
Parallel Computers

• Definition: “A parallel computer is a collection 
of processing elements that cooperate and 
communicate to solve large problems fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989
• Questions about parallel computers:

– How large a collection?
– How powerful are processing elements?
– How do they cooperate and communicate?
– How are data transmitted? 
– What type of interconnection?
– What are HW and SW primitives for programmer?
– Does it translate into performance?



Parallel Processors “Religion”
• The dream of computer architects since 1950s: 

replicate processors to add performance vs. 
design a faster processor

• Led to innovative organizations tied to particular 
programming models since 
“uniprocessors can’t keep going”

– e.g., uniprocessors must stop getting faster due to limit of 
speed of light: 1972, … , 1989

– Borders religious fervor: you must believe!
– Fervor damped some when 1990s companies went out of 

business: Thinking Machines, Kendall Square, ...
• Argument instead is the “pull” of opportunity of 

scalable performance, not the “push” of 
uniprocessor performance plateau?



What level Parallelism?
• Bit level parallelism: 1970 to ~1985

– 4 bits, 8 bit, 16 bit, 32 bit microprocessors
• Instruction level parallelism (ILP): 

~1985 through today
– Pipelining
– Superscalar
– VLIW
– Out-of-Order execution
– Limits to benefits of ILP?

• Process Level or Thread level parallelism; 
mainstream for general purpose computing?

– Servers are parallel
– High-end Desktop dual processor PC soon?? 



Why Multiprocessors?
1. Microprocessors as the fastest CPUs

• Collecting several much easier than redesigning 1

2. Complexity of current microprocessors
• Do we have enough ideas to sustain 1.5X/yr?
• Can we deliver such complexity on schedule?

3. Slow (but steady) improvement in parallel 
software (scientific apps, databases, OS)

4. Emergence of embedded and server markets 
driving microprocessors in addition to desktops
• Embedded functional parallelism, producer/consumer model
• Server figure of merit is tasks per hour vs. latency



Popular Flynn Categories 

• SISD (Single Instruction Single Data)
– Uniprocessors

• MISD (Multiple Instruction Single Data)
– ???; multiple processors on a single data stream

• SIMD (Single Instruction Multiple Data)
– Examples: Illiac-IV, CM-2

» Simple programming model
» Low overhead
» Flexibility
» All custom integrated circuits

– (Phrase reused by Intel marketing for media instructions ~ vector)
• MIMD (Multiple Instruction Multiple Data)

– Examples: Sun Enterprise 5000, Cray T3D,  SGI Origin
» Flexible
» Use off-the-shelf micros

• MIMD current winner: Concentrate on major design emphasis <= 128
processor MIMD machines



Major MIMD Styles

1. Centralized shared memory ("Uniform 
Memory Access" time or "Shared Memory 
Processor")

2. Decentralized memory (memory module with 
CPU) 
• get more memory bandwidth, lower memory latency
• Drawback: Longer communication latency
• Drawback: Software model more complex



Decentralized Memory versions

1. Shared Memory with "Non Uniform Memory 
Access" time (NUMA)

2. Message passing "multicomputer" with 
separate address space per processor
– Can invoke software with Remote Procedure Call (RPC)
– Often via library, such as MPI: Message Passing 

Interface
– Also called "Synchronous communication" since 

communication causes synchronization between 2 
processes



Performance Metrics: 
Latency and Bandwidth

1. Communication Bandwidth
– Need high bandwidth in communication
– Match limits in network, memory, and processor
– Challenge is link speed of network interface vs. bisection 

bandwidth of network
2. Communication Latency

– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought to 

overlap communication and computation
– Overhead to communicate is a problem in many machines

3. Communication Latency Hiding
– How can a mechanism help hide latency?
– Increases programming system burden
– Examples: overlap message send with computation, prefetch

data, switch to other tasks



Parallel Architecture

• Parallel Architecture extends traditional 
computer architecture with a communication 
architecture

– abstractions (HW/SW interface)
– organizational structure to realize abstraction efficiently



Parallel Framework
• Layers:

– Programming Model:
» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and receive messages
» Data Parallel: several agents operate on several data sets 

simultaneously and then exchange information globally 
and simultaneously (shared or message passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, receive library calls



Shared Address Model Summary
• Each processor can name every physical location in the 

machine
• Each process can name all data it shares with other 

processes
• Data transfer via load and store
• Data size: byte, word, ... or cache blocks
• Uses virtual memory to map virtual to local or remote 

physical
• Memory hierarchy model applies: now communication 

moves data to local processor cache (as load moves data 
from memory to cache)

– Latency, BW, scalability when communicate?



Shared Address/Memory 
Multiprocessor Model

• Communicate via Load and Store
– Oldest and most popular model

• Based on timesharing: processes on multiple 
processors vs. sharing single processor

• process: a virtual address space 
and ~ 1 thread of control

– Multiple processes can overlap (share), but ALL threads 
share a process address space

• Writes to shared address space by one thread 
are visible to reads of other threads

– Usual model: share code, private stack, some shared heap, 
some private heap



SMP Interconnect

• Processors to Memory AND to I/O
• Bus based: all memory locations equal access 

time so SMP = “Symmetric MP”
– Sharing limited BW as add processors, I/O



Message Passing Model
• Whole computers (CPU, memory, I/O devices) 

communicate as explicit I/O operations
– Essentially NUMA but integrated at I/O devices vs. memory 

system
• Send specifies local buffer + receiving process on 

remote computer
• Receive specifies sending process on remote computer + 

local buffer to place data
– Usually send includes process tag 

and receive has rule on tag: match 1, match any
– Synch: when send completes, when buffer free, when request 

accepted, receive wait for send
• Send+receive => memory-memory copy, where each each 

supplies local address, 
AND does pair wise synchronization!



Data Parallel Model
• Operations can be performed in parallel on 

each element of a large regular data 
structure, such as an array

• 1 Control Processor broadcast to many PEs
– When computers were large, could amortize the control 

portion of many replicated PEs
• Condition flag per PE so that can skip
• Data distributed in each memory
• Early 1980s VLSI => SIMD rebirth: 

32 1-bit PEs + memory on a chip was the PE
• Data parallel programming languages lay out 

data to processor



Data Parallel Model
• Vector processors have similar ISAs, 

but no data placement restriction
• SIMD led to Data Parallel Programming languages
• Advancing VLSI led to single chip FPUs and whole fast 

µProcs (SIMD less attractive)
• SIMD programming model led to 

Single Program Multiple Data (SPMD) model
– All processors execute identical program

• Data parallel programming languages still useful, do 
communication all at once:
“Bulk Synchronous” phases in which all communicate 

after a global barrier



Advantages shared-memory 
communication model

• Compatibility with SMP hardware
• Ease of programming when communication patterns are 

complex or vary dynamically during execution
• Ability to develop applications using familiar SMP 

model, attention only on performance critical accesses
• Lower communication overhead, better use of BW for 

small items, due to implicit communication and memory 
mapping to implement protection in hardware, rather 
than through I/O system 

• HW-controlled caching to reduce remote 
communication by caching of all data, both shared and 
private. 



Advantages message-passing 
communication model

• The hardware can be simpler  (esp. vs. NUMA)
• Communication explicit => simpler to understand; in 

shared memory it can be hard to know when 
communicating and when not, and how costly it is

• Explicit communication focuses attention on costly 
aspect of parallel computation, sometimes leading to 
improved structure in multiprocessor program

• Synchronization is naturally associated with sending 
messages, reducing the possibility for errors 
introduced by incorrect synchronization 

• Easier to use sender-initiated communication, which 
may have some advantages in performance



Communication Models
• Shared Memory

– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

» Model of choice for uniprocessors, small-scale MPs
» Ease of programming
» Lower latency
» Easier to use hardware controlled caching

• Message passing
– Processors have private memories, 

communicate via messages
– Advantages:

» Less hardware, easier to design
» Focuses attention on costly non-local operations

• Can support either SW model on either HW base



3 Parallel Applications

• Commercial Workload
• Multiprogramming and OS Workload
• Scientific/Technical Applications



Parallel App: Commercial Workload
• Online transaction processing workload (OLTP) 

(like TPC-B or -C)
• Decision support system (DSS) (like TPC-D)
• Web index search (Altavista)

Benchmark % Time
User
Mode

% Time
Kernel

% Time
I/O time
(CPU Idle)

OLTP 71% 18% 11%

DSS (range) 82-94% 3-5% 4-13%

DSS (avg) 87% 4% 9%

Altavista > 98% < 1% <1%



Parallel App: Multiprogramming and OS 

• 2 independent copies of the compile phase of the 
Andrew benchmark (parallel make 8 CPUs)

• 3 phases: compiling the benchmarks; installing 
the object files in a library; removing the object 
files (I/O little, lot, almost all)

User Kernel Synch.
wait

I/O
(CPU Idle)

%
instruc
tions

27% 3% 1% 69%

% time 27% 7% 2% 64%



Parallel App: Scientific/Technical
• FFT Kernel: 1D complex number FFT

– 2 matrix transpose phases => all-to-all communication
– Sequential time for n data points: O(n log n)
– Example is 1 million point data set

• LU Kernel: dense matrix factorization
– Blocking helps cache miss rate, 16x16
– Sequential time for nxn matrix: O(n3)
– Example is 512 x 512 matrix



Parallel App: Scientific/Technical
• Barnes App: Barnes-Hut n-body algorithm solving a problem in 

galaxy evolution
– n-body algs rely on forces drop off with distance; 

if far enough away, can ignore (e.g., gravity is 1/d2)
– Sequential time for n data points: O(n log n)
– Example is 16,384 bodies

• Ocean App: Gauss-Seidel multigrid technique to solve a set of 
elliptical partial differential eq.s’

– red-black Gauss-Seidel colors points in grid to consistently update points 
based on previous values of adjacent neighbors

– Multigrid solve finite diff. eq. by iteration using hierarch. Grid
– Communication when boundary accessed by adjacent subgrid
– Sequential time for nxn grid: O(n2)
– Input: 130 x 130 grid points, 5 iterations



Parallel Scientific App: Scaling
• p is # processors
• n is + data size
• Computation scales up 

with n by O( ), scales 
down linearly as p is 
increased

• Communication
– FFT all-to-all so n
– LU, Ocean at boundary, so 

n1/2

– Barnes complex:
n1/2 greater distance,
x log n to maintain bodies 
relationships

– All scale down 1/p1/2

App Scaling
compu-
tation

Scaling
communi
cation

Scaling
comp -
to-comm

FFT n log n/p n/p log n
LU n/p n1/2/p1/2 n1/2/p1/2

Barnes n log n/p n1/2 log n
/p1/2

n1/2/p1/2

Ocean n/p n1/2/p1/2 n1/2/p1/2

• Keep n same, but inc. p?
• Inc. n to keep comm. same w. +p?



Amdahl’s Law and Parallel Computers

• Amdahl’s Law (FracX: original % to be speeded up)
Speedup = 1 / [(FracX/SpeedupX + (1-FracX)]

• A portion is sequential => limits parallel speedup
– Speedup <= 1/ (1-FracX)

• Ex. What fraction should be sequential to get 80X 
speedup from 100 processors? Assume either 1 
processor or 100 fully used

80 = 1 / [(FracX/100 + (1-FracX)]
0.8*FracX + 80*(1-FracX) = 80 - 79.2*FracX = 1
FracX = (80-1)/79.2 = 0.9975
• Only 0.25% should be sequential!
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Symmetric Shared-Memory 
Architectures – Use of Caches

• Caches serve to:
– Increase bandwidth versus bus/memory
– Reduce latency of access
– Valuable for both private data and shared data

• What about cache consistency?



What is Multiprocessor Cache 
Coherence?



What Does Coherency Mean?

• Informally:
– “Any read must return the most recent write”
– Too strict and too difficult to implement

• Better:
– “Any write must eventually be seen by a read”
– All writes are seen in proper order (“serialization”)

• Two rules to ensure this:
– “If P writes x and P1 reads it, P’s write will be seen by P1 if 

the read and write are sufficiently far apart”
– Writes to a single location are serialized: 

seen in one order
» Latest write will be seen
» Otherwise could see writes in illogical order

(could see older value after a newer value)



Potential HW Coherency Solutions

• Snooping Solution (Snoopy Bus):
– Send all requests for data to all processors
– Processors snoop to see if they have a copy and respond accordingly 
– Requires broadcast, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)

• Directory-Based Schemes 
– Keep track of what is being shared in 1 centralized place (logically)
– Distributed memory => distributed directory for scalability

(avoids bottlenecks)
– Send point-to-point requests to processors via network
– Scales better than Snooping
– Actually existed BEFORE Snooping-based schemes



Basic Snoopy Protocols

• Write Invalidate Protocol:
– Multiple readers, single writer
– Write to shared data:  an invalidate is sent to all caches which snoop 

and invalidate any copies
– Read Miss: 

» Write-through: memory is always up-to-date
» Write-back: snoop in caches to find most recent copy

• Write Broadcast Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop, and 

update any copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests!
– Bus is single point of arbitration



Basic Snoopy Protocols

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction per write-run
– Invalidate uses spatial locality: one transaction per block
– Broadcast has lower latency between write and read



Snooping Cache Variations

Berkeley 
Protocol

Owned Exclusive
Owned Shared

Shared
Invalid

Basic 
Protocol

Exclusive
Shared
Invalid

Illinois 
Protocol
Private Dirty
Private Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

MESI 
Protocol

Modfied (private,!=Memory)
eXclusive (private,=Memory)

Shared (shared,=Memory)
Invalid



An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus
• Writes to clean line are treated as misses



Snoopy-Cache State Machine-I 
• State machine

for CPU requests
for each 
cache block Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State



Snoopy-Cache State Machine-II
• State machine

for bus requests
for each 

cache block Invalid Shared
(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss 
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)



Place read miss
on bus

Snoopy-Cache State Machine-III 
• State machine

for CPU requests
for each 
cache block and
for bus requests
for each 

cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss 
for this block

Write Back
Block; (abort
memory access)



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 !=  A2



Implementation Complications
• Write Races:

– Cannot update cache until bus is obtained
» Otherwise, another processor may get bus first, 

and then write the same cache block!
– Two step process:

» Arbitrate for bus 
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, 
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic: 

can have multiple outstanding transactions for a block
» Multiple misses can interleave, 

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations



Implementing Snooping Caches
• Multiple processors must be on bus, access to both 

addresses and data
• Add a few new commands to perform coherency, 

in addition to read and write
• Processors continuously snoop on address bus

– If address matches tag, either invalidate or update
• Since every bus transaction checks cache tags, 

could interfere with CPU just to check: 
– solution 1: duplicate set of tags for L1 caches just to allow checks in 

parallel with CPU
– solution 2: L2 cache already duplicate, 

provided L2 obeys inclusion with L1 cache
» block size, associativity of L2 affects L1



Implementing Snooping Caches

• Bus serializes writes, getting bus ensures no one else 
can perform memory operation

• On a miss in a write back cache, may have the desired 
copy and its dirty, so must reply

• Add extra state bit to cache to determine shared or not
• Add 4th state (MESI)



Larger MPs
• Separate Memory per Processor
• Local or Remote access via memory controller
• 1 Cache Coherency solution: non-cached pages 
• Alternative: directory per cache that tracks state of every block in 

every cache
– Which caches have a copies of block, dirty vs. clean, ...

• Info per memory block vs. per cache block?
– PLUS: In memory => simpler protocol (centralized/one location)
– MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

• Prevent directory as bottleneck? 
distribute directory entries with memory, each keeping track of which 
Procs have copies of their blocks



Distributed Directory MPs

Interconnection Network

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory



Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor hasit; not valid in any cache)
– Exclusive: 1 processor (owner) has data; 

memory out-of-date
• In addition to cache state, must track which processors 

have data when in the shared state (usually bit vector, 1 if 
processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data 

=> write miss
– Processor blocks until access completes
– Assume messages received 

and acted upon in order sent



Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location 

of an address resides
– Remote node has a copy of a cache 

block, whether exclusive or shared

• Example messages on next slide: 
P = processor number, A = address



Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P reads data at address A; 
make P a read sharer and arrange to send data back 

Write miss Local cache Home directory P, A
– Processor P writes data at address A; 

make P the exclusive owner and arrange to send data back 
Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory; invalidate 
the block in the cache

Data value reply Home directory Local cache Data
– Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
– Write-back a data value for address A (invalidate response)



State Transition Diagram for an 
Individual Cache Block in a Directory 

Based System

• States identical to snoopy case; transactions very 
similar.

• Transitions caused by read misses, write misses, 
invalidates, data fetch requests

• Generates read miss & write miss msg to home 
directory.

• Write misses that were broadcast on the bus for 
snooping => explicit invalidate & data fetch 
requests.

• Note: on a write, a cache block is bigger, so need 
to read the full cache block



CPU -Cache State Machine

• State machine
for CPU  requests
for each 
memory block

• Invalid state
if in 
memory

Fetch/Invalidate
send Data Write Back message 

to home directory

Invalidate

Invalid
Shared

(read/only)

Exclusive
(read/writ)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss 
msg to h.d.

CPU Write:Send 
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back 
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message 
and Write Miss to home 
directory

CPU read miss: send Data 
Write Back message and 
read miss to home directory



State Transition Diagram for the 
Directory 

• Same states & structure as the 
transition diagram for an individual cache

• 2 actions: update of directory state & 
send msgs to statisfy requests 

• Tracks all copies of memory block. 
• Also indicates an action that updates the 

sharing set, Sharers, as well as sending a 
message.



Directory State Machine
• State machine

for Directory requests 
for each 
memory block

• Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/writ)

Read miss:
Sharers = {P}
send Data Value 
Reply

Write Miss: 
send Invalidate 
to Sharers;
then Sharers = {P};
send Data Value 
Reply msg

Write Miss:
Sharers = {P}; 
send Data 
Value Reply
msg

Read miss:
Sharers += {P}; 
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss: 
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P}; 
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache



Example Directory Protocol
• Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the 
current value; only possible requests for that block are:

– Read miss: requesting processor sent data from memory &requestor made 
only sharing node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the Sharing 
node. The block is made Exclusive to indicate that the only valid copy is 
cached. Sharers indicates the identity of the owner. 

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory & 

requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors in the set 

Sharers are sent invalidate messages, & Sharers is set to identity of 
requesting processor. The state of the block is made Exclusive.



Example Directory Protocol
• Block is Exclusive: current value of the block is held in the 

cache of the processor identified by the set Sharers (the 
owner) => three possible directory requests:

– Read miss: owner processor sent data fetch message, causing state of 
block in owner’s cache to transition to Shared and causes owner to send 
data to directory, where it is written to memory & sent back to 
requesting processor. 
Identity of requesting processor is added to set Sharers, which still 
contains the identity of the processor that was the owner (since it still 
has a readable copy).  State is shared.

– Data write-back: owner processor is replacing the block and hence must 
write it back, making memory copy up-to-date 
(the home directory essentially becomes the owner), the block is now 
Uncached, and the Sharer set is empty. 

– Write miss: block has a new owner. A message is sent to old owner causing 
the cache to send the value of the block to the directory from which it is 
sent to the requesting processor, which becomes the new owner. Sharers 
is set to identity of new owner, and state of block is made Exclusive.



Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory



Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory



Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory



Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back

A1



Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1



Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1



Implementing a Directory

• We assume operations atomic, but they are 
not; reality is much harder; must avoid 
deadlock when run out of bufffers in network 
(see Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data directly to 

requestor from owner vs. 1st to memory and then from 
memory to requestor



Synchronization

• Why Synchronize? Need to know when it is safe for 
different processes to use shared data

• Message passing is implicit coordination with 
transmission or arrival of data

• Shared address 
=> additional operations to explicitly coordinate: 
e.g., write a flag, awaken a thread, interrupt a processor

• Issues for Synchronization:
– Uninterruptible instruction to fetch and update memory (atomic 

operation);
– User level synchronization operation using this primitive;
– For large scale MPs, synchronization can be a bottleneck; techniques to 

reduce contention and latency of synchronization



Uninterruptible Instruction to Fetch 
and Update Memory

• Atomic exchange: interchange a value in a register for a 
value in memory

0 => synchronization variable is free 
1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible

• Test-and-set: tests a value and sets it if the value 
passes the test

• Fetch-and-increment: it returns the value of a memory 
location and atomically increments it

– 0 => synchronization variable is free 



Uninterruptible Instruction to Fetch 
and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same memory 

location since preceding load) and 0 otherwise

• Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1); load linked
sc R3,0(R1); store conditional
beqz R3,try  ; branch store fails (R3 = 0)
mov R4,R2  ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1); load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional 
beqz R2,try  ; branch store fails (R2 = 0)



User Level Synchronization—Operation 
Using this Primitive

• Spin locks: processor continuously tries to acquire, 
spinning around a loop trying to get the lock

li R2,#1
lockit:exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all 
other copies; this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable; 
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?



Another MP Issue: 
Memory Consistency Models

• What is consistency? When must a processor see the 
new value? e.g., seems that
P1: A = 0; P2: B = 0;

..... .....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models: 
what are the rules for such cases?

• Sequential consistency: result of any execution is the 
same as if the accesses of each processor were kept in 
order and the accesses among different processors were 
interleaved => assignments before ifs above

– SC: delay all memory accesses until all invalidates done



Memory Consistency Model
• Schemes faster execution to sequential consistency
• Not really an issue for most programs; 

they are synchronized
– A program is synchronized if all access to shared data are ordered by 

synchronization operations
write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are 
not synchronized: “data race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since 
most programs are synchronized; characterized by their 
attitude towards: RAR, WAR, RAW, WAW 
to different addresses



Summary

• Caches contain all information on state of 
cached memory blocks 

• Snooping and Directory Protocols similar; bus 
makes snooping easier because of broadcast 
(snooping => uniform memory access)

• Directory has extra data structure to keep 
track of state of all cache blocks

• Distributing directory 
• => scalable shared address multiprocessor 

=> Cache coherent, Non uniform memory 
access


