
Review of Pipelining Basics

What Drives Architectural
Developments?

Demanding Applications which require higher
and higher Performance at lower cost and

lower power

Performance Measures

• Time to run the task
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns …
– Throughput, bandwidth

Execution time is the ultimate measure of
computer performance!

Speed Up

"X is n times faster than Y" means

ExTime(Y) Performance(X)
Speedup =------------ = --------------

ExTime(X) Performance(Y)

Estimating Speedup
Amdahl's Law

Speedup due to enhancement E:
ExTime w/o E Performance w/ E

Speedup(E) = ------------- = -----------------------
ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of
the task by a factor S, and the remainder of the task
is unaffected

ExTimenew = ExTimeold x (1 - Fractionenhanced) + Fractionenhanced

Speedupoverall =
ExTimeold

ExTimenew

Speedupenhanced

=
1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

Aspects of CPU
PerformanceCPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

Architectural Enhancements

Instruction Level Parallelism (ILP)
Pipelining
Dynamic Scheduling
Superscalar, VLIW and Vector processors
Compiler support (EPIC Architecture)

Thread-level Parallelism
Multiprocessors

Pipelining

What Is Pipelining

Laundry Example
Ann, Brian, Cathy, Dave
each have one load of
clothes
to wash, dry, and fold
Washer takes 30 minutes
Dryer takes 40 minutes
“Folder” takes 20
minutes

A B C D

What Is Pipelining

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

What Is Pipelining

Pipelined laundry takes
3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Pipelining Lessons

Pipelining doesn’t help
latency of single task, it
helps throughput of
entire workload
Pipeline rate limited by
slowest pipeline stage
Multiple tasks operating
simultaneously
Potential speedup =
Number pipe stages
Unbalanced lengths of
pipe stages reduces
speedup
Time to “fill” pipeline and
time to “drain” it reduces
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Computer Pipelines

Execute billions of instructions, so throughput is
what matters
What is desirable in instruction sets for
pipelining?

Variable length instructions vs.
all instructions same length?
Memory operands part of any operation
vs. memory operands only in loads or
stores?
Register operand many places in
instruction format vs. registers located
in same place?

A "Typical" RISC
32-bit fixed format instruction (3 formats)
Memory access only via load/store instrutions
32 32-bit GPR (R0 contains zero, DP take pair)
3-address, reg-reg arithmetic instruction;
registers in same place
Single address mode for load/store:
base + displacement

no indirection
Simple branch conditions
Delayed branch

Example: MIPS (Note
register location)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

5 Steps of MIPS Datapath
Without Pipelining Memory

Access
Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

MIPS Functions

Instruction Fetch (IF):
Sends out the PC and fetch the instruction from memory into the
instruction register (IR); increment the PC by 4 to address the next
sequential instruction.
IR holds the instruction that will be used in the next stage.
NPC holds the value of the next PC.

Passed To Next Stage
IR <- Mem[PC]
NPC <- PC + 4

MIPS Functions

Instruction Decode/Register Fetch Cycle (ID):
Decode the instruction and access the register file to read the registers.
The outputs of the general purpose registers are read into two temporary
registers (A & B) for use in later clock cycles.
We extend the sign of the lower 16 bits of the Instruction Register.

Passed To Next Stage
A <- Regs[IR6..IR10];
B <- Regs[IR10..IR15];
Imm <- ((IR16) ##IR16-31

MIPS Functions

Passed To Next Stage
A <- A func. B
cond = 0;

Execute Address Calculation (EX):
We perform an operation (for an ALU) or an address calculation (if it’s
a load or a Branch).
If an ALU, actually do the operation. If an address calculation,
figure out how to obtain the address and stash away the location of
that address for the next cycle.

MIPS Functions

Passed To Next Stage
A = Mem[prev. B]
or
Mem[prev. B] = A

MEMORY ACCESS (MEM):
If this is an ALU, do nothing.
If its a load or store, then access memory.

MIPS Functions

Passed To Next Stage
Regs <- A, B;

WRITE BACK (WB):
Update the registers from either the ALU or from the data loaded.

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X
M

U
X

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Datapath

Control Path

The Basic Pipeline For MIPS

Visualizing Pipeline For MIPS

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Speed Up Equation for
Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, CPI = 1, therefore

An Example
We want to compare the performance of two machines. Which machine is faster?

Machine A: Dual ported memory - so there are no memory stalls
Machine B: Single ported memory, but its pipelined implementation has a 1.05 times
faster clock rate

Assume:
Ideal CPI = 1 for both
Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1)
x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth / (0.75 x Pipeline Depth) =
1.33

Machine A is 1.33 times faster

Limits to Pipelining
Hazards: Circumstances that would cause incorrect
execution if the next instruction was launched

Structural hazards: Attempting to use the same
hardware to do two different things at the same
time

Data hazards: Instruction depends on result of
prior instruction still in the pipeline

Arises due to data dependences in compiler
nomenclature

Control hazards: Caused by delay between the
fetching of instructions and decisions about
changes in control flow (branches and jumps)

Structural Hazards
When two or
more different
instructions want
to use same
hardware
resource in same
cycle

e.g., MEM uses
the same memory
port as IF as
shown in this
slide.

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Structural Hazard Solution: To
stall the pipeline

Structural Hazards – Stalling the
pipeline

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Dealing with Structural
Hazards

Stall
low cost, simple
increases CPI
used for rare cases since stalling affects performance

Pipeline hardware resource
useful for multi-cycle resources
good performance
sometimes complex e.g., RAM

Replicate resource
good performance
increases cost (+ maybe interconnect delay)
useful for cheap or divisible resources

Data and Control hazards

Arise due to
Dependences between instructions in a
program

Data dependence
Control dependence

Dependences are properties of programs

Whether the dependences turn out to be hazards and
cause stalls in the pipeline are properties of the pipeline
organization

Data Dependences

Three types of dependences: data dependences (also
called true data dependences), name dependences and
control dependences

An instruction j is data dependent on instruction i if
either of the following holds:

Instruction i produces a result that may be
used by instruction j, or
Instruction j is data dependent on instruction
k, and instruction k is data dependent on
instruction i

Name Dependences
Occurs when two instructions use the same register or memory
location, called a name, but there is no flow of data between the
instructions associated with that name

Two types of name dependences between an instruction i that
precedes instruction j in program order:

An antidependence between instruction i and instruction j
occurs when instruction j writes a register or memory
location that instruction i reads. The original ordering must
be preserved.
An output dependence occurs when instruction i and
instruction j write the same register or memory location.
The ordering between the instructions must be preserved.

Data Hazards
Data hazards may be classified as one of three types, depending on the
order of read and write accesses in the instructions:
RAW (read after write)

Corresponds to a true data dependence
Program order must be preserved

WAW (write after write)
Corresponds to an output dependence
Occurs when there are multiple writes or a short integer
pipeline and a longer floating-point pipeline or when an
instruction proceeds when a previous instruction is stalled

WAR (write after read)
Arises from an anti dependence
Cannot occur in most static issue pipelines
Occurs either when there are early writes and late reads, or
when instructions are re-ordered.

Data HazardsRead After Write (RAW)
InstrJ tries to read operand before InstrI writes it

Write After Read (WAR)
InstrJ tries to write operand before InstrI reads i

Can get wrong operand

Can’t happen in MIPS 5 stage pipeline because:
All instructions take 5 stages, and
Reads are always in stage 2, and
Writes are always in stage 5

I: add r1,r2,r3
J: sub r4,r1,r3

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Data Hazards
Write After Write (WAW)

InstrJ tries to write operand before InstrI writes it
Leaves wrong result (InstrI not InstrJ)

Can’t happen in MIPS 5 stage pipeline because:
All instructions take 5 stages, and
Writes are always in stage 5

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Data Hazards
Simple Solution to RAW

• Stall
• Hardware detects RAW and stalls
• Low cost to implement, simple
• Reduces IPC

• Try to minimize stalls

Minimizing RAW stalls
• Bypass/forward/shortcircuit (We will use

the word “forward”)
• Use data before it is in the register

+ reduces/avoids stalls
-- complex

• Crucial for common RAW hazards

Data Hazards

The use of the result of the ADD instruction in the next three instructions
causes a hazard, since the register is not written until after those instructions
read it.

I
n
s
t
r.

O
r
d
e
r

dadd r1,r2,r3

dsub r4,r1,r5

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Data Hazards
Forwarding To Avoid

Data Hazard

Forwarding is the concept of making data
available to the input of the ALU for
subsequent instructions, even though the
generating instruction hasn’t gotten to
WB in order to write the memory or
registers.

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

dadd r1,r2,r3

dsub r4,r1,r5

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Hardware Change for
Forwarding

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

Data Hazards

There are some instances where hazards occur, even with forwarding.

The data isn’t loaded until after
the MEM stage.

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

ld r1,0(r2)

dsub r4,r1,r5

and r6,r1,r7

or r8,r1,r9

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazards

There are some instances where hazards occur, even with forwarding.

The stall is necessary as shown here.

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

ld r1, 0(r2)

dsub r4,r1,r5

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch

A
LU DMemBubble Reg

Control HazardsA control hazard is due to control dependence i.e., when we need
to find the destination of a branch, and can’t fetch any new
instructions until we know that destination.
Control Dependence

Two general constraints imposed by control dependences:
An instruction that is control dependent on its branch
cannot be moved before the branch so that its execution
is no longer controlled by the branch.

An instruction that is not control dependent on its
branch cannot be moved after the branch so that its
execution is controlled by the branch.

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Example: Branch Stall Impact

If 30% branch, Stall 3 cycles significant
Two part solution:

Determine branch taken or not sooner, AND
Compute taken branch address earlier

MIPS branch tests if register = 0 or ≠ 0
MIPS Solution:

Move Zero test to ID/RF stage
Adder to calculate new PC in ID/RF stage
1 clock cycle penalty for branch versus 3

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

Execute successor instructions in sequence
“Squash” instructions in pipeline if branch
actually taken
Advantage of late pipeline state update
47% MIPS branches not taken on average
PC+4 already calculated, so use it to get next
instruction

#3: Predict Branch Taken
53% MIPS branches taken on average
But haven’t calculated branch target address in
MIPS

MIPS still incurs 1 cycle branch penalty
Other machines: branch target known
before outcome

Control Hazards –Four
Alternatives

#4: Delayed Branch
Define branch to take place AFTER a following
instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

1 slot delay allows proper decision and branch
target address in 5 stage pipeline
MIPS uses this

Branch delay of length n

Four Branch Hazard
Alternatives Contd.

Delayed Branch

Where to get instructions to fill branch delay slot?
Before branch instruction
From the target address: only valuable when
branch taken
From fall through: only valuable when branch
not taken
Canceling branches allow more slots to be filled

Delayed Branch downside: Difficult to find
instructions.

Compiler “Static”
Prediction of
Taken/Untaken Branches

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

n

0%

10%

20%

30%

40%

50%

60%

70%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

M
is

pr
ed

ic
tio

n
R

at
e

0%

2%

4%

6%

8%

10%

12%

14%

al
vi

nn

co
m

pr
es

s

do
du

c

es
pr

es
so gc

c

hy
dr

o2
d

m
dl

js
p2 or

a

sw
m

25
6

to
m

ca
tv

Always taken Taken backwards
Not Taken Forwards

The compiler can program what it thinks
the branch direction will be. Here are
the results when it does so.

Compiler “Static” Prediction of
Taken/Untaken Branches

Improves strategy for placing instructions in delay slot

Two strategies
Backward branch predict taken, forward branch
not taken
Profile-based prediction: record branch behavior,
predict branch based on prior run

What Makes
Pipelining Hard?

Examples of interrupts:
Power failing,
Arithmetic overflow,
I/O device request,
OS call,
Page fault

Interrupts (also known as:
faults, exceptions, traps)
often require
surprise jump (to vectored
address)
linking return address
saving of PSW (including CCs)
state change (e.g., to kernel
mode)

Interrupts cause
great havoc!

There are 5 instructions
executing in 5 stage pipeline
when an interrupt occurs:

• How to stop the pipeline?
• How to restart the pipeline?
• Who caused the interrupt?

What Makes
Pipelining Hard?

Interrupts cause
great havoc!

What happens on interrupt while in delay slot ?
• Next instruction is not sequential
solution #1: save multiple PCs
• Save current and next PC
• Special return sequence, more complex hardware
solution #2: single PC plus Branch delay bit
• PC points to branch instruction

Stage Problem that causes the interrupt
IF Page fault on instruction fetch; misaligned memory

access; memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory

access; memory-protection violation

What Makes
Pipelining Hard?

Simultaneous exceptions in more than one pipeline stage,
e.g.,

Load with data page fault in MEM stage
Add with instruction page fault in IF stage
Add fault will happen BEFORE load fault

Solution #1
Interrupt status vector per instruction
Defer check until last stage, kill state update if
exception

Solution #2
Interrupt ASAP
Restart everything that is incomplete

Another advantage for state update late in pipeline!

Interrupts cause
great havoc!

What Makes
Pipelining Hard?

Here’s what happens on a data page fault.
1 2 3 4 5 6 7 8 9

i F D X M W
i+1 F D X M W < page fault
i+2 F D X M W < squash
i+3 F D X M W < squash
i+4 F D X M W < squash
i+5 trap > F D X M W
i+6 trap handler > F D X M W

Interrupts cause
great havoc!

What Makes
Pipelining Hard?

Complex Addressing Modes and Instructions
Address modes: Auto increment causes register change
during instruction execution

Interrupts? Need to restore register state
Adds WAR and WAW hazards since writes are no
longer the last stage.

Memory-Memory Move Instructions
Must be able to handle multiple page faults
Long-lived instructions: partial state save on
interrupt

Condition Codes

Complex
Instructions

Floating Point Pipeline – Multi-
cycle Operations

Long Latency instructions

More complex pipeline

Multiple functional units

Examples:

Floating Point Divider Unit

Floating Point Multiplier Unit

Floating Point Adder Unit

Floating Point Integer Unit

Multi-Cycle Operations

Floating point gives long execution time.
This causes a stall of the pipeline.
It’s possible to pipeline the FP execution unit so it can initiate new

instructions without waiting full latency. Can also have multiple FP
units.

Example:
FP Instruction Latency Initiation interval
Add, Subtract 4 1
Multiply 8 1
Divide 36 35
Square root 112 111
Negate 2 1
Absolute value 2 1
FP compare 3 2

Divide, Square Root take 10X to 30X longer
than Add

Interrupts?
Adds WAR and WAW hazards since
pipelines are no longer same length1 2 3 4 5 6 7 8 9 10 11

i IF ID EX MEM WB
I + 1 IF ID EX EX EX EX MEM WB
I + 2 IF ID EX MEM WB
I + 3 IF ID EX EX EX EX MEM WB
I + 4 IF ID EX MEM WB
I + 5 IF ID -- -- EX EX
I + 6 IF -- -- ID EX

Notes:
I + 2: WAW, but this complicates an interrupt
I + 4: WB conflict
I + 5: stall forced by structural hazard
I + 6: stall forced by in-order issue

Multi-Cycle Operations

Summary of Pipelining Basics

Hazards limit performance
Structural: need more HW resources
Data: need forwarding, compiler scheduling
Control: early evaluation & PC, delayed branch,
prediction

Increasing length of pipe increases impact of hazards;
pipelining helps instruction bandwidth, not latency
Interrupts, Instruction Set, FP makes pipelining harder
Compilers reduce cost of data and control hazards

Load delay slots
Branch delay slots
Branch prediction

