumpad6 0x66 6 key.
vbKeyNumpad7 0x67 7 key.
vbKeyNumpad8 0x68 8 key.
vbKeyNumpad9 0x69 9 key.
vbKeyMultiply 0x6A MULTIPLICATION SIGN (*)
vbKeyAdd 0x6B PLUS SIGN (+)
vbKeySeparator 0x6C ENTER key.
vbKeySubtract 0x6D MINUS SIGN (-)
vbKeyDecimal 0x6E DECIMAL POINT (.)
vbKeyDivide 0x6F DIVISION SIGN (/)

 Database Access and Management 8-425

Function Keys
Constant Value Description
vbKeyF1 0x70 F1 key.
vbKeyF2 0x71 F2 key.
vbKeyF3 0x72 F3 key.
vbKeyF4 0x73 F4 key.
vbKeyF5 0x74 F5 key.
vbKeyF6 0x75 F6 key.
vbKeyF7 0x76 F7 key.
vbKeyF8 0x77 F8 key.
vbKeyF9 0x78 F9 key.
vbKeyF10 0x79 F10 key.
vbKeyF11 0x7A F11 key.
vbKeyF12 0x7B F12 key.
vbKeyF13 0x7C F13 key.
vbKeyF14 0x7D F14 key.
vbKeyF15 0x7E F15 key.
vbKeyF16 0x7F F16 key.

Menu Accelerator Constants

Constant Value Description
vbMenuAccelCtrlA 1 User-defined shortcut

keystrokes.
vbMenuAccelCtrlB 2 User-defined shortcut

keystrokes.
vbMenuAccelCtrlC 3 User-defined shortcut

keystrokes.
vbMenuAccelCtrlD 4 User-defined shortcut

keystrokes.
vbMenuAccelCtrlE 5 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF 6 User-defined shortcut

keystrokes.
vbMenuAccelCtrlG 7 User-defined shortcut

keystrokes.
vbMenuAccelCtrlH 8 User-defined shortcut

keystrokes.
vbMenuAccelCtrlI 9 User-defined shortcut

keystrokes.
vbMenuAccelCtrlJ 10 User-defined shortcut

keystrokes.
vbMenuAccelCtrlK 11 User-defined shortcut

keystrokes.

 Database Access and Management 8-426

Menu Accelerator Constants (continued)
Constant Value Description
vbMenuAccelCtrlL 12 User-defined shortcut

keystrokes.
vbMenuAccelCtrlM 13 User-defined shortcut

keystrokes.
vbMenuAccelCtrlN 14 User-defined shortcut

keystrokes.
vbMenuAccelCtrlO 15 User-defined shortcut

keystrokes.
vbMenuAccelCtrlP 16 User-defined shortcut

keystrokes.
vbMenuAccelCtrlQ 17 User-defined shortcut

keystrokes.
vbMenuAccelCtrlR 18 User-defined shortcut

keystrokes.
vbMenuAccelCtrlS 19 User-defined shortcut

keystrokes.
vbMenuAccelCtrlT 20 User-defined shortcut

keystrokes.
vbMenuAccelCtrlU 21 User-defined shortcut

keystrokes.
vbMenuAccelCtrlV 22 User-defined shortcut

keystrokes.
vbMenuAccelCtrlW 23 User-defined shortcut

keystrokes.
vbMenuAccelCtrlX 24 User-defined shortcut

keystrokes.
vbMenuAccelCtrlY 25 User-defined shortcut

keystrokes.
vbMenuAccelCtrlZ 26 User-defined shortcut

keystrokes.
vbMenuAccelF1 27 User-defined shortcut

keystrokes.
vbMenuAccelF2 28 User-defined shortcut

keystrokes.
vbMenuAccelF3 29 User-defined shortcut

keystrokes.
vbMenuAccelF4 30 User-defined shortcut

keystrokes.
vbMenuAccelF5 31 User-defined shortcut

keystrokes.
vbMenuAccelF6 32 User-defined shortcut

keystrokes.
vbMenuAccelF7 33 User-defined shortcut

keystrokes.

 Database Access and Management 8-427

Menu Accelerator Constants (continued)
Constant Value Description
vbMenuAccelF8 34 User-defined shortcut

keystrokes.
vbMenuAccelF9 35 User-defined shortcut

keystrokes.
vbMenuAccelF11 36 User-defined shortcut

keystrokes.
vbMenuAccelF12 37 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF1 38 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF2 39 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF3 40 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF4 41 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF5 42 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF6 43 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF7 44 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF8 45 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF9 46 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF11 47 User-defined shortcut

keystrokes.
vbMenuAccelCtrlF12 48 User-defined shortcut

keystrokes.
vbMenuAccelShiftF1 49 User-defined shortcut

keystrokes.
vbMenuAccelShiftF2 50 User-defined shortcut

keystrokes.
vbMenuAccelShiftF3 51 User-defined shortcut

keystrokes.
vbMenuAccelShiftF4 52 User-defined shortcut

keystrokes.
vbMenuAccelShiftF5 53 User-defined shortcut

keystrokes.
vbMenuAccelShiftF6 54 User-defined shortcut

keystrokes.
vbMenuAccelShiftF7 55 User-defined shortcut

keystrokes.

 Database Access and Management 8-428

Menu Accelerator Constants (continued)
Constant Value Description
vbMenuAccelShiftF8 56 User-defined shortcut

keystrokes.
vbMenuAccelShiftF9 57 User-defined shortcut

keystrokes.
vbMenuAccelShiftF11 58 User-defined shortcut

keystrokes.
vbMenuAccelShiftF12 59 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF1 60 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF2 61 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF3 62 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF4 63 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF5 64 ser-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF6 65 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF7 66 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF8 67 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF9 68 ser-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF11 69 User-defined shortcut

keystrokes.
vbMenuAccelShiftCtrlF12 70 User-defined shortcut

keystrokes.
vbMenuAccelCtrlIns 71 User-defined shortcut

keystrokes.
vbMenuAccelShiftIns 72 User-defined shortcut

keystrokes.
vbMenuAccelDel 73 User-defined shortcut

keystrokes.
vbMenuAccelShiftDel 74 User-defined shortcut

keystrokes.
vbMenuAccelAltBksp 75 User-defined shortcut

keystrokes.

 Database Access and Management 8-429

Menu Control Constants

PopupMenu Method Alignment
Constant Value Description
vbPopupMenuLeftAlign 0 Pop-up menu left-aligned.
vbPopupMenuCenterAlign 4 Pop-up menu centered.
vbPopupMenuRightAlign 8 Pop-up menu right-aligned.

PopupMenu Mouse Button Recognition
Constant Value Description
vbPopupMenuLeftButton 0 Pop-up menu recognizes left

mouse button only.
vbPopupMenuRightButton 2 Pop-up menu recognizes right
and left mouse buttons.

Miscellaneous Constants

ZOrder Method
Constant Value Description
vbBringToFront 0 Bring to front.
vbSendToBack 1 Send to back.

QueryUnload Method
Constant Value Description
vbAppWindows 2 Current Windows session

ending.
vbFormMDIForm 4 MDI child form is closing

because the MDI form is
closing.

vbFormCode 1 Unload method invoked from
code.

vbFormControlMenu 0 User has chosen Close
command from the Control-
menu box on a form.

vbAppTaskManager 3 Windows Task Manager is
closing the application.

Shift Parameter Masks
Constant Value Description
vbShiftMask 1 SHIFT key bit mask.
vbCtrlMask 2 CTRL key bit mask.
vbAltMask 4 ALT key bit mask.

 Database Access and Management 8-430

Button Parameter Masks
Constant Value Description
vbLeftButton 1 Left mouse button.
vbRightButton 2 Right mouse button.
vbMiddleButton 4 Middle mouse button.

Application Start Mode
Constant Value Description
vbSModeStandalone 0 Stand-alone application.
vbSModeAutomation 1 OLE automation server.

LoadResPicture Method
Constant Value Description
vbResBitmap 0 Bitmap resource.
vbResIcon 1 Icon resource.
vbResCursor 2 Cursor resource.

Check Value
Constant Value Description
vbUnchecked 0 Unchecked.
vbChecked 1 Checked.
vbGrayed 2 Grayed.

 Database Access and Management 8-431

Mouse Pointer Constants

Constant Value Description
vbDefault 0 Default.
vbArrow 1 Arrow.
vbCrosshair 2 Cross.
vbIbeam 3 I beam.
vbIconPointer 4 Icon.
vbSizePointer 5 Size.
vbSizeNESW 6 Size NE, SW.
vbSizeNS 7 Size N, S.
vbSizeNWSE 8 Size NW , SE.
vbSizeWE 9 Size W, E.
vbUpArrow 10 Up arrow.
vbHourglass 11 Hourglass.
vbNoDrop 12 No drop.
vbArrowHourglass 13 Arrow and hourglass. (Only

available in 32-bit Visual
Basic 4.0.)

vbArrowQuestion 14 Arrow and question mark.
(Only available in 32-bit Visual
Basic 4.0.)

vbSizeAll 15 Size all. (Only available in 32-
bit Visual Basic 4.0.)

vbCustom 99 Custom icon specified by the
MouseIcon property.

 Database Access and Management 8-432

MsgBox Constants

MsgBox Arguments
Constant Value Description
vbOKOnly 0 OK button only (default)
vbOKCancel 1 OK and Cancel buttons.
vbAbortRetryIgnore 2 Abort, Retry, and Ignore

buttons.
vbYesNoCancel 3 Yes, No, and Cancel buttons.
vbYesNo 4 Yes and No buttons.
vbRetryCancel 5 Retry and Cancel buttons.
vbCritical 16 Critical message.
vbQuestion 32 Warning query.
vbExclamation 48 Warning message.
vbInformation 64 Information message.
vbDefaultButton1 0 First button is default (default)
vbDefaultButton2 256 Second button is default.
vbDefaultButton3 512 Third button is default.
vbApplicationModal 0 Application modal message

box (default)
vbSystemModal 4096 System modal message box.

MsgBox Return Values
Constant Value Description
vbOK 1 OK button pressed.
vbCancel 2 Cancel button pressed.
vbAbort 3 Abort button pressed.
vbRetry 4 Retry button pressed.
vbIgnore 5 Ignore button pressed.
vbYes 6 Yes button pressed.
vbNo 7 No button pressed.

OLE Container Control Constants

OLEType Property
Constant Value Description
vbOLELinked 0 OLE container control

contains a linked object.
vbOLEEmbedded 1 OLE container control

contains an embedded object.
vbOLENone 3 OLE container control doesn't

contain an object.

 Database Access and Management 8-433

OLETypeAllowed Property
Constant Value Description
vbOLEEither 2 OLE container control can

contain either a linked or an
embedded object.

UpdateOptions Property
Constant Value Description
vbOLEAutomatic 0 Object is updated each time

the linked data changes.
vbOLEFrozen 1 Object is updated whenever

the user saves the linked
document from within the
application in which it was
created.

vbOLEManual 2 Object is updated only when
the Action property is set to 6
(Update)

AutoActivate Property
Constant Value Description
vbOLEActivateManual 0 OLE object isn't automatically

activated.
vbOLEActivateGetFocus 1 Object is activated when the

OLE container control gets
the focus.

vbOLEActivateDoubleclick 2 Object is activated when the
OLE container control is
double-clicked.

vbOLEActivateAuto 3 Object is activated based on
the object's default method of
activation.

SizeMode Property
Constant Value Description
vbOLESizeClip 0 Object's image is clipped by

the OLE container control's
borders.

vbOLESizeStretch 1 Object's image is sized to fill
the OLE container control.

vbOLESizeAutoSize 2 OLE container control is
automatically resized to
display the entire object.

vbOLESizeZoom 3 Object's image is stretched
but in proportion.

 Database Access and Management 8-434

DisplayType Property
Constant Value Description
vbOLEDisplayContent 0 Object's data is displayed in

the OLE container control.
vbOLEDisplayIcon 1 Object's icon is displayed in

the OLE container control.
Updated Event Constants
Constant Value Description
vbOLEChanged 0 Object's data has changed.
vbOLESaved 1 Object's data has been saved

by the application that created
the object.

vbOLEClosed 2 Application file containing the
linked object's data has been
closed.

vbOLERenamed 3 Application file containing the
linked object's data has been
renamed.

Special Verb Values
Constant Value Description
vbOLEPrimary 0 Default action for the object.
vbOLEShow -1 Activates the object for

editing.
vbOLEOpen -2 Opens the object in a

separate application window.
vbOLEHide -3 For embedded objects, hides

the application that created
the object.

vbOLEInPlaceUIActivate -4 All UI's associated with the
object are visible and ready
for use.

vbOLEInPlaceActivate -5 Object is ready for the user to
click inside it and start
working with it.

vbOLEDiscardUndoState -6 For discarding all record of
changes that the object's
application can undo.

 Database Access and Management 8-435

Verb Flag Bit Masks
Constant Value Description
vbOLEFlagEnabled 0x0 Enabled menu item.
vbOLEFlagGrayed 0x1 Grayed menu item.
vbOLEFlagDisabled 0x2 Disabled menu item.
vbOLEFlagChecked 0x8 Checked menu item.
vbOLEFlagSeparator 0x800 Separator bar in menu item

list.
vbOLEMiscFlagMemStorage 0x1 Causes control to use

memory to store the object
while it's loaded.

vbOLEMiscFlagDisableInPlace 0x2 Forces OLE container control
to activate objects in a
separate window.

VBTranslateColor/OLETranslateColor Constants
Constant Value Description
vbInactiveCaptionText 0x80000013 Color of text in an inactive

caption.
vb3DHighlight 0x80000014 Highlight color for 3-D display

elements.
vb3DFace 0x8000000F Dark shadow color for 3-D

display elements.
vbMsgBox 0x80000017 Background color for

message boxes and system
dialog boxes.

vbMsgBoxText 0x80000018 Color of text displayed in
message boxes and system
dialog boxes.

vb3DShadow 0x80000010 Color of automatic window
shadows.

vb3DDKShadow 0x80000015 Darkest shadow.
vb3DLight 0x80000016 Second lightest of the 3 -D

colors (after vb3DHighlight)

Picture Object Constants

Constant Value Description
vbPicTypeBitmap 1 Bitmap type of Picture object.
vbPicTypeMetafile 2 Metafile type of Picture object.
vbPicTypeIcon 3 Icon type of Picture object.

 Database Access and Management 8-436

Printer Object Constants

Printer Color Mode
Constant Value Description
vbPRCMMonochrome 1 Monochrome output.
vbPRCMColor 2 Color output.

Duplex Printing
Constant Value Description
vbPRDPSimplex 1 Single-sided printing.
vbPRDPHorizontal 2 Double-sided horizontal

printing.
vbPRDPVertical 3 Double-sided vertical printing.

Printer Orientation
Constant Value Description
vbPRORPortrait 1 Documents print with the top

at the narrow side of the
paper.

vbPRORLandscape 2 Documents print with the top
at the wide side of the paper.

Print Quality
Constant Value Description
vbPRPQDraft -1 Draft print quality.
vbPRPQLow -2 Low print quality.
vbPRPQMedium -3 Medium print quality.
vbPRPQHigh -4 High print quality.

PaperBin Property
Constant Value Description
vbPRBNUpper 1 Use paper from the upper bin.
vbPRBNLower 2 Use paper from the lower bin.
vbPRBNMiddle 3 Use paper from the middle

bin.
vbPRBNManual 4 Wait for manual insertion of

each sheet of paper.
vbPRBNEnvelope 5 Use envelopes from the

envelope feeder.
vbPRBNEnvManual 6 Use envelopes from the

envelope feeder, but wait for
manual insertion.

vbPRBNAuto 7 (Default)
vbPRBNTractor 8 Use paper fed from the tractor

feeder.

 Database Access and Management 8-437

PaperBin Property (continued)
Constant Value Description
vbPRBNSmallFmt 9 Use paper from the small

paper feeder.
vbPRBNLargeFmt 10 Use paper from the large

paper bin.
vbPRBNLargeCapacity 11 Use paper from the large

capacity feeder.
vbPRBNCassette 14 Use paper from the attached

cassette cartridge.
PaperSize Property
Constant Value Description
vbPRPSLetter 1 Letter, 8 1/2 x 11 in.
vbPRPSLetterSmall 2 +A611Letter Small, 8 1/2 x 11

in.
vbPRPSTabloid 3 Tabloid, 11 x 17 in.
vbPRPSLedger 4 Ledger, 17 x 11 in.
vbPRPSLegal 5 Legal, 8 1/2 x 14 in.
vbPRPSStatement 6 Statement, 5 1/2 x 8 1/2 in.
vbPRPSExecutive 7 Executive, 7 1/2 x 10 1/2 in.
vbPRPSA3 8 A3, 297 x 420 mm.
vbPRPSA4 9 A4, 210 x 297 mm.
vbPRPSA4Small 10 A4 Small, 210 x 297 mm.
vbPRPSA5 11 A5, 148 x 210 mm.
vbPRPSB4 12 B4, 250 x 354 mm.
vbPRPSB5 13 B5, 182 x 257 mm.
vbPRPSFolio 14 Folio, 8 1/2 x 13 in.
vbPRPSQuarto 15 Quarto, 215 x 275 mm.
vbPRPS10x14 16 10 x 14 in.
vbPRPS11x17 17 11 x 17 in.
vbPRPSNote 18 Note, 8 1/2 x 11 in.
vbPRPSEnv9 19 Envelope #9, 3 7/8 x 8 7/8 in.
vbPRPSEnv10 20 Envelope #10, 4 1/8 x 9 1/2

in.
vbPRPSEnv11 21 Envelope #11, 4 1/2 x 10 3/8

in.
vbPRPSEnv12 22 Envelope #12, 4 1/2 x 11 in.
vbPRPSEnv14 23 Envelope #14, 5 x 11 1/2 in.
vbPRPSCSheet 24 C size sheet.
vbPRPSDSheet 25 D size sheet.
vbPRPSESheet 26 E size sheet.
vbPRPSEnvDL 27 Envelope DL, 110 x 220 mm.
vbPRPSEnvC3 29 Envelope C3, 324 x 458 mm.
vbPRPSEnvC4 30 Envelope C4, 229 x 324 mm.
vbPRPSEnvC5 28 Envelope C5, 162 x 229 mm.
vbPRPSEnvC6 31 Envelope C6, 114 x 162 mm.

 Database Access and Management 8-438

vbPRPSEnvC65 32 Envelope C65, 114 x 229 mm.

 Database Access and Management 8-439

PaperSize Property (continued)
Constant Value Description
vbPRPSEnvB4 33 Envelope B4, 250 x 353 mm.
vbPRPSEnvB5 34 Envelope B5, 176 x 250 mm.
vbPRPSEnvB6 35 Envelope B6, 176 x 125 mm.
vbPRPSEnvItaly 36 Envelope, 110 x 230 mm.
vbPRPSEnvMonarch 37 Envelope Monarch, 3 7/8 x 7

1/2 in.
vbPRPSEnvPersonal 38 Envelope, 3 5/8 x 6 1/2 in.
vbPRPSFanfoldUS 39 U.S. Standard Fanfold, 14 7/8

x 11 in.
vbPRPSFanfoldStdGerman 40 German Standard Fanfold, 8

1/2 x 12 in.
vbPRPSFanfoldLglGerman 41 German Legal Fanfold, 8 1/2

x 13 in.
vbPRPSUser 256 User-defined.

RasterOp Constants

Constant Value Description
vbDstInvert 0x00550009 Inverts the destination bitmap.
vbMergeCopy 0x00C000CA Combines the pattern and the

source bitmap.
vbMergePaint 0x00BB0226 Combines the inverted source

bitmap with the destination
bitmap by using Or.

vbNotSrcCopy 0x00330008 Copies the inverted source
bitmap to the destination.

vbNotSrcErase 0x001100A6 Inverts the result of combining
the destination and source
bitmaps by using Or.

vbPatCopy 0x00F00021L Copies the pattern to the
destination bitmap.

vbPatInvert 0x005A0049L Combines the destination
bitmap with the pattern by
using Xor.

vbPatPaint 0x00FB0A09L Combines the inverted source
bitmap with the pattern by
using Or. Combines the
result of this operation with
the destination bitmap by
using Or.

vbSrcAnd 0x008800C6 Combines pixels of the
destination and source
bitmaps by using And.

 Database Access and Management 8-440

RasterOp Constants (continued)
Constant Value Description
vbSrcCopy 0x00CC0020 Copies the source bitmap to

the destination bitmap.
vbSrcErase 0x00440328 Inverts the destination bitmap

and combines the result with
the source bitmap by using
And.

vbSrcInvert 0x00660046 Combines pixels of the
destination and source
bitmaps by using Xor.

vbSrcPaint 0x00EE0086 Combines pixels of the
destination and source
bitmaps by using Or.

Shell Constants

Constant Value Description
vbHide 0 Window is hidden and focus is

passed to the hidden window.
vbNormalFocus 1 Window has focus and is

restored to its original size
and position.

vbMinimizedFocus 2 Window is displayed as an
icon with focus.

vbMaximizedFocus 3 Window is maximized with
focus.

vbNormalNoFocus 4 Window is restored to its most
recent size and position. The
currently active window
remains active.

vbMinimizedNoFocus 6 Window is displayed as an
icon. The currently active
window remains active.

 Database Access and Management 8-441

StrConv Constants

Constant Value Description
vbUpperCase 1 Uppercases the string.
vbLowerCase 2 Lowercases the string.
vbProperCase 3 Uppercases first letter of

every word in string.
vbWide* 4* Converts narrow (single-

byte)(double-byte)
vbNarrow* 8* Converts wide (double -

byte)(single-byte)
vbKatakana** 16** Converts Hiragana characters

in string to Katakana
characters.

vbHiragana** 32** Converts Katakana characters
in string to Hiragana
characters.

vbUnicode*** 64*** Converts the string to Unicode
using the default code page of
the system.

vbFromUnicode*** 128*** Converts the string from
Unicode to the default code
page of the system.

*Applies to Far East locales
**Applies to Japan only.
***Specifying this bit on 16-bit systems causes a run-time error
.

Variant Type Constants

Constant Value Description
vbVEmpty 0 Empty (uninitialized)
vbVNull 1 Null (no valid data)
vbVInteger 2 Integer data type.
vbVLong 3 Long integer data type.
vbVSingle 4 Single-precision floating-point

data type.
vbVDouble 5 Double-precision floating-

point data type.
vbVCurrency 6 Currency (scaled integer)
vbVDate 7 Date data type.
vbVString 8 String data type.

 Database Access and Management 8-442

VarType Constants

Constant Value Description
vbEmpty 0 Uninitialized (default)
vbNull 1 Contains no valid data.
vbInteger 2 Integer.
vbLong 3 Long integer.
vbSing le 4 Single-precision floating-point

number.
vbDouble 5 Double-precision floating-

point number.
vbCurrency 6 Currency.
vbDate 7 Date.
vbString 8 String.
vbObject 9 OLE Automation object.
vbError 10 Error.
vbBoolean 11 Boolean.
vbVariant 12 Variant (used only for arrays

of Variants)
vbDataObject 13 Non-OLE Automation object.
vbByte 17 Byte
vbArray 8192 Array.

Programming Microsoft Windows with Visual Basic

Appendix II. Common Dialog Box Constants

CommonDialog Control Constants

File Open/Save Dialog Box Flags
Constant Value Description
cdlOFNReadOnly 0x1 Checks Read-Only check box for

Open and Save As dialog boxes.
cdlOFNOverwritePrompt 0x2 Causes the Save As dialog box

to generate a message box if the
selected file already exists.

cdlOFNHideReadOnly 0x4 Hides the Read-Only check box.
cdlOFNNoChangeDir 0x8 Sets the current directory to what

it was when the dialog box was
invoked.

 Database Access and Management 8-443

cdlOFNHelpButton 0x10 Causes the dialog box to display
the Help button.

cdlOFNNoValidate 0x100 Allows invalid characters in the
returned filename.

cdlOFNAllowMultiselect 0x200 Allows the File Name list box to
have multiple selections.

cdlOFNExtensionDifferent 0x400 The extension of the returned
filename is different from the
extension set by the DefaultExt
property.

cdlOFNPathMustExist 0x800 User can enter only valid path
names.

cdlOFNFileMustExist 0x1000 User can enter only names of
existing files.

cdlOFNCreatePrompt 0x2000 Sets the dialog box to ask if the
user wants to create a file that
doesn't currently exist.

cdlOFNShareAware 0x4000 Sharing violation errors will be
ignored.

cdlOFNNoReadOnlyReturn 0x8000 The returned file doesn't have the
Read-Only attribute set and won't
be in a write -protected directory.

 Database Access and Management 8-444

 File Open/Save Dialog Box Flags (continued)
Constant Value Description
cdlOFNExplorer 0x0008000 Use the Explorer-like Open A File

dialog box template. (Windows
95 only.)

cdlOFNNoDereferenceLinks 0x00100000 Do not dereference shortcuts
(shell links) default, choosing a
shortcut causes it to be
dereferenced by the shell.
(Windows 95 only.)

cdlOFNLongNames 0x00200000 Use Long filenames. (Windows
95 only.)

Color Dialog Box Flags
Constant Value Description
cdlCCRGBInit 0x1 Sets initial color value for the

dialog box.
cdlCCFullOpen 0x2 Entire dialog box is displayed,

including the Define Custom
Colors section.

cdlCCPreventFullOpen 0x4 Disables the Define Custom
Colors section of the dialog box.

cdlCCHelpButton 0x8 Dialog box displays a Help
button.

Fonts Dialog Box Flags
Constant Value Description
cdlCFScreenFonts 0x1 Dialog box lists only screen fonts

supported by the system.
cdlCFPrinterFonts 0x2 Dialog box lists only fonts

supported by the printer.
cdlCFBoth 0x3 Dialog box lists available screen

and printer fonts.
cdlCFHelpButton 0x4 Dialog box displays a Help

button.
cdlCFEffects 0x100 Dialog box enables strikeout,

underline, and color effects.
cdlCFApply 0x200 Dialog box enables the Apply

button.
cdlCFANSIOnly 0x400 Dialog box allows only a selection

of fonts that use the Windows
character set.

cdlCFNoVectorFonts 0x800 Dialog box should not allow
vector-font selections.

 Database Access and Management 8-445

Fonts Dialog Box Flags (continued)
Constant Value Description
cdlCFNoSimulations 0x1000 Dialog box should not allow

graphic device interface (GDI)
cdlCFLimitSize 0x2000 Dialog box should select only font

sizes within the range specified
by the Min and Max properties.

cdlCFFixedPitchOnly 0x4000 Dialog box should select only
fixed-pitch fonts.

cdlCFWYSIWYG 0x8000 Dialog box should allow only the
selection of fonts available to
both the screen and printer.

cdlCFForceFontExist 0x10000 An error dialog box is displayed
if a user selects a font or style
that doesn't exist.

cdlCFScalableOnly 0x20000 Dialog box should allow only the
selection of scalable fonts.

cdlCFTTOnly 0x40000 Dialog box should allow only the
selection of TrueType fonts.

cdlCFNoFaceSel 0x80000 No font name selected.
cdlCFNoStyleSel 0x100000 No font style selected.
cdlCFNoSizeSel 0x200000 No font size selected.

Printer Dialog Box Flags
Constant Value Description
cdlPDAllPages 0x0 Returns or sets state of All Pages

option button.
cdlPDCollate 0x10 Returns or sets state of Collate

check box.
cdlPDDisablePrintToFile 0x80000 Disables the Print To File check

box.
cdlPDHidePrintToFile 0x100000 The Print To File check box isn't

displayed.
cdlPDNoPageNums 0x8 Returns or sets the state of the

Pages option button.
cdlPDNoSelection 0x4 Disables the Selection option

button.
cdlPDNoWarning 0x80 Prevents a warning message

when there is no default printer.
cdlPDPageNums 0x2 Returns or sets the state of the

Pages option button.
cdlPDPrintSetup 0x40 Displays the Print Setup dialog

box rather than the Print dialog
box.

 Database Access and Management 8-446

Printer Dialog Box Flags (continued)
Constant Value Description
cdlPDPrintToFile 0x20 Returns or sets the state of the

Print To File check box.
cdlPDReturnDC 0x100 Returns a device context for the

printer selection value returned in
the hDC property of the dialog
box.

cdlPDReturnDefault 0x400 Returns default printer name.
cdlPDReturnIC 0x200 Returns an information context

for the printer selection value
returned in the hDC property of
the dialog box.

cdlPDSelection 0x1 Returns or sets the state of the
Selection option button.

cdlPDHelpButton 0x800 Dialog box displays the Help
button.

cdlPDUseDevModeCopies 0x40000 Sets support for multiple copies
action; depends upon whether or
not printer supports multiple
copies.

 Database Access and Management 8-447

CommonDialog Error Constants

Constant Value Description
cdlAlloc &H7FF0& Couldn't allocate memory for

FileName or Filter property.
cdlCancel &H7FF3& Cancel was selected.
cdlDialogFailure &H8000& The function failed to load the

dialog box.
cdlFindResFailure &H7FF9& The function failed to load a

specified resource.
cdlHelp &H7FEF& Call to Windows Help failed.
cdlInitialization &H7FFD& The function failed during

initialization.
cdlLoadResFailure &H7FF8& The function failed to load a

specified string.
cdlLockResFailure &H7FF7& The function failed to lock a

specified resource.
cdlMemAllocFailure &H7FF6& The function was unable to

allocate memory for internal data
structures.

cdlMemLockFailure &H7FF5& The function was unable to lock
the memory associated with a
handle.

cdlNoFonts &H5FFE& No fonts exist.
cdlBufferTooSmall &H4FFC& The buffer at which the member

lpstrFile points is too small.
cdlInvalidFileName &H4FFD& Filename is invalid.
cdlSubclassFailure &H4FFE& An attempt to subclass a list box

failed due to insufficient memory.
cdlCreateICFailure &H6FF5& The PrintDlg function failed when

it attempted to create an
information context.

cdlDndmMismatch &H6FF6& Data in the DevMode and
DevNames data structures
describe two different printers.

cdlGetDevModeFail &H6FFA& The printer device driver failed to
initialize a DevMode data
structure.

cdlInitFailure &H6FF9& The PrintDlg function failed
during initialization.

cdlLoadDrvFailure &H6FFB& The PrintDlg function failed to
load the specified printer's device
driver.

 Database Access and Management 8-448

CommonDialog Error Constants (continued)
Constant Value Description
cdlNoDefaultPrn &H6FF7& A default printer doesn't exist.
cdlNoDevices &H6FF8& No printer device drivers were

found.
cdlParseFailure &H6FFD& The CommonDialog function

failed to parse the strings in the
[devices] section of WIN.INI.

cdlPrinterCodes &H6FFF& The PDReturnDefault flag was
set, but either the hDevMode or
hDevNames field was nonzero.

cdlPrinterNotFound &H6FF4& The [devices] section of WIN.INI
doesn't contain an entry for the
requested printer.

cdlRetDefFailure &H6FFC& The PDReturnDefault flag was
set, but either the hDevMode or
hDevNames field was nonzero.

cdlSetupFailure &H6FFE& Failed to load required resources.

