Database Access and M anagement 81

Learn Visual Basic 6.0

© KIDware (206) 721-2556

This copy of Learn Visual Basic 6.0 is
licensed to a single user. Copies of the
course are not to be distributed or
provided to any other user. Multiple
copy licenses are available for
businesses and educational institutions.
Please contact KlIDware for license
information.

Database Access and M anagement 8-2

Course Description:

Learn Visual Basic 6.0 is a 10 week, self-paced overview of the Visual Basic
programming language and environment. Upon completion of the course, you
will:

1. Understand the benefits of using Microsoft Visual Basic 6.0 as an
application development tool.

2. Understand the Visual Basic event-driven programming concepts,
terminology, and available tools.

3. Learn the fundamentals of designing, implementing, and distributing a
wide variety of Visual Basic applications.

Learn Visual Basic 6.0 is presented using a combination of course notes
(written in Microsoft Word format) and over 60 Visual Basic examples and
applications.

Course Prerequisites:

To grasp the concepts presented in Learn Visual Basic 6.0, you should possess
a working knowledge of Windows 95 and have had some exposure to
programming concepts. If you have never programmed a computer before, you'll
have to put in a little more effort - perhaps, find a book in your local library on
programming using QBasic or some other dialect of the Basic computer
language.

You will also need the ability to view and print documents saved in Microsoft
Word for Windows 95 format. This can be accomplished in one of two ways.

The first, and easiest, is that you already have Microsoft Word for Windows 95 on
your computer. The second way, and a bit more difficult, is that you can
download Word Viewer for Windows 95. This is a free Microsoft product that
allows viewing Word documents - it is available for download at all the major
shareware internet sites (ZDNet, Download.Com, SoftSeek).

Finally, and most obvious, you need to have Microsoft Visual Basic 6.0,
preferably the Professional Edition. Learn Visual Basic 6.0 does not cover the

rudiments of navigating in Visual Basic 6.0. You should be familiar with the
simple tasks of using the menus, the toolbar, resizing windows, and moving
windows around. Visual Basic 6.0 provides an excellent tutorial with instruction
on such tasks.

Database Access and M anagement 8-3

Installing Learn Visual Basic 6.0:

The course notes and code for Learn Visual Basic 6.0 are included in two ZIP
files (LVB61.ZIP and LVB62.ZIP) on separate disks. Use your favorite

‘unzipping’ application to write all files to your computer. After unzipping, the
course is included in the folder entitledLearnVB6. This folder contains two other
folders: VB Notes and VB Code.

The VB Notes folder includes all the notes needed for the class. Each file in this
folder has a DOC extension and is in Word for Windows 95 format. The files are:

Start Here.doc This file in Word format

Contents.doc Course Table of Contents

Class 1.doc Class 1. Introduction to the Visual Basic Language and
Environment

Class 2.doc Class 2. The Visual Basic Language

Class 3.doc Class 3. Exploring the Visual Basic Toolbox

Class 4.doc Class 4. More Exploration of the Visual Basic Toolbox

Class 5.doc Class 5. Creating a Stand-Alone Visual Basic Application

Class 6.doc Class 6. Error-Handling, Debugging and File Input/Output

Class 7.doc Class 7. Graphics Techniques with Visual Basic

Class 8.doc Class 8. Database Access and Management

Class 9.doc Class 9. Dynamic Link Libraries and the Windows API

Class 10.doc Class 10. Other Visual Basic Topics

Appendix l.doc Appendix I. Visual Basic Symbolic Constants
Appendix ll.doc Appendix Il. Common Dialog Box Constants

The VB Code folder includes all the Visual Basic applications developed during
the course. The applications are further divided intoClass folders.

How To Take the Course:

Learn Visual Basic 6.0 is a self-paced course. The suggested approach is to do
one class a week for ten weeks. Each week’s class should require about 4 to 8
hours of your time to grasp the concepts completely. Prior to doing a particular
week’s work, open the class notes file for that week and print it out. Then, work
through the notes at your own pace. Try to do each example as they are
encountered in the notes. If you need any help, all solved examples are included
in the VB Code folder. After completing each week’s notes, a homework
exercise is given, covering many of the topics taught that week. Like the
examples, try to work through the homework exercise, or some variation thereof,
on your own. Refer to the completed project in the VB Code folder, if necessary.

Database Access and M anagement 84

What If You Have Questions?

It is recognized there may be times when you need clarification on some point
about the notes, examples, or Visual Basic. We will gladly help. The preferred
method of relaying your questions to us is via E-Mail. The E-Mail address is:

KIDware@jetcity.com

Please include a clearly defined subject for all questions to get past our anti-
spamming filters. All questions should be sent to the attention of Lou.

Who Produces Learn Visual Basic 6.0?

This course has been developed by Lou Tylee, a partner in KIDware, a producer
of quality children’s educational programs for over 15 years. The course notes
have evolved based on Lou’s experience in writing children’s software and in

teaching a similar courseat the university level for over four years. KiDware may
be contacted via:

KIDware
15600 NE 8™ Suite B1-314

Bellevue, WA 98008
(206) 721-2556

FAX (425) 746-4655
E-Mail: KIDware@jetcity.com
Web Site: http://www.jetcity.com/~kidware

Course Notes for:

Learn Visual Basic 6.0

Database Access and M anagement

-~

N " ~JTalll
1ICLOSOTL

Visual Basi

© Lou Tylee, 1998

KIDware
15600 NE 8", Suite B1-314
Bellevue, WA 98008
(206) 721-2556
FAX (425) 746-4655

Database Access and M anagement

8-6

Notice

These notes were developed for the course, “Learn
Visual Basic 6.0° They are not intended to be a
complete reference to Visual Basic. Consult the
Microsoft Visual Basic Programmer’s Guide and
Microsoft Visual Basic Language Reference
Manual for detailed reference information.

The notes refer to several software and hardware
products by their trade names. These references are
for informational purposes only and all trademarks
are the property of their respective companies.

Lou Tylee
Course Instructor

Database Access and M anagement 8-7

Learn Visual Basic 6.0

Contents

Introduction to the Visual Basic Language and Environment

PIEVIBW ...ttt b et s et nb et nn e 1-1
(010 1U] (ST @] o] [T o 11V T SR 1-1
What IS VISUAI BASIC?oouiiieieiesieseeee e 1-2
Visual Basic 6.0 versus Other Versions of Visual Basic..........cc.ccocceveriennenee. 1-3
16 BItS VEISUS 32 BILSoiuiieiiieieiiesiesie ettt 1-3
Structure of a Visual Basic AppliCatioN..........ccovvveverenieenisieere e 1-4
Steps in Developing APPICALIONoocveiiiice s 1-4
Drawing the User Interface and Setting Propertiescccccvvvveieevecnieenns 1-5
Example 1-1: Stopwatch Application - Drawing Controlscccccccvcveveenenn 1-9
Setting Properties of Objects at Design TiMecccccvvverieneneseeieene e 1-10
Setting Properties at RUN TIMEcccviieiiiiieieeiecie e 1-11
How Names Are Used in Object EVENtSccccceceevvece v 1-11
Example 1-2: Stopwatch Application - Setting Properties..........cc.ccceevennee. 1-12
VANADIES ... 1-14
Visual BaSiC Data TYPESccvviireeieiieeiiesieeie st eiesreeee st see e saessaessesseensesneens 1-14
Variable DeCIAratioN...........coceiirieiiiie it 1-14
Example 1-3: Stopwatch Application - Attaching Code.........c.ccccevenerenene 1-18
Quick Primer on Saving Visual Basic Applicationsc.ccccevoevenvrininninnnn. 1-20

Exercise 1: Calendar/Time Display......ccccocviviriirieniesenisiesese e 1-21

Database Access and M anagement

The Visual Basic Language

REVIEW AN PIEVIEWouiiiiiiieeeet ettt et
A Brief HiStOry Of BASIC......cociiiiiiieiesie st s
Visual Basic Statements and EXPreSSioNnsccccvvveieeienenesesseeseese s
VisSual BaSIC OPEIatOrSccuuieerierrieriiesiisee e sieessee e sssesesssessreessesssesssesssesssnns
Visual BaSiC FUNCHONSoooiiiiiiiieeee e
A Closer Look at the RNd FUNCHION ..o
Example 2-1: SAVINGS ACCOUNLccvevierieiiesieiesie e seeee et see e seenaens
Visual Basic Symbolic CONSIANTSccccevieiiriieieciesee e
Defining Your OWN CONSIANTScocveiieiieriecieries et e
Visual Basic Branching - If Statements..........c.cooiriinininnneeeeee e
[I = o] o] [T TSP
Example 2-2: Savings Account - Key Trappingccoceeeverenesieeseeseseseseens
Select Case - Another Way to BrancCh.........cccoccevvvieenenicsnccc e
The GOTO SEAtEMENLouiiiiee e
AV T L =7= TS (ol oo o] [T RSP SR
Visual BaSIC COUNTING ..coviiiiiiieiieiesie st saesne e
Example 2-3: Savings Account - DECISIONSccceveerieeriiennieesie e sie e
Exercise 2-1: Computing a Mean and Standard Deviation...........c..cccu....
Exercise 2-2: Flash Card Addition Problems..........cccooniiiiinneiee,

Exploring the Visual Basic Toolbox

REVIEW AN PreVIEWcoviiiiiiiisiiee e s
The MESSAQJE BOX ..ecviiiiiiiiiiiisiiesieesie ettt sb e b ae e
(@ o] =Tox 1Y/ 11 1 o T SR
THE FOIM ODJECT ...
CoMMANT BULLONS ..ottt
LADEI BOXES ..ottt
LI =10)P ROUSTRROTR
Example 3-1: Password Validation...........cccceveeiviieenes ceniecie e
(04 01T o 1 =0)1 (L ST RSR
(@1 1[o] g 18 =10 0] o SRR
F =\ PSPPSRI
(070 o1 1 (0] 12N 1 7>\ VA USRS
FRAMES ... e nne e
EXample 3-2: PizZa OFUeroceoieieieieeeee et
LISt BOXES ..ttt
(0701171 o To T8 =70) (=S SRS
Example 3-3: Flight Planner ...
Exercise 3: Customer Database INput SCreencccocevveeveveseseneeriennniens

Database Access and M anagement 89

More Exploration of the Visual Basic Toolbox

REVIEW AN PIEVIEW ..ot et s 4-1
DISPIAY LAYEIS ..ottt sttt sttt s saenre e 4-1
LINE TOOL ...ttt 4-2
SNAPE TOO ... e e e enes 4-3
Horizontal and Vertical SCroll Bars.........cocooiiiiiiens e e 4-4
Example 4-1: Temperature CONVEISION.......ccocurerirererieniee e ee e 4-7
PICIUIE BOXES ...ttt 4-12
IMAGE BOXES .ttt sttt nne e re e 4-14
Quick Example: Picture and Image BOXESccceveevieevieriiesie e sieesee e 4-14
DIV LIST BOX..iueiiiitiitieiieeesie ettt sttt sttt sttt ne e nae s 4-15
D[=To o] Y L] A =T) ST 4-15
FlE LIST BOX ...eueitertiiiieiesicsie sttt ettt 4-16
Synchronizing the Drive, Directory, and File List BOXESccccccevvevivrnene. 4-17
Example 4-2: IMage VIEWETooiiiieeeeerieeee et 4-18
ComMON DIalog BOXES....c..coeiiiiiriieieiesie sttt s 4-23
Open Common DIialog BOXcceviiiiiniieniniisieie e s 4-24
Quick Example: The Open Dialog BOX......cccccvevieiiniiiniieciee e 4-25
Save As Common Dialog BOX......ccceeeiiriieiieriese s e 4-27
Quick Example: The Save As Dialog BOXccocvvreriennnenceene e 4-28
Exercise 4: Student Database INput SCreen..........ccoeverevenens ceseeeesenenn, 4-29

Creating a Stand-Alone Visual Basic Application

REVIEW AN PIEVIEW ..ot e e 5-1
Designing an APPIICAtION.......cccieiie et 5-1
Using General Sub Procedures in Applicationsccccoeeveiennnenieenenienen 5-2
Creating @ Code MOAUIEccoeieiirieeieee e 5-5
Using General Function Procedures in Applicationscccocvivvereeeiesennenn, 5-5
Quick Example: Temperature CONVEISION.......ccccvevieiieeeieeseesee e ees s 5-7
Quick Example: Image Viewer (Optional)ccccccvvveveeiieieereereeee e 5-8
Adding Menus to an APPIICALIONcccoveeerineree e s 5-8
Example 5-1: NOte EdItOr.......ccueiiieieieieieis e e 5-12
USING POP-UP MENUSooiviiiiiiicie ettt se et 5-16
ASSIgNING 1CONS 10 FOIMIS.....ccuiiiicice et et e enne s 5-17
Designing Your Own Icon with ICONEdit ..o, 5-17
Creating Visual Basic Executable Files.........ccocooviiiiinine v 5-19
Example 5-2: Note Editor - Building an Executable

and Attaching an [CoN........ccccevieiecii e 5-21
Using the Visual Basic Package & Deployment Wizardccccocereruennee. 5-22
Example 5-3: Note Editor - Creating a Distribution DisK..........c..ccccevceruennee. 5-25

Exercise 5: US Capitals QUIZ......ccouveeiiieriiiieiie e 5-27

Database Access and Management 8-10

Error-Handling, Debugging and File Input/Output

REVIEW AN PIEVIEW ..ot et s 6-1
T o] G)Y/ 0T T PRSP P RSP PPRP 6-1
Run-Time Error Trapping and Handlingccccocevvvviiniene e 6-2
General Error Handling ProCedUrecoeiieninieie et s 6-4
Example 6-1: Simple Error Trappingcccccceeveeeeeiesieeseeseesseesseesseesseesssesesneens 6-7
Debugging Visual BasiC Programs..........cccoeerirenins cesesesese e e 6-9
Example 6-2: Debugging EXampleccooeiiieienis e 6-10
Using the Debugging TOOIS ... e 6-11
Debugging Srat@gIesSceceeieeiieiieie e ns 6-16
SEQUENTIAIFIIES ... e e s 6-17
Sequential File Qutput (Variables).........ccccuieriiiiriieee e 6-17
Quick Example: Writing Variables to Sequential Filesccccoovveveieiennenee. 6-19
Sequential File Input (Variables) ... 6-20
Quick Example: Reading Variables from Sequential Files............ccc.......... 6-21
Writing and Reading Text Using Sequential Files.........ccoceiiiiiineeienennene 6-22
RANAOM ACCESS FilES ...t 6-24
User-Defined Variables ... 6-25
Writing and Reading Random Access Files........ccovvevecieccie e 6-26
Using the Open and Save Common Dialog BOXES........cccocceveevvevveriecnenen, 6-29
Example 6-3: Note Editor - Reading and Saving Text Files...........c.cc......... 6-31
Exercise 6-1: Information Tracking........cccceceverviniiniins e 6-35
Exercise 6-2: ‘Recent Files’ Menu OpPtioNccccevveveeviecie e 6-41

Graphics Techniques with Visual Basic

REVIEW QN0 PIEVIEW ..ot e et 7-1
GraphiCs MEthOUSc.coiieiieeee et e 7-1
S0 @o] (0] £SO 7-8
MOUSE EVENLS ... 7-10
Example 7-1: BlackbDOardcccoviiieiiicis e et 7-13
Drag and Drop EVENLS ..ot e 7-18
Example 7-2: Letter DiSPoSal........cccviiieiiiinieeee e 7-20
Timer TOOol and DEIAYSccooviiiiieciecieseeeee e 7-23
ANIMAatioN TECNNIQUEScveoiieieeee et sre e 7-24
Quick Example: Simple ANIMAtioNcocoiiiiririrree e 7-25
Quick Example: Animation with the Timer TOOL.......cccccocevvviiniiniereneseceen 7-26
Random Numbers (Revisited) and Gamesccooveveevevvnenieieneneseseniens 7-28
Randomly Sorting N INtEJEIScocveiieiee e 7-29
Example 7-3: One-Buttoned Bandit............cccooereriinineneneeee e 7-30
User-Defined COOrdiNAteScccveierieiinesieeiee e e 7-35
Simple Function Plotting (Line Charts)cccoceeveviiienenenie e 7-36

SIMPIE Bar ChartScccveiiiiiiiieciesee e 7-38

Database Access and Management 8-11

Graphics Techniques with Visual Basic (continued)

Example 7-4: Line Chart and Bar Chart Application...........ccccoeeiiincnennne 7-40
EXercise 7-1: BIACKJACKccueieiiiirieeese e 7-43
Exercise 7-2: Information Tracking PIOttiNGccccovvrviiiniivincese e, 7-54

Database Access and Management

REVIEW AN PIEVIEWoeoiiiiiiieieet e e 8-1
Database Structure and Terminologyc.ccoceeoerererenieeieneseses e 8-1
ADO Data CONIOl ..o b 8-6
DAta LINKS ..o 8-8
ASSIGNING TADIES ... 8-9
BouNd Data TOOIScoiiiieiee e 8-10
Example 8-1: Accessing the Books Database..........cccccoceveeveeiecceccieceenee. 8-12
Creating a Virtual Table ..o 8-14
Quick Example: Forming a Virtual Table ... 8-14
FINding SPecCific RECOIISccocveiiiiesieecs e e 8-16
Example 8-2: ‘Rolodex’ Searching of the Books Database......................... 8-18
DAt MaNAGETcooeeeiiieieiesie ettt r e r e r e san e e nn e sneesneeas 8-21
Example 8-3: Phone Directory - Creating the Database...........c.cccceveeuenee. 8-22
Database Managementccccveeiieiie e 8-24
Example 8-4: Phone Directory - Managing the Database.............ccccccueuue... 8-26
Custom Data AWare CONMIOIScooiieeierieie e e 8-31
Creating @ Data REPOITcceeieiceciee e 8-33
Example 8-5: Phone Directory - Building a Data Reportcc.ccecevvvvrnnenee. 8-34
Exercise 8: Home Inventory Databasecccocveeeveeiiesie s 8-39

Dynamic Link Libraries and the Windows API

REVIEW QN PIEVIEW ...t et st 9-1
Dynamic Link LIDraries (DLL).......cccuoiiiiiiinieniesee e 9-1
Accessing the Windows AP WIith DLLccoooviiiiinnecnese e 9-2
TimING WIth DLL CallScveeiieieciece ettt 9-4
Quick Example 1: Using GetTickCount to Build a Stopwatch...................... 9-5
Quick Example 2: Using GetTickCount to Implement a Delay..................... 9-6
Drawing EIPSES ...ocuviueeieie ettt st 9-7
Quick Example 3: Drawing EIlPSESccccvviieiieenienieeie e 9-7
Drawing LINES ...ocueiiie ettt ee sttt st s ne b e e teenseeneeeneenneens 9-8
Quick Example 4: Drawing LINES........cccoureeierenesieeie st sie e 9-9
Drawing POIYGONSc.coviiiiiiiisirieie et sttt e et sre s s 9-10
Quick Example 5: Drawing POIYgONS ..o 9-11
Sounds with DLL Calls - Other BEEPScccvecvvvceeeir et see e 9-14

Quick Example 6: Adding Beeps to Message Box Displaysc.cceceeueee. 9-15

Database Access and Management 8-12

9. Dynamic Link Libraries and the Windows API (continued)

More Elaborate SOUNAS........cccieiiiiieeeee e 9-16
Quick Example 7: Playing WAV FleS ..o 9-16
Playing Sounds QUICKIY.......c.ccuciiiiiiiieieseseseseesie st 9-17
Quick Example 8: Playing Sounds QUICKIY..........cccocvvrveiiiiiniii i 9-18
FUn With GraphiCsccce et 9-19
Quick Example 9: Bouncing Ball With Sound!...........ccoceiiiininniniceee, 9-20
Flicker Free AnIMAatioN.........cccoiiiieieinneeeesese e 9-22
Quick Example 10: Flicker Free ANimMation..........cccccceveeieeneesineeseesee e 9-23
Quick Example 11: Horizontally Scrolling Backgroundcccccevveieneee. 9-24
A Bit Of MUIIMEAIA ... e 9-26
Quick Example 12: Multimedia Sound and Video.........cccceevevveveeiiecciennnnne. 9-26
Exercise 9: The Original Video Game - Pong!.......ccccoveviivinieiennneneseeen, 9-27

10. Other Visual Basic Topics

REVIEW AN PIEVIEW ..ot e e 10-1
CUSTOM CONMIOIS ...ttt s sae s 10-1
Masked Edit CONLIOL......ccoiiiieeie e 10-3
ChArt CONMIOL......iiiieceee et 10-4
MUItIMEdia CONLIOL ... e 10-6
RICh TexXthoX CONIOLoouiiieeee e 10-8
SHAEE CONIOL ...t 10-9
Tabbed Dialog CONLIOL.........coiiieieieseeee e 10-12
(@101 0¥/ ¢ T @0] o1 o] E RSP 10-13
TOOIDAr CONLIOL.....eiieeee e 10-14
Using the WIndows Clipbhoard ... e 10-17
Printing With Visual BaSIC........cccourerireninenis e e 10-18
Multiple Form Visual Basic AppliCationsccccocevereeierinniesieneseesie e 10-21
Visual Basic Multiple Document Interface (MDI)cccoccvevvevinniiescenesneen, 10-25
Creating @ Help Fileoove e 10-29
ClaSS SUMIMATY ..ot e st sre et se e e 10-36
Exercise 10: The Ultimate Applicationcccoceveeienenesenieneseseee e 10-37
Appendix I: Visual Basic Symbolic Constants..........cccccovvveninenne. -1
Appendix Il: Common Dialog Box Constants.........ccoeveernereinnnn. -1

Learn Visual Basic 6.0

1. Introduction to the Visual Basic Language and Environment

Database Access and Management 8-13

Preview

In this first class, we will do a quick overview of how to build an application in
Visual Basic. You'll learn a new vocabulary, a new approach to
programming, and ways to move around in the Visual Basic environment.
You will leave having written your first Visual Basic program.

Course Objectives

b

b

T UTUTUTUTU T

T

Understand the benefits of using Microsoft Visual Basic 6.0 for
Windows as an application tool

Understand the Visual Basic event-driven programming concepts,
terminology, and available tools

Learn the fundamentals of designing, implementing, and distributing a
Visual Basic application

Learn to use the Visual Basic toolbox

Learn to modify object properties

Learn object methods

Use the menu design window

Understand proper debugging and error-handling procedures

Gain a basic understanding of database access and management
using databound controls

Obtain an introduction to ActiveX controls and the Windows Application
Programming Interface (API)

Database Access and Management 8-14

What is Visual Basic?

Visual Basic is a tool that allows you to develop Windows (Graphic User
Interface - GUI) applications. The applications have a familiar appearance to
the user.

Visual Basic is event-driven, meaning code remains idle until called upon to
respond to some event (button pressing, menu selection, ...). Visual Basic is
governed by an event processor. Nothing happens until an event is detected.
Once an event is detected, the code corresponding to that event (event
procedure) is executed. Program control is then returned to the event
processor.

Event?
Event processor
Basic Basic Basic Event
Code Code Code Procedures

Some Features of Visual Basic

Full set of objects - you 'draw’ the application

Lots of icons and pictures for your use

Response to mouse and keyboard actions

Clipboard and printer access

Full array of mathematical, string handling, and graphics functions
Can handle fixed and dynamic variable and control arrays
Sequential and random access file support

Useful debugger and error-handling facilities

Powerful database access tools

ActiveX support

Package & Deployment Wizard makes distributing your applications
simple

TUUTUUTUUUTUUTU

Database Access and Management 8-15

Visual Basic 6.0 versus Other Versions of Visual Basic

The original Visual Basic for DOS and Visual Basic For Windows were
introduced in 1991.

Visual Basic 3.0 (a vast improvement over previous versions) was released in
1993.

Visual Basic 4.0 released in late 1995 (added 32 bit application support).

Visual Basic 5.0 released in late 1996. New environment, supported creation
of ActiveX controls, deleted 16 bit application support.

And, now Visual Basic 6.0- some identified new features of Visual Basic 6.0:

Faster compiler

New ActiveX data control object

Allows database integration with wide variety of applications
New data report designer

New Package & Deployment Wizard

Additional internet capabilites

T UTUUTUTUT

16 Bits versus 32 Bits

Applications built using the Visual Basic 3.0 and the 16 bit version of
Visual Basic 4.0 will run under Windows 3.1, Windows for Workgroups,
Windows NT, or Windows 95

Applications built using the 32 bit version of Visual Basic 4.0, Visual
Basic 5.0 and Visual Basic 6.0 will only run with Windows 95 or
Windows NT (Version 3.5.1 or higher).

In this class, we will use Visual Basic 6.0 under Windows 95,
recognizing such applications will not operate in 16 bit environments.

Database Access and Management 8-16

Structure of a Visual Basic Application

Project (.VBP, .MAK)

Form 1 (.FRM) Form 2 (.FRM) Form 3 (.FRM) Module 1 (.BAS)

Application (Project) is made up of:

P Forms - Windows that you create for user interface

P Controls - Graphical features drawn on forms to allow user interaction
(text boxes, kabels, scroll bars, command buttons, etc.) (Forms and
Controls areobjects.)

P Properties - Every characteristic of a form or control is specified by a
property. Example properties include names, captions, size, color,
position, and contents. Visual Basic applies default properties. You
can change properties at design time or run time.

P Methods - Built-in procedure that can be invoked to impart some
action to a particular object.

P Event Procedures - Code related to some object. This is the code
that is exe cuted when a certain event occurs.

P General Procedures - Code not related to objects. This code must be
invoked by the application.

P Modules - Collection of general procedures, variable declarations, and
constant definitions used by application.

Steps in Developing Application
There are three primary steps involved in building a Visual Basic application:
1. Draw the userinterface
2. Assign properties to controls

3. Attach code to controls

We’'ll look at each step.

Database Access and Management 8-17

Drawing the User Interface and Setting Properties
Visual Basic operates in three modes.

P Design mode - used to build application
P Run mode - used to run the application

P Break mode - application halted and debugger is available
We focus here on thedesign mode.
Six windows appear when you start Visual Basic.

P The Main Window consists of the title bar, menu bar, and toolbar.
The title bar indicates the project name, the current Visual Basic
operating mode, and the current form. The menu bar has drop-
down menus from which you control the operation of the Visual
Basic environment. The toolbar has buttons that provide shortcuts
to some of the menu options. The main window also shows the
location of the current form relative to the upper left corner of the
screen (measured in twips) and the width and length of the current
form.

‘", Project] - Microsoft Visual Basic [design]

File Edit View Project Format Debug Bun Query Diagram Tools AddIns Window Help

|- -BleRl: =@ |y) MPGERAD DLy Hanam
| Code Editor
Object

Run / Stop Browser| \ | Form
Pause | [Project ‘ Form |
Explorer|\| Lavout [Toolbox

Form position

N Propertie

ew s window
form | Open

Add project

projec

Database Access and M anagement

8-18

P The Form Window is central to developing Visual Basic
applications. It is where you draw your application.

& Forml

P The Toolbox is the selection menu for controls used in your

application.

Pointer
Label

Check Box

Combo Box = EH

=
|

Horizontal Scroll
Timer

Directory List Box
Shapes

Imaae Box

Obiect Linking

General |

A [aol
Frame D 1

M &

LIRL]

Picture Box
Text Box

Command Button
Onption Button
List Box

Vertical Scroll Bar
Drive List Box
File List Box

Lines
Data Tool

Database Access and M anagement

P The Properties Window is used to establish initial property values
for objects. The drop-down box at the top of the window lists all
objects in the current form. Two views are available: Alphabetic
and Categorized. Under this box are the available properties for
the currently selected object.

Properties - Forml

|Furm1 Farmi ;l
Alphabetic |Categu:urizeu:|
(Mame) Formi =
Appearance 1-3D
AutoRedraw False
EackColar [] aHs000000Fs:
Borderstyle Z - Sizable
Caption Farmi
ZlipContraols True
ControlBo:x True
Drawiode 13 - Copy Pen
Dir avShole 0 - Salid b
Diravaideh 1
Enabled True
FillZolar . SHOO0O0000E:
FillStyle 1 - Transparent
Font M5 Sans Serif
FonkTransparent True
ForeColar B =H=000001 28
Height 6285
HelpContextID 0
Toon (Tcon)
K eyPreview False
I n::' n ;I

P The Form Layout Window shows where (upon program
execution) your form will be displayed relative to your monitor’s

screen:

i "= Form Layout

Database Access and Management 8-20

P The Project Window displays a list of all forms and modules making
up your application. You can also obtain a view of the Form or Code
windows (window containing the actual Basic coding) from the Project
window.

Froject - Projectl

oEa |

Eg Project1 (Project1)
=1-E5 Forms

As mentioned, the user interface is ‘drawn’ in the form window. There are two
ways to place controls on a form:

1. Double-click the tool in the toolbox and it is created with a default size
on the form. You can then move it or resize it.

2. Click the tool in the toolbox, then move the mouse pointer to the form
window. The cursor changes to a crosshair. Place the crosshair at the
upper left corner of where you want the control to be, press the left
mouse button and hold it down while dragging the cursor toward the
lower right corner. When you release the mouse button, the control is
drawn.

To move a control you have drawn, click the object in the form window and
drag it to the new location. Release the mouse button.

To resize a control, click the object so that it is select and sizing handles
appear. Use these handles to resize the object.

W Forml M=l E3

Click here
to move

—Use sizing
handles to
resize

Database Access and Management 8-21

Example 1-1

Stopwatch Application - Drawing Controls

. Start a new project. The idea of this project is to start a timer, then stop the
timer and compute the elapsed time (in seconds).

. Place three command buttons and six labels on the form. Move and size the

controls and form so it looks something like this:

w. Forml [_ [O] %]
Command! Label Labeld
Command? Label2 Label5
Commanda Label3 Labels

Database Access and Management 8-22

Setting Properties of Objects at Design Time

Each form and control has properties assigned to it by default when you start
up a new project. There are two ways to display the properties of an object.
The first way is to click on the object (form or control) in the form window.
Then, click on the Properties Window or the Properties Window button in the

tool bar. The second way is to first click on the Properties Window. Then,
select the object from the Object box in the Properties Window. Shown is the

Properties Window for the stopwatch application:

Propetties - Forml The drop-down box at the top of the

=] Properties Window is the Object box. It
displays the name of each object in the

IFurml Farrm

Alphabetic |Categu:urized

application as well as its type. This display

(Mame) Farmi = . . :
ppearance 1 -0 §ho_vvs the Form o_bject. The Properties list
futoRedraw False is directly below this box. In this list, you can
BackColor [&+eoooooore: scroll through the list of properties for the
BorderStyle Z - Sizable

selected object. You may select a property

Farmi
CipControls True by cllc_kmg onit. Properties can be change;d
ControlBox True by typing a new value or choosing from a list
DrawMode Rl copilEen _|| of predefined settings (available as a drop
g::ﬂl‘;:fh 'i"SC'"'j down list). Properties can be viewed in two
i True ways: Alphabetic and Categorized.
Fill Calor B =H000000002
FillStyle 1 - Transparent
E””ET t :"5 SoeEe A very important property for each object is
onclransparen rue
Eoretolor I &HE0000125, its name. The name is u.sed ‘by Visual Basic
Height £285 to refer to a particular object in code.
HelpContextID 0
Icaon (Tean)
ey Presviem False
| =FF n ;I

A convention has been established for naming Visual Basic objects. This
convention is to use a three letter prefix (depending on the object) followed by
a name you assign. A few of the prefixes are (we’ll see more as we progress
in the class):

Object Prefix Example

Form frm frmWatch
Command Button cmd, btn cmdEXxit, btnStart
Label bl IbIStart, IbIEnd
Text Box txt txtTime, txtName
Menu mnu mnuExit, mnuSave

Check box chk chkChoice

Database Access and Management 8-23

Object names can be up to 40 characters long, must start with a letter, must
contain only letters, numbers, and the underscore (_) character. Names are

used in setting properties at run time and also in establishing procedure
names for object events.

Setting Properties at Run Time

You can also set or modify properties while your application is running. To do
this, you must write some code. The code format is:

ObjectName.Property = NewValue

Such a format is referred to as dot notation. For example, to change the
BackColor property of a form name frmStart, we'd type:

frmStart.BackColor = BLUE

How Names are Used in Object Events

The names you assign to objects are used by Visual Basic to set up a
framework of event-driven procedures for you to add code to. The format for
each of these subroutines (all object procedures in Visual Basic are
subroutines) is:

Sub ObjectName_Event (Optional Arguments)

End Sub

Visual Basic provides the Sub line with its arguments (if any) and the End
Sub statement. You provide any needed code.

Database Access and M anagement

8-24

Example 1-2

Stopwatch Application - Setting Properties

1. Set properties of the form, three buttons, and six labels:

Forml:
BorderStyle
Caption
Name

Commandl:
Caption
Name

Command2;:
Caption
Name

Command3:
Caption
Name

Labell:
Caption

Label2:
Caption

Label3:
Caption

Label4:
BorderStyle
Caption
Name

Label5:
BorderStyle
Caption
Name

1-Fixed Single
Stopwatch Application
frmStopWatch

&Start Timing
cmdStart

&End Timing
cmdEnd

E&xit
cmdExit

Start Time

End Time

Elapsed Time

1-Fixed Single
[Blank]
IbIStart

1-Fixed Single
[Blank]
IblIEnd

Database Access and Management 8-25

Label6:
BorderStyle 1-Fixed Single
Caption [Blank]
Name IblIElapsed

In the Caption properties of the three command buttons, notice the
ampersand (&). The ampersand precedes a button'saccess key. That
is, in addition to clicking on a button to invoke its event, you can also press
its access key (no need for a mouse). The access key is pressed in
conjunction with the Alt key. Hence, to invoke 'Begin Timing', you can
either click the button or press Alt+B. Note in the button captions on the
form, the access keys appear with an underscore ().

2. Your form should now look something like this:

. Stopwatch Application

- Start Ti
StartTiming | - A Hme
' End T L
ErdTiming -
Exit : Elapzed Time

Database Access and Management 8-26

Variables

We’re now ready to attach code to our application. As objects are added to
the form, Visual Basic automatically builds a framework of all event
procedures. We simply add code to the event procedures we want our
application to respond to. But before we do this, we need to discuss
variables.

Variables are used by Visual Basic to hold information needed by your
application. Rules used in naming variables:

P No more than 40 characters

P They may include letters, numbers, and underscore ()

P The first character must be a letter

P You cannot use a reserved word (word needed by Visual Basic)

Visual Basic Data Types

Data Type Suffix
Boolean None
Integer %
Long (Integer) &

Single (Floating) !
Double (Floating) #

Currency @
Date None
Object None
String $
Variant None

Variable Declaration

There are three ways for a variable to be typed (declared):

1. Default
2. Implicit
3. Explicit

If variables are not implicitly or explicitly typed, they are assigned the variant
type by default. The variant data type is a special type used by Visual Basic
that can contain numeric, string, or date data.

Database Access and Management 8-27

To implicitly type a variable, use the corresponding suffix shown above in
the data type table. For example,

TextValue$ = "This is a string"
creates a string variable, while
Amount% = 300
creates an integer variable.

There are many advantages to explicitly typing variables. Primarily, we
insure all computations are properly done, mistyped variable names are
easily spotted, and Visual Basic will take care of insuring consistency in upper
and lower case letters used in variable names. Because of these
advantages, and because it is good programming practice, we will explicitly
type all variables.

To explicitly type a variable, you must first determine itsscope. There are
four levels of scope:

Procedure level
Procedure level, static
Form and module level
Global level

TUTUTTU

Within a procedure, variables are declared using the Dim statement:

Dim MyInt as Integer
Dim MyDouble as Double
Dim MyString, YourString as String

Procedure level variables declared in this manner do not retain their value
once a procedure terminates.

To make a procedure level variable retain its value upon exiting the
procedure, replace the Dim keyword with Static:

Static MyInt as Integer
Static MyDouble as Double

Database Access and Management 8-28

Form (module) level variables retain their value and are available to all
procedures within that form (module). Form (module) level variables are
declared in the declarations part of thegeneral object in the form's
(module's) code window. The Dim keyword is used:

Dim MyInt as Integer
Dim MyDate as Date

Global level variables retain their value and are available to all procedures
within an application. Module level variables are declared in the declarations
part of the general object of a module's code window. (It is advisable to keep
all global variables in one module.) Use the Global keyword:

Global Myint as Integer
Global MyDate as Date

What happens if you declare a variable with the same name in two or more
places? More local variables shadow (are accessed in preference to) less
local variables. For example, if a variable Myint is defined as Global in a
module and declared local in a routine MyRoutine, while in MyRoutine, the
local value of MylInt is accessed. Outside MyRoutine, the global value of
MyInt is accessed.

Database Access and Management 8-29

Example of Variable Scope:

Modulel

Global X as Integer

Form1l Form2

Dim Y as Integer Dim Z as Single

Sub Routinel() Sub Routine3()
Dim A as Double Dim C as String

End Sub End Sub

Sub Routine2()
Static B as Double

End Sub

Procedure Routinel has access to X, Y, and A (loses value upon

termination)
Procedure Routine2 has access to X, Y, and B (retains value)

Procedure Routine3 has access to X, Z, and C (loses value)

Database Access and Management 8-30

Example 1-3

Stopwatch Application - Attaching Code

All that’s left to do is attach code to the application. We write code for every
event a response is needed for. In this application, there are three such events:
clicking on each of the command buttons.

1. Double-click anywhere on the form to open the code window. Or, select
‘View Code’ from the project window.

2. Click the down arrow in the Object box and select the object named
(general). The Procedure box will show (declarations). Here, you declare

three form level variables:

Option Explicit
Dm StartTinme As Vari ant
Di m EndTi ne As Vari ant

Di m El apsedTi ne As Vari ant

The Option Explicit statement forces us to declare all variables. The other lines
establish StartTime, EndTime, and ElapsedTime as variables global within

the form.

3. Select the cmdStart object in the Object box. If the procedure that appears is
not the Click procedure, choose Click from the procedure box. Type the
following code which begins the timing procedure. Note the Sub and End
Sub statements are provided for you:

Sub cmdStart_Click ()
‘“Establish and print starting tine
StartTi ne = Now

| bl Start. Caption = Format (StartTi ne, "hh:mmss")
| bl End. Caption = ""

| bl El apsed. Caption = ""

End Sub

In this procedure, once the Start Timing button is clicked, we read the current
time and print it in a label box. We also blank out the other label boxes. In

the code above (and in all code in these notes), any line beginning with a
single quote (‘) is a comment. You decide whether you want to type these

lines or not. They are not needed for proper application operation.

Database Access and Management 8-31

4. Now, code the cmdEnd button.

Sub cnmdEnd_Cick ()

‘“Find the ending tine, conpute the elapsed tine
‘“Put both values in |abel boxes

EndTi ne = Now

El apsedTine = EndTine - StartTine

| bl End. Capti on = Format (EndTi ne, "hh:nm ss")

| bl El apsed. Capti on = Format (El apsedTi ne, "hh: mm ss")
End Sub

Here, when the End Timing button is clicked, we read the current time (End
Time), compute the elapsed time, and put both values in their corresponding
label boxes.

5. And, finally the cmdEXxit button.
Sub cmdExit_CQick ()

End

End Sub

This routine simply ends the application once the Exit button is clicked.

6. Did you notice that as you typed in the code, Visual Basic does automatic
syntax checking on what you type (if you made any mistakes, that is)?

7. Run your application by clicking the Run button on the toolbar, or by pressing
<f5>. Pretty easy, wasn't it?

8. Save your application - see the Primer on the next page. Use the Save
Project As option under the File menu. Make sure you save both the form

and the project files.

Database Access and Management 8-32

9. If you have the time, some other things you may try with the Stopwatch
Application:

A. Try changing the form color and the fonts used in the label boxes
and command buttons.

B. Notice you can press the ‘End Timing’ button before the ‘Start
Timing’ button. This shouldn’t be so. Change the application so
you can’t do this. And make it such that you can’t press the ‘Start
Timing’ until ‘End Timing’ has been pressed. Hint: Look at the
command button Enabled property.

C. Can you think of how you can continuously display the ‘End Time’
and ‘Elapsed Time’? This is a little tricky because of the event-
driven nature of Visual Basic. Look at the Timer tool. Ask me for
help on this one.

Quick Primer on Saving Visual Basic Applications:

When saving Visual Basic applications, you need to be concerned with saving
both the forms (.FRM) and modules (.BAS) and the project file (.VBP). In either
case, make sure you are saving in the desired directory. The current directory is
always displayed in the Save window. Use standard Windows techniques to
change the current directory.

There are four Save commands available under the File menu in Visual Basic:

Save [Form Name] Save the currently selected form or module with the

current name. The selected file is identified in the
Project window.
Save [Form Name] As Like Save File, however you have the option to change

the file name

Save Project Saves all forms and modules in the current project
using their current names and also saves the project
file.

Save Project As Like Save Project, however you have the option to

change file names. When you choose this option, if
you have not saved your forms or modules, you will
also be prompted to save those files. | always use this
for new projects.

Database Access and Management 8-33

Exercise 1

Calendar/Time Display
Design a window that displays the current month, day, and year. Also, display

the current time, updating it every second (look into the Timer control). Make the
window look something like a calendar page. Play with object properties to make

it pretty.
My Solution:

Form:

| & My Calendar

|b|Day—§Sllllday March — IbIMonth

IblTime_;“OO:OO:OO PM 3 1 —— IbINumb

— IblYear

Properties:

Form frmCalendar:
Caption = My Calendar
BorderStyle = 1 - Fixed Single

Timer timDisplay :
Interval = 1000

Label IbIDay:
Caption = Sunday
FontName = Times New Roman
FontBold = True
FontSize =24

Database Access and M anagement

Label IbITime:
Caption = 00:00:00 PM
FontName = Times New Roman
FontBold = True
FontSize =24

Label IblYear:
Alignment = 2 - Center
Caption = 1998
FontName = Times New Roman
FontBold = True
FontSize =24

Label IbINumber:
Alignment = 2 - Center
Caption =31
FontName = Arial
FontBold = True
FontSize =72

Label IbIMonth:
Alignment = 2 - Center
Caption = March
FontName = Times New Roman

FontBold = True
FontSize =24

Code:

General Declarations:

Option Explicit

timDisplay Timer Event:

Private Sub tinDi splay Tiner()

Dim Today As Vari ant

Today = Now

| bl Day. Capti on = Format (Today, "dddd")

| bl Mont h. Capti on = Format (Today, "mmi')

| bl Year. Caption = Fornat (Today, "yyyy")

| bl nunber. Capti on = Fornmat (Today, "d")

| bl Ti me. Caption = Fornmat (Today, "h:mm ss anpni)
End Sub

Database Access and Management 8-35

Learn Visual Basic 6.0

2. The Visual Basic Language

Review and Preview

Last week, we found there were three primary steps involved in developing an
application using Visual Basic:

1. Draw the userinterface
2. Assign properties to controls
3. Attach code to events

This week, we are primarily concerned with Step 3, attaching code. We will
become more familiar with moving around in the Code window and learn

some of the elements of the Basic language.

A Brief History of Basic
Language developed in early 1960's at Dartmouth College:

B (eginner's)

A (All-Purpose)
S (Symbolic)

I (Instruction)
C (Code)

Answer to complicated programming languages (FORTRAN, Algol, Cobol ...).
First timeshare language.

In the mid-1970's, two college students write first Basic for a microcomputer
(Altair) - cost $350 on cassette tape. You may have heard of them: Bill
Gates and Paul Allen!

Every Basic since then essentially based on that early version. Examples
include: GW-Basic, QBasic, QuickBasic.

Visual Basic was introduced in 1991.

Database Access and Management 8-36

Visual Basic Statements and Expressions

The simplest statement is the assignment statement. It consists of a

variable name, followed by the assignment operator (=), followed by some
sort of expression.

Examples:

StartTime = Now

Explorer.Caption = "Captain Spaulding"
BitCount = ByteCount * 8

Energy = Mass * LIGHTSPEED " 2
NetWorth = Assets - Liabilities

The assignment statement stores information.

Statements normally take up a single line with no terminator. Statements can
be stacked by using a colon () to separate them. Example:

StartTime = Now : EndTime = StartTime + 10

(Be careful stacking statements, especially with If/End If structures. You may
not get the response you desire.)

If a statement is very long, it may be continued to the next line using the
continuation character, an underscore (_). Example:

Months = Log(Final * IntRate / Deposit + 1) _
/ Log(1 + IntRate)

Comment statements begin with the keyword Rem or a single quote (*). For
example:

Rem This is a remark
' This is also a remark
X =2 *y'another way to write a remark or comment

You, as a programmer, should decide how much to comment your code.
Consider such factors as reuse, your audience, and the legacy of your code.

Database Access and Management 8-37

Visual Basic Operators

The simplest operators carry out arithmetic operations. These operators in
their order of precedence are:

Operator Operation

A Exponentiation
*/ Multiplication and division
\ Integer division (truncates)
Mod Modulus
+- Addition and subutraction

Parentheses around expressions can change precedence.
To concatentate two strings, use the & symbol or the + symbol:

IbITime.Caption = "The current time is" & Format(Now, “hh:mm”)
txtSample.Text = "Hook this * + “to this”

There are six comparison operators in Visual Basic:

Operator Comparison

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

= Equal to

< Not equal to

The result of a comparison operation is a Boolean value (True or False).

Database Access and Management 8-38

We will use three logical operators

Operator Operation

Not Logical not
And Logical and
Or Logical or

The Not operator simply negates an operand.

The And operator returns a True if both operands are True. Else, it returns a
False.

The Or operator returns a True if either of its operands is True, else it returns
a False.

Logical operators follow arithmetic operators in precedence.

Visual Basic Functions

Visual Basic offers a rich assortment of built-in functions. The on-line help
utility will give you information on any or all of these functions and their use.
Some examples are:

Function Value Returned

Abs Absolute value of a number

Asc ASCII or ANSI code of a character

Chr Character corresponding to a given ASCI or ANSI code
Cos Cosine of an angle

Date Current date as a text string

Format Date or number converted to a text string
Left Selected left side of a text string

Len Number of characters in a text string

Mid Selected portion of a text string

Now Current time and date

Right Selected right end of a text string

Rnd Random number

Sin Sine of an angle

Sqr Square root of a number

Str Number converted to a text string

Time Current time as a text string

Timer Number of seconds elapsed since midnight

Val Numeric value of a given text string

Database Access and Management 8-39

A Closer Look at the Rnd Function

In writing games and learning software, we use the Rnd function to introduce
randomness. This insures different results each time you try a program. The
Visual Basic function Rnd returns a single precision, random number between
0 and 1 (actually greater than or equal to 0 and less than 1). To produce
random integers (I) between Imin and Imax, use the formula:

[= Int((Imax - Imin + 1) * Rnd) + Imin

The random number generator in Visual Basic must be seeded. A Seed
value initializes the generator. TheRandomize statement is used to do this:

Randomize Seed
If you use the same Seed each time you run your application, the same
sequence of random numbers will be generated. To insure you get different
numbers every time you use your application (preferred for games), use the
Timer function to seed the generator:

Randomize Timer
Place this statement in the Form_Load event procedure.
Examples:
To roll a six-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

Database Access and Management 8-40

Example 2-1

Savings Account

1. Start a new project. The idea of this project is to determine how much you
save by making monthly deposits into a savings account. For those
interested, the mathematical formula used is:

F=D[@+DM-1]/1
where
F - Final amount
D - Monthly deposit amount
| - Monthly interest rate

M - Number of months

2. Place 4 label boxes, 4 text boxes, and 2 command buttons on the form. It
should look something like this:

Bl A= ES
Labell Textl
Label2 Text?
Label3 Text3
Label4 Textd
< commanan [
U commanaz [

Database Access and M anagement

8-41

3. Set the properties of the form and each object.

Form1:
BorderStyle
Caption
Name

Labell:
Caption

Label2:
Caption

Label3:
Caption

Label4:
Caption

Textl:

Text
Name

Text2:

Text
Name

Text3:
Text
Name

Text4:
Text
Name

Commandl;:
Caption
Name

Command2;:
Caption
Name

1-Fixed Single
Savings Account
frmSavings

Monthly Deposit

Yearly Interest

Number of Months

Final Balance

[Blank]
txtDeposit

[Blank]
txtinterest

[Blank]
txtMonths

[Blank]
txtFinal

&Calculate
cmdCalculate

E&xit
cmdExit

Database Access and Management 8-42

Now, your form should look like this:

W Savingz Account Mi=] E3

- . Monthly
. Deposzit

- Yearly
. Interest

. . Mumber of
. . Months

- . Final Balance

4. Declare four variables in the general declarations area of your form. This
makes them available to all the form procedures:

Option Explicit

D m Deposit As Single
Dmlnterest As Single
Dim Months As Single

Dim Final As Single

The Option Explicit statement forces us to declare all variables.
5. Attach code to the cmdCalculate command button Click event.

Private Sub cndCal culate dick ()
DmiIntRate As Single

‘Read val ues fromtext boxes

Deposit = Val (t xt Deposit. Text)

Interest = Val (txtlnterest. Text)

IntRate = Interest / 1200

Mont hs = Val (txt Mont hs. Text)

‘Conpute final value and put in text box
Final = Deposit * ((1 + IntRate) ~ Months - 1) / IntRate
txt Fi nal . Text = Format (Fi nal, "#####0.00")
End Sub

Database Access and Management 8-43

This code reads the three input values (monthly deposit, interest rate, number
of months) from the text boxes, computes the final balance using the provided
formula, and puts that result in a text box.

6. Attach code to the cmdExit command button Click event.
Private Sub cndExit _Click ()

End
End Sub

7. Play with the program. Make sure it works properly. Save the project.

Database Access and Management 8-44

Visual Basic Symbolic Constants

Many times in Visual Basic, functions and objects require data arguments that
affect their operation and return values you want to read and interpret. These
arguments and values are constant numerical data and difficult to interpret
based on just the numerical value. To make these constants more
understandable, Visual Basic assigns names to the most widely used values -
these are called symbolic constants. Appendix | lists many of these

constants.

As an example, to set the background color of a form named frmExample to
blue, we could type:

frmExample.BackColor = OXxFF0000

or, we could use the symbolic constant for the blue color (vbBlue):

frmExample.BackColor = vbBlue

It is strongly suggested that the symbolic constants be used instead of the
numeric values, when possible. You should agree that vbBlue means more
than the value 0xXFFO000 when selecting the background color in the above
example. You do not need to do anything to define the symbolic constants -
they are built into Visual Basic.

Defining Your Own Constants

You can also define your own constants for use in Visual Basic. The format
for defining a constant named PI with a value 3.14159 is:

Const Pl = 3.14159

User-defined constants should be written in all upper case letters to
distinguish them from variables. The scope of constants is established the
same way a variables’ scope is. That is, if defined within a procedure, they
are local to the procedure. If defined in the general declarations of a form,

they are global to the form. To make constants global to an application, use
the format:
Global Const Pl = 3.14159

within the general declarations area of a module.

Database Access and Management 8-45

Visual Basic Branching - If Statements

Branching statements are used to cause certain actions within a program if a
certain condition is met.

The simplest is the If/Then statement:
If Balance - Check < 0 Then Print "You are overdrawn"

Here, if and only if Balance - Check is less than zero, the statement “You are
overdrawn” is printed.

You can also have If/Then/End If blocks to allow multiple statements:

If Balance - Check < 0 Then
Print "You are overdrawn"

Print "Authorities have been notified"
End If

In this case, if Balance - Check is less than zero, two lines of information are
printed.

Or, If/Then/Else/End If blocks:

If Balance - Check < 0 Then

Print "You are overdrawn"

Print "Authorities have been notified"
Else

Balance = Balance - Check
End If

Here, the same two lines are printed if you are overdrawn (Balance- Check <
0), but, if you are not overdrawn (Else), your new Balance is computed.

Database Access and Management 8-46

Or, we can add the Elself statement:

If Balance - Check < 0 Then
Print "You are overdrawn"
Print "Authorities have been notified"
Elself Balance - Check =0 Then
Print "Whew! You barely made it"

Balance =0
Else

Balance = Balance - Check
End If

Now, one more condition is added. If your Balance equals the Check amount
(Elself Balance - Check = 0), a different message appears.

In using branching statements, make sure you consider all viable possibilities
in the If/Else/End If structure. Also, be aware that each If and Elself in a block
is tested sequentially. The first time an If test is met, the code associated with
that condition is executed and the If block is exited. If a later condition is also
True, it will never be considered.

Key Trapping

Note in the previous example, there is nothing to prevent the user from typing
in meaningless characters (for example, letters) into the text boxes expecting
numerical data. Whenever getting input from a user, we want to limit the
available keys they can press. The process of interecepting unacceptable
keystrokes is key trapping.

Key trapping is done in the KeyPress procedure of an object. Such a
procedure has the form (for a text box named txtText):

Sub txtText_KeyPress (KeyAscii as Integer)

End Sub

What happens in this procedure is that every time a key is pressed in the
corresponding text box, the ASCII code for the pressed key is passed to this
procedure in the argument list (i.e. KeyAscii). If KeyAscii is an acceptable
value, we would do nothing. However, if KeyAscii is not acceptable, we
would set KeyAscii equal to zero and exit the procedure. Doing this has the
same result of not pressing a key at all. ASCII values for all keys are
available via the on-line help in Visual Basic. And some keys are also defined

Database Access and Management ~ 8-47

by symbolic constants. Where possible, we will use symbolic constants; else,
we will use the ASCII values.

As an example, say we have a text box (named txtExample) and we only

want to be able to enter upper case letters (ASCII codes 65 through 90, or,
correspondingly, symbolic constants vbKeyA through vbKeyZ). The key

press procedure would look like (the Beep causes an audible tone if an
incorrect key is pressed):

Sub txtExample_KeyPress(KeyAscii as Integer)
If KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ Then
Exit Sub
Else
KeyAscii=0
Beep
End If
End Sub

In key trapping, it's advisable to always allow the backspace key (ASCII code
8; symbolic constant vbKeyBack) to pass through the key press event. Else,

you will not be able to edit the text box properly.

Database Access and Management 8-48

Example 2-2

Savings Account - Key Trapping

1. Note the acceptable ASCII codes are 48 through 57 (numbers), 46 (the
decimal point), and 8 (the backspace key). In the code, we use symbolic
constants for the numbers and backspace key. Such a constant does not
exist for the decimal point, so we will define one with the following line in the
generaldeclarations area:

Const vbKeyDecPt = 46

2. Add the following code to the three procedures: txtDeposit_KeyPress,
txtinterest_KeyPress, and txtMonths_KeyPress.

Private Sub txtDeposit_KeyPress (KeyAscii As |nteger)
‘“Only allow nunber keys, decimal point, or backspace
If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O
KeyAscii = vbKeyDecPt O KeyAscii = vbKeyBack Then
Exit Sub

El se

KeyAscii = 0

Beep
End If
End Sub

Private Sub txtInterest_ KeyPress (KeyAscii As |nteger)
“Only all ow nunber keys, decinmal point, or backspace
I f (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O
KeyAscii = vbKeyDecPt O KeyAscii = vbKeyBack Then
Exit Sub
El se
KeyAscii = 0
Beep
End If
End Sub

Database Access and Management 8-49

Private Sub txtMonths_KeyPress (KeyAscii As |nteger)
‘Only all ow nunber keys, decinmal point, or backspace
I f (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O
KeyAscii = vbKeyDecPt O KeyAscii = vbKeyBack Then
Exit Sub

El se

KeyAscii =0

Beep
End |f
End Sub

(In the If statements above, note the word processor causes a line break

where there really shouldn’t be one. That is, there is no line break
between the words Or KeyAscii and = vbKeyDecPt. One appears due to

page margins. In all code in these notes, always look for such things.)

3. Rerun the application and test the key trapping performance.

Database Access and Management 8-50

Select Case - Another Way to Branch

In addition to If/Then/Else type statements, the Select Case format can be
used when there are multiple selection possibilities.

Say we've written this code using the If statement:

If Age =5 Then
Category = "Five Year OId"
Elself Age >= 13 and Age <= 19 Then
Category = "Teenager"
Elself (Age >= 20 and Age <= 35) Or Age =50 Or (Age >= 60 and Age <=
65) Then
Category = "Special Adult"
Elself Age > 65 Then
Category = "Senior Citizen"
Else
Category = "Everyone Else"
End If

The corresponding code with Select Case would be:

Select Case Age
Case 5
Category = "Five Year OId"
Case 13 To 19
Category ="Teenager"
Case 20 To 35, 50, 60 To 65
Category = "Special Adult"

Case Is>65
Category = "Senior Citizen"
Case Else
Category = "Everyone Else"
End Select

Notice there are several formats for the Case statement. Consult on-line help
for discussions of these formats.

Database Access and Management 8-51

The GoTo Statement

Another branching statement, and perhaps the most hated statement in
programming, is the GoTo statement. However, we will need this to do Run-
Time error trapping. The format is GoTo Label, where Label is a labeled
line. Labeled lines are formed by typing the Label followed by a colon.

GoTo Example:

LinelO:

Go'i'o Linel0

When the code reaches the GoTo statement, program control transfers to the
line labeled Linel0.

Visual Basic Looping

Looping is done with the Do/Loop format. Loops are used for operations are
to be repeated some number of times. The loop repeats until some specified
condition at the beginning or end of the loop is met.

Do While/Loop Example:

Counter=1

Do While Counter <= 1000
Debug.Print Counter
Counter = Counter + 1

Loop

This loop repeats as long as (While) the variable Counter is less than or
equal to 1000. Note a Do While/Loop structure will not execute even once if
the While condition is violated (False) the first time through. Also note the
Debug.Print statement. What this does is print the value Counter in the
Visual Basic Debug window. We'll learn more about this window later in the
course.

Database Access and Management 8-52

Do Until/Loop Example:

Counter=1

Do Until Counter > 1000
Debug.Print Counter
Counter = Counter + 1

Loop

This loop repeats Until the Counter variable exceeds 1000. Note a Do
Until/Loop structure will not be entered if the Until condition is already True on
the first encounter.

Do/Loop While Example:

Sum=1

Do
Debug.Print Sum
Sum =Sum + 3

Loop While Sum <= 50

This loop repeats While the Variable Sum is less than or equal to 50. Note,
since the While check is at the end of the loop, a Do/Loop While structure is
always executed at least once.

Do/Loop Until Example:

Sum=1
Do
Debug.Print Sum
Sum =Sum + 3
Loop Until Sum > 50

This loop repeats Until Sum is greater than 50. And, like the previous
example, a Do/Loop Until structure always executes at least once.

Make sure you can always get out of a loop! Infinite loops are never nice. If
you get into one, try Ctrl+Break. That sometimes works - other times the

only way out is rebooting your machine!

The statement Exit Do will get you out of a loop and transfer program control
to the statement following the Loop statement.

Database Access and Management 8-53

Visual Basic Counting
Counting is accomplished using the For/Next loop.
Example

For | =1to 50 Step 2
A=1*2
Debug.Print A

Next |

In this example, the variable | initializes at 1 and, with each iteration of the
For/Next loop, is incremented by 2 (Step). This looping continues until |

becomes greater than or equal to its final value (50). If Step is not included,
the default value is 1. Negative values of Step are allowed.

You may exit a For/Next loop using an Exit For statement. This will transfer
program control to the statement following the Next statement.

Database Access and Management 8-

Example 2-3

Savings Account - Decisions

1. Here, we modify the Savings Account project to allow entering any three
values and computing the fourth. First, add a third command button that will
clear all of the text boxes. Assign the following properties:

Command3:
Caption Clear &Boxes
Name cmdClear

The form should look something like this when you're done:

w Savings Account [_ (O] x]

. . Monthly
.. Deposit

- Yearly
.. Interest

. . Mumber of
. . Months

- - Final Balance

LCalculate Clear Boxes

2. Code the cmdClear button Click event:

Private Sub cndC ear_Cdick ()
‘Bl ank out the text boxes

t xt Deposit. Text = ""
txtInterest. Text = ""

txt Mont hs. Text = ""

txtFinal.Text = ""
End Sub

This code simply blanks out the four text boxes when the Clear button is
clicked.

Database Access and M anagement

3. Code the KeyPress event for the txtFinal object:

Private Sub txtFinal _KeyPress (KeyAscii As Integer)
‘Only all ow nunber keys, decimal point, or backspace

I f (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O
KeyAsci i = vbKeyDecPt Or KeyAscii = vbKeyBack Then
Exit Sub
El se
KeyAscii =0
Beep
End If
End Sub

We need this code because we can now enter information into the Final

Value text box.

4. The modified code for the Click event of thecmdCalculate button is:

Private Sub cndCal cul ate_Cick()
DmIntRate As Single
Dim IntNew As Single
DimFcn As Single, FcnD As Single
‘Read the four text boxes
Deposit = Val (txtDeposit. Text)
Interest = Val (txtlnterest. Text)
IntRate = Interest / 1200
Mont hs = Val (t xt Mont hs. Text)
Fi nal = Val (txtFi nal. Text)
‘Determ ne which box is blank
‘Conpute that m ssing value and put in text box
I f txtDeposit.Text = "" Then
‘Deposit m ssing
Deposit = Final / (((1 + IntRate) ~ Months - 1) /

| nt Rat e)
t xt Deposi t. Text = Fornmat (Deposit, "#####0.00")
El self txtlnterest. Text = "" Then

‘“Interest mssing - requires iterative solution

IntNew = (Final / (0.5* Months * Deposit) - 1) / Months

Do

IntRate = | nt New

Fcn = (1 + IntRate) » Months - Final * IntRate /
Deposit - 1

FcnD = Months * (1 + IntRate) »~ (Months - 1) - Final

Deposi t
IntNew = IntRate - Fcn / FcnD
Loop Until Abs(IntNew - IntRate) < 0.00001 / 12

I nt er est I nt New * 1200

/

Database Access and Management 8-56

txtlnterest. Text = Format (I nterest, "##0.00")
El self txtMnths. Text = "" Then
“Mont hs mi ssi ng
Mont hs = Log(Final * IntRate / Deposit + 1) / Log(1l +

| nt Rat e)
t xt Mont hs. Text = Format (Mont hs, "###.0")
El self txtFinal.Text = "" Then

“Final value m ssing
Final = Deposit * ((1 + IntRate) »~ Months - 1) / IntRate
t xt Fi nal . Text = Format (Fi nal , "#####0.00")

End If

End Sub

In this code. we first read the text information from all four text boxes and
based on which one is blank, compute the missing information and display
it in the corresponding text box. Solving for missing Deposit, Months, or
Final information is a straightforward manipulation of the equation given in
Example 2-2.

If the Interest value is missing, we have to solve an Mth-order polynomial using

something called Newton-Raphson iteration - a good example of using a Do
loop. Finding the Interest value is straightforward. What we do is guess at

what the interest is, compute a better guess (using Newton-Raphson
iteration), and repeat the process (loop) until the old guess and the new
guess are close to each other. You can see each step in the code.

5. Test and save your application. Go home and relax.

Database Access and Management 8-57

Exercise 2-1

Computing a Mean and Standard Deviation

Develop an application that allows the user to input a sequence of numbers.
When done inputting the numbers, the program should compute the mean of that
sequence and the standard deviation. If N numbers are input, with the ith
number represented by x;, the formula for the mean (X) is:

N
X=(a x)N

i=1

and to compute the standard deviation (s), take the square root of this equation:

S =INQ % - (& % ’VIN(N - 1)]

i=1 i=1

The Greek sigmas in the above equations simply indicate that you add up all the
corresponding elements ne xt to the sigma.

My Solution:

Form:

% Mean and Standard Deviation [Ej[=]

Labell —= yamee®] 0 ———{biNumber

Label2 %Enterl\lumber I __ txtinput

cmdAccept %ﬁcceptl‘\lumber Compute cdeomput

cmdNew Tew Sequence E it cmdExit

Label6 —Mean I %—IbIMean

Label4—5 = Dsfﬂgﬁ;i SRR | —==—IbIStdDev

Database Access and Management 8-58

Properties:

Form frmStats:
Caption = Mean and Standard Deviation

CommandButton cmdExit:
Caption = E&xit

CommandButton cmdAccept:
Caption = &Accept Number

CommandButton cmdCompute:
Caption = &Compute

CommandButton cmdNew :
Caption = &New Sequence

TextBox txtInput:
FontName = MS Sans Serif
FontSize =12

Label IblStdDev:

Alignment = 2 - Center
BackColor = &HOOFFFFFF& (White)

BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize =12

Label Label6:
Caption = Standard Deviation

Label IbIMean:
Alignment = 2 - Center
BackColor = &HOOFFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 12

Label Label4:
Caption = Mean

Database Access and Management 8-59

Label IbINumber:
Alignment = 2 - Center
BackColor = &HOOFFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize =12

Label Label2:
Caption = Enter Number

Label Labell:
Caption = Number of Values

Code:
General Declarations:

Option Explicit
Di m NunVal ues As | nteger
Dim SunX As Single
Dim SunX2 As Single
Const vbKeyM nus = 45
Const vbKeyDecPt 46

cmdAccept Click Event:

Private Sub cndAccept Cick()

Dim Val ue As Single

t xt I nput . Set Focus

Nunwval ues = Nunival ues + 1

| bl Nunmber . Caption = Str(NunVal ues)
“Get nunber and sum nunber and nunber - squar ed
Val ue = Val (txtI nput. Text)

SumX = SunX + Val ue

SumX2 = SumX2 + Value ™ 2
txtlnput. Text = ""

End Sub

Database Access and Management 8-60

cmdCompute Click Event:

Private Sub cnmdConpute_C i ck()
Dim Mean As Single
Dm StdDev As Single
t xt I nput . Set Focus
‘Make sure there are at |east two val ues
I f NunWVal ues < 2 Then
Beep
Exit Sub
End If
‘ Conput e nean
Mean = SunX / Nunmval ues
| bl Mean. Caption = Str(Mean)
‘ Conput e standard devi ation
StdDev = Sgr ((NunVal ues * SunX2 - SunX ~ 2) / (Nunval ues *
(Nunwval ues - 1)))
| bl StdDev. Caption = Str(StdDev)
End Sub

cmdExit Click Event:

Private Sub cnmdExit_dick()
End
End Sub

cmdNew Click Event:

Private Sub cmidNew C i ck()
"Initialize all variables
t xt I nput . Set Focus

Nunmval ues = 0

| bl Nunmber . Caption = "0"
txtlnput. Text = ""

| bl Mean. Caption = ""

| bl St dDev. Caption = ""
SunX = 0

Sumx2 = 0

End Sub

Database Access and Management 8-61

txtinput KeyPress Event:

Private Sub txtlnput_KeyPress(KeyAscii As |nteger)
"Only all ow nunbers, mnus sign, deciml point, backspace,
return keys
If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O KeyAscii
= vbKeyM nus O KeyAscii = vbKeyDecPt O KeyAscii =
vbKeyBack Then
Exit Sub
El self KeyAscii = vbKeyReturn Then
Call cndAccept _Cick
El se
KeyAscii =0
End |f
End Sub

Database Access and Management 8-62

Exercise 2-2

Flash Card Addition Problems

Write an application that generates random addition problems. Provide some
kind of feedback and scoring system as the problems are answered.

My Solution:

Form:

IbINum?2 Label4
w. Flazh Card Addition

: //txtAnswer
IbINumlg— I L ;

IbIMessag

| /

cmdNex cmdExit

Properties:

Form frmAdd:
BorderStyle = 1 - Fixed Single
Caption = Flash Card Addition

CommandButton cmdNext:
Caption = &Next Problem
Enabled = False

CommandButton cmdExit:
Caption = E&xit

TextBox txtAnswer:
FontName = Arial
FontSize = 48
MaxLength = 2

Database Access and M anagement

8-63

Label IbIMessage:
Alignment = 2 - Center
BackC olor = &HOOFFFF00& (Cyan)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontBold = True
FontSize = 24
Fontltalic = True

Label IblScore:
Alignment = 2 - Center
BackColor = &HOOOOFFFF& (Yellow)
BorderStyle = 1 - Fixed Single
Caption=0
FontName = Times New Roman
FontBold = True
FontSize = 36

Label Labell:
Alignment = 2 - Center
Caption = Score:
FontName = MS Sans Serif

FontSize = 18

Label Label4:
Alignment = 2 - Center
Caption = =
FontName = Arial
FontSize = 48

Label IbINum2:

Alignment = 2 - Center
FontName = Arial

FontSize =48

Label Label2:
Alignment = 2 - Center
Caption = +
FontName = Arial
FontSize = 48

Label IbINum1;:

Alignment = 2 - Center
FontName = Arial
FontSize = 48

Database Access and M anagement

Code:
General Declarations:

Option Explicit
Di m Sum As | nt eger
Di m NunmProb As Integer, NunRi ght As Integer

cmdExit Click Event:

Private Sub cmdExit_dick()
End
End Sub

cmdNext Click Event:

Private Sub cnmdNext i ck()

"Cenerate next addition problem

Di m Nunber1 As Integer

Di m Nunber 2 As | nt eger

t xt Answer. Text = ""

| bl Message. Caption = ""

NunProb = NunmProb + 1

" Cenerate random nunbers for addends
Nunberl = Int(Rnd * 21)

Nunber2 = Int(Rnd * 21)

| bl NumlL. Capti on = Fornmat (Nunber1, "#0")
| bl Nun2. Capti on = Fornmat (Nunber 2, "#0")
"Find sum

Sum = Nunber 1l + Nunber 2

cndNext . Enabl ed = Fal se

t xt Answer . Set Focus

End Sub

Form Activate Event:
Private Sub Form Activate()

Call cmdNext Cick
End Sub

Database Access and Management 8-65

Form Load Event:

Private Sub Form Load()
Random ze Ti ner

NumProb = 0

NunRi ght = 0

End Sub

txtAnswer KeyPress Event:

Private Sub txtAnswer_KeyPress(KeyAscii As |nteger)
Dim Ans As | nteger
" Check for nunber only input and for return key
If (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O KeyAscii
= vbKeyBack Then
Exit Sub
El self KeyAscii = vbKeyReturn Then
" Check answer
Ans = Val (t xt Answer . Text)
If Ans = Sum Then
NunRi ght = NunRight + 1
| bl Message. Caption = "That's correct!”
El se
| bl Message. Caption = "Answer is " + Format(Sum "#0")
End | f
| bl Score. Caption = Format (100 * NunRi ght / Nunf ob,
" ##0")
cndNext . Enabl ed = True
cndNext . Set Focus
El se
KeyAscii =0
End |f
End Sub

Database Access and Management 8-66

This page intentionally not left blank. |

Learn Visual Basic 6.0

3. Exploring the Visual Basic Toolbox

Review and Preview
In this class, we begin a journey where we look at each tool in the Visual

Basic toolbox. We will revisit some tools we already know and learn a lot of
new tools. First, though, we look at an important Visual Basic functions.

The Message Box

One of the best functions in Visual Basic is the message box. The message
box displays a message, optional icon, and selected set of command buttons.
The user responds by clicking a button.

The statement form of the message box returns no value (it simply displays
the box):

MsgBox Message, Type, Title

Database Access and M anagement

8-67

where
Message Text message to be displayed
Type Type of message box (discussed in a bit)
Title Text in title bar of message box

You have no control over where the message box appears on the screen.

The function form of the message box returns an integer value
(corresponding to the button clicked by the user). Example of use (Response

is returned value):

Dim Response as Integer

Response = MsgBox(Message, Type, Title)

The Type argument is formed by summing four values corresponding to the
buttons to display, any icon to show, which button is the default response,

and the modality of the message box.

The first component of the Type value specifies the buttons to display:

Value Meaning

Symbolic Constant
vbOKOnly
vbOKCancel
vbAbortRetrylgnore
vbYesNoCancel
vbYesNo
vbRetryCancel

The second component of Type specifies the icon to display in the message

0 OK button only

1 OK/Cancel buttons

2 Abort/Retry/Ignore buttons

3 Yes/No/Cancel buttons

4 Yes/No buttons

5 Retry/Cancel buttons
box:

Value Meaning

0 No icon

16 Critical icon

32 Question mark

48 Exclamation point

64 Information icon

Symbolic Constant
(None)

vbCritical
vbQuestion
vbExclamation
vbinformation

The third component of Type specifies which button is default (i.e. pressing
Enter is the same as clicking the default button):

Value Meaning
0 First button default
256 Second button default

512 Third button default

Symbolic Constant
vbDefaultButtonl
vbDefaultButton2
vbDefaultButton3

Database Access and Management 8-68

The fourth and final component of Type specifies the modality:

Value Meaning Symbolic Constant
0 Application modal vbApplicationModal
4096 System modal vbSystemModal

If the box is Application Modal, the user must respond to the box before
continuing work in the current application. If the box is System Modal, all

applications are suspended until the user responds to the message box.

Note for each option in Type, there are numeric values listed and symbolic

constants. Recall, it is strongly suggested that the symbolic constants be
used instead of the numeric values. You should agree that vboOKOnly

means more than the number 0 when selecting the button type.

Database Access and Management 8-69

The value returned by the function form of the message box is related to the
button clicked:

Value Meaning Symbolic Constant
1 OK button selected vbOK

2 Cancel button selected vbCancel

3 Abort button selected vbAbort

4 Retry button selected vbRetry

5 Ignore button selected vbignore

6 Yes button selected vbYes

7 No button selected vbNo

Message Box Example:

MsgBox “This is an example of a message box”, vbOKCancel +
vbinformation, “Message Box Example”

Meszzage Box Example E3

@ Thiz iz an example of a meszage box
Cancel |

You've seen message boxes if you've ever used a Windows application.
Think of all the examples you've seen. For example, message boxes are
used to ask you if you wish to save a file before exiting and to warn you if a
disk drive is not ready.

Object Methods

In previous work, we have seen that each object has properties and events
associated with it. A third concept associated with objects is the method. A

method is a procedure or function that imparts some action to an object.
As we move through the toolbox, when appropriate, we'll discuss object
methods. Methods are always enacted at run-time in code. The format for
invoking a method is:

ObjectName.Method {optional arguments}

Note this is another use of the dot notation.

Database Access and Management 8-70

The Form Object

The Form is where the user interface is drawn. Itis central to the
development of Visual Basic applications.

Form Properties:

Appearance Selects 3-D or flat appearance.

BackColor Sets the form background color.

BorderStyle Sets the form border to be fixed or sizeable.

Caption Sets the form window title.

Enabled If True, allows the form to respond to mouse and
keyboard events; if False, disables form.

Font Sets font type, style, size.

ForeColor Sets color of text or graphics.

Picture Places a bitmap picture in the form.

Visible If False, hides the form.

Form Events:

Activate Form_Activate event is triggered when form
becomes the active window.

Click Form_Click event is triggered when user clicks on
form.

DblClick Form_DblClick event is triggered when user
double-clicks on form.

Load Form_Load event occurs when form is loaded.

Form Methods:

This is a good place to initialize variables and set
any run-time properties.

Cls Clears all graphics and text from form. Does not
clear any objects.
Print Prints text string on the form.
Examples

frmExample.Cls ' clears the form
frmExample.Print "This will print on the form"

Database Access and Management 8-71

Command Buttons

—

We've seen the command button before. It is probably the most widely used
control. Itis used to begin, interrupt, or end a particular process.

Command Button Properties:

Appearance
Cancel

Caption
Default

Font

Selects 3-D or flat appearance.

Allows selection of button with Esc key (only one
button on a form can have this property True).
String to be displayed on button.

Allows selection of button with Enter key (only one
button on a form can have this property True).
Sets font type, style, size.

Command Button Events:

Click

Label Boxes

Event triggered when button is selected either by
clicking on it or by pressing the access key.

A

A label box is a control you use to display text that a user can't edit directly.

We've seen, though, in previous examples, that the text of a label box can be
changed at run-time in response to events.

Label Properties:

Alignment
Appearance
AutoSize

BorderStyle
Caption
Font

Aligns caption within border.

Selects 3-D or flat appearance.

If True, the label is resized to fit the text specifed
by the caption property. If False, the label will
remain the size defined at design time and the text
may be clipped.

Determines type of border.

String to be displayed in box.

Sets font type, style, size.

Database Access and Management 8-72

WordWrap

Label Events:

Click
DbIClick

Text Boxes

Works in conjunction with AutoSize property. If
AutoSize = True, WordWrap = True, then the text
will wrap and label will expand vertically to fit the
Caption. If AutoSize = True, WordWrap = False,
then the text will not wrap and the label expands
horizontally to fit the Caption. If AutoSize = False,
the text will not wrap regardless of WordWrap
value.

Event triggered when user clicks on a label.
Event triggered when user double-clicks on a
label.

[abl

A text box is used to display information entered at design time, by a user at
run-time, or assigned within code. The displayed text may be edited.

Text Box Properties:

Appearance
BorderStyle
Font
MaxLength

MultiLine

PasswordChar
ScrollBars
SelLength
SelStart
SelText

Tag

Text

Selects 3-D or flat appearance.

Determines type of border.

Sets font type, style, size.

Limits the length of displayed text (0 value
indicates unlimited length).

Specifies whether text box displays single line or
multiple lines.

Hides text with a single character.

Specifies type of displayed scroll bar(s).

Length of selected text (run-time only).

Starting position of selected text (run-time only).
Selected text (run-time only).

Stores a string expression.

Displayed text.

Database Access and Management 8-73

Text Box Events:

Change Triggered every time the Text property changes.
LostFocus Triggered when the user leaves the text box. This

is a good place to examine the contents of a text
box after editing.
KeyPress Triggered whenever a key is pressed. Used for

key trapping, as seen in last class.
Text Box Methods:
SetFocus Places the cursor in a specified text box.

Example

txtExample.SetFocus ' moves cursor to box named txtExample

Database Access and Management 8-74

Example 3-1

Password Validation

1. Start a new project. The idea of this project is to ask the user to input a
password. If correct, a message box appears to validate the user. If
incorrect, other options are provided.

2. Place a two command buttons, a label box, and a text box on your form so it
looks something like this:

w Forml

3. Set the properties of the form and each object.

Forml.:
BorderStyle 1-Fixed Single
Caption Password Validation
Name frmPassword
Labell:
Alignment 2-Center
BorderStyle 1-Fixed Single
Caption Please Enter Your Password:
FontSize 10
FontStyle Bold
Textl:
FontSize 14
FontStyle Regular
Name txtPassword
PasswordChar *
Tag [Whatewer you choose as a password]
Text [Blank]

Database Access and Management 8-75
Commandl:
Caption &Validate
Default True
Name cmdValid
Command?2:
Cancel True
Caption E&xit
Name cmdExit
Your form should now look like this:
L]
I Please Enter Your Password:
v [edate | Ee [
4. Attach the following code to the cmdValid_Click event.
Private Sub cndValid _dick()
"This procedure checks the input password
Di m Response As | nteger
I f txtPassword. Text = txtPassword. Tag Then
"If correct, display nessage box
MsgBox "You' ve passed security!”, vbOKOnly +
vbExcl amati on, "Access G anted"
El se
"If incorrect, give option to try again
Response = MsgBox("I ncorrect password”, vbRetryCancel +

vbCritical, "Access Denied")
I f Response = vbRetry Then
t xt Password. Sel Start = 0
t xt Passwor d. Sel Lengt h = Len(txt Password. Text)
El se
End
End | f
End |f
t xt Passwor d. Set Focus
End Sub

Database Access and Management 8-76

This code checks the input password to see if it matches the stored value. If so,

5.

it prints an acceptance message. If incorrect, it displays a message box to
that effect and asks the user if they want to try again. If Yes (Retry), another
try is granted. If No (Cancel), the program is ended. Notice the use of
SelLength and SelStart to highlight an incorrect entry. This allows the user
to type right over the incorrect response.

Attach the following code to the Form_Activate event.

Private Sub Form Activate()
t xt Passwor d. Set Focus
End Sub

6.

Attach the following code to the cmdEXxit_ Click event.

Private Sub cnmdExit _dick()
End
End Sub

7.

Try running the program. Try both options: input correct password (note it is
case sensitive) and input incorrect password. Save your project.

If you have time, define a constant, TRYMAX = 3, and modify the code to
allow the user to have just TRYMAX attempts to get the correct password.
After the final try, inform the user you are logging him/her off. You'll also

need a variable that counts the number of tries (make it a Static variable).

Database Access and Management 8-77

Check Boxes

v

Check boxes provide a way to make choices from a list of potential
candidates. Some, all, or none of the choices in a group may be selected.

Check Box Properties:

Caption
Font
Value

Check Box Events:

Click

Option Buttons

Identifying text next to box.

Sets font type, style, size.

Indicates if unchecked (0, vbUnchecked), checked
(1, vbChecked), or grayed out (2, vbGrayed).

Triggered when a box is clicked. Value property is
automatically changed by Visual Basic.

o

Option buttons provide the capability to make a mutually exclusive choice

among a group of potential candidate choices. Hence, option buttons work as
a group, only one of which can have a True (or selected) value.

Option Button Properties:

Caption
Font
Value

Identifying text next to button.

Sets font type, style, size.

Indicates if selected (True) or not (False). Only
one option button in a group can be True. One
button in each group of option buttons should
always be initialized to True at design time.

Option Button Events:

Click

Triggered when a button is clicked. Value
property is automatically changed by Visuall
Basic.

Database Access and Management 8-78

Arrays

Up to now, we've only worked with regular variables, each having its own
unigue name. Visual Basic has powerful facilities for handling multi-
dimensional variables, or arrays. For now, we'll only use single, fixed-
dimension arrays.

Arrays are declared in a manner identical to that used for regular variables.
For example, to declare an integer array named'ltems’, with dimension 9, at

the procedure level, we use:

Dim Items(9) as Integer

If we want the array variables to retain their value upon leaving a procedure,
we use the keyword Static:

Static Items(9) as Integer

At the form or module level, in the general declarations area of the Code
window, use:

Dim Items(9) as Integer

And, at the module level, for a global declaration, use:
Global Items(9) as Integer

The index on an array variable begins at 0 and ends at the dimensioned
value. For example, the Items array in the above examples has ten

elements, ranging from Items(0) to Iltems(9). You use array variables just like
any other variable - just remember to include its name and its index. For
example, to set Item(5) equal to 7, you simply write:

Item(5) =7

Database Access and Management 8-79

Control Arrays

With some controls, it is very useful to define control arrays - it depends on
the application. For example, option buttons are almost always grouped in
control arrays.

Control arrays are a convenient way to handle groups of controls that perform
a similar function. All of the events available to the single control are still
available to the array of controls, the only difference being an argument
indicating the index of the selected array element is passed to the event.
Hence, instead of writing individual procedures for each control (i.e. not using
control arrays), you only have to write one procedure for each array.

Another advantage to control arrays is that you can add or delete array
elements at run-time. You cannot do that with controls (objects) not in arrays.
Refer to the Load and Unload statements in on-line help for the proper way
to add and delete control array elements at run-time.

Two ways to create a control array:

1. Create an individual control and set desired properties. Copy the control
using the editor, then paste it on the form. Visual Basic will pop-up a
dialog box that will ask you if you wish to create a control array. Respond
yes and the array is created.

2. Create all the controls you wish to have in the array. Assign the desired
control array name to the first control. Then, try to name the second
control with the same name. Visual Basic will prompt you, asking if you
want to create a control array. Answer yes. Once the array is created,
rename all remaining controls with that name.

Once a control array has been created and named, elements of the array are
referred to by their name and index. For example, to set the Caption
property of element 6 of a label box array namedIblExample, we would use:

IblIExample(6).Caption = “This is an example”

We'll use control arrays in the next example.

Database Accessand Management 8-8C

Frames

&

We've seen that both option buttons and check boxes work as a group.
Frames provide a way of grouping related controls on a form. And, in the
case of option buttons, frames affect how such buttons operate.

To group controls in a frame, you first draw the frame. Then, the associated
controls must be drawn in the frame. This allows you to move the frame and
controls together. And, once a control is drawn within a frame, it can be
copied and pasted to create a control array within that frame. To do this, first
click on the object you want to copy. Copy the object. Then, click on the
frame. Paste the object. You will be asked if you want to create a control
array. Answer Yes.

Drawing the controls outside the frame and dragging them in, copying them
into a frame, or drawing the frame around existing controls will not result in a
proper grouping. It is perfectly acceptable to draw frames within other
frames.

As mentioned, frames affect how option buttons work. Option buttons within
a frame work as a group, independently of option buttons in other frames.
Option buttons on the form, and not in frames, work as another independent
group. Thatis, the form is itself a frame by default. We'll see this in the next
example.

It is important to note that an independent group of option buttons is defined
by physical location within frames, not according to naming convention. That
is, a control array of option buttons does not work as an independent group
just because itis a control array. It would only work as a group if it were the
only group of option buttons within a frame or on the form. So, remember
physical location, and physical location only, dictates independent operation
of option button groups.

Frame Properties:

Caption Title information at top of frame.
Font Sets font type, style, size.

Database Access and Management 8-81

Example 3-2

Pizza Order

1. Start a new project. We'll build a form where a pizza order can be entered by
simply clicking on check boxes and option buttons.

2. Draw three frames. In the first, draw three option buttons, in the second,
draw two option buttons, and in the third, draw six check boxes. Draw two
option buttons on the form. Add two command buttons. Make things look
something like this.

W Forml M= B3
- —Framel —————— —Frame3
= Option
[Checkl [Checka
" Option2
 Option3 [Check2 [Checks
[Check3 [~ Checkb
- —Framez
" Optiond : : SR
. DptinnE . DDtIDﬂE . DDtIDﬂ?
SERRRREE Eﬂmma“d1|fffff Eﬂmmc"ﬂd?lfffffffff

3. Set the properties of the form and each control.

Form1:
BorderStyle 1-Fixed Single
Caption Pizza Order
Name frmPizza
Framel:
Caption Size
Frame2:
Caption Crust Type
Frame3

Caption Toppings

Database Access and M anagement

Optionl:
Caption
Name
Value

Option2:
Caption
Name

Option3:
Caption
Name

Option4:
Caption
Name
Value

Optionb5:
Caption
Name

Option6:
Caption
Name
Value

Option7:
Caption
Name

Checkl:
Caption
Name

Check2:
Caption
Name

Check3:
Caption
Name

Small
optSize
True

Medium
optSize (yes, create a control array)

Large
optSize

Thin Crust
optCrust
True

Thick Crust
optCrust (yes, create a control array)

Eat In

optWhere
True

Take Out
optWhere (yes, create a control array)

Extra Cheese
chkTop

Mushrooms
chkTop (yes, create a control array)

Black Olives
chkTop

Database Access and M anagement

Check4:

Caption Onions

Name chkTop
Checkb5:

Caption Green Peppers

Name chkTop
Check6:

Caption Tomatoes

Name chkTop
Command1:

Caption &Build Pizza

Name cmdBuild
Command2:

Caption E&xit

Name cmdExit

The form should look like this now:

w. Pizza Order =] E3
-~ Size — Toppings
* Small
[ExtraCheese [Onioks
= Medium
£ Large [Mushrooms [~ Green Peppers
[Black Olives [Tomatoes
-~ Crust Tupe
r‘- Thick Crust F Eatln r Take Out
STy 1 ew [

4. Declare the following variables in the general declarations area:

Option Explicit

Dim Pi zzaSi ze As String
Dim Pi zzaCrust As String
Dim Pi zzaWhere As String

This makes the size, crust, and location variables global to the form.

Database Access and Management 8-&34

5. Attach this code to the Form_Load procedure. This initializes the pizza size,
crust, and eating location.

Private Sub Form Load()
"Initialize pizza paraneters
PizzaSi ze = "Smal | "
PizzaCrust = "Thin Crust"

Pi zzaWhere = "Eat In"

End Sub

Here, the global variables are initialized to their default values, corresponding to
the default option buttons.

6. Attach this code to the three option button array Click events. Note the use
of the Index variable:

Private Sub optSize dick(lndex As Integer)
‘Read pi zza size

Pi zzaSi ze = opt Si ze(l ndex). Caption

End Sub

Private Sub optCrust _Cick(lndex As |nteger)
‘Read crust type

Pi zzaCrust = opt Crust (1 ndex). Caption

End Sub

Private Sub optWere_Cick(lndex As Integer)
‘Read pi zza eating |l ocation

Pi zzaWher e = opt Where(| ndex) . Capti on

End Sub

In each of these routines, when an option button is clicked, the value of the
corresponding button’s caption is loaded into the respective variable.

Database Access and Management 8-85

7. Attach this code to the cmdBuild_Click event.

Private Sub cndBuild_Cick()

"This procedure builds a nessage box that displays your
pi zza type

Di m Message As String

Dim1l As |nteger

Message Pi zzaWhere + vbCr

Message = Message + PizzaSize + " Pizza" + vbCOr

Message = Message + PizzaCrust + vbCr

For | =0 To 5
I f chkTop(l).Value = vbChecked Then Message = Message +
chkTop(l). Caption + vbCr

Next |

MsgBox Message, vbOKOnly, "Your Pizza"

End Sub

This code forms the first part of a message for a message box by concatenating
the pizza size, crust type, and eating location (vbCr is a symbolic constant
representing a ‘carriage return’ that puts each piece of ordering information
on a separate line). Next, the code cycles through the six topping check
boxes and adds any checked information to the message. The code then
displays the pizza order in a message box.

8. Attach this code to the cmdExit_Click event.

Private Sub cndExit_dick()
End
End Sub

9. Get the application working. Notice how the different selection buttons work
in their individual groups. Save your project.

10.1f you have time, try these modifications:

A. Add a new program button that resets the order form to the initial
default values. You'll have to reinitialize the three global variables,
reset all check boxes to unchecked, and reset all three option button
groups to their default values.

B. Modify the code so that if no toppings are selected, the message
“Cheese Only” appears on the order form. You’ll need to figure out a
way to see if no check boxes were checked.

Database Access and Management 8-86

List Boxes

EH

A list box displays a list of items from which the user can select one or more
items. If the number of items exceeds the number that can be displayed, a
scroll bar is automatically added.

List Box Properties:

Appearance Selects 3-D or flat appearance.

List Array of items in list box.
ListCount Number of items in list.
Listindex The number of the most recently selected item in

list. If noitem is selected, Listindex =-1.

MultiSelect Controls how items may be selected (0-no multiple
selection allowed, 1-multiple selection allowed, 2 -
group selection allowed).

Selected Array with elements set equal to True or False,
depending on whether corresponding list item is
selected.

Sorted True means items are sorted in 'Ascii' order, else
items appear in order added.

Text Text of most recently selected item.

List Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-clicked.
Primary way used to process selection.

List Box Methods:
Addltem Allows you to insert item in list.
Clear Removes all items from list box.

Removeltem Removes item from list box, as identified by index
of item to remove.

Examples

IstExample.Addltem "This is an added item" ' adds text string to list

IstExample.Clear ' clears the list box
IstExample.Removeltem 4 ' removes IstExample.List(4) from list box

Database Access and Management 8-87

Items in a list box are usually initialized in a Form_Load procedure. It's
always a good idea to Clear a list box before initializing it.

You've seen list boxes before. In the standard 'Open File' window, the
Directory box is a list box with MultiSelect equal to zero.

Combo Boxes

=E

The combo box is similar to the list box. The differences are a combo box
includes a text box on top of a list box and only allows selection of one item.
In some cases, the user can type in an alternate response.

Combo Box Properties:

Combo box properties are nearly identical to those of the list box, with the
deletion of the MultiSelect property and the addition of a Style property.

Appearance Selects 3-D or flat appearance.

List Array of items in list box portion.

ListCount Number of items in list.

Listindex The number of the most recently selected item in
list. If noitem is selected, Listindex =-1.

Sorted True means items are sorted in 'Ascii’' order, else
items appear in order added.

Style Selects the combo box form.
Style = 0, Dropdown combo; user can change
selection.
Style = 1, Simple combo; user can change
selection.
Style = 2, Dropdown combo; user cannot change
selection.

Text Text of most recently selected item.

Combo Box Events:

Click Event triggered when item in list is clicked.
DblClick Event triggered when item in list is double-clicked.
Primary way used to process selection.

Database Access and Management 8-83

Combo Box Methods:

Addltem Allows you to insert item in list.
Clear Removes all items from list box.

Removeltem Removes item from list box, as identified by index
of item to remove.

Examples

cboExample.Addltem "This is an added item" ' adds text string to list
cboExample.Clear ' clears the combo box

cboExample.Removeltem 4 ' removes cboExample.List(4) from list box

You've seen combo boxes before. In the standard 'Open File' window, the

File Name box is a combo box of Style 2, while the Drive box is a combo box
of Style 3.

Database Access and Management 8-89

Example 3-3

Flight Planner

1. Start a new project. In this example, you select a destination city, a seat
location, and a meal preference for airline passengers.

2. Place a list box, two combo boxes, three label boxes and two command
buttons on the form. The form should appear similar to this:

W Forml M=l E3
. Labell S ... Label? ... Label? .
- it [Combo =] [Combez =]
ciooooooiiiiis Commandd |- Command2 |

3. Setthe form and object properties:

Form1:
BorderStyle 1-Fixed Single
Caption Flight Planner
Name frmFlight
Listl:
Name IstCities
Sorted True
Combol:
Name cboSeat

Style 2-Dropdown List

Database Access and Management 8-90

Combo2:
Name cboMeal
Style 1-Simple
Text [Blank]

(After setting properties for this combo box, resize it until itis large enough to
hold 4 to 5 entries.)

Labell:

Caption Destination City
Label2:

Caption Seat Location
Label3:

Caption Meal Preference
Command1:

Caption &Assign

Name cmdAssign
Command2:

Caption E&xit

Name cmdExit

Now, the form should look like this:

w. Flight Planner M=l E3
- Destination ity + - - -+ * * SeatLocation - - -« . Meal Prefersnce - - - - -
IstCities Iu:l:u:uSeat j

Database Access and M anagement

8-91

4. Attach this code to the Form_Load procedure:

Private
“ Add ci
[stCiti
[stCiti
[stCiti
[stCiti
[stCti
[stCiti
[stCGti
[stCti
[stCiti
[stCiti
[stCiti
[stCiti
[stCiti
[stCiti
[stCti
[stCiti

Sub Form Load()
ty nanmes to |list box
es. Cl ear
es. Addltem "San Di ego”
es. Addltem "Los Angel es”
es. Addltem "Orange County"
es. Addltem "Ontari 0"
es. Addl t em " Bakersfiel d"
es. Addl t em " Gakl and"
es. Addl t em " Sacr ament 0"
es. Addltem "San Jose"
es. Addltem "San Franci sco"
es. Addl t em " Eur eka"
es. Addl t em " Eugene”
es. Addl tem " Port| and"
es. Addl t em " Spokane”
es. Addl tem "Seattl e"
es. Listlndex =0

“Add seat types to first conbo box

cboSeat .
choSeat .
cboSeat .
cboSeat .

Addl tem " Ai sl e"
Addltem "M ddl e"
Addl tem "W ndow"
Listlndex = 0

“Add neal types to second conmbo box

cboMeal
cboMeal
cbolMeal
cboMeal
cboMeal
cboMeal
End Sub

. Addl tem " Chi cken"
.Addltem "Mystery Meat"
. Addl tem " Kosher "

. Addl tem " Veget ari an”
JAddltem "Fruit Pl ate"
. Text = "No Preference"

This code simply initializes the list box and the list box portions of the two combo
boxes.

Database Access and Management 8-92

5. Attach this code to the cmdAssign_Click event:

Private Sub cndAssign_Click()
“Buil d nmessage box that gives your assignnent
Dim Message As String

Message = "Destination: " + IstCities. Text + vbCr
Message = Message + "Seat Location: " + cboSeat.Text + vbCr
Message = Message + "Meal: " + cboMeal . Text + vbCr

MsgBox Message, vbOKOnly + vblnformation, "Your Assignnment”
End Sub

When the Assign button is clicked, this code forms a message box message by
concatenating the selected city (from the list box IstCities), seat choice (from
cboSeat), and the meal preference (from cboMeal).

6. Attach this code to the cmdExit_Click event:
Private Sub cmdExit_dick()

End
End Sub

7. Run the application. Save the project.

Database Access and Management 8-93

Exercise 3

Customer Database Input Screen

A new sports store wants you to develop an input screen for its customer
database. The required input information is:

6.

aRhwdE

Name

Age

City of Residence

Sex (Male or Female)

Activities (Running, Walking, Biking, Swimming, Skiing and/or In-Line
Skating)

Athletic Level (Extreme, Advanced, Intermediate, or Beginner)

Set up the screen so that only the Name and Age (use text boxes) and, perhaps,
City (use a combo box) need to be typed; all other inputs should be set with
check boxes and option buttons. When a screen of information is complete,
display the summarized profile in a message box. This profile message box
should resemble this:

Customer Profile] |

kary Doe iz 28 vears old.
She lives in Mercer lsland.
She iz an extreme level athlete,
Activities include;
W alking
Biking
Ir-Line Skating

Database Access and Management 8-
My Solution:
Form:
Frame3
txtName Label2 txtAge
w. Customer Profile
Labell :
S Mame e
Framel— . _ oo\ i
~—_ B N
: _Sﬂr — Q;_f},- ﬂfﬁeﬁ‘fﬂeﬂm e e e e e e e e e e e
|| & Male
optSex —
: _f" Female
[Actiaies SEERFEREEEEERRI cPoc'Y
™ Running]| SERRRREEEERR
I~ Wwalking - Athleticlevel —— -
I Biking Estreme Show Profile cmdShow
[Swimming " Advanced New Profile - L emdNew
[Skiing - | % Intermediate o
[In-Line Skating - | ¢ Beginner 2ac E zit
= : C |
.............. \ N N T
I \ \ I
Frame2 chkAct Frame4 optLevel cmdExit
Properties:

Form frmCustomer:
BorderStyle = 1 - Fixed Single
Caption = Customer Profile

CommandButton cmdExit:
Caption = E&xit

Frame Frame3:
Caption = City of Residence
FontName = MS Sans Serif
FontBold = True

FontSize =9.75
Fontltalic = True

ComboBox cboCity:
Sorted = True
Style = 1 - Simple Combo

Database Access and M anagement

8-9%

CommandButton cmdNew :
Caption = &New Profile

CommandButton cmdShow:
Caption = &Show Profile

Frame Frame4:
Caption = Athletic Level
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

OptionButton optLevel:
Caption = Beginner
Index =3

OptionButton optLevel:
Caption = Intermediate
Index = 2
Value = True

OptionButton optLevel:
Caption = Advanced
Index =1

OptionButton optLevel:

Caption = Extreme
Index =0

Frame Framel.:
Caption = Sex
FontName = MS Sans Serif
FontBold = True

FontSize =9.75
Fontltalic = True

OptionButton optSex:
Caption = Female
Index =1

OptionButton optSex:
Caption = Male
Index=0
Value = True

Database Access and M anagement

8-%

Frame Frame2:
Caption = Activities
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
Fontltalic = True

CheckBox chkAct:
Caption = In-Line Skating
Index =5

CheckBox chkAct:
Caption = Skiing
Index =4

CheckBox chkAct:
Caption = Swimming
Index =3

CheckBox chkAct:
Caption = Biking
Index =2

CheckBox chkAct:
Caption = Waking
Index =1

CheckBox chkAct:
Caption = Running
Index =0

TextBox txtName:
FontName = MS Sans Serif
FontSize =12

Label Labell:
Caption = Name
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

TextBox txtAge:
FontName = MS Sans Serif
FontSize =12

Database Access and Management 8-97

Label Label2:
Caption = Age
FontName = MS Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

Code:
General Declarations:

Option Explicit
Dim Activity As String

cmdExit Click Event:

Private Sub cnmdExit _dick()
End
End Sub

cmdNew Click Event:

Private Sub cmdNew C i ck()

"Bl ank out nane and reset check boxes
Dim1l As |nteger

t Xt Nanme. Text = ""

t xt Age. Text = ""

For I =0 To 5

chkAct (1). Val ue = vbUnchecked
Next |
End Sub

cmdShow Click Event:

Private Sub cmdShow O i ck()
Di m NoAct As Integer, | As Integer

Dim Msg As String, Pronoun As String

' Check to nmake sure name entered
I f txtNanme. Text = "" Then

MsgBox "The profile requires a nane.", vbOKOnly +
vbCritical, "No Nanme Entered"

Exit Sub

Database Access and Management 8-98

End |f

" Check to make sure age entered
If txtAge. Text = "" Then
MsgBox "The profile requires an age.", vbOKOnly +
vbCritical, "No Age Entered"
Exit Sub
End |f

"Put together custoner profile nessage
Msg = txtName. Text + " is" + Str$(txtAge. Text) + " years
old." + vbCr

I f opt Sex(0).Value = True Then Pronoun = "He " El se Pronoun
= n She n

Msg = Msg + Pronoun + "lives in " + cboCity. Text + "." +
vbCr

Msg = Msg + Pronoun + "is a"

I f optLevel (3). Val ue Fal se Then Msg = Msg + "n " El se Msg
= %g + n n

Msg = Msg + Activity + " level athlete.” + vbCr

NoAct = O

For I =0 To 5
I f chkAct(l).Value = vbChecked Then NoAct = NoAct + 1
Next |
If NoAct > 0 Then
Msg = Msg + "Activities include:" + vbCr
For | = 0 To 5
I f chkAct(l).Value = vbChecked Then Msg = Msg +

String$(10, 32) + chkAct(l).Caption + vbCr
Next |
El se
Msg = Msg + vbCr
End If
MsgBox Msg, vbOKOnly, "Custoner Profile"”
End Sub

Form Load Event:

Private Sub Form Load()

"Load combo box with potential city nanes
cboCity. Addltem " Seattl e"

cboCity. Text = "Seattle"

cboCity. Addl tem " Bel | evue"

cboCity. Addltem"Ki r kl and"

cboCity. Addltem "Everett"”

cboCity. Addltem " Mercer |sland”

Database Access and Management 8-9

cboCity. Addl tem " Rent on"
cboCity. Addltem "I ssaquah”
cboCity. Addl tem " Kent"
cboCity. Addltem " Bot hel | "
cboCity. Addltem " Tukwi | a"
cboCity. Addltem "West Seattle"
cboCity. Addl t em " Ednonds”
cboCity. Addl tem " Taconma"
cboCity. Addltem " Federal Way"
cboCity. Addltem " Burien"
cboCity. Addltem " SeaTac"
cboCity. Addltem "Whodi nvil | e"
Activity = "internedi ate"

End Sub

optLevel Click Event:

Private Sub optlLevel _Cick(Index As Integer)
‘Determ ne activity |evel
Sel ect Case | ndex

Case O

Activity = "extrene"
Case 1

Activity = "advanced"
Case 2

Activity = "internedi ate"
Case 3

Activity = "begi nner"
End Sel ect
End Sub

txtAge KeyPress Event:

Private Sub txtAge KeyPress(KeyAscii As I|nteger)
"Only allow nunbers for age
I f (KeyAscii >= vbKeyO And KeyAscii <= vbKey9) O KeyAscii
= vbKeyBack Then
Exit Sub
El se
KeyAscii =0
End |f
End Sub

Database Access and Management 8-100

This page intentionally not left blank. |

Learn Visual Basic 6.0

4. More Exploration of the Visual Basic Toolbox

Review and Preview

In this class, we continue looking at tools in the Visual Basic toolbox. We will look
at some drawing tools, scroll bars, and tools that allow direct interaction with drives,
directories, and files. In the examples, try to do as much of the building and
programming of the applications you can with minimal reference to the notes. This
will help you build your programming skills.

Display Layers

In this class, we will look at our first graphic type controls. line tools, shape tools,
picture boxes, and image boxes. And, with this introduction, we need to discuss the
ideaof display layers.

[tems shown on a form are not necessarily all on the same layer of display. A form's
display is actually made up of three layers as sketched below. All information

Database Access and Management 8-101

displayed directly on the form (by printing or drawing with graphics methods)
appears on the bottom-layer. Information from label boxes, image boxes, line tools,
and shape tools, appears on the middle-layer. And, al other objects are displayed on
the top-layer.

I/Bottom-layer: form
_— Middle-layer : label,
image, shape, line
L~ Top-layer : other controls
and objects

Database Access and Management 8-102

What this meansis you have to be careful where you put things on aform or
something could be covered up. For example, text printed on the form would be
hidden by a command button placed on top of it. Things drawn with the shape tool
are covered by all controls except the image box.

The next question then is what establishes the relative location of objects in the same
layer. That is, say two command buttons are in the same area of aform - which one
lies on top of which one? The order in which objects in the same layer overlay each
other is called the Z-order. This order isfirst established when you draw the form.
Items drawn last lie over items drawn earlier. Once drawn, however, the Zorder can
be modified by clicking on the desired object and choosing Bring to Front from
Visual Basic's Edit menu. The Send to Back command has the opposite effect. Note
these two commands only work within alayer; middle-layer objects will always
appear behind top-layer objects and lower layer objects will always appear behind
middle- layer objects.

Line Tool

T

Thelinetool creates ssimple straight line segments of various width and color.
Together with the shape tool discussed next, you can use this tool to ‘dress up' your
application.

Line Tool Properties:
Border Color Determines the line color.
Border Style Determines the line 'shape’. Lines can be transparent,
solid, dashed, dotted, and combinations.
BorderWidth Determines line width.

There are no events or methods associated with the line tool.

Since the line toal lies in the middle-layer of the form display, any lines drawn will be
obscured by all controls except the shape tool or image box.

Database Access and Management 8-103

Shape Tool

&

Theshapetool can create circles, ovals, squares, rectangles, and rounded squares and
rectangles. Colors can be used and various fill patterns are available.

Shape Tool Properties:

BackColor
BackStyle
BorderColor

Border Style

BorderWidth
FillColor
FillStyle

Shape

Determines the background color of the shape (only
used when FillStyle not Solid.

Determines whether the background is transparent or
opaque.

Determines the color of the shape's outline.
Determines the style of the shape's outline. The border
can be transparent, solid, dashed, dotted, and
combinations.

Determines the width of the shape border line.
Defines the interior color of the shape.

Determines the interior pattern of a shape. Some
choices are: solid, transparent, cross, etc.
Determines whether the shape is a square, rectangle,
circle, or some other choice.

Like the line tool, events and methods are not used with the shape tool.

Shapes are covered by all objects except perhaps line tools and image boxes (depends
on their Zorder) and printed or drawn information. Thisis agood feature in that you
usually use shapes to contain a group of control objects and you'd want them to lie on

top of the shape.

Database Access and Management 8-104

Horizontal and Vertical Scroll Bars

Horizontal and vertical scroll bars are widely used in Windows applications. Scroll

bars provide an intuitive way to move through alist of information and make great
input devices.

Both type of scroll bars are comprised of three areas that can be clicked, or dragged,
to change the scroll bar value. Those areas are:

End arrow —ﬂ /A \ ﬂ
Bar area

Scroll box (thumb)

Clickingan end arrow increments the scroll box asmall amount, clicking the bar

ar eaincrements the scroll box alarge amount, and dragging the scroll box (thumb)
provides continuous motion. Using the properties of scroll bars, we can completely
specify how one works. The scroll box position is the only output information from a
scroll bar.

Scroll Bar Properties:

LargeChange Increment added to or subtracted from the scroll bar
Value property when the bar areais clicked.

M ax The value of the horizontal scroll bar at the far right
and the value of the vertical scroll bar at the bottom.
Can range from -32,768 to 32,767.

Min The other extreme value - the horizontal scroll bar at
the left and the vertical scroll bar at the top. Can range
from -32,768 to 32,767.

SmallChange Theincrement added to or subtracted from the scroll
bar Value property when either of the scroll arrowsis
clicked.

Value The current position of the scroll box (thumb) within
the scroll bar. If you set thisin code, Visual Basic
moves the scroll box to the proper position.

Database Access and M anagement

8-105

Properties for horizontal scroll bar:

LargeChange / SmallChange
Min 7” \ 7d \ ¥ Max
SmallChange Vaue LargeChange
Properties for vertical scroll bar:
Min
«4— SmallChange
LargeChange —
_+— Vvadue

— LargeChange

SmallChange —=l
Max

A couple of important notes about scroll bars:

1. Note that although the extreme values are called Min and M ax, they do not

necessarily represent minimum and maximum values. There is nothing to keep
the Min vaue from being greater than the Max value. In fact, with vertical scroll
bars, thisisthe usua case. Visual Basic automatically adjusts the sign on the
SmallChange and L argeChange properties to insure proper movement of the

scroll box from one extreme to the other.

2. If you ever change the Value,Min, or Max properties in code, make sure Value
isat al times between Min and Max or and the program will stop with an error

message.

Database Access and Management 8-106

Scroll Bar Events;

Change Event is triggered after the scroll box's position has
been modified. Usethis event to retrieve the Value
property after any changesin the scroll bar.

Scrall Event triggered continuously whenever the scroll box
is being moved.

Database Access and Management 8-107

Example 4-1
Temperature Conversion

Start a new project. In this project, we convert temperatures in degrees Fahrenheit (set
using a scroll bar) to degrees Celsius. As mentioned in the Review and Preview section,
you should try to build this application with minimal reference to the notes. To that end,
let'slook at the project specifications.

Temperature Conversion Application Specifications

The application should have a scroll bar which adjusts temperature in
degrees Fahrenheit from some reasonable minimum to some maximum.
Asthe user changes the scroll bar value, both the Fahrenheit temperature
and Celsius temperature (you have to calculate this) in integer format
should be displayed. The formulafor converting Fahrenheit (F) to Celsius
©is

C=(F- 32)*5/9

To convert this number to a rounded integer, use the Visual Basic Clnt()
function. To change numeric information to strings for display in label or
text boxes, use the Str() or Format() function. Try to build as much of
the application as possible before looking at my approach. Try
incorporating lines and shapes into your application if you can.

Database Access and M anagement

8-108

One Possible Approach to Temperature Conversion Application:

1. Place ashape, avertical scroll bar, four labels, and a command button on the form.
Put the scroll bar within the shape- since it isin the top- layer of the form, it will liein

the shape. It should resemble this:

w Forml

| Shapel

2. Set the properties of the form and each object:

Form1l:
BorderStyle 1-Fixed Single
Caption Temperature Conversion
Name frmTemp
Shapel:
BackColor White
BackStyle 1-Opaque
FillColor Red
FillStyle 7-Diagona Cross
Shape 4-Rounded Rectangle
VScrolll:
LargeChange 10
Max -60
Min 120
Name vsbTemp
SmallChange 1

Vdue 32

Database Access and M anagement

8-109

Labell:
Alignment
Caption
FontSize
FontStyle

Label2:
Alignment
AutoSize
BackColor
BorderStyle
Caption
FontSize
FontStyle
Name

Label3:
Alignment
Caption
FontSize
FontStyle

Label4:
Alignment
AutoSize
BackColor
BorderStyle
Caption
FontSize
FontStyle
Name

Commandl;
Cancel
Caption
Name

2-Center
Fahrenheit
10

Bold

2-Center

True

White

1-Fixed Single
32

14

Bold

IbI TempF

2-Center
Celsius
10

Bold

2-Center

True

White

1-Fixed Single
0

14

Bold

bl TempC

True
E&xit
cmdExit

Note the temperatures are initialized at 32F and OC, known values.

Database Access and M anagement

8-110

When done, the form should look like this;

w. Temperature Conversion M=l E3

3. Put this code in the general declarations of your code window.

Option Explicit
D m TenpF As | nteger
D m TenpC As | nt eger

This makes the two temperature variables global.

4. Attach the following code to the scroll bar Scroll event.

Private Sub vsbTenp_Scroll ()

'"Read F and convert to C

TenpF = vsbTenp. Val ue

| bl TenmpF. Caption = Str(TenpF)
TenmpC = CInt((TenmpF - 32) * 5/ 9)
| bl TenmpC. Caption = Str(TenpC)

End Sub

This code determines the scroll bar Value as it scrolls, takes that value as Fahrenheit

temperature, computes Celsius temperature, and displays both values.

Database Access and Management 8-111

5. Attach the following code to the scroll bar Change event.

Private Sub vsbTenp_Change()

"Read F and convert to C

TenpF = vsbTenp. Val ue

| bl TempF. Caption = Str(TenpF)
TempC = CInt((TenpF - 32) * 5/ 9)
| bl TenmpC. Caption = Str(TenpQC)

End Sub

Note this code is identical to that used in the Scroll event. Thisis amost aways the case
when using scroll bars.

6. Attach the following code to the cmdExit_Click procedure.

Private Sub cnmdExit _dick()
End
End Sub

7. Givethe program atry. Make sureit provides correct information at obvious points.
For example, 32 F better always be the same as0 C! Save the project - we'll returnto
it briefly in Class 5.

Other things to try:

A. Canyou find a point where Fahrenheit temperature equals Celsius temperature?

If you don't know this off the top of your head, it's obvious you've never lived in
extremely cold climates. 1've actually witnessed one of those bank temperature
signs flashing degrees F and degrees C and seeing the same number!

B. Ever wonder why body temperature is that odd figure of 98.6 degrees F? Can
your new application give you some insight to an answer to this question?

C. It might be interesting to determine how wind affects perceived temperature - the
wind chill. Add a second scroll bar to input wind speed and display both the
actual and wind adjusted temperatures. Y ou would have to do some research to
find the mathematics behind wind chill computations. Thisis not atrivial
extension of the application.

Database Access and Management 8-112

Pictur e Boxes

The picture box allows you to place graphics information on aform. It is best suited
for dynamic environments - for example, when doing animation.

Picture boxes lie in the top layer of the form display. They behave very much like
small forms within aform, possessing most of the same properties as a form.

Picture Box Properties:

AutoSize If True, box adjusts its size to fit the displayed graphic.

Font Setsthe font size, style, and size of any printing done
in the picture box.

Picture Establishes the graphics file to display in the picture
box.

Picture Box Events:

Click Triggered when a picture box is clicked.
DblClick Triggered when a picture box is double-clicked.

Picture Box Methods:

Cls Clearsthe picture box.
Print Prints information to the picture box.
Examples

picExample.Cls ' clears the box picExample
picExample.Print "a picture box" ' prints text string to picture box

Database Access and Management 8-113

Picture Box LoadPicture Procedure:

An important function when using picture boxes is the L oadPicture procedure. Itis
used to set the Picture property of a picture box at run-time.

Example
picExample.Picture = LoadPicture("c:\pix \sample.bmp™)

This command loads the graphics file c:\pix\sample.bmp into the Picture property of
the picExample picture box. The argument in the LoadPicture function must be a
legal, complete path and file name, else your program will stop with an error
message.

Five types of graphics files can be loaded into a picture box:

Bitmap An image represented by pixels and stored as a
collection of bitsin which each bit corresponds to one
pixel. Usually hasa.bmp extension. Appearsin
origina size.

Icon A special type of bitmap file of maximum 32 x 32 size.
Hasa.ico extension. We'll createicon filesin Class 5.
Appearsin original size.

Metafile A file that stores an image as a collection of graphical
objects (lines, circles, polygons) rather than pixels.
Metafiles preserve an image more accurately than
bitmaps when resized. Has a.wmf extension. Resizes
itself to fit the picture box area.

JPEG JPEG (Joint Photographic Experts Group) is a
compressed bitmap format which supports 8 and 24 bit
color. Itispopular on the Internet. Hasa.jpg
extension and scales nicely.

GIF GIF (Graphic Interchange Format) is a compressed
bitmap format originally developed by CompuServe. It
supports up to 256 colors and is popular on the Internet.
Has a gif extenson and scales nicely.

Database Access and Management 8-114

Image Boxes

Animagebox isvery similar to a picture box in that it allows you to place graphics
information on aform. Image boxes are more suited for static Situations - that is,
cases where no modifications will be done to the displayed graphics.

Image boxes appear in the middle-layer of form display, hence they could be
obscured by picture boxes and other objects. Image box graphics can be resized by
using the Stretch property.

Image Box Properties:

Ficture Establishes the graphics file to display in the image
box.
Stretch If False, the image box resizes itself to fit the graphic.

If True, the graphic resizes to fit the control area
Image Box Events:

Click Triggered when aimage box is clicked.
DbIClick Triggered when aimage box is double-clicked.

The image box does not support any methods, however it does use the L oadPicture
function. It isused in exactly the same manner as the picture box usesit. And image
boxes can load the same file types. bitmap (.bmp), icon (.ico), metafiles (.wmf), GIF
files (.gif), and JPEG files (.jpg). With Stretch = True, al three graphic types will
expand to fit the image box area.

Quick Example: Picture and I mage Boxes

1.

2.

Start a new project. Draw one picture box and one image box.

Set the Picture property of the picture and image box to the samefile. If you have
graphics files installed with Visual Basic, bitmap files can be found in the bitmaps
folder, icon filesin the icons folder, and metafiles are in the metafile folder.

Notice what happens as you resize the two boxes. Notice the layer effect when you
move one box on top of the other. Notice the effect of the image box Stretch
property. Play around with different file types - what differences do you see?

Database Access and Management 8-115

DrivelList Box

=

Thedrivelist box control allows a user to select avalid disk drive at run-time. It
displays the available drives in a drop-down combo box. No codeis needed to load a

drivelist box; Visual Basic doesthisfor us. We use the box to get the current drive
identification.

Drive List Box Properties:
Drive Contains the name of the currently selected drive.
Drive List Box Events:

Change Triggered whenever the user or program changes the
drive selection.

Directory List Box

=

Thedirectory list box displays an ordered, hierarchical list of the user's disk
directories and subdirectories. The directory structure is displayed in alist box. Like,

the drive list box, little coding is needed to use the directory list box - Visua Basic
does most of the work for us.

Directory List Box Properties:
Path Contains the current directory path.
Directory List Box Events:

Change Triggered when the directory selection is changed.

Database Access and Management 8-116

FileList Box

Thefile list box locates and lists files in the directory specified by its Path property at
runtime. You may select the types of files you want to display in the file list box.

File List Box Properties:

FileName Contains the currently selected file name.
Path Contains the current path directory.
Pattern Contains a string that determines which files will be

displayed. It supports the use of * and ? wildcard
characters. For example, using *.dat only displays files

with the .dat extension.
File List Box Events:

DblClick Triggered whenever afile name is double-clicked.
PathChange Triggered whenever the path changes in afile list box.

Y ou can aso use the M ultiSelect property of the file list box to allow multiple file
selection.

Database Access and Management 8-117

Synchronizing the Drive, Directory, and File List Boxes

The drive, directory, and file list boxes are amost always used together to obtain a
filename. Assuch, it isimportant that their operation be synchronized to insure the
displayed information is always consistent.

When the drive selection is changed (drive box Change event), you should update the
directory path. For example, if the drive box is named drvExample and the directory
box is dirExample, use the code:

dirExample.Path = drvExample.Drive

When the directory selection is changed (directory box Change event), you should
update the displayed file names. With afile box named filExample, this code is:

filExample.Path = dirExample.Path

Once dl of the selections have been made and you want the file name, you need to
form atext string that correctly and completely specifies the file identifier. This
string concatenates the drive, directory, and file name information. This should be an
easy task, except for one problem. The problem involves the backslash (\) character.
If you are at the root directory of your drive, the path name ends with a backslash. If
you are not at the root directory, there is no backslash at the end of the path name and
you have to add one before tacking on the file name.

Example code for concatenating the available information into a proper file name and
then loading it into an image box is:

Dim YourFile as String

If Right(filExample.Path,1) = "\" Then
Y ourFile = filExample.Path + filExample.FileName
Else
YourFile = filExample.Path + "\" + filExample.FileName
End If
imgExample.Picture = LoadPicture(Y ourFile)

Note we only use properties of thefile list box. The drive and directory box properties
are only used to create changes in the file list box via code.

Database Access and Management 8-118

Example 4-2
Image Viewer

Start a new project. In this application, we search our computer's file structure for
graphics files and display the results of our search in an image box.

Image Viewer Application Specifications

Develop an application where the user can search and find graphics files
(*.ico, *.bmp, *.wmf) on his’her computer. Once afileis selected, print
the corresponding file name on the form and display the graphic filein an
image box using the L oadPicture() function.

Database Access and Management 8-119

One possible solution to the Image Viewer Application:

1. Place adrivelist box, directory list box, file list box, four label boxes, aline (use the
line tool) and a command button on the form. We aso want to add an image box, but
make it look like it'sin some kind of frame. Build this display areain these steps:
draw a'large shape', draw another shape within thisfirst shape that is the size of the
image display area, and lastly, draw an image box right on top of this last shape.
Since the two shapes and image box are in the same display layer, the image box is on
top of the second shape which is on top of the first shape, providing the desired effect
of akind of picture frame. The form should look like this:

w. Forml M=] E3
Labe N _
: e .|| —Linel
" Label2 DUUUUTT Label3 Il /
- [autolEd.vbp ~ : e : — Shapel
. | biblic.ldb
- | biblio.mdb :
- | bright.dib %E“maps _— Shape?
. C
- | chrlref.cnt .
* | ctriref.frg @ L=tk | :
- | ctrlref.fts [inchude A ~
- | ctrlref. gid [C metafile . . IS
- |ctrlref hip (3 odbe - .
- | datarmgr.crt 4 repart LI S : \ Imagel
. | datarmngr.exe — | :
- | datarnar.ftg Labeld e
. | datamgr.fte C :
. | datamar.gid : Commandl | . Command2
| datamar hip MR EETCENIR :

Note the second shape is directly beneath the image box.

2. Set properties of the form and each object.

Form1:
BorderStyle 1-Fixed Single
Caption Image Viewer
Name frmimage
Drivel.
Name drvimage
Dirl:

Name dirlmage

Database Access and M anagement

8-120

Filel:
Name
Pattern

Labell:
Caption
BackColor
BorderStyle
Name

Label2:
Caption

L abel3:
Caption

L abel4:
Caption

Command1:
Caption
Default
Name

Command2:
Cancel
Caption
Name

Linel:
BorderWidth

Shapel:
BackColor
BackStyle
FillColor
FillStyle
Shape

Shape2:
BackColor
BackStyle

fillmage
.bmp;.ico;* .wmf;* gif;*jpg
[type thisline with no spaces]|

[Blank]
Yellow
1-Fixed Single
Iblimage

Files:

Directories:

Drives:

& Show Image

True
cmdShow

True

E& xit
cmdExit

Cyan

1-Opague

Blue

4-Upward Diagond
4-Rounded Rectangle

White
1-Opague

Database Access and Management 8-121

Imagel:
BorderStyle 1-Fixed Single
Name imglmage
Stretch True

3. Attach the following code to the drvimage Change procedure.

Private Sub drvl mage_Change()

"If drive changes, update directory
di rl mage. Path = drvlinmage. Dri ve

End Sub

When anew drive is selected, this code forces the directory list box to display directories
on that drive.

4. Attach this codeto the dirlmage_Change procedure.

Private Sub dirlmge_Change()

"If directory changes, update file path
fillmge.Path = dirlmge. Path

End Sub

Likewise, when a new directory is chosen, we want to see the files on that directory.
5. Attach this code to the cmdShow_Click event.

Private Sub cnmdShow O i ck()
"Put image file nane together and
"l oad image into i mage box
Dim | nageNane As String
"Check to see if at root directory
If Rght(fillmage.Path, 1) = "\" Then
| mageNane = fillmage.Path + fillnmage.filenane
El se
I mmgeNane = fillmage. Path + "\" + fillnmage.fil ename
End If
| bl I mage. Capti on = | mageNane
i ngl mage. Pi cture = LoadPi cture(l mageNane)
End Sub

This code forms the file name (ImageName) by concatenating the directory path with the
file name. It then displays the complete name and loads the picture into the image
box.

Database Access and Management 8-122

6. Copy the code from thecmdShow_Click procedure and paste it into the
fillmage _DblClick procedure. The codeisidentica because we want to display the
image either by double-clicking on the filename or clicking the command button once
afileis selected. Those of you who know how to call routinesin Visual Basic should
note that this duplication of code is unnecessary - we could ssmply have the
fillmage_DblClick procedure call the cndShow_Click procedure. We'll learn more
about this next class.

7. Attach this code to the cmdEXxit_Click procedure.

Private Sub cnmdExit _dick()
End
End Sub

8. Saveyour project. Run and try the application. Find bitmaps, icons, and metafiles.
Notice how the image box Stretch property affects the different graphics file types.
Here's how the form should look when displaying one example metafile:

w. Image Yiewer

Iu::'wI:u'xmetafile'xl:uusiness'xlaptu:up'l rnf

Files: Directories:

dizk 35, wmf -
dizk 525 wrnf _I
dallar. varnf

dollars. wmf

ervlback. wmf

ervelfrnt. warnf
filectzd. vrnf
fileopen. wrnf

quilder. warmf
| harddizk. vrnf

|aptopZ. wnf
rnicrchip. wnf
ey, vk
moneybag, wmf

Dirives:

| [Sc ez | 2howimeee | Ei

Database Access and Management 8-123

Common Dialog Boxes

The primary use for the drive, directory, and file name list boxes is to develop custom
file access routines. Two common file access routines in Windows-based
applications are the Open File and Save File operations. Fortunately, you don’t have
to build these routines.

To give the user a standard interface for common operations in Windows-based
applications, Visual Basic provides a set of common dialog boxes, two of which are
the Openand Save As dialog boxes. Suchboxes are familiar to any Windows user
and give your application a professional look. And, with Windows 95, some context-
sengitive help is available while the box is displayed. Appendix Il lists many
symbolic constants used with common dialog boxes.

The Common Dialog control isa‘custom control’ which means we have to make
sure some other files are present to useit. In normal setup configurations, Visual
Basic does this automatically. 1f the common dialog box does not appear in the
Visual Basic toobox, you need to add it. Thisis done by selecting Components
under the Project menu. When the selection box appears, click on Microsoft
CommonDialog Control, then click OK.

The common diaog tool, although it appears on your form, isinvisible at run-time.
Y ou cannot control where the common dialog box appears on your screen. The tool
isinvoked at run-time using one of five ‘Show’ methods. These methods are:

Method Common Dialog Box
ShowOpen Open dialog box
ShowSave Save As dialog box
ShowColor Color dialog box
ShowFont Font dialog box
ShowPrinter Printer dialog box

The format for establishing a common dialog box named cdlExample so that an
Open box appearsis.

cdlExample.ShowOpen

Control to the program returns to the line immediately following this line, once the dialog
box is closed in some manner. Common dialog boxes are system modal.

Database Access and Management 8-124

Learning proper use of all the common dialog boxes would require an extensive

amount of time. In this class, we'll limit ourselves to learning the basics of getting
file names from the Open and Save As boxes in their default form.

Open Common Dialog Box

The Open common dialog box provides the user a mechanism for specifying the
name of afileto open. We'll worry about how to open afilein Class 6. The box is
displayed by using the ShowOpenmethod. Here' s an example of an Open common

dialog box:

Open Example

Loak jr: I 5] Azsorted

HIEHE-:

L

Balloon; #A Chub M Hand & Note
Beany FCup [# Happy [Mateboal
Eell Delete Hea.tt Ph.:.ne
Calendar [# Diamond [#1ntl no [# Pin
Camecord Envelu:upe Ke;r Plan
Card &4 Fish [1l ail A Present

i

File name: I

Open I

Files of twpe: IBitmaps [*.brmp]

[Open as read-only

j Cancel |

Open Dialog Box Properties:

CancelError If True, generates an error if the Cancel button is
clicked. Allows you to use error- handling procedures
to recognize that Cancel was clicked.

DialogTitle The string appearing in the title bar of the dialog box.
Default is Open. In the example, the DidogTitleis

Open Example.

FileName Sets the initia file name that appears in the File name
box. After the dialog box is closed, this property can be
read to determine the name of the selected file.

Database Access and Management 8-125

Filter Used to restrict the filenames that appear in the file list
box. Complete filter specifications for forming a Filter
can be found using ont line help. 1n the exampk, the
Filter was set to alow Bitmap (*.bmp), Icon (*.ico),
Metefile (*.wmf), GIF (*.gif), and JPEG (*.jpg) types
(only the Bitmap choice is seen).

Filter I ndex Indicates which filter component is default. The
example uses a 1 for the FilterIndex (the default value).

Flags Values that control special features of the Open dialog
box (see Appendix I1). The example uses no Flags
value.

When the user closes the Open File box, you should check the returned file name to
make sure it meets the specifications your application requires before you try to open
the file.

Quick Example: The Open Dialog Box

1. Start anew project. Place acommon dialog control, alabel box, and a command
button on the form. Set the following properties:

Form1.:
Caption Common Dido g Examples
Name frmCommon

CommonDialogl:
DialogTitle Open Example
Filter Bitmaps (*.omp)[*.bmp|
Icons (*.ico)[*.ico|Metafiles (* .wmf)[*.wmf
GIF Files (*.gif)|*.gif|[JPEG Files (*,jpg)[*.jpg
(al on oneline)

Name cdiExample
Labell:

BorderStyle 1-Fixed Single

Caption [Blank]

Name IblExample
Command1l:

Caption & Display Box

Name cmdDisplay

Database Access and Management 8-126

When done, the form should look like this (make sure your label box is very long):

. Common Dialog Examples M=l E3

2. Attach this code to the cmdDisplay_Click procedure.

Private Sub cndDi splay_dick()

cdl Exanpl e. ShowOpen
| bl Exanpl e. Capti on = cdl Exanpl e.fil enane

End Sub

This code brings up the Open dialog box when the button is clicked and shows the
file name selected by the user once it is closed.

3. Savethe application. Run it and try selecting file names and typing file names.
Notice names can be selected by highlighting and clicking the OK' button or just by
double-clicking the file name. In this example, clicking the Cancel button is not
trapped, so it has the same effect as clicking OK.

4. Notice once you select afile name, the next time you open the dialog box, that
selected name appears as default, since the FileName property is not affected in code.

Database Access and Management 8-127

Save As Common Dialog Box

The Save As common dialog box provides the user a mechanism for specifying the
name of afileto save. W€ Il worry about how to save afilein Class 6. The box is
displayed by using the ShowSave method.. Here's an example of a Save As common
dialog box:

Save As Example HE
Savein | Assorted RN
EBalloan [Club [Hand | M ate
Beany # Cup [Happy [Moteboot
Eell Delete Hea.tt Ph.:.ne
Calendar A Diamond FIntl_no # Pin
Camecord Envelu:upe Ke;r Plan
Card #AFish [11 ail [# Present
L | ol
File name: I Save I
Save as lype: IBitmaps [*.brmp] j Cancel |
[Open as read-only

Save As Dialog Box Properties (mostly the same as those for the Open box):

CancelError If True, generates an error if the Cancel button is
clicked. Allows you to use error- handling procedures
to recognize that Cancel was clicked.

DefaultExt Sets the default extension of afile nameif afileislisted
without an extension.

DialogTitle The string appearing in the title bar of the dialog box.
Default is Save As. In the example, the DialogTitleis
Save As Example.

FileName Sets the initia file name that appears in the File name
box. After the dialogbox is closed, this property can be
read to determine the name of the selected file.

Filter Used to restrict the filenames that appear in the file list
box.

FilterIndex Indicates which filter component is default.

Flags Values that control special features of the dialog box

(see Appendix I1).

Database Access and Management 8-128

The Save File box is commonly configured in one of two ways. If afileisbeing
saved for the first time, the Save As configuration, with some default name in the
FileName property, isused. In the Save configuration, we assume afile has been
previously opened with some name. Hence, when saving the file again, that same
name should appear in the FileName property. Y ou've seen both configuration types
before.

When the user closes the Save File box, you should check the returned file name to
make sure it meets the specifications your application requires before you try to save
thefile. Be especialy aware of whether the user changed the file extension to
something your application does not allow.

Quick Example: The Save As Dialog Box

1

We'll just modify the Open example abit. Change the DialogTitle property of the
common dialog control to “Save As Example” and set the DefaultExt property equal
to “bmp”.

In the cmdDisplay_Click procedure, change the method to ShowSave (opens Save
As box).

Save the application and run it. Try typing names without extensions and note how
Jbmp is added to them. Notice you can also select file names by double-clicking
them or using the OK button. Again, the Cancel button is not trapped, so it has the
same effect as clicking OK.

Database Access and Management 8-129

Exercise 4

Student Database Input Screen

You did so well with last week’ s assignment that, now, a school wants you to develop the
beginning structure of an input screen for its students. The required input information is:

Student Name

Student Grade (1 through 6)

Student Sex (Mae or Female)

Student Date of Birth (Month, Day, Y ear)

Student Picture (Assume they can be loaded as bitmap files)

agrwdE

Set up the screen so that only the Name needs to be typed; all other inputs should be set
with option buttons, scroll bars, and common dialog boxes. When a screen of
information is complete, display the summarized profile in a message box. This profile

message box should resemble this:

Student Profile]

Bobby Jones ig a student in the third grade.
He iz 9 yearz old.

Note the student’ s age must be computed from the input birth date - watch out for pitfalls
in doing the computation. The student’s picture does not appear in the profile, only on
the input screen.

Database Access and Management 8-130

My Solution:

Form:

txtName \ IbiMonth IbiDay IblYear Framel

. Student ldentification
Labell
: Frame3
Framez — ©
m —~
I : imgStudent
optSex _l: Female vsbMonth :
- — vsbDa) A
- Grade Level Y :
| &= First [vsbYear :
................ . . cmdLoad
" Second : /
 Third Ehul:uw Student Profile e -
£ Faurth /1_31.-\' Shudent [rfo Load Picture
" Fifth \
" Sixth T
/—r cdlBox
Frames
optlevel cmdShow cmdNew cmdExit
Properties:
Form frmStudent:

BorderStyle = 1- Fixed Single
Caption = Student Profile

CommandButton cmdL oad:
Caption = & Load Picture

Frame Frames3:
Caption = Picture
FontName = M S Sans Serif
FontBold = True
FontSize = 9.75
Fontltalic = True

Database Access and Management 8-131

Image imgStudent :
BorderStyle=1 - Fixed Single
Stretch = True

CommandButton cmdEXxit:
Caption = E&xit

CommandButton cmdNew:
Caption = & New Profile

CommandButton cmdShow:
Caption = & Show Profile

Frame Frame4:
Caption = Grade Level
FontName = M S Sans Serif
FontBold = True
FontSize=9.75
Fontltdic = True

OptionButton optL evel:
Caption = Grade 6
Index =5

OptionButton optL evel:
Caption = Grade 5
Index =4

OptionButton optL evel:
Caption = Grade 4
Index =3

OptionButton optL evel:
Caption = Grade 3
Index =2

OptionButton optL evel:
Caption = Grade 2
Index =1

OptionButton optL evel:
Caption = Grade 1
Index =0

Database Access and M anagement

8-132

Frame Frame2:
Caption = Sex
FontName = M'S Sans Serif
FontBold = True
FontSize = 9.75
Fontltalic = True

OptionButton opt Sex:
Caption = Female
Index =1

OptionButton opt Sex:
Caption =Male
Index =0

Frame Framel.:
Caption = Date of Birth
FontName = M S Sans Serif
FontBold = True
FontSize = 9.75
Fontltalic = True

V ScrollBar vshY ear:
Max = 1800
Min = 2100
Value = 1960

V ScrollBar vsbDay
Max =1
Min =31
Vaue=1

V ScrollBar vsbM onth:
Max=1
Min=12
Vaue=1

Label IblYear:
Alignment = 2 - Center

BackColor = & HOOFFFFFF& (White)
BorderStyle=1 - Fixed Single

FontName = M S Sans Serif
FontSize = 10.8

Database Access and M anagement

8-133

Labe |IblDay:
Alignment = 2 - Center
BackColor = & HOOFFFFFF& (White)
BorderStyle=1 - Fixed Single
FontName = M S Sans Serif
FontSize = 10.8

Label IbIMonth:
Alignment = 2 - Center
BackColor = & HOOFFFFFF& (White)
BorderStyle=1 - Fixed Single
FontName = M S Sans Serif
FontSize =10.8

TextBox txtName:
FontName = M S Sans Serif
FontSize=10.8

CommonDialog cdIBox :
Filter = Bitmaps (*.bmp)[*.bmp

Label Labell:
Caption = Name
FontName = M S Sans Serif
FontBold = True
FontSize =9.75
Fontltalic = True

Code:
General Declarations:

Option Explicit

Dim Mont hs(12) As String
Di m Days(12) As Integer
Dim Grade As String

cmdExit Click Event:
Private Sub cnmdExit _dick()

End
End Sub

Database Access and Management 8-134

cmdLoad Click Event:

Private Sub cndLoad_d i ck()

cdl box. ShowOpen

i mgSt udent . Pi cture = LoadPi cture(cdl box. fil enane)
End Sub

cmdNew Click Event:

Private Sub cmdNew C i ck()

"Bl ank out nane and picture

t xt Name. Text = ""

i mgSt udent . Pi cture = LoadPi cture("")
End Sub

cmdShow Click Event:

Private Sub cnmdShow i ck()

DimIs_Leap As Integer

Dim Msg As String, Age As Integer, Pronoun As String
DmMAs Integer, D As Integer, Y As |nteger

"Check for leap year and if February is current nonth

I f vsbMonth. Value = 2 And ((vsbYear.Value Md 4 = 0 And
vsbYear. Val ue Mod 100 <> 0) O vsbYear. Val ue Mod 400 = 0)
Then

Is Leap = 1
El se

Is_Leap = O
End |f

" Check to nmake sure current day doesn't exceed nunber of
days in nonth
| f vsbDay. Val ue > Days(vsbMonth. Value) + Is_Leap Then
MsgBox "Only" + Str(Days(vsbMont h.Value) + Is Leap) + "
days in " + Months(vsbMnth. Val ue), vbOKOnly + vbCritical,
“Invalid Birth Date"
Exit Sub
End If
"Cet current date to conpute age

M = Val (For mat (Now, "mi"))
D = Val (Format (Now, "dd"))
Y = Val (For mat (Now, "yyyy"))

Age = Y - vsbYear
I f vsbMonth.Value > MO (vsbMonth. Value = M And vsbDay >
D) Then Age = Age - 1

Database Access and Management 8-135

" Check for valid age
If Age < O Then
MsgBox "Birth date is before current date.”, vbOKOnly +
vbCritical, "lInvalid Birth Date"
Exit Sub
End If

' Check to nmake sure nanme entered
I f txtName. Text = "" Then
MsgBox "The profile requires a nane.", vbOKOnly +
vbCritical, "No Nane Entered"
Exit Sub
End |f

"Put together student profile nessage

Msg = txtNane. Text + " is a student in the " + Gade + "
grade." + vbCr

I f opt Sex(0).Value = True Then Pronoun = "He " El se Pronoun
= n She n

Msg = Msg + Pronoun + " is" + Str(Age) + " years old." +
vbCr

MsgBox Msg, vbOKOnly, "Student Profile"

End Sub

Form Load Event:

Private Sub Form Load()
"Set arrays for dates and initialize |abels

Mont hs(1) = "January": Days(1l) = 31
Mont hs(2) = "February": Days(2) = 28
Mont hs(3) = "March": Days(3) = 31

Mont hs(4) = "April": Days(4) = 30

Mont hs(5) = "May": Days(5) = 31

Mont hs(6) = "June": Days(6) = 30

Mont hs(7) = "July": Days(7) = 31

Mont hs(8) = "August": Days(8) = 31
Mont hs(9) = "Septenber": Days(9) = 30
Mont hs(10) = "Cctober": Days(10) = 31
Mont hs(11) = "Novenber": Days(11l) = 30
Mont hs(12) = "Decenber": Days(12) = 31

| bl Mont h. Capti on = Mont hs(vsbMont h. Val ue)
| bl Day. Caption = Str(vsbDay. Val ue)

| bl Year. Caption = Str(vsbYear. Val ue)
Grade = "first"

End Sub

Database Access and Management 8-136

Database Access and M anagement

8-137

optLevel Click Event:

Private Sub optLevel Cick(lndex As Integer)
Sel ect Case | ndex

Case O

G ade = "first"
Case 1

Grade = "second"
Case 2

G ade = "third"
Case 3

G ade = "fourth"
Case 4

G ade = "fifth"
Case 5

Grade = "sixth"
End Sel ect
End Sub
vsbDay Change Event:

Private Sub vsbDay_Change()
| bl Day. Caption = Str(vsbDay. Val ue)
End Sub

vsbMonth Change Event:

Private Sub vsbMont h_Change()

| bl Mont h. Capti on = Mont hs(vsbMont h. Val ue)
End Sub

vsbY ear Change Event:

Private Sub vsbYear Change()

| bl Year. Caption = Str(vsbYear. Val ue)
End Sub

Learn Visual Basic 6.0

5. Creating a Stand-Alone Visual Basic Application

Database Access and Management 8-138

Review and Preview

We've finished looking at most of the Visual Basic tools and been introduced to most
of the Basic language features. Thus far, to run any of the applications studied, we
needed Visual Basic. In this class, we learn the steps of developing a stand-aone
application that can be run on any Windows-based machine. We'll also look at some
new components that help make up applications.

Designing an Application

Before beginning the actual process of building your application by drawing the
Visual Basic interface, setting the object properties, and attaching the Basic code,
many things should be considered to make your application useful.

A first consideration should be to determine what processes and functions you want
your application to perform. What are the inputs and outputs? Develop aframework
or flow chart of all your application's processes.

Decide what tools you need. Do the built-in Visual Basic tools and functions meet
your needs? Do you need to develop some tools or functions of your own?

Design your user interface. What do you want your form to look lik €? Consider
appearance and ease of use. Make the interface consistent with other Windows
applications. Familarity is good in program design.

Write your code. Make your code readable and traceable - future code modifiers will
thank you. Consider developing reusable code - modules with utility outside your
current development. This will save you time in future developments.

Database Access and Management 8-139

Make your code 'user-friendly." Try to anticipate all possible ways a user can mess up
in using your application. It's fairly easy to write an application that works properly
when the user does everything correctly. It's difficult to write an application that can
handle al the possible wrong things a user can do and still not bomb out.

Debug your code completely before distrib uting it. There's nothing worse than
having a user call you to point out flaws in your application. A good way to find all
the bugsisto let several people try the code- a mini beta-testing program.

Using General Sub Proceduresin Applications
So far in this class, the only procedures we have studied are the event-driven
procedures associated with the various tools. Most applications have tasks not related
to objects that require some code to perform these tasks. Such tasks are usually coded
in a general Sub procedure (essentially the same as a subroutine in other languages).
Using genera Sub procedures can help divide a complex application into more
manageable units of code. This helps meet the above stated goals of readability and
reusability.
Defining a Sub Procedure:
The form for a general Sub procedure named GenlSubProc is:

Sub Genl SubProc(Arguments) 'Definition header

End Sub

The definition header names the Sub procedure and defines any arguments passed to
the procedure. Arguments are acomma-delimited list of variables passed to and/or
from the procedure. If there are arguments, they must be declared and typed in the
definition header in this form:

Varl AsTypel, Va2 As Type2, ...

Database Access and Management 8-140

Sub Procedure Example:

Hereis a Sub procedure (USMexConvert) that accepts as inputs an amount in US
dollars (USDollars) and an exchange rate (UStoPeso). It then outputs an amount in
Mexican pesos (M exPesos).

Sub USMexConvert (USDoallars As Single, UStoPeso As Single,
MexPesos As Single)

MexPesos = UsDollars* UsToPeso

End Sub

Calling a Sub Procedure:

There are two ways to call or invoke a Sub procedure. Y ou can aso use these to call
event-driven procedures.

Method 1:
Call Genl SubProc(Arguments) (if there are no Arguments, do not type the
parentheses)
Method 2:
GenlSubProc Arguments

| prefer Method 1 - it's more consistent with calling protocols in other languages and
it cleanly delineates the argument list. It seems most Visual Basic programmers use
Method 2, though. | guess they hate typing parentheses! Choose the method you feel
more comfortable with.
Example
To call our dollar exchange routine, we could use:

Cdl USMexConvert (USDollars, UStoMex, MexPesos)

or

USMexConvert USDollars, UStoMex, MexPesos

Database Access and Management 8-141

Locating General Sub Procedures:

Genera Sub procedures can be located in one of two placesin your application:
attached to aform or attached to a module. Place the procedure in the form if it has a
purpose specifically related to the form. Place it in amodule if it is a general purpose
procedure that might be used by another form or module or another application.

Whether placing the procedure in aform or module, the methods of creating the
procedure are the same. Select or open the form or modul€e's code window. Make
sure the window's Object list says (General) and the Procedure list says
(Declarations). You can now create the procedure by selecting Add Procedure
from Visua Basic's Tools menu. A window appears allowing you to select Type Sub
and enter a name for your procedure. Another way to create a Sub is to go to the last
line of the General Declarations section, type Sub followed by a space and the name
of your procedure. Then, hit Enter. With either method for establishing a Sub,
Visual Basic will form atemplate for your procedure. Fill in the Argument list and
write your Basic code. In selecting the Insert Procedure menu item, note another
option for your procedure is Scope. You have the choice of Public or Private. The
scope word appears before the Sub word in the definition heading. If a module
procedure is Public, it can be called from any other procedure in any other module. |If
amodule procedure is Private, it can only be called from the module it is defined in.
Note, scope only applies to procedures in modules. By default, al event procedures
and general proceduresin aform are Private - they can only be called from within the
form. Y ou must decide the scope of your procedures.

Passing Arguments to Sub Procedures:

A quick word on passing arguments to procedures. By default, they are passed by
reference. This meansif an argument is changed within the procedure, it will remain

changed once the procedure is exited.

C programmers have experienced the concept of passing byvalue, where a parameter
changed in a procedure will retain the value it had prior to calling the routine. Visual
Basic adso alows calling by value. To do this, place the word ByVal in front of each
such variable in the Argument list.

Database Access and Management 8-142

Creating a Code Module

If you're going to put code in amodule, you'll need to know how to create and save a
module. A good way to think about modules is to consider them forms without any
objects, just code.

To create amodule, click on the New M odule button on the toolbar, or select the
Module option from the Insert menu. The module will appear. Note any modules
appear in the Project Window, along with your form(s). You use the Project Window
to move among forms and modules.

Once the module is active, establish all of your procedures as outlined above. To
name the module, click on the properties window while the module is active. Note
Name isthe only property associated with amodule. Saving amoduleisjust like
saving aform - use the Save File and Save File As options.

Using General Function Proceduresin Applications

Related to Sub procedures are Functionprocedures. A Function procedure, or
simply Function, performs a specific task within aVisual Basic program and returns a
value. We've seen some built-in functions such as the M sgBox and the For mat
function.

Defining a Function:
The form for a general Function named GenlFcnis:

Function GenlFcn(Arguments) As Type 'Definition header

GenlFen = ...
End Function

The definition header names the Function and specifiesits Type (the type of the
returned value) and defines any input Arguments passed to the function. Note that
somewhere in the function, a value for GenlFFcn must be computed for return to the
calling procedure.

Database Access and Management 8-143

Function Example:

Hereis a Function named CylV ol that computes the volume of a cylinder of known
height (Height) and radius (Radius).

Function CylVol(Height As Single, Radius As Single) As Single

Dim AreaAs Single

Const PI = 3.1415926

Area= Pl * Radius” 2

CylVol = Area* Height

End Sub
Calling aFunction:
To call or use a Function, you equate a variable (of proper type) to the Function, with
itsarguments. That is, if the Function GenlFunc is of Type Integer, then use the
code segment:

Dim RVdue as Integer

RVaue = Genl Func(Arguments)
Example
To call the volume computation function, we could use:

Dim Volume As Single

Volume = CylVol (Height, Radius)
L ocating Function Procedures:
Like Sub procedures, Functions can be located in forms or modules. They are created
using exactly the same process described for Sub procedures, the only difference

being you use the keyword Function.

And, like Sub procedures, Functions (in modules) can be Public or Private.

Database Access and Management 8-144

Quick Example: Temperature Conversion

1. Open the Temperature Conversion application from last class. Note in the
vsbTemp_Change and vsbTemp_Scroll procedures, there is alot of repeated code.
WEe'l replace this code with a Sub procedure that prints the values and a Function
procedure that does the temperature conversion.

2. Add amodule to your application. Create a Function (Public by default) named
DegF _To _DegC.

Publ i ¢ Function DegF_To _DegC(DegF As Integer) As Integer
DegF _To_DegC = Cint((DegF - 32) * 5/ 9)
End Function

3. Go back to your form. Create a Sub procedure named ShowTemps. Fill in the code
by cutting from an old procedure. Note this code uses the new Function to convert
temperature and prints both values in their respective label boxes.

Private Sub ShowTenps()

| bl TenpF. Caption = Str(TenpF)
TenpC = DegF_To_DegC(TenpF)

| bl TempC. Caption = Str(TenpC)
End Sub

No arguments are needed since TempF and TempC are global to the form.

4. RewritethevsbTemp_Change and vsbTemp_Scroll procedures such that they call
the new Sub procedure:

Private Sub vsbTenp_ Change()
TenpF = vsbTenp. Val ue

Call ShowTenps

End Sub

Private Sub vsbTenp_Scroll ()
Call vsbTenp_Change
End Sub

Note how vsbTemp_Scroll simply calls vsbTemp_Change since they use the same
code. Thisisan example of calling an event procedure.

5. Savethe application and run it. Note how much neater and modular the code is.

Database Access and Management 8-145

Quick Example: Image Viewer (Optional)

1

Open the Image Viewer application from last class. Note the code in the
cmdShow_Click and fillmage _DbIClick eventsis exactly the same. Delete the code
in the fillmage_DDbIClick procedure and ssimply have it call thecmdShow_Click
procedure. That is, replace the fillmage _DbIClick procedure with:

Private Sub fillmage_Dbl Cick()
Call cnmdShow C i ck
End Sub

2.

Thisis another example of calling an event procedure. Save your application.

Adding Menusto an Application

As mentioned earlier, it isimportant that the interface of your application be familar
to a seasoned, or not-so-seasoned, Windows user. One such familiar application
component isthe Menu bar. Menus are used to provide a user with choices that
control the application. Menus are easily incorporated into Visual Basic programs
using theMenu Editor.

A good way to think about elements of a menu structure is to consider them as a
hierarchicd list of command buttons that only appear when pulled down from the
menu bar. When you click on a menu item, some action is taken. Like command
buttons, menu items are named, have captions, and have properties.

Example

Hereis atypical menu structure;

Fle Edit Format
New Cut Bold
Open Copy Italic
Save Paste Underline
Size
Exit 10
15

20

Database Access and Management 8-146

The underscored characters are access keys, just like those on command buttons. The
level of indentation indicates position of a menu item within the hierarchy. For
example, New is a sub-element of the File menu. Theline under Save in the File
menu is a separator bar (separates menu items).

With this structure, the Menu bar would display:
File Edit Format

The sub- menus appear when one of these ‘top’ level menu itemsiis selected. Note the
Size sub-menu under For mat has another level of hierarchy. It isgood practice to
not use more than two levels in menus. Each menu element will have a Click event
associated with it.

TheMenu Editor alows us to define the menu structure, adding access keys and
shortcut keys, if desired. We then add code to the Click events we need to respond
to. The Menu Editor is selected from the Tools menu bar or by clicking the M enu
Editor on the toolbar. This selection can only be made when the form needing the
menu is active. Upon selecting the editor, and entering the example menu structure,
the editor window looks like this:

= Menu Editor

Caption: |&File oK |
Name: ImnuFiIe Cancel I
Index; I Shortcut: I(Nune] EI

HelpContextlD: ||] NegotiatePosition: 0-MNone

[T Checked [¥ Enabled X ¥isible [WindowList

Ll Ll il LI | Next I ‘ Insert I | Delete I

‘&File

---&MNew
---&0pen [—
- &Save

----E &xit

&Edit

---Cult Ctrl+X
---&Copy Ctrl+C
----&Paste Ctrl+V
F&ormat E‘

Each item in the menu structure requires severa entries in this design box.

Database Access and Management 8-147

The Caption box is where you type the text that appears in the menu bar. Access
keys are defined in the standard way using the ampersand (&). Separator bars (a
horizontal line used to separate menu items) are defined by using a Caption of a
single hyphen (-). When assigning captions and access keys, try to use conform to
any established Windows standards.

TheName box is where you enter a control name for each menu item. Thisis
analogous to the Name property of command buttons and is the name used to set
properties and establish the Click event procedure for each menu item. Each menu
item must have a name, even separator bars! The prefix mnu is used to name menu
items. Sub-menu item names usually refer back to main menu headings. For
example, if the menu item New is under the main heading File menu, use the name
mnuFileNew.

Thelndex box is used for indexing any menu items defined as control arrays.

The Shortcut dropdown box is used to assign shortcut keystrokes to any itemin a
menu structure The shortcut keystroke will appear to the right of the caption for the
menu item. An example of such akeystroke is using Ctrl+X to cut text.

TheHelpContextl D and NegotiatePosition boxes relate to using on-line help and
object linking embedding, and are beyond the scope of this discussion.

Each menu item has four properties associated with it. These properties can be set at
design time using the Menu Editor or at rur-time using the standard dot notation.
These properties are:

Checked Used to indicate whether atoggle option is turned on
or off. If True, acheck mark appears next to the menu
item.

Enabled If True, menu item can be selected. If False, menu
item is grayed and cannot be selected.

Visble Controls whether the menu item appears in the
structure.

WindowL ist Used with Multiple Document Interface (MDI) - not
discussed here.

At the bottom of the Menu Editor form is alist box displaying the hierarchical list of
menu items. Sub- menu items are indented to their level in the hierarchy. The right
and left arrows adjust the levels of menu items, while the up and down arrows move
items within the same level. The Next, Insert, and Delete buttons are used to move
the selection down one line, insert a line above the current selection, or delete the
current selection, respectively.

Database Access and Management 8-148

Let’slook at the process of entering the example menu structure. To do this, we
‘stack’ the three menus on top of each other, that is enter itemsasalong list. For
each item in this list, we provide a Caption (with access key, if any), a Name
(indicative of where it isin the structure), a shortcut key (if any), and provide proper
indentation to indication hierarchical location (use the left and right arrows to move
in and out).

After entering this structure, the complete list box at the bottom of the Menu Editor
would look like this (notice access keys are indicated with ampersands and shortcut
keys are listed at the right, and, the assigned names are shown at the left - these don’t
really appear in the Menu Editor list box; they are shown to illustrate one possible
naming convention):

Name

mnuFile &File

mnuFileNew | ... & New

mnuFileOpen | ... & Open

mnuFileSave | ... & Save

mnuFileBar | ... -

mnuFileExit | ... E&xit

mnuEdit & Edit

mnuEditCut | Cué&t Ctrl+X
mnuEditCopy | & Copy Ctrl+C
mnuEditPaste @ | & Paste Ctrl+Vv
mnuFmt F& ormat

mnuFmtBold | ... Bald

mnuFmtitalic | ... Italic
mnuFmtUnderline | ... Underline
mnuFmtSize | ... Size

mnuFmMtSizel0 | o, 10
mnuFmMtSizel5 | o, 15
mnuFmMtSize20 | e, 20

At firgt, using the Menu Editor may seem a little clunky. After you've done a couple
of menu structures, however, its use becomes obvious. A nedat thing is. after setting
up your menu, you can look at it in the Visua Basic design mode and see if it looks
likeit should. In the next example, you'll get practice setting up a similar menu
structure.

Database Access and Management 8-149

Example 51
Note Editor
1. Start anew project. We will use this application the rest of this class. We will build
a note editor with a menu structure that allows us to control the appearance of the text
in the editor box. Sincethisisthe first time we' ve built menus, I’ provide the steps
involved.

2. Place alarge text box on aform. Set the properties of the form and text box:

Form1:
BorderStyle 1-Fixed Single
Caption Note Editor
Name frmEdit

Textl:
BorderStyle 1-Fixed Single
MultiLine True
Name txtEdit
ScrollBars 2-Verticd
Text [Blank]

The form should look something like this when you' re done:

w Mote Editor Mi=] E

Database Access and Management 8-150

3. We want to add this menu structure to the Note Editor:

File Format
New Bold
Italic
Exit Underline
Size
Small
Medium
Large

Note the identified access keys. Bring up the Menu Editor and assign the following
Captions, Names, and Shortcut Keys to each item. Make sure each menu itemisat is
proper location in the hierarchy.

Caption Name Shortcut
&File mnuFile [None]
&New mnuFileNew [None]
- mnuFileBar [None]

E& xit mnuFileExit [None]
F& ormat mnuFmt [None]
& Bold mnuFmt Bold Ctrl+B
<aic mnuFmtltalic Ctrl+l
&Underline mnuFmMtUnderline Ctrl+U
&Size mnuFmtSize [None]
& Small mnuFmtSizeSmall Ctrl+S
&Medium mnuFMtSizeMedium Ctrl+M
&Large mnuFmMtSizel arge Ctrl+L

The Small item under the Size 3ub- menu should also be Checked to indicate the initial
font size. When done, look through your menu structure in design mode to make sure
it looks correct. With amenu, the form will appear like:

w. Mote Editor Mi=] 3

File Farmat

Database Access and Management 8-151

4. Each menu item that performs an action requires code for its Click event. Theonly
menu items that do not have events are the menu and sub- menu headings, namely
File, Format, and Size. All others need code. Use the following code for each menu
item Click event. (This may look like alot of typing, but you should be able to use a
lot of cut and paste.)

If mnuFileNew is clicked, the program checks to see if the user realy wants a new file
and, if so (the default response), clears out the text box:

Private Sub muFi | eNew C i ck()

"If user wants new file, clear out text

Di m Response As | nteger

Response = MsgBox("Are you sure you want to start a new
file?", vbYesNo + vbQuestion, "New File")

I f Response = vbYes Then txtEdit.Text = ""

End Sub

If mnuFileExit is clicked, the program checks to see if the user really wants to exit. If
not (the default response), the user is returned to the program:

Private Sub muFil eExit _Cick()

" Make sure user really wants to exit

D m Response As | nteger

Response = MsgBox("Are you sure you want to exit the note
editor?", vbYesNo + vbCritical + vbDefaultButton2, "Exit
Editor")

| f Response = vbNo Then
Exit Sub

El se
End

End If

End Sub

If mnuFmtBold is clicked, the program toggles the current bold status:

Private Sub mmuFm Bol d_Cl i ck()

" Toggl e bold font status

muFnt Bol d. Checked = Not (muFnt Bol d. Checked)
txtEdit. FontBold = Not (txtEdit.FontBol d)

End Sub

Database Access and Management 8-152

If mnuFmtltalicis clicked, the program toggles the current italic status:

Private Sub muFntitalic_dick()

"Toggle italic font status

muFnt I talic. Checked = Not (muFntitalic. Checked)
txtEdit.Fontltalic = Not (txtEdit.Fontltalic)

End Sub

If mnuFmtUnderlineis clicked, the program toggles the current underline status:

Private Sub mmuFnt Underline_Qi ck()

" Toggl e underline font status

mmuFnt Under | i ne. Checked = Not (mmuFnt Underl i ne. Checked)
txtEdit. FontUnderline = Not (txtEdit.FontUnderline)

End Sub

If either of the three size sub-menus is clicked, indicate the appropriate check mark
location and change the font size:

Private Sub muFnt Si zeSmal | _C i ck()
"Set font size to snall

muFnt Si zeSmal | . Checked = True
muFm Si zeMedi um Checked = Fal se
muFnt Si zeLar ge. Checked = Fal se
txtEdit. FontSize = 8

End Sub

Private Sub muFm Si zeMedi um C i ck()
"Set font size to nedium

muFnt Si zeSnal | . Checked = Fal se
muFnt Si zeMedi um Checked = True
mmuFnt Si zeLar ge. Checked = Fal se
txtEdit. FontSize = 12

End Sub

Private Sub muFnt Si zeLarge_C i ck()
"Set font size to large

muFnt Si zeSnal | . Checked = Fal se
muFnt Si zeMedi um Checked = Fal se
muFnt Si zeLar ge. Checked = True
txtEdit. Font Size = 18

End Sub

Database Access and Management 8-153

5. Save your application. We will useit again in Class 6 where we'll learn how to save
and open text files created with the Note Editor. Test out al the options. Notice how
the toggling of the check marks works. Try the shortcut keys.

Using Pop-Up Menus

Pop-up menus can show up anywhere on aform, usualy being activated by asingle
or double-click of one of the two mouse buttons. Most Windows applications, and
Windows itself, use pop-up menus. For example, using the right hand mouse button
on amost any object in Windows 95 will display a pop-up menu. In fact, with the
introduction of such pop-up menus with Windows 95, the need for adding such
menus to Visua Basic applications has been reduced.

Adding pop-up menus to your Visual Basic application is atwo step process. Firdt,
you need to create the menu using the M enu Editor (or, you can use any existing
menu structure with at least one sub-menu). If creating a unique pop-up nenu (one
that normally does not appear on the menu bar), it's Visible property is set to be
False at design time. Once created, the menu is displayed on a form using the
PopupM enu method.

The PopupMenu method syntax is.
ObjectName. PopupM enu MenuName, Flags, X, Y

The ObjectName can be omitted if working with the current form. The arguments
are:

MenuName Full- name of the pop-up menu to display.
Flags Specifies location and behavior of menu (optional).
X, Y (X, Y) coordinate of menu in twips (optional; if either

value is omitted, the current mouse coordinate is used).

The Flags setting is the sum of two constants. The first constant specifies location:

Value Meaning Symbolic Constant
0 Left side of menuisat X coordinate vbPopupMenuL eftAlign
4 Menu is centered at X coordinate vbPopupMenuCenterAlign

8 Right side of menu isat X coordinate vbPopupMenuRightAlign

Database Access and Management 8-154

The second specifies behavior:

Value Meaning Symbolic Constant
0 Menu reacts only to left mouse button vbPopupM enuL eftButton
2 Menu reacts to either mouse button vbPopupM enuRightButton

Y ou need to decide where to put the code that displays the pop-up menu, that is the
PopupM enu method. Usually, a pop- up menu is displayed in response to a Click
event or MouseDown event. The standard (starting with Windows 95) seems to be
leaning toward displaying a pop- up menu in response to a right mouse buttonclick.

Just like other menus, each item on your pop-up menu will need code for the
corresponding Click event. Many times, though, the code is simply acall to an
existing menu item’s Click event.

Assigning I consto Forms

Notice that whenever you run an application, a small icon appears in the upper |eft
hand corner of the form. Thisicon is also used to represent the form when it is
minimized at run-time. Theicon seen isthe default Visual Basic icon for forms.
Using the | con property of aform, you can change this displayed icon.

The ideais to assign a unique icon to indicate the form’s function. To assign an icon,
click on the Icon property in the Property Window for the form. Click on the elipsis

(...) and awindow that allows selection of icon files will appear.

The icon file you load must have the .ico filename extension and format. When you
first assign anicon to aform (at design time), it will not appear on the form. It will
only appear after you have run the application once.

Designing Your Own Icon with IconEdit

Visual Basic offers awealth of icon files from which you could choose an icon to
assign to your form(s). But, it's also fun to design your own icon to add that personal
touch.

PC Magazine offers afree utility called | conEdit that allows you to design and save
icons. Included with these notes is this program and other files (directory 1conEdit).
To ingtall these files on your machine, copy the folder to your hard drive.

Database Access and Management 8-155

To run IconEdit, click Start on the Windows 95 task bar, then click Run. Find the
I conEdit.exe program (use Browse mode). Y ou can aso establish an shortcut to start
IconEdit from your desktop, if desired. The following Editor window will appear:

\‘E; IconEdit _ (O] x]

File Edit [con Window Help

Iconl.ico !IEIE!

N

SN T

The basic idea of IconEdit isto draw an icon in the 32 x 32 grid displayed. You can
draw single points, lines, open rectangles and ovals, and filled rectangles and ovals.
Various colors are available. Once completed, the icon file can be saved for attaching

toaform.

Another fun thing to do with IconEdit isto load in Visual Basic icon files and see
how much artistic talent really goes into creating an icon.

Wewon't go into alot of detail on using the IconEdit program here - | just want you
to know it exists and can be used to create and save icon files. Itsuseisfairly
intuitive. Consult the ortline help of the program for details. And, thereisa .txt file
included that is very helpful.

Database Access and Management 8-156

Creating Visual Basic Executable Files

Up to now, to run any of the applications created, we needed Visual Basic. The goal
of creating an application isto let others (without Visual Basic) useit. Thisis
accomplished by creating an executable version of the application.

Before creating an executable, you should make sure your program is free of bugs
and operating as desired. Save all forms, modules, and project files. Any later
changes to the application will require re-creating the executable file.

The executable file will have the extension .exe. To create an exe file for your
application, select M ake [Project name] exe from Visua Basic'sFile menu. This
will display the Make EXE File dialog box, where you name the exe file. To open
the Options box, click that button. The EXE Options dialog box will appear:

Projectl - Project Properties

Make | Compile I

—Mersion Mumber ————— — Application

Major: Minor: Revision: .
Title: |Examples-2

| ||:| ||:|
Icon: IFrmEdit ~ I E
[~ Auto Increment

—Mersion Information
Type: YWalue:

ICDmpany Marne = |

Cammand Ling Arguments; I

Conditional Compilation Arguments; |

QE. I Cancel | Help

We'll only concern ourselves with two pieces of information in this box: Title and
Icon. The Title is the name you want to give your application. It does not have to be
the same as the Project name. The Icon is selected from icons assigned to form(s) in
your application. The selected icon is used to identify the application everywhere it is
needed in Windows 95.

Once you have selected these options, return to the Make EXE File dialog box, select

adirectory (best to use the same directory your application files are in) and name for
your executable file. Click OK and the exe file is created.

Database Access and Management 8-157

Use Windows Explorer to confirm creation of the file. And, while there, double-click
the executable file name and the program will run!

Database Access and Management 8-158

Example 5-2

Note Editor - Building an Executable and Attaching an Icon

1. Open your Note Editor project. Attach an icon to the form by setting the | con
property. If you want to, open up the Image Viewer project from last class to take a

look at icon files. Theicon | used is note.ico

2. Create an executable version of your Note Editor. Confirm creation of the exe file
and run it under the Windows Explorer.

3. Something you might want to try with your application is create a Windows 95
shortcut to run your program, that is, display aclickable icon. To get started, click
the Start button on the taskbar, then Settings, then Taskbar. Here, you can add
programs to those that show up when you select Start. The process is straightforward.
Find your application, specify the folder you want the shortcut to appear in, and name
your application. When done, the icon will appear in the specified location.

Database Access and Management 8-159

Using the Visual Basic Package & Deployment Wizard

Wewere able to run the Note Editor executable file because Visual Basic isinstalled
on our system. If you gave someone a copy of your exe file and they tried to run it, it
wouldn’'t work (unless they have Visual Basic installed also). The reason it wouldn’t
run is that the executable file also needs some ancillary files (primarily, so-called
dynamic link libraries) to run properly. These libraries provide most of the code
associated with keeping things on aform working properly.

So to allow othersto run your application, you need to give them the executable file
(exe) and at least two dynamic link libraries. Unfortunately, these dynamic link
libraries take up over 1 Meg of disk space, so it’s hard to move those around on a
floppy disk.

Visual Basic solves this ‘distribution problem’ by providing a very powerful tool
called the Visual Basic Package & Deployment Wizard. Thiswizard isinstalled
along with Visual Basic.

The Package & Deployment Wizard prepares your application for distribution. It
helps you determine which files to distribute, creates a Setup program (written in
Visual Basic) that workslike all other Windows Setup programs (setup.exe),
compresses all required files to save disk space, and writes the compressed files to the
distribution media of choice, usually floppy disk(s).

To start the Package & Deployment Wizard, click the Start button in Windows, then
find the Visual Basic program folder - click on Visual Basic Tools, then choose
Package & Deployment Wizard The setup follows several steps. The directions
provided with each step pertain to the simple applications we develop in class. For
more complicated examples, you need to modify the directions, especially regarding
what files you need to distribute with your application.

Database Access and Management 8-160

Step 1. Initial Information. Enter the path and file name for your project file
(.vbp). Click the elipsis(...) to browse vbp files. If an executable (.exe) file does not
exist, one will be created. Click the ‘Package’ button to continue. 1f you have
previously saved a setup package for the selected project, it will load the package file
created during that session.

1 Package and Deployment Wizard

Select project:

I j Browse. ., |

Bundle this project into a distribukable package, such as an
q Internet cab or a setup program.
o

Package

Send one of this project's packages to a distribution site, such as
an Internet server,

Fename, duplicate, and delete vour packaging and deplovment
scripks For this project,
.IE p praj

Close | Help |

Step 2. Package Type. Choose the Standard Setup Package (we want a standard
setup program). Click Next to continue.

Step 3. Package Folder. Select adirectory where you want the application
distribution package to be saved. Click Next to continue. Click Back to return to the
previous step.

Step 4. Included Files. The Package & Deployment Wizard will list al filesit
believes are required for your application to function properly. If your application
requires any files not found by the wizard (for example, external data files you have
created), you would add them to the setup list here (click Add). To continue, click
Next. Click Back to return to the previous step.

Step 5. Cab Options. Distribution files are called cab files (have a cab
extension). Y ou can choose a Single cab file written to your hard drive (if you use
CD ROM distribution), or Multiple cab files (to allow distribution on floppy disks).
If you choose, Multiple, you also specify the capacity of the disks you will use to

write your distribution file(s). Make your choice. Click Next to Continue. Click
Back to return to the previous step.

Database Access and Management 8-161

Step 6. Installation Title. Enter atitle you want your application to have. Click
Next to Continue. Click Back to return to previous step.

Step 7. Start Menu Items. This step determines where your installed application
will be located on the user’s Start menu. We will use the default choice. Click Next
to Continue. Click Back to return to previous step.

Step 8. Install Locations. The wizard gives you an opportunity to change the
locations of installed files. Click Next to Continue. Click Back to return to previous

step.

Step 9. Shared Files. Some filesin your application may be shared by other
applications. Shared files will not be removed if the application is uninstalled.
Decide if you have shared files. Click Next to Continue. Click Back to return to
previous step.

Step 10. Finished! Provide aname for saving the script for this wizard session (a
file that saves answers to al the questions you just answered). Click Finish to
Continue. Click Back to return to previous step. The wizard will create and write the
cab files and tell you where they are saved. Click Close. You will be returned to the
Package & Deployment Wizard opening window. Click Close.

Step 11. Write Distribution Media. Thisisnot a step in the wizard, but one you

must take. The cab files (distribution files) the wizard wrote must now be copied to

your distribution media. If you wrote a single cab file (for CD ROM), copy that file,
the setup.exe file (the setup application), and the setup.Ist file to your CD ROM). If

you wrote multiple files (for floppy disks), copy the setup.exe, setup.lst, and first cab
file (1 a end of file name) to floppy number 1. Copy the second cab file (2 at end of
file name) to floppy number 2. Copy all subsequent cab files to as many floppies as
needed. Properly label all floppies.

To install the application using the distribution CD ROM or floppy disk(s), a user
simply puts CD ROM or floppy number 1 in adrive. Then, through the Windows
Explorer, run the setup.exe program. The user will be taken through the installation
procedure step-by-step. The procedure is nearly identical to the installation process
for al Microsoft products.

The Package & Deployment Wizard is a very powerful tool. We' ve only looked at
using it for smple applications. As your programming skills begin to include
database access and other advanced topics, you will need to become familiar with
other files that should be distributed with your applications.

Database Access and Management 8-162

Example 5-3

NoteEditor - Creating a Distribution Disk

1. Open your Note Editor project again. Create a distribution disk using the Package &
Deployment Wizard.

2. Try instaling the application on your computer. Better yet, take the disk to another
Windows 95/98/NT-based machine, preferably without Visual Basic installed. Install
the application using the distribution disk and test its operation.

Database Access and Management 8-163

This page intentionally not left blank. |

Database Access and Management 8-164

Exercise 5

US Capitals Quiz

Develop an application that quizzes a user on states and capitals in the United States.

Use a menu structure that allows the user to decide whether they want to name states or
capitals and whether they want mulitple choice or type-in answers. Throughly test your
application. Design an icon for your program using IconEdit or some other program
Create an executable file. Create a distribution disk using the Application Setup Wizard.
Give someone your application disk and have them install it on their computer and try out
your nifty little program.

My Solution:
Form:
mnuOptions
m US Capitals
mnuFile —_File Optionz
IblHeadGiven ZState: Ll
f 1 IbiGiven
DtAnswer i — —— IblAnswer(0)
(under txtAnswer)
— 1 iblAnswer()
——— IblAnswer(2)
——+— IblAnswer(3)
cmdNext \ig\ﬂextﬂuestiun SR
ac AR 00){ S
omdBxit — Exit SR I Q1 — Ibiscore

Database Access and M anagement

8-165

Properties:

Form frmCapitals:
BorderStyle=1 - Fixed Single
Caption = US Capitals

CommandButton cmdNext:
Caption = & Next Question
Enabled = False

CommandButton cmdEXxit:
Caption = E&xit

TextBox txtAnswer:
FontName = M S Sans Serif
FontSize = 13.2
Visble = Fase

Label IblIComment:
Alignment = 2 - Center
BackColor = & HOOC00000& (Blue)
BorderStyle=1 - Fixed Single
FontName = M S Sans Serif
FontSize = 13.2
Fontltalic = True
ForeColor = & HOOOOFFFF& (Y ellow)

Label IblScore:
Alignment = 2 - Center
AutoSize = True
BackColor = & HOOOOFFFF& (Y ellow)
BorderStyle=1 - Fixed Single
Caption = 0%
FontName = M S Sans Serif
FontSize = 15.6
FontBold = True

Label IblAnswer (control array):
Alignment = 2 - Center
BackColor = & HOOFFFFHF& (White)
BorderStyle=1 - Fixed Single
FontName = M S Sans Serif
FontSize=13.2
Index=0,1,2,3

Database Access and M anagement

8-166

Labd IbIHeadAnswer:
Caption = Capital:
FontName = M'S Sans Serif
FontSize = 13.2
FontBold = True

Labd IbIHeadGiven:
Caption = State:
FontName = M S Sans Serif
FontSize=13.2
FontBold = True

Menu mnuFile:
Caption = &File

Menu mnuFileNew:
Caption = & New

Menu mnuFileBar :
Caption =-

Menu mnuFileExit:
Caption = E& xit

Menu mnuOptions:
Caption = & Options

Menu mnuOptionsCapitals:
Captio n = Name & Capitals
Checked = True

Menu mnuOptionsState:
Caption = Name & State

Menu mnuOptionsBar:
Caption =-

Menu mnuOptionsM C
Caption = & Multiple Choice Answers
Checked = True

Menu mnuOptionsType:
Caption = & Type In Answers

Database Access and Management 8-167

Code:
General Declarations:

Option Explicit

Di m Correct Answer As | nteger

Dim NumAns As Integer, NunCorrect As Integer
Di m Wsound(26) As Integer

Dm State(50) As String, Capital (50) As String

SoundEx General Function (thisis a neat little function to check if spelling of two words
issimilar):

Private Function SoundEx(W As String, Wound() As Integer)
As String
‘ Gener at es Soundex code for W
“All ows answers whose spelling is close, but not exact
DmWenp As String, S As String
DmL As Integer, | As Integer
Dim Wrev As Integer, Wsnd As Integer, Cindex As Integer
Wenmp = UCase(W
L = Len(W
If L <> 0 Then
S = Left(Wenp, 1)
Wrev = 0
If L > 1 Then
For | =2 To L
C ndex = Asc(Md(Wenp, I, 1)) - 64
If Cndex >= 1 And Ci ndex <= 26 Then
Wwsnd = Wsound(G ndex) + 48
If Wsnd <> 48 And Wsnd <> Worev Then S = S +
Chr (W& nd)
Wrev = Wnd
End If
Next |
End If
El se
s=""
End If
SoundEx = S
End Function

Database Access and Management 8-168

Update Score General Procedure:

Private Sub Update_ Score(lscorrect As Integer)
Dim1 As |nteger
"Check if answer is correct
cmdNext . Enabl ed = True
crmdNext . Set Focus
If Iscorrect = 1 Then
NunmCorrect = NunCorrect + 1
| bl Conment . Caption = "Correct!”
El se
| bl Corment . Caption = "Sorry ..."
End |f
"Display correct answer and update score
I f muQOpti onsMC. Checked = True Then
For | = 0 To 3
I f mmuOpti onsCapital s. Checked = True Then
I f Ibl Answer(1). Caption <> Capital (Correct Answer)
Then
| bl Answer (1).Caption = ""
End If
El se
If | bl Answer(l).Caption <> State(Correct Answer) Then
| bl Answer (I1'). Caption = ""
End If
End If
Next |
El se
If mMmuQOptionsCapitals. Checked = True Then
t xt Answer . Text = Capital (Correct Answer)
El se
t Xt Answer . Text
End If
End If
| bl Score. Capti on = Format (NunCorrect / NumAns, "##0%)
End Sub

St at e(Correct Answer)

cmdExit Click Event:

Private Sub cnmdExit _dick()
"Exit program

Call mmuFileExit_Cick

End Sub

Database Access and Management 8-169

cmdNext Click Event:

Private Sub cnmdNext O i ck()
"CGenerate the next question
cndNext . Enabl ed = Fal se

Cal |l Next Question(Correct Answer)
End Sub

Form Activate Event:

Private Sub Form Activate()
Call mufilenew click
End Sub

Form Load Event:

Private Sub Form Load()
Randoni ze Ti ner
'Load soundex function array

Wsound(1) = 0: Wound(2) = 1: Wound(3) = 2: Wound(4) = 3
Wsound(5) = 0: Wsound(6) = 1: Wound(7) = 2: Wound(8) =0
Wsound(9) = 0: Wsound(10) = 2: Wound(11l) = 2: Wound(12) =
4

Wsound(13) = 5: Wound(14) = 5: Wound(15) = 0: Wound(16)
=1

Wsound(17) = 2: Wound(18) = 6: Wound(19) = 2: Wound(20)
=3

Wsound(21) = 0: Wound(22) = 1: Wound(23) = 0: Wound(24)
=2

Wsound(25) = 0: Wsound(26) = 2

'Load state/capital arrays

State(1l) = "Al abama": Capital (1) = "Mntgonery"

State(2) = "Alaska": Capital (2) = "Juneau"

State(3) = "Arizona": Capital(3) = "Phoenix"

State(4) = "Arkansas": Capital (4) = "Little Rock"”

State(5) = "California": Capital (5) = "Sacranento”

State(6) = "Colorado": Capital (6) = "Denver"

State(7) = "Connecticut": Capital (7) = "Hartford"

State(8) = "Delaware": Capital (8) = "Dover"

State(9) = "Florida": Capital (9) = "Tall ahassee”

State(10) = "Ceorgia": Capital (10) = "Atlanta"

State(1ll) = "Hawaii": Capital (11) = "Honol ul u"

State(12) = "ldaho": Capital (12) = "Boi se"

State(13) = "Illinois": Capital (13) = "Springfield"
State(14) = "Indiana": Capital (14) = "Indi anapolis”

Database Access and M anagement

8-170

St at e(15)
St at e(16)
State(17)
State(18)
St at e(19)
St at e(20)
St ate(21)
State(22)
St at e(23)
St at e(24)
St at e(25)
St at e(26)
State(27)
St at e(28)
St at e(29)
St at e(30)
St at e(31)
St at e(32)
St at e(33)
St at e(34)
St at e(35)
St at e(36)
St at e(37)
St at e(38)
St at e(39)
St at e(40)
State(41)
St at e(42)
St at e(43)
St at e(44)
St at e(45)
St at e(46)
St at e(47)
St at e(48)
St at e(49)
St at e(50)
End Sub

"lowa": Capital (15) = "Des Mi nes"
"Kansas": Capital (16) = "Topeka"
"Kentucky": Capital (17) = "Frankfort"
"Loui siana": Capital (18) = "Baton Rouge"
"Mai ne": Capital (19) = "Augusta"

"Maryl and": Capital (20) = "Annapolis”
"Massachusetts": Capital (21) = "Boston"
"M chigan": Capital (22) = "Lansing"

"M nnesota": Capital (23) = "Saint Paul"
"M ssissippi": Capital (24) = "Jackson"

"M ssouri": Capital (25) = "Jefferson City"
"Montana": Capital (26) = "Hel ena”
"Nebraska": Capital (27) = "Lincoln"
"Nevada": Capital (28) = "Carson City"
"New Hanpshire": Capital (29) = "Concord"
"New Jersey": Capital (30) = "Trenton"
"New Mexico": Capital (31) = "Santa Fe"
"New York": Capital (32) = "Al bany"

"North Carolina": Capital (33) = "Ral ei gh"
“"North Dakota": Capital (34) = "Bi smarck"
"Chio": Capital (35) = "Col unbus"”

"kl ahoma": Capital (36) = "Cklahonma G ty"
"Oregon": Capital (37) = "Sal ent
"Pennsyl vani a": Capital (38) "Harrisburg"
"Rhode |sland": Capital (39) = "Providence"
"South Carolina": Capital (40) = "Col unbi a"
"Sout h Dakota": Capital (41) = "Pierre"
"Tennessee": Capital (42) = "Nashville"
"Texas": Capital (43) = "Austin"

"Utah": Capital (44) = "Salt Lake City"
"Vernont": Capital (45) = "Montpelier”
"Virginia": Capital (46) = "R chnond"
"Washi ngton": Capital (47) = "d ynpia"
"West Virginia": Capital (48) = "Charl eston”
"W sconsin": Capital (49) = "Madi son"

"Wom ng": Capital (50) = "Cheyenne"

Database Access and Management 8-171

IblAnswer Click Event:

Private Sub | bl Answer_Click(Index As Integer)
" Check multiple choice answers
Dim | scorrect As Integer
"If already answered, exit
I f cnmdNext. Enabl ed = True Then Exit Sub
Iscorrect =0
I f muOptionsCapitals. Checked = True Then
I f | bl Answer (1 ndex). Capti on = Capital (Correct Answer) Then
| scorrect =1
El se
I f | bl Answer (I ndex) . Capti on
| scorrect =1

St at e(Correct Answer) Then

End |f
Cal |l Update_Score(lscorrect)
End Sub

mnuFileExit Click Event:

Private Sub muFil eExit _Cick()
"End the application

End

End Sub

mnuFileNew Click Event:

Private Sub mufil enew _click()
"Reset the score and start again
NumAns = 0

NunmCorrect = 0

| bl Score. Caption = "0%

| bl Corment . Caption = ""
cmdNext . Enabl ed = Fal se

Call Next_Question(Correct Answer)
End Sub

Database Access and M anagement

8-172

mnuOptionsCapitals Click Event:

Private Sub muOptionsCapitals_Cick()

"Set up for providing capital, given state
mMuQOpt i onsSt at e. Checked = Fal se

muQpt i onsCapi t al s. Checked = True

| bl HeadG ven. Caption = "State:"

| bl HeadAnswer . Caption = "Capital:"

Call mufil enew click

End Sub

mnuOptionsMC Click Event:

Private Sub mMmuQOpti onsMC O i ck()
"Set up for multiple choice answers
DimI| As Integer
mMuOpt i onsMC. Checked = True
mMuOpt i onsType. Checked = Fal se
For I =0 To 3

| bl Answer (1).Visible = True
Next |
t xt Answer . Vi si bl e = Fal se
Call mufil enew click
End Sub

mnuOptionsState Click Event:

Private Sub mMmuQOptionsState Cick()

"Set up for providing state, given capital
muQpt i onsSt at e. Checked = True

mMuOpt i onsCapi tal s. Checked = Fal se

| bl HeadG@ ven. Caption = "Capital:"

| bl HeadAnswer . Caption = "State: "

Call mmufil enew click

End Sub

Database Access and M anagement

8-173

mnuOptionsType Click Event:

Private Sub muOptionsType_Click()
"Set up for type in answers
Dim1 As |nteger
muQOpt i onsMC. Checked = Fal se
mMuQOpt i onsType. Checked = True
For I =0 To 3

| bl Answer (1) . Visible
Next |
txt Answer. Visible = True
Call mmufil enew click
End Sub

Fal se

Next_Question General Procedure:

Private Sub Next_Question(Answer As |nteger)
Dim VUsed(50) As Integer, | As Integer, J As |nteger
D m | ndex(3)
| bl Cooment. Caption = ""
NumAns = NumAns + 1
"Cenerate the next question based on sel ected options
Answer = Int(Rnd * 50) + 1
[f muOptionsCapitals. Checked = True Then
| bl G ven. Caption = State(Answer)
El se
| bl @ ven. Caption = Capital (Answer)
End If
I f muOpti onsMC. Checked = True Then
"Multiple choice answers
"Vused array is used to see which states have
"been sel ected as possible answers

For | =1 To 50
VUsed(l) =0
Next |

"Pick four different state indices (J) at random
"These are used to set up multiple choice answers
"Stored in the Index array
| =0
Do
Do
J =Int(Rnd * 50) +
Loop Until VUsed(J) =
VUsed(J) 1
| ndex(1) J
I =1 + 1

1
0 And J <> Answer

Database Access and M anagement

8-174

Loop Until I =4
"Now replace one index (at
I ndex(Int(Rnd * 4))
| =

For 0 To 3

random) with correct

= Answer
"Display multiple choice answers in | abel

boxes

I f mmuOpti onsCapital s. Checked = True Then

| bl Answer (1) . Capti on
El se
| bl Answer (1). Caption
End If
Next |
El se
" Type-in answers
t xt Answer . Locked =
t xt Answer. Text = ""
t xt Answer . Set Focus
End I f
End Sub

Fal se

= Capital (I ndex(1))

= State(lndex(l))

answer

Database Access and Management 8-175

txtAnswer KeyPress Event:

Private Sub txtAnswer_KeyPress(KeyAscii As |nteger)
' Check type in answer'
Dim | scorrect As Integer
Di m Your Answer As String, TheAnswer As String
"Exit if already answered
| f cnmdNext. Enabl ed = True Then Exit Sub
If (KeyAscii >= vbKeyA And KeyAscii <= vbKeyZ) _
O (KeyAscii >= vbKeyA + 32 And KeyAscii <= vbKeyZ + 32) _
O KeyAscii = vbKeySpace Or KeyAscii = vbKeyBack O
KeyAscii = vbKeyReturn Then
" Accept abl e keystroke
I f KeyAscii <> vbKeyReturn Then Exit Sub
"Lock text box once answer entered
t xt Answer . Locked = True
I scorrect =0
' Convert response and correct answers to all upper
‘case for typing probl ens
Your Answer = UCase(t xt Answer. Text)
I f muOptionsCapital s. Checked = True Then
TheAnswer = UCase(Capital (Correct Answer))
El se
TheAnswer = UCase(St at e(Correct Answer))
End If
" Check for both exact and approxi mate spellings
I f Your Answer = TheAnswer O
SoundEx(Your Answer, Wsound()) = SoundEx(TheAnswer,
Wsound()) Then Iscorrect =1
Call Update_Score(lscorrect)
El se
" Unaccept abl e keystroke
KeyAscii =0
End If
End Sub

Learn Visual Basic 6.0

6. Error-Handling, Debugging and File Input/Output

Database Access and Management 8-176

Review and Preview

In this class, we expand on our Visua Basic knowledge from past classes and
examine afew new topics. We first look at handling errors in programs, using both
rurttime error trapping and debugging techniques. We then study input and output to
disks using sequential files and random access files.

Error Types

No matter how hard we try, errors do creep into our programs. These errors can be
grouped into three categories:

1. Syntaxerrors
2. Run-time errors
3. Logicerrors

Syntax errors occur when you mistype a command or leave out an expected phrase
or argument. Visual Basic detects these errors as they occur and even provides help
in correcting them. You cannot run a Visual Basic program until all syntax errors
have been corrected.

Run-timeerrors are usualy beyond your program's control. Examples include:
when a variable takes on an unexpected value (divide by zero), when a drive door is
left open, or when afileis not found. Visual Basic allows you to trap such errors and
make attempts to correct them.

Logic errors are the most difficult to find. With logic errors, the program will
usually run, but will produce incorrect or unexpected results. The Visual Basic
debugger is anaid in detecting logic errors.

Database Access and Management 8-177

Some ways to minimize errors.

P Design your application carefully. More design time means |less debugging time.

P Use comments where applicable to help you remember what you were trying to
do.

P Use consistent and meaningful naming conventions for your variables, objects,
and procedures.

Run-TimeError Trapping and Handling
Run-time errorsare trappable. That is, Visual Basic recognizes an error has
occurred and enables you to trap it and take corrective action. If an error occurs and
is not trapped, your program will usually end in arather unceremonious manner.
Error trapping is enabled with the On Error statement:

On Error GoTo errlabel

Y es, this uses the dreaded GoT o statement! Any time a run-time error occurs
following this line, program control is transferred to the line labeled errlabel . Recall
alabeled line is simply a line with the label followed by a colon (©).

The best way to explain how to use error trapping isto look at an outline of an
example procedure with error trapping.

Sub SubExample()

. [Declarevariables, ...
On Errér GoTo HandleErrors

: [Procedure code]

Exit Sub
HandleErrors;

. [Error handling code]

End Sub

Database Access and Management 8-178

Once you have set up the variable declarations, constant definitions, and any other
procedure preliminaries, the On Error statement is executed to enable error trapping.
Y our normal procedure code follows this statement. The error handling code goes at
the end of the procedure, following the HandleErrors statemert label. Thisisthe
code that is executed if an error is encountered anywhere in the Sub procedure. Note
you must exit (with Exit Sub) from the code before reaching the HandleErrors line to
avoid inadvertent execution of the error handling code.

Since the error handling code is in the same procedure where an error occurs, all
variables in that procedure are available for possible corrective action. If at some
time in your procedure, you want to tur n off error trapping, that is done with the
following statement:

On Error GoTo O

Once arun-time error occurs, we would like to know what the error is and attempt to
fix it. Thisisdoneinthe error handling code.

Visual Basic offers help in identifying run-time errors. The Err object returns, in its
Number property (Err.Number), the number associated with the current error
condition. (The Err function has other useful properties that we won't cover here -
consult or+line help for further information.) The Error() function takes this error
number as its argument and returns a string description of the error. Consult orx line
help for Visual Basic run-time error numbers and their descriptions.

Once an error has been trapped and some action taken, control must be returned to
your application. That control is returned via the Resume statement. There are three
options:

Resume Lets you retry the operation that caused the error. That
is, control is returned to the line where the error
occurred. This could be dangerous in that, if the error
has not been corrected (via code or by the user), an
infinite loop between the error handler and the
procedure code may result.

Resume Next Program control is returned to the line immediately
following the line where the error occurred.

Resume |abel Program control is returned to the line labeled label.

Database Access and Management 8-179

Be careful with the Resume statement. When executing the error handling portion of
the code and the end of the procedure is encountered before a Resume, an error
occurs. Likewise, if a Resume is encountered outside of the error handling portion of
the code, an error occurs.

General Error Handling Procedure

Development of an adequateerror handling procedureis application dependent.

Y ou need to know what type of errors you are looking for and what corrective actiors
must be taken if these errors are encountered. For example, if a'divide by zero' is
found, you need to decide whether to skip the operation or do something to reset the
offending denominator.

What we develop here is a generic framework for an error handling procedure. It
simply informs the user that an error has occurred, provides a description of the error,
and allows the user to Abort, Retry, or Ignore. This framework is a good starting
point for designing custom error handling for your applications.

The generic code (begins with label HandleErrors) is

HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetrylgnore, "Error
Number" + Str(Err.Number))
Case vbAbort
Resume ExitLine
Case vbRetry
Resume
Case vbignore
Resume Next
End Select
ExitLine:
Exit Sub

Let'slook at what goes on here. Firgt, thisroutine is only executed when an error
occurs. A message box is displayed, using the Visual Basic provided error
description [Error (Err.Number)] as the message, usesacritical icon aong with the
Abort, Retry, and I gnor e buttons, and uses the error number [Err.Number] as the
title. This message box returns a response indicating which button was selected by
the user. If Abort is selected, we smply exit the procedure. (Thisis doneusing a
Resume to the line labeled ExitLine. Recall al error trapping must be terminated
with a Resume statement of some kind.) If Retry is selected, the offending program
lineisretried (in areal application, you or the user would have to change something
here to correct the condition causing the error). If Ignore is selected, program
operation continues with the line following the error causing line.

Database Access and Management 8-180

To use this generic code in an existing procedure, you need to do three things:

1. Copy and paste the error handling code into the end of your procedure.

2. Placean Exit Sub line immediately preceding the HandleErrors labeled line.

3. Placetheline, On Error GoTo HandleErrors, at the beginning of your
procedure.

For example, if your procedure is the SubExample seen earlier, the modified code
will look like this:

Sub SubExample()

. [Declare variables, ...]
On Errdr GoTo HandleErrors

: [Procedure code]

Exit Sub
HandleErrors:
Select Case MsgBox(Error(Err.Number), vbCritical + vbAbortRetrylgnore, "Error
Number" + Str(Err.Number))
Case vbAbort
Resume ExitLine
Case vbRetry
Resume
Case vbignore
Resume Next
End Select
ExitLine:
Exit Sub
End Sub

Again, thisis avery basic error- handling routine. Y ou must determine its utility in your

applications and make any modifications necessary. Specifically, you need code to clear
error conditions before using the Retry option.

Database Access and Management 8-181

One last thing. Once you've written an error handling routine, you need to test it to
make sure it works properly. But, creating run-time errors is sometimes difficult and
perhaps dangerous. Visual Basic comes to the rescue! The Visual Basic Err object
has a method (Raise) associated with it that simulates the occurrence of arun-time
error. To cause an error with value Number, use:

Err.Raise Number

We can use this function to completely test the operation of any error handler we
write. Don’'t forget to remove the Raise statement once testing is completed, though!
And, to really get fancy, you can also use Raise to generate your own ‘ application
defined’ errors. There are errors specific to your application that you want to trap.

To clear an error condition (any error, not just ones generated with the Raise method),
use the method Clear :

Err.Clear

Database Access and M anagement

8-182

Example 6-1
Simple Error Trapping
1. Start anew project. Add atext box and a command button.

2. Set the properties of the form and each control:

Formai:
BorderStyle 1-Fixed Single
Caption Error Generator
Name frmError
Command1:
Caption Gererate Error
Default True
Name cmdGenError
Textl:
Name txtError
Text [Blank]

The form should look something like this:

w. Error Generator |_ [O] =]

Database Access and Management 8-183

3. Attach this code to the cndGenError_Click event.

Private Sub cndGenError_Click()

On Error GoTo Handl eErrors

Err. Rai se Val (txtError. Text)

Err.d ear

Exit Sub

Handl eErrors:

Sel ect Case MsgBox(Error(Err.Nunber), vbCritical +
vbAbort Retryl gnore, "Error Nunber" + Str(Err. Nunber))
Case vbAbort

Resune ExitLine
Case vbRetry
Resune
Case vbl gnore
Resune Next

End Sel ect

Exi t Li ne:

Exit Sub

End Sub

In this code, we simply generate an error using the number input in the text box. The

generic error handler then displays a message box which you can respond to in one of
three ways.

4. Saveyour gpplication. Try it out using some of these typical error numbers (or use
numbers found with on-line help). Notice how program control changes depending
on which button is clicked.

Error Number Error Description
6 Overflow
9 Subscript out of range
11 Division by zero
13 Type mismatch
16 Expression too complex
20 Resume without error
52 Bad file name or number
53 File not found
55 File already open
61 Disk full
70 Permission denied

92 For loop not initialized

Database Access and Management 8-184

Debugging Visual Basic Programs

We now consider the search for, and elimination of, logic errors. These are errors
that don’t prevent an application from running, but cause incorrect or unexpected

results. Visual Basic provides an excellent set of debugging toolsto aid in this
search.

Debugging a code is an art, not ascience. There are no prescribed processes that you
can follow to eliminate all logic errors in your program. The usual approach is to
eliminate them as they are discovered.

What we'll do here is present the debugging tools available in the Visual Basic
environment (several of which appear as buttons on the toolbar) and describe their

use with an example. You, as the program designer, should select the debugging
approach and tools you feel most comfortable with.

The interface between your application and the debugging tools is via three different
debug windows. the Immediate Window, the L ocals Window, and the Watch

Window. These windows can be accessed from the Viewmenu (the Immediate
Window can be accessed by pressing Ctrl+G). Or, they can be selected from the

Debug Toolbar (accessed using the Toolbars option under the Viewmenu):

Immediate \ Wetch
All debugging using the debug windows 1s uurie who ;- applicationisin break
mode. Y ou can enter break mode by setting breakpoints, pressing Ctrl+Break, or
the program will go into break mode if it encounters an untrapped error or a Stop
statement.

Once in break mode, the debug windows and other tools can be used to:

Determine values of variables

Set breakpoints

Set watch variables and expressions

Manually control the application

Determine which procedures have been called
Change the values of variables and properties

TUTUTUUTTU

Database Access and Management 8-185

Example 6-2
Debugging Example

1. Unlike other examples, we'll do this one as agroup. It will be used to demonstrate
use of the debugging tools.

2. The example smply has aform with a single command button. The button is used to
execute some code. We won't be real careful about proper naming conventions and
such in this example.

w. Debug Example M=l E3

w

The code attached to this button’s Click event is a simple loop that evaluates a
function at several values.

Private Sub Commandl_Click()
Dm X As Integer, Y As Integer
X =0

Do

Y =

X =

Loop While X <= 20

End Sub

This code begins with an X value of 0 and computes the Y value using the general integer
function Fcn. It then increments X by 1 and repeats the Loop. It continues |ooping
While X isless than or equal to 20. The function Fcn is computed using:

Function Fcn(X As Integer) As Integer
Fcn = CInt(0.1 * X~ 2)
End Function

Admittedly, this code doesn’t do much, especially without any output, but it makes a
good example for looking at debugger use. Set up the application and get ready to try
debugging.

Database Access and Management 8-186

Using the Debugging Tools

There are several debugging tools available for usein Visual Basic. Access to these
toolsis provided with both menu options and buttons on the Debug toolbar. These
tools include breakpoints, watch points, calls, step into, step over, and step out.

The simplest tool is the use of direct prints to the immediate window.

Printing to the Immediate Window:

Y ou can print directly to the immediate window while an application is running.
Sometimes, thisis all the debugging you may need. A few carefully placed print

statements cansometimes clear up al logic errors, especially in small applications.
To print to the immediate window, use the Print method:
Debug.Print [List of variables separated by commas or semi-colons]

Debug.Print Example:

1. Place the following statement in the Commandl1_Click procedure after
the line calling the general procedure Fcn:

Debug. Print X, Y
and run the application.

2. Examine the immediate window. Note how, at each iteration of the loop,

the program prints the value of X and Y. You could use this information
to make sure X isincrementing correctly and that Y values look

acceptable.

3. Remove the Debug.Print statement.

Database Access and Management 8-187

Breakpoints:
-]

In the above examples, the program ran to completion before we could look at the
debug window. In many applications, we want to stop the application whileit is
running, examine variables and then continue running. This can be done with
breakpoints.

A breakpoint is a line in the code where you want to stop (temporarily) the execution
of the program, that is force the program into break mode. To set a breakpoint, put
the cursor in the line of code you want to break on. Then, press<F9> or click the
Breakpoint button on the toolbar or select Toggle Breakpoint from the Debug
menu. The line will be highlighted.

When you run your program, Visua Basic will stop when it reaches lines with
breakpoints and alow you to use the immediate window to check variables and
expressions. To continue program operation after a breakpoint, press <F5>, click the
Run button on the toolbar, or choose Start from the Run menu.

Y ou can also change variable values using the immediate window. Simply type a
valid Basic expression. This can sometimes be dangerous, though, as it may change
program operation completely.

Breakpoint Example:

1. Setabreakpoint onthe X = X + 1 linein the sample program. Run the
program.

2. When the program stops, display the immediate window and type the
following line:

Print X;Y

3. Thevalues of these two variables will appear in the debug window. You
can use a question mark (?) as shorthand for the command Print, if you'd

like. Restart the application. Print the new variable values.

4. Try other breakpoints if you have time. Once done, al breakpoints can be
cleared by Ctrl+Shift+<F9> or by choosing Clear All Breakpoints from
the Debug menu. Individual breakpoints can be toggled using <F9> or
the Breakpoint button on the toolbar.

Database Access and Management 8-188

Viewing Variables in the Locals Window:

2
Thelocals window shows the value of any variables within the scope of the current
procedure. As execution switches from procedure to procedure, the contents of this
window changes to reflect only the variables applicable to the current procedure.
Repeat the above example and notice the values of X and Y also appear in the locals
window.

Watch Expressions:
i

The Add Watch option on the Debug menu allows you to establish watch
expressions for your application. Watch expressions can be variable values or
logical expressiors you want to view or test. Values of watch expressions are
displayed in the watch window.

In break mode, you can use the Quick Watch button on the toolbar to add watch

expressions you need. Simply put the cursor on the variable or expression you want
to add to the watch list and click the Quick Watch button.

Watch expressions can be edited using the Edit Watchoption on the Debug menu.
Watch Expression Example:
1. Setabreakpoint at the X = X + 1 linein the example.
2. Set awatch expression for the variable X. Run the application. Notice
X appears in the watch window. Every time you re start the application,

the value of X changes.

3. At some point in the debug procedure, add a quick watch on Y. Notice it
is now in the watch window.

4. Clear the bregkpoint. Add awatch on the expression: X =Y. Set
Watch Type to ‘Break When ValuelsTrue.” Run the application.
Notice it goes into break mode and displays the watch window whenever
X =Y. Delete thislast watch expression.

Database Access and Management 8-189

Call Stack:
&

Selecting the Call Stack button from the toolbar (or pressing Ctrl+L or selecting
Call Stack from the View menu) will display all active procedures, that is those that
have not been exited.

Call Stack helps you unrave situations with nested procedure calls to give you some
idea of where you are in the application.

Call Stack Example:

1. Set abreakpoint on the Fcn = Cint() line in the general function
procedure. Run the application. It will break at thisline.

2. Pressthe Call Stack button. It will indicate you are currently in the Fen
procedure which was called from the Commandl1_Click procedure. Clear
the breakpoint.

Single Stepping (Step Into):
E_

While at a breakpoint, you may execute your program one line at atime by pressing
<F8>, choosing the Step Into option in the Debug menu, or by clicking the Step Into
button on the toolbar.

This processis single stepping. It alows you to watch how variables change (in the
locals window) or how your form changes, one step at atime.

Y ou may step through severa lines at atime by using Run To Cursor option. With
this option, click on aline below your current point of execution. Then press
Ctrl+<F8> (or choose Run To Cursor in the Debug menu). the program will run
through every line up to the cursor location, then stop.

Database Access and Management 8-190

Step Into Example:
1. Set abreakpoint onthe Do line in the example. Run the application.

2. When the program breaks, use the Step I nto button to single step through
the program.

3. At some point, put the cursor on the Loop While line. Try theRun To
Cur sor option (press Ctrl+<F8>).

Procedure Stepping (Step Over):

While single stepping your program, if you come to a procedure call you know
functions properly, you can perform procedure stepping. Thissimply executesthe
entire procedure at once, rather than one step at atime.

To move through a procedure in this manner, press Shift+<F8>, choose Step Over
from the Debug menu, or press the Step Over button on the toolbar.

Step Over Example:

1. Run the previous example. Single step through it a couple of times.

2. Onetime through, when you are at the line calling the Fcn function, press
the Step Over button. Notice how the program did not single step through

the function as it did previously.

Function Exit (Step Out):

|||IT

While stepping through your program, if you wish to complete the execution of a
function you are in, without stepping through it line-by-line, choose the Step Out
option. The function will be completed and you will be returned to the procedure
accessing that function.

To perform this step out, press Ctrl+Shift+<F8>, choose Step Out from the Debug
menu, or press the Step Out button on the toolbar. Try this on the previous example.

Database Access and Management 8-191

Debugging Strategies

WEe've looked at each debugging tool briefly. Be aware thisis a cursory introduction.
Usethe ont-line help to delve into the details of each tool described. Only through
lots of use and practice can you become a proficient debugger. There are some
guidelines to doing a good job, though.

My first suggestion is. keep it smple. Many times, you only have one or two bad
lines of code. And you, knowing your code best, can usually quickly narrow down
the areas with bad lines. Don’'t set up some elaborate debugging procedure if you
haven't tried a smple approach to find your error(s) first. Many times, just afew
intelligently-placed Debug.Print statements or afew examinations of the immediate
and locals windows can solve your problem.

A tried and true approach to debugging can be called Divide and Conquer. If you're
not sure where your error is, guess somewhere in the middle of your application code.
Set a breakpoint there. If the error hasn’t shown up by then, you know it’sin the
second haf of your code. If it has shown up, it'sin the first half. Repeat this division
process until you' ve narrowed your search.

And, of course, the best debugging strategy isto be careful when you first design and
write your application to minimize searching for errors later.

Database Access and Management 8-192

Sequential Files

In many applications, it is helpful to have the capability to read and write information
toadisk file. Thisinformation could be some computed data or perhaps information
loaded into a Visual Basic object.

Visual Basic supports two primary file formats. sequential and random access. We
first look at sequential files.

A sequentid fileisaline-by-linelist of data. You can view a sequentid file with any
text editor. When using sequential files, you must know the order in which
information was written to the file to allow proper reading of the file.

Sequential files can handle both text data and variable values. Sequential accessis
best when dealing with files that have lines with mixed information of different

lengths. | use them to transfer data between applications.

Sequential File Output (Variables)

We firgt look a writing values of variablesto sequentia files. Thefirst step isto
Open afile to write information to. The syntax for opening a sequentia file for
output is:

Open SegFileName For Output As#N

where SegFileName is the name of the file to open and N is an integer file number.
The filename must be a complete path to the file.

When done writing to the file, Close it using:

Close N

Once afileis closed, it is saved on the disk under the path and filename used to open
the file.

Information is written to a sequential file one line a atime. Each line of output
requires a separate Basic statement.

Database Access and Management 8-193

There are two ways to write variables to a sequential file. The first uses the Write
Statement:

Write #N, [variable list]

where the variable list has variable names delimited by commas. (If the variable list
is omitted, a blank lineis printed to the file.)) This statement will write one line of
information to the file, that line containing the variables specified in the variable list.
The variables will be delimited by commas and any string variables will be enclosed
in quotes. Thisisagood format for exporting files to other applications like Excel.

Example

Dim A AsInteger, B As String, C As Single, D As Integer

Open TestOut For Output As #1
Write #1, A, B, C

Write #1, D

Close1

After this code runs, the file TestOut will have two lines. The first will have the
variables A, B, and C, delimited by commas, with B (a string variable) in quotes. The
second line will smply have the value of the variable D.

The second way to write variables to a sequential file is with the Print statement:
Print #N, [variable list]

This statement will write one line of information to the file, that line containing the
variables specified in the variable list. (If the variable list is omitted, a blank line will
be printed.) If the variablesin the list are separated with semicolons (;), they are
printed with a single space between them in thefile. If separated by commas (,), they
are spaced in wide columns. Be careful using the Print statement with string
variables. The Print statement does not enclose string variables in quotes, hence,
when you read such a variable back in, Visual Basic may have trouble knowing
where a string ends and begins. It's good practice to ‘tack on’ quotes to string
variables when using Print.

Database Access and Management 8-194

Example

Dim A AsInteger, B As String, C As Single, D As Integer

Open TestOut For Output As #1

Print #1, A; Chr(34) + B + Chr(34), C
Print #1, D

Clo=1

After this code runs, the file TestOut will have two lines. The first will have the

variables A, B, and C, delimited by spaces. B will be enclosed by quotes [Chr(34)].
The second line will smply have the value of the variable D.

Quick Example: Writing Variablesto Sequential Files

1. Start anew project.

2. Attach the following code to the Form_L oad procedure. This code simply writes a
few variables to sequentia files.

Private Sub Form Load()
DmA As Integer, B As String, C As Single, D As Integer

A=5

B = "Visual Basic"
C=2.15

D=-20

Open "Testl. Txt" For CQutput As #1
Open "Test2. Txt" For Qutput As #2
Wite #1, A B, C

Wite #1, D
Print #2, A, B, C
Print #2, D
Close 1

Cl ose 2

End Sub

3. Runthe program. Use atext editor (try the Windows 95 Notepad) to examine the
contents of the two files, Test1.Txt and Test2.Txt. They are probably in the Visua
Basic main directory. Note the difference in the two files, especially how the
variables are delimited and the fact that the string variable is not enclosed in quotes in
Test2.Txt. Save the application, if you want to.

Database Access and Management 8-195

Sequential File Input (Variables)

To read variables from a sequentia file, we essentially reverse the write procedure.
First, open the file using:

Open SegFileName For Input As#N

where N is an integer file number and SegFileName is a complete file path. Thefileis
closed using:

CloeN
Thelnput statement is used to read in variables from a sequentia file. The format is:
Input #N, [variable list]

The variable names in the list are separated by commas. If no variables are listed, the
current line in the file N is skipped.

Note variables must be read in exactly the same manner as they were written. So,
using our previous example with the variables A, B, C, and D, the appropriate
statements are:

Input #1, A, B, C
Input #1, D

These two lines read the variables A, B, and C from the first line in the file and D
from the second line. It doesn’t matter whether the data was originally written to the
fileusing Write or Print (i.e. commas are ignored).

Database Access and Management 8-196

Quick Example: Reading Variablesfrom Sequential Files
1. Start anew project or smply modify the previous quick example.

2. Attach the following code to the Form_L oad procedure. This code readsin files
created in the last quick example.

Private Sub Form Load()

DmA As Integer, B As String, C As Single, D As Integer
Open "Testl1l. Txt" For Input As #1

I nput #1, A B, C

Debug. Print "A="; A

Debug. Print "B="; B

Debug. Print "C="; C

| nput #1, D

Debug. Print "D="; D
Close 1

End Sub

Note the Debug.Print statements and how you can add some identifiers (in quotes) for
printed information.

3. Run the program. Look in the debug window and note the variable values. Save the
application, if you want to.

4. Rerunthe program using Test2.Txt asin the input file. What differences do you see?
Do you see the problem with using Print and string variables? Because of this
problem, | aimost aways use Write (instead of Print) for saving variable information
to files. Edit the Test2.Txt file (in Notepad), putting quotes around the words Visual
Basic. Rerun the program using this file asinput - it should work fine now.

Database Access and Management 8-197

Writing and Reading Text Using Sequential Files
In many applications, we would like to be able to save text information and retrieve it

for later reference. Thisinformation could be a text file created by an application or
the contents of a Visua Basic text box.

Writing Text Files:

To write a sequential text file, we follow the simple procedure: open the file, write the
file, closethefile. If thefileisaline-by-line text file, each line of the file is written
to disk using asingle Print statement:

Print #N, Line

where Line isthe current line (atext string). This statement should be in aloop that
encompasses all lines of the file. Y ou must know the number of lines in your file,
beforehand.

If we want to write the contents of the Text property of atext box named txtExample to
afile, we use:

Print #N, txtExample. Text

Example

We have atext box named txtExample. We want to save the contents of the Text
property of that box in afile named MyT ext.nedon the c: drive in the \MyFiles
directory. The code to do thisis:
Open “c\WMyFiles\MyText.ned” For Output As #1
Print #1, txtExample. Text
Close 1

The text is now saved in the file for later retrieval.
Reading Text Files:

To read the contents of a previously-saved text file, we follow similar steps to the writing
process. open the file, read thefile, close thefile. If thefileis atext file, we read

each individua line with the Linelnput command:

Line Input #1, Line

Database Access and Management 8-198

Thisline is usualy placed in a Do/L oop structure that is repeated untill all lines of the
fileareread in. The EOF() function can be used to detect an end- of-file condition, if
you don’'t know, a prioiri, how many lines are in the file.

To place the contents of afile opened with number N into the Text property of atext box
named txtExample we use the I nput function:

txtExample. Text = Input(LOF(N), N)

This I nput function has two arguments. L OF(N), the length of the file opened as N and
N, the file number.

Example
We have a file named MyText.ned stored on the c: drive in the \MyFiles directory. We

want to read that text file into the text property of atext box named txtExample. The
code to do thisis:

Open “c\MyFiles\MyText.ned” For Input As#1
txtExample. Text = Input(LOF(1), 1)
Close 1

The text in the file will now be displayed in the text box.

Database Access and Management 8-199

Random Access Files

Note that to access a particular data item in a sequentia file, you need to read in al
items in the file prior to the item of interest. This works acceptably well for small
datafiles of unstructured data, but for lar ge, structured files, this processis time-
consuming and wasteful. Sometimes, we need to access data in nonsequential ways.
Files which allow nonsequential access are random access files

To alow nonsequentia access to information, a random access file has a very definite
structure. A random access file is made up of a number of records, each record
having the same length (measured in bytes). Hence, by knowing the length of each
record, we can easily determine (or the computer can) where each record begins. The
first record in arandom accessfileis Record 1, not Oas used in Visua Basic arrays.
Each record is usually a set of variables, of different types, describing some item.

The structure of arandom accessfileis:

Record 1
N bytes
Record 2
N bytes
Record 3
N bytes

Record Last
N bytes

A good analogy to illustrate the differences between sequentia files and random
access files are cassette music tapes and compact discs. To hear a song on atape (a
sequentia device), you must go past all songs prior to your selection. To hear a song
on aCD (arandom access device), you simply go directly to the desired selection.
One difference here though is we require al of our random access records to be the
same length - not agood choiceon CD’s!

Database Access and Management 8-200

To write and read random access files, we must know the record lengthin bytes.
Some variable types and their length in bytes are:

Type Length (Bytes)

Integer 2

Long 4

Single 4

Double 8

String 1 byte per character

So, for every variable that isin afile's record, we need to add up the individual
variable length’s to obtain the total record length. To ease this task, we introduce the
idea of user-defined variables.

User-Defined Variables

Data used with random access files is most often stored in user-defined variables.
These data types group variables of different types into one assembly with asingle,
user-defined type associated with the group. Such types significantly smplify the use
of random access files.

The Visua Basic keyword Type signals the beginning of a user-defined type
declaration and the words End Type signal the end. An example best illustrates
establishing a user-defined variable. Say we want to use a variable that describes
people by their name, their city, their height, and their weight. We would define a
variable of Type Person as follows:

Type Person
Name As String
City As String
Height As Integer
Weight As Integer
End Type

These variable declarations go in the same code areas as normal variable declarations,

depending on desired scope. At this point, we have not resaved any storage for the
data. We have simply described to Visual Basic the layout of the data.

Database Access and Management 8-201

To create variables with this newly defined type, we employ the usual Dim statement.
For our Per son example, we would use:

Dim Lou As Person

Dim John As Pa'son

Dim Mary As Person
And now, we have three variables, each containing al the components of the variable
type Person. To refer to a single component within a user-defined type, we use the
dot-notation:

VarName.Component

As an example, to obtain Lou’s Age, we use:

Dim AgeValue as Integer

AgéVaI ue=Lou.Age
Note the similarity to dot-notation we' ve been using to set properties of various
Visual Basic tools.

Writing and Reading Random Access Files

We look at writing and reading random access files using a user-defined variable.
For other variable types, refer to Visual Basic ontline help. To open arandom access
file named RanFileName, use:

Open RanFileName For Random As#N Len = RecordLength
where N is an available file number and RecordL ength is the length of each record.
Note you don’'t have to specify an input or output mode. With random access files, as

long as they’ re open, you can write or read to them.

To close arandom access file, use:

CloeN

Database Access and Management 8-202

As mentioned previoudly, therecord length is the sum of the lengths of all variables
that make up arecord. A problem arises with String type variables. You don’t know
their lengths ahead of time. To solve this problem, Visual Basic lets you declare
fixed lengths for strings. This alows you to determine record length. If we have a

string variable named StrExample we want to limit to 14 characters, we use the
declaration:

Dim StrExample As String * 14

Recall each character in a string uses 1 byte, so the length of such avariable is 14
bytes.

Recall our example user-defined variable type, Person. Let’srevisit it, now with
restricted string lengths:

Type Person
Name As String * 40
City AsString * 35
Height As Integer
Weight As Integer
End Type

The record length for this variable type is 79 bytes (40 + 35 +2 + 2). To open afile
named Per sonData as File #1, with such records, we would use the statement:

Open PersonData For Random As#1 Len =79

The Get and Put statements are used to read from and write to random acoess files,
respectively. These statements read or write one record at atime. The syntax for
these statementsis ssimple:

Get #N, [RecordNumber], variable
Put #N, [RecordNumber], variable

The Get statement reads from the file and stores data in the variable, whereas the
Put statement writes the contents of the specified variable to the file. In each case,
you can optionally specifiy the record number. If you do not specify arecord
number, the next sequential position is used.

Database Access and Management 8-203

Thevariableargumert in the Get and Put statements is usually a single user-defined
variable. Once read in, you obtain the component parts of this variable using dot-
notation. Prior to writing a user-defined variable to a random accessfile, you ‘load’
the component parts using the same dot notation.

There's alot more to using random access files, we' ve only looked at the basics.
Refer to your Visual Basic documentation and ort line help for further information.
In particular, you need to do a little cute programming when deleting records from a
random access file or when ‘resorting’ records.

Database Access and Management 8-204

Using the Open and Save Common Dialog Boxes

Note to both write and read sequential and random access files, we need a file name
for the Open statement. To ensure accuracy and completeness, it is suggested that
common dialog boxes (briefly studied in Class 4) be used to get this file name
information from the user. 1I'll provide you with a couple of code segments that do
just that. Both segments assume you have acommon dialog box on your form
named cdlFiles, with the CancelError property set equal to True. With this
property True, an error is generated by Visua Basic when the user presses the Cancel
button in the dialog box. By trapping this error, it allows an elegant exit from the
dialog box when canceling the operation is desired.

The code segment to obtain a file name (M yFileName with default extension Ext)
for opening afileto read is:

Dim MyFileName As String, Ext As String

cdlFilesFilter = "Files (*." + Ext + ")[*." + Ext
cdlFiles.DefaultExt = Ext

cdiFiles.DialogTitle = "Open File"

cdiFiles.Flags = cdlOFNFileMustExist + cdlOFNPathM ustExist
On Error GoTo No_Open

cdlFiles.ShowOpen

MyFileName = cdIFiles.filename

Exit Sub
No_Open:
Resume ExitLIne
ExitLine:

Exit Sub

End Sub

A few words on what’ s going on here. First, some properties are set such that only
fileswith Ext (athree |etter string variable) extensions are displayed (Filter
property), the default extension is Ext (DefaultExt property), the title bar is set
(DialogTitle property), and some Flags are set to insure the file and path exist (see
Appendix 1 for more common dialog flags). Error trapping is enabled to trap the
Cancel button. Finally, the common dialog box is displayed and the filename
property returns with the desired name. That name is put in the string variable
MyFileName. What you do after obtaining the file name depends on what type of
file you are dealing with. For sequential files, you would open the file, read in the
information, and close the file. For random access files, we just open the file here.
Reading and writing to/from the file would be handled elsewhere in your coding.

Database Access and Management 8-205

The code segment to retrieve a file name (MyFileName) for writing afileis:

Dim MyFileName As String, Ext As String

cdiFilesFilter = "Files (*." + Ext + ")[*." + Ext

cdiFiles.DefaultExt = Ext

cdiFiles.DialogTitle = "Save File"

cdlFiles.Flags = cdlOFNOverwritePrompt + cdl OFNPathM ustExist
On Error GoTo No_Save

cdlFiles.ShowSave

MyFileName = cdIFiles.filename

Exit Sub
No_Save:
Resume ExitLine
ExitLine:

Exit Sub

End Sub

Note this code is essentialy the same used for an Open file name. The Flags
property differs dightly. The user is prompted if a previously saved file is selected
for overwrite. After obtaining avalid file name for a sequentia file, we would open
the file for output, write the file, and close it. For arandom access file, things are
trickier. 1f we want to save the file with the same name we opened it with, we ssimply
close thefile. If the name is different, we must open afile (using a different number)
with the new name, write the complete random access file, then closeit. Like |l said,
it's trickier.

We use both of these code segments in the final example where we write and read
sequentia files.

Database Access and Management 8-206

Example 6-3

Note Editor - Reading and Saving Text Files

1. Wenow add the capability to read in and save the contents of the text box in the Note
Editor application from last class. Load that application. Add a common dialog box
to your form. Name it cdlFiles and set the CancelError property to True.

2. Modify the File menu (use the Menu Editor and the Insert button) in your

application, such that Open and Save options are included. The File menu should
now read:

File
New
Open
Save

Exit
Properties for these new menu items should be:
Caption Name Shortcut

& Open mnuFileOpen [None]
& Save mnuFileSave [None]

Database Access and Management 8-207

3. Thetwo new menu options need code. Attach this code to the mnuFileOpen_Click
event. This uses a modified version of the code segment seen previously. We assign
the extension ned to our note editor files.

Private Sub mmuFi | eOpen_d i ck()
cdlFiles.Filter = "Files (*.ned)]|*. ned"
cdl Fi |l es. Def aul t Ext = "ned"
cdlFiles.DialogTitle = "Open File"

cdl Fil es. Fl ags = cdl OFNFi | eMust Exi st + cdl OFNPat hMust Exi st
On Error GoTo No_Open

cdl Fi | es. ShowOpen

Open cdl Files.filenanme For |nput As #1
txtEdit. Text = Input(LOF(1), 1)

Close 1

Exit Sub

No_Open:

Resune ExitLine

Exi t Li ne:

Exit Sub

End Sub

And for the mnuFileSave Click procedure, use this code. Much of this can be copied
from the previous procedure.

Private Sub mmuFi | eSave_C i ck()

cdlFiles.Filter = "Files (*.ned)|*. ned"

cdl Fil es. Defaul t Ext = "ned"

cdlFiles.DialogTitle = "Save File"

cdl Files. Fl ags = cdl OFNOverw i tePronpt +
cdl OFNPat hMust Exi st

On Error GoTo No_Save

cdl Fi | es. ShowSave

Qpen cdl Files.filename For Qutput As #1

Print #1, txtEdit. Text

Close 1

Exit Sub

No_Save:

Resune ExitLine

Exi t Li ne:

Exit Sub

End Sub

Database Access and Management 8-208

Each of these proceduresis similar. The dialog box is opened and, if afilenameis
returned, the file is read/written. If Cancel is pressed, no action istaken. These
routines can be used as templates for file operations in other applications.

4. Saveyour application. Run it and test the Open and Save functions. Note you have
to save afile before you can open one. Check for proper operation of the Cancel
button in the common dialog box.

5. If you have the time, there is one major improvement that should be made to this
application. Notice that, as written, only the text information is saved, not the
formatting (bold, italic, underline, size). Whenever afile is opened, the text is
displayed based on current settings. It would be nice to save formatting information
along with the text. This can be done, but it involves afair anount of
reprogramming. Suggested steps.

A. Add linesto the mnuFileSave Click routine that write the text box
properties FontBold, Fontltalic, FontUnderline, and FontSize to a
separate sequential file. If your text file is named TxtFile.ned, | would
suggest naming the formatting file TxtFilefmt. Use string functions to
put this name together. That is, chop the ned extension off the text file
name and tack on the fmt extension. You'll need the L en() and L eft()
functions.

B. Add linesto the mnuFileOpen_Click routine that read the text box
properties FontBold, Fontltalic, FontUnderline, and FontSize from your
format sequential file. You'll need to define some intermediate variables
here because Visual Basic won't allow you to read properties directly
from afile. You'll aso need logic to set/reset any check marksin the
menu structure to correspond to these input properties.

C. Add linesto the mnuFileNew_Click procedure that, when the user
wants a new file, reset the text box properties FontBold, Fontltalic,
FontUnderline, and FontSize to their default values and set/reset the
corresponding menu check marks.

D. Try out the modified application. Make sure every new option works as
it should.

Actualy, there are ‘custom’ tools (we'll ook at custom tools in Class 10) that do what
we are trying to do with this modification, that is save text box contents with
formatting information. Such files are called ‘rich text files' or rtf files. You may
have seen these before when transferring files from one word processor to another.

Database Access and Management 8-209

6. Another thing you could try: Modify the message box that appears when you try to
Exit. Makeit ask if you wish to save your file before exiting - provide Yes, No,
Cancel buttons. Program the code corresponding to each possible response. Use
calls to existing procedures, if possible.

Database Access and Management 8-210

Exercise 6-1

I nformation Tracking

Design and develop an application that allows the user to enter (on adaily basis) some
piece of information that is to be saved for future review and reference. Examples could
be stock price, weight, or high temperature for the day. The input screen should display
the current date and an input box for the desired information. all values should be saved
on disk for future retrieval and update. A scroll bar should be available for reviewing all
previoudy-stored values.

My Solution:
Form:
mnuFile
F Weight Program [_ (O] =]
\Eile
Date Weight
Labell : T
I ;I — Label2
IblDate / Lr [vsbControl
- | Mew Fie
IM Hasssaszsenaaes: | T txtweight
lblFile / cdlFiles /
Properties:
Form frmWeight:

BorderStyle=1 - Fixed Single
Caption = Weight Program

V ScrollBar vsbControl:
Min=1
Vaue=1

Database Access and M anagement

8-211

TextBox txtWeight :
Alignment = 2 - Center
FontName = M S Sans Serif
FontSize=13.5

Labd IblFile:
BackColor = & HOOOOFFFF& (White)
BorderStyle=1 - Fixed Single
Caption = New File
FontName = M S Sans Serif
FontBold = True
Fontltalic = True
FontSize = 8.25

Label IblDate:
Alignment = 2 - Center
BackColor = & HOOFFFFFF& (White)
BorderStyle=1 - Fixed Single
FontName = M S Sans Serif
FontSize = 13.5

Label Label2:
Alignment = 2 - Center
Caption = Weight
FontName = M S Sans Serif
FontSize=13.5
FontBold = True

Label Labell:
Alignment = 2 - Center
Caption = Date

FontName = M S Sans Serif
FontSize=13.5
FontBold = True

CommonDialog cdlFiles:
CancelError = True

Menu mnuFile:
Caption = &File

Menu mnuFileNew:
Caption = & New

Database Access and Management 8-212

Menu mnuFileOpen:
Caption = & Open

Menu mnuFileSave:
Caption = & Save

Menu mnuLine:
Caption =-

Menu mnuFileExit:
Caption = E&xit

Code:
General Declarations:

Option Explicit

Di m Dat es(1000) As Date
Di m Wi ght s(1000) As String
Dim NumWs As | nteger

Init General Procedure:

Sub Init()

NumW's = 1. vsbControl.Value = 1. vsbControl.Max = 1
Dat es(1) = Format (Now, "rmmidd/yy")

Wei ghts(1) = ""

| bl Dat e. Caption = Dates(1)

t xt Wei ght . Text = Wi ghts(1)

bl File.Caption = "New Fil e"

End Sub

Form Load Event:

Private Sub Form Load()
f r MAéi ght . Show

Call Init

End Sub

Database Access and Management 8-213

mnufileExit Click Event:

Private Sub muFi |l eExit _Cick()
' Make sure user really wants to exit
Di m Response As | nteger
Response = MsgBox("Are you sure you want to exit the weight
progran®”, vbYesNo + vbCritical + vbDefaultButton2, "Exit
Editor")
I f Response = vbNo Then
Exit Sub
El se
End
End |f
End Sub

mnuFileNew Click Event:

Private Sub mmuFi | eNew C i ck()

"User wants new file

Di m Response As I nteger

Response = MsgBox("Are you sure you want to start a new
file?", vbYesNo + vbQuestion, "New File")

I f Response = vbNo Then

Exit Sub
El se

Call Init
End |f
End Sub

mnuFileOpen Click Event:

Private Sub mmuFi | eOpen_d i ck()

Dim1l As |nteger

Dim Today As Date

Di m Response As | nteger

Response = MsgBox("Are you sure you want to open a new
file?", vbYesNo + vbQuestion, "New File")

| f Response = vbNo Then Exit Sub

cdlFiles.Filter = "Files (*.wgt)]|*.wgt"

cdl Files. Defaul t Ext = "wgt"

cdlFiles.Di alogTitle = "Open File"

cdl Fil es. Fl ags = cdl OFNF | eMust Exi st + cdl OFNPat hMust Exi st
On Error GoTo No_Open

cdl Fi | es. ShowOpen

Qpen cdl Files.filename For |nput As #1

Database Access and M anagement

8-214

I bl File.Caption = cdlFiles.filenanme
I nput #1, NunW s

For I =1 To NunWs

| nput #1, Dates(l), Weights(l)
Next |
Close 1

Today = Format (Now, "nm dd/yy")
| f Today <> Dates(NumA s) Then
NumN's = Num¥s + 1
Dat es(NumX s) = Today
Wei ght s(NumA{s) = ""
End If
vsbControl . Max = NumA' s
vsbControl . Value = Numi s
| bl Dat e. Caption = Dates(Nunmi s)
t xt Wi ght . Text = Wei ght s(NumA s)
Exit Sub
No_Open:
Resume ExitLine
Exi t Li ne:
Exit Sub
End Sub

mnuFileSave Click Event:

Private Sub mmuFi | eSave i ck()
DimI| As Integer
cdlFiles.Filter = "Files (*.wgt)|*.wgt"
cdl Fil es. Defaul t Ext = "wgt"
cdlFiles.Di alogTitle = "Save File"
cdl Files. Flags = cdl OFNOverwrit ePronpt +
cdl OFNPat hMust Exi st
On Error GoTo No_Save
cdl Fi | es. ShowSave
Open cdl Files.filename For CQutput As #1
I bl File.Caption = cdlFiles.filename
Wite #1, NumA s
For I =1 To NumW s
Wite #1, Dates(l), Weights(l)
Next |
Close 1
Exit Sub
No_ Save:
Resune ExitLine
Exi t Li ne:
Exit Sub

Database Access and Management 8-215

End Sub

Database Access and M anagement

8-216

txtWeight Change Event:

Private Sub txtWi ght_Change()
Wei ght s(vsbControl . Val ue) = txt Wi ght. Text
End Sub

txtWeight KeyPress Event:

Private Sub txtWight_KeyPress(KeyAscii As |nteger)
I f KeyAscii >= vbKeyO And KeyAscii <= vbKey9 Then
Exit Sub
El se
KeyAscii =0
End If
End Sub

vsbControl Change Event:

Private Sub vsbControl Change()

| bl Dat e. Capti on = Dates(vsbControl. Val ue)
t xt Wei ght . Text = Wi ght s(vsbControl . Val ue)
t xt Wei ght . Set Focus

End Sub

Database Access and Management 8-217

Exercise 6-2

‘Recent Hles Menu Option

Under the File menu on nearly every application (that opens files) isalist of the four
most recently- used files (usually right above the Exit option). Modify your information
tracker to implement such afeature. Thisisnot trivia -- there are lots of things to
consider. For example, you'll need afile to store the last four file names. You need to
open that file and initialize the corresponding menu entries when you run the application
-- you need to rewrite that file when you exit the application. You need logic to re-order
file names when a new fileis opened or saved. You need logic to establish new menu
items as new filesare used. You'll need additiona error-trapping in the open procedure,
in case a file selected from the menu no longer exists. Like | said, alot to consider here,

My Solution:
These new menu items immediately precede the existing Exit menu item:

Menu mnuFileRecent:
Caption = [Blank]
Index =0, 1, 2, 3 (acontrol array)
Visble= False

Menu mnuFileBar:
Caption =-
Visible = False

Code Modifications (new code is bold and italicized):

Genera Declarations:

Option Explicit

Di m Dat es(1000) As Date

D m Wi ght s(1000) As String

Dim NumAN s As | nteger

Dm NFiles As Integer, RFile(3) As String, MenuQpen As
I nteger, FNmenu As String

Database Access and Management 8-218
Rfile Update General Procedure:
Sub RFile_Update(NewFile As String)
‘“Routine to place newest file name in proper order
“in menu structure
DmIl As Integer, J As Integer, InList As Integer
"Convert name to all upper case letters
NewFi | e = UCase(NewFi | e)
"See if file is already in |ist
InList =0
For | = 0 To NFiles - 1
If RFile(l) = NewrFile Then InList = 1: Exit For
Next |
"If file not in list, increment nunber of itens with
"a maxi mum of 4. Then, nove others down, then pl ace
"new nanme at top of I|ist
[f InList = 0 Then
NFiles = NFiles + 1
If NFiles > 4 Then
NFiles = 4
El se
If NFiles = 1 Then mmuFil eBar. Visible = True
muFi | eRecent (NFiles - 1).Visible = True
End If
If NFiles <> 1 Then
For I = NFiles - 1 To 1 Step -1
RFile(l) = RFile(l - 1)
Next |
End If
RFile(0) = NewFile
El se
"If file already in list, put nane at top and shift
"ot hers accordingly
If | <> 0 Then
For J =1 - 1 To O Step -1
RFile(J + 1) = RFile(J)
Next J
RFile(0) = NewFile
End If
End |f
"Set nmenu captions according to new |i st
For | = 0 To NFiles - 1
muFi | eRecent (I). Caption = "&" + Format(l + 1, "# ") +
RFile(l)
Next |

End Sub

Database Access and Management 8-219

Form Load Event:

Private Sub Form Load()
Dim1 As |nteger
"Open .ini file and load in recent file nanmes
Open "weight.ini™ For Input As #1
NFiles = 0: MenuQpen = 0
For I =0 To 3
[nput #1, RFile(l)
If RFile(l) <> "" Then
NFiles = NFiles + 1
mmuFi | eBar. Visi ble = True
mmuFi | eRecent (1) . Caption = "&" + Format(l + 1, "# ") +
RFile(l)
muFi | eRecent (1) . Visible = True
End If
Next |
Close 1
fr mAéi ght . Show
Call Init
End Sub

mnuFileExit Click Event:

Private Sub mmuFil eExit _Cick()
" Make sure user really wants to exit
Di m Response As Integer, | As Integer
Response = MsgBox("Are you sure you want to exit the weight
progran®?", vbYesNo + vbCritical + vbDefaultButton2, "Exit
Editor")
I f Response = vbNo Then
Exit Sub
El se
"Wite out .ini file when done
Open "weight.ini"™ For Qutput As #1

For I =0 To 3
Wite #1, RFile(l)
Next |
Close 1
End
End If

End Sub

Database Access and Management 8-220

mnuFileOpen Click Event:

Private Sub mmuFi | eOpen_d i ck()
Dim1 As |nteger
D m Today As Date
Di m Response As | nteger
Dm File_To_Open As String
Response = MsgBox("Are you sure you want to open a new
file?", vbYesNo + vbQuestion, "New File")
I f Response = vbNo Then Exit Sub
[f MenuOpen = 0 Then
cdlFiles.Filter = "Files (*.wgt)|*.wgt"
cdl Files. Defaul t Ext = "wgt"
cdlFiles.Di alogTitle = "Open File"
cdl Fil es. Fl ags = cdl OFNFi | eMust Exi st +
cdl OFNPat hMust Exi st
On Error GoTo No_Open
cdl Fi | es. ShowOpen
File_To _Open = cdlFiles.filenane

El se

File_To_Open = FNmenu
End If
MenuQpen = 0

On Error GoTo BadOpen

Open File_To_Open For Input As #1
I bl File.Caption = File_To_Open

I nput #1, NunW s

For I =1 To NunW s

| nput #1, Dates(l), Weights(l)
Next |
Close 1

Call RFile_Update(File_To_Open)
Today = Format (Now, "midd/yy")
I f Today <> Dates(NumW s) Then
NumAfs = NunWs + 1
Dat es(NumX s) = Today
Wei ght s(NunWWs) = ""
End If
vsbControl . Max = NumA' s
vsbControl . Val ue = Nuni s
| bl Dat e. Caption = Dates(Nuni s)
t xt Wei ght . Text = Wei ght s(NumA s)
Exit Sub
No_Open:
Resune ExitLine
Exi t Li ne:
Exit Sub

Database Access and M anagement

8-221

BadOpen:
Sel ect Case MsgBox(Error(Err.Nunber), vbCritical +
vbRetryCancel, "File Open Error")
Case vbRetry
Resune
Case vbCancel
Resune No_Open
End Sel ect
End Sub

mnuFileRecent Click Event:

Private Sub mmuFi | eRecent _Click(lndex As Integer)
FNmenu = RFil e(l ndex): MenuQpen =1
Call mmuFi |l eOpen_d i ck

End Sub

mnuFileSave Click Event:

Private Sub mmuFi | eSave_C i ck()
Diml As |nteger
cdlFiles.Filter = "Files (*.wgt)|*.wgt"
cdl Fil es. Defaul t Ext = "wgt"
cdlFiles.DialogTitle = "Save File"
cdl Files. Flags = cdl OFNOverwri tePronpt +
cdl OFNPat hMust Exi st
On Error GoTo No_Save
cdl Fi | es. ShowSave
Open cdl Files.filenane For Qutput As #1
I bl File.Caption = cdl Files.filename
Wite #1, NumA s
For I =1 To NumW s
Wite #1, Dates(l), Weights(l)
Next |
Close 1
Call RFile_Update(cdl Files.filenane)
Exit Sub
No_Save:
Resune ExitLine
Exi t Li ne:
Exit Sub
End Sub

Database Access and Management 8-222

This page intentionally not left blank. |

Learn Visual Basic 6.0

7. Graphics Techniques with Visual Basic

Review and Preview

In past classes, we've used some graphics tools: line tools, shape tools, image boxes,
and picture boxes. In this class, we extend our graphics programming skillsto learn
how to draw lines and circles, do drag and drop, perform simple animation, and study

some basic plotting routines.

GraphicsMethods

Graphics methods apply to forms and picture boxes (remember a picture box islike
aform within aform). With these methods, we can draw lines, boxes, and circles.
Before discussing the commands that actually perform the graphics drawing, though,
we need to look at two other topics: screen management and screen coor dinates.

In single program environments (DOS, for example), when something is drawn on the
screen, it stays there. Windows is a multi- tasking environment. |f you switch from a
Visual Basic application to some other application, your Visua Basic form may
become partially obscured. When you return to your Visual Basic application, you

Database Access and Management 8-223

would like the form to appear like it did before being covered. All controls are
automatically restored to the screen. Graphics methods drawings may or may not be
restored - we need them to be, though. To accomplish this, we must use proper
SCreen management.

The simplest way to maintain graphicsisto set the form or picture box's
AutoRedraw property to True. Inthis case, Visual Basic aways maintains a copy of
graphics output in memory (creates persistent graphics). Another way to maintain
drawn graphics is (with AutoRedraw set to False) to put all graphics commandsin the
form or picture box's Paint event. This event is called whenever an obscured object
becomes unobscured. There are advantages and disadvantages to both approaches
(beyond the scope of discussion here). For now, we will assume our forms won't get
obscured and, hence, beg off the question of persistent graphics and using the
AutoRedraw property and/or Paint event.

Database Access and Management 8-224

All graphics methods described here will use the default coor dinate system:

(0, 0) _
\l ScaleWidith |

Note thex (horizontal) coordinate runs from left to right, starting at 0 and extending
to Scalewidth - 1. They (vertical) coordinate goes from top to botom, starting at O
and ending at ScaleHeight - 1. Pointsin this coordinate system will always be
referred to by a Cartesian pair, (x,y). Later, we will see how we can use any
coordinate system we want.

ScaleWidth and ScaleHeight are object properties representing the “ graphics’
dimensions of an object. Due to border space, they are not the same as the Width and

Height properties. For all measurements in twips (default coordinates), ScaleWidth is
less than Width and ScaleHeight is less than Height. That is, we can’t draw to all
points on the form.

PSet Method:

To set asingle point in a graphic object (form or picture box) to a particular color, use
the PSet method. We usually do this to designate a starting point for other graphics
methods. The syntax is:

ObjectName.PSet (X, y), Color

where ObjectName is the object name, (X, y) is the selected point, and Color isthe
point color (discussed in the next section). If the ObjectName is omitted, the current
form is assumed to be the object. If Color is omitted, the object's For eColor property

establishes the color. PSet is usually used to initialize some further drawing process.

Database Access and Management 8-225

Pset Method Example:

Thisform has a ScaleWidth of 3975 (Width 4095) and a ScaleHeight of 2400 (Height
2805). The command:

PSet (1000, 500)

will have the result:

4095 |
L————————————— 3975 !
w Forml =] 3 o B
(1000, 500) —
2805
2400

The marked point (in color ForeColor, black in this case) is pointed to by the
Cartesian coordinate (1000, 500) - this marking, of course, does not appear on the
form. If you wart to try this example, and the other graphic methods, put the code in
the Form_Click event. Run the project and click on the form to see the results
(necessary because of the AutoRedraw problem).

CurrentX and CurrentY':

After each drawing operation, the coordinate of the last point drawn to is maintained
in two Visual Basic system variables, CurrentX and CurrentY. Thisway we
always know where the next drawing operation will begin. We can also change the
values of these variables to move this last point. For example, the code:

CurrentX = 1000
CurrentY =500

IS equivalent to:

PSet(1000, 500)

Database Access and Management 8-226

Line Method:

The Line method is very versatile. We can use it to draw line segments, boxes, and
filled boxes. To draw aline, the syntax is:

ObjectName.Line (x1, y1) - (x2, y2), Color
where ObjectName is the object name, (x1, y1) the starting coordinate, (x2, y2) the
ending coordinate, and Color the line color. Like PSet, if ObjectName is omitted,
drawing is done to the current form and, if Color is omitted, the object’s ForeColor
property is used.
To draw aline from (CurrentX, CurrentY) to (x2, y2), use:
ObjectName.Line - (x2, y2), Color
There is no need to specify the start point since CurrentX and CurrentY are known.
To draw abox bounded by opposite corners (x1, y1) and (x2, y2), use:
ObjectName.Line (x1, y1) - (x2, y2), Color, B

and to fill that box (using the current FillPattern), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, BF

Database Access and Management 8-227

Line Method Examples:
Using the previous example form, the commands:

Line (1000, 500) - (3000, 2000)
Line - (3000, 1000)

draws these line segments:

w Forml Mi=] B

(1000, 500)
\ |~ (3000, 1000)

1 (3000, 2000)

The command:
Line (1000, 500) - (3000, 2000), , B

draws this box (note two commas after the second coordinate - no color is specified):

W Forml =] E3

(1000, 500) \

1 (3000,2000)

Database Access and Management 8-228

Circle Method:
The Circle method can be used to draw circles, ellipses, arcs, and pie slices. Well
only look at drawing circles - look at ont line help for other drawing modes. The
syntax is.

ObjectName.Circle (x, y), r, Color
This command will draw a circle with center (x, y) and radius r, usng Color.
Circle Example:
With the same example form, the command:

Circle (2000, 1000), 800

produces the result:

w Forml M=l E3

\800

(2000, 1000)

Print Method:

Another method used to 'draw’ to a form or picture box is the Print method. Yes, for
these objects, printed text is drawn to the form. The syntax is:

ObjectName.Print [information to print]

Here the printed information can be variables, text, or some combination. If no object
name is provided, printing is to the current form.

Information will print beginning at the object's CurrentX and CurrentY vaue. The
color used is specified by the object's ForeColor property and the font is specified by

the object's Font characteristics.

Database Access and Management 8-229

Print Method Example:

The code (can’'t be in the Form_L oad procedure because of that pesky AutoRedraw
property):

CurrentX=200

CurrentY =200

Print "Here is the line of text"

will produce this result (I’ ve used a large font):

w. Forml M=l E

Here is the line of text

Cls Method:
To clear the graphics drawn to an object, use the Cls method. The syntax is:

ObjectName.Cls

If no object name is given, the current form is cleared. Recall Cls only clears the lowest
of the three display layers. This is where graphics methods draw.

For each graphic method, line widths, fill patterns, and other grgphics features can be
controlled via other object properties. Consult ortline help for further information.

Database Access and Management 8-230

Using Colors

Notice that al the graphics methods can use a Color argument. If that argument is
omitted, the ForeColor property isused. Color isactually ahexadecimal (long
integer) representation of color - ook in the Properties Window at some of the values
of color for various object properties. So, one way to get color valuesisto cut and
paste values from the Properties Window. There are other ways, though.

Symbolic Constants:

Visual Basic offers eight symbolic constants (see Appendix |) to represent some
basic colors. Any of these constants can be used as a Color argument.

Constant Value Color
vbBlack 0x0 Black
vbRed OxFF Red
vbGreen OxFFO0 Green
vbY dlow OxFFFF Yellow
vbBlue OxFF0000 Blue
vbMagenta OxFFOOFF Magenta
vbCyan OxFFFFO0 Cyan
vbWhite OXFFFFFF White

QBCaolor Function:

For Microsoft QBasic, GW -Basic and QuickBasic programmers, Visua Basic
replicates the sixteen most used colors with the QBColor function. The color is
specified by QBColor(Index), where the colors corresponding to the Index are:

Index Color Index Color

0 Black 8 Gray

1 Blue 9 Light blue

2 Green 10 Light green

3 Cyan 11 Light cyan

4 Red 12 Light red

5 Magenta 13 Light magenta

6 Brown 14 Yellow

7 White 15 Light (bright) white

Database Access and Management 8-231

RGB Function:

The RGB function can be used to produce one of 2%* (over 16 million) colors! The
syntax for using RGB to specify the color property is:

RGB(Red, Green, Blue)

where Red, Green, and Blue are integer measures of intensity of the corresponding
primary colors. These measures can range from O (least intensity) to 255 (greatest
intensity). For example, RGB(255, 255, 0) will produce yellow.

Any of these four representations of color can be used anytime your Visual Basic
code requires a color value.

Color Examples:
frmExample.BackColor = vbGreen

picExample.FillColor = QBColor(3)
|blExample.ForeColor = RGB(100, 100, 100)

Database Access and Management 8-232

Mouse Events

Related to graphics methods are mouse events. The mouseis a primary interface to
performing graphicsin Visual Basic. We've already used the mouse to Click and
DblIClick on objects. Here, we see how to recognize other mouse events to allow
drawing in forms and picture boxes.

MouseDown Evert:

TheMouseDown event procedure is triggered whenever a mouse button is pressed
while the mouse cursor is over an object. The form of this procedure is:

Sub ObjectName_MouseDown(Button As Integer, Shift As Integer, X As Single,

Y AsSingle)
End Sub
The arguments are:
Button Specifies which mouse button was pressed.
Shift Specifies state of Shift, Ctrl, and Alt keys.
X, Y Coordinate of mouse cursor when button was pressed.

Values for the Button argument are:

Symbolic Constant Value Description

vbL eftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.

Only one button press can be detected by the MouseDown event. Vaues for the Shift
argument are:

Symbolic Constant Value Description

vbShiftMask 1 Shift key is pressed.
vbCtrIMask 2 Ctrl key is pressed.
vbAItMask 4 Alt key is pressed.

The Shift argument can represent multiple key presses. For example, if Shift =5
(vbShiftMask + vbAItMask), both the Shift and Alt keys are being pressed when the

MouseDown event occurs.

Database Access and Management 8-233

MouseUp Event:

TheM ouseUp event is the opposite of the MouseDown event. It istriggered
whenever a previously pressed mouse button is released. The procedure outline is:

Sub ObjectName_MouseUp(Button As Integer, Shift As Integer, X AsSingle, Y
As Single)

End Sub

The arguments are:
Button Specifies which mouse button was rel eased.
Shift Specifies state of Shift, Ctrl, and Alt keys.
X, Y Coordinate of mouse cursor when button was released.

TheButton and Shift constants are the same as those for the MouseDown event.
MouseMove Event:

TheMouseM ove event is continuously triggered whenever the mouse is being
moved. The procedure outlineis:

Sub ObjectName_MouseMove(Button As Integer, Shift As Integer, X AsSingle,
Y AsSingle)

End Sub

The arguments are:
Button Specifies which mouse button(s), if any, are pressed.
Shift Specifies state of Shift, Ctrl, and Alt keys

X, Y Current coordinate of mouse cursor

Database Access and Management 8-234

TheButton and Shift constants are the same as those for the MouseDown event. A
difference here is that the Button argument can also represent multiple button presses
or no press at all. For example, if Button = 0, no button is pressed as the mouse is

moved. If Button = 3 (vbLeftButton + vbRightButton), both the left and right buttons
are pressed while the mouse is being moved.

Database Access and Management 8-235

Example 7-1
Blackboard

1. Start anew application. Here, we will build a blackboard we can scribble on with the
mouse (using colored ‘chalk’).

2. Set up asimple menu structure for your application using the Menu Editor. The
menu should be:

File
New

Exit

Properties for these menu items should be:

Caption Name

&File mnuFile

& New mnuFileNew
- mnuFileSep

E&xit mnuFileExit

3. Put apicture box and a single label box (will be used to set color) on the form. Set
the following properties:

Forml:
BorderStyle 1-Fixed Single
Caption Blackboard
Name frmDraw
Picturel
Name picDraw
Labell:
BorderStyle 1-Fixed Single
Caption [Blank]
Name IblColor

Database Access and Management 8-236

The form should look something like this:

w. Blackboard M= E
File

4. Now, copy and paste the label box (create a control array named IblColor) until there
are eight boxes on the form, lined up vertically under the original box. When done,
the form will look just as above, except there will be eight label boxes.

5. Typetheselinesin the general declarations area. DrawOn will be used to indicate
whether you are drawing or not.

Option Explicit
Di m DrawOn As Bool ean

Database Access and Management 8-237

6. Attach code to each procedure.

The Form_L oad procedure loads colors into each of the label boxes to allow choice of
drawing color. It aso setsthe BackColor to black and the ForeColor to Bright
White.

Private Sub Form Load()
"Load drawi ng colors into control array
Dim1 As |nteger
For | =0 To 7

| bl Col or(1).BackCol or = @BCol or (I + 8)
Next |
pi cDr aw. For eCol or
pi cDr aw. BackCol or
End Sub

@BCol or (15) * Bright Wite
@BCol or (0) * Bl ack

In the mnuFileNew_Click procedure, we check to see if the user really wants to start
over. If so, the picture box is cleared with the Cls method.

Private Sub mmuFi |l eNew O i ck()

"Make sure user wants to start over

Di m Response As I nteger

Response = MsgBox("Are you sure you want to start a new
drawi ng?", vbYesNo + vbQuestion, "New Draw ng")

| f Response = vbYes Then picDraw. O s

End Sub

In the mnuFileExit_Click procedure, make sure the user really wants to stop the
application.

Private Sub mmuFil eExit _Cick()

' Make sure user wants to quit

Di m Response As | nteger

Response = MsgBox("Are you sure you want to exit the
Bl ackboard?", vbYesNo + vbCritical + vbDefaul tButton2,
"Exit Bl ackboard")

| f Response = vbYes Then End

End Sub

Database Access and Management 8-238

When the left mouse button is clicked, drawing is initialized at the mouse cursor location
in the picDraw_M ouseDown procedure.

Private Sub picDraw_MuseDown(Button As Integer, Shift As
I nteger, X As Single, Y As Single)

' Drawi ng begins

If Button = vbLeftButton Then

DrawOn = True

pi cDraw. Current X = X
picDraw. CurrentY =Y
End If
End Sub

When drawing ends, the DrawOnswitch istoggled in picDraw_M ouseUp.

Private Sub picDraw MouseUp(Button As Integer, Shift As
Integer, X As Single, Y As Single)

" Drawi ng ends

If Button = vbLeftButton Then DrawOn = Fal se

End Sub

While mouse is being moved and DrawOn s True, draw linesin current color in the
picDraw_M ouseM ove procedure.

Private Sub picDr aw_MouseMve(Button As Integer, Shift As
Integer, X As Single, Y As Single)

"Drawi ng continues

I f DrawOn Then picDraw. Line -(X YY), picDraw ForeCol or

End Sub

Finally, when alabel box is clicked, the drawing color is changed in the IblColor _Click
procedure.

Private Sub | bl Col or_dick(lndex As |nteger)
' Make audi bl e tone and reset draw ng col or
Beep

pi cDraw. ForeCol or = | bl Col or (I ndex) . BackCol or
End Sub

7. Run the application. Click on the label boxes to change the color you draw with.
Fun, huh? Save the application.

Database Access and Management 8-239

8. A chalenge for those who like challenges. Add Openand Save options that allow
you to load and save pictures you draw. Suggested steps (may take awhile - |
suggest trying it outside of class):

A. Change the picture box property AutoRedrawto True. Thisis necessary
to save pictures. You will notice the drawing process slows down to
accommodate per sistent graphics.

B. Add the Open option. Write code that brings up a common dialog box to
get a filename to open (will be a.bmp file) and put that picture in the
picDraw.Picture property using the L oadPicture function.

C. Add the Save option. Again, add code to use a common dialog box to get
aproper filename. Use the SavePicture method to save the Image
property of the picDraw object. We save the Image property, not the
Picture property, since thisis where Visual Basic maintains the persistent
graphics.

D. Onelast change. The Cls method in the mnuFileNew_Click code will not
clear a picture loaded in via the Open code (has to do with using
AutoRedraw). So, replace the Cls statement with code that manually
erases the picture box. 1'd suggest using the BF option of the Line method
to smply fill the space with a box set equal to the BackColor (white). |
didn't say this would be easy.

Database Access and Management 8-240

Drag and Drop Events

Related to mouse events are drag and drop events. Thisis the process of using the
mouse to pick up some object on aform and move it to another location. We use
drag and drop al the timein Visua Basic design mode to locate objects on our
application form.

Drag and drop allows you to design a smple user interface where tasks can be
performed without commands, menus, or buttons. Drag and drop is very intuitive
and, at times, faster than other methods. Examples include dragging afile to another
folder or dragging a document to a printer queue.

Any Visua Basic object can be dragged and dropped, but we usually use picture and
image boxes. Theitem being dragged is called the sour ce object. The item being
dropped on (if there is any) is called the tar get.
Object Drag Properties:
If an object isto be dragged, two properties must be set:
DragMode Enables dragging of an object (turns off ability to
receive Click or MouseDown events). Usually use 1-
Automatic (vbAutomatic).
Draglcon Specifiesicon to display as object is being dragged.
As an object is being dragged, the object itself does not move, only the Draglcon. To

move the object, some additional code using the M ove method (discussed in a bit)
must be used.

DragDrop Event:

TheDragDrop event is triggered whenever the source object is dropped on the target
object. The procedure form is:

Sub ObjectName_DragDrop(Source As Control, X As Single, Y As Single)

End Sub
The arguments are:

Source Object being dragged.
X, Y Current mouse cursor coordinates.

Database Access and Management 8-241

DragOver Event:

TheDragOver event is triggered when the source object is dragged over
another object. Its procedure formis:

Private Sub ObjectName _DragOver(Source As Control, X As Single, Y
As Single, State As Integer)

End Sub

The first three arguments are the same as those for the DragDrop event. The State
argument tells the object where the source is. Its values are O-Entering (vbEnter), 1-
Leaving (vbL eave), 2-Over (vbOver).

Drag and Drop Methods:
Drag Starts or stops manual dragging (won't be addressed here -
we use Automatic dragging)
Move Used to move the source object, if desired.
Example

To move the source object to the location specified by coordinates X and Y, use:
Source.Move X, Y

The best way to illustrate the use of drag and drop is by example.

Database Access and Management 8-242

Example 7-2
L etter Disposal

1. WEell build asimple application of drag and drop where unneeded correspondenceis
dragged and dropped into atrash can. Start a new application. Place four image
boxes and a single command button on the form. Set these properties:

Forml:

BackColor White

BorderStyle 1-Fixed Single

Caption Letter Disposa

Name frmDispose
Command1l:

Caption & Reset

Name cmdReset
Imagel:

Name imgCan

Picture trashOl.ico

Stretch True
Imagez:

Name imgTrash

Picture trashOl.ico

Visble Fase
Image3:

Name imgBurn

Picture trash02b.ico

Visble Fdse
Image4:

Draglcon draglpg.ico

DragMode 1-Automatic

Name imgL etter

Picture mail06.ico

Stretch True

Database Access and Management 8-243

The form will look like this:

w. Letter Disposzal

-1 Imagel

- Image2

“Image3

Some explanation about the images on this form is needed. The letter image is the
control to be dragged and the trash can (at | magel location) is where it will be
dragged to. The additional images (the other trash can and burning can) are not
visible at run-time and are used to change the state of the trash can, when needed.
We could load these images from disk files at run-time, but it is much quicker to
place them on the form and hide them, then use them when required.

2. The code hereis minimal. The Form_DragDrop event smply moves the |etter
image if it is dropped on the form.

Private Sub Form DragDrop(Source As Control, X As Single, Y
As Si ngl e)

Source. Move X, Y

End Sub

3. TheimgCan_DragDropevent changes the trash can to a burning pyre if the letter is
dropped on it.

Private Sub ingCan_DragDrop(lndex As Integer, Source As
Control, X As Single, Y As Single)

"Burn mail and nmeke it di sappear

i mgCan. Picture = ingBurn. Picture

Source. Visible = Fal se

End Sub

Database Access and Management 8-244

4. ThecmdReset_Click event retur ns things to their original state.

Private Sub cndReset Click()
'"Reset to trash can picture

i nrgCan. Picture = ingTrash. Picture
i ngLetter.Visible = True

End Sub

5. Save and run the application. Notice how only the drag icon moves. Notice the |etter
moves orce it is dropped. Note, too, that the letter can be dropped anywhere. The
fire appears only when it is dropped in the trash.

Database Access and Management 8-245

Timer Tool and Delays

Many times, especialy in using graphics, we want to repeat certain operatiors at
regular intervals. The timer tool allows such repetition. The timer tool does not
appear on the form while the application is running.

Timer tools work in the background, only being invoked at time intervals you specify.
This is multi-tasking - nore than one thing is happening at atime.

Timer Properties.

Enabled Used to turn the timer on and off. When on, it
continues to operate until the Enabled property is set to
False

Interval Number of milliseconds between each invocation of the
Timer Evert.

Timer Events:
The timer tool only has one event, Timer. It hasthe form:

Sub TimerName_Timer()

End Sub
This is where you put code you want repeated every Interval seconds.

Timer Example:

To make the computer beep every second, no matter what else is going on, you add a
timer tool (named timExample) to the form and set the I nter val property to 1000.
That timer tool's event procedure is then:

Sub timExample_Timer()

Beep
End Sub

In complicated applications, many timer tools are often used to control numerous
simultaneous operations. With experience, you will learn the benefits and advantages
of using timer tools.

Database Access and Management 8-246

Simple Delays:

If you just want to use a ssimple delay in your Visual Basic application, you might
want to consider the Timer function. Thisis not related to the Timer tool. The
Timer function ssimply returns the number of seconds elapsed since midnight.

To use the Timer function for adelay of Delay seconds (the Timer function seems to
be accurate to about 0.1 seconds, at best), use this code segment:

Dim TimeNow As Single

TimeNéw =Timer
Do While Timer - TimeNow < Delay
Loop

One drawback to thiskind of coding is that the application cannot be interrupted
while in the Do loop. So, keep delays to small values.

Animation Techniques

One of the more fun things to do with Visual Basic programsis to create animated
graphics. Well look at a few simple animation techniques here. I'm sure you'll

come up with other ideas for animating your application.

One of the simplest animation effects is achieved by toggling between two images.
For example, you may have a picture of a stoplight with ared light. By quickly
changing this picture to one with a green light, we achieve a dynamic effect -
animation. Picture boxesand image boxes are used to achieve this effect.

Another approach to animation is to rotate through several pictures - each a slight
change in the previous picture - to obtain alonger animation. Thisisthe principle
motion pictures are based on - pictures are flashed by us at 24 frames per second and
our eyes are tricked into believing things are smoothly moving. Control arrays are
usually used to achieve this type of animation.

More elaborate effects can be achieved by moving an image while, at the same, time
changing the displayed picture. Effects such as alittle guy walking across the screen
are easily achieved. An object is moved using the M ove method. Y ou can do both
absolute and relative motion (using an object's L eft and T op properties).

Database Access and Management 8-247

For example, to move a picture box named picExample to the coordinate (100, 100),
use:

picExample.Move 100, 100
To move it 20 twips to the right and 50 twips down, use:

picExample.Move picExample.Left + 20, picExample.Top + 50

Quick Example: Simple Animation

1. Start anew application. Place three image boxes on the form. Set the following
properties:

Imagel:
Picture mail02a.ico
Visble Fase
Imagez:
Picture mail02b.ico
Visble Fase
Image3:
Picture mail02a.ico
Stretch True

Make Image3 larger than default size, using the *handles.’

A few words about what we're going to do. 1 magel holds a closed envelope, while
Image2 holds an opened one. These images are not visible - they will be selected for
display in Image3 (which isvisible) as Image3 is clicked. (Thisissimilar to hiding
things in the drag and drop example.) It will seem the envelope is being torn opened,
then repaired.

2. Attach the following code to the Image3_Click procedure.
Private Sub I mage3_dCick()

Static PicNum As | nteger
[f PicNum = 0 Then

| mage3. Picture = Inage2. Picture : PicNum= 1
El se

| mmge3. Picture = Imagel. Picture : PicNum= 0
End |f

End Sub

Database Access and Management 8-248

When the envelope is clicked, the image displayed in | mage3 is toggled (based on the
value of the static variable PicNum).

3. Runand save the application.

Quick Example: Animation with the Timer Tool

1. Inthis example, we cycle through four different images using timer controlled
animation. Start a new application. Put two image boxes, atimer tool, and a
command button on the form. Set these properties:

Imagel:
Picture trffcOl.ico
Vishle Fase

Now copy and paste this image box three times, so there are four elements in the
Imagel control array. Set the Picture properties of the other three elements to:

Imagel(1):

Picture trffc02.ico
Imagel(2):

Picture trffc03.ico
Imagel(3):

Picture trffcO4.ico
Imagez:

Picture trffcOl.ico

Stretch True
Command1l:

Caption Start/Stop
Timerl:

Enabled Fase

Interva 200

Database Access and Management 8-249

The form should resemble this:

w Forml [_ [O] x|

2. Attach this code to the Commandl1_Click procedure.

Private Sub Commandl_C i ck()
Ti mer 1. Enabl ed = Not (Ti mer 1. Enabl ed)
End Sub

The timer is turned on or off each time this code is invoked.

3. Attach this code to the Timer 1 Timer procedure.

Private Sub Tinmerl1 Tinmer()

Static PicNum As | nt eger

Pi cNum = PicNum + 1

[f PicNum > 3 Then PicNum = 0

| mage2. Picture = I magel(PicNum . Picture
End Sub

This code changes the image displayed in the | mage2 box, using the static variable
PicNum to keep track of what picture is next.

4. Save and run the application. Note how the timer tool and the four small icons do not
appear on the form at run-time. The traffic sign appears to be spinning, with the

display updated by the timer tool every 0.2 seconds (200 milliseconds).

5. You can make the sign ‘walk off’ ore side of the screen by adding this line after
setting the Picture property:

| mmge2. Move | mage2. Left + 150

Database Access and Management 8-250

Random Numbers (Revisited) and Games

Another fun thing to do with Visual Basic isto create games. Y ou can write games
that you play against the computer or against another opponent.

To introduce chaos and randomness in games, we use random numbers. Random
numbers are used to have the computer roll adie, spin aroulette wheel, deal a deck of
cards, and draw bingo numbers. Visual Basic develops random numbers using its
built-in random number generator.

Randomize Statement:

The random number generator in Visual Basic must be seeded. A Seed vaue
initializes the generator. The Randomize statement is used to do this:

Randomize Seed
If you use the same Seed each time you run your application, the same sequence of
random numbers will be generated. To insure you get different numbers every time
you use your application (preferred for games), use the Timer function to seed the
generator:

Randomize Timer

With this, you will always obtain a different sequence of random numbers, unless you
happen to run the application at exactly the same time each day.

Rnd Function:
The Visual Basic function Rnd returns a single precision, random number between 0
and 1 (actualy greater than or equal to 0 and lessthan 1). To produce random
integers (1) between Imin and Imax (again, what we usualy do in games), use the
formula:

[=Int((Imax - Imin + 1) * Rnd) + Imin
Rnd Example:
Toroll asix-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

Database Access and Management 8-251

Randomly Sorting N Integers

In many games, we have the need to randomly sort a number of integers. For
example, to shuffle a deck of cards, we sort the integers from 1 to 52. To randomly
sort the state names in a states/capitals game, we would randomize the values from 1
to 50.

Randomly sorting N integers is a common task. Hereis a‘self-documenting’ general
procedure that does that task. Calling arguments for the procedure are N (the largest
integer to be sorted) and an array, NArray, dimensioned to N elements. After calling
the routine N_Integer s, the N randomly sorted integers are returned in NArray. Note
the procedure randomizes the integers from 1 to N, not O to N - the zeroth array
element is ignored.

Private Sub N_Integers(N As Integer, Narray() As Integer)
'‘Randomly sorts N integers and puts results in Narray
Dim | AsInteger, JAs Integer, T As Integer
'Order al elementsinitially
For1 =1ToN: Narray(l) =1: Next |
‘Jis number of integers remaining
ForJ=Nto2 Step-1
[=Int(Rnd* J) +1

T = Narray(J)
Narray(J) = Narray(l)
Narray(l) =T

Next J

End Sub

Database Access and Management 8-252

Example 7-3

One-Buttoned Bandit

1. Start anew application. In thisexample, we will build a computer version of a ot
machine. We'll use random numbers and timers to display three random pictures.

Certain combinations of pictures win you points. Place two image boxes, two |abel
boxes, and two command buttons on the form.

2. Set the following properties:

Form1l:

BorderStyle 1-Fixed Single

Caption One-Buttoned Bandit

Name frmBandit
Command1l:

Caption & Spin It

Default True

Name cmdSpin
Command2:

Caption E&xit

Name cmdExit
Timerl:

Enabled Fase

Interva 100

Name timSpin
Timer2:

Enabled Fadse

Interval 2000

Name timDone
Labell:

Caption Bankroll

FontBold True

Fontltalic True

FontSize 14

Database Access and M anagement

8-253

Label2:
Alignment
AutoSize
BorderStyle
Caption
FontBold
FontSize
Name

Imagel:
Name
Picture
Visble

2-Center

True

1-Fixed Single
100

True

14

IbIBank

imgChoice
earth.ico
Fdse

Copy and paste this image box three times, creating a control element
(imgChoice) with four elementstotal. Set the Picture property of the

other three boxes.

Imagel(1):
Picture

Imagel(2):
Picture

Imagel(3):
Picture

Image2:
BorderStyle
Name
Stretch

Snow.ico

misc44.ico

face03.ico

1-Fixed single
imgBandit
True

Copy and paste this image box two times, creating a three element control array
(Image?). You don't have to change any properties of the newly created

image boxes.

Database Access and Management 8-254

When done, the form should look something like this:

w. One-Buttoned Bandit H=] E3

............ Image2
: : control
Imagel oy
control (visible)
array
(not

visible)

A few words on what we're doing. We will randomly fill the three large image
boxes by choosing from the four choices in the non-visible image boxes. One
timer (timSpin) will be used to flash pictures in the boxes. One timer
(timDone) will be used to time the entire process.

3. Typethe following lines in the general declarations area of your form's code
window. Bankroll is your winnings.

Option Explicit
Di m Bankrol |l As | nteger

4. Attach this code to the Form_L oad procedure.

Private Sub Form Load()

Random ze Ti mer

Bankrol | = Val (| bl Bank. Capti on)
End Sub

Here, we seed the random number generator and initialize your bankroll.

5. Attach the following code to the cmdExit_Click event.

Private Sub cnmdExit_dick()

MsgBox "You ended up with" + Str(Bankroll) + " points.",
vbOKOnly, "Ganme Over™

End

End Sub

When you exit, your final earnings are displayed in a message box.

Database Access and Management 8-255

6. Attach this code to the cmdSpin_Click event.

Private Sub cmdSpin_dick()

|f Bankroll = 0 Then
MsgBox "Qut of Cash!", vbOKOnly, "Gane Over™
End

End I f

Bankrol | = Bankroll - 1

| bl Bank. Caption
ti nSpi n. Enabl ed
ti mDone. Enabl ed
End Sub

Str(Bankroll)
True
True

Here, we first check to see if you're out of cash. If so, the game ends. If not, you are
charged 1 point and the timers are turned on.

7. Thisisthe code for the timSpin_Timer event.

Private Sub tinSpin_Timer()

i rgBandi t (0). Picture i rgChoi ce(Int(Rnd * 4)).Picture
i mgBandi t (1).Picture i rgChoi ce(Int(Rnd * 4)).Picture
i mgBandi t(2).Picture i mgChoi ce(Int(Rnd * 4)).Picture
End Sub

Every 0.1 seconds, the three visible image boxes are filled with a random image. This
gives theeffect of the spinning ot machine.

8. And, the code for thetimDone_Timer event. Thisevent istriggered after the bandit
spins for 2 seconds.

Private Sub tinDone_ Ti ner ()

Dim PO As Integer, P1 As Integer, P2 As Integer
Dim Wnni ngs As | nteger

Const FACE = 3

ti mSpi n. Enabl ed = Fal se

ti mDone. Enabl ed = Fal se

PO = Int(Rnd * 4)
PL = Int(Rnd * 4)
P2 = Int(Rnd * 4)

i rgBandi t (0). Picture
i mgBandit(1).Picture
i ngBandit(2).Picture

i mgChoi ce(PO). Picture
i mgChoi ce(P1). Picture
i rgChoi ce(P2).Picture

Database Access and M anagement

8-256

I f PO = FACE Then
Wnnings =1
If P1 = FACE Then
W nnings = 3
If P2 = FACE Then
W nni ngs = 10
End If
End | f
El self PO = P1 Then
Wnnings = 2

[f P1 = P2 Then Wnnings = 4
End If
Bankrol | = Bankroll + W nnings

| bl Bank. Capti on = Str(Bankroll)

End Sub

First, the timers are turned off. Final pictures are displayed in each position. Then, the

pictures are checked to see if you won anything.
9. Save and run the application. Seeif you can become wealthy.
10. If you have time, try these things.

A. Rather than display the three final pictures amost ssmultaneously, see if
you can stop each picture from spinning at a different time. You'll need a

few more Timer tools.

B. Add some graphics and/or printing to the form when you win. You'll need
to clear these graphics with each new spin - use the Cls method.

C. Seeif you can figure out the logic | used to specify winning. Seeif you
can show the one-buttoned bandit returns 95.3 percent of al the ‘'money’
put in the machine. Thisis higher than what Vegas machines return. But,
with truly random operation, Vegas is guaranteed their return. They can't

losel!

Database Access and Management 8-257

User-Defined Coordinates

Another major use for graphicsin Visual Basic is to generate plots of data. Line
charts, bar charts, and pie charts can all be easily generated.

Weusethe Line tool and Circle tool to generate charts. The difficult part of using
these tools is converting our data into the Visual Basic coordinate system. For
example, say we wanted to plot the four points given by:

RS
(6,13)

<K<K
I mn

Bk~

w

(2,7)
(5,11)

X X X X
TR TR
o O

(0,2—]

To draw such aplot, for each point, we would need to scale each (x, y) pair to fit within
the dimensions of the form specified by the ScaleWidth and ScaleHeight properties.
Thisis a straightforward, but tedious computation.

An easier solution liesin the ability to incorporate user-defined coordinatesin a
Visual Basic form. The simplest way to define such coordinates is with the Scale
method. The form for this method is:

ObjectName.Scale (x1, y1) - (X2, y2)

The point (x1, y1) represents the top left corner of the newly defined coordinate system,
while (x2, y2) represents the lower right corner. If ObjectName is omitted, the
scaling is associated with the current form.

Once the coordinate system has been redefined, all graphics methods must use
coordinates in the new system. To return to the default coordinates, use the Scale
method without any arguments.

Database Access and Management 8-258

Scale Example:

Say we wanted to plot the data from above. We would first define the following
coordinate system:

Scale (0, 13) - (6, 2)

This shows that x ranges from O (Ieft side of plot) to 6 (right side of plot), while y ranges
from 2 (bottom of plot) to 13 (top of plot). The graphics code to plot this function is
then:

Pset (0, 2)
Line- (2,7)
Line- (5, 11)
Line- (6, 13)

Note how much easier this is than would be converting each number pair to twips.

Simple Function Plotting (Line Charts)

Assume we have a function specified by a known number of (X, y) pairs. Assume N
points in two arrays dimensioned to N - 1: x(N - 1), and y(N - 1). Assume the points
are sorted in the order they are to be plotted. Can we set up a genera procedure to
plot these functions, that is create a line chart? Of course!

The processis:

1. Gothrough al of the points and find the minimum x value (Xmin) ,
maximum x value (Xmax), minimum y value (Y min) and the maximum y
value (Ymax). These will be used to define the coordinate system.
Extend each y extreme (Ymin and Y max) alittle bit - this avoids having a
plotted point ending up right on the plot border.

2. Define a coordinate system using Scale:

Scale (Xmin, Ymax) - (Xmax, Y min)

Ymax is used in the first coordinate because, recall, it defines the upper left
corner of the plot region.

Database Access and M anagement

8-259

3. Initialize the plotting procedure at the first point using PSet:
PSet (x(0), y(0))

4. Plot subsequent points with the Line procedure:

Line- (x(i), y(i))

Hereis agenera procedure that does this plotting using these steps. It can be
used as a basis for more elaborate plotting routines. The arguments are
ObjectName the name of the object (form or picture box) you are plotting on,
N the number of points, X the array of x points, and Y the array of y points.

Sub LineChart(ObjectName As Control, N As Integer, X() AsSingle, Y() As
Single)
Dim Xmin As Single, Xmax As Single
Dim Ymin As Single, Ymax As Single
Dim | As Integer
Xmin = X(0): Xmax = X(0)
Ymin=Y(0): Ymax = Y(0)
ForI=1ToN-1
If X(I) < Xmin Then Xmin = X(I)
If X(I) > Xmax Then Xmax = X(I)
If Y(I) < Ymin Then Ymin=Y(l)
If Y(1) > Ymax Then Ymax = Y(l)
Next |
Ymin=(1- 0.05* Sgn(Ymin)) * Ymin ‘ Extend Ymin by 5 percent
Ymax = (1+ 0.05* Sgn(Ymax)) * Ymax * Extend Y max by 5 percent
ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)
ObjectName.Cls
ObjectName.PSet (X(0), Y (0))
Forl=1ToN-1
ObjectName.Line - (X(1), Y (1))
Next |
End Sub

Database Access and Management 8-260

SimpleBar Charts

Here, we have asimilar situation, N pointsin arrays X(N - 1) and Y(N - 1). Canwe
draw abar chart using these points? The answer again is yes.

The procedure to develop a bar chart is similar to that for line charts:

1. Find the minimum x value (Xmin), the maximum x value (Xmax), the
minimum y value (Y min) and the maximum y value (Y max). Extend the
y extremes a bit.

2. Define a coordinate system using Scale:
Scale (Xmin, Ymax) - (Xmax, Y min)

3. For each point, draw a bar using the Line procedure;

Line (x(i), 0) - (x(i), y(i))

Here, we assume the bars go from O to the corresponding y value. You may want

to modify this. Y ou could aso add color and widen the bars by using the
DrawWidth property (the example uses blue bars).

Database Access and Management 8-261

Hereis agenera procedure that draws a bar chart. Note its similarity to the
line chart procedure. Modify it asyou wish. The arguments are ObjectName
the name of the object (form or picture box) you are plotting on, N the number
of points, X the array of x points, and Y the array of y points.

Sub BarChart(ObjectName As Control, N As Integer, X() As Single, Y() As Single)
Dim Xmin As Single, Xmax As Single
Dim Ymin As Single, Ymax As Single
Dim | As Integer
Xmin = X(0): Xmax = X(0)
Ymin=Y(0): Ymax = Y(0)
ForI=1ToN-1
If X(1) < Xmin Then Xmin = X(I)
If X(I) > Xmax Then Xmax = X(I)
If Y(I) <Ymin Then Ymin=Y(l)
If Y(1) >Ymax Then Ymax = Y(l)
Next |
Ymin=(1- 0.05* Sgn(Ymin)) * Ymin ‘ Extend Ymin by 5 percent
Ymax = (1+0.05* Sgn(Ymax)) * Ymax ‘ Extend Y max by 5 percent
ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)
ObjectName.Cls
ForI=0ToN-1
ObjectName.Line (X(1), 0) - (X(I), Y(1)), vbBlue
Next |
End Sub

Database Access and Management 8-262

Example 7-4

Line Chart and Bar Chart Application

1. Start anew application. Here, we'll use the general line chart and bar chart
procedures to plot a simple sine wave.

2. Put apicture box on aform. Set up this smple menu structure using the Menu
Editor:

Plot
Line Chart
Bar Chart
Spiral Chart

Exit

Properties for these menu items should be:

Caption Name

&Plot mnuPl ot

& Line Chart mnuPlotLine
& Bar Chart mnuPlotBar

& Spira Chart mnuPlotSpiral
- mnuPlotSep

E& xit mnuPl otExit

Other properties should be:

Form1:
BorderStyle 1-Fixed Single
Caption Plotting Examples
Name frmPlot

Picturel:
BackColor White

Name picPlot

Database Access and Management 8-263

The form should resemble this:

w. Plotting Examples M=l 3

3. Placethis code in the general declarations area. This makesthe x and y arrays and
the number of points global.

Option Explicit
Dim N As | nteger
Dim X(199) As Single
Dim Y(199) As Single
Dim YD(199) As Single

4. Attach this code to the Form_L oad procedure. This loads the arrays with the points
to plot.

Private Sub form Load()
Dim 1 As |Integer
Const PI = 3.14159

N = 200

For | =0 To N- 1

X(1) =1

Y(1) = Exp(-0.012 * 1) * Sin(Pl * 1 [/ 10)

YOD(I) = Exp(-0.012 *) * (Pl * Cos(PI * 1 / 10) / 10 -
0.01 * Sin(PIl * 1 / 10))

Next |

End Sub

5. Attach this code to the mnuPlotLine Click evert. This draws the line chart.
Private Sub mmuPl ot Li ne_Click()

Call LineChart(picPlot, N X)
End Sub

Database Access and Management 8-264

6. Attach this code to the mnuPlotBar_Click event. This draws the bar chart.

Private Sub muPIl ot Bar _C i ck()
Call BarChart(picPlot, N, X YY)
End Sub

7. Attach this code to the mnuPlotSpiral_Click event. This draws a nedt little spiral.
[Using the line chart, it plots the magnitude of the sine wave (Y array) on the x axis
and its derivative (YD array) on they axis, in case you are interested.

Private Sub muPl ot Spiral _Cick()

Call LineChart(picPlot, N, Y, YD
End Sub

8. And, code for the mnuPlotExit_Click event. This stops the application.
Private Sub muPl ot Exit _Click()

End
End Sub

9. Put the LineChart and Bar Chart procedures from these notes in your form as
genera procedures.

10. Findlly, save and run the application. You're ready to tackle any plotting job now.
11. These routines just call out for enhancements. Some things you might try.
A. Labd the plot axes using the Print method.

B. Draw grid lineson the plots. Use dotted or dashed lines at regular
intervals.

C. Put titling information on the axes and the plot.

D. Modify the line chart routine to allow plotting more than one function.
Use colors or different line styles to differentiate the lines. Add a legend

defining each plot.

E. Seeif you can figure out how to draw a pie chart. Use the Circle method to draw
the pie segments. Figure out how to fill these segments with different colors and
patterns. Label the pie segments.

Database Access and Management 8-265

Exercise 7-1

Blackjack

Develop an application that simulates the playing of the card game Blackjack. The idea
of Blackjack is to score higher than a Dealer’s hand without exceeding twenty-one.
Cards count their value, except face cards (jacks, queens, kings) count for ten, and aces
count for either one or eleven (your pick). If you beat the Dedler, you get 10 points. If
you get Blackjack (21 with just two cards) and beat the Dealer, you get 15 points.

The game starts by giving two cards (from a standard 52 card deck) to the Dealer (one
face down) and two cards to the player. The player decides whether to Hit (get another
card) or Stay. The player can choose as many extra cards as desired. |If the player
exceeds 21 before staying, it isaloss (-10 points). If the player does not exceed 21, it
becomes the dealer’ s turn. The Dealer add cards until 16 is exceeded. When this occurs,
if the dealer also exceeds 21 or if histotdl is less than the player’s, he loses. If the dedler
total is greater than the player total (and under 21), the dealer wins. If the dealer and
player have the same total, it is a Push (no points added or subtracted). There are lots of
other things you can do in Blackjack, but these simple rules should suffice here. The
cards should be reshuffled whenever there are fewer than fifteen (or so) cards remaining
in the deck.

Database Access and Management 8-266

My Solution(not atrivial problem):

Form:

IblResults [bIWinnings

wm. Blackjack Game

imgSuit

There are so many things here, | won't label them all. The button names are obvious.
The definition of the cardsis not so obvious. Each card is made up of three different
objects (each a control array). The card itself is a shape (shpDealer for dealer cards,
shpPlayer for player cards), the number on the card is alabel box (IblDealer for dealer
cards, IblPlayer for player cards), and the suit is an image box (imgDealer for dealer
cards, imgPlayer for player cards). There are six elements (one for each card) in each of
these control arrays, ranging from element O at the left to element 5 at the right. The zero

elements of the dealer card controls are obscured by shpBack (used to indicate a face
down card).

Database Access and Management 8-267

Properties:

Form frmBlackJack:
BackColor = & HOOFF8080& (Light Blue)
BorderStyle=1 - Fixed Single
Caption = Blackjack Game

CommandButton cmdDeal
Caption = &DEAL
FontName = M'S Sans Serif
FontSize= 13.5

CommandButton cmdExit:
Caption = E&xit

CommandButton cmdStay:
Caption = &STAY
FontName = M S Sans Serif
FontSize=13.5

CommandButton cmdHit:
Caption=&HIT
FontName = M S Sans Serif
FontSize=13.5

Image imgSuit:
Index = 3
Picture = misc37.ico
Visble=Fdse

Image imgSuit :
Index =2
Picture = misc36.ico
Visble=Fdse

Image imgSuit:
Index =1
Picture = misc35.ico
Visble=Fase

Image imgSuit:
Index =0
Picture = misc34.ico
Visble=Fase

Database Access and Management 8-268

Shape shpBack :
BackColor = & HOOFFOOFF& (Magenta)
BackStyle= 1- Opague
BorderWidth = 2
FillColor = & HOOOOFFFF& (Y ellow)
FillStyle=7 - Diagonal Cross
Shape = 4 - Rounded Rectangle

Label IblPlayer:
Alignment = 2 - Center
BackColor = & HOOFFFFFF&
Caption =10
FontName = M S Sans Serif
FontBold = True
FontSize = 18
ForeColor = & HOOC00000& (Blue)
Index =5,4,3,2,1,0

Image imgPlayer:
Picture = misc35.ico
Stretch = True
Index=5,4,3,2,1,0

Shape shpPlayer:
BackColor = & HOOFFFFFF& (White)
BackStyle =1 - Opague
BorderWidth = 2
Shape = 4 - Rounded Rectangle
Index =5,4,3,2,1,0

Labd IblDealer:
Alignment = 2 - Center
BackColor = & HOOFFFFFF&
Caption =10
FontName = M S Sans Serif
FontBold = True
FontSize = 18
ForeColor = & HOOC00000& (Blue)
Index=5,4,3,2,1,0

ImageimgDealer:
Picture = misc35.ico
Stretch = True
Index=5,4,3,2,1,0

Database Access and M anagement

8-269

Shape shpDealer:
BackColor = & HOOFFFFFF& (White)
BackStyle = 1 - Opaque
BorderWidth = 2
Shape = 4- Rounded Rectangle
Index=5,4,3,2,1,0

Label Label2:
BackColor = & HOOFF8080& (Light Blue)
Caption = Player:

FontName = MS Sans Serif
FontBold = True
FontSize= 18

Labe |IblResults:
Alignment = 2 - Center
BackColor = & HOO80FFFF& (Light Yellow)
BorderStyle=1 - Fixed Single
FontName = M S Sans Serif
FontSize = 18

Label Label3:
BackColor = & HOOFF8080& (Light Blue)
Caption =Won
FontName = M S Sans Serif
FontBold = True
FontSize = 18

Label IbIWinnings:
Alignment = 2 - Center
BackColor = & HOO80FFFF& (Light Yellow)
BorderStyle=1 - Fixed Single
Caption=0
FontName = M S Sans Serif
FontSize = 18

Database Access and Management 8-270

Code:
General Declarations:

Option Explicit

Di m CardNane(52) As String

Dim CardSuit(52) As Integer

Di m CardVal ue(52) As I|nteger

Dim Wnnings As Integer, CurrentCard As Integer

Dim Aces_Deal er As Integer, Aces_Player As Integer

Dim Score_Deal er As Integer, Score_ Player As I|nteger

Di m NumCar ds_Deal er As |Integer, NunCards_ Pl ayer As I|nteger

Add_Dealer General Procedure:

Sub Add_Deal er ()

Dim1 As |nteger

"Adds a card at index | to deal er hand

NuntCar ds_Deal er = NunCards_Dealer + 1

I = NunCards _Dealer - 1

| bl Deal er (1). Capti on = CardName(Current Car d)

i ngDeal er (1).Picture =

i mgSuit(CardSuit(CurrentCard)). Picture
Score_Deal er = Score_Deal er + CardVal ue(Current Card)
I f CardValue(CurrentCard) = 1 Then Aces_Deal er =
Aces Dealer + 1

CurrentCard = CurrentCard + 1

| bl Deal er(1).Visible = True
i mgDeal er(1).Visible = True
shpDeal er (1).Visible = True

End Sub

Add_Player General Procedure:

Sub Add_Pl ayer ()

Dim1 As |nteger

"Adds a card at index | to player hand
NuntCards_Pl ayer = NuntCards_Pl ayer + 1

I = NunCards_Player - 1

| bl Pl ayer (1).Caption = CardName(Current Card)

i mgPl ayer (1).Picture =

i mgSuit (CardSuit(CurrentCard)). Picture
Score_Player = Score_Pl ayer + CardVal ue(Current Card)
I f CardVal ue(CurrentCard) = 1 Then Aces_Pl ayer =
Aces_Pl ayer + 1

Database Access and Management 8-271

| bl Pl ayer(1).Visible = True
i mgPl ayer(1).Visible = True
shpPl ayer(1).Visible = True

CurrentCard = CurrentCard + 1
End Sub

Database Access and Management 8-272

End_Hand General Procedure:

Sub End_Hand(Msg As String, Change As |nteger)
shpBack. Vi si bl e = Fal se

| bl Resul ts. Capti on = Msg

"Hand has ended - update w nnings

W nni ngs = Wnni ngs + Change

| bl wi nni ngs. Capti on = Str (W nni ngs)
cndHi t. Enabl ed = Fal se

cndSt ay. Enabl ed = Fal se

cndDeal . Enabl ed = True

End Sub

New_Hand Genera Procedure:

Sub New Hand()

' Deal a new hand
Dim1 As |nteger
"Clear table of cards
For | =0 To 5

| bl Deal er (1).Visible = Fal se
i mgDeal er (1). Visible = Fal se
shpDeal er(1). Visible = Fal se
| bl Pl ayer (1).Visible = Fal se
i mgPl ayer (1).Visible = Fal se
shpPl ayer (1).Visible = Fal se

Next |

| bl Results. Caption = ""

cmdHi t . Enabl ed = True

cndSt ay. Enabl ed = True

cndDeal . Enabl ed = Fal se

If CurrentCard > 35 Then Call Shuffle Cards
'Get two deal er cards

Score_Dealer = 0: Aces Dealer = 0: NunCards_Dealer = 0
shpBack. Vi si bl e = True

Call Add_Deal er

Cal | Add_Deal er

"Get two player cards

Score_Player = 0: Aces_Player = 0: NunCards_Player = 0

Call Add_PI ayer

Call Add_PI ayer

' Check for blackjacks

If Score Dealer = 11 And Aces Dealer = 1 Then Score Deal er
=21

If Score_Player = 11 And Aces_Pl ayer
=21

1 Then Score_Pl ayer

Database Access and Management 8-273

If Score_Dealer = 21 And Score_Player = 21 Then
Call End_Hand("Two Bl ackj acks!", 0)

Exit Sub

El self Score Dealer = 21 Then
Call End_Hand("Deal er Bl ackjack!", -10)
Exit Sub

El self Score_Player = 21 Then
Call End_Hand("Pl ayer Bl ackjack!", 15)

Exit Sub
End |f
End Sub

N_Integers General Procedure:

Private Sub N Integers(N As Integer, Narray() As Integer)
"Randomy sorts N integers and puts results in Narray
DmI As Integer, J As Integer, T As Integer
"Order all elenments initially
For 1 =1 To N. Narray(l) = 1: Next |
"J is nunber of integers remaining
For J = Nto 2 Step -1
I =Int(Rnd * J) + 1
T = Narray(J)
Narray(J) = Narray(l)
Narray(l) =T
Next J
End Sub

Shuffle_Cards General Procedure:

Sub Shuffle_Cards()

"Shuffle a deck of cards. That is, randomy sort

"the integers froml to 52 and convert to cards.

"Cards 1-13 are the ace through king of hearts

"Cards 14-26 are the ace through king of clubs

"Cards 27-39 are the ace through king of dianonds

"Cards 40-52 are the ace through king of spades

"When done:

"The array elenent CardNanme(i) has the name of the ith card
"The array elenment CardSuit(i) is the index to the ith card
suite

"The array el enent CardValue(i) has the point value of the
ith card

Di m CardUsed(52) As Integer

DimJ As |nteger

Database Access and Management 8-274

Call N_.Integers(52, CardUsed())
For J = 1 to 52
Sel ect Case (CardUsed(J) - 1) Mud 13 + 1
Case 1
CardNane(J) = "A"
Cardval ue(J) 1
Case 2
CardNane(J) = "2"
Car dval ue(J)
Case 3
CardNane(J) = "3"
Cardval ue(J)
Case 4
CardNane(J) = "4"

Il
N

I
w

Cardval ue(J) = 4
Case 5

CardNane(J) = "5"

Cardvalue(J) =5
Case 6

CardNane(J) = "6"

Car dval ue(J) 6
Case 7

CardNanme(J) = "7"

Cardval ue(J) =7
Case 8

CardNane(J) = "8

Cardval ue(J) = 8
Case 9

CardNane(J) = "9"

Cardval ue(J)
Case 10

Car dNane(J) = "10"

Cardval ue(J) = 10
Case 11

CardNane(J) = "J"

Car dVal ue(J)
Case 12

CardNane(J) = "Q

I
©

1
=
o

Cardval ue(J) = 10
Case 13
CardNane(J) = "K'
CardVval ue(J) = 10
End Sel ect
CardSuit(J) = Int((CardUsed(J) - 1) / 13)
Next J

CurrentCard = 1
End Sub

Database Access and Management 8-275

cmdDeal Click Event:

Private Sub crmdDeal O ick()
Call New_Hand
End Sub

Database Access and Management 8-276

cmdExit Click Event:

Private Sub cmdExit_dick()
" Show final w nnings and quit
If Wnnings > 0 Then
MsgBox "You won" + Str(Wnnings) + " points!", vbOKOnly,
"Game Over"
El self Wnnings = 0 Then
MsgBox "You broke even.", vbOKOnly, "Gane Over®
El se
MsgBox "You lost" + Str(Abs(Wnnings)) + " points!",
vbOKOnly, "Gane Over"

End | f
End
End Sub

cmdHit Click Event:

Private Sub cndH t _C i ck()

"Add a card if player requests

Call Add_PlI ayer

I f Score_Player > 21 Then
Call End_Hand("Pl ayer Busts!", -10)
Exit Sub

End If

[f NuntCards_Player = 6 Then
cndHi t . Enabl ed = Fal se
Call cmdStay_dick

Exit Sub
End |f
End Sub

cmdStay Click Event:

Private Sub cnmdStay_d i ck()
Di m ScoreTenp As Integer, AcesTenp As Integer
" Check for aces in player hand and adj ust score
"to highest possible
cnmdHi t. Enabl ed = Fal se
cnmdSt ay. Enabl ed = Fal se
If Aces_Player <> 0 Then
Do
Score_Pl ayer = Score_Player + 10
Aces Pl ayer = Aces_Player - 1
Loop Until Aces Player = 0 Or Score_ Player > 21

Database Access and M anagement

8-277

If Score_ Player > 21 Then Score_ Pl ayer = Score_ Pl ayer -

10
End |f
"Uncover deal er face down card and play deal er hand
shpBack. Vi si bl e = Fal se
Next Tur n:
ScoreTenp = Score_Deal er: AcesTenp = Aces_Deal er
' Check for aces and adjust score
If AcesTenp <> 0 Then
Do
ScoreTenp = ScoreTenp + 10
AcesTenp = AcesTenmp - 1
Loop Until AcesTenp = 0 O ScoreTenmp > 21
| f ScoreTenp > 21 Then ScoreTenp = ScoreTenp - 10
End If
"Check if deal er won
If ScoreTenp > 16 Then
| f ScoreTenp > Score_Player Then
Call End_Hand("Deal er Wns!", -10)
Exit Sub
El self ScoreTenp = Score_Pl ayer Then
Call End_Hand("It's a Push!", 0)
Exit Sub
El se
Call End_Hand("Pl ayer Wns!", 10)
Exit Sub
End | f
End If
"If six cards shown and deal er hasn't won, player w ns
I f NunCards_Deal er = 6 Then
Call End_Hand("Pl ayer Wns!", 10)
Exit Sub
End If
"See if hit is needed
If ScoreTenp < 17 Then Call Add_Deal er
If Score_Dealer > 21 Then
Call End_Hand("Deal er Busts!", 10)
Exit Sub
End |f
GoTo Next Turn
End Sub

Form_Load Event:

Private Sub Form Load()

' Seed random nunber generator, shuffle cards, deal new hand

Database Access and Management 8-278

Random ze Ti ner
Call Shuffle_Cards
Call New Hand

End Sub

Database Access and Management 8-279

Exercise 7-2

Information Tracking Plotting

Add plotting capabilities to the informationtracker you developed in Class 6. Plot
whatever information you stored versus the date. Use aline or bar chart.

My Solution:

Form (like form in Homework 6, with a picture box and Plot menu item added):

¥ Weight Program =] E3
e
' Date Weight
| | -
=l
| s Fite
Ccecocceooscasccacescacoscncos &
picPlot — ;- - -
New Properties.
Form frmWeight:
FontName = M S Sans Serif
FontSize = 10

PictureBox picPlot :

BackColor = & HOOFFFFFF& (White)
DrawWidth = 2

Menu mnuFilePlot:
Caption = &Plot

Database Access and M anagement

8-280

New Code:

mnuFilePlot Click Event:

Private Sub mmukFil

Di m X(100) As Integer,

Dim 1 As Integer

Dim Xm n As | nteger,
Dim Ym n As | nteger,

ePl ot _dick()
Y(100) As Integer

Xmax As | nteger
Ymax As | nteger

Dim Legend As String
Xmn = 0: Xmax = 0
Ym n = Val (Weights(1)): Ymax = Ymin
For I =1 To Nunm\W s

X(l') = DateDi ff("d", Dates(1l), Dates(l))

Y(1) = Val (Weights(l))

If X(1) < Xmn Then Xmn = X(I)

[f X(1) > Xmax Then Xmax = X(1)

If Y(I) < Ymn Then Ymn = Y(I)

If Y(I) > Ymax Then Ymax = Y(I)
Next |
Xmn = Xmn - 1. Xmax = Xmax + 1
Ymn = (1 - 0.05* Sgn(Ymn)) * Ymn
Ymax = (1 + 0.05 * Sgn(Ymax)) * Ynmax

pi cpl ot. Scal e (Xm
Cs

n, Ymax)- (Xmax, Ym n)

picplot.Cs
For I = 1 To NumW s
picplot.Line (X(I), Ymn)-(X(1), Y(I)), @BColor(1)
Next |
Legend = Str(Ymax)

Current X = picpl ot
CurrentY = picpl ot
Print Legend
Legend = Str(Ym n)
Current X = picpl ot
CurrentY = picpl ot
Text Hei ght (Legend)
Print Legend

End Sub

.Left - Text Wdth(Legend)
.Top - 0.5 * Text Hei ght (Legend)

.Left - Text Wdth(Legend)
.Top + picplot.Height - 0.5 *

Database Access and Management 8-281

This page intentionally not left blank. |

Learn Visual Basic 6.0

8. Database Access and M anagement

Review and Preview

In past classes, we' ve seen the power of the built-in Visual Basic tools. In this class,
we look at one of the more powerful tools, the Data Control. Using this tool, in
conjunction with associated ‘data-aware’ tools, allows us to access and manage
databases. We only introduce the ideas of database access and management - these
topics aone could easily take up aten week course.

A magjor change in Visua Basic, with the introduction of Version 6.0, isin its
database management tools. New tools based on ActiveX Data Object (ADO)
technology have been developed. These new tools will eventually replace the older
database tools, called DAO (Data Access Object) tools. We will only discuss the
ADO tools. Microsoft still includes the DAO tools for backward compatibility. You
might want to study these on your own, if desired.

Database Structure and Terminology

Database Access and Management 8-282

In smplest terms, a databaseis a collection of information. This collection is stored
in well-defined tables, or matrices.

The rows in a database table are used to describe similar items. The rows are referred
to as database records. In general, no two rows in a database table will be alike.

Thecolumns in a database table provide characteristics of the records. These
characteristics are called database fields. Each field contains one specific piece of
information. In defining a database field, you specify the data type, assign alength,
and describe other attributes.

Database Access and Management 8-283

Here is a simple database example:

Field
1
1D No Name Date of Birth Height Weight
1 |BobJones 01/04/58 Iz 170
2 |Mary Rodgers 11/22/61 & 125] Record
3 [{SueWilliams 06/11/57 (3] 130

Table

In this database table, each record represents asingle individual. The fields
(descriptors of the individuals) include an identification number (ID No), Name, Date
of Birth, Height, and Weight.

Most databases use indexes to allow faster access to the information in the database.
Indexes are sorted lists that point to a particular row in atable. In the example just
seen, the I D No field could be used as an index.

A database using asingle table is called aflat database. Most databases are made up
of many tables. When using multiple tables within a database, these tables must have
some common fields to allow cross-referencing of the tables. The referral of one
table to another via a common field is called a relation Such groupings of tables are
caled relational databases.

In our first example, we will use a sample database that comes with Visual Basic.
Thisdatabase (BIBL10.MDB) isfound in the main Visual Basic directory (try
c:\Program Files\Microsoft Visual Studio\VB98). It is a database of books about
computers. Let'slook at itsrelationa structure. The BIBLIO.MDB database is made
up of four tables:

Authors Table (6246 Records, 3 Fields)

Au_ID Author Year Born

Database Access and M anagement

8-284

Publishers Table (727 Records, 10 Fields)

PublD Name Company Fax Comments
Title Author Table (16056 Records, 2 Fields)

ISBN Au_ID
Titles Table (8569 Records, 8 Fields)

Title Year Pub ISBN PublD Comments

The Authors table consists of author idertification numbers, the author’s name, and

the year born. The Publishers table has information regarding book publishers.

Some of the fields include an identification number, the publisher name, and pertinent

phone numbers. The Title Author table correlates a book’s ISBN (a universal

number assigned to books) with an author’ s identification number. And, the Titles
table has severa fields describing each individua book, including title, ISBN, and

publisher identification.

Database Access and Management 8-285

Note each table has two types of information: sour ce dataand relational data.
Source data is actual information, such as titles and author names. Relational data are
references to data in other tables, such as Au_ID and PublD. Inthe Authors,
Publishers and Title Author tables the first column is used as the table index. Inthe
Titles table, the ISBN value is theindex.

Using the relational data in the four tables, we should be able to obtain a complete
description of any book title in the database. Let’slook at one example:

Titles Publishers
Title |SBN PublD PublD Publisher
Step-by-step dBase IV 0-0280095-2-5 2 52 | McGraw-Hill
Title Author Authors
I1SBN Au_ID Au_ID Author

0-02800952-5 | 171 171 | Wraye, Toby

Database Access and Management 8-286

Here, the book in the Titles table, entitled “ Step-by-step dBase IV,” has an ISBN of
0-0280095-2-5 and a PublD of 52. Taking the PublD into the Publishers table,
determines the book is published by McGrawHill and also allows us to access all
other information concerning the publisher. Using the ISBN in the Title Author
table provides us with the author identification (Au_ID) of 171, which, when used in
the Authors table, tells us the book’ s author is Toby Wraye.

We can form aternate tables from a database’ s inherent tables. Suchvirtual tables
or logical views, are made using queries of the database. A query issimply a request
for information from the database tables. As an example with the BIBLIO.MDB
database, using pre-defined query languages, we could ‘ask’ the database to form a
table of all authors and books published after 1992, or provide all author names
starting with B. We'll ook briefly at queries.

Database Access and Management 8-287

Keeping track of al the information in a database is handled by a database
management system (DBMS). They are used to create and maintain databases.
Examples of commercial DBMS programs are Microsoft Access, Microsoft FoxPro,
Borland Paradox, Borland dBase, and Claris FileMaker. We can also use Visual
Basic to develop aDBMS. Visual Basic shares the same ‘engine’ used by Microsoft
Access, known as the Jet engine. In this class, we will see how to use Visual Basic to
access data, display data, and perform some elementary management operations.

Database Access and Management 8-288

ADO Data Control

e

The ADO (ActiveX Data Object) data control is the primary interface between a
Visual Basic application and a database. It can be used without writing any code at
al! Or, it can be a central part of a complex database management system. Thisicon
may not appear in your Visua Basic toolbox. If it doesn't, select Project from the
main menu, then click Components. The Components window will appear. Select
Microsoft ADO Data Control, then click OK. The control will be added to your
tool box.

As mentioned in Review and Preview, previous versions of Visual Basic used another
data control. That control is still included with Visual Basic 6.0 (for backward

compatibility) and has as its icon:

Make sure you are not using this data control for the work in this class. This control is
suitable for small databases. You might like to study it on your own.

The data control (or tool) can access databases created by several other programs
besides Visual Basic (or Microsoft Access). Some other formats supported include
Btrieve, dBase, FoxPro, and Paradox databases.

The data control can be used to perform the following tasks:

Connect to a database.

Open a specified database table.

Create a virtual table based on a database query.

Pass database fields to other Visua Basic tools, for display or editing.
Such tools are bound tools (controls), or data aware.

Add new records or update a database.

Trap any errors that may occur while accessing data.

Close the database.

PODNPE

No O

Database Access and Management 8-289

Data Control Properties:

Align Determines where data control is displayed.

Caption Phrase displayed on the data control.

ConnectionString ~ Contains the information used to establish a
connection to a database.

LockType Indicates the type of locks placed on records during
editing (default setting makes databases read-only).

Recor dset A set of records defined by a data control’ s
ConnectionString and RecordSource properties.
Run-time only.

RecordSource Determines the table (or virtual table) the data

control is attached to.

Asarule, you need one data control for every database table, or virtua table, you
need access to. One row of atableis accessible to each data control at any one time.
Thisisreferred to asthe current record.

When a data control is placed on aform, it appears with the assigned caption and four
arrow buttons:

) Moveto last row
Moveto first row

M| 4 | Caption b M

Moveto previous row Move to next row

The arrows are used to navigate through the table rows (records). Asindicated, the
buttons can be used to move to the beginning of the table, the end of the table, or
from record to record.

Database Access and Management 8-290

Data Links

After placing a data control on aform, you set the ConnectionString property. The
ADO data control can connect to a variety of database types. There are three ways to
connect to adatabase: using adata link, using an ODBC data source, or using a
connection string. In this class, we will look only at connection to a Microsoft
Access database using adata link. A datalink isafile with a UDL extension that
contains information on database type.

If your database does not have a data link, you need to create one. This processis
best illustrated by example. We will be using the BIBLIO.MDB database in our first
example, so these steps show you how to create its data link:

1. Open Windows Explorer.

2. Open the folder where you will store your data link file.

3. Rightclick theright side of Explorer and choose New. From thelist of files,

sect Microsoft Data Link.

Rename the newly created file BIBL1O.UDL

Right-click thisnew UDL fileand click Properties.

Choosethe Provider tab and select Microsoft Jet 3.51 OLE DB Provider (an

Access database).

Click the Next button to g to the Connectiontab.

Click the elipsis and use the Select Access Database dialog box to choose the

BIBLIO.MDB filewhich isin the Visua Basic main folder. Click Open.

9. Click Test Connection. Then, click OK (assuming it passed). The UDL fileis
now created and can be assigned to ConnectionString, using the steps bel ow.

o 0k

® N

If adatalink has been created and exists for your database, click the ellipsis that
appears next to the ConnectionString property. Choose Use Data Link File. Then,
click Browseand find the file. Click Open. The datalink is now assigned to the
property. Click OK.

Database Access and Management 8-291

Assigning Tables

Once the ADO data control is connected to a database, we need to assign atable to
that control. Recall each data control is attached to a single table, whether it is atable
inherent to the database or the virtual table we discussed. Assigning atable is done
viathe Recor dSour ce property.

Tables are assigned by making queries of the database. The language used to make a
query is SQL (pronounced ‘sequel,” meaning structured query language). SQL isan
English like language that has evolved into the most widely used database query
language. You use SQL to formulate a question to ask of the database. The data base
‘answers’ that question with a new table of records and fields that match your criteria.

A tableis assigned by placing avalid SQL statement in the Recor dSour ce property
of adata control. We won't be learning any SQL here. There are many texts on the
subject - in fact, many of them are in the BIBLIO.MDB database we' ve been using.
Here we simply show you how to use SQL to have the data control ‘point’ to an
inherent database table.

Click on the ellipsis next to RecordSour ce in the property box. A Property Pages
dialog box will appear. In the box marked Command Text (SQL), type this line:

SELECT * FROM TableName

Thiswill select all fields (the * is awildcard) from atable named TableName in the
database. Click OK.

Setting the Recor dSour ce property also establishes the Recor dset property, which
we will see later is avery important property.

In summary, the relationship between the data control and its two primary properties
(ConnectionString and RecordSource) is:

Databasefile
| Database table ADO Data control
H \ 4
Current record

ConnectionString Recor dSour ce

Database Access and Management 8-292

Bound Data Tools

Most of the Visua Basic tools we' ve studied can be used as bound, or data-aware,
tools (or controls). That means, certain tool properties can betied to a particular
database field. To use a bound control, one or more data controls must be on the

form.

Some bound data tools are:

Label

Text Box

Check Box
Combo Box
List Box

Picture Box

Image Box

Can be used to provide display-only accessto a
specified text data field.

Can be used to provide read/write access to a
specified text datafield. Probably, the most widely
used data bound tool.

Used to provide read/wr ite access to a Boolean
field.

Can be used to provide read/write access to a text
data field.

Can be used to provide read/write access to a text
data field.

Used to display a graphica image from a bitmap,
icon, or metafile on your form. Provides read/write
access to aimage/binary data field.

Used to display a graphical image from a bitmap,
icon, or metafile on your form (uses fewer resources
than a picture box). Provides read/write accessto a
image/binary data field.

There are aso three ‘ custom’ data aware tools, the DataCombo (better than using the
bound combo box), DataL ist (better than the bound list box), and DataGrid tools,

we will look at later.

Bound Tool Properties:
DataChanged
DataField

DataSource

Indicates whether a value displayed in a bound
control has changed.

Specifies the name of afield in the table pointed to
by the respective data control.

Specifies which data control the control is bound to.

Database Access and Management 8-293

If the data in a data-aware control is changed and then the user changes focus to
another control or tool, the database will automatically be updated with the new data
(assuming LockType is set to alow an update).

To make using bound controls easy, follow these steps (in order listed) in placing the
controls on a form:

1. Draw the bound control on the same form as the data control to which it
will be bound.

2. Set the DataSour ce property. Click on the drop-down arrow to list the
data controls on your form. Choose one.

3. Setthe DataField property. Click on the drop-down arrow to list the
fields associated with the selected data control records. Make your choice.

4. Set all other properties, as required.
By following these steps in order, we avoid potential data access errors.

The relationships between the bound data control and the data control are:
Database table ADO Data control
é H

DataSour ce

DataField | (fieldin current record)

Bound data
control

Database Access and Management 8-294

Example 8-1

Accessing the Books Database

1. Start anew application. We'll develop aform where we can skim through the books
database, examining titles and ISBN values. Place an ADO data control, two label

boxes, and two text boxes on the form.

2. If you haven't done so, create a data link for the BIBLIO.MDB database following
the steps given under Data Links in these notes.

3. Set the following properties for each control. For the data control and the two text
boxes, make sure you set the properties in the order given.

Form1:
BorderStyle 1-Fixed Single
Caption Books Database
Name frmBooks

Adodcl:
Caption Book Titles
ConnectionString BIBLIO.UDL (in whatever folder you saved it in -

select, don’'t type)

RecordSource SELECT * FROM Titles
Name dtaTitles

Label1:
Caption Title

Label2:
Caption ISBN

Textl:
DataSource dtaTitles (select, don't type)
DataField Title (select, don't type)
Locked True
MultiLine True
Name txtTitle

Text [Blank]

Database Access and Management 8-295

Text2:
DataSource dtaTitles (select, don’t type)
DataField 1SBN (select, don’'t type)
Locked True
Name txtISBN
Text [Blank]

When done, the form will look something like this (try to space your controls as shown;
we'll use all the blank space as we continue with this example):

w. Books Databasze M= E
Title R =1 =1 1]
o e e 30| EEEREE

4. Savethe application. Run the application. Cycle through the various book titles
using the data control. Did you notice something? You didn’t have to write one line
of Visual Basic code! This indicates the power behind the data tool and bound tools.

Database Access and Management 8-296

Creating a Virtual Table

Many times, a database table has more information than we want to display. Or,
perhaps a table does not have all the information we want to display. For instance, in
Example 8- 1, seeing the Title and ISBN of a book is not red informative - we would
aso like to see the Author, but that information is not provided by the Titlestable. In
these cases, we can build our own virtual table, displaying only the information we
want the user to see.

We need to form a different SQL statement in the RecordSource property. Again, we
won't be learning SQL here. We will just give you the proper statement.

Quick Example: Forming a Virtual Table

1

We'll use the results of Example 8-1 to add the Author name to the form. Replace
the Recor dSour ce property of the dtaTitles control with the following SQL
Statement:

SELECT Author,Titles.ISBN,Title FROM Authors,[Title Author], Titles
WHERE Authors.Au_ID=[Title Author].Au_ID AND Titles.ISBN=[Title
Author].ISBN ORDER BY Author

This must be typed as a single line in the Command Text (SQL) area that appears when

you click the ellipsis by the RecordSource property. Make sureit istyped in exactly
as shown. Make sure there are spaces after ‘SELECT’, after
‘Author,TitlesISBN,Title', after ‘FROM’, after ‘ Authors,[Title Author], Titles , after
‘WHERE’, after * Authors.Au_ID=[Title Author].Au_ID’, after ‘AND’, after
‘Titles|SBN=[Title Author].ISBN’, and separating the final three words ‘ORDER
BY Author’. The program will tell you if you have a syntax error in the SQL
statement, but will give you little or no help in telling you what’ s wrong.

Here' s what this statement does; |t selects the Author, Titles.ISBN, and Title fields from

the Authors, Title Author, and Titles tables, where the respective Au_ID and ISBN
fields match. It then orders the resulting virtual table, using authors as an index.

Database Access and Management 8-297

2. Add alabel box and text box to the form, for displaying the author name. Set the
control properties.

Label3:
Caption Author
Textl:
DaaSource dtaTitles (select, don't type)
DataField Author (select, don’t type)
Locked True
Name txtAuthor
Text [Blank]

When done, the form should resemble this:

& Books Databasze Mi=] E3
. Authar RN
. Title N [=1 =1

i I Eook Tites ICTEEEEEEEES

3. Save, then rerun the application. The author’s names will now appear with the book
tittlesand ISBN values. Did you notice you still haven’t written any code? | know
you had to type out that long SQL statement, but that’s not code, technically
speaking. Notice how the books are now ordered based on an aphabetical listing of
authors’ last rames.

Database Access and Management 8-298

Finding Specific Records

In addition to using the data control to move through database records, we can write
Visual Basic code to accomplish the same, and other, tasks. Thisis referred to as
programmatic control. Infact, many times the data control Visible property is set
to False and al data manipulations are performed in code. We can also use
programmatic control to find certain records.

There are four methods used for moving in a database. These methods replicate the
capabilities of the four arrow buttons on the data control:

MoveFir st Move to the first record in the table.

M ovel ast Move to the last record in the table.

M oveNext Move to the next record (with respect to the current
record) in the table.

MovePrevious Move to the previous record (with respect to the

current record) in the table.

When moving about the database programmatically, we need to test the BOF
(beginning of file) and EOF (end of file) properties. The BOF property is True when
the current record is positioned before any data. The EOF property is True when the
current record has been positioned past the end of the data. If either property is True,
the current record isinvalid. If both properties are True, then there is no data in the
database table at all.

These properties, and the programmatic control methods, operate on the Recor dset
property of the data control. Hence, to move to the first record in atable attached to a
data control named dtaExample, the syntax is:

dtaExample.Recordset.MoveFirst
There is a method used for searching a database:

Find Find arecord that meets the specified search
criteria.

This method also operates on the Recor dset property and has three arguments we
will be concerned with. To use Find with a data control named dtaExample:

dtaExample.Recordset.Find Criteria,NumberSkipped,SearchDirection

Thesearch Criteriais a string expression like a WHERE clausein SQL. We won't
go into much detail on such criteria here. Simply put, the criteria describes what
particular records it wants to look at. For example, using our book database, if we
want to look at books with titles (the Title field) beginning with S, we would use:

Database Access and Management 8-299

Criteria=“Title>='S"”

Note the use of single quotes around the search letter. Single quotes are used to
enclose strings in Criteria statements. Three logical operators can be used: equals
(=), greater than (>), and less than (<).

The Number Skipped argument tells how many records to skip before beginning the
Find. This can be used to exclude the current record by setting NumberSkipped to 1.

The Sear chDir ection argument has two possible values: adSear chForward or
adSear chBackward. Note, in conjunction with the four Move methods, the
SearchDirection argument can be used to provide a variety of search types (search
from the top, search from the bottom, etc.)

If asearch fails to find a record that matches the criteria, the Recordset’s EOF or
BOF property is set to True (depending on search direction). Another property used
in searches is the Bookmark property. This alows you to save the current record
pointer in case you want to return to that position later. The example illustrates its
use.

Database Access and Management 8-300

Example 8-2

‘Rolodex’ Searching of the Books Database

1. We expand the book database application to allow searching for certain author names.
WEe'll use a‘rolodex’ approach where, by pressing a particular letter button, books
with author last names corresponding to that button appear on the form.

2. Wewant arow of buttons starting at ‘A’ and ending at ‘Z’ to appear on the lower part
of our form. Drawing each one individually would be a big pain, so we'll et Visual
Basic do al the work in the Form_L oad procedure. What we'll do is create one
command button (the *A’), make it a control array, and then dynamically create 25
new control array elements at run-time, filling each with a different letter. We'll even
let the code decide on proper spacing.

So, add one command button to the previous form. Name it cmdL etter and give it a

Captionof A. Setits|ndex property to O to make it a control array element. On my
form, things at this point look like this:

w. Books Database M= E3
- futhar DR
S Title N [~ -1 1| L
coons [ook Tites I REERERSS
ZﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁZZZ

Database Access and Management 8-301

3. Attach this code to the Form_L oad procedure. This code sets up the rolodex control
array and draws the additional 25 letter buttons on the form. (Sorry, you have to type
some code now!)

Private Sub Form Load()

Dim1l As |nteger

“Size buttons

cndLetter(0). Wdth = (frnBooks. Scal eWdth - 2*
cndLetter(0).Left) / 26

For I =1 To 25

Load cndLetter(l) ' Create new control array el ement

"Position new | etter next to previous one

cndLetter(l).Left = cndLetter(l - 1).Left +
cndLetter(0). Wdth

"Set caption and nmeke visible

cndLetter(1l). Caption = Chr(vbKeyA + I)

cndLetter(l).Visible = True

Next |

End Sub

At this point, even though all the code is not in place, you could run your application to
check how the letter buttons look. My finished form (at run-time) looks like this:

w. Book:z Databasze E3

Author

Adamz, Pat

Title ISBH

Fou pro 2.5 advanced developer's handbook, ID'I 33253414

14| 4 |Bock Titles 3 | Nl

a[e[clole|rla[n]t]s|«]t[u[no|r|afa[s|r|u]v]w]x]v|2]

Notice how Visual Basic adjusted the button widths to fit nicely on the form.

Database Access and Management 8-302

4. Attach this code to the cmdL etter _Click procedure. In this procedure, we use a
search criteriathat finds the first occurrence of an author name that begins with the
selected letter command button. If the search fails, the record displayed prior to the
search is retained (using the Bookmark property).

Private Sub cndLetter Cick(lndex As Integer)
D m BookMar k1 As Vari ant
"Mark your place in case no match is found
BookMar k1l = dtaTitl es. Recordset. Bookmar k
"Move to top of table to start search
dtaTi tl es. Recor dset. MoveFi r st
dtaTitl es. Recordset. Find "Author >="'" +
cmdLetter (Il ndex). Caption + """, 0, adSearchForward
If dtaTitl es. Recordset. EOF = True Then
dtaTi tl es. Recordset . Booknar k = BookMar k1
End I f
t xt Aut hor . Set Focus
End Sub

Let’slook at the search alittle closer. We move to the top of the database using
MoveFirst. Then, the Find is executed (notice the selected letter is surrounded by
single quotes). If EOF is True after the Find, it means we didn’t find a match to the
Criteriaand Bookmark is returned to its saved value.

5. Saveyour application. Test its operation. Note once the program finds the first
occurrence of an author name beginning with the selected letter (or next highest letter
if there is no author with the pressed letter), you can use the data control navigation
buttons (namely the right arrow button) to find other author names beginning with
that |etter.

Database Access and Management 8-303

Data M anager

At this point, we know how to use the data control and associated data bound tools to
access a database. The power of Visual Basic liesin its ability to manipulate records
in code. Such tasks as determining the values of particular fields, adding records,
deleting records, and moving from record to record are easily done. This allows usto
build a complete database management system (DBM S).

We don’'t want to change the example database, BIBLIO.MDB. Let’s create our own
database to change. Fortunately, Visua Basic helps us out here. The Visual Data
Manager is aVisua Basic Add-1n that allows the creation and management of
databases. It is smple to use and can create a database compatible with the Microsoft
Jet (or Access) database engine.

To examine an existing database using the Data Manager, follow these steps:

1. Sdect Visual Data M anager from Visual Basic’sAdd-1 n menu (you may
be asked if you want to add SY STEM.MDA to the .INI file - answer No.)

2. Sdlect Open Database from the Data Manager File menu.

3. Select the database type and name you want to examine.

Once the database is opened, you can do many things. Y ou can simply look through
the various tables. Y ou can search for particular records. Y ou can apply SQL
queries. You can add/delete records. The Data Manager isaDBMS initself. You
might try using the Data Manager to look through the BIBLIO.MDB example
database.

To create a new database, follow these steps:

1. Sdect Visual Data M anager from Visual Basic’sAdd-1 n menu (you may
be asked if you want to add SY STEM.MDA to the .INI file - answer No.)

2. Select New from the Data Manager File menu. Choose database type
(Microsoft Access, Version 7.0), then select a directory and enter a name
for your database file. Click OK.

3. The Database window will open. Right click the window and select New
Table. Inthe Name box, enter the name of your table. Then define the
table’ sfields, one at atime, by clicking Add Field, then entering afield
name, selecting a data type, and specifying the size of the field, if
required. Once the field is defined, click the OK button to add it to the
field box. Once al fields are defined, click the Build the Table button to
save your table.

Database Access and Management 8-304

Example 83

Phone Directory - Creating the Database

1. With this example, we begin the development of a ssimple phone directory. Inthe
directory, we will keep track of names and phone numbers. We'll be able to edit, add
and delete names and numbers from the directory. And, we'll be able to search the
directory for certain names. In thisfirst step, we'll establish the structure for the
database we'll use. The directory will use a single table, with three fields: Name,
Description, and Phone. Name will contain the name of the person or company,
Description will contain a descriptive phrase (if desired) of who the person or
company is, and Phone will hold the phone number.

2. Start the Data Manager. Use the previously defined steps to establish a rew database
(thisisaMicrosoft Access, Version 7.0 database). Use Phonel ist as a Name for
your database table. Define the three fields. Each should be a Text data type.
Assign asize of 40 to the Name and Descriptionfields, asize of 15 to the Phone
field. When all fields have been defined, the screen should look like this:

Tahle Structure B

Table Mame: |p|-..:.neList

Field List: Mame: |F‘hu:-ne

Mame .

ST Twpe: IText [T Fizedlenath
E_ Size: |15 ¥ Variablelength
CollatingOrder: |1|:|24 ™| Butalnctement

[allowZerolength

OrdinalPaosition: IU [Required

WalidationText: I

WalidationRule: I

Remove Field Defaulkyalue; |

Indey List: Mame:; |
" | Fritatsy I | Urigue I | Fareign
[T Reguired [0 Igmaretdl
Fields:
add Index Femove Indesx I

Build the Table Close |

Database Access and Management 8-305

When done with the field definitions, click Build the Table to save your new
table. You will be returned to the Database Tables window.

3. We're now ready to enter some data in our database. From the Database Tables
window, right click the PhoneL ist table and select Open. The following window
will appear:

¥ Dynaset:PhoneList
add Edit Delete Close
Sork Filter Move Find
Field Mame: Yalue (F4=Zoom)
flame: ||
Drescription: I
Phone: I
4| [»|BORMD

At this point, add severa (at least five - make them up or whatever) records to your
database. The stepsfor each record are: (1) click Add to add arecord, (2) fill in the
three fields (or, at least the Name and Phone fields), and (3) click Update to save the
contents.

Y ou can also Delete records and Find records, if desired. Y ou can move through
the records using the scroll bar at the bottom of the screen. When done
entering records, click Close to save your work. Select Exit from the Data

Manager File menu. Y our database has been created.

Database Access and Management 8-306

Database M anagement

The Data Manager is aversatile utility for creating and viewing databases. However,
its interface is not that pretty and its use is somewhat cumbersome. We would not
want to use it as a database management system(DBM §. Nor, would we expect
users of our programs to have the Data Mareger available for their use. The next step
in our development of our database skillsis to use Visual Basic to manage our
databases, that is develop a DBMS.

We will develop asimple DBMS. It will alow usto viewrecordsin an existing
database. We will be able to edit records, add records, and delete records. Such
advanced tasks as adding tables and fields to a database and creating a new database
can be done with Visual Basic, but are far beyond the scope of the discussion here.

To create our DBMS, we need to define a few more programmatic control methods
associated with the data control Recor dset property. These methods are:

AddNew A new record is added to the table. All fields are
set to Null and this record is made the current
record.

Delete The current record is deleted from the table. This

method must be immediately followed by one of the
Move methods because the current record is invalid
after a Delete.

Update Saves the current contents of all bound tools.

To edit an existing record, you ssmply display the record and make any required
changes. The LockType property should be set to adL ock Pessimistic (locks each
record as it is edited). Then, when you move off of that record, either with a
navigation button or through some other action, Visual Basic will automatically
update the record. If desired, or needed, you may invoke the Update method to force
an update (use LockType = asL ockOptimistic). For adata control named
dtaExample, the syntax for this statement is:

dtaExample.Recordset.Update

To add arecord to the database, we invoke the AddNew method. The syntax for our
example data control is:

dtaExample.Recordset. AddNew

This statement will blank out any bound data tools and move the current record to the
end of the database. At this point, you enter the new values. When you move off of
this record, the changes are automatically made to the database. Another way to
update the database with the changes is via the Update method.

Database Access and Management 8-307

After adding arecord to a database, you should invoke the Refr esh property of the
data control to insure proper sorting (established by RecordSource SQL statement) of
the new entry. The format is:

dtaExample.Refresh

To delete arecord from the database, make sure the record to delete is the current
record. Then, we usethe Delete method. The syntax for the example data control is:

dtaExample.Recordset.Delete

Once we execute a Delete, we must move (using one of the ‘Move methods) off of
the current record because it no longer exists and an error will occur if we don’'t
move. This gets particularly tricky if deleting the last record (check the EOF
property). If EOF is true, you must move to the top of the database (M oveFirst).

Y ou then must make sure there is a valid record there (check the BOF property). The
example code demonstrates proper movement.

Database Access and Management 8-308

Example 8-4

PhoneDirectory - Managing the Database

1. Before starting, make a copy of your phone database file using the Windows
Explorer. That way, in case we mess up, you still have a good copy. And, create a
datalink to the database. Here, we develop asimple DBMS for our phone number
database. We will be able to display individual records and edit them. And, we will
be able to add or delete records. Note thisis a simple system and many of the fancy
‘bells and whistles' (for example, asking if you really want to delete a record) that
should really be here are not. Adding such amenitiesis |eft as an exercise to the
student.

2. Load your last Books Database application (Example 8-2 - the one with the * Rolodex’
search). We will modify this application to fit the phone number DBMS. Resave
your form and project with different names. Add three command buttons to the upper

right corner of the form. Modify/set the following properties for each tool. For the
data control and text boxes, make sure you follow the order shown.

frmBooks (thisis the old name):
Caption Phone List
Name frmPhone

dtaTitles (thisis the old name):

Caption Phone Numbers
ConnectionString [your phone database data link] (select, don't type)
RecordSource SELECT * FROM PhonelList ORDER BY Name (the
ORDER keyword sorts the database by the given
field)
Name dtaPhone
LockType adL ockOptimistic
Labell:
Caption Description
Label2:
Caption Phone
Label3:

Caption Name

Database Access and Management 8-309

txtAuthor (thisisthe old name):

DataSource dtaPhone (select, don’t type)
DataField Name (select, don't type)
Locked Fdse
Name txtName
MaxLength 40
Tablndex 1
txtI SBN (thisisthe old name):
DataSource dtaPhone (select, don’t type)
DataField Phone (select, don't type)
Locked Fadse
Name txtPhone
MaxLength 15
Tabindex 3
txtTitle (thisisthe old name).
DataSource dtaPhone (select, don't type)
DataField Description (select, don’'t type)
Locked Fase
Name txtDesc
MaxLength 40
Tablndex 2
Command1:
Caption &Add
Name cmdAdd
Command2:
Caption & Save
Enabled Fdse
Name cmdSave
Command3:
Caption &Delete

Name cmdDelete

Database Access and Management 8-310

When done, my form looked like this:

w. Phone List Mi=]

. Mame DR
Add | Save Delete

Dezcription LUl Phone L

coon s [Prone Numbers I REERERSS

ZﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁZZZ

At this point, you can run your application and you should be able to navigate through
your phone database using the data control. Don’t try any other options, though. We
need to do some coding.

3. In Form_L oad replace the word frmBookswith frmPhone. Thiswill alow the
letter keys to be displayed properly.

4. InthecmdLetter Click procedure, replace all occurrences of the word dtaTitles
with dtaPhone. Replace al occurrences of Author with Name. The modified code
will be:

Private Sub cndLetter O ick(lndex As |nteger)
Di m BookMar k1l As Vari ant
"Mark your place in case no match is found
BookMar k1 = dt aPhone. Recordset . Bookmar k
dt aPhone. Recor dset . MoveFi r st
dt aPhone. Recordset. Find "Name >= """ +
cndLetter (I ndex). Caption + """
| f dt aPhone. Recordset. EOF = True Then
dt aPhone. Recor dset . Bookmar k = BookMar k1
End | f
t xt Name. Set Focus
End Sub

Database Access and Management 8-311

5. Attach this code to the cmdAdd_Click procedure. This code invokes the code
needed to add arecord to the database. The Add and Delete buttons are disabled.
Click the Save button when done adding a new record.

Private Sub cndAdd_C i ck()
cndAdd. Enabl ed = Fal se
cndSave. Enabl ed = True
cndDel et e. Enabl ed = Fal se
dt aPhone. Recor dset . AddNew
t xt Nanme. Set Focus

End Sub

6. Add thiscodeto the cmdSave Click procedure. When done entering a new record,
the command button status's are toggled, the Recordset updated, and the data control
Refresh method invoked to insure proper record sorting.

Private Sub cndSave dick()
dt aPhone. Recor dset . Updat e
dt aPhone. Ref resh

cndAdd. Enabl ed = True
cndSave. Enabl ed = Fal se
cndDel et e. Enabl ed = True

t xt Name. Set Focus

End Sub

7. Attach this code to the cmdDelete Click procedure. This deletes the current record
and moves to the next record. If we bump into the end of file, we need to check if
there are no records remaining. If no records remain in the table, we display a
message box. If records remain, we move around to the first record.

Private Sub cndDel ete Cick()
dt aPhone. Recordset. Del et e
dt aPhone. Recor dset . MbveNext
| f dt aPhone. Recordset. EOF = True Then
dt aPhone. Ref r esh
| f dtaPhone. Recordset. BOF = True Then
MsgBox "You nust add a record.”, vbOKOnly +
vbl nfor mation, "Enpty file"
Call cndAdd_dCick
El se
dt aPhone. Recor dset. MbveFi r st
End | f
End If
t xt Nanme. Set Focus
End Sub

Database Access and Management 8-312

8. Savethe application. Try running it. Add records, delete records, edit records. If
you're really adventurous, you could add a button that dials your phone (via modem)
for you! Look at the custom communications control.

Database Access and Management 8-313

Custom Data Awar e Controls

As mentioned earlier, there are three customdata aware tools, in addition to the
standard Visual Basic tools. the DatalL ist, DataCombo, and DataGrid ADO tools.
WEe'll present each of these, giving their suggested use, some properties and some
events. If theicons for these tools are not in the toolbox, select Project from the

main menu, then click Components. Select Microsoft Datal ist Controls 6.0
(OLEDB) and Microsoft DataGrid 6.0 (OL EDB) in the Components window.
Click OK - the controls will appear.

Like the data control, previous versions of Visual Basic used DAO versions of the
list, combo, and grid controls, named DBList, DBCombo, and DBGrid. Make sure
you are not using these tools.

Datalist Box:
=H

The first bound data custom tool isthe DataL ist Box. Thelist box isautomatically

filled with afield from a specified data control. Selections from the list box can then
be used to update another field from the same data control or, optionally, used to
update a field from another data control.

Some properties of the Datalist box are:

DataSour ce Name of data control that is updated by the
selection.

DataField Name of field updated in Recordset specified by
DataSource.

RowSour ce Name of data control used as source of itemsin list
box.

ListField Name of field in Recordset specified by RowSource
used to fill list box.

BoundColumn Name of field in Recordset specified by RowSource

to be passed to DataField, once selection is made.
Thisis usualy the same as ListField.

BoundText Text value of BoundColumn field. Thisisthe value
passed to DataField property.

Text Text value of selected item in list. Usually the same
as BoundText.

The most prevalent use of the Datalist box isto fill the list from the database, then
allow selections. The selection can be used to fill any tool on aform, whether it is
data aware or not.

Database Access and Management 8-314

Asaquick example, hereis a DataL ist box filled with the Title (ListField) field
from the dtaExample (RowSour ce) data control. The data control is bound to the
Titles tablein the BIBL10O.M DB database.

im. DatalLizt Example =] 3
dEAGE 1 - & Practical Guide ﬂ
The dBASE Programming Laniguage
dBASE Il Plus

[Databaze Management : Developing Application Systems Uzing Ora
Wordstar 4.0-6.0 Quick Reference Guide

Oracle Trggers and Stored Procedure Programming

Programming in Clipper

Inzide Macintosh

Orni Online D atabaze Directary

Structured C for Engineening and Technologe/Book and Diskette

An Introduction to Azsembly Language Programming for the Intel 208
Applied Calculus 'WWith Linear Pragramming @ For Business, Econarmic:
|nformation Systems Literacy and Software Productivity Toolz : Doz, "LI

4] 4| Titles PIN'

DataCombo Box:

CE

TheDataCombo Box is nearly identical to the DatalList box, hence we won't ook at
a separate set of properties. The only differences between the two toolsis that, with
the DataCombo box, the list portion appears as a drop-down box and the user is given
the opportunity to change the contents of the returned Text property.

DataGrid Tool:
FE

TheDataGridtool is, by far, the most useful of the custom data bound tools. It can
display an entire database table, referenced by a data control. The table can then be
edited asdesired.

The DataGrid control isin aclass by itself, when considering its capabilities. It is
essentially a separate, highly functional program. The only property we'll be
concerned with is the DataSour ce property, which, as always, identifies the table
associated with the respective data control. Refer to the Visual Basic Programmer’s
Guide and other references for complete details on using the DataGrid control.

Database Access and Management 8-315

As an example of the power of the DataGrid control, here’'s what is obtained by
simply setting the DataSour ce property to the dtaExample data control, which is
bound to the Titlestablein the BIBL10O.M DB database:

iw. DataGnd Example =] 3
Title 'ear Publisheqd ISBM =
dBASE Il : A Practical B 0-00238307-6-4 —
The dEASE Programmir) 1986 0-0038326-7-8 .
dBASE Il Plus 19387 0-00238337-8
[atabaze Management| 1389 0-0131985-2-1
Wordstar 4.0-6.0 Quick | 1330 0-0133656-1-4
Oracle Triggers and Sto) 1396 0-0134436-3-1
Programming in Clipper {1333 0-0201145-8-3
Inzide Maclntosh 13594 0-0207 406-7-3 :
Orani Online Databaze [1933 0-0207352-0-9 =

| 4 | d
4] 4| Titles 4 INl

At this point, we can scroll through the table and edit any values we choose. Any

changes are automatically reflected in the underlying database. Column widths can
be changed at run-time! Multiple row and column selections are possible! Like we

said, a very powerful tool.

Creating a Data Report

Once you have gone to al the trouble of developing and managing a database, it is
nice to have the ability to obtain printed or displayed information from your data.

The process of obtaining such information is known as creating a data report.

There are two steps to creating a data report. First, we need to create a Data

Environment. Thisis designed within Visual Basic and is used to tell the data report
what isin the database. Second, we create the Data Report itself. This, too, is done

within Visual Basic. The Data Environment and Data Report files then become part
of the Visual Basic project developed as a database management system.

The Visua Basic 6.0 data report capabilities are vast and using them is a detailed
process. The use of these capabilitiesis best demonstrated by example. We will look
at the rudiments of report creation by building a tabular report for our phone database.

Database Access and Management 8-316

Example 85

Phone Directory - Building a Data Report

We will build a data report that lists all the names and phone numbers in our phone
database. We will do this by first creating a Data Environment, then a Data Report. We
will then reopen the phone database management project and add data reporting
capabilities.

Creating a Data Environment

1

2.

Start a new Standard EXE project.

On the Project menu, click Add Data Environment. If thisitem isnot on the menu,
click Components. Click the Designers tab, and choose Data Environment and
click OK to add the designer to your menu.

We need to point to our database. 1n the Data Environment window, right-click the
Connectionl tab and select Properties Inthe Data Link Properties diaog box,
choose Microsoft Jet 3.51 OLE DB Provider. Click Next to get to the Connection
tab. Click the elipsis button. Find your phone database (mdb) file. Click OK to
close the dialog box.

We now tell the Data Environment what isin our database. Right-click the
Connectionl tab and click Rename. Change the name of the tab to Phone. Right-
click this newly named tab and click Add Command to create a Command1 tab.
Right-click this tab and choose Properties. Assign the following properties:

Command Name PhoneList
Connection Phone
DataBase Object Table
ObjectName PhoneL ist

Click OK. All thiswas needed just to connect the environment to our database.

Database Access and Management 8-317

6. Display the properties window and give the data environment a name property of
denPhone. Click File and Save denPhone As. Save the environment in an
appropriate folder. We will eventually add this file to our phone database
management system. At this point, my data environment window looks like this (I
expanded the PhoneL.ist tab by clicking the + sign):

% Projectl - denPhone (DataEnvironment) [W[=] E3

|[2] object(s) Y

Creating a Data Report

Once the Data Environment has been created, we can create a Data Report. We will drag
things out of the Data Environment onto a form created for the Data Report, so make sure
your Data Environment window is still available.

1. Onthe Project menu, click Add Data Report and one will be added to your project.
If thisitem is not on the menu, click Components. Click the Designers tab, and
choose Data Report and click OK to add the designer to your menu.

2. Set the following properties for the report:

Name rptPhone

Caption Phone Directory

DataSour ce denPhone (your phone data environment - choose, don’t
type)

DataM ember PhoneL.ist (the table name - choose don’t type)

3. Right-click the Data Report and click Retrieve Structure. This establishes areport
format based on the Data Environment.

4. Note there are five sections to the data report: a Report Header, a Page Header, a
Detail section, a Page Footer, and a Report Footer. The headers and footers contain
information you want printed in the report and on each page. To place information in
one of these regions, right-click the selected region, click Add Control, then choose
the control you wish to place. These controls are called data report controls and

Database Access and Management 8-318

properties are established just like you do for usual controls. Try adding some
headers.

5. The Detail section is used to layout the information you want printed for each record
in your database. We will place two field listings (Name, Phone) there. Click on the
Name tab in the Data Environment window and drag it to the Detail section of the
Data Report. Two items should appear: atext box Name and atext box Name
(PhoneList). Thefirst text box is heading information. Move this text box into the
Page Header section. The second text box is the actual value for Name from the
PhoneList table. Line this text box up under the Name header. Now, drag the Phone
tab from the Data Environment to the Data Report. Adjust the text boxes in the same
manner. Our datareport will have page headers Name and Phone. Under these
headers, these fields for each record in our database will be displayed. When done,
the form should look something like this:

|_IZI-|-|-|-1-|-|-|-2-|-|-|-4

Report Header (ReportHeader)

] T =

"Wty Phone Ditectony -+ |-+
Page Header (PageHeader)
IEName;.....|.........F'h|:|ne:.....
Detail (Phonelist_Detaily
EName.[F!hmneLis:t]. Phone[Phonelist]
Page Fooker (PageFooter)

|i||_

Report Fooker (ReportFooker)
|

4 | v

In thisform, I’ ve resized the labels a bit and added a Report Header. Also, make sure
you close up the Detail section to asingle line. Any space left in this section will be
inserted after each entry.

6. Click Fileand Save rptPhone As. Save the environment in an appropriate folder.
We will now reopen our phone database manager and attach this and the data
environment to that project and add capabilities to display the report.

Database Access and Management 8-319

Accessing the Data Report

1. Reopen the phone directory project. Add acommand button named cmdReport and
giveit a Captionof Show Report. (There may be two tabs in your toolbox, one
named Gener al and one named DataReport. Make sure you select from the Genera
tools.)

2. Wewill now add the data environment and data report files to the project. Click the
Project menu item, then click Add File. Choose denPhone and click OK. Also add
rptPhone. Look at your Project Window. Those files should be listed under
Designers.

3. Usethiscodein cmdReport_Click:

Private Sub cndReport Click()

r pt Phone. Show

End Sub

4. This uses the Show method to display the data report.

5. Savethe application and run it. Click the Show Report button and this should appear:

% Phone Directory
=
My Phone Directony
Mame: Phone:
KIDwware (2067 721-2556
Santa Claus TEr-reeT
Holiday Travel 25-55055
Opposum Jones 111-1111
Henrietta John=an E75-9054
LW Extension 444-4444
The President 9599-95939
Alan's Plumbing 22222722
Bob's Appliance 333-3333
Zehra Lodging 234-5B57 -
Pages: M4 Pl < | L|J

Y ou now have a printable copy of the phone directory. Just click the Printer icon.

Notice the relationship with this displayed report and the sections available in the
Data Report designer.

Database Access and Management 8-320

This page intentionally not left blank. |

Database Access and Management 8-321

Exercise 8

Home Inventory Database
Design and develop an application that manages a home inventory database. Add the
option of obtaining a printed list of your inventoried property.
My Solution:
Database Design:

The first step is to design a database using Data M anager (or Access). My databaseisa
single table (named M Y STUFF). Its specifications are:

Field Name Field Type Field Length
I[tem Text 40

Serial Number Text 20

Date Purchased Text 20

New Vdue Currency <N/A>
Location Text 40

This database is saved as file Homelnv.mdb. Create adatalink to your database. The
link is saved as Homel nv.udl.

Database Access and Management 8-322

Report Design:

The second step is to use the Data Environment and Data Report designers to setup how
you want the printed home inventory to appear. Use your discretion here. My final
report design is saved in denHomel nv and rptHomelnv. We will access this report
from our Visua Basic application. My Data Report design looks like this:

¥ Projectl - rptHomelnv (DataReport)

' Home Inventory
|_|:|. T e s
Report Header (Sectiond)

HGNE:'H‘J&H“QW:::::: :::::::::‘:::::::::‘:::::::::‘:::

Page Header (Sectionz)
| # Detail (Sectiont
Hem:| Rem[mMyStaff]l - . | Serial Humber: | SerialMumber. 0 ||m

o|”

~ |Date Purchased: Date Purchased [y Stuff] Hew Value: . . | MewValus. |
—lLocation: . | Location [MyStuff] o

Page Footer (Section3)
& Report Fooker (SectionS)

0 |

Database Access and Management 8-323

Project Design:

Form:

txtDate txtSeria txtitem txtVaue

. Home Inventory
Labell ——+ Jrem \ / / / cmdNext
Label2 ——+ Serial Number | / -
\ rFe cmdPrevious
Label3 — Purchase Date / /
L abld . 7 Ereviu:uusltep/
€ T Mew Walue —
LabelS —— Larcation ——— {xtLocation
gd;:l Item | Delete Item Shaow Bepof— cmdShow
\
\ E4it |\ 1] 4] adafp [M1]
' \
\ 7 \
cmdAdd cmdExit cmdDelete dtaHome
Properties:
Form frmHome:

BorderStyle=1 - Fixed Single
Caption = Home Inventory

CommandButton cmdEXxit:
Caption = E&xit

ADO Data Control dtaHome:
Caption = Book Titles
ConnectionString = Homelnv.udl (in whatever folder you saved it in -
select, don't type)
RecordSource = SELECT * FROM MyStuff
Visble = False

CommandButton cmdShow:.
Caption = Show & Report

CommandButton cmdPrevious:
Caption = & Previous Item

Database Access and M anagement

8-324

CommandButton cmdNext :
Caption = & Next Item

CommandButton cmdDel ete:
Caption = & Delete Item

CommandButton cmdAdd:
Caption = &Add Item

TextBox txtL ocation:
DataField = Location
DataSource = dtaHome
FontName = M S Sans Serif
FontSize=9.75
MaxLength = 40

TextBox txtValue:
DataField = New Vaue
DataSource = dtaHome
FontName = M S Sans Serif
FontSize =9.75

TextBoxtxtDate:
DataField = Date Purchased
DataSource = dtaHome
FontName = M S Sans Serif
FontSize=9.75
MaxLength = 20

TextBox txtSerial:
DataField = Serial Number
DataSource = dtaHome
FontName = M S Sans Serif
FontSize = 9.75
MaxLength = 20

TextBox txtltem:
DataField = Item
DataSource = dtaHome
FontName = M S Sans Serif
FontSize = 9.75
MaxLength = 40

Database Access and M anagement

8-325

Label Label5:
Caption = Location
FontName = Times New Roman
FontSize= 12

Labd Label4:
Caption = New Value
FontName = Times New Roman
FontSize= 12

Label Label3:
Caption = Purchase Date
FontName = Times New Roman
FontSize= 12

Label Label2:
Caption = Serial Number
FontName = Times New Roman
FontSize= 12

Label Labell:
Caption = Item
FontName = Times New Roman
FontSize=12

Code:

General Declarations:

Option Explicit

cmdAdd Click Event:

Private Sub cndAdd_C i ck()
"Add new item to dat abase
dt aHone. Recor dset . AddNew
txtltem Set Focus

End Sub

Database Access and M anagement

8-326

cmdDd ete Click Event:

Private Sub cndDel ete_Click()
‘"Delete item from database
Di m Rval ue As I nteger
Rval ue = MsgBox("Are you sure you want to delete this
iten?", vbQuestion + vbYesNo, "Delete Itent)
If Rvalue = vbNo Then Exit Sub
dt aHone. Recordset . Del et e
dt aHone. Recor dset . MoveNext
| f dt aHone. Recordset. EOF Then
| f dt aHome. Recor dset. BOF Then
MsgBox "You must add an item", vbOKOnly +
vbl nformati on, "Enpty Database"
Call cndAdd_d i ck
El se
dt aHone. Recor dset . MoveFi r st
End | f
End If
txtltem Set Focus
End Sub

cmdExit Click Event:

Private Sub cnmdExit_dick()
End

End Sub

cmdNext Click Event:

Private Sub cnmdNext O i ck()

"Move to next item- if at end-of-file, backup one item

dt aHone. Recor dset . MoveNext

| f dt aHonme. Recor dset . EOF Then
dt aHonme. Recor dset . MovePr evi ous
txtltem Set Focus

End Sub

Database Access and Management 8-327

cmdPrevious Click Event:

Private Sub cndPrevious_Cick()

"Move to previous item- if at beginning-of-file, go down
one item

dt aHonme. Recor dset . MovePr evi ous

| f dtaHone. Recor dset. BOF Then dt aHone. Recordset. MoveNext
txtltem Set Focus

End Sub

cmdShow Click Event:

Private Sub cnmdShow C i ck()
r pt Honel nv. Show
End Sub

Database Access and Management 8-328

This page intentionally not left blank. |

Learn Visual Basic 6.0

9. Dynamic Link Librariesand the Windows API

Review and Preview

In our last class, we saw how using the data control and bound data tools allowed us
to develop a ssimple database management system. Most of the work done by that
DBMS, though, was done by the underlying Jet database engine, not Visual Basic. In
this class, we learn how to interact with another underlying set of code by
programming the Windows applications interface (API) using dynamic link libraries
(DLL). Alphabet soup!

Dynamic Link Libraries(DLL)

All Windows applications at their most basic level (even ones written using Visual
Basic) interact with the computer environment by using calls to dynamic link
libraries(DLL). DLL’sarelibraries of routines, usually written in C, C++, or
Pascal, that you can link to and use at run-time.

Each DLL usualy performs a specific function. By using DLL routines with Visua
Basic, you are able to extend your application’s capabilities by making use of the

Database Access and Management 8-329

many hundreds of functions that make up the Windows Application Programming
Interface (Windows API). These functions are used by virtually every application to
perform functions like displaying windows, file manipulation, printer control, menus
and dialog boxes, multimedia, string manipulation, graphics, and managing memory.

The advantage to using DLL’s is that you can use available routines without having to
duplicate the code in Basic. In many cases, there isn’'t even away to do afunctionin
Basic and calling aDDLL routine is the only way to accomplish the task. Or, if thereis
an equivalent function in Visual Basic, using the corresponding DLL routine may be
faster, more efficient, or more adaptable. Reference material on DLL calls and the
API run thousands of pages - we'll only scratch the surface here. A big challengeis
just trying to figure out what DLL procedures exist, what they do, and how to call
them.

Database Access and Management 8-330

Thereisa price to pay for access to this vast array of code. Once you leave the
protective surroundings of the Visual Basic environment, as you must to call aDLL,
you get to taunt and tease the dreaded general protection fault (GPF) monster, which
can bring your entire computer system to a screeching halt! So, be careful. And, if
you don’'t haveto use DLL’s, don't.

Accessing the Windows APl With DLL

Using aDLL procedure from Visua Basic is not much different from calling a
genera basic function or procedure. Just make sure you pass it the correct number
and correct type of arguments. Say DL L FcnisaDLL functionand DLLProcisa
DLL procedure. Proper syntax to invoke these is, respectively (ignoring arguments
for now):

ReturnValue= DLLFcn()
Call DLLProc()

Before you call aDLL procedure, it must be declared in your Visual Basic program
using the Declare statement. Declare statements go in the general declarations area
of form and code modules. The Declare statement informs your program about the
name of the procedure, and the number and type of arguments it takes. Thisis nearly
identical to function prototyping in the C language. For a DLL function (DL L Fcn),
the syntax is:

Declare Function DLLFcn Lib DLLname[(argument list)] As type

where DLLname is a string specifying the name of the DLL file that contains the
procedure and type is the returned value type.

For a procedure (DL L Proc), use:
Declare Sub DLLProc Lib DLLname [(argument list)]
In code modules, you need to preface the Declare statements with the keywords

Publicor Private to indicate the procedure scope. In form modules, preface the

Declare statement with Private, the default (and only possible) scope in aform
module.

Nearly al argumentsto DLL procedures are passed by value (use the ByVal
keyword), so the argument list has the syntax:

ByVa argnamel Astype ByVal argname2 Astype, ...

Database Access and Management 8-331

Again, it is very important, when calling DLL procedures, that the argument lists be
correct, both regarding number and type. If thelist is notcorrect, very bad things can

happen.

And, it is critical that the Declar e statement be exactly correct or very bad things can
happen. Fortunately, there is a program included with Visual Basic called the API
Text Viewer, which provides a complete list of Declare statements for all API
procedures. The viewer is available from the Start Menu folder for Visual Basic 6.0
(choose Visual Basic 6.0 Tools folder, then API Text Viewer). Most of the Declare
statements are found in afile named win32api.txt (load this from the File menu).

W API Viewer - C:\Program Files'Microsoft Visual Studio'... [M[=]E3
File Edit Wiew Help
AP Tvpe:

IDecIares j

Twpe the first Few letkers of the waord wou are looking For:

fyvailable Tkems:

Y
GetTimeFarmat
GetTimeZoneInformation —Declare Scope
ZetTokenInformation 1 :
GetTokenInformation ¢ Public
et ToptWindow ¥ Private
GetlpdateRect
GetlpdateRgn ;I
Selected Items:
Private Declare Function GetTickCount Lib "kernel3z" alias ;I Remaye
"GetTickiCount" () As Long
Clear
Copy

[

Always use this program to establish Declare statements for your DLL calls. The
procedure is simple. Scroll through the listed items and highlight the desired routine.
Choose the scope (Public or Private). Click Add to move it to the Selected Items
area. Once al items are selected, click Copy. This puts the desired Declare
statements in the Windows clipboard area. Then move to the General Declarations
area of your application and choose Paste from the Edit menu. The Declare
statements will magically appear. The APl Text Viewer can aso be used to obtain
any constants your DLL routine may need.

Database Access and Management 8-332

To further confuse things, unlike Visual Basic routine names, DLL calls are case-
sensitive, we must pay attention to proper letter case when accessing the API.

Lastly, always, always, always save your Visual Basic application before testing any
DLL cals. More good code has gone down the tubes with GPF's - they are very
difficult to recover from. Sometimes, the trusty on-off switch is the only recovery
mechanism.

Timing with DLL Calls

Many times you need some method of timing within an application. You may want
to know how long a certain routine (needed for real-time simulations) takes to

execute or want to implement some sort of delay in your code. The DLL function
GetTickCount isvery useful for such tasks.

The DLL function GetTickCount is a measure of the number of milliseconds that
have elapsed since Windows was started on your machine. GetTickCount is 85
percent faster than the Visual Basic Timer or Now functions. The GetTickCount
function has no arguments. The returned value is a long integer. The usage syntax is.

Dim TickVaue as Long

Ti ckVai ue = GetTickCount()

Let’slook at a couple of applications of this function.

Database Access and Management 8-333

Quick Example 1: Using GetTickCount to Build a Stopwatch

Remember way back in Class 1, where we built alittle stop watch. We' [l modify that
example here using GetTickCount to do our timing.

1. Load Example 1-3 from long, long ago.

2. Usethe API Text Viewer to obtain the Declare statement for the GetTickCount
function. Choose Private scope. Copy and paste it into the applications Gener al
Declarations area (new code is italicized).

Option Explicit

Dm StartTinme As Vari ant

Dm EndTinme As Vari ant

Di m El apsedTi ne As Vari ant

Private Declare Function GetTickCount Lib "kernel 32" () As
Long

3. Modify thecmdStart_Click procedure as highlighted:

Private Sub cmdStart i ck()

"Establish and print starting tine

StartTime = GetTickCount() / 1000

| bl Start. Caption = Format (StartTi me, "#########0. 000")
| bl End. Caption = ""

| bl El apsed. Caption = ""

End Sub

4. Modify the cmdEnd_Click procedure as highlighted:

Private Sub cndEnd_C i ck()

"Find the ending tine, conpute the el apsed tine

"Put both values in | abel boxes

EndTi me = Get Ti ckCount () / 1000

El apsedTine = EndTine - StartTine

| bl End. Caption = Format (EndTi ne, "#########0. 000")

| bl El apsed. Capti on = Format (El apsedTi nme, "#########0. 000")
End Sub

5. Run the application. Note we now have timing with millisecond (as opposed to one
second) accuracy.

Database Access and Management 8-334

Quick Example 2: Using GetTickCount to I mplement a Delay

Many times, you want some delay in a program. We can use GetTickCount to form a
user routine to implement such adelay. We'll write a quick example that delays two
seconds between beeps.

1. Start anew project. Put acommand button on the form. Copy and paste the proper
Declare statement.

2. Usethisfor the Commandl Click event:

Private Sub Commandl_Cl i ck()

Beep

Cal | Del ay(2#)
Beep

End Sub

3. Add theroutine to implement the delay. Theroutine | useis:

Private Sub Del ay(Del aySeconds As Si ngl e)

Dim T1 As Long

Tl = Get Ti ckCount ()

Do Wiile GetTickCount() - Tl < CLng(Del aySeconds * 1000)
Loop

End Sub

To use this routine, note you simply call it with the desired delay (in seconds) as the
argument. This example delays two seconds. One drawback to this routine is that the
application cannot be interrupted and no other events can be processed while in the

Do loop. So, keep delays to small values.

4. Run the example. Click on the command button. Note the delay between beeps.

Database Access and Management 8-335

Drawing Ellipses

There are several DLL routines that support graphic methods (similar to the Line and
Circle methods studied in Class 7). The DLL function Ellipse allows usto draw an
ellipse bounded by a pre-defined rectangular region.

TheDeclare statement for the Ellipse function is:

Private Declare Function Ellipse Lib "gdi32" Alias "Ellipse" (ByVa hdc As Long,
ByVa X1 AslLong, ByVa Y1 AsLong, ByVa X2 AsLong, ByVd Y2 AsLong) As
Long

Note there are five arguments. hdc is the hDC handle for the region (Form or Picture
Box) being drawn to, (X1, Y1) define the upper left hand corner of the rectangular
region surrounding the ellipse and (X2,Y 2) define the lower right hand corner. The
region drawn to must have its ScaleM ode property set to Pixels (all DLL drawing
routine use pixels for coordinates).

Any dlipse drawn with this routine is drawn using the currently selected DrawWidth
and For eColor properties and filled according to FillColor and FillStyle.

Quick Example 3 - Drawing Ellipses
1. Start anew application. Set the form’s ScaleM ode property to Pixels.

2. Usethe API Text Viewer to obtain the Declare statement for the Ellipse function and
copy it into the Gener al Declarations area:

Option Explicit

Private Declare Function Ellipse Lib "gdi 32" (ByVal hdc As
Long, Byval X1 As Long, ByVal Y1 As Long, ByVal X2 As
Long, ByVval Y2 As Long) As Long

3. Attach the following code to the Form_Resize event:

Private Sub Form Resi ze()

Di m Rt nVal ue As Long

FormL. d s

Rt nval ue = El |l i pse(Forml. hdc, 0.1 * Scalewdth, 0.1 *
Scal eHei ght, 0.9 * ScaleWdth, 0.9 * Scal eHei ght)

End Sub

Database Access and Management 8-336

4. Run the application. Resize the form and see how the drawn ellipse takes on new
shapes. Change the form’s DrawW.idth, ForeColor, FillColor, and FillStyle
properties to obtain different styles of ellipses.

Drawing Lines

Another DLL graphic function is Polyline. It isused to connect a series of connected
line segments. Thisis useful for plotting information or just free hand drawing.
Polyline uses the DrawWidthand DrawsStyle properties. Thisfunction is similar to
the Line method studied in Class 7, however the last point drawn to (CurrentX and
CurrentY) isnot retained by this DLL function.

TheDeclare statement for Polyline is:

Private Declare Function Polyline Lib "gdi32" Alias "Polyline" (ByVa hdc As Long,
IpPoint As POINTAPI, ByVa nCount As Long) As Long

Note it has three arguments. hdc is the hDC handle of the region (Form or Picture
Box-again, make sure ScaleM ode is Pixels) being drawn to, IpPoint is the first point
in an array of points defining the endpoints of the line segments- it is of a specia
user-defined type POINTAPI (we will talk about this next), and nCount isthe
number of points defining the line segments.

As mentioned, Polyline employs a special user-defined variable (a data structure) of
type POINTAPI. This definition is made in the general declarations area and |ooks
like:

Private Type POINTAPI
X AslLong
Y AsLong

End Type

Any variable defined to be of type POINTAPI will have two coordinates, an X value
and aY vaue. Asan example, say we define variable A to be of type POINTAPI
using:

Dim A As POINTAPI
A will have an X value referred to using the dot notation A.X and aY vaue referred

to as A.Y. Such notation makes using the Polyline function simpler. We will use this
variable type to define the array of line segment endpoints.

Database Access and Management 8-337

So, to draw a sequence of line segments in a picture box, first decide on the (X, Y)
coordinates of each segment endpoint. Then, decide on line color and line pattern and
set the corresponding properties for the picture box. Then, using Polyline to draw the
segmentsis ssimple. And, as usual, the processis best illustrated using an example.

Quick Example4 - Drawing Lines

1. Start anew application. Add acommand button. Set the form’s ScaleM ode property
to Pixels:

&. Forml Mi=1E3

2. Set up the General Declarations areato include the user-defined variable
(POINTAPI) and the Declar e statement for Polyline. Also define avariable for the

line endpoints:

Option Explicit

Private Type PO NTAPI

X As Long

Y As Long

End Type

Private Declare Function Polyline Lib "gdi 32" (ByVal hdc As
Long, | pPoint As PO NTAPI ,ByVal nCount As Long) As Long

Di m V(20) As PO NTAPI
Dim I ndex As |nteger

Database Access and Management 8-338

3. Establish the Form_M ouseDown event (saves the points):

Private Sub Form MouseDown(Button As Integer, Shift As
Integer, X As Single, Y As Single)
If Index = 0 Then FormlL.C s

I ndex = Index + 1
V(I ndex). X = X
V(I ndex).Y =Y
End Sub

4. Establish the Commandl Click event (draws the segments):

Private Sub Commandl_Click()

Di m Rt nVal ue As I nteger

FormL. d s

Rt nVal ue = Pol yl i ne(Forml. hdc, V(1), I|ndex)
I ndex = 0

End Sub

5. Run the application. Click on the form at different points, then click the command
button to connect the ‘clicked’ points. Try different colors and line styles.

Drawing Polygons

We could try to use the Polyline function to draw closed regions, or polygons. One
drawback to this method is that drawing filled regions is ot possible. The DLL
function Polygon allows us to draw any closed region defined by a set of (X, y)
coordinate pairs.

Let’slook at the Declar e statement for Polygon (from the APl Text Viewer):

Private Declare Function Polygon Lib "gdi32" Alias "Polygon" (ByVa hdc As Long,
IpPoint As POINTAPI, ByVa nCount As Long) AsLong

Note it has three arguments. hdc is the hDC handle of the region (Form or Picture
Box) being drawn to, IpPoint is the first point in an array of points defining the
vertices of the polygon - it is of type POINTAPI, and nCount is the number of
points defining the enclosed region.

So, to draw a polygon in a picture box, first decide on the (X, Y) coordinates of each
vertex in the polygon. Then, decide on line color, line pattern, fill color and fill
pattern and set the corresponding properties for the picture box. Then, using Polygon
to draw the shape is smple.

Database Access and Management 8-339

Quick Example5 - Drawing Polygons

1. Start anew application and establish aform with the following controls: a picture
box (ScaleM ode set to Pixels), a control array of five option buttons, and a command
button:

&. Forml _ (O] x|

2. Set up the General Declarations areato include the user-defined variable
(POINTAPI) and the Declar e statement for Polygon:

Option Explicit

Private Type PO NTAPI

X As Long

Y As Long

End Type

Private Declare Function Polygon Lib "gdi 32" (ByVal hdc As
Long, | pPoint As PO NTAPI ,ByVal nCount As Long) As Long

3. Establish the Commandl Click event:

Private Sub Commandl_C i ck()

Dim1 As |nteger

For | =0 To 4

If Optionl(l).Value = True Then
Exit For

End | f

Next |

Picturel.C s

Call Draw _Shape(Picturel, 1)

End Sub

Database Access and Management 8-340

4. Set up ageneral procedure to draw a particular shape number (PNum) in a general
control (PBox). This procedure can draw one of five shapes (0-Square, 1-Rectangle,
2-Triangle, 3-Hexagon, 4-Octagon). For each shape, it establishes some margin area
(DeltaX and DeltaY) and then defines the vertices of the shape using the V array (a
POINTAPI type variable).

Private Sub Draw_Shape(PBox As Control, PNum As Integer)
Dim V(1 To 8) As PO NTAPI, Rtn As Long

Dm DeltaX As Integer, DeltaY As Integer

Sel ect Case PNum

Case O
' Squar e
DeltaX = 0.05 * PBox. Scal eWdth
DeltaY = 0.05 * PBox. Scal eHei ght
V(1). X = DeltaX: V(1).Y = DeltaY
V(2).X = PBox. ScaleWdth - DeltaX: V(2).Y =V(1).Y
V(3).X =V(2). X V(3).Y = PBox. Scal eHei ght - DeltaY

V(4). X =V(1).X V(4).Y = V(3).Y
Rt n = Pol ygon(PBox. hdc, V(1), 4)

Case 1
" Rect angl e
DeltaX = 0.3 * PBox. Scal eWdth
DeltaY = 0.05 * PBox. Scal eHei ght
V(1). X = DeltaX: V(1).Y = DeltaY
V(2).X = PBox. ScalewWdth - DeltaX: V(2).Y =V(1).Y
V(3).X =V(2).X V(3).Y = PBox. Scal eHei ght - DeltaY

V(4).X = V(1).X V(4).Y = V(3).Y
Rt n = Pol ygon(PBox. hdc, V(1), 4)

Case 2

"Triangle
DeltaX = 0.05 * PBox. Scal eWwdth
DeltaY = 0.05 * PBox. Scal eHei ght
V(1).X = DeltaX: V(1).Y = PBox. Scal eHei ght - DeltaY
V(2).X = 0.5 * PBox. Scal eWdth: V(2).Y = DeltaY
V(3).X = PBox. ScaleWdth - DeltaX: V(3).Y =V(1).Y
Rt n = Pol ygon(PBox. hdc, V(1), 3)

Case 3

" Hexagon
DeltaX = 0.05 * PBox. Scal eWdt h
DeltaY = 0.05 * PBox. Scal eHei ght
V(1). X = DeltaX: V(1).Y = 0.5 * PBox. Scal eHei ght
V(2).X = 0.25 * PBox. Scal eWdth: V(2).Y = DeltaY
V(3).X = 0.75 * PBox.ScaleWdth: V(3).Y = V(2).Y
V(4).X = PBox.Scal ewWdth - DeltaX: V(4).Y = V(1).Y
V(5).X = V(3).X V(5).Y = PBox. Scal eHei ght - DeltaY
V(6). X = V(2).X: V(6).Y = V(5).Y

Rt n = Pol ygon(PBox. hdc, V(1), 6)

Database Access and M anagement

8-341

Case 4
" Cct agon
Del t aX
Del t aY
V(1).
V(2).
V(3).
V(4).
V(5).
V(6).
V(7).
V(8).

XX XX XXX X

0. 05 * PBox. Scal eW dt h

0. 05 * PBox. Scal eHei ght

DeltaX: V(1).Y = 0.3 * PBox. Scal eHei ght
0.3 * PBox. Scal eWwWdth: V(2).Y = DeltaY
0.7 * PBox. ScaleWdth: V(3).Y = V(2).Y
PBox. Scal eWdth - DeltaX: V(4).Y = V(1).Y
V(4).X: V(5).Y = 0.7 * PBox. Scal eHei ght
V(3).X: V(6).Y = PBox. Scal eHei ght - DeltaY
V(2). X V(7).Y =V(6).Y

V(1). X V(8).Y = V(5).Y

Rt n = Pol ygon(PBox. hdc, V(1), 8)
End Sel ect

End Sub

5. Run the application. Select a shape and click the command button to draw it. Play
with the picture box properties to obtain different colors and fill patterns.

6. To seethe importance of proper variable declarations when using DLL’s and the AP,
make the two components (X and Y) in the POINTAPI variable of type Integer rather
than Long. Rerun the program and see the strange results.

Database Access and Management 8-342

Sounds with DLL Calls- Other Beeps

As seen in the above example and by perusing the Visual Basic literature, only one
sound is available in Visual Basic - Beep. Not real exciting. By using available
DLL’s, we can add all kinds of sounds to our applications.

A DLL routine like the Visual Basic Beep function isM essageBeep. It also beeps
the speaker but, with a sound card, you can hear different kinds of beeps. Message
Beep has a single argument, that being an long integer that describes the type of beep
you want. MessageBeep returns a long integer. The usage syntax is.

Dim BeepType As Long, RtnValue as Long

i?thaI ue = MessageBeep(BeepType)

BeepType has five possible values. Sounds are related to the four possible icons
available in the Message Box (these sounds are set from the Windows 95 control
panel). The DLL constants available are:

MB_ICONSTOP - Play sound associated with the critical icon
MB_ICONEXCLAMATION - Play sound associated with the exclamation icon
MB_ICONINFORM ATION - Play sound associated with the information icon
MB_ICONQUESTION - Play sound associated with the question icon

MB_OK - Play sound associated with no icon

Database Access and Management 8-343

Quick Example 6 - Adding Begpsto M essage Box Displays
We can use MessageBeep to add beeps to our display of message boxes.
1. Start anew application. Add atext box and a command button.

2. Copy and paste the Declare statement for the M essageBeepfunction to the General
Declarations area. Also, copy and paste the following seven constants (we reed
seven since some of the ones we use are equated to other constants):

Private Declare Function MessageBeep Lib "user32" (ByVal
wlype As Long) As Long

Private Const MB_| CONASTERI SK = &H40&

Private Const MB_| CONEXCLAVATI ON = &H30&

Private Const MB_ | CONHAND = &H10&

Private Const MB | CONI NFORVATI ON = MB | CONASTERI SK

Private Const MB_| CONSTOP = MB_| CONHAND

Private Const MB_| CONQUESTI ON = &H20&

Private Const MB_OK = &HO&

3. Inthe above constant definitions, you will have to change the word Public (which
comes from the text viewer) with the word Private.

4. Usethiscodeto the Commandl_Click event.
Private Sub Commandl_Cl i ck()

Di m BeepType As Long, RtnValue As Long
Sel ect Case Val (Text 1. Text)

Case O

BeepType = MB_ K
Case 1

BeepType = MB_I CONI NFORMVATI ON
Case 2

BeepType = MB_| CONEXCLAMATI ON
Case 3

BeepType = MB_| CONQUESTI ON
Case 4

BeepType = MB_| CONSTOP
End Sel ect

Rt nVal ue = MessageBeep(BeepType)
MsgBox "This is a test", BeepType, "Beep Test"
End Sub

5. Run the application. Enter values from 0 to 4 in the text box and click the command
button. See if you get different beep sounds.

Database Access and Management 8-344

M or e Elabor ate Sounds

Beeps are nice, but many times you want to play more elaborate sounds. Most
sounds you hear played in Windows applications are saved in WAV files (fileswith
WAV extensions). These are the files formed when you record using one of the many
sound recorder programs available.

WAV files are easily played using DLL functions. There is more than one way to
play such afile. We'll use the sndPlaySound function. Thisisa long function that
requires two arguments, a string argument with the name of the WAV file and a long
argument indicating how to play the sound. The usage syntax is:

Dim WavFile As String, SndType as Long, RtnVaue as Long

i%thaI ue = sndPlaysound(WavFile, SndType)
SndType has many possible values. We'll just ook at two:

SND_SYNC - Sound is played to completion, then execution continues
SND_ASYNC - Execution continues as sound is played

Quick Example7 - Playing WAV Files

1

Start a new application. Add acommand button and acommon dialog box. Copy
and paste the sndPlaySound Declare statement from the APl Text Viewer program
into your application. Also copy the SND_SYNCand SND_ASY NC constants.
When done copying and making necessary scope modifications, you should have:

Private Declare Function sndPlaySound Lib "winmmdl|l" Alias

"sndPl aySoundA" (ByVal | pszSoundNane As String, ByVal
uFl ags As Long) As Long

Private Const SND ASYNC = &H1
Private Const SND SYNC = &HO

Database Access and Management 8-345

2. Addthiscodetothe Commandl Click procedure:

Private Sub Commandl_Cl i ck()

Dim Rt nVal As | nteger

"Get nane of .wav file to play

CommonDi al ogl. Filter = "Sound Fil es|*. wav"

CommonDi al ogl. ShowOpen

Rt nVal = sndPl aySound(CommonDi al ogl. fil enanme, SND_SYNC)
End Sub

3. Runthe application. Find aWAYV file and listen to the lovely results.

Playing Sounds Quickly

Using the sndPlaySound function in the previous example requires first opening a
file, then playing the sound. If you want quick sounds, say in games, the loading
procedure could sow you down quite a bit. What would be nice would be to have a
sound file ‘saved’ in some format that could be played quickly. We can do that!

What we will do is open the sound file (say in the Form_L oad procedure) and write
the fileto a string variable. Then, we just use this string variable in place of the file
name in the sndPlaySound argument list. We also need to ‘Or’ the SndType
argument with the constant SND_MEM ORY (this tells sndPlaySound we are playing
a sound from memory as opposed to a WAV file). This technique is borrowed from
“Black Art of Visual Basic Game Programming,” by Mark Pruett, published by The
Waite Group in 1995. Sounds played using this technique must be short sounds (less
than 5 seconds) or mysterious results could happen.

Database Access and Management 8-346

Quick Example 8 - Playing Sounds Quickly
We Il write some code to play a quick ‘bonk’ sound.
1. Start anew application. Add acommand button.

2. Copy and paste the sndPlaySound Declare statement and the two needed constants
(see Quick Example 4). Declare a variable (BongSound) for the sound file. Add
SND_MEM ORY to the constants declarations. The two added statements are:

Di m BongSound As String
Private Const SND MEMORY = &H4

3. Add the following general function, StoreSound, that will copy aWAYV fileinto a
string variable:

Private Function StoreSound(ByVal FileNanme) As String
Load a sound file into a string variabl e.
Taken from

' Mar k Pruett

' Bl ack Art of Visual Basic Gane Programing

' The Waite G oup, 1995

Dim Buffer As String

DimF As |Integer

Di m SoundBuffer As String

On Error GoTo NoiseGet Error

Buf fer = Space$(1024)

SoundBuffer = ""

F = FreeFile

Qpen FileNanme For Binary As F

Do Wil e Not EOF(F)

CGet #F, , Buffer
SoundBuf fer = SoundBuffer & Buffer

Loop

Close F

St oreSound = Tri n(SoundBuf f er)

Exit Function

Noi seGet _Error

SoundBuffer = ""

Exit Function

End Functi on

Database Access and Management 8-347

4. Writethefollowing Form_L oad procedure:

Private Sub Form Load()

BongSound = StoreSound("bong. wav")
End Sub

5. Usethisasthe Commandl_Click procedure:

Private Sub Commandl_C i ck()
Cal I sndPl aySound(BongSound, SND_SYNC Or SND_NMEMORY)

End Sub

6. Make sure the sound (BONK.WAYV) isin the same directory as your application.
Run the application. Each time you click the command button, you should hear a
bonk!

Fun With Graphics

One of the biggest uses of the API isfor graphics, whether it be background scrolling,
sprite animation, or many other special effects. A very versatile API function is
BitBIt, which stands for Bit Block Transfer. Itisused to copy a section of one
bitmap from one place (the source) to another (the destination).

Let’'slook at the Declaration statement for BitBlt (from the API Text Viewer):

PrivateDeclare Function BitBlIt Lib "gdi32" Alias "BitBIt"
(ByVa hDestDC As Long,
ByVa x AsLong,
Byva y AsLong,
ByVa nWidth As Long,
ByVd nHeight As Long,
ByVa hSrcDC As Long,
ByVva xSrc As Long,
ByVva ySrc As Long,
ByVa dwRop AsLong) As
Long

Lots of stuff here, but fairly straightforward. hDestDC is the device context handle,
or hDC of the destination bitmap. The coordinate pair (X, Y) specifies the upper left
corner in the destination bitmap to copy the source. The parameters nWidth ard
nHeight are, respectively, the width and height of the copied bitmap. hSrcDCisthe
device context handle for the source bitmap and (Xsrc, Ysrc) isthe upper left corner
of the region of the source bitmap being copied. Finally, dwRopis a constant that
defines how the bitmap is to be copied. We will do adirect copy or set dwRop equal

Database Access and Management 8-348

to the constant SRCCOPY. The BitBIt function expects all geometric units to be
pixels.

Database Access and Management 8-349

BitBIt returns an long integer value -- we won't be concerned with its use right now.
So, the syntax for using BitBlIt is:

Dim RtnValue As Long
RtnVaue = BitBIt(Dest.hDC, X, Y, Width, Height,
Src.hDC, Xsre, Ysrc, SRCCOPY)
This function call takes the Src bitmap, located at (Xsrc, Y src), with width Width and
height Height, ard copies it directly to the Dest bitmap at (X, Y).
Quick Example 9 - Bouncing Ball With Sound!

We'll build an application with aball bouncing from the top to the bottom as an
illustration of the use of BitBIt.

1. Start anew application. Add two picture boxes, a shape (inside the smaller picture
box), atimer control, and a command button.:

&. Forml =1 E3

Picturel - .. — Commandl

— Timerl

/ Shapel

- | _— Picture2

Database Access and Management 8-350

2. For Picturel (the destination), set the ScaleM ode property to Pixel. For Shapel, set
the FillStyle property to Solid, the Shape property to Circle, and choose a FillColor.
For Picture2 (the ball), set the ScaleM ode property to Pixel and the Border Style
property to None. For Timerl, set the Enabled property to False and thelnterval
property to 100.

3. Copy and paste constants for the BitBIt Declare statement and constants. Also copy
and paste the necessary sndPlaySound statements and declare some variables. The
general declarations area is thus:

Option Explicit

Di m BongSound As String

DmBallY As Long, BallDir As I|nteger

Private Declare Function sndPlaySound Lib "wnmmdll" Alias
"sndPl aySoundA" (ByVal | pszSoundNane As String, ByVal
uFl ags As Long) As Long

Private Const SND ASYNC = &H1

Private Const SND SYNC = &HO

Private Const SND MEMORY = &H4

Private Declare Function BitBIt Lib "gdi 32" (ByVal hDestDC
As Long, Byval x As Long, ByVal y As Long, ByVal nWdth
As Long, ByVal nHeight As Long, ByVal hSrcDC As Long,
ByvVal xSrc As Long, ByVal ySrc As Long, ByVal dwRop As
Long) As Long

Private Const SRCCOPY = &HCC0020

4. Add aForm_L oad procedure:

Private Sub Form Load()
BallY =0
BalIDir =1
BongSound =
End Sub

St or eSound(" bong. wav")

5. WriteaCommandl_Click event procedure to toggle the timer:

Private Sub Commandl_Click()
Ti mer 1. Enabl ed = Not (Ti nmer 1. Enabl ed)
End Sub

Database Access and Management 8-351

6. TheTimerl Timer event controls the bouncing ball position:

Private Sub Tinmerl1 Tinmer()
Static BallY As Long
Dim Rt nVal ue As Long
Picturel.Cs
BallY = BallY + BallIDir * Picturel. Scal eHei ght / 50
If BallY < O Then
BallY = 0
BalIDir =1
Cal | sndPl aySound(BongSound, SND _ASYNC O SND_ MEMORY)
El self BallY + Picture2. Scal eHei ght > Pi cturel. Scal eHei ght
Then
Bal | Y = Picturel. Scal eHei ght - Picture2. Scal eHei ght
BalIDir = -1
Cal | sndPl aySound(BongSound, SND_ASYNC Or SND_ MEMORY)
End If
RtnValue = BitBlt(Picturel. hDC, CLng(0.5 *
(Picturel. Scal eWdth - Picture2. ScalewWdth)), _
Bal | Y, CLng(Picture2. Scal ewWdth),
CLng(Pi cture2. Scal eHei ght), Picture2. hDC, CLng(O0),
CLng(0), SRCCOPY)
End Sub

7. We aso need to make sure we include the Stor eSound procedure from the last
example so we can hear the bong when the ball bounces.

8. Once everything is together, run it and follow the bouncing ball!

Flicker Free Animation

Y ou may notice in the bouncing ball example that there is a bit of flicker asit
bounces. Much smoother animation can be achieved with just acouple of changes.

The ideabehind so-called flicker free animation is to always work with two picture
boxes for the animation (each with the same properties, but one isvisible and one is
not). The nontvisible picture box is our working area where ever ything is positioned
where it needs to be at each time point in the animation sequence. Once everything is
properly positioned, we then copy (using BitBIt) the entire nonvisible picture box
into the visible picture box. The results are quite nice.

Database Access and Management 8-352

Quick Example 10 - Flicker Free Animation
We modify the previous example to make it flicker free.

1. Changethe Index property of Picturel to O (zero). This makesit a control array
which we can make a copy of. Once this copy is made. Picturel(0) will be our
visible area and Picturel(1) will be our nontvisible, working area.

2. Add these statements to the Form_L oad procedure to create Picturel(1):

Load Picturel(1)
Picturel(1l). AutoRedraw = True

3. Maketheitalicized changesto the Timer1l Timer event. The bal is now drawn to
Picturel(1). Once drawn, the last statement in the procedure copies Picturel(1) to
Picturel(0).

Private Sub Tinmerl Tinmer()
Static Ball Y As Long
Di m Rt nVal ue As Long
Picturel(l).Cl s
BallY = BallY + BallDir * Picturel(l). Scal eHei ght / 50
If BallY < O Then
BallY = 0
BalIDir =1
Cal | sndPl aySound(BongSound, SND ASYNC O SND MEMORY)
El self BallY + Picture2. Scal eHei ght >
Picturel(1). Scal eHei ght Then
Ball Y = Picturel(1l). Scal eHei ght - Picture2. Scal eHei ght
BalIDir = -1
Cal | sndPl aySound(BongSound, SND ASYNC O SND MEMORY)
End |f
Rt nValue = BitBIt(Picturel(1l). hDC, CLng(0.5 *
(Picturel(1l).ScaleWdth - Picture2. ScaleWdth)),
Bal 'Y, CLng(Picture2. Scal ewWdth),
CLng(Pi cture2. Scal eHei ght), Picture2. hDC, CLng(0),
CLng(0), SRCCOPY)
RtnvValue = BitBIt(Picturel(0).hDC, CLng(0), CLng(O),
CLng(Picturel(l). Scal ewdth),
CLng(Picturel(l). Scal eHei ght), Picturel(l).hDC, CLng(0),
CLng(0), SRCCOPY)
End Sub

4. Run the application and you should notice the smoother ball motion.

Database Access and Management 8-353

Quick Example 11 - Horizontally Scrolling Background

Most action arcade games employ scrolling backgrounds. What they really useis one
long background picture that wraps around itself. We can use the BitBIt API function to
generate such a background. Here' stheidea. Say we have one long bitmap of some
background (here, an underseascape created in a paint program and saved as a bitmap
file):

| Width

At each program cycle, we copy a bitmap of the size shown to adestination location. As
X increases, the background appears to scroll. Note as X reaches the end of this source
bitmap, we need to copy allittle of both ends to the destination bitmap.

1. Start anew application. Add a horizontal scroll bar, two picture boxes, and atimer
control. Your form should resemble:

HScroll1

Picturel

Database Access and M anagement

8-354

2. For Picturel (the destination), set the ScaleM ode property to Pixel. For Picture2, set

ScaleM ode to Pixel, AutoSize and AutoRedrawto True, and Picture to

Undrseal.bmp (provided on class disk). Set Picturel Height property to the same as
Picture2. Set Timerl Interval property to 50. Set the Hscroll1l M ax property to 20
and L argeChange property to 2. After setting properties, resize the form so Picture2

does not appear.

3. Copy and paste the BitBIt Declare statement from the API text viewer. Also, copy

the SRCCOPY constant:
4. Attach the following code to the Timer1 Timer event:

Private Sub Tinmerl1 Tinmer()

Static x As Long

Dim AWdth As Long

Dim RC As Long

"Find next |ocation on Picture2

X = x + HScroll 1. Val ue

If x > Picture2. ScalewWdth Then x =0

"When x is near right edge, we need to copy

"two segnents of Picture2 into Picturel

If x > (Picture2. ScaleWdth - Picturel. Scal eWdth) Then
AWdth = Picture2. ScaleWwWdth - x

RC = BitBIt(Picturel. hDC, CLng(0), CLng(0), AWt h,
CLng(Pi cture2. Scal eHei ght), Picture2. hDC, x, CLng(0),
SRCCOPY)

RC = BitBlt(Picturel. hDC, AW dth, CLng(O0),
CLng(Picturel. Scal eWdth - AW dth),
CLng(Pi cture2. Scal eHei ght), Picture2. hDC, CLng(O0),
CLng(0), SRCCOPY)

El se

RC = BitBIt(Picturel. hDC, CLng(0), CLng(0),
CLng(Pi cturel. Scal eWwWdth), CLng(Picture2. Scal eHei ght)
Pi cture2. hDC, x, CLng(0), SRCCOPY)

End If

End Sub

5. Run the application. The scroll bar is used to control the speed of the scrolling (the

amount X increases each time a timer event occurs).

Database Access and Management 8-355

A Bit of Multimedia

The computer of the 90’ s is the multimedia computer (graphics, sounds, video).
Windows provides a set of rich multimedia functions we can use in our Visual Basic
applications. Of course, to have access to this power, we use the API. We'll briefly
look at using the API to play video files with the AV (audio-visual interlaced)
extension.

In order to play AVI files, your computer needs to have software such as Video for
Windows (from Microsoft) or QuickTime for Windows (from Apple) loaded on your
machine. When avideo is played from Visual Basic, a new window is opened with
the title of the video file shown. When the video is complete, the window is
automatically closed.

The DLL function mciExecute is used to play video files (note it will aso play WAV
files). The syntax for using this function is:

Dim RtnVaue as Long

RtnV alue = mciExecute (Command)

where Command is a string argument consisting of the keyword ‘ Play’ concatenated
with the complete pathname to the desired file.

Quick Example 12 - Multimedia Sound and Video

1. Start anew application. Add acommand button and a common dialog box. Copy
and paste the mciExecute Declare statement from the API Text Viewer program into
your application. It should read:

Private Declare Function nti Execute Lib "wnmmdl|" (ByVal
| pstrCommand As String) As Long

2. Add thiscodeto the Commandl_Click procedure:

Private Sub Commandl_d i ck()
Dim Rt nVal As Long
"Get nane of .avi file to play

CommonDi al ogl. Filter = "Video Files|*.avi"

CommonDi al ogl. ShowOpen

Rt nvVal = nti Execute("play " + CommonDi al ogl. fil enane)
End Sub

3. Runthe application. Find aAVI file and see and hear the lovely results.

Database Access and Management 8-356

Exercise 9

The Original Video Game - Pong!

In the early 1970’s, Nolan Bushnell began the video game revolution with Atari’s Pong
game -- avery ssmple Ping-Pong kind of game. Try to replicate this game using Visual
Basic. Inthe game, aball bounces from one end of a court to another, bouncing off side
walls. Playerstry to deflect the ball at each end using a controllable paddlie. Use sounds
where appropriate (look at my solution for some useful DLL’s for sound).

My solution freely borrows code and techniques from several reference sources. The
primary source is a book on game programming, by Mark Pruett, entitled “Black Art of
Visual Basic Game Programming,” published by The Waite Group in 1995. In my
simple game, the left paddle is controlled with the A and Z keys on the keyboard, while
the right paddie is controlled with the K and M keys.

My Solution:

Form:

Label1 IblScorel cmdNew cmdPause CmdExit Label3 |blScore?

w. Vhe Onginal ¥ideo Game - Pongl

Shapel

picBlank —___ |

picPaddle

picField

Database Access and Management 8-357

Properties:

Form frmPong:
BackColor = & HOOFFCOCO0& (Light blue)
Caption = The Original Video Game - Pong!

Timer timGame:
Enabled = False
Interval = 25 (may need different values for different machines)

PictureBox picPaddle:
Appearance = Flat
AutoRedraw = True
AutoSize = True
Picture = paddle.omp
ScaleMode = Pixel
Visble=Fadse

CommandButton cmdPause
Caption = & Pause
Enabled = 0 'False

CommandButton cmdEXxit:
Caption = E&xit

CommandButton cmdNew:
Caption = & New Game
Default = True

PictureBox picField:
BackColor = & HOO80FFFF& (Light yellow)
BorderStyle = None
FontName = M S Sans Serif
FontSize = 24
ForeColor = & HOOOO00FF& (Red)
ScaleMode = Pixel

PictureBox picBlank :
Appearance = Flat
AutoRedraw = True
BackColor = & HOO80FFFF& (Light yellow)
BorderStyle = None
FillStyle = Solid
Visible = False

Database Access and M anagement

8-358

PictureBox picBall:

Appearance = Flat
AutoRedraw = True
AutoSize = True
BorderStyle = None
Picture = ball.bmp
ScaleMode = Pixel
Visble=Fadse

Shape Shapel:

BackColor = & H00404040& (Black)
BackStyle = Opague

Labd IblScore2:

Alignment = Center

BackColor = & HOOFFFFFF& (White)
BorderStyle = Fixed Single
Caption=0

FontName = M S Sans Serif

FontBold = True

FontSize = 18

Label Label3:

BackColor = & HOOFFCOCO0& (Light blue)
Caption = Player 2

FontName = M S Sans Serif
FontSize=13.5

Labd IblScorel:

Alignment = Center

BackColor = & HOOFFFFFF& (White)
BorderStyle = Fixed Single
Caption=0

FontName = M S Sans Serif

FontBold = True

FontSize = 18

Label Labell:

BackColor = & HOOFFCOCO0& (Light blue)
Caption = Player 1

FontName = M S Sans Serif

FontSize = 13.5

Database Access and Management 8-359

Code:
General Declarations:

Option Explicit
"Sound file strings
Di m wavPaddl eHit As String
DimwavWall As String
D m wavM ssed As String
"A user -defined variable to position bitmps
Private Type tBitMap
Left As Long
Top As Long
Ri ght As Long
Bottom As Long
Wdth As Long
Hei ght As Long
End Type
"Ball information
Dim bnpBal | As tBitMp
Dim XStart As Long, YStart As Long
Di m XSpeed As Long, YSpeed As Long
Di m SpeedUnit As Long
DmXDir As Long, YDir As Long
" Paddl e i nformation
Di m bnpPaddl el As tBitMap, bnpPaddl e2 As tBitMap
Dim YStart Paddl el As Long, YStartPaddl e2 As Long
Di m XPaddl el As Long, XPaddl e2 As Long
Di m Paddl el ncrenent As Long

Dim Scorel As Integer, Score2 As Integer

Di m Paused As Bool ean

"Nunber of points to win

Const WN = 10

"Number of bounces before speed increases

Const BOUNCE = 10

Di m NunBounce As | nteger

" APl Functions and constants

Private Declare Function BitBt Lib "gdi 32" (ByVal hDestDC
As Long, ByVal x As Long, ByvVal y As Long, ByVal nWdth As
Long, ByVal nHeight As Long, ByVal hSrcDC As Long, ByVal
xSrc As Long, Byval ySrc As Long, ByVal dwRop As Long) As

Long
Const SRCCOPY = &HCC0020 ' (DWORD) dest = source
Private Declare Function sndPlaySound Lib "wnmmdll" Alias

"sndPl aySoundA" (ByVal | pszSoundNanme As String, ByVal
uFl ags As Long) As Long

Database Access and Management 8-360

Private Declare Function sndStopSound Lib "winmmdll" Alias
"sndPl aySoundA" (ByVal |pszNull As String, ByVal uFlags As
Long) As Long

Const SND_ASYNC = &H1

Const SND_SYNC = &HO

Const SND_MEMORY = &H4

Const SND LOCP = &H8

Const SND_NOSTOP = &H10

" Wndows APl rectangle function

Private Declare Function IntersectRect Lib "user32"

(1 pDest Rect As tBitMp, | pSrclRect As tBitMp, |pSrc2Rect
As tBitMap) As Long

NoiseGet General Function:

Function Noi seGet (ByVal FileNane) As String

Load a sound file into a string variabl e.
Taken from
Mar k Pruett
' Bl ack Art of Visual Basic Gane Programi ng
' The Waite G oup, 1995

Dim buffer As String

Dimf As Integer

Di m SoundBuffer As String
On Error GoTo Noi seGet _Error
buf fer = Space$(1024)
SoundBuffer = ""
f = FreeFile
Open Fil eNane For Binary As f
Do While Not EOF(f)

Get #f, , buffer ' Load in 1K chunks
SoundBuf fer = SoundBuffer & buffer

Loop

Cl ose f

Noi seCGet = Tri n%(SoundBuf f er)
Exit Function
Noi seGet _Error

SoundBuf fer = ""

Exit Function
End Functi on

Database Access and Management 8-361

NoisePlay General Procedure:

Sub Noi sePl ay(SoundBuffer As String, ByVal PlayMde As
| nt eger)

" Plays a sound previously |l oaded into nenory with function
" NoiseCet().
Taken from
Mar k Pruett
Bl ack Art of Visual Basic Gane Program ng
' The Waite G oup, 1995

Dimretcode As I|nteger
I f SoundBuffer = "" Then Exit Sub
" Stop any sound that may currently be playing.
retcode = sndSt opSound(0, SND_ASYNC)
" PlayMbde should be SND _SYNC or SND_ASYNC
ret code = sndPl aySound(ByVal SoundBuffer, PlayMdde O
SND_MEMORY)
End Sub

Bitmap_Move Genera Procedure:

Private Sub Bitmap_Myve(ABitMap As tBitMap, ByVal NewlLeft
As I nteger, ByVal NewlTop As |Integer, SourcePicture As
Pi ct ur eBox)
Move bitmap fromone | ocation to the next
Modi fied from
' Mar k Pruett
' Bl ack Art of Visual Basic Gane Programi ng
' The Waite G oup, 1995
Di m Rt nvVal ue As | nteger
"First erase at old | ocation
Rtnval ue = BitBlt(picField. hDC, ABitMp. Left, ABitMap. Top,
ABi t Map. Wdt h, ABitMp. Hei ght, picBlank.hDC, 0, 0, SRCCOPY)
"Then, establish and redraw at new | ocation
ABi t Map. Left = NewlLeft
ABi t Map. Top = NewTop
Rtnval ue = BitBlt(picField. hDC, ABitMp. Left, ABitMap. Top,
ABi t Map. Wdt h, ABitMp. Hei ght, SourcePicture. hDC, 0, O,
SRCCOPY)
End Sub

Database Access and M anagement

8-362

ResetPaddles General Procedure:

Private Sub Reset Paddl es()

' Reposi tion paddl es

bnpPaddl el. Top = YStart Paddl el

brnpPaddl e2. Top = YStart Paddl e2

Call Bitmap_Mve(bnpPaddl el, bnpPaddl el. Left,
brpPaddl el. Top, picPaddl e)

Cal | Bi tmap_Move(bnpPaddl e2, bnpPaddl e2. Left,
bmpPaddl e2. Top, pi cPaddl e)

End Sub

Update_Score General Procedure:

Private Sub Update_Score(Pl ayer As I|nteger)
Dim Wnner As Integer, RtnValue As I|nteger
Wnner =0
"Updat e scores and see if ganme over
ti nGane. Enabl ed = Fal se
Cal | Noi sePl ay(wavM ssed, SND_SYNC)
Sel ect Case Pl ayer
Case 1
Score2 = Score2 + 1
| bl Score2. Capti on = Fornmat (Score2, "#0")
| bl Scor e2. Refresh
If Score2 = WN Then Wnner = 2
Case 2
Scorel = Scorel + 1
| bl Scorel. Capti on = Format (Scorel, "#0")
| bl Scorel. Refresh
If Scorel = WN Then Wnner =1
End Sel ect
If Wnner = 0 Then
Call ResetBal l
ti nGanme. Enabl ed = True
El se
cndNew. Enabl ed = Fal se
cndPause. Enabl ed = Fal se
cndExi t. Enabl ed = Fal se
Rt nval ue = sndPl aySound(App. Path + "\cheeri ng. wav",
SND_SYNC)
picField.Current X = 0.5 * (picField.ScaleWdth -
pi cFi el d. Text Wdt h(" Gane Over"))
picField.CurrentY = 0.5 * picField. Scal eHei ght -
pi cFi el d. Text Hei ght (" Ganme Over")
picField.Print "Game Over"
cndNew. Enabl ed = True

Database Access and Management 8-363

cndExi t . Enabl ed = True
End |f
End Sub

Database Access and M anagement

8-364

ResetBall Genera Procedure:

Sub ResetBal | ()

"Set random directions
XDir =2 * Int(2 * Rad) -
YDir =2 * Int(2 * Rnd) -
bnpBal | . Left = XStart
brnpBal | . Top = YStart

End Sub

1
1

cmdExit_Click Event:

Private Sub cnmdExit_dick()

"End gane
End
End Sub

cmdNew Click Event:

Private Sub cnmdNew C i ck()
' New gane code
'"Reset scores

| bl Scorel. Caption = "0"
| bl Score2. Caption = "0"
Scorel = 0O

Score2 =0

' Reset bal

SpeedUnit =1

XSpeed = 5 * SpeedUnit
YSpeed = XSpeed

Cal|l ResetBall

' Reset paddl es
picField.ds
Paddl el ncrenent = 5
NumBounce = 0

Cal | Reset Paddl es
cmdPause. Enabl ed = True
ti mGane. Enabl ed = True
pi cFi el d. Set Focus

End Sub

Database Access and Management 8-365

Collided General Function:

Private Function Collided(A As tBitMap, B As tBitMp) As
I nt eger
Check if the two rectangles (bitmaps) intersect,
" using the IntersectRect APl call.
' Taken from
' Mar k Pruett
' Bl ack Art of Visual Basic Gane Programm ng
The Waite G oup, 1995

" Al'though we won't use it, we need a result
" rectangle to pass to the APl routine.
Dim Resul t Rect As tBitMp

" Calculate the right and bottonms of rectangl es needed
by the APl call

A Right = A Left + AWdth - 1

A.Bottom = A Top + A . Height - 1

B.Right = B.Left + BWdth - 1
B.Bottom = B. Top + B.Height - 1

IntersectRect will only return O (false) if the
" two rectangles do NOT intersect.
Collided = IntersectRect(ResultRect, A B)
End Functi on

cmdPause Click Event:

Private Sub cndPause_C i ck()
I f Not (Paused) Then
ti mGanme. Enabl ed = Fal se
cndNew. Enabl ed = Fal se
Paused = True
cndPause. Capti on = " &UnPause"
El se
ti mGane. Enabl ed = True
cndNew. Enabl ed = True
Paused = Fal se
cndPause. Capti on = " &Pause"
End If
pi cFi el d. Set Focus
End Sub

Database Access and Management 8-366

Database Access and Management 8-367

Form Load Event:

Private Sub Form Load()

Random ze Ti ner

"Place fromat mddle of screen

frmPong. Left = 0.5 * (Screen. Wdth - frmPong. W dt h)
frmPong. Top = 0.5 * (Screen. Hei ght - frmPong. Hei ght)
"Load sound files into strings fromfast access
wavPaddl eHi t = Noi seGet (App. Path + "\ paddl e. wav")
wavM ssed = Noi seCet (App. Path + "\ mi ssed. wav")
wavWal | = Noi seGet (App. Path + "\wal |l hit.wav")
"Initialize ball and paddl e | ocations

XStart = 0.5 * (picField. ScaleWdth - picBall. Scal eWdth)
YStart = 0.5 * (picField. Scal eHei ght - picBall. Scal eHei ght)
XPaddl el = 5

XPaddl e2 = picField. ScaleWdth - picPaddl e. ScaleWdth - 5
YStartPaddl el = 0.5 * (picField. Scal eHei ght -

pi cPaddl e. Scal eHei ght)

YSt art Paddl e2 = YSt art Paddl el

"CGet ball dinensions

bnpBal | . Left = XStart

bnpBal | . Top = YStart

brnpBal | . Wdth = picBall. Scal eWdth

brnpBal | . Hei ght = pi cBal | . Scal eHei ght

" Get paddl e di nensions

bnmpPaddl el. Left = XPaddl el

brnpPaddl el. Top = YStart Paddl el

brnpPaddl el. Wdt h = pi cPaddl e. Scal eW dt h
brnpPaddl el. Hei ght = pi cPaddl e. Scal eHei ght
bnmpPaddl e2. Left = XPaddl e2

brnpPaddl e2. Top = YStart Paddl e2

bnmpPaddl e2. Wdt h = pi cPaddl e. Scal eW dt h
brnpPaddl e2. Hei ght = pi cPaddl e. Scal eHei ght

"Get ready to play

Paused = Fal se

f r mMPong. Show

Cal |l Reset Paddl es

End Sub

Database Access and Management 8-368

picField KeyDown Event:

Private Sub picFiel d_KeyDown(KeyCode As |Integer, Shift As
| nt eger)
Sel ect Case KeyCode
"Player 1 Mtion
Case vbKeyA
I f (bnpPaddl el. Top - Paddl el ncrenment) > 0 Then
Cal | Bitmap_Move(bnpPaddl el, bnpPaddl el. Left,
bnmpPaddl el. Top - Paddl el ncrenent, picPaddl e)
End | f
Case vbKeyZ
| f (bnpPaddl el. Top + bnpPaddl el. Hei ght + Paddl el ncrenent)
< pi cFi el d. Scal eHei ght Then
Cal | Bitmap_Move(bnpPaddl el, bnpPaddl el. Left,
brpPaddl el. Top + Paddl el ncrenment, picPaddl e)
End | f
"Player 2 Mdtion
Case vbKeyK
I f (bnpPaddl e2. Top - Paddl el ncrenment) > 0 Then
Call Bitmap_Move(bnpPaddl e2, bnpPaddl e2. Left,
bnpPaddl e2. Top - Paddl el ncrenent, picPaddl e)
End If
Case vbKeyM
| f (bnpPaddl e2. Top + bnpPaddl e2. Hei ght + Paddl el ncrenent)
< pi cFi el d. Scal eHei ght Then
Call Bitmap_Move(bnpPaddl e2, bnpPaddl e2. Left,
bnpPaddl e2. Top + Paddl el ncrenent, pi cPaddl e)
End If
End Sel ect
End Sub

timGame Timer Event:

Private Sub timGane_Ti ner ()

"Main routine

Dim XInc As Integer, Ylnc As I|nteger
DmCollisionl As Integer, Collision2 As Integer, Collision
As | nteger

Static Previous As |nteger

"If paused, do nothing

| f Paused Then Exit Sub

"Determ ne ball notion increnents
Xinc = XDir * XSpeed

YInc = YDir * YSpeed

"Ball hits top wal

Database Access and Management 8-369

[f (bnpBall.Top + YInc) < 0 Then
YDr = -YDr
Yinc = YDir * YSpeed
Cal I Noi sePl ay(wavWal |, SND_ASYNC)
End If
"Ball hits bottom wall
If (bnpBall.Top + bnpBall.Height + Yinc) >
pi cFi el d. Scal eHei ght Then
YDir = -YDr
YInc = YDir * YSpeed
Call Noi sePl ay(wav\Wal |, SND_ASYNC)
End If
"Ball goes past left wall - Player 2 scores
If (bnpBall.Left) > picField.ScaleWdth Then
Cal | Update_Score(2)
End If
"Ball goes past right wall - Player 1 scores
If (bnpBall.Left + bnpBall.Wdth) < 0 Then
Call Update_Score(1)
End If
"Check if either paddle and ball collided
Collisionl = Col lided(bnpBal |, bnpPaddl el)
Collision2 = Col lided(bnpBal |, bnpPaddl e2)
' Move bal |
Call B tmap_Mve(bnpBall, bnpBall.Left + Xinc, bnpBall. Top
+ Ylnc, picBall)
"If paddle hit, redraw paddle
If Collisionl Then
Cal | Bi tmap_Move(bnpPaddl el, bnpPaddl el. Left,
bmpPaddl el. Top, picPaddl e)
Collision = Collisionl
El self Collision2 Then
Call Bitmap_Move(bnpPaddl e2, bnpPaddl e2. Left,
brpPaddl e2. Top, pi cPaddl e)
Collision = Collision2
End If
"I'f we hit a paddle, change ball direction
If Collision And (Not Previous) Then
NunBounce = NunBounce + 1
I f NunBounce = BOUNCE Then
NunmBounce = 0
XSpeed = XSpeed + SpeedUnit
YSpeed = YSpeed + SpeedUnit
End If
XDir =-XDr
Cal | Noi sePl ay(wavPaddl eHi t, SND_ASYNC)
End If

Database Access and Management 8-370

Previous = Collision
End Sub

Learn Visual Basic 6.0

10. Other Visual Basic Topics

Review and Preview

In this last class, we look at alot of relatively unrelated topics - aVisual Basic
playground. We'll cover lots of things, each with enough detail to allow you, as a
now-experienced Visual Basic programmer, to learn more about the topics that
interest you.

Custom Cortrols

A custom control is an extension to the standard Visual Basic toolbox. You use
custom controls just as you would any other control. In fact, you've used (or at least
seen) custom controls before. The common dialog box, the DBL ist box, the
DBCombo box, and the DBGrid tool, are all examples of custom controls. Custom
controls can be used to add some redlly cool features to your applications.

Custom controls are also referred to as ActiveX controls. ActiveX is atechnology
newly introduced by Microsoft to describe what used to be known as OLE
Automation. Prior to Visua Basic 5.0, the only way to create your own controls was
to use C or C++. Now, with ActiveX technology, you can create your own controls
knowing only Visual Basic! Of course, this would be a course by itself (and is).

To use a custom control, you must load it into the toolbox. To do this, choose
Components from the Visual Basic Project menu. The Components (custom
controls) dialog box is displayed.

Database Access and Management 8-371

Contrals | Designersl Inzertable I:Il:uiectsl

stal Report Control 4.6
[JDesaware Animated Butkan Conkral
[Dalphin Systems dsSocket TCPJIP Conkral
[[]FarPaint Spreadsheet Cantral
[IMCTwndy Cantral
[IMediaview 1.41 Conkral
[TMessage Blaster by Waretwithall, Inc,
[TMicroHelp Gauge Contral
[T MicraHelp Key State Conkral
[T MicraHelp Mh3dList Contral
[T Micrasaft &ckives Layout 1.0
[IMicrosaft Chart Contral

[T Micrasaft Comm Conkraol 5.0 -
1| |]

Browse. .,

[selected Ikems Only

—Cryskal Report Conkrol 2.6
Location: CAMIMNTISwstem3ZY\CRYSTLIZ, OC

Components | X

o |

Cancel | i

To add a control, select the check box next to the desired selection. When done,
choose OK and the selected controls will now appear in the toolbox.

Each custom control has its own set of properties, events, and methods. The best
reference for each control is the Microsoft Visual Basic Component Tools Guide
manual that comes with Visual Basic 6.0. And, each tool aso features ortline help.

Here, we'll look at severa custom controls and brief examples of their usage. And,
we' ll give some of the more important and unique properties, events, and methods for
each. The main purpose here is to expose you to afew of these controls. You are
encouraged to delve into the toolbox and look at all the tools and find ones you can

use in your applications.

Database Access and Management 8-372

Masked Edit Control
3

The masked edit control is used to prompt users for data input using a mask pattern.
The mask allows you to specify exactly the desired input format. With a mask, the
control acts like a standard text box. This control isloaded by selecting the
Microsoft Masked Edit Contr ol from the Components dialog box.

Possible uses for this control include:

a To prompt for a date, atime, number, or currency value.

a To prompt for something that follows a pattern, like a phone number
or social security number.

a To format the display and printing of mask input data.

Masked Edit Properties:

M ask Determines the type of information that is input into
the control. It uses characters to define the type of
input (see ontline help for complete descriptions).

Text Contains data entered into the control (including all
prompt characters of the input mask).

Masked Edit Events:
Change Event called when the data in the control changes.

Validation Error Event called when the data being entered by the
user does not match the input mask.

Database Access and Management 8-373

Masked Edit Example:

We'll use the masked edit control to obtain a phone number. Place a masked edit
control on aform. Set the masked edit controls M ask property equal to:

(HHH) -t

Set the Font Size property to 12. My form now looks like this:

&. Forml Mi=1E3

Run the example and notice how simple it is to fill in the phone number. Break the
application and examine the Text property of the control in the Immediate Window.

Chart Control

aly

Thechart control isan amazing tool. In fact, it’'s like a complete program in itself.
It allows you to design all types of graphs interactively on your form. Then, at run-
time, draw graphs, print them, copy them, and change their styles. The control is
loaded by selecting Microsoft Chart Contr ol from the Components dialog box.

Possible uses for this control include:

a Todisplay datain one of many 2D or 3D charts.
a Toload datainto a grid from an array.

Chart Control Properties:

ChartType Establishes the type of chart to display.

RandomFill Used to fill chart with random values (good for
chcking out chart at design-time). Datais normally
loaded from a data grid object associated with the
chart control (consult on-line help).

Database Access and Management 8-374

Obvioudly, there are many more properties used with the chart control. We
only look at these two to illustrate what can be done with this powerful
control.

Chart Control Examples:

Start a new application. Add a chart control to the form. A default bar graph will
appear:

sForml |
100 100
1] - a0
B0 +— — - B0
40 g — —1 a0
20 —l_l: 20
0 0
R F2 RS

&. Forml Mi=1E3
100 100
|
G0

Database Access and Management 8-375

or obtain afancy 3D chart by using a ChartType of 8:

&. Forml Hi=]1 E3

These few quick examples should give you an appreciation for the power and ease of
use of the chart control.

Multimedia Contr ol

E

The multimedia control allows you to manage Media Control Interface (MCI)

devices. These devicesinclude: sound boards, MIDI sequencers, CD-ROM drives,
audio players, videodisc players, and videotape recorders and players. This control is
loaded by selecting the Microsoft M ultimedia Contr ol from the Components dialog
box.

The primary use for this control is:

a To manage the recording and playback of MCI devices. This

includes the ability to play CD’s, record WAV files, and playback
WAV files.

When placed on a form, the multimedia control resembles the buttons you typically
seeonaVCR:

E R E R EEE

Y ou should recognize buttons such as Play, Rewind, Pause, etc.

Database Access and Management 8-376

Programming the Multimedia Control:

The multimedia control uses a set of high-level, device-independent commands,
knownas MCI (media control interface) commands, to control various multimedia
devices. Our example will show you what these commands look like. You are
encouraged to further investigate the control (via online help) for further functions.

Multimedia Control Example:

We'll use the multimedia control to build asimple audio CD player. Put a
multimedia control on aform. Place the following code inthe Form_L oad Event:

Private Sub Form Load()

"Set initial properties

Fornil. MMControl 1. Notify = Fal se

Forml. MMControl 1. Wit = True

For ml. MMCont r ol 1. Shar eabl e = Fal se

For mlL. MCont r ol 1. Devi ceType = " CDAudi 0"
" Open t he device

For mL. MCont r ol 1. Conmmand = " Qpen”

End Sub

This code initializes the device at run time. If an audio CD isloaded into the CD
drive, the appropriate buttons on the Multimedia control are enabled:

i, Form1 M=l E3

This button enabling is an automatic process - no coding is necessary. Try playing a
CD with this example and see how the button status changes.

Database Access and Management 8-377

Rich Textbox Control

Therich textbox control allows the user to enter and edit text, providing more
advanced formatting features than the conventional textbox control. Y ou can use
different fonts for different text sections. Y ou can even control indents, hanging
indents, and bulleted paragraphs. This control isloaded by selecting the Micr osoft
Rich Textbox Control from the Components dialog box.

Possible uses for this control include:

a Read and view large text files.
a Implement afull-featured text editor into any applications.

Rich Textbox Properties, Events, and Methods:

Most of the properties, events, and methods associated with the conventional textbox
are available with the rich text box. A major difference between the two controlsis
that with the rich textbox, multiple font sizes, styles, and colors are supported. Some
unique properties of the rich textbox are:

FileName Can be used to load the contents of a .txt or .rtf file
into the control.

SalFontName Set the font name for the selected text.

SelFontSize Set the font size for the selected text.

SelFontColor Set the font color for the selected text.

Some unique methods of the rich textbox are:

LoadFile Open afile and load the contents into the control.
SaveFile Save the control contents into afile.

Rich Textbox Example:

Put arich textbox control on aform. Put a combo box on the form (we will use this
to display the fonts available for use). Use the following code in the Form_L oad
event:

Private Sub Form Load()
Dim1 As Integer

For | = 0 To Screen. Font Count - 1
Conbol. Addl t em Screen. Fonts(1)
Next |

End Sub

Database Access and Management 8-378

Use the following code in the Combol_Click event:

Private Sub Combol Cick()
Ri chText Box1. Sel Font Nanme = Conbol. Text
End Sub

Run the application. Type some text. Highlight text you want to change the font on.
Go to the combo box and select the font. Notice that different areas within the text
box can have different fonts:

&. Forml =1 E3

This will just illustrate how you can
display different fonts in a rich text bax
control

Times Eoman

Arial

Courler

Slider Control

Thesdlider control is similar to a scroll bar yet allows the ability to select a range of

values, aswell asasingle value. This control is part of a group of controls |oaded by
selecting the Microsoft Windows Common Controls from the Components dialog
box.

Possible uses for this control include:

a To set the value of apoint on agraph.

a To sdect arange of numbers to be passed into an array.
a Toresizeaform, field, or other graphics object.

Database Access and Management 8-379

Slider Control Properties:

Value Current dlider value.

Min, Max Establish upper and lower dider limits.

TickFrequency Determines how many ticks appear on dlider.

TickStyle Determines how and where ticks appear.

SmallChange Amount dlider value changes when user presses |eft
or right arrow keys.

LargeChange Amount dider value changes when user clicks the
dlider or presses PgUp or PgDn arrow keys.

SelectRange Enable selecting a range of values.

SdStart Starting selected value.

SelLength Length of select range of values.

Slider Control Example:

WEe'll build a dider that lets us select a range of number somewhere between the
extreme values of 0 to 100. Put two label boxes and a dider on aform:

. Forml MI=1E3

Labell Label2

b —

Set the dider control SmallChange to 1, LargeChange to 10, Min to 0, M ax to 100,

TickFregquency to 10, and SelectRange to True. Use the following in the
Slider1 MouseDown event:

Private Sub Sliderl MuseDown(Button As Integer, Shift As
Integer, x As Single, y As Single)
[f Shift = 1 Then
Sliderl. Sel Start = Sliderl. Val ue
Label 1. Caption = Sliderl. Val ue
Sliderl. Sel Length = 0
Label 2. Caption = ""
End If
End Sub

Database Access and Management 8-380

and this code in the Slider 1_M ouseUp event:

Private Sub Sliderl MuseUp(Button As Integer, Shift As
Integer, x As Single, y As Single)
On Error Resunme Next
[f Shift = 1 Then
Sliderl. SelLength = Sliderl.Value - Sliderl. Sel Start
Label 2. Caption = Slider1. Val ue
El se
Sliderl. Sel Length = 0
End If
End Sub

Run the application. Establish a starting value for the selected range by moving the
dider to adesired point. Then, click the dlider thumb while holding down the Shift
key and move it to the desired upper value.

Database Access and Management 8-381

Tabbed Dialog Control

[

Thetabbed dialog contr ol provides an easy way to present several dialogs or screens
of information on a single form using the same interface seen in many commercial
Windows applications. This control isloaded by selecting the Sheridan Tabbed
Dialog Control from the Components dialog box.

The tabbed dialog control provides a group of tabs, each of which acts as a container
(works just like a frame or separate form) for other controls. Only one tab can be
active at atime. Using this control iseasy. Just build each tab container as separate
applications: add controls, set properties, and write code like you do for any
application. Navigation from one container to the next issmple: just click on the
corresponding tab.

Tabbed Dialog Control Example:

Start an application and put a tabbed dialog control on the form:

&. Forml H=]1 E3

Tabd | Tab 1 | Tab 2

Design each tab with some controls, then run the application. Note how each tab in
the folder has its own working space.

Database Access and Management 8-382

UpDown Control

iE

The updown control isapair of arrow buttons that the user can click to increment or
decrement avalue. It works with a buddy control which uses the updown control’s

value property. This control is part of a group of controls loaded by selecting the
Microsoft Windows Common Controls from the Components dialog box.

UpDown Control Properties:

Value Current control value.

Min, Max Establish upper ard lower control limits.

I ncrement Amount control value changes each time an arrow
is clicked.

Orientation Determines whether arrows lie horizontally or
verticaly.

UpDown Control Events:

Change Invoked when value property changes.
UpClick Invoked when yp arrow is clicked.
DownClick Invoked when down arrow is clicked.

UpDown Control Example:

We'll build an example that lets us establish a number between 1 and 25. Add a
updown control and alabel box to aform. Set the updown control’s Min property to
1 and Max property to 25. The form should resemble:

Labe ﬂ
[

Use this simple code in the UpDownl_Change event, then give it atry:

Private Sub UpDownl_Change()
Label 1. Capti on = UpDownl. Val ue
End Sub

Database Access and Management 8-383

Toolbar Control

Almost all Windows applications these days use toolbars. A toolbar provides quick
access to the most frequently used menu commands in an application. The toolbar
control isaminiapplication initself. It provides everything you need to design and
implement a toolbar into your application. This control is part of a group of controls
loaded by selecting the Microsoft Windows Common Controls from the
Components dialog box.

Possible uses for this control include:

a Provide a consistent interface between applications with matching
toolbars.

a Place commonly used functions in an easily-accessed space.

a Provide an intuitive, graphica interface for your application.

To create a basic toolbar, you need to follow a sequence of steps. Y ou add
buttons to a Buttoncollection - each bitton can have optional text and/or an
image, supplied by an associated | mageL ist control (another custom
control). Buttons can have tooltips. In more advanced applications, you can
even allow your user to customize the toolbar to their liking!

After setting up the toolbar, you need to write code for the ButtonClick event.
The index of the clicked button is passed as an argument to this event. Since
toolbar buttons provide quick access to already coded menu options, the code
in this event is usualy just a cal to the respective menu item’s Click
procedure.

Toolbar Control Example

WEe'll ook at the simplest use of the toolbar control - building a fixed format
toolbar (pictures only) at design time. W€ Il create atoolbar with five
buttons: oneto create anewfile, one to open afile, one to save afile, one
to print afile, and one for help. Place atoolbar and imagelist control on a
form. Right click on the imagelist control to set the pictures to be used.
Using the | mages tab, assign the following fiveimages. Image 1 -
NEW.BMP, Image 2 - OPEN.BMP, Image 3 - SAVE.BMP, Image 4 -
PRINT.BMP, and Image5 - HELP.BMP

Database Access and M anagement

8-384

When done, the image control should look like this:

— Current Image

Indes: IE ke |

Property Pages | x]

General Images | Color I

ol

Bemove Picture | Image Count; IE

(] I Cancel | T[] | Help |

Click OK to close this box. Now, right mouse click on the toolbar control.
The Property Pages dialog box will appear. Using the Genera tab, select
the imagelist control just formed. Now, choose the Buttons tab to define

each button:
Property Pages [X
General Buttons | F'iu:turel
Index: |1_JJ IW Bemove Button |
LCaption: ||— Qescriptinn:l
Eey: | Walue: IEI-tI:urLlnpressed j
Shyle: ID thiD efault j ‘width: [Flacehalder] IF
Tao: I
ToolTipT ext: I
Image: ||:|

v Wizible ¥ Enabled [MixedState

(] I Cancel T[] Help

Database Access and Management 8-385

A new button is added to the toolbar by clicking Insert Button. Ata
minimum, for each button, specify the Tool TipText property, and the
Image number. Vaues| used are:

Index ToolTipText Image
New File
Open File
Save File
Print File
-None-
Help me!

OO WNPE
GO bhwWNE

Note button 5 is a placeholder (set Style property to tbr Placeholder) that puts some
space between the first four buttons and the Help button. When done, my form
looked like this:

&. Forml Mi=1E3

sl ===

Save and run the application. Note the button’sjust click - we didn’t write any code
(as mentioned earlier, the code is usualy just a call to an existing menu item’s click
event). Check out how the tool tips work.

Quick Note on Tooltips:
Many of the Visua Basic controls support tooltips to inform the user of what a

particular control. Simply set individual control’s Tool TipT ext property to a non
blank text string to enable this capability.

Database Access and Management 8-386

Using the Windows Clipboard
The Clipboard object has no properties or events, but it has several methods that
allow you to transfer data to and from the Windows clipboard. Some methods
transfer text, some transfer graphics.
A method that works with both text and graphicsis the Clear method:

Clipboard.Clear Clear the clipboard contents.

To move text information to and from the clipboard, use the SetText and Get T ext
methods:

Clipboard.SetText Places text in clipboard.
Clipboard.GetText Returns text stored in clipboard.

These methods are most often used to implement cutting, copying, and pasting
operations.

To move graphics to and from the clipboard, use the SetData and GetData methods:

Clipboard.SetData Places a picture in clipboard.
Clipboard.GetData Returns a picture stored in clipboard.

When using the clipboard methods, you need to know what type of data you are
transferring (text or graphics). The GetFormat method allows that:

Clipboard.GetFormat(datatype) ReturnsTrue if the clipboard contents are of
the type specified by datatype.

Possible datatypes are:
Type Value Symbolic Congtant
DDE conversation info HBFOO vbCFLink
Rich text format HBFO1 VbCFRTF
Text 1 vbCFText
Bitmap 2 vbCFBitmap
Metefile 3 vbCFMetefile
Device-independent bitmap 8 vbCFDIB
Color paette 9 vbCFPalette

Database Access and Management 8-387

Printing with Visual Basic

Any serious Visua Basic application will need to use the printer to provide the user
with a hard copy of any work done or results (text or graphics) obtained. Printing is
one of the more complex programming tasks within Visua Basic.

Visual Basic uses two primary approaches to printing text and graphics:

P You can produce the output you want on a form and then print the entire
form using the PrintForm method.

P You can send text and graphics to the Printer object and then print them
using the NewPage and EndDoc methods.

We'll look at how to use each approach, examining advantages and disadvantages of
both. All of these techniques use the system default printer. You can also select a

printer in Visual Basic, but we won't look at that here.

The PrintForm method sends a pixel-by-pixel image of the specified form to the
printer. To print, you first display the form as desired and via code invoke the
command: PrintForm. This command will print the entire form, using its selected

dimensions, even if part of the form is not visible on the screen. If aform contains
graphics, they will be printed only if the form’s AutoRedraw property is True.

The PrintForm method is by far the easiest way to print from an application. But,
graphics results may be disappointing because they are reproduced in the resolution
of the screen, not the printer. And small forms are still small when printed.

PrintForm Example:

Start anew application. Put an image box on the form. Sizeit and set the Stretch
property to True. Set the Picture property to some picture (metafiles are best, you
choose). Add alabel box. Put some formatted text in the box. My formlooks like
this:

w. Forml S !IEI!!!
Here is

some text!

Database Access and Management 8-388

Add this code to the Form_Click event:

Private Sub Form i ck()
Pri nt Form
End Sub

Run the application. Click on the form (not the image or label) and things should
print. Not too hard, huh?

Using the Printer object to print in Visual Basic is more complicated, but usually
provides superior results. But, to get these better results requires a bit (and, at times,
more than a bit) of coding.

The Printer object is a drawing space that supports many methods, like Print, PSet,
CurrentX, CurrentY, Line, PaintPicture (used to print contents of Picture boxes),
and Circle, to create text and graphics. Y ou use these methods just like you would on
aform. When you finish placing information on the Printer object, use the EndDoc
method to send the output to the printer. The NewPage method allows printing

multi- page documents.

The Printer object also has several properties that control print quality, page size,
number of copies, scaling, page numbers, and more. Consult Visual Basic on-line
help for further information.

The usual approach to using the Printer object is to consider each printed page to be a
form with its own coordinate system. Use this coordinate system and the above listed
methods to place text and graphics on the page. When complete, use the EndDoc
method (or NewPage method if there are more pages). At that point, the page will
print. The main difficulty in using the Printer object is planning where everything
goes. | usually use the Scale method to define an 8.5” by 11" sheet of standard paper
in 0.01” increments:

Printer.Scale (0, 0) - (850, 1100)
| then place everything on the page relative to these coordinates. The example

illustrates the use of afew of these techniques. Consult other Visua Basic
documentationfor advanced printing techniques.

Database Access and Management 8-389

Printer Object Example:

In this example, we'll first define a standard sheet of paper. Then, we'll use the Line
method to draw a box, the Circle method to draw acircle, and the Print method to
‘draw’ sometext. Start anew application. We don’t need any controls on the form -
all the printing is done in the Form_Click procedure.

Private Sub Form dick()

Printer.Scale (0, 0)-(850, 1100)
Printer.Line (100, 100)-(400, 300), , B
Printer.Crcle (425, 550), 300
Printer.Current X = 100

Printer. Current Y= 800

Printer.Print "This is sone text."
Printer. EndDoc

End Sub

A few words on each line in this code.
First, we establish the printing area to
be 850 units wide by 1100 units long.
This dlows us to place items on a
standard page within 0.01 inches.
Next, we draw a box, starting 1 inch
from the left and 1 inch from the top,
that is 3 inches wide and 2 inches high.
Then, acircle, centered at mid-page,
with radius of 3 inchesis drawn.
Finally, aline of text is printed near the
bottom of the page. The EndDoc
method does the printing for us. The
printed page is shown to the right.

Run the application. Click the form to
start the printing. Relate the code to the finished drawing.

Thebest way to learn how to print in Visua Basic isto do lots of it. You'll develop
your own approaches and techniques as you gain familiarity. Use FormPrint for

simple jobs. For detailed, custom printing, you'll need to use the Printer object.

Database Access and Management 8-390

Multiple Form Visual Basic Applications

All applications developed in this class use asingle form. In reality, most Visua
Basic applications use multiple forms. The About window associated with most
applications is a common example of using a second form in an application. We need
to learn how to manage multiple forms in our projects.

To add aform to an application, click the New Form button on the toolbar or select
Form under the Insert menu. Each form is designed using exactly the same
procedure we always use: draw the controls, assign properties, and write code.
Display of the different formsis handled by code you write. Y ou need to decide

when and how you want particular forms to be displayed. The user always interacts
with the *active’ form.

The first decision you need to make is to determine which form will be your startup
form. Thisisthe form that appears when your application first begins. The startup

form is designated using the Project Properties window, activated using the Visual

Basic Project menu:

'Startup Formr

Projectl - Project Properties

General | b ake I Eu:umpilel Eu:umpu:unentl

Project Type: Skartup CRjeck:

St andard EiE [Formt =]
Project Name:
IF‘ru:ujeu:tl
Project Help
Help File Mame:; Context ID:

| 5
Project Description:

[nattended Exeribion
¥ Upgrade Activex Controls e ad penohie:
™| Require License key £ 1 fread Pool |1 3: Eireads

(] I Cancel | Help

Database Access and Management 8-391

As mentioned, the startup form automatically oads when your application is run.
When you want another form to appear, you write code to load and display it.
Similarly, when you want a form to disappear, you write code to unload or hide it.
This form management is performed using various keywords:

Keyword Task

Load Loads a form into memory, but does not display it.

Show vbModeless Loads (if not already loaded) and displays a modeless
form (default Show form style).

Show vbModal Loads (if not already loaded) and displays a modal form.

Hide Sets the form’s Visible property to False Form remains
in memory.

Unload Hides aform and removes it from memory.

A modeless form can be left to go to other forms. A modal form must be closed
before going to other forms. The startup form is modeless.

Examples

Load Forml ‘ Loads Form1 into memory, but does not display it
Form1.Show ‘ Loads (if needed) and shows Form1 as modeless
Form1.Show vbModal ‘ Loads (if needed) and shows Form1 as moda.
Forml.Hide‘ Sets Form1's Visible property to False

Hide‘ Hides the current form

Unload Form1 * Unloads Forml1 from memory and hides it.

Hiding aform alowsi it to be recalled quickly, if needed. Hiding aform retains any
data attached to it, including property values, print output, and dynamically created
controls. You can still refer to properties of a hidden form. Unload aform if it is not
needed any longer, or if memory space is limited.

If you want to speed up display of forms and memory is not a problem, it is a good
ideato L oad all forms when your application first starts. That way, they are in
memory and available for fast recal.

Database Access and Management 8-392

Multiple Form Example:

Start a new application. Put two command buttons on the form (Form1). Set one's
Captionto Display Form2 and the other’s Captionto Display Form3. The form
will look like this:

. Forml _ (O] x|

Digzplay Faorm3 |

Attach this code to the two command buttons Click events.

Private Sub Conmandl_dC i ck()
For n2. Show vbMbdel ess
End Sub

Private Sub Command2_C i ck()

For n8. Show vbMbdal
End Sub

Add a second form to the application (Form2). Thisform will be modeless. Placea
command button on the form. Set its Caption to Hide Form.

&. Form2 Mi=1E3

Attach this code to the button’s Click event.

Private Sub Commandl C i ck()
For n2. Hi de

For mL. Show

End Sub

Database Access and Management 8-393

Add athird form to the application (Form3). Thisform will be modal. Placea
command button on the form. Set its Caption to Hide Form.

. Form3 Mi=1E3

Attach this code to the button’s Click event.

Private Sub Commandl C i ck()
For n8. Hi de

For mL. Show

End Sub

Make sure Forml is the startup form (check the Project Properties window under
the Project menu). Run the application. Note the difference between modal (Form3)
and modeless (Form2) forms.

Database Access and Management 8-394

Visual Basic Multiple Document Interface (MDI)

In the previous section, we looked at using multiple forms in a Visual Basic
application. Visua Basic actualy provides a system for maintaining multiple-form
applications, known as the M ultiple Document Interface (M DI1). MDI alowsyou
to maintain multiple forms within a single container form. Examples of MDI
applications are Word, Excel, and the Windows Explorer program.

An MDI application allows the user to display many forms at the same time. The
container window is called the parent form, while the individual forms within the
parent are thechild forms. Both parent and child forms are modeless, meaning you
can leave one window to move to another. An application can have only one parent
form. Creating an MDI application is a two-step process. You first create the MDI
form (choose Add M DI Form from Project menu) and define its menu structure.
Next, you design each of the application’s child forms (set M DI Child property to
True).

Design-Time Features of MDI Child Forms:

At design time, child forms are not restricted to the area inside the parent form. You
can add controls, set properties, write code, and design the features of child forms
anywhere on the desktop.

Y ou can determine whether aform is achild by examining its M DI Child property, or
by examining the project window. The project window uses special iconsto
distinguish standard forms, MDI child forms, and MDI parent forms:

% Project - Projectl = 10]x]
a

=58 Project1 (Project1)
- @ Faorms

Standard form — =
\El Forml (Forml)

Child form '—-lj Farmz I::FI:IrTl'l;-E'::l
| P MDIForm1 (MDIForml)

Parent form —]

Run-Time Features of MDI Child Forms;

At run-time, the parent and child forms take on special characteristics and abilities.
Some of these are:

1. Atruntimeal child forms are displayed within the parent form’s internal
area. The user can move and size child forms like any other form, but
they must stay in thisinternal area.

Database Access and Management 8-395

. When a child is minimized, its icon appears on the MDI parent form
instead of the user’s desktop. When the parent form is minimized, the
entire application is represented by asingleicon. When restored, al forms
are redisplayed as they were.

. When a child form is maximized, its caption is combined with the parent
form’s caption and displayed in the parent title bar.

By setting the AutoShowChildr en property, you can display child forms
automatically when forms are loaded (True), or load child forms as
hidden (False).

. Theactive child form’s menus (if any) are displayed on the parent form’s
menu bar, not the child form.

New child forms can be created at run-time using a special form of the
Dim statement and the Show statement (the example illustrates this

process).

. The parent form’s ActiveFor m property indicates which child formis
currently active. The ActiveControl property indicates which control on
the active child form has focus.

. The Arrange command can be used to determine how the child forms and
their icons (if closed) are displayed. The syntax is:

Arrange style
where style can take on these values:

Style Symbolic Constant Effect

0 vbCascade Cascade al nonminimized MDI
child forms.

1 vbTileHorizontal Horizontally tile all nonminimized
MDiI child forms.

2 vbTileVertical Verticaly tile all nonminimized MDI
child forms.

3 vbArrangel cons Arrange icons for minimized MDI

child forms.

Database Access and Management 8-396

Multiple-Document Application (MDI) Example:

We'll create an MDI application which uses a smple, text box-based, editor asthe
child application. There are alot of steps, even for asmple example. Start a new
application. Create a parent form by selecting M DI Form from the Insert menu. At
this point, the project will contain an MDI parent form (M DIForm1) and a standard
form (Form1) which we will use as a child form. Make MDIForml the startup form.
We work with the parent form first:

1. Set the following properties:

Caption MDI Example
Name frmParent
WindowState 2-Maximized

2. Set up the following menu structure:

Caption Name Indented

&File mnuFile No

&New mnuFileNew Yes

&Arrange mnuArrange No

& Cascade mnuArrangeltem Yes Index=0
&Horizonta Tile mnuArrangeltem Yes Index=1
&Vertical Tile mnuArrangeltem Yes Index=2
&Arrangelcons mnuArrangeltem Yes Index=3

3. Attach this code to the mnuFileNew_Click procedure. This code creates
new child forms (named frmChild - developed next).

Private Sub muFi | eNew Cl i ck()
Di m NewDoc As New frnChild
NewDoc. Show

End Sub

4. Attach this code to the mnuArrangeltem_Click procedure. This
establishes how child forms are displayed.

Private Sub muArrangeltem Cick(lndex As Integer)

Arrange | ndex
End Sub

Database Access and Management 8-397

Now, we'll work with Form1 which will hold the child application:

5. Draw atext box on the form. Set the following properties for the form and
the text box:

Form1:
Caption Child Form
MDIChild True
Name frmChild
Visible Fase
Textl:
L eft 0
MultiLine True
ScrollBars 2-Vertical
Text [Blank]
Top 0

My form resembles this:

M Child Form _ O] x|

-

6. Attach this code to the Form_Resize procedure. This insures that
whenever a child window is resized, the text box fills up the entire
window.

Private Sub Form Resi ze()
Text 1. Hei ght = Scal eHei ght
Text 1. Wdth = Scal eWdth
End Sub

Run the application. Create new forms by selecting New from the File menu.
Try resizing forms, maximizing forms (notice how the parent form title bar
changes), minimizing forms, closing forms. Try all the Arrange menu
options.

Database Access and Management 8-398

Creating a Help File

During this course, we' ve made extensive use of the Visual Basic ortline help
system. In fact, one of the mgor advances in software in the past few years has been
improvements in such interactive help. Adding a help file to your Visual Basic
application will give it real polish, as well as making it easier to use.

Y our help file will cortain text and graphics information needed to be able to run
your application. The help file will be displayed by the built-in Windows help utility
that you use with every Windows application, hence al functions available with that
utility are available with your help system. For example, each file can contain one or
more topics that your user can select by clicking a hot spot, using a keywor d sear ch,
or browsing through text. And, it's easy for your user to print any or all help topics.

Creating acomplete help file is a mgor task and sometimes takes as much time as
creating the application itself! Because of this, we will only skim over the steps
involved, generate a simple example, and provide guidance for further reference.

There are five magjor steps involved in building your own help file:

Create your application and develop an outline of help system topics.
Createthe Help Text File (or Topic File) in RTF format.

Createthe Help Project File (HPJ).

Compile the Help File using the Help Compiler and Project File.
Attachthe Help File to your Visual Basic application.

gk wnNE

Step 1 is application-dependent. We'll look briefly at the last four steps here. More
complete details, including formatting and file structure requirements, are available in
many Visual Basic references..

Creating aHelp Text File:

To create a Help Text File, you need to use aword processor capable of saving
documents in rich-text format (RTF). Wordand WordPerfect do admirable jobs.
You must also be familiar with text formatting procedures such as underlining,
double-underlining, typing hidden text, and using footnotes. This formatting is used
to delineate different parts of the help file. You should make sure al formatting
options are visible when creating the Help Text File.

Database Access and Management 8-399

The Help Text Fileis basically a cryptically encoded list of hypertext jumps (jump
phrases) and context strings. These are items that allow navigation through the topics
in your help file. Some generd rules of Help Text Files:

* Topics are separated by hard page breaks.

* Each topic must have a unique context string.

* Each topic can have atitle.

* A topic can have many keywords attached to it to enable quick access
utilizing a search facility.

* Topics can have build-tag indicators and can be assigned a browse
sequence.

* Jumps can be to another secondary window or to another file.

Once completed, your Help Text File must be saved as an RTF file.
Help Text File Example:

WEe Il create avery smple help text file with three topics. | used Word 6.0 in this
example. Create a document with the following structure and footnotes:

74 Microsoft Word - SIMPLE.DOC

@Eile Edit Miew Ingert Fomat Tools Table Window Help
N EENEFERAEEE R R E I EEE
[Nomal =] [Arial = s =]
EE---|---1---|---2---|---3---!---ff--;

#iSimple-Help-Table-of-Contentsy
\l

Help-topicsy
= TopiclHID TOPICTY
12

sy

il
~ LopicdHID_TORIC3T

Page Break

#kHelp-Topic-11

Thisisthe-text for help-topic-number-one]

Page Break
#HHelp-Topic-21
This-isthe-text for help-topic- number two]
FPage Break
#kHelp-Topic-31 =
o | o

[Page 1 Sec 1 14 [ar1r Ln1 Cal1 [zazPM [REC |

Database Access and Management 8-400

Some things to note: Topicl and Topic3 (hypertext jumps) are double-underlined to
indicate clickable jumpsto topics. Topic2 is single-underlined to indicate a jump to a
pop-up topic. Thewords HID_TOPIC1, HID_TOPIC2, and HID_TOPIC3
(context strings) are formatted as hidden text. Note page breaks separate each

section. Do not put a page break at the end of the file.

Also, note the use of footnotes. The # footnote is used to specify aHelp context 1D,
the $ provides Topic Titles for searching, and K yields search keywords. The
footnotes for this example are:

74 Microsoft Word - SIMPLE.DOC

@Eile Edit Miews Inzert Fomat Tools Table ‘window Help

EEENERE AR EE R R R

|Fuolnole Text ;Il |Alial j| |1I] jl | Bl II QJ
EE---|---1---|---2---|---3---|---4--;|

#*$gimple-Help-Table-of-Contentsy [
IAII Footnotes J Close I ﬂ

AHID_COMTENTSY

£ SIMPLE-Help-ContentsT
AHID_TORIC1Y

& SIMPLE Help- Topic- 19
K SIMPLE-TopicsT
AHID_TORIC2Y

& SIMPLE Help- Topic-29
K SIMPLE-Topics

AHID_TORIC3Y

£ SIMPLE Help- Topic-39

K SIMPLE-Topics =
o | i
[Page 1 Sec 1 14 [At Ln Cal 1 [zmpM [REC |

When done, save thisfile as SIMPLE.RTF (Rich Text Format).
Creating the Help Project File:

TheHelp Project File contains the information required by the Help Compiler to
create the Help file. Thefileis created using any text editor and must be saved as
unformatted text (ASCI1). The file extension is HPJ.

The Help Project File can contain up to nine sections, each of which supplies
information about the source file to compile. Sections names are placed within
square brackets[]. Semicolons are used to indicate a comment. Sections can bein
any order. The sections are:

[OPTIONS] Specifies options for build (optional).

[FILES Specifies Help Text Files (RTF) (required).
[BUILDTAGS] Specifiesany build tags (optional).

[CONFIG] Author defined menus, macros, etc. (optional)

Database Access and Management 8-401

[BITMAPS] Specifies any bitmaps needed for build.

[ALIAS] Can be used to specify context strings to topics (optional).
[MAP] Associates context strings with numbers. Used with context-
sengsitive help (optional).

[WINDOWS] Defines primary and secondary windows (required only if
secondary windows used).
[BAGGAGE] Lists filesto be included in HL P file.

Help Project File Example:
For our simple example, the Help Project Fileis equally simple:

[OPTIONS]
CONTENTS=HID_CONTENTS
TITLE=SIMPLE Application Help
[FILES]

SIMPLE.RTF

This file specifies the context ID of the Table of Contents screen and the name of the
RTF file that contains the help text. Save thisfile as SIMPLE.HPJ (in Text, or
ASCII format).

Compiling the Help File:
Thisisthe easiest step. The help compiler is located in the c:\Program
Files\DevStudio\vb\hc directory and is the program hc.exe. Your file is compiled
within the DOS window. Once in that window, move to the directory containing your
HPJ file and type:

c\Program Files\DevStudio \vb\hc\hc filename.HPJ
where filename is your Help Project File. This process generates a binary help
resource file and may take a long time to complete. Any errors are probably due to

problemsin the RTF file(s). The created file has the same name as your Help Project
Filewith an HL P extension.

Help File Example:
To compile the example, at a DOS prompt, type:
c:\Program FilesDevStudio\vb\hc\hc SSIMPLE.HPJ

The help file SIMPLE.HLP will be created (if no errors occur) and saved in the same
directory as your HPJ file.

Database Access and Management 8-402

Attaching the Help File:

The final step istoattach the compiled help file to your application. Asafirst step,
open the Project Properties window under the Project menu. Under Help File,
select the name of your HL P file by clicking the élipsis(...). Thistiesthe help file to
the application, enabling the user to press F1 for help.

You can also add a Help item somewhere in your menu structure that invokes help
viaits Click event. If you do this, you must write code to invoke the help file. The
code involves a cal to the Windows API function, WinHelp. But, after last class,
we' re not daunted by such functions, are we? First, we need the function declaration
(from the API Text Viewer):

Declare Function WinHelp Lib "user32" Alias "WinHelpA" (ByVa hwnd
AsLong, ByVal IpHelpFile As String, ByVa wCommand As Long,
ByVa dwData AsLong) AsLong

We also need a constant (also from the API Text Viewer):
Const HELP_INDEX = &H3 " Display index

This constant will declare the Help files index page upon invocation of WinHelp.
There are other constants that can be used with WinHelp - thisis just asimple
example. The Declare statement and constant definitions usually go in the general
declarations area of a code module and made Public. If you only have one formin
your application, then put these statements in the general declarations area of your
form (and declare them Private). Once everything isin-place, to invoke the Help file
from code, use the function call:

Dim R AsLong

R= WiﬁHeI p(startupform.hwnd, filename.HLP, HELP_INDEX, CLng(0))

where startupform is the name of your application main form and filenameis the help
file name, including path information.

Database Access and Management 8-403

Help File Example:

We can now try our example help filein aVisual Basic application. We'll only use
the F1 option here. Start a new application. Bring up the Project Properties
window via the Project menu. Select the correct Help File by clicking the éllipsis
and finding your newly created file. Click OK. Now, run your application (I know
there's nothing in the application, but that’s al right). Once, it’s running press F1.
This Help screen should appear:

<> SIMPLE Application Help M= 3
File Edit Bookmark Option: Help
Euntentsl Search | Black | Frrirt |

Simple Help Table of Contents

Help topics

Move the mouse cursor to Topicl and notice the cursor changesto ahand. Click
there and the corresponding Topic 1 screen appears.

> SIMPLE Application Help =] E3
File Edit Bookmark Option: Help
Euntentsl Search | Back | Frrirt |

Help Topic 1

This Is the text for help topic number one.

TheHID_TOPIC1 text in the Table of Contents screen links to the corresponding
context 1D (the # footnote) in the topic page. Thislink isajump. Thelink to Topic

2 isapop-up jump, try it and you'll see.

Database Access and Management 8-404

Go back to the Table of Contents screen and click the Sear ch button. A dialog box
displaying the help file'slist of keywords appears. In our example, the three topics
al have the same keyword (the K footnotes), SSIMPLE Topics. When you double-
click on this keyword, you see al the associated topic titles (the $ footnotes):

Topics Found EE3 |

Click a topic, then click Dizplay.

: elp Topic 1
SIMPLE Help Topic 2
SIMPLE Help Topiz 3

Digzplay I Cancel

Y ou can now select your topic of choice.
More Help File Topics:

After al thiswork, you will still only have a simple help file, nothing that rivals those
seen in most gpplications. To improve your help system, you need to add some more
stuff. Information on these advanced help topicsis found in many Visual Basic
references.

A big feature of help systems is context-sensitive help. With this, you place the
cursor on or in something your interested in knowing about and press F1. A Help
topic, if one exists, shows up. The application is smart enough to know what you
want help with. Graphics always spiff up a help system. Help systems use a specia
type of graphics called hypergraphics. Lastly, Help macros add functionality to
your help system. There are over 50 macro routines built into the DLL WinHelp
application.

If, after seeing the rather daunting tasks involved in creating a help system, you don’t
want to tackle the job, take heart. There are several third party software packages that
assist in help system authoring and development. Look at computer magazine
advertisements (especialy the Visual Basic Programmer’s Journal) for potential
leads.

Database Access and Management 8-405

Class Summary

That's al | know about Visual Basic. You should now have a good breadth of
knowledge concerning the Visual Basic environment and language. This breadth
should serve as a springboard into learning more as you develop your own
applications. Feel free to contact me, if you think | can answer any questions you
might have.

Where do you go from here? With Visua Basic 6.0, you can extend your knowledge
to write Web-based applications, develop massive database front-ends using Visual
Basic’'s powerful database tools and techniques, and even develop your own ActiveX
(custom) controls. Other classes cover such topics.

And, the last example:

Final Apphcation E

@ Do you really want bo exit?

Database Access and Management 8-406

Exercise 10

The Ultimate Application

Design an application in Visua Basic that everyone on the planet wants to buy. Draw
objects, assign properties, attach code. Thoroughly debug and test your gpplication.
Create adistribution disk. Find adistributor or distribute it yourself through your newly
created company. Become fabulously wealthy. Remember those who made it all
possible by rewarding them with jobs and stock options.

My Solution:

Still working on it ...

&

Database Access and Management 8-407

This page intentionally not left blank. |

Learn Visual Basic 6.0

Appendix |. Visual Basic Symbolic Constants

Contents
AlIGNMENT CONSTANTS ..ottt srb et sb et ne e b e -4
F N [To] g I £0] o111 SRR -4
ANGNMENT PrOPEITYiiieiiciie ettt sbestesnesnaesnee e -4
Border Property CONSLANISccceiieiieiecie sttt sae e e -4
BorderStyle Property (FOIM) ... e -4
BorderStyle Property (Shape and LiNe)........cccovevvieninieneneseeesiese e -4
Clipboard ODject CONSLANTSccciiiiieiciece e -5
(070] (o] g 0] 151 £=1 g | K3 U U RSO U PP PROPN I-5
(0] [0 £V RUPRTPRRPN -5
SYSIEM COIOIS ...ttt sttt et e b s re e et e sreenne s -5
CONIOI CONSTANTS ..ottt bbb et se e e ne s nne s -6

COMDBOBOX CONLIOLottt ettt et e e e e e e e e e e e s e e e eaeeeeeeeaaeeeeens I-6

Database Access and Management 8-408

1S 1270) O o | { (o S -6
SCrolIBar CONTIOL.......ccuiiiiiiiieisee s -6
SAPE CONIOl ..o e rae e l-7
Data Control CONSTANLScccveiieicie e r e e e s l-7
Y o] A= o | @ 0]] = 1 -7
EditMode Property CONSLANTScccceieiirerenieieses et -7
Options Property CONSLANTScccviieeierinenieieese e seeee e s e sse e sneennens -7
Validate Event ACtion CONSTANLSccociviiiiieiieiecie et -8
Beginning -0f-File CONSANTScoo i e -8
ENd-0f-File CONSLANTScccieiieiece ettt -8
Recordset-TYPe CONSLANTScccccuviiiiiiiresest s e s ae e -8
Date CONSIANLSooiiiiiiieciee et s sb e se e be s s be e sbeesnreenneeens -9
firstdayofweek Argument ValUESccooeeiieiiiiicie et -9
firstweekofyear Argument ValUEScccoiiiiririiiinenee e -9

REIUIMN VAIUES ..ottt et e et e e e e ettt e e e ee et eeeeaea e e e e esaareneneeees -9

Database Access and Management 8-409

DBGId CONtrol CONSTANLSccueeiiiirieeieeieee sttt -9
AlIGNMENT CONSTANTS ..ottt nne e -9
BOrderStyle CONSLANTS........cooiiieiiiierieie st et e re e re s I-10
DataMode CONSTANTSooeiiiieierieeeee et e e se e saenneas I-10
DivIderStyle CONSTANLSocoiieieesesee et [-10
ROWDIVIAErStyle CONSLANTSociieiirieriese et nee s I-10
SCrOll Bar CONSIANTSooiieiiiiriisieieese et 1-20

DDE CONSLANTSeeiiiiiieiieieeie ettt b e n e n e sn e s e e neenne s I-11
lINKerr (LINKEITOr EVENT) ...t I-11
LinkMode Property (FOrms and CONtrolS)ccoceverenerenieneseeeesie s I-11

Dir, GetAttr, and SEetALtr CONSLANTScccoireeririeeree e e I-11

Drag-and-Drop CONSIANTSccuccuiiiiiiiieniisies e ss sre e sreesseesreenseens [-12
DragOVEr EVENL.....oc ittt et [-12
Drag Method (CONLIOIS)co.eeiiiiiiiieeeee et [-12
D E=To]\Y LoTo (R ed fo] o1=] g oYU I-12

Drawing CONSLANTSoiviiieriieiiieie ettt sse e s e sreesseesbeenseeaeeneens I-12
D= VT \Y [0 To [T o (0] o 1= o YRS [-12
DrawStyle PrOPEITY ...cc.ooeeeeieesieeeeee ettt s st e e nne s [-13

FOIM CONSLANTS ..ottt s e e b e s sneesnneen [-13
SNOW PAramMELErS......ceiuiiiieiirieeeieriet sttt et e I-13
Arrange Method for MDI FOIMSccueiiiiiieiiesiecis et e [-13
WiNAOWSTALE PrOPEITY....c.eciecieeiie et et e ettt e srae e e e e e eneesneas [-13

GraphiCS CONSIANTSoiiiiiiiiireeeie et e e b s e e s I-14
1 Y8 L e o] o 1Y o £ TSRS I-14
SYor=1 (S 1Y [oTo [e (0] o =T o YU UOUPRRRN I-14

Grid CoNtrol CONSLANTScc.oiiiiiieie e ae e e eaas I-14
ColAlignment, FixedAlIgnment Propertiesccoceviereneereneseseesesesee e I-14
FIISTYIE PrOPEITY ..ottt nae s enn e I-14

HEIP CONSIANLS ...oviciiiieiecieee ettt s besreereerenne s I-15

Key COUE CONSIANTSueevieiiiicieciee sttt ee e ste e e ee s s e snaeereenneesransnneen e I-15
KBY COUBS ...ttt ettt bbb e b b s e e e e eenaenae s [-15
KEYA TRIOUGN KEYZ ...ttt I-16
KeyO Through KEY9 ...ttt s sne s I-17
Keys onthe Numeric Keypad.........ccvviieiniiiiieiiesesie e I-17
FUNCHION KEYS ...ttt b e sttt nnenne s [-18

Menu Accelerator CONSLANTSccociieeiiiiieneere e nae [-18

MenU CoNtrol CONSTANTScceiiiiieieiirieriee et 1-22
PopupMenu Method AlIgNMENT...........ccoieiiieene e e [-22

PopupMenu Mouse Button ReCOgNItioN.........ccccveveeieeiieeseese e [-22

Database Access and Management 8-410

MiISCellaN@0US CONSLANTScociiiiiiiieie e s seesre e e [-22
ZOrder MEtNOM ..ot 1-22
QueryUnload Method..........ooviiiiiiiiiieniee e [-22
Shift Parameter MasKS ..o [-22
Button Parameter MasKS.........ooeiiiiieeesie e [-23
APPlication StArt MOEooeeieieiiseeeee e e [-23
LoadReSPicture Method ... 1-23
CRECK VAIUE ...ttt sttt st e b en s e ennaens [-23

MOUSE POINtEr CONSLANTS.......coiiiiiiiiiiieie e sre e seesre e nne s [-24

MSQOBOX CONSTANLS ...ttt bbb e ne e [-25
MSOBOX AFQUIMENTS ...ttt st [-25
MSQBOX REIUIN VAIUEBSoovieiiciecie et 1-25

OLE Container Control CONSLANLScccccviieeiieeiieseesieesieesie e [-25
OLETYPE PIOPEITY ...ttt sttt ne e [-25
OLETYPEAIIOWEA PrOPEILY ...c.eeueeeeieieieiesiesie sttt sttt et I-26
(O] oTo X (=1®] o110 g KST md (0] 01T o 2SS I-26
AULOACTIVALE PrOPEITY...ciiiieieeeciee ettt s e e sree s I-26
STV =1Y oTo [0] 01T o SRR [-26
DiSPlay TYPE PrOPEITYcceeieieieiieeiesiee ettt st nne s [-27
Updated EVEnt CONSLANTScccociiieiirieie e s sne s I-27
Special Verh ValUES ...t [-27
Verb Flag Bit MASKScoviieice et [-28
VBTranslateColor/OLETranslateColor Constants.........ccccvereeenenencnenennenn 1-28

Picture ODJECt CONSLANTScoiuiiiiiiciee e nae [-28

Printer ODJECt CONSLANTScccvccueiiiiie e [-29
Printer Color MOUEccooieeieceeseee ettt [-29
DUPIEX PHINTING ..ot saeene s [-29
PriNter OFIENTALIONc.ceiitieeeeee et 1-29
L1 SO T = 111 RSSO I-29
(oo TCT g =T oI o] 01T [-29
PaPErSIZE PrOPEITY ...ttt s eesaenae s [-30

RASLEIOP CONSLANTSveiiiiiiiiieeiee ettt s r e b sae e nne s e [-31

SNEI CONSLANIS ...ttt b e 1-32

SIrCONY CONSTANLS ...ttt ae e sbe e nse e b 1-33

Variant TYPe CONSTANTScoouiiiiiiiieerierie et ne e e 1-33

VarTYPe CONSLANTSoooeieeiiiieieeerre e 1-34

Database Access and Management 8-411

Alignment Constants

Align Property
Constant
vbAlignNone

vbAlignTop
vbAlignBottom
vbAlignLeft
vbAlignRight

Alignment Property
Constant
vbLeftJustify
vbRightJustify
vbCenter

Border Property Constants

BorderStyle Property (Form)
Constant

vbBSNone

vbFixedSingle

vbSizable

vbFixedDouble

BorderStyle Property (Shape and Line)

Constant
vbTransparent
vbBSSolid
vbBSDash
vbBSDot
vbBSDashDot
vbBSDashDotDot
vbBSiInsideSolid

Value

A OWNBE

Value

Value
0
1
2
3

Value

O h~hwWNEO

Description

Size and location set at
design time or in code.
Picture box at top of form.
Picture box at bottom of form.
Picture box at left of form.
Picture box at right of form.

Description
Left align.
Right align.
Center.

Description

No border.

Fixed single.

Sizable (forms only)
Fixed double (forms only)

Description
Transparent.
Solid.

Dash.

Dot.
Dash-dot.

Dash-dot-dot.
Inside solid.

Database Access and Management 8-412

Clipboard Object Constants

Constant
vbCFLink

VbCFRTF
vbCFText
vbCFBitmap
vbCFMetafile
vbCFDIB
vbCFPalette

Color Constants

Colors
Constant
vbBlack
vbRed
vbGreen
vbYellow
vbBlue
vbMagenta
vbCyan
vbWhite

System Colors
Constant
vbScrollBars
vbDesktop
vbActiveTitleBar

vblnactiveTitleBar

vbMenuBar
vbWindowBackground
vbWindowFrame

vbMenuText
vbWindowText

vbTitleBarText

vbActiveBorder
vblnactiveBorder

vbApplicationWorkspace

Value
OxBFO0O

OxBFO1

OO0 WNBEF

Value

0x0

OxFF
OxFFO0O0
OxFFFF
OxFF0000
OxFFOOFF
OxFFFFOO
OxFFFFFF

Value

0x80000000
0x80000001
0x80000002

0x80000003

0x80000004
0x80000005
0x80000006

0x80000007
0x80000008

0x80000009

0x8000000A
0x8000000B

0x8000000C

Description

DDE conversation
information.

Rich Text Format (.RTF file)
Text (.TXT file)

Bitmap (.BMP file)

Metafile (WMF file)
Device-independent bitmap.
Color palette.

Description
Black.

Red.

Green.
Yellow.
Blue.
Magenta.
Cyan.
White.

Description

Scroll bar color.

Desktop color.

Color of the title bar for the
active window.

Color of the title bar for the
inactive window.

Menu background color.
Window background color.
Window frame color.

Color of text on menus.
Color of text in windows.
Color of text in caption, size
box, and scroll arrow.

Border color of active window.
Border color of inactive
window.

Background color of multiple-
document interface (MDI)

Database Access and M anagement

8-413

System Colors (continued)
Constant
vbHighlight

vbHighlightText
vbButtonFace
vbButtonShadow

vbGrayText
vbButtonText
vblnactiveCaptionText

vb3DHighlight
vb3DDKShadow
vb3DLight

vbinfoText
vbinfoBackground

Control Constants

ComboBox Control
Constant
vbComboDropdown
vbComboSimple
vbComboDropdownList

ListBox Control
Constant
vbMultiSelectNone
vbMultiSelectSimple
vbMultiSelectExtended

ScrollBar Control
Constant
vbSBNone
vbHorizontal
vbVertical

vbBoth

Value
0x8000000D

0x8000000E
0x8000000F
0x80000010
0x80000011
0x80000012
0x80000013
0x80000014
0x80000015
0x80000016

0x80000017
0x80000018

Value

Value

WMNPEFkO

Description

Background color of items
selected in a control.

Text color of items selected in
a control.

Color of shading on the face
of command buttons.

Color of shading on the edge
of command buttons.

Grayed (disabled)

Text color on push buttons.
Color of text in an inactive
caption.

Highlight color for 3D display
elements.

Darkest shadow color for 3D
display elements.

Second lightest of the 3D
colors after vb3DHighlight.
Color of text in ToolTips.
Background color of ToolTips.

Description
Dropdown Combo.
Simple Combo.
Dropdown List.

Description
None.
Simple.
Extended.

Description
None.
Horizontal.
Vertical.
Both.

Database Access and Management 8-414

Shape Control

Constant
vbShapeRectangle
vbShapeSquare
vbShapeOval
vbShapeCircle
vbShapeRoundedRectangle
vbShapeRoundedSquare

Data Control Constants
Error Event Constants
Constant

vbDataErrContinue
vbDataErrDisplay

EditMode Property Constants
Constant

vbDataEditNone
vbDataEditMode

vbDataEditAdd

Options Property Constants
Constant

vbDataDenyWrite
vbDataDenyRead
vbDataReadOnly

vbDataAppendOnly

vbDatalnconsistent

vbDataConsistent

vbDataSQLPassThrough

Value

g~ wWNPEF,O

16

32

64

Description
Rectangle.

Square.

Oval.

Circle.

Rounded rectangle.
Rounded square.

Description
Continue.
(Default)

Description

No editing operation in
progress.

Edit method invoked; current
record in copy buffer.
AddNew method invoked;
current record hasn't been
saved.

Description

Other users can't change
records in recordset.

Other users can't read records
in recordset.

No user can change records
in recordset.

New records can be added to
the recordset, but existing
records can't be read.
Updates can apply to all fields
of the recordset.

Updates apply only to those
fields that will not affect other
records in the recordset.
Sends an SQL statement to
an ODBC database.

Database Access and Management 8-415

Validate Event Action Constants

Constant
vbDataActionCancel

vbDataActionMoveFirst
vbDataActionMovePrevious
vbDataActionMoveNext
vbDataActionMovelLast
vbDataActionAddNew
vbDataActionUpdate

vbDataActionDelete
vbDataActionFind
vbDataActionBookmark
vbDataActionClose
vbDataActionUnload

Beginning-of-File Constants
Constant

vbMoveFirst

vbBOF

End-of-File Constants
Constant

vbMovel ast

VvbEOF

vbAddNew

Recordset-Type Constants
Constant

VbRSTypeTable
VbRSTypeDynaset
VvbRSTypeSnapShot

Value
0

OO WNPE

B2 © o~
o

Description

Cancel the operation when
the Sub exits.

MoveFirst method.
MovePrevious method.
MoveNext method.
MovelLast method.
AddNew method.

Update operation (not
UpdateRecord)

Delete method.

Find method.

The Bookmark property is set.
Close method.

The form is being unloaded.

Description
Move to first record.
Move to beginning of file.

Description

Move to last record.

Move to end of file.

Add new record to end of file.

Description

Table-type recordset.
Dynasettype recordset.
Snapshot-type recordset.

Database Access and Management 8-416

Date Constants

firstdayofweek Argument Values

Constant
vbUseSystem
vbSunday
vbMonday
vbTuesday
vbWednesday
vbThursday
vbFriday
vbSaturday

Value

~N~No o h~wWDNEO

firstweekofyear Argument Values

Constant
vbUseSystem

vbFirstJanl

vbFirstFourDays

vbFirstFullWeek

Return Values
Constant
vbSunday
vbMonday
vbTuesday
vbWednesday

vbThursday
vbFriday

vbSaturday

DBGrid Control Constants

Alignment Constants

Constant
dbgLeft
dbgRight
dbgCenter
dbgGeneral

Value
0

Value

~NOoOooh~,rWN PR

Value

W MNEF O

Description

Use NLS API setting.
Sunday

Monday

Tuesday
Wednesday
Thursday

Friday

Saturday

Description

Use application setting if one
exists; otherwise use NLS API
setting.

Start with week in which
January 1 occurs (default)
Start with the first week that
has at least four days in the
new year.

Start with the first full week of
the year.

Description
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Description
Left.

Right.
Center.
General.

Database Access and Management 8-417

BorderStyle Constants
Constant

dbgNone
dbgFixedSingle

DataMode Constants
Constant

dbgBound
dbgUnbound

DividerStyle Constants
Constant
dbgNoDividers
dbgBlackLine
dbgDarkGrayLine
dbgRaised

dbglnset
dbgUseForeColor

RowDividerStyle Constants
Constant

dbgNoDividers

dbgBlackLine
dbgDarkGrayLine

dbgRaised

dbglnset

dbgUseForeColor

Scroll Bar Constants
Constant

dbgNone
dbgHorizontal
dbgVertical

dbgBoth
dbgAutomatic

Value

Value

ah~hwWNEFO

Value

abrhwdNRFE O

Value

A OWONPEFO

Description
None.
FixedSingle.

Description
Bound.
Unbound.

Description
NoDividers.
BlackLine.
DarkGrayLine.
Raised.

Inset.
UseForeColor.

Description
NoDividers.
BlackLine.
DarkGrayLine.
Raised.

Inset.
UseForeColor.

Description
None.
Horizontal.
Vertical.
Both.
Automatic.

Database Access and Management 8-418

DDE Constants

linkerr (LinkError Event)
Constant
vbWrongFormat

vbDDESourceClosed

vbTooManyLinks
vbDataTransferFailed

Value

0o ~

LinkMode Property (Forms and Controls)

Constant
vbLinkNone
vbLinkSource
vbLinkAutomatic
vbLinkManual
vbLinkNotify

Value

WNPFFPEFO

Dir, GetAttr, and SetAttr Constants

Constant
vbNormal

vbReadOnly
vbHidden
vbSystem
vbVolume
vbDirectory
vbArchive

Value
0

=00 ~ADNPEF

w
N

Description

Another application requested
data in wrong format.
Destination application
attempted to continue after
source closed.

All source links are in use.
Failure to update data in
destination.

Description

None.

Source (forms only)
Automatic (controls only)
Manual (controls only)
Notify (controls only)

Description

Normal (default for Dir and
SetAttr)

Read-only.

Hidden.

System file.

Volume label.

Directory.

File has changed since last
backup.

Database Access and Management 8-419

Drag-and-Drop Constants

DragOver Event

Constant Value Description

vbEnter 0 Source control dragged into
target.

vbLeave 1 Source control dragged out of
target.

vbOver 2 Source control dragged from
one position in target to
another.

Drag Method (Controls)

Constant Value Description

vbCancel 0 Cancel drag operation.
vbBeginDrag 1 Begin dragging control.
vbEndDrag 2 Drop control.
DragMode Property

Constant Value Description

vbManual 0 Manual.

vbAutomatic 1 Automatic.

Drawing Constants

DrawMode Property

Constant Value Description
vbBlackness 1 Black.
vbNotMergePen 2 Not Merge pen.
vbMaskNotPen 3 Mask Not pen.
vbNotCopyPen 4 Not Copy pen.
vbMaskPenNot 5 Mask pen Not.
vbinvert 6 Invert.
vbXorPen 7 Xor pen.
vbNotMaskPen 8 Not Mask pen.
vbMaskPen 9 Mask pen.
vbNotXorPen 10 Not Xor pen.
vbNop 11 No operation; outpu remains
unchanged.
vbMergeNotPen 12 Merge Not pen.
vbCopyPen 13 Copy pen.
vbMergePenNot 14 Merge pen Not.
vbMergePen 15 Merge pen.

=
[ep)

vbWhiteness White.

Database Access and Management 8-420

DrawStyle Property
Constant Value
vbSolid
vbDash

vbDot
vbDashDot
vbDashDotDot
vblnvisible
vbinsideSolid

OO~ WNEO

Form Constants

Show Parameters

Constant Value
vbModal 1
vbModeless 0

Arrange Method for MDI Forms

Constant Value
vbCascade 0
vbTileHorizontal 1
vbTileVertical 2
vbArrangelcons 3

WindowState Property

Constant Value
vbNormal 0
vbMinimized 1

vbMaximized 2

Description
Solid.

Dash.

Dot.
Dash-dot.
Dash-dot-dot.
Invisible.
Inside solid.

Description

Modal form.
Modeless form.

Description

Cascade all nonminimized
MDI child forms.

Horizontally tile all
nonminimized MDI child
forms.

Vertically tile all nonminimized
MDI child forms.

Arrange icons for minimized
MDI child forms.

Description
Normal.
Minimized.
Maximized.

Database Access and Management 8-421

Graphics Constants

FillStyle Property
Constant

vbFSSolid
vbFSTransparent
vbHorizontalLine
vbVerticalLine
vbUpwardDiagonal
vbDownwardDiagonal
vbCross
vbDiagonalCross

ScaleMode Property
Constant

vbUser

vbTwips

vbPoints

vbPixels
vbCharacters
vbinches
vbMillimeters
vbCentimeters

Grid Control Constants

Value Description

Solid.

Transparent.
Horizontal line.
Vertical line.
Upward diagonal.
Downward diagonal.
Cross.

Diagonal cross.

~N~No o h~wWDNEO

<
Q
c
®

Description
User.

Twips.
Points.
Pixels.
Characters.
Inches.
Millimeters.
Centimeters.

~N~Nooh~wWNEFLO

ColAlignment, FixedAlignment Properties

Constant
grdAlignCenter
grdAlignLeft
grdAlignRight

FillStyle Property
Constant
grdSingle

grdRepeat

Value Description

2 Center data in column.

0 Left-align data in column.

1 Right-align data in column.

Value Description

0 Changing Text property
setting affects only active cell.

1 Changing Text property

setting affects all selected
cells.

Database Access and Management 8-422

Help Constants

Constant
cdlHelpContext

cdlHelpQuit

cdIHelpIndex
cdlHelpContents
cdIHelpHelpOnHelp
cdlHelpSetindex
cdlHelpSetContents
cdlHelpContextPopup
cdlHelpForceFile
cdlHelpKey
cdliHelpCommandHelp

cdIHelpPartialKey

Key Code Constants

Key Codes
Constant
vbKeyLButton
vbKeyRButton
vbKeyCancel
vbKeyMButton
vbKeyBack
vbKeyTab
vbKeyClear
vbKeyReturn
vbKeyShift
vbKeyControl
vbKeyMenu

Value
Oox1

Ox2

0x3

0x3

Ox4

0x5

0x5

0x8

0x9

0x101

0x102

0x105

Value
Ox1
0x2
0x3
Ox4
0x8
0x9
OxC
OxD
0x10
Ox11
0x12

Description

Displays Help for a particular
topic.

Notifies the Help application
that the specified Help file is
no longer in use.

Displays the index of the
specified Help file.

Displays the contents topic in
the current Help file.

Displays Help for using the
Help application itself.

Sets the current index for
multi-index Help.

Designates a specific topic as
the contents topic.

Displays a topic identified by a
context number.

Creates a Help file that
displays text in only one font.
Displays Help for a particular
keyword.

Displays Help for a particular
command.

Calls the search engine in
Windows Help.

Description

Left mouse butto n.
Right mouse button.
CANCEL key.
Middle mouse button.
BACKSPACE key.
TAB key.

CLEAR key.
ENTER key.

SHIFT key.

CTRL key.

MENU key.

Database Access and M anagement

8-423

Key Codes (continued)
Constant
vbKeyPause
vbKeyCapital
vbKeyEscape
vbKeySpace
vbKeyPageUp
vbKeyPageDown
vbKeyEnd
vbKeyHome
vbKeyLeft
vbKeyUp
vbKeyRight
vbKeyDown
vbKeySelect
vbKeyPrint
vbKeyExecute
vbKeySnapshot
vbKeylnsert
vbKeyDelete
vbKeyHelp
vbKeyNumlock

Value
0x13
0x14
0Ox1B
0x20
0x21
0x22
0x23
0x24
0x25
0x26
ox27
0x28
0x29
Ox2A
0x2B
0ox2C
0x2D
Ox2E
Ox2F
0x90

Description

PAUSE key.

CAPS LOCK key.
ESC key.
SPACEBAR key.
PAGE UP key.
PAGE DOWN key.
END key.

HOME key.

LEFT ARROW key.
UP ARROW key.
RIGHT ARROW key.
DOWN ARROW key.
SELECT key.
PRINT SCREEN key.
EXECUTE key.
SNAPSHOT key.
INS key.

DEL key.

HELP key.

NUM LOCK key.

KeyA Through KeyZ Are the Same as Their ASCIlI Equivalents: 'A’' Through

7
Constant
vbKeyA
vbKeyB
vbKeyC
vbKeyD
vbKeyE
vbKeyF
vbKeyG
vbKeyH
vbKeyl
vbKeyJ
vbKeyK
vbKeyL
vbKeyM
vbKeyN
vbKeyO
vbKeyP
vbKeyQ
vbKeyR
vbKeyS
vbKeyT

Value
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Description
A key.
B key.
C key.
D key.
E key.
F key.
G key.
H key.
| key.
Jkey.
K key.
L key.
M key.
N key.
O key.
P key.
Q key.
R key.
S key.
T key.

Database Access and M anagement

8-424

KeyA Through KeyZ (continued)

Constant
vbKeyU
vbKeyV
vbKeyW
vbKeyX
vbKeyY
vbKeyzZ

Value
85
86
87
88
89
90

Description
U key.
V key.
W key.
X key.
Y key.
Z key.

Key0O Through Key9 Are the Same as Their ASCII Equivalents: '0' Through

g
Constant
vbKeyO
vbKeyl
vbKey?2
vbKey3
vbKey4
vbKey5
vbKey6
vbKey7
vbKey8
vbKey9

Keys on the Numeric Keypad

Constant
vbKeyNumpadO
vbKeyNumpad1l
vbKeyNumpad?2
vbKeyNumpad3
vbKeyNumpad4
vbKeyNumpad5
vbKeyNumpad6
vbKeyNumpad7
vbKeyNumpad8
vbKeyNumpad9
vbKeyMultiply
vbKeyAdd
vbKeySeparator
vbKeySubtract
vbKeyDecimal
vbKeyDivide

Value
48
49
50
51
52
53
54
55
56
57

Value
0x60
0x61
0x62
0x63
0Ox64
0x65
0x66
0x67
0x68
0x69
Ox6A
0x6B
0x6C
0x6D
Ox6E
Ox6F

Description
O key.
1 key.
2 key.
3 key.
4 key.
5 key.
6 key.
7 key.
8 key.
9 key.

Description
O key.
1 key.
2 key.
3 key.
4 key.
5 key.
6 key.
7 key.
8 key.
9 key.

MULTIPLICATION SIGN (*)

PLUS SIGN (+)
ENTER key.
MINUS SIGN (-)

DECIMAL POINT (.)
DIVISION SIGN (/)

Database Access and Management 8-425

Function Keys

Constant Value Description
vbKeyF1 0x70 F1 key.
vbKeyF2 0x71 F2 key.
vbKeyF3 0x72 F3 key.
vbKeyF4 0x73 F4 key.
vbKeyF5 0x74 F5 key.
vbKeyF6 0x75 F6 key.
vbKeyF7 0x76 F7 key.
vbKeyF8 ox77 F8 key.
vbKeyF9 0x78 F9 key.
vbKeyF10 0x79 F10 key.
vbKeyF11 Ox7A F11 key.
vbKeyF12 0x7B F12 key.
vbKeyF13 0x7C F13 key.
vbKeyF14 0x7D F14 key.
vbKeyF15 OX7E F15 key.
vbKeyF16 Ox7F F16 key.

Menu Accelerator Constants

Constant Value Description
vbMenuAccelCtrlA 1 User-defined shortcut
keystrokes.
vbMenuAccelCtriB 2 User-defined shortcut
keystrokes.
vbMenuAccelCtriC 3 User-defined shortcut
keystrokes.
vbMenuAccelCtriD 4 User-defined shortcut
keystrokes.
vbMenuAccelCtrlE 5 User-defined shortcut
keystrokes.
vbMenuAccelCtrlF 6 User-defined shortcut
keystrokes.
vbMenuAccelCtrliG 7 User-defined shortcut
keystrokes.
vbMenuAccelCtrlH 8 User-defined shortcut
keystrokes.
vbMenuAccelCtrll 9 User-defined shortcut
keystrokes.
vbMenuAccelCtrlJ 10 User-defined shortcut
keystrokes.
vbMenuAccelCtrIK 11 User-defined shortcut

keystrokes.

Database Access and Management 8-426

Menu Accelerator Constants (continued)

Constant Value Description
vbMenuAccelCtriL 12 User-defined shortcut
keystrokes.
vbMenuAccelCtrIM 13 User-defined shortcut
keystrokes.
vbMenuAccelCtrIN 14 User-defined shortcut
keystrokes.
vbMenuAccelCtrlO 15 User-defined shortcut
keystrokes.
vbMenuAccelCtrlP 16 User-defined shortcut
keystrokes.
vbMenuAccelCtrlQ 17 User-defined shortcut
keystrokes.
vbMenuAccelCtrIR 18 User-defined shortcut
keystrokes.
vbMenuAccelCtrlS 19 User-defined shortcut
keystrokes.
vbMenuAccelCtrlT 20 User-defined shortcut
keystrokes.
vbMenuAccelCtrlU 21 User-defined shortcut
keystrokes.
vbMenuAccelCtrlV 22 User-defined shortcut
keystrokes.
vbMenuAccelCtrlwW 23 User-defined shortcut
keystrokes.
vbMenuAccelCtrIX 24 User-defined shortcut
keystrokes.
vbMenuAccelCtrlY 25 User-defined shortcut
keystrokes.
vbMenuAccelCtrlZ 26 User-defined shortcut
keystrokes.
vbMenuAccelF1 27 User-defined shortcut
keystrokes.
vbMenuAccelF2 28 User-defined shortcut
keystrokes.
vbMenuAccelF3 29 User-defined shortcut
keystrokes.
vbMenuAccelF4 30 User-defined shortcut
keystrokes.
vbMenuAccelF5 31 User-defined shortcut
keystrokes.
vbMenuAccelF6 32 User-defined shortcut
keystrokes.
vbMenuAccelF7 33 User-defined shortcut

keystrokes.

Database Access and Management 8-427

Menu Accelerator Constants (continued)

Constant Value Description
vbMenuAccelF8 34 User-defined shortcut
keystrokes.
vbMenuAccelF9 35 User-defined shortcut
keystrokes.
vbMenuAccelF11 36 User-defined shortcut
keystrokes.
vbMenuAccelF12 37 User-defined shortcut
keystrokes.
vbMenuAccelCtrIF1 38 User-defined shortcut
keystrokes.
vbMenuAccelCtrlF2 39 User-defined shortcut
keystrokes.
vbMenuAccelCtrlF3 40 User-defined shortcut
keystrokes.
vbMenuAccelCtrIF4 41 User-defined shortcut
keystrokes.
vbMenuAccelCtrlF5 42 User-defined shortcut
keystrokes.
vbMenuAccelCtrlF6 43 User-defined shortcut
keystrokes.
vbMenuAccelCtrlF7 44 User-defined shortcut
keystrokes.
vbMenuAccelCtrlF8 45 User-defined shortcut
keystrokes.
vbMenuAccelCtrlF9 46 User-defined shortcut
keystrokes.
vbMenuAccelCtrIF11 47 User-defined shortcut
keystrokes.
vbMenuAccelCtrIF12 48 User-defined shortcut
keystrokes.
vbMenuAccelShiftF1 49 User-defined shortcut
keystrokes.
vbMenuAccelShiftF2 50 User-defined shortcut
keystrokes.
vbMenuAccelShiftF3 51 User-defined shortcut
keystrokes.
vbMenuAccelShiftF4 52 User-defined shortcut
keystrokes.
vbMenuAccelShiftF5 53 User-defined shortcut
keystrokes.
vbMenuAccelShiftF6 54 User-defined shortcut
keystrokes.
vbMenuAccelShiftF7 55 User-defined shortcut

keystrokes.

Database Access and Management 8-428

Menu Accelerator Constants (continued)

Constant Value Description
vbMenuAccelShiftF8 56 User-defined shortcut
keystrokes.
vbMenuAccelShiftF9 57 User-defined shortcut
keystrokes.
vbMenuAccelShiftF11 58 User-defined shortcut
keystrokes.
vbMenuAccelShiftF12 59 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF1 60 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF2 61 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF3 62 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF4 63 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF5 64 ser-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF6 65 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF7 66 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF8 67 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrlF9 68 ser-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF11 69 User-defined shortcut
keystrokes.
vbMenuAccelShiftCtrIF12 70 User-defined shortcut
keystrokes.
vbMenuAccelCtrlins 71 User-defined shortcut
keystrokes.
vbMenuAccelShiftins 72 User-defined shortcut
keystrokes.
vbMenuAccelDel 73 User-defined shortcut
keystrokes.
vbMenuAccelShiftDel 74 User-defined shortcut
keystrokes.
vbMenuAccelAltBksp 75 User-defined shortcut

keystrokes.

Database Access and Management 8-429

Menu Control Constants

PopupMenu Method Alignment

Constant
vbPopupMenuLeftAlign
vbPopupMenuCenterAlign
vbPopupMenuRightAlign

PopupMenu Mouse Button Recognition

Constant
vbPopupMenuLeftButton

vbPopupMenuRightButton
and left mouse buttons.

Miscellaneous Constants

ZOrder Method
Constant

vbBringToFront
vbSendToBack

QueryUnload Method
Constant
vbAppWindows

vbFormMDIForm

vbFormCode

vbFormControlMenu

vbAppTaskManager

Shift Parameter Masks
Constant

vbShiftMask
vbCtrIMask

vbAltMask

Value

0
4
8

Value
0

2

Description

Pop-up menu left-aligned.
Pop-up menu centered.
Pop-up menu right-aligned.

Description
Pop-up menu recognizes left
mouse button only.

Pop-up menu recognizes right

Description
Bring to front.
Send to back.

Description

Current Windows session
ending.

MDI child form is closing
because the MDI form is
closing.

Unload method invoked from
code.

User has chosen Close
command from the Control-
menu box on a form.
Windows Task Manager is
closing the application.

Description

SHIFT key bit mask.
CTRL key bit mask.
ALT key bit mask.

Database Access and M anagement

Button Parameter Masks
Constant

vbLeftButton
vbRightButton
vbMiddleButton

Application Start Mode
Constant
vbSModeStandalone
vbSModeAutomation

LoadResPicture Method
Constant

vbResBitmap

vbReslcon

vbResCursor

Check Value
Constant
vbUnchecked
vbChecked
vbGrayed

Value

Description

Left mouse button.
Right mouse button.
Middle mouse button.

Description
Stand-alone application.
OLE automation server.

Description
Bitmap resource.
Icon resource.
Cursor resource.

Description
Unchecked.
Checked.
Grayed.

Database Access and Management 8-431

Mouse Pointer Constants

Constant
vbDefault
vbArrow
vbCrosshair
vblbeam
vblconPointer
vbSizePointer
vbSizeNESW
vbSizeNS
vbSizeNWSE
vbSizeWE
vbUpArrow
vbHourglass
vbNoDrop
vbArrowHourglass

vbArrowQuestion

vbSizeAll

vbCustom

Value

©CoOoO~NOOUITDWDNE O

[g
WN P O

14

15

99

Description

Default.

Arrow.

Cross.

| beam.

Icon.

Size.

Size NE, SW.

Size N, S.

Size NW, SE.

Size W, E.

Up arrow.

Hourglass.

No drop.

Arrow and hourglass. (Only
available in 32-bit Visual
Basic 4.0.)

Arrow and question mark.
(Only available in 32-bit Visual
Basic 4.0.)

Size all. (Only available in 32-
bit Visual Basic 4.0.)

Custom icon specified by the
Mouselcon property.

Database Access and Management 8-432

MsgBox Constants

MsgBox Arguments
Constant

vbOKOnly
vbOKCancel
vbAbortRetrylgnore

vbYesNoCancel
vbYesNo
vbRetryCancel
vbCritical
vbQuestion
vbExclamation
vbinformation
vbDefaultButtonl
vbDefaultButton2
vbDefaultButton3
vbApplicationModal

vbSystemModal

MsgBox Return Values
Constant

vbOK

vbCancel

vbAbort

vbRetry

vbignore

vbYes

vbNo

OLE Container Control Constants

OLEType Property
Constant
vbOLELinked
vbOLEEmbedded

vbOLENone

256
512

4096

Value

~No ok WON -

Value
0

1

3

Description

OK button only (default)

OK and Cancel buttons.
Abort, Retry, and Ignore
buttons.

Yes, No, and Cancel buttons.
Yes and No buttons.

Retry and Cancel buttons.
Critical message.

Warning query.

Warning message.
Information message.

First button is default (default)
Second button is default.
Third button is default.
Application modal message
box (default)

System modal message box.

Description

OK button pressed.
Cancel button pressed.
Abort button pressed.
Retry button pressed.
Ignore button pressed.
Yes button pressed.
No button pressed.

Description

OLE container control
contains a linked object.

OLE container control
contains an embedded object.
OLE container control doesn't
contain an object.

Database Access and Management 8-433

OLETypeAllowed Property
Constant
vbOLEEither

UpdateOptions Property
Constant
vbOLEAutomatic

vbOLEFrozen

vbOLEManual

AutoActivate Property
Constant
vbOLEActivateManual

vbOLEActivateGetFocus

vbOLEActivateDoubleclick

vbOLEActivateAuto

SizeMode Property
Constant
vbOLESizeClip

vbOLESizeStretch

vbOLESizeAutoSize

vbOLESizeZoom

Value
2

Value

Value

Value

Description

OLE container control can
contain either a linked or an
embedded object.

Description

Object is updated each time
the linked data changes.
Object is updated whenever
the user saves the linked
document from within the
application in which it was
created.

Object is updated only when
the Action property is setto 6
(Update)

Description

OLE object isn't automatically
activated.

Object is activated when the
OLE container control gets
the focus.

Object is activated when the
OLE container control is
double-clicked.

Object is activated based on
the object's default method of
activation.

Description

Object's image is clipped by
the OLE container control's
borders.

Object's image is sized to fill
the OLE container control.
OLE container control is
automatically resized to
display the entire object.
Object's image is stretched
but in proportion.

Database Access and M anagement

8-434

DisplayType Property
Constant
vbOLEDisplayContent

vbOLEDisplaylcon

Updated Event Constants

Constant
vbOLEChanged
vbOLESaved

vbOLECIosed

vbOLERenamed

Special Verb Values
Constant
VbOLEPrimary
vbOLEShow
vbOLEOpen

vbOLEHide

vbOLEInPlaceUlActivate

vbOLEInPlaceActivate

vbOLEDiscardUndoState

Value

Description

Object's data is displayed in
the OLE container control.
Object's icon is displayed in
the OLE container control.

Description

Object's data has changed.
Object's data has been saved
by the application that created
the object.

Application file containing the
linked object's data has been
closed.

Application file containing the
linked object's data has been
renamed.

Description

Default action for the object.
Activates the object for
editing.

Opens the objectin a
separate application window.
For embedded objects, hides
the application that created
the object.

All Ul's associated with the
object are visible and ready
for use.

Object is ready for the user to
click inside it and start
working with it.

For discarding all record of
changes that the object's
application can undo.

Database Access and M anagement

8-435

Verb Flag Bit Masks
Constant
vbOLEFlagEnabled
vbOLEFlagGrayed
vbOLEFlagDisabled
vbOLEFlagChecked
vbOLEFlagSeparator

vbOLEMiscFlagMemStorage

vbOLEMiscFlagDisablelnPlace

Value
0x0
Ox1
0x2
0x8
0x800

Ox1

Ox2

Description

Enabled menu item.
Grayed menu item.
Disabled menu item.
Checked menu item.
Separator bar in menu item
list.

Causes control to use
memory to store the object
while it's loaded.

Forces OLE container control
to activate objects in a
separate window.

VBTranslateColor/OLETranslateColor Constants

Constant
vblnactiveCaptionText

vb3DHighlight
vb3DFace

vbMsgBox

vbMsgBoxText

vb3DShadow

vb3DDKShadow
vb3DLight

Picture Object Constants

Constant
vbPicTypeBitmap
vbPicTypeMetafile
vbPicTypelcon

Value
0x80000013

0x80000014

0x8000000F

0x80000017

0x80000018

0x80000010

0x80000015
0x80000016

Value

Description

Color of text in an inactive
caption.

Highlight color for 3-D display
elements.

Dark shadow color for 3-D
display elements.
Background color for
message boxes and system
dialog boxes.

Color of text displayed in
message boxes and system
dialog boxes.

Color of automatic window
shadows.

Darkest shadow.

Second lightest of the 3-D
colors (after vb3DHighlight)

Description

Bitmap type of Picture object.
Metafile type of Picture object.
Icon type of Picture object.

Database Access and M anagement

8-436

Printer Object Constants

Printer Color Mode
Constant

vbPRCMMonochrome
vbPRCMColor

Duplex Printing
Constant
VbPRDPSimplex
vbPRDPHorizontal

vbPRDPVertical

Printer Orientation
Constant
vbPRORPortrait

vbPRORLandscape

Print Quality
Constant
VvbPRPQDraft
VvbPRPQLow
vbPRPQMedium
vbPRPQHigh

PaperBin Property
Constant
vbPRBNUpper
vbPRBNLower
vbPRBNMiddle
vbPRBNManual
vbPRBNEnNvelope
vbPRBNEnvManual

vbPRBNAuUto
vbPRBNTractor

Value

o ~

Description

Monochrome output.
Color output.

Description

Single-sided printing.
Double-sided horizontal
printing.

Double-sided vertical printing.

Description

Documents print with the top
at the narrow side of the
paper.

Documents print with the top
at the wide side of the paper.

Description

Draft print quality.
Low print quality.
Medium print quality.
High print quality.

Description

Use paper from the upper bin.
Use paper from the lower bin.
Use paper from the middle
bin.

Wait for manual insertion of
each sheet of paper.

Use envelopes from the
envelope feeder.

Use envelopes from the
envelope feeder, but wait for
manual insertion.

(Default)

Use paper fed from the tractor
feeder.

Database Access and Management 8-437

PaperBin Property (continued)

Constant

vbPRBNSmallFmt
vbPRBNLargeFmt
vbPRBNLargeCapacity
vbPRBNCassette

PaperSize Property

Constant
vbPRPSLetter

vbPRPSLetterSmall

vbPRPSTabloid
vbPRPSLedger
vbPRPSLegal

vbPRPSStatement
vbPRPSExecutive

vbPRPSA3
vbPRPSA4
vbPRPSA4Small
vbPRPSA5
vbPRPSB4
vbPRPSB5
vbPRPSFolio
VbPRPSQuarto
vbPRPS10x14
vbPRPS11x17
vbPRPSNote
vbPRPSENvV9
vbPRPSENvV10

vbPRPSEnNv11

vbPRPSENv12
vbPRPSEnNv14
vbPRPSCSheet
vbPRPSDSheet
vbPRPSESheet
vbPRPSENnvDL
vbPRPSENvC3
vbPRPSEnvC4
vbPRPSENvC5
vbPRPSENvC6

Value
9

10

11

14

Value

21

22
23
24
25
26
27
29
30
28
31

Description

Use paper from the small
paper feeder.

Use paper from the large
paper bin.

Use paper from the large
capacity feeder.

Use paper from the attached
cassette cartridge.

Description

Letter, 8 1/2 x 11 in.
+A611Letter Small, 8 1/2 x 11
in.

Tabloid, 11 x 17 in.

Ledger, 17 x 11 in.

Legal, 8 1/2 x 14 in.
Statement, 51/2 x 8 1/2 in.
Executive, 7 1/2 x 10 1/2 in.
A3, 297 x 420 mm.

A4, 210 x 297 mm.

A4 Small, 210 x 297 mm.

A5, 148 x 210 mm.

B4, 250 x 354 mm.

B5, 182 x 257 mm.

Folio, 8 1/2 x 13 in.

Quarto, 215 x 275 mm.

10 x 14 in.

11x17in.

Note, 8 1/2 x 11 in.

Envelope #9, 3 7/8 x 8 7/8 in.
Envelope #10, 4 1/8 x 9 1/2
in.

Envelope #11, 4 1/2 x 10 3/8
in.

Envelope #12,4 1/2 x 11 in.
Envelope #14, 5 x 11 1/2in.
C size sheet.

D size sheet.

E size sheet.

Envelope DL, 110 x 220 mm.
Envelope C3, 324 x 458 mm.
Envelope C4, 229 x 324 mm.
Envelope C5, 162 x 229 mm.
Envelope C6, 114 x 162 mm.

Database Access and Management 8-438

VbPRPSENvC65 32 Envelope C65, 114 x 229 mm.

Database Access and M anagement

8-439

PaperSize Property (continued)

Constant
vbPRPSENnvB4
vbPRPSENvVB5
vbPRPSENvB6
vbPRPSEnvitaly
vbPRPSEnvMonarch

vbPRPSEnNnvPersonal
vbPRPSFanfoldUS

vbPRPSFanfoldStdGerman
vbPRPSFanfoldLglGerman

vbPRPSUser

RasterOp Constants
Constant

vbDstInvert
vbMergeCopy

vbMergePaint

vbNotSrcCopy

vbNotSrcErase

vbPatCopy

vbPatlnvert

vbPatPaint

vbSrcAnd

Value
33
34
35
36
37

38
39

40

41

256

Value
0x00550009
0x00CO000CA

0x00BB0226

0x00330008

0x001100A6

0x00F00021L

0x005A0049L

OxO0FBOAO9L

0x008800C6

Description

Envelope B4, 250 x 353 mm.
Envelope B5, 176 x 250 mm.
Envelope B6, 176 x 125 mm.
Envelope, 110 x 230 mm.
Envelope Monarch, 3 7/8 x 7
1/2 in.

Envelope, 35/8 x 6 1/2 in.
U.S. Standard Fanfold, 14 7/8
x11in.

German Standard Fanfold, 8
1/2 x12in.

German Legal Fanfold, 8 1/2
x13in.

User-defined.

Description

Inverts the destination bitmap.
Combines the pattern and the
source bitmap.

Combines the inverted source
bitmap with the destination
bitmap by using Or.

Copies the inverted source
bitmap to the destination.
Inverts the result of combining
the destination and source
bitmaps by using Or.

Copies the pattern to the
destination bitmap.

Combines the destination
bitmap with the pattern by
using Xor.

Combines the inverted source
bitmap with the pattern by
using Or. Combines the
result of this operation with
the destination bitmap by
using Or.

Combines pixels of the
destination and source
bitmaps by using And.

Database Access and Management 8-440

RasterOp Constants (continued)

Constant
vbSrcCopy

vbSrcErase

vbSrclnvert

vbSrcPaint

Shell Constants

Constant
vbHide

vbNormalFocus

vbMinimizedFocus
vbMaximizedFocus

vbNormalNoFocus

vbMinimizedNoFocus

Value
0x00CC0020

0x00440328

0x00660046

OxO0EE0086

Value

Description

Copies the source bitmap to
the destination bitmap.
Inverts the destination bitmap
and combines the result with
the source bitmap by using
And.

Combines pixels of the
destination and source
bitmaps by using Xor.
Combines pixels of the
destination and source
bitmaps by using Or.

Description

Window is hidden and focus is
passed to the hidden window.
Window has focus and is
restored to its original size
and position.

Window is displayed as an
icon with focus.

Window is maximized with
focus.

Window is restored to its most
recent size and position. The
currently active window
remains active.

Window is displayed as an
icon. The currently active
window remains active.

Database Access and Management 8-441

StrConv Constants

Constant Value Description

vbUpperCase 1 Uppercases the string.

vbLowerCase 2 Lowercases the string.

vbProperCase 3 Uppercases first letter of
every word in string.

vbWide* 4* Converts narrow (single-
byte)(double-byte)

vbNarrow* 8* Converts wide (double -
byte)(single-byte)

vbKatakana** 16** Converts Hiragana characters
in string to Katakana
characters.

vbHiragana** 32** Converts Katakana characters
in string to Hiragana
characters.

vbUnicode*** B64*** Converts the string to Unicode
using the default code page of
the system.

vbFromUnicode*** 128*** Converts the string from

Unicode to the default code
page of the system.

*Applies to Far East locales
**Applies to Japan only.
***Specifying this bit on 16-bit systems causes a run-time error

Variant Type Constants

Constant Value Description
VbVEmpty 0 Empty (uninitialized)
vbVNull 1 Null (no valid data)
vbVinteger 2 Integer data type.
vbVLong 3 Long integer data type.
vbVSingle 4 Single-precision floating-point
data type.
vbVDouble 5 Double-precision floating-
point data type.
vbVCurrency 6 Currency (scaled integer)
vbVDate 7 Date data type.
vbVString 8 String data type.

Database Access and Management 8-442

VarType Constants

Constant
vbEmpty
vbNull
vbinteger
vbLong
vbSingle

vbDouble

vbCurrency
vbDate
vbString
vbObject
vbError
vbBoolean
vbVariant

vbDataObject
vbByte
vbArray

Value

~AWDNEFO

ol

Description

Uninitialized (default)
Contains no valid data.
Integer.

Long integer.
Single-precision floating-point
number.

Double-precision floating-
point number.

Currency.

Date.

String.

OLE Automation object.
Error.

Boolean.

Variant (used only for arrays
of Variants)

Non-OLE Automation object.
Byte

Array.

Programming Microsoft Windows with Visual Basic

Appendix Il. Common Dialog Box Constants

CommonDialog Control Constants

File Open/Save Dialog Box Flags

Constant
cdlIOFNReadOnly

cdIOFNOverwritePrompt

cdIOFNHideReadOnly
cdlIOFNNoChangeDir

Value

Description

Checks Read-Only check box for
Open and Save As dialog boxes.
Causes the Save As dialog box
to generate a message box if the
selected file already exists.
Hides the Read-Only check box.
Sets the current directory to what
it was when the dialog box was
invoked.

Database Access and Management 8-443

cdlIOFNHelpButton
cdlIOFNNoValidate
cdlOFNAllowMultiselect

cdlIOFNExtensionDifferent

cdlOFNPathMustEXxist
cdlIOFNFileMustExist

cdlOFNCreatePrompt

cdlOFNShareAware

cdlOFNNoReadOnlyReturn

0x10

0x100

0x200

0x400

0x800

0x1000

0x2000

0x4000

0x8000

Causes the dialog box to display
the Help button.

Allows invalid characters in the
returned filename.

Allows the File Name list box to
have multiple selections.

The extension of the returned
filename is different from the
extension set by the DefaultExt
property.

User can enter only valid path
names.

User can enter only names of
existing files.

Sets the dialog box to ask if the
user wants to create a file that
doesn't currently exist.

Sharing violation errors will be
ignored.

The returned file doesn't have the
Read-Only attribute set and won't
be in a write -protected directory.

Database Access and Management 8-444

File Open/Save Dialog Box Flags (continued)

Constant Value Description

cdlIOFNExplorer 0x0008000 Use the Explorer-like Open A File
dialog box template. (Windows
95 only.)

cdlIOFNNoDereferenceLinks 0x00100000 Do not dereference shortcuts
(shell links) default, choosing a
shortcut causes it to be
dereferenced by the shell.

(Windows 95 only.)

cdlOFNLongNames 0x00200000 Use Long filenames. (Windows
95 only.)

Color Dialog Box Flags

Constant Value Description

cdICCRGBInit 0x1 Sets initial color value for the
dialog box.

cdICCFullOpen 0x2 Entire dialog box is displayed,

including the Define Custom
Colors section.

cdICCPreventFullOpen Ox4 Disables the Define Custom
Colors section of the dialog box.

cdICCHelpButton 0x8 Dialog box displays a Help
button.

Fonts Dialog Box Flags

Constant Value Description

cdICFScreenFonts 0x1 Dialog box lists only screen fonts
supported by the system.

cdICFPrinterFonts 0x2 Dialog box lists only fonts
supported by the printer.

cdICFBoth 0x3 Dialog box lists available screen
and printer fonts.

cdICFHelpButton Ox4 Dialog box displays a Help
button.

cdICFEffects 0x100 Dialog box enables strikeout,
underline, and color effects.

cdICFApply 0x200 Dialog box enables the Apply
button.

cdICFANSIOnly 0x400 Dialog box allows only a selection

of fonts that use the Windows

character set.
cdICFNoVectorFonts 0x800 Dialog box should not allow

vector-font selections.

Database Access and Management 8-445

Fonts Dialog Box Flags (continued)

Constant
cdICFNoSimulations

cdICFLimitSize

cdICFFixedPitchOnly

cdICFWYSIWYG

cdIC FForceFontExist

cdICFScalableOnly
cdICFTTOnly
cdICFNoFaceSel
cdICFNoStyleSel
cdICFNoSizeSel
Printer Dialog Box Flags
Constant
cdIPDAIlIPages
cdIPDCollate
cdlPDDisablePrintToFile
cdIPDHidePrintToFile
cdlPDNoPageNums
cdIPDNoSelection
cdlPDNoWarning
cdIPDPageNums

cdIPDPrintSetup

Value
0x1000

0x2000

0x4000

0x8000

0x10000

0x20000
0x40000
0x80000

0x100000
0x200000

Value

0x0

0x10

0x80000

0x100000

Ox8

Ox4

0x80

0x2

0x40

Description

Dialog box should not allow
graphic device interface (GDI)
Dialog box should select only font
sizes within the range specified
by the Min and Max properties.
Dialog box should select only
fixed-pitch fonts.

Dialog box should allow only the
selection of fonts available to
both the screen and printer.

An error dialog box is displayed
if a user selects a font or style
that doesn't exist.

Dialog box should allow only the
selection of scalable fonts.
Dialog box should allow only the
selection of TrueType fonts.

No font name selected.

No font style selected.

No font size selected.

Description

Returns or sets state of All Pages
option button.

Returns or sets state of Collate
check box.

Disables the Print To File check
box.

The Print To File check box isn't
displayed.

Returns or sets the state of the
Pages option button.

Disables the Selection option
button.

Prevents a warning message
when there is no default printer.
Returns or sets the state of the
Pages option button.

Displays the Print Setup dialog
box rather than the Print dialog
box.

Database Access and Management 8-446

Printer Dialog Box Flags (continued)

Constant
cdIPDPrintToFile

cdIPDReturnDC

cdIPDReturnDefault
cdIPDReturnIC

cdIPDSelection
cdIPDHelpButton

cdlIPDUseDevModeCopies

Value
0x20

0x100

0x400
0x200

Ox1

0x800

0x40000

Description

Returns or sets the state of the
Print To File check box.

Returns a device context for the
printer selection value returned in
the hDC property of the dialog
box.

Returns default printer name.
Returns an information context
for the printer selection value
returned in the hDC property of
the dialog box.

Returns or sets the state of the
Selection option button.

Dialog box displays the Help
button.

Sets support for multiple copies
action; depends upon whether or
not printer supports multiple
copies.

Database Access and M anagement

8-447

CommonDialog Error Constants

Constant
cdlAlloc

cdlCancel
cdiDialogFailure

cdIFindResFailure

cdlHelp
cdlInitialization

cdlLoadResFailure
cdlLockResFailure

cdiMemAllocFailure
cdIMemLockFailure
cdINoFonts

cdIBufferTooSmall

cdlinvalidFileName
cdlSubclassFailure

cdICreatelCFailure

cdIDndmMismatch

cdlGetDevModeFail

cdlInitFailure

cdlLoadDrvFailure

Value
&H7FF0&

&H7FF3&
&H8000&

&H7FF9&

&H7FEF&
&H7FFD&

&H7FF8&

&HTFF7&

&H7FF6&

&H7FF5&

&H5FFE&

&HAFFC&

&HAFFD&
&HAFFE&

&HG6FF5&

&H6FF6&

&H6FFA&

&H6FF9&

&H6FFB&

Description

Couldn't allocate memory for
FileName or Filter property.
Cancel was selected.

The function failed to load the
dialog box.

The function failed to load a
specified resource.

Call to Windows Help failed.

The function failed during
initialization.

The function failed to load a
specified string.

The function failed to lock a
specified resource.

The function was unable to
allocate memory for internal data
structures.

The function was unable to lock
the memory associated with a
handle.

No fonts exist.

The buffer at which the member
IpstrFile points is too small.
Filename is invalid.

An attempt to subclass a list box
failed due to insufficient memory.
The PrintDlg function failed when
it attempted to create an
information context.

Data in the DevMode and
DevNames data structures
describe two different printers.
The printer device driver failed to
initialize a DevMode data
structure.

The PrintDIg function failed
during initialization.

The PrintDIg function failed to
load the specified printer's device
driver.

Database Access and Management 8-448

CommonDialog Error Constants (continued)

Constant
cdINoDefaultPrn
cdINoDevices
cdlParseFailure
cdIPrinterCodes
cdIPrinterNotFound

cdIRetDefFailure

cdiSetupFailure

Value

&H6FF7&

&HG6FF8&

&H6FFD&

&HO6FFF&

&HBFF4&

&H6FFC&

&HO6FFE&

Description

A default printer doesn't exist.
No printer device drivers were
found.

The CommonDialog function
failed to parse the strings in the
[devices] section of WIN.INI.
The PDReturnDefault flag was
set, but either the hDevMode or
hDevNames field was nonzero.
The [devices] section of WIN.INI
doesn't contain an entry for the
requested printer.

The PDReturnDefault flag was
set, but either the hDevMode or
hDevNames field was nonzero.
Failed to load required resources.

