
Review of Pipelining Basics



What Drives Architectural 
Developments?

Demanding Applications which require higher 
and higher Performance at lower cost and 

lower power



Performance Measures

• Time to run the task
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns …
– Throughput, bandwidth

Execution time is the ultimate measure of 
computer performance!



Speed Up

"X is n times faster than Y"  means

ExTime(Y)     Performance(X)  
Speedup =------------ =  --------------

ExTime(X)      Performance(Y)



Estimating Speedup
Amdahl's Law

Speedup due to enhancement E:
ExTime w/o E        Performance w/  E

Speedup(E) =   ------------- =   -----------------------
ExTime w/  E        Performance w/o E

Suppose that enhancement E accelerates a fraction F of 
the task by a factor S, and the remainder of the task 
is unaffected

ExTimenew = ExTimeold x   (1 - Fractionenhanced) +  Fractionenhanced

Speedupoverall =
ExTimeold

ExTimenew

Speedupenhanced

=
1

(1 - Fractionenhanced) +  Fractionenhanced

Speedupenhanced



Aspects of CPU 
PerformanceCPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds

Program Program          Instruction       Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

Inst Count   CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X



Architectural Enhancements

Instruction Level Parallelism (ILP)
Pipelining
Dynamic Scheduling
Superscalar, VLIW and Vector processors
Compiler support (EPIC Architecture)

Thread-level Parallelism
Multiprocessors



Pipelining



What Is Pipelining

Laundry Example
Ann, Brian, Cathy, Dave 
each have one load of 
clothes 
to wash, dry, and fold
Washer takes 30 minutes
Dryer takes 40 minutes
“Folder” takes 20 
minutes

A B C D



What Is Pipelining

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would  laundry take? 

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time



What Is Pipelining

Pipelined laundry takes 
3.5 hours for 4 loads 
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Pipelining Lessons

Pipelining doesn’t help 
latency of single task, it 
helps throughput of 
entire workload
Pipeline rate limited by 
slowest pipeline stage
Multiple tasks operating 
simultaneously
Potential speedup = 
Number pipe stages
Unbalanced lengths of 
pipe stages reduces 
speedup
Time to “fill” pipeline and 
time to “drain” it reduces 
speedup
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Computer Pipelines

Execute billions of instructions, so throughput is 
what matters
What is desirable in instruction sets for 
pipelining?

Variable length instructions vs. 
all instructions same length?
Memory operands part of any operation 
vs. memory operands only in loads or 
stores?
Register operand many places in 
instruction format vs. registers located 
in same place?



A "Typical" RISC
32-bit fixed format instruction (3 formats)
Memory access only via load/store instrutions
32 32-bit GPR (R0 contains zero, DP take pair)
3-address, reg-reg arithmetic instruction; 
registers in same place
Single address mode for load/store: 
base + displacement

no indirection
Simple branch conditions
Delayed branch



Example: MIPS (Note 
register location)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call



5 Steps of MIPS Datapath
Without Pipelining Memory
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MIPS Functions

Instruction Fetch (IF):
Sends out the PC and fetch the instruction from memory into the 
instruction register (IR); increment the PC by 4 to address the next 
sequential instruction.
IR holds the instruction that will be used in the next stage.
NPC holds the value of the next PC.

Passed To Next Stage
IR <- Mem[PC]
NPC <- PC + 4



MIPS Functions

Instruction Decode/Register Fetch Cycle (ID):
Decode the instruction and access the register file to read the registers.
The outputs of the general purpose registers are read into two temporary 
registers (A & B) for use in later clock cycles.
We extend the sign of the lower 16 bits of the Instruction Register.

Passed To Next Stage
A <- Regs[IR6..IR10];
B <- Regs[IR10..IR15];
Imm <- ((IR16) ##IR16-31



MIPS Functions

Passed To Next Stage
A <- A func. B
cond = 0;

Execute Address Calculation (EX):
We perform an operation (for an ALU) or an address calculation (if it’s 
a load or a Branch).
If an ALU, actually do the operation.  If an address calculation, 
figure out how  to obtain the address and stash away the location of 
that address for the next cycle.



MIPS Functions

Passed To Next Stage
A = Mem[prev. B]
or
Mem[prev. B] = A

MEMORY ACCESS (MEM):
If this  is an ALU, do nothing.
If its a load or store, then access  memory.



MIPS Functions

Passed To Next Stage
Regs <- A, B;

WRITE BACK (WB):
Update the registers from either the ALU or from the data loaded.



Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X
M

U
X

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B 

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Datapath

Control Path

The Basic Pipeline For MIPS



Visualizing Pipeline For MIPS

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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LU DMemIfetch Reg
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Speed Up Equation for 
Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1, therefore



An Example
We want to compare the performance of two machines.  Which machine is faster?

Machine A: Dual ported memory - so there are no memory stalls
Machine B: Single ported memory, but its pipelined implementation has a 1.05 times 
faster clock rate

Assume:
Ideal CPI = 1 for both
Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) 
x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth / (0.75 x Pipeline Depth) = 
1.33

Machine A is 1.33 times faster 



Limits to Pipelining
Hazards: Circumstances that would cause incorrect 
execution if the next instruction was launched

Structural hazards: Attempting to use the same 
hardware to do two different things at the same 
time

Data hazards: Instruction depends on result of 
prior instruction still in the pipeline

Arises due to data dependences in compiler 
nomenclature

Control hazards: Caused by delay between the 
fetching of instructions and decisions about 
changes in control flow (branches and jumps)



Structural Hazards
When two or 
more different 
instructions want 
to use same 
hardware 
resource in same 
cycle 

e.g., MEM  uses 
the same memory 
port as IF as 
shown in this 
slide.
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Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Structural Hazard Solution: To 
stall the pipeline



Structural Hazards – Stalling the 
pipeline
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Instr 3

Reg A
LU DMemIfetch Reg

Reg A
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Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble



Dealing with Structural 
Hazards

Stall
low cost, simple 
increases CPI  
used for rare cases since stalling affects performance

Pipeline hardware resource
useful for multi-cycle resources 
good performance 
sometimes complex e.g., RAM 

Replicate resource
good performance 
increases cost (+ maybe interconnect delay) 
useful for cheap or divisible resources 



Data and Control hazards

Arise due to 
Dependences between instructions in a 
program

Data dependence
Control dependence

Dependences are properties of programs

Whether the dependences turn out to be hazards and 
cause stalls in the pipeline are properties of the pipeline 
organization



Data Dependences

Three types of dependences: data dependences (also 
called true data dependences), name dependences and 
control dependences

An instruction j is data dependent on instruction i if 
either of the following holds:

Instruction i produces a result that may be 
used by instruction j, or
Instruction j is data dependent on instruction 
k, and instruction k is data dependent on 
instruction i



Name Dependences
Occurs when two instructions use the same register or memory 
location, called a name, but there is no flow of data between the 
instructions associated with that name

Two types of name dependences between an instruction i that 
precedes instruction j in program order:

An antidependence between instruction i and instruction j 
occurs when instruction j writes a register or memory 
location that instruction i reads. The original ordering must 
be preserved. 
An output dependence occurs when instruction i and 
instruction j write the same register or memory location. 
The ordering between the instructions must be preserved.



Data Hazards
Data hazards may be classified as one of three types, depending on the 
order of read and write accesses in the instructions: 
RAW (read after write) 

Corresponds to a true data dependence
Program order must be preserved

WAW (write after write)
Corresponds to an output dependence
Occurs when there are multiple writes or a short integer 
pipeline and a longer floating-point pipeline or when an 
instruction proceeds when a previous instruction is stalled

WAR (write after read)
Arises from an anti dependence 
Cannot occur in most static issue pipelines 
Occurs either when there are early writes and late reads, or 
when instructions are re-ordered.



Data HazardsRead After Write (RAW) 
InstrJ tries to read operand before InstrI writes it

Write After Read (WAR)
InstrJ tries to write operand before InstrI reads i

Can get wrong operand

Can’t happen in MIPS 5 stage pipeline because:
All instructions take 5 stages, and
Reads are always in stage 2, and 
Writes are always in stage 5

I: add r1,r2,r3
J: sub r4,r1,r3

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7



Data Hazards
Write After Write (WAW) 

InstrJ tries to write operand before InstrI writes it
Leaves wrong result ( InstrI not InstrJ )

Can’t happen in MIPS 5 stage pipeline because: 
All instructions take 5 stages, and 
Writes are always in stage 5

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7



Data Hazards
Simple Solution to RAW 

• Stall
• Hardware detects RAW and stalls 
• Low cost to implement, simple 
• Reduces IPC 

• Try to minimize stalls 

Minimizing RAW stalls
• Bypass/forward/shortcircuit  (We will use 

the word “forward”)
• Use data before it is in the register 

+ reduces/avoids stalls 
-- complex 

• Crucial for common RAW hazards 



Data Hazards

The use of the result of the ADD instruction in the next three instructions 
causes a hazard, since the register is not written until after those instructions 
read it.
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dadd r1,r2,r3

dsub r4,r1,r5

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB



Data Hazards
Forwarding To Avoid

Data Hazard

Forwarding is the concept of making data 
available to the input of the ALU for 
subsequent instructions, even though the 
generating instruction hasn’t gotten to 
WB in order to write the memory or 
registers.

Time (clock cycles)
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dadd r1,r2,r3

dsub r4,r1,r5

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg
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Hardware Change for 
Forwarding
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Data Hazards

There are some instances where hazards occur, even with forwarding.

The data isn’t loaded until after 
the MEM stage.

Time (clock cycles)
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ld r1,0(r2)

dsub r4,r1,r5

and r6,r1,r7

or   r8,r1,r9

Reg A
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Data Hazards

There are some instances where hazards occur, even with forwarding.

The stall is necessary as shown here.

Time (clock cycles)

or   r8,r1,r9
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ld r1, 0(r2)

dsub r4,r1,r5

and r6,r1,r7

Reg A
LU DMemIfetch Reg
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Control HazardsA control hazard is due to control dependence i.e., when we need 
to find the destination of a branch, and can’t fetch any new 
instructions until we know that destination. 
Control Dependence

Two general constraints imposed by control dependences:
An instruction that is control dependent on its branch 
cannot be moved before the branch so that its execution 
is no longer controlled by the branch.

An instruction that is not control dependent on its 
branch cannot be moved after the branch so that its 
execution is controlled by the branch.



Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
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Reg A
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Reg A
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Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg



Example: Branch Stall Impact

If 30% branch, Stall 3 cycles significant
Two part solution:

Determine branch taken or not sooner, AND
Compute taken branch address earlier

MIPS branch tests if register = 0 or ≠ 0
MIPS Solution:

Move Zero test to ID/RF stage
Adder to calculate new PC in ID/RF stage
1 clock cycle penalty for branch versus 3



#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

Execute successor instructions in sequence
“Squash” instructions in pipeline if branch 
actually taken
Advantage of late pipeline state update
47% MIPS branches not taken on average
PC+4 already calculated, so use it to get next 
instruction

#3: Predict Branch Taken
53% MIPS branches taken on average
But haven’t calculated branch target address in 
MIPS

MIPS still incurs 1 cycle branch penalty
Other machines: branch target known 
before outcome

Control Hazards –Four 
Alternatives 



#4: Delayed Branch
Define branch to take place AFTER a following 
instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

1 slot delay allows proper decision and branch 
target address in 5 stage pipeline
MIPS uses this

Branch delay of length n

Four Branch Hazard 
Alternatives Contd.



Delayed Branch

Where to get instructions to fill branch delay slot?
Before branch instruction
From the target address: only valuable when 
branch taken
From fall through: only valuable when branch 
not taken
Canceling branches allow more slots to be filled

Delayed Branch downside: Difficult to find 
instructions.



Compiler “Static”
Prediction of
Taken/Untaken Branches
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The compiler can program what it thinks 
the branch direction will be.  Here are 
the results when it does so.



Compiler “Static” Prediction of
Taken/Untaken Branches

Improves strategy for placing instructions in delay slot

Two strategies
Backward branch predict taken, forward branch 
not taken
Profile-based prediction: record branch behavior, 
predict branch based on prior run



What Makes 
Pipelining Hard?

Examples of interrupts:
Power failing, 
Arithmetic overflow, 
I/O device request, 
OS call, 
Page fault 

Interrupts (also known as: 
faults, exceptions, traps) 
often require 
surprise jump (to vectored 
address) 
linking return address 
saving of PSW (including CCs) 
state change (e.g., to kernel 
mode)

Interrupts cause 
great havoc!

There are 5 instructions 
executing in 5 stage pipeline 
when an interrupt occurs:

• How to stop the pipeline?
• How to restart the pipeline?
• Who caused the interrupt?



What Makes 
Pipelining Hard?

Interrupts cause 
great havoc!

What happens on interrupt while in delay slot ?
• Next instruction is not sequential 
solution #1: save multiple PCs 
• Save current and next PC 
• Special return sequence, more complex hardware 
solution #2: single PC plus Branch delay bit 
• PC points to branch instruction

Stage Problem that causes the interrupt
IF Page fault on instruction fetch; misaligned memory 

access; memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory 

access; memory-protection violation



What Makes 
Pipelining Hard?

Simultaneous exceptions in more than one pipeline stage,
e.g.,

Load with data page fault in MEM stage
Add with instruction page fault in IF stage
Add fault will happen BEFORE load fault

Solution #1
Interrupt status vector per instruction
Defer check until last stage, kill state update if 
exception

Solution #2
Interrupt ASAP
Restart everything that is incomplete

Another advantage for state update late in pipeline!

Interrupts cause 
great havoc!



What Makes 
Pipelining Hard?

Here’s what happens on a data page fault. 
1   2   3   4   5   6   7   8   9 

i       F   D   X   M   W 
i+1         F   D   X   M   W < page fault 
i+2             F   D   X   M   W < squash 
i+3                 F   D   X   M    W < squash 
i+4                     F   D   X    M   W < squash 
i+5     trap >             F   D    X   M   W 
i+6     trap handler >         F    D   X   M   W 

Interrupts cause 
great havoc!



What Makes 
Pipelining Hard?

Complex Addressing Modes and Instructions
Address modes: Auto increment causes register change 
during instruction execution

Interrupts? Need to restore register state
Adds WAR and WAW hazards since writes are no 
longer the last stage.

Memory-Memory Move Instructions
Must be able to handle multiple page faults
Long-lived instructions: partial state save on 
interrupt

Condition Codes

Complex 
Instructions



Floating Point Pipeline – Multi-
cycle Operations

Long Latency instructions

More complex pipeline

Multiple functional units

Examples: 

Floating Point Divider Unit

Floating Point Multiplier Unit

Floating Point Adder Unit

Floating Point Integer Unit



Multi-Cycle Operations

Floating point gives long execution time.
This causes a stall of the pipeline.
It’s possible to pipeline the FP execution unit so it can initiate new 

instructions without waiting full latency.  Can also have multiple FP 
units.

Example:
FP Instruction Latency Initiation interval
Add, Subtract 4 1
Multiply 8 1
Divide 36 35
Square root 112 111
Negate 2 1
Absolute value 2 1
FP compare 3 2



Divide, Square Root take 10X to 30X longer 
than Add

Interrupts?
Adds WAR and WAW hazards since 
pipelines are no longer same length1 2 3 4 5 6 7 8 9 10 11

i IF ID EX MEM WB
I + 1 IF ID EX EX EX EX MEM WB
I + 2 IF ID EX MEM WB
I + 3 IF ID EX EX EX EX MEM WB
I + 4 IF ID EX MEM WB
I + 5 IF ID -- -- EX EX
I + 6 IF -- -- ID EX

Notes:
I + 2:  WAW, but this complicates an interrupt
I + 4: WB conflict
I + 5: stall forced by structural hazard
I + 6: stall forced by in-order issue

Multi-Cycle Operations



Summary of Pipelining Basics

Hazards limit performance
Structural: need more HW resources
Data: need forwarding, compiler scheduling
Control: early evaluation & PC, delayed branch, 
prediction

Increasing length of pipe increases impact of hazards; 
pipelining helps instruction bandwidth, not latency
Interrupts, Instruction Set, FP makes pipelining harder
Compilers reduce cost of data and control hazards

Load delay slots
Branch delay slots
Branch prediction


