
Instruction Set Architecture

Instruction Set Architecture
(ISA)

instruction set

software

hardware

ISA is the interface between the hardware and software. The
Instruction Set Architecture is that portion of the machine
visible to the assembly level programmer or to the compiler

writer.

Interface Design
A good interface:

• Lasts through many implementations (portability,
compatibility)

• Is used in many different ways (generality)
• Provides convenient functionality to higher levels
• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

LIW/”EPIC”? (IA-64. . .1999)

Evolution of Instruction Sets
Major advances in computer architecture are
typically associated with landmark instruction set
designs

Ex: Stack vs. GPR (System 360)
Design decisions must take into account:

Technology
Machine organization
Programming languages
Compiler technology
Operating systems

And they in turn influence these

Classifying Instruction Set
Architectures

The major choices which differ basically by the type of
Internal Storage in a processor are :
Stack
Accumulator
General-purpose register (GPR)

Register–Memory
Register-register/load-store
Memory – Memory (not used now)

Classification is based on:
Number of memory operands in an ALU operation
Total number of operands in an ALU operation

Comparison of ISAs

Stack Accumulator
Register

(load-store)

Push A Load A Load R1,A
Push B Add B Load R2,B
Add Store C

Register
(register-memory)

Load R1,A
Add R1,B
Store C, R1 Add R3,R1,R2

Pop C Store C,R3

Code sequence for (C = A + B) for four classes of instruction sets.

Registers are the class that win. The more registers on the CPU, the better.

GPR Architectures

Number of
memory

addresses

Maximum number
of operands

allowed
Type of

Architecture Examples

0 3 Register-register MIPS, SPARC

1 2 Register-memory
IBM360/370,
Intel 80x86

2 2 Memory-memory VAX

3 3 Memory-memory VAX

Advantages and Disadvantages of the 3 most common
types of GPR computers

Type Advantages Disadvantages

Register-register Simple, fixed-length instruction encoding. Higher instruction count than
(0, 3) Simple code generation model. Instructions architectures with memory references in

take similar numbers of clocks to execute instructions. More instructions and lower
instruction density leads to larger
programs.

Register-memory Data can be accessed without a separate Operands are not equivalent since a
(1, 2) load instruction first. Instruction format source operand in a binary operation is

tends to be easy to encode and yields good destroyed. Encoding a register number
density. and a memory address in each instruction

may restrict the number of registers.
Clocks per instruction may vary by
operand location.

Memory-memory Most compact. Doesn’t waste registers for Large variation in instruction size,
(2, 2) or (3, 3) temporaries. Especially for three-operand instructions.

In addition, large variation in work per
instruction. Memory accesses create
memory bottleneck. (Not used today.)

Features to be considered while
designing the ISA

Types of instructions (Operations in the Instruction set)

Types and size of operands

Addressing Modes

Addressing Memory

Encoding and Instruction Formats

Compiler related issues

Guidelines for choosing the types of instructions:

Choose commonly used instructions

Make them faster

Specialized instructions depending upon the application of the

processor

Eg. Media and Signal Processing which involve operations like

• Partitioned add instructions

• Single-instruction multiple-data (SIMD) or vector instructions

• Paired single operations

• Saturating arithmetic operations

• Multiple-accumulate (MAC) instructions

Types of instructions

Categories of instruction operators and
examples

Operator Type Examples

Arithmetic and logical Integer arithmetic and logical operations: add, subtract, and, or,
multiply, divide

Data transfer Loads-stores (move instructions on computers with memory
addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating point Floating-point operations:add, multiply, divide, compare

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel and vertex operations, compression/decompression
operations

Top 10 instructions for Intel 80x86
Integer average

Rank 80x86 Instruction (% total executed)
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%

9 call 1%
8 move register-register 4%
7 sub 5%
6 and 6%

Total 96%
10 return 1%

Type and Size of operands
Encoding in the opcode, designates the type of an operand.
Common operand types and their sizes are:

Character (8 bits)
Half word (16 bits)
Word (32 bits)
Single Precision Floating Point (1 Word)
Double Precision Floating Point (2 Words)

Integers are two’s complement binary numbers.
Characters are usually in ASCII.
Floating point commonly follows the IEEE Standard 754.
Packed and Unpacked Decimal
Tradeoffs:

Memory Addressing

Memory Addressing Includes:

Interpreting Memory Addresses

Addressing Modes

Interpreting Memory Addresses
Big Endian: address of most significant byte = word
address
(x…x000 = Big End of word)

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
Little Endian: address of least significant byte = word
address
(x…x000 = Little End of word)

Intel 80x86, DEC Va, DEC Alpha (Windows NT)
Alignment: Data must be aligned on a
boundary equal to its size. An access to an
object of size s bytes at byte address A is
aligned if A mod s = 0. Misalignment may
result in multiple access which is normally
handled by memory controller.

0 1 2 3

Aligned

Not
Aligned

Addressing Modes

Used for static data.R[R4] <- R[R4] + M[1001]Add R4, (1001)Absolute

Using a pointer or a
computed address.

R[R4] <- R[R4] +
M[R[R1]]

Add R4, (R1)Register Deferred

Accessing local
variables.

R[R4] <- R[R4] +
M[100+R[R1]]

Add R4, 100(R1)Displacement

For constants.R[R4] <- R[R4] + 3Add R4, #3Immediate

When a value is in a
register.

R[R4] <- R[R4] + R[R3]Add R4, R3Register

When UsedMeaningExample
Instruction

Addressing Mode

This table shows the most common modes.

Instruction Encoding
Three basic variations in instruction encoding are Variable length, fixed length and hybrid.

(a) Variable (e.g., VAX, Intel 80x86)

Operation and no. of
operands

Address
Specifier 1

Address
field 1

Address
Specifier n

Address
field n…

(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

Operation Address field 1 Address field 2 Address field 3

(c) Hybrid (e.g., IBM360/370, MIPS16, Thumb, TI TMS320C54x)

Operation
Address
Specifier Address field

Operation
Address
Specifier 1

Address
Specifier 2

Operation
Address
Specifier Address field 1

Address field

Address field 2

The Role of Compilers

Compiler goals:
All correct programs execute
correctly
Most compiled programs
execute fast (optimizations)
Fast compilation
Debugging support

Role of compilers (Contd..)
Front end per language

High-level
optimizations

Global Optimizer

Code generator

Intermediate
representation

Language dependent;

Machine independent

Dependencies

Somewhat language dependent;

Largely machine independent

Small language dependencies;

Machine dependencies slight

(e.g., rgister counts/types)

Highly machine dependent;

Language independent

Function

Transform language to
common intermediate form

For example, loop
transformations and procedure
inlining (also called procedure
integration)

Including global and local
optimizations + register
allocation

Detailed Instruction selection and
machine-dependent optimizations;
may include or be followed by
assembler

Parsing --> intermediate representation

Jump Optimization

Loop Optimizations

Register Allocation

Code Generation --> assembly code

Common Sub-Expression

Procedure in-lining

Constant Propagation

Strength Reduction

Pipeline Scheduling

Steps in Compilation

OPTIMIZATIONS
Optimizations performed by modern compilers can be

classified by the style of the transformation, as follows:

High-level optimizations are often done on the source with
output fed to later optimization passes.
Local optimizations optimize code only within a straight-line
code fragment (called basic block by compiler people).
Global optimizations extend the local optimizations across
branches and introduce a set of transformations aimed at
optimizing loops.
Register allocation associates registers with operands.
Processor-dependent optimizations attempt to take advantage
of specific architectural knowledge.

Architect’s Help To The Compiler
Writer

With respect to Instruction Set
• Regularity
• Orthogonality
• Composability

Compilers perform a giant case
analysis

• too many choices make it hard

Orthogonal instruction sets
• operation, addressing mode, data

type

One solution or all possible solutions
• 2 branch conditions - eq, lt
• or all six - eq, ne, lt, gt, le, ge
• not 3 or 4

There are advantages to having
instructions that are primitives.

Let the compiler put the instructions
together to make more complex
sequences.

The MIPS Architecture – A Study

32-bit byte addresses aligned
Load/store - only displacement

addressing
Standard data types
3 fixed length formats
32 32-bit GPRs (r0 = 0)
16 64-bit (32 32-bit) FPRs
FP status register
No Condition Codes

Data transfer
• load/store word, load/store

byte/halfword signed?
• load/store FP single/double
• moves between GPRs and FPRs
ALU
• add/subtract signed? immediate?
• multiply/divide signed?
• and,or,xor immediate?, shifts: ll, rl, ra

immediate?
• sets immediate?

There’s MIPS – 64 – the current arch.
Standard datatypes
4 fixed length formats (8,16,32,64)
32 64-bit GPRs (r0 = 0)
64 64-bit FPRs

Addressing Modes
• Immediate
• Displacement
• (Register Mode used only for ALU)

MIPS Characteristics

Control
• branches == 0, <> 0
• conditional branch testing FP bit
• jump, jump register
• jump & link, jump & link register
• trap, return-from-exception

Floating Point
• add/sub/mul/div
• single/double
• fp converts, fp set

MIPS Characteristics (Contd..)

MIPS – Instruction formats

Opcode Rs Rt immediate

Opcode

Opcode Rs Rt

Offset

Rd funct

R-type instruction

I-type instruction

J-type instruction

shamt

6

5 66

6

555

5 5 16

26

MIPS Addressing Modes & Formats
• Simple addressing modes
• All instructions 32 bits wide

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

• Register Indirect?

Summary
ISA forms an important part of the design
Many issues need to be decided while
designing the ISA

