
RDBMS Concepts using SQL Server 2000

 1

RRDDBBMMSS CCoonncceeppttss
UUssiinngg

SSQQLL SSeerrvveerr 22000000

RDBMS Concepts using SQL Server 2000

 2

Table of Content

RDBMS Concepts ..3

Introduction .. 3
What is a Database?.. 3
Database tools ... 5

Introduction to Normalization..20
SQL Server Database Architecture ..27

The SQL Server Engine... 30
SQL Data Types ...53

Key Data Type ... 54
User-Defined Datatypes :... 55
Constraints ... 60
Primary key .. 61
Foreign key .. 66
Constraints ... 73

Joins ...88
Subqueries ...101

Correlated Subqueries ... 106
Functions ..112

Introduction .. 112
Index ...119

Index Space Requirements.. 128
Managing an Index .. 131
Using an Index ... 136

Views ..139
Introduction .. 139

Programming with Transact-SQL ...149
Variables .. 152
Control-of-Flow Tools... 157
CASE ... 158
PRINT .. 161
RAISERROR.. 162
FORMATMESSAGE .. 164
Operators ... 164
Scalar Functions .. 170
Table-Valued Functions ... 197

RDBMS Concepts using SQL Server 2000

 3

RDBMS Concepts

Introduction

Microsoft SQL Server is a client/server database management system. A client/server database
management system consists of two components: a front-end component (the client), which is
used to present and manipulate data, and a back-end component (the database server), which is
used to store, retrieve, and protect the databases.

You can use Microsoft Access on a client workstation to access databases on a Microsoft *SQL
server.

When you query a database, the SQL server can process the query for you and send the results
to your workstation. In contrast, if you query a database on a file server, the file server must send
the entire database to your workstation so that your workstation can process the query. Thus,
using SQL Server enables you to reduce the traffic on your network.

Suppose any company has a customer information database that is 50 MB in size. If you query
the database for a single customer's information and the database is stored on a file server, all 50
MB of data must be sent to your workstation so that your computer can search for the customer.
In contrast, if you query the same database stored on a SQL server, the SQL server processes
your query and sends only the one customer's information to your workstation.

Structured Query Language (SQL) is a standardized set of commands used to work with
databases.

Relational Database Management System (RDBMS) uses established relationships between the
data in a database to ensure the integrity of the data. These relationships enable you to prevent
users from entering incorrect data.

Transact-SQL is an enhanced version of SQL. Transact-SQL commands is used to create,
maintain, and query databases. You can use these commands either directly, by manually
entering commands, or indirectly, by using a client application such as Microsoft Access that is
written to issue the necessary SQL commands.

What is a Database?

That which contains the physical implementation of the schema and the data is called as
database. The *schema conceptually describes the *problem space to the database.
When you install SQL Server, the Setup utility automatically creates several system and sample
user databases. System databases contain information used by SQL Server to operate. You
create user databases-and they can contain any information you need to collect. You can use
*SQL Server Query Analyzer to *query any of your SQL databases, including the system and
sample databases.

• Distribution
o This database is not created until you configure replication because it contains

history information about replication.
• Master

RDBMS Concepts using SQL Server 2000

 4

o Information about the operation of SQL Server, including user accounts, other
SQL Servers, environment variables, error messages, databases, storage space
allocated to databases, and the tapes and disk drives on the SQL Server.

• Model
o A template for creating new database

• Msdb
o Information about all scheduled job on your server. This information is used by

the SQL Server Agent service.
• Northwind

o A sample user database for learning SQL Server. It contains information about a
fictitious gourmet food company’s customer, sales and employees.

• Pubs
o A sample user database for learning SQL Server. It contains information about a

fictitious publishing company’s authors, publishers, royalties and titles.
• Tempdb

o It contains temporary information and is used as a scratchpad by SQL Server.

• Database schema, which is conceptual, not physical is the translation of the conceptual
model into a physical representation that can be implemented using a DBMS.

• Problem space is the well defined part of the real world which is relational databases
analogies, intended to model some aspect of the real world.

• SQL Query Analyzer is used to run SQL queries as well as to optimize the performance
of the queries.

• Query is simply a command consisting of one or more SQL statements, which you send
to SQL server to request data from the server, change data, or delete data.

The schema is nothing more than the data model expressed in the terms that you will use to
describe it to the database engine tables and triggers and such creatures.

RDBMS Concepts using SQL Server 2000

 5

Database tools

Database Engines

At the lowest level are the database engines. These are sometimes called "back ends," but that's
a bit sloppy since the term "back end" really refers to a specific physical architecture. These tools
will handle the physical manipulation of storing data onto the disk and feeding it back on demand.
We'll be looking at two: the Jet database engine and SQL Server. You may be surprised not to
see Microsoft Access here. Access is technically a front-end development environment that uses
either Jet or SQL Server natively and can, in fact, use any ODBC-compliant database engine as
its data store. It uses the Jet database engine to manipulate data stored in .mdb files and SQL
Server (or another ODBC data store) for data stored in .adp files. Access has always used the Jet
database engine, although Microsoft didn't expose it as a separate entity until the release of
Microsoft Visual Basic 3.
The Jet database engine and SQL Server, although very different, are both wonderful tools for
storing and manipulating data. The difference between them lies in their architectures and the
problems they are intended to address. Microsoft Jet is a "desktop" database engine, intended for
small- to medium-sized systems. (Please note that this does not imply that the Jet database
engine is appropriate only for trivial systems.) SQL Server, on the other hand, uses a client/server
architecture and is intended for medium-sized to huge systems, scalable to potentially thousands
of users running mission-critical applications. MSDE (an acronym for Microsoft Desktop Engine)
is a scaled-down version of SQL Server intended for desktop use. From a designer's viewpoint,
there is little difference between MSDE and the full version of SQL Server, and we won't be
considering it further here. We'll be looking at the differences between the two database engines
throughout and discussing the trade-offs between the two architectures.

RDBMS Concepts using SQL Server 2000

 6

Data Access Object Models

Microsoft Access, and to a lesser extent Visual Studio .NET, provides simple mechanisms for
binding form controls directly to a data source, avoiding the necessity for dealing directly with the
database engine. For various reasons that we'll be looking at, however, this is not always either
possible or appropriate. In these instances, you'll need to use a data access object model to
manipulate the data in code.
A data access object model is a kind of glue between the programming environment and the
database engine; it provides a set of objects with properties and methods that can be
manipulated in code. Since this book deals primarily with design rather than implementation, we
won't be discussing the trade-offs between these models in any great depth, but I believe it useful
to review them here.
Microsoft (currently) provides three data access object models: Data Access Objects (DAO),
which comes in two flavors (DAO/Jet and DAO/ODBCDirect), Microsoft ActiveX Data Objects
(ADO) and ADO.NET.
DAO, the oldest of the three, is the native interface to the Jet database engine. The statements of
Microsoft's marketing department notwithstanding, it is the most efficient object model to use for
manipulating Jet databases within Microsoft Access. ADO uses a smaller object hierarchy than
DAO, consisting of only four primary objects, and provides some significant extensions to the
model, for example, its support for disconnected recordsets and data shaping. It is used within
Microsoft Access and other products that support VBA for manipulating any ODBC-compliant
database, including both Jet and SQL Server. ADO.NET is, of course, the version of ADO that is
used when working within the .NET Framework.

Data Definition Environments
Microsoft Jet and SQL Server handle the physical aspects of manipulating data for us, but we
need some way to tell them how to structure the data. Microsoft provides a plethora of methods
for doing this, but we'll be looking at only three in detail: Access and the SQL Server Enterprise
Manager for relational models, and the Analysis Manager for dimensional models. There are
other tools that provide roughly the same capabilities, but these are the ones I prefer. Of course,
once you understand the principles, you can use whichever tools best get the job done for you.
It's also possible to define the structure of your database using code, and we'll look at how you go
about doing this, although under normal circumstances I don't recommend it. Unless for some
eason you need to alter the structure of the data during the run-time use of your application (and
with the possible exception of temporary tables, I'm highly suspicious of this practiceif the
database schema isn't stable, you probably haven't understood the problem domain), the
interactive tools are quicker, easier, and a lot more fun to use.

Front-End Development

Once the physical definition of your database is in place, you'll need tools to create the forms and
reports your users will interact with. We'll draw our example from two of these: Access and Visual
Studio .NET (specifically, Visual Basic .NET). Again, there are hundreds of front-end tools
around, but the design principles remain the same, so you should be able to apply what you learn
here to your front-end tool of choice.

The Relational Model

The relational model is based on a collection of mathematical principles drawn primarily from set
theory and predicate logic. These principles were first applied to the field of data modeling in the

RDBMS Concepts using SQL Server 2000

 7

late 1960s by Dr. E. F. Codd, then a researcher at IBM, and first published in 1970.[The rules of
the relational model define the way data can be represented (data structure), the way data can be
protected (data integrity), and the operations that can be performed on data (data manipulation).

The relational model is not the only method available for storing and manipulating data.
Alternatives include the hierarchical, network, and Object/Data models. Each of these models has
its advocates, and each has its advantages for certain tasks.

Because of its efficiency and flexibility, the relational model is by far the most popular database
technique. Both the Microsoft Jet database engine and Microsoft SQL Server implement the
relational model. In general terms, relational database systems have the following characteristics:

o All data is conceptually represented as an orderly arrangement of data into rows and
columns, called a relation.

o All values are scalar. That is, at any given row/column position in the relation there is
one and only one value.

o All operations are performed on an entire relation and result in an entire relation, a
concept known as closure

If you've worked with Microsoft Access databases at all, you'll recognize a "relation" as a
‘recordset’ or, in SQL Server terms, as a "result set." Dr. Codd, when formulating the relational
model, chose the term "relation" because it was comparatively free of connotations, unlike, for
example, the word "table." It's a common misconception that the relational model is so called
because relationships are established between tables. In fact, the name is derived from the
relations on, which it’s based.

In fact, relations need not have a physical representation at all. A given relation might map to an
actual physical table someplace on a disk, but it can just as well be based on columns drawn
from half a dozen different tables, with a few calculated columns which aren't physically stored
anywhere. A relation is a relation provided that it's arranged in row and column format and its
values are scalar. Its existence is completely independent of any physical representation.

The requirement that all values in a relation be scalar can be somewhat treacherous. The
concept of "one value" is necessarily subjective, based as it is on the semantics of the data
model. To give a common example, a "Name" might be a single value in one model, but another
environment might require that the value be split into "Title", "Given Name", and "Surname", and
another might require the addition of "Middle Name" or "Title of Courtesy". None of these is more
or less correct in absolute terms; it depends on the use to which the data will be put.

The principle of closure that both base tables and the results of operations are represented
conceptually as relation enables the results of one operation to be used as the input to another
operation. Thus, with both the Jet database engine and SQL Server we can use the results of one
query as the basis for another. This provides database designers with functionality similar to a
subroutine in procedural development: the ability to encapsulate complex or commonly performed
operations and reuse them whenever and wherever necessary.

You might have created a query called FullNameQuery that concatenates the various attributes
representing an individual's name into a single calculated field called FullName. You can create a
second query using FullNameQuery as a source that uses the calculated FullName field just like
any field that's actually present in the base table. There is no need to recalculate the name.

Relational Terminology

RDBMS Concepts using SQL Server 2000

 8

The entire structure is said to be, a relation. Each row of data is a tuple (rhymes with "couple").
Technically, each row is an n-tuple, but the "n-" is usually dropped. The number of tuples in a
relation determines its cardinality. In this case, the relation has a cardinality of 18. Each column in
the tuple is called an attribute. The number of attributes in a relation determines its degree.

The relation is divided into two sections, the heading and the body. The tuples make up the body,
while the heading is composed of, well, the heading. Note that in its relational representation the
label for each attribute is composed of two terms separated by a colon.

UnitPrice:Currency. The first part of the label is the name of the attribute, while the second part is
its domain. The domain of an attribute is the "kind" of data it representsin this case, currency. A
domain is not the same as a data type.

The Data Model

The most abstract level of a database design is the data model, the conceptual description of a
problem space. Data models are expressed in terms of entities, attributes, domains, and
relationships. The remainder of this chapter discusses each of these in turn.

Entities

It's difficult to provide a precise formal definition of the term entity, but the concept is intuitively
quite straightforward: An entity is anything about which the system needs to store information.
When you begin to design your data model, compiling an initial list of entities isn't difficult. When
you (or your clients) talk about the problem space, most of the nouns and verbs used will be
candidate entities. "Customers buy products. Employees sell products. Suppliers sell us
products." The nouns "Customers," "Products," "Employees," and "Suppliers" are all clearly
entities.
The events represented by the verbs "buy" and "sell" are also entities, but a couple of traps exist
here. First, the verb "sell" is used to represent two distinct events: the sale of a product to a
customer (Salesman Customer) and the purchase of a product by the organization (Supplier
Company). That's fairly obvious in this example, but it's an easy trap to fall into, particularly if
you're not familiar with the problem space.
The second trap is the inverse of the first: two different verbs ("buy" in the first sentence and "sell"
in the second) are used to describe the same event, the purchase of a product by a customer.
Again, this isn't necessarily obvious unless you're familiar with the problem space. This problem
is often trickier to track down than the first. If a client is using different verbs to describe what
appears to be the same event, they might in fact be describing different kinds of events. If the
client is a tailor, for example, "customer buys suit" and "customer orders suit" might both result in
the sale of a suit, but in the first case it's a prêt-à-porter sale and in the second it's bespoke.
These are very different processes that will probably need to be modeled differently. In addition to
interviewing clients to establish a list of entities, it's also useful to review any documents that exist

RDBMS Concepts using SQL Server 2000

 9

in the problem space. Input forms, reports, and procedures manuals are all good sources of
candidate entities. You must be careful with documents, however. Printed documents have a
great deal of inertia input forms particularly are expensive to print and frequently don't keep up
with changes to policies and procedures. If you stumble across an entity that's never come up in
an interview, don't assume the client just forgot to mention it. Chances are that it's a legacy item
that's no longer pertinent to the organization. You'll need to check.
Most entities model objects or events in the physical world: customers, products, or sales
calls.These are concrete entities. Entities can also model abstract concepts. The most common
example of an abstract entity is one that models the relationship between other entities for
example, the fact that a certain sales representative is responsible for a certain client or that a
certain student is enrolled in a certain class.
Sometimes all you need to model is the fact that a relationship exists. Other times you'll want to
store additional information about the relationships, such as the date on which it was established
or some characteristic of the relationship. The relationship between cougars and coyotes is
competitive, that between cougars and rabbits is predatory, and it's useful to know this if you're
planning an open-range zoo.
Whether relationships that do not have attributes ought to be modeled as separate entities is a
matter of some discussion. I personally don't think anything is gained by doing so, and it
complicates the process of deriving a database schema from the data model. However,
understanding that relationships are as important as entities is crucial for designing an effective
data model.

Attributes
Your system will need to keep track of certain facts about each entity. As we've seen, these facts
are the entity's attributes. If your system includes a Customer entity, for example, you'll probably
want to know the names and addresses of the customers and perhaps the businesses they're in.
All of these are attributes.
Determining the attributes to be included in your model is a semantic process. That is, you must
make your decisions based on what the data means and how it will be used. Let's look at one
common example: an address. Do you model the address as a single entity (the Address) or as a
set of entities (HouseNumber, Street, City, State, ZipCode)? Most designers (myself included)
would tend to automatically break the address up into a set of attributes on the general principle
that structured data is easier to manipulate, but this is not necessarily correct and certainly not
straightforward.
Let's take, for instance, a local amateur musical society. It will want to store the addresses of its
members in order to print mailing labels. That's the only purpose to which the address will be put,
so there is no reason to ever look at an address as anything other than a single, multi-line chunk
of text that gets spat out on demand.
But what about a mail-order company that does all its business on the Internet? For sales tax
purposes, the company needs to know the states in which its customers reside. While it's
possible to extract the state from the single text field used by the musical society, it isn't easy; so
it makes sense in this case to at least model the state as a separate attribute. What about the rest
of the address? Should it be composed of multiple attributes, and if so, what are they? You might
think that a set of attributes {HouseNumber, Street, City, State, ZipCode} might be adequate. But
then you need to deal with apartment numbers and post office boxes and APO addresses. What
do you do with an address to be sent in care of someone else? And of course the world is getting
smaller but not less complex, so what happens when you get your first customer outside the
United States? While addresses in the United States conform to a fairly standard pattern, that
isn't true when you start dealing with international orders.
Not only do you need to know the country and adjust the format of the zip code (and possibly
start calling it a "post code"), but the arrangement of the attributes might need to change. In most
of Europe, for example, the house number follows the street name. That's not too bad, but how
many of data entry operators are going to know that in the address 4/32 Griffen Avenue, Bondi
Beach, Australia, 4/32 means Apartment 4, Number 32?

RDBMS Concepts using SQL Server 2000

 10

The point here is not so much that addresses are hard to model, although they are, but rather that
you can't make any assumptions about how you should model any specific kind of data. The
complex schema that you develop for handling international mail order is completely
inappropriate for the local musical society.
Matisse is reputed to have said that a painting was finished when nothing could be either added
or subtracted. Entity design is a bit like that. How do you know when you've reached that point?
The unfortunate answer is that you can never know for certain (and even if you think you do, it'll
probably change over time). At the current state of technology, there isn't any way to develop a
provably correct database design. There are no rules, but there are some strategies.
The first strategy: Start with the result and don't make the design any more complex than it needs
to be. What questions does your database have to answer? In our first example, the musical
society, the only question was "Where do I mail a letter to this person?" so a single-attribute
model was sufficient. The second example, the mail order company, also had to answer "In what
state does this person live?" so we needed a different structure to provide the results.
You need to be careful, of course, that you try to provide the flexibility to handle not just the
questions your users are asking now but also the ones you can foresee them asking in the future.
I'd be willing to bet, for instance, that within a year of implementing the musical society system
the society will come back asking you to sort the addresses by zip code so that they can qualify
for bulk mail discounts.
You should also be on the lookout for questions the users would ask if they only knew they could,
particularly if you're automating a manual system. Imagine asking a head librarian how many of
the four million books in the collection were published in Chicago before 1900. He or she would
point you to the card file and tell you to have fun. Yet this is trivial information to request from a
well-designed database system.
As we saw with the address examples, the more ways you want to slice and dice the data, the
more exceptions you have to handle, and you will reach a point of diminishing returns.

This leads me to strategy two: Find the exceptions. There are two sides to this strategy. First, that
you must identify all the exceptions, and second, that you must design the system to handle as
many exceptions as you can without confusing users. To illustrate what this means, let's walk
through another example: personal names.

If your system will be used to produce correspondence, it's crucial that you get the name right.
(Case in point: Unsolicited mail arriving at my house addressed to Mr. R. M. Riordan doesn't even
get opened.) Most names are pretty straightforward. Ms. Jane Q. Public consists of the Title,
FirstName, MiddleInitial, and LastName, right? Wrong. (You saw that coming, didn't you?) To
start with, FirstName and LastName are culturally specific. It's safer (and more politically correct)
to use GivenName and Surname. Next, what happens to Sir James Peddington Smythe, Lord
Dunstable? Is Peddington Smythe his Surname or is Peddington his MiddleName, and what do
you do about the "Lord Dunstable" part? And the singer Sting? Is that a GivenName or a
Surname? And what will happen to The Artist Formerly Known as Prince? Do you really care?
That last question isn't as flippant as it sounds. A letter addressed to Sir James Peddington
Smythe probably won't offend anyone. But the gentleman in question is not Sir Smythe; he's Sir
James, or maybe Lord Dunstable. Realistically, though, how many of your clients are lords of the
realm? The local musical society is not going to thank you for giving them a membership system
with a screen.

Remember that there's a trade-off between flexibility and complexity. While it's important to catch
as many exceptions as possible, it's perfectly reasonable to eliminate some of them as too
unlikely to be worth the cost of dealing with them.

Distinguishing between entities and attributes is sometimes difficult. Again, addresses are a good
example, and again, your decision must be based on the problem space. Some designers
advocate the creation of a single address entity used to store all the addresses modeled by the
system. From an implementation viewpoint, this approach has certain advantages in terms of
encapsulation and code reuse. From a design viewpoint, I have some reservations.

RDBMS Concepts using SQL Server 2000

 11

It's unlikely, for example, that addresses for employees and customers will be used in the same
way. Mass mailings to employees, for example, are more likely to be done via internal mail than
the postal service. This being the case, the rules and requirements are different. That awful data
entry screen or something very like it might very well be justified for customer addresses, but by
using a single address entity you're forced to use it for employees as well, where it's unlikely to be
either necessary or appreciated.

Domains

You might recall from the beginning of this chapter that a relation heading contains an
AttributeName:DomainName pair for each attribute. More particularly, a domain is the set of all
possible values that an attribute may validly contain.

Domains are often confused with data types; they are not the same. Data type is a physical
concept while domain is a logical one. "Number" is a data type; "Age" is a domain. To give
another example, "StreetName" and "Surname" might both be represented as text fields, but they
are obviously different kinds of text fields; they belong to different domains. Take, for example,
the domain DegreeAwarded, which represents the degrees awarded by a university. In the
database schema, this attribute might be defined as Text[3], but it's not just any three-character
string, it's a member of the set {BA, BS, MA, MS, PhD, LLD, MD}.

Of course, not all domains can be defined by simply listing their values. Age, for example,
contains a hundred or so values if we're talking about people, but tens of thousands if we're
talking about museum exhibits. In such instances it's easier to define the domain in terms of the
rules that can be used to determine the membership of any specific value in the set of all valid
values rather than listing the values. For example, PersonAge could be defined as "an integer in
the range 0 to 120," whereas ExhibitAge might simply be "an integer equal to or greater than 0."

At this point you might be thinking that a domain is the combination of the data type and the
validation rule. But validation rules are strictly part of the data integrity, not part of the data
description. For example, the validation rule for a zip code might refer to the State attribute,
whereas the domain of Zip-Code is "a five-digit string" (or perhaps an eleven-character string, if
you're using the Zip + 4 format.)
Note that each of these definitions makes some reference to the kind of data stored (number or
string). Data types are physical; they're defined and implemented in terms of the database
engine. It would be a mistake to define a domain as varchar(30) or Long Integer, which are
engine-specific descriptions.
For any two domains, if it makes sense to compare attributes defined on them (and, by extension,
to perform relational operations such as joins), then the two domains are said to be type-
compatible. For example, given the two relations, it would be perfectly sensible to link them on
EmployeeID = SalespersonID. The domains EmployeeID and SalespersonID are type-
compatible. Trying to combine the relations on EmployeeID = OrderDate, however, would
probably not result in a meaningful answer, even if the two domains were defined on the same
data type.

Unfortunately, neither the Jet database engine nor SQL Server provides strong intrinsic support
for domains beyond data types. And even within data types, neither engine performs strong
checking; both will quietly convert data behind the scenes. For example, if you're using Microsoft
Access and have defined EmployeeID as a long integer in the Employees table and InvoiceTotal
as a currency value in the Invoices, you can create a query linking the two tables on EmployeeID
= InvoiceTotal, and Microsoft Jet will quite happily give you a list of all employees who have an
EmployeeID that matches the total value of an invoice. The two attributes are not type-
compatible, but the Jet database engine doesn't know or care.

RDBMS Concepts using SQL Server 2000

 12

So why bother with domains at all? Because, they're extremely useful design tools. "Are these
two attributes interchangeable?" "Are there any rules that apply to one but don't apply to the
other?" These are important questions when you're designing a data model, and domain analysis
helps you think about them.

Relationships
In addition to the attributes of each entity, a data model must specify the relationships between
entities. At the conceptual level, relationships are simply associations between entities. The
statement "Customers buy products" indicates that a relationship exists between the entities
Customers and Products. The entities involved in a relationship are called its participants. The
number of participants is the degree of the relationship. (The degree of a relationship is similar to,
but not the same as, the degree of a relation, which is the number of attributes.)
The vast majority of relationships are binary, like the "Customers buy products" example, but this
is not a requirement. Ternary relationships, those with three participants, are also common. Given
the binary relationships "Employees sell products" and "Customers buy products," there is an
implicit ternary relationship "Employees sell products to customers." However, specifying the two
binary relationships does not allow us to identify which employees sold which products to which
customers; only a ternary relationship can do that.
A special case of a binary relationship is an entity that participates in a relationship with itself.
This is often called the bill of materials relationship and is most often used to represent
hierarchical structures. A common example is the relationship between employees and
managers: Any given employee might both be a manager and have a manager.
The relationship between any two entities can be one-to-one, one-to-many, or many-to-many.
One-to-one relationships are rare, but can be useful in certain circumstances. One-to-many
relationships are probably the most common type. An invoice includes many products. A
salesperson creates many invoices. These are both examples of one-to-many relationships.
Although not as common as one-to-many relationships, many-to-many relationships are also not
unusual and examples abound. Customers buy many products, and products are bought by many
customers. Teachers teach many students, and students are taught by many teachers. Many-to-
many relationships can't be directly implemented in the relational model, but their indirect
implementation is quite straightforward.

The participation of any given entity in a relationship can be partial or total. If it is not possible for
an entity to exist unless it participates in the relationship, the participation is total; otherwise, it is
partial. For example, Salesperson details can't logically exist unless there is a corresponding
Employee. The reverse is not true. An employee might be something other than a salesperson,
so an Employee record can exist without a corresponding Salesperson record. Thus, the
participation of Employee in the relationship is partial, while the participation of Salesperson is
total.
The trick here is to ensure that the specification of partial or total participation holds true for all
instances of the entity for all time. It's not unknown for companies to change suppliers for a
product, for example. If the participation of Products in the "Suppliers provide products" relation
has been defined as total, it won't be possible to delete the current supplier without deleting the
product details.

Hierachial Model

The hierarchical database model is an inverted tree-like structure. The tables of this model take
on a child-parent relationship. Each child table has a single parent table, and each parent table
can have multiple child tables. Child tables are completely dependent on parent tables; therefore,
a child table can exist only if its parent table does. It follows that any entries in child tables can
only exist where corresponding parent entries exist in parent tables. The result of this structure is
that the hierarchical database model supports one-to-many relationships. Figure shows an

RDBMS Concepts using SQL Server 2000

 13

example hierarchical database model. Every task is part of a project, which is part of a manager,
which is part of a division, which is part of a company. So, for example, there is a one-to-many
relationship between companies and departments because there are many departments in every
company.
The disadvantages of the hierarchical database model are that any access must originate at the
root node, in the case of Figure, the Company. You cannot search for an employee without first
finding the company, the department, the employee’s manager, and finally the employee.

Network Model
The network database model is essentially a refinement of the hierarchical database model. The
network model allows child tables to have more than one parent, thus creating a networked-like
table structure. Multiple parent tables for each child allows for many-to-many relationships, in
addition to one-to-many relationships. In an example network database model shown in Figure 1-
5, there is a many-to-many relationship between employees and tasks. In other words, an
employee can be assigned many tasks, and a task can be assigned to many different employees.
Thus, many employees have many tasks, and visa versa. Figure shows how the managers can
be part of both departments and companies. In other words, the network model in Figure is taking
into account that not only does each department within a company have a manager, but also that
each company has an overall manager (in real life, a Chief Executive Officer or CEO). Figure also
shows the addition of table types where employees can be defined as being of different types
(such as full-time, part-time, or contract employees). Most importantly to note from Figure is the
new Assignment table allowing for the assignment of tasks to employees. The creation of the
Assignment table is a direct result of the addition of the multiple-parent capability between the
hierarchical and network models. As already stated, the relationship between the employee and
task tables is a many to-many relationship, where each employee can be assigned multiple tasks
and each task can be assigned to multiple employees. The Assignment table resolves the
dilemma of the many-to-many relationship by allowing a unique definition for the combination of
employee and task. Without that unique definition, finding a single assignment would be
impossible.

RDBMS Concepts using SQL Server 2000

 14

The Relational Model

The relational model is based on a collection of mathematical principles drawn primarily from set
theory and predicate logic. These principles were first applied to the field of data modeling in the
late 1960s by Dr. E. F. Codd, then a researcher at IBM, and first published in 1970.[The rules of
the relational model define the way data can be represented (data structure), the way data can be
protected (data integrity), and the operations that can be performed on data (data manipulation).

The relational model is not the only method available for storing and manipulating data.
Alternatives include the hierarchical, network, and Object/Data models. Each of these models has
its advocates, and each has its advantages for certain tasks.

Because of its efficiency and flexibility, the relational model is by far the most popular database
technique. Both the Microsoft Jet database engine and Microsoft SQL Server implement the
relational model. In general terms, relational database systems have the following characteristics:

o All data is conceptually represented as an orderly arrangement of data into rows and
columns, called a relation.

o All values are scalar. That is, at any given row/column position in the relation there is
one and only one value.

o All operations are performed on an entire relation and result in an entire relation, a
concept known as closure

If you've worked with Microsoft Access databases at all, you'll recognize a "relation" as a
‘recordset’ or, in SQL Server terms, as a "result set." Dr. Codd, when formulating the relational
model, chose the term "relation" because it was comparatively free of connotations, unlike, for
example, the word "table." It's a common misconception that the relational model is so called
because relationships are established between tables. In fact, the name is derived from the
relations on, which it’s based.

In fact, relations need not have a physical representation at all. A given relation might map to an
actual physical table someplace on a disk, but it can just as well be based on columns drawn
from half a dozen different tables, with a few calculated columns which aren't physically stored
anywhere. A relation is a relation provided that it's arranged in row and column format and its
values are scalar. Its existence is completely independent of any physical representation.

RDBMS Concepts using SQL Server 2000

 15

The requirement that all values in a relation be scalar can be somewhat treacherous. The
concept of "one value" is necessarily subjective, based as it is on the semantics of the data
model. To give a common example, a "Name" might be a single value in one model, but another
environment might require that the value be split into "Title", "Given Name", and "Surname", and
another might require the addition of "Middle Name" or "Title of Courtesy". None of these is more
or less correct in absolute terms; it depends on the use to which the data will be put.

The principle of closure that both base tables and the results of operations are represented
conceptually as relation enables the results of one operation to be used as the input to another
operation. Thus, with both the Jet database engine and SQL Server we can use the results of one
query as the basis for another. This provides database designers with functionality similar to a
subroutine in procedural development: the ability to encapsulate complex or commonly performed
operations and reuse them whenever and wherever necessary.

You might have created a query called FullNameQuery that concatenates the various attributes
representing an individual's name into a single calculated field called FullName. You can create a
second query using FullNameQuery as a source that uses the calculated FullName field just like
any field that's actually present in the base table. There is no need to recalculate the name.

Entity Relationship Diagrams

The Entity Relationship model, which describes data in terms of entities, attributes, and relations,
was introduced by Peter Pin Shan Chen in 1976.[2] At the same time, he proposed a method of
diagramming called Entity Relationship (E/R) diagrams, which has become widely accepted. E/R
diagrams use rectangles to describe entities, ellipses for attributes, and diamonds to represent
relationships.
[2] Peter Pin Shan Chen, "The Entity Relationship ModelToward a Unified View of Data? "ACM
TODS 1, No. 1 (March 1976).
The nature of the relationship between entities (one-to-one, one-to-many, or many-to-many) is
represented in various ways. A number of people use 1 and M or 1 and (representing infinity) to
represent one and many.
The great advantage of E/R diagrams is that they're easy to draw and understand. In practice,
though, I usually diagram the attributes separately, since they exist at a different level of detail.
Generally, one is either thinking about the entities in the model and the relationships between
them or thinking about the attributes of a given entity, but rarely thinking about both at the same
time.

Entity
It's difficult to provide a precise formal definition of the term entity, but the concept is intuitively
quite straightforward: An entity is anything about which the system needs to store information.
When you begin to design your data model, compiling an initial list of entities isn't difficult. When
you (or your clients) talk about the problem space, most of the nouns and verbs used will be
candidate entities. "Customers buy products. Employees sell products. Suppliers sell us
products." The nouns "Customers," "Products," "Employees," and "Suppliers" are all clearly
entities.

The events represented by the verbs "buy" and "sell" are also entities, but a couple of traps exist
here. First, the verb "sell" is used to represent two distinct events: the sale of a product to a
customer (Salesman Customer) and the purchase of a product by the organization (Supplier
Company). That's fairly obvious in this example, but it's an easy trap to fall into, particularly if
you're not familiar with the problem space.

RDBMS Concepts using SQL Server 2000

 16

The second trap is the inverse of the first: two different verbs ("buy" in the first sentence and "sell"
in the second) are used to describe the same event, the purchase of a product by a customer.
Again, this isn't necessarily obvious unless you're familiar with the problem space. This problem
is often trickier to track down than the first. If a client is using different verbs to describe what
appears to be the same event, they might in fact be describing different kinds of events. If the
client is a tailor, for example, "customer buys suit" and "customer orders suit" might both result in
the sale of a suit, but in the first case it's a prêt-à-porter sale and in the second it's bespoke.
These are very different processes that will probably need to be modeled differently. In addition to
interviewing clients to establish a list of entities, it's also useful to review any documents that exist
in the problem space. Input forms, reports, and procedures manuals are all good sources of
candidate entities. You must be careful with documents, however. Printed documents have a
great deal of inertia input forms particularly are expensive to print and frequently don't keep up
with changes to policies and procedures. If you stumble across an entity that's never come up in
an interview, don't assume the client just forgot to mention it. Chances are that it's a legacy item
that's no longer pertinent to the organization. You'll need to check. Most entities model objects or
events in the physical world: customers, products, or sales calls.
These are concrete entities. Entities can also model abstract concepts. The most common
example of an abstract entity is one that models the relationship between other entities for
example, the fact that a certain sales representative is responsible for a certain client or that a
certain student is enrolled in a certain class.
Sometimes all you need to model is the fact that a relationship exists. Other times you'll want to
store additional information about the relationships, such as the date on which it was established
or some characteristic of the relationship. The relationship between cougars and coyotes is
competitive, that between cougars and rabbits is predatory, and it's useful to know this if you're
planning an open-range zoo.
Whether relationships that do not have attributes ought to be modeled as separate entities is a
matter of some discussion. I personal y don't think anything is gained by doing so, and it
complicates the process of deriving a database schema from the data model. However,
understanding that relationships are as important as entities is crucial for designing an effective
data model.

Attributes
Your system will need to keep track of certain facts about each entity. As we've seen, these facts
are the entity's attributes. If your system includes a Customer entity, for example, you'll probably
want to know the names and addresses of the customers and perhaps the businesses they're in.
All of these are attributes.
Determining the attributes to be included in your model is a semantic process. That is, you must
make your decisions based on what the data means and how it will be used. Let's look at one
common example: an address. Do you model the address as a single entity (the Address) or as a
set of entities (HouseNumber, Street, City, State, ZipCode)? Most designers (myself included).

Relationship
In addition to the attributes of each entity, a data model must specify the relationships between
entities. At the conceptual level, relationships are simply associations between entities. The
statement "Customers buy products" indicates that a relationship exists between the entities
Customers and Products. The entities involved in a relationship are called its participants. The
number of participants is the degree of the relationship. (The degree of a relationship is similar to,
but not the same as, the degree of a relation, which is the number of attributes.)
The vast majority of relationships are binary, like the "Customers buy products" example, but this
is not a requirement. Ternary relationships, those with three participants, are also common. Given
the binary relationships "Employees sell products" and "Customers buy products," there is an
implicit ternary relationship "Employees sell products to customers." However, specifying the two

RDBMS Concepts using SQL Server 2000

 17

binary relationships does not allow us to identify which employees sold which products to which
customers; only a ternary relationship can do that.
A special case of a binary relationship is an entity that participates in a relationship with itself.
This is often called the bill of materials relationship and is most often used to represent
hierarchical structures. A common example is the relationship between employees and
managers: Any given employee might both be a manager and have a manager.
The relationship between any two entities can be one-to-one, one-to-many, or many-to-many.
One-to-one relationships are rare, but can be useful in certain circumstances.
One-to-many relationships are probably the most common type. An invoice includes many
products. A salesperson creates many invoices. These are both examples of one-to-many
relationships.
Although not as common as one-to-many relationships, many-to-many relationships are also not
unusual and examples abound. Customers buy many products, and products are bought by many
customers. Teachers teach many students, and students are taught by many teachers. Many-to-
many relationships can't be directly implemented in the relational model, but their indirect
implementation is quite straightforward.

The participation of any given entity in a relationship can be partial or total. If it is not possible for
an entity to exist unless it participates in the relationship, the participation is total; otherwise, it is
partial. For example, Salesperson details can't logically exist unless there is a corresponding
Employee. The reverse is not true. An employee might be something other than a salesperson,
so an Employee record can exist without a corresponding Salesperson record. Thus, the
participation of Employee in the relationship is partial, while the participation of Salesperson is
total.
The trick here is to ensure that the specification of partial or total participation holds true for all
instances of the entity for all time. It's not unknown for companies to change suppliers for a
product, for example. If the participation of Products in the "Suppliers provide products" relation
has been defined as total, it won't be possible to delete the current supplier without deleting the
product details.

Candidate Keys and Primary Keys

We have already defined a relation body as an unordered set of zero or more tuples and pointed
out that, by definition, each member of a set is unique. This being the case, for any relation there
must be some combination of attributes that uniquely identifies each tuple. If the rows cannot be
uniquely identified, they do not constitute tuples in relational theory. This set of one or more
attributes is called a candidate key.
There might be more than one candidate key for any given relation, but it must always be the
case that each candidate key uniquely identifies each tuple, not just for any specific set of tuples
but for all possible tuples for all time. The inverse of this principle must also be true, by the way.
Given any two tuples with the same candidate key, both tuples must represent the same entity.
Like so many things in relational design, the identification of a candidate key is semantic. You
cannot do it by inspection. Just because some field or combination of attributes is unique for a
given set of tuples, you cannot guarantee that it will be unique for all tuples, which it must be to
qualify as a candidate key. Once again, you must understand the semantics what the data means
of the data model, not what it appears to mean.
Consider the Orders relation shown at the bottom of figure 2 .The CustomerID is unique in the
example, but it's extremely unlikely that it will remain that way. After all, most companies rely on
repeat business. Despite appearances, the semantics of the model tell us that this field is not a
candidate key.
By definition, all relations must have at least one candidate key: the set of all attributes
comprising the tuple. Candidate keys can be composed of a single attribute (a simple key) or of
multiple attributes (a composite key).

RDBMS Concepts using SQL Server 2000

 18

Some people are under the impression that composite keys are somehow incorrect, and that they
must add an artificial identifier either an identity or autonumber field to their tables to avoid them.

Nothing could be further from the truth. Artificial keys are often more convenient, as we'll see, but
composite keys are perfectly acceptable.
However, an additional requirement of a candidate key is that it must be irreducible, so the set of
all attributes is not necessarily a candidate key. In the relation shown in figure 3, the attribute
{CategoryName} is a candidate key, as is {Description}, but the set {CategoryName, Description},
although it is unique, is not a candidate key since the Description attribute is unnecessary.

Figure 3 Candidate key must be Irreducible, so {category Name} Qualifies, but {category
Name, Description} Does not

It is sometimes the case although it doesn't happen often that there are multiple possible
candidate keys for a relation. In this case, it is customary to designate one candidate key as a
primary key and consider other candidate keys alternate keys. This is an arbitrary decision and
isn't very useful at the logical level. (Remember that the data model is purely abstract.).
When the only possible candidate key is unwieldy it requires too many attributes or is too large,
for example you can use an artificial unique field data type for creating artificial keys with values
that will be generated by the system.
Called AutoNumber fields in Microsoft Jet and Identity fields in SQL Server, fields based on this
data type are useful tools, provided you don't try to make them mean anything. They're just tags.
They aren't guaranteed to be sequential, you have very little control over how they're generated,
and if you try to use them to mean anything you'll cause more problems than you solve.
Although choosing candidate keys is, as we've seen, a semantic process, don't assume that the
attributes you use to identify an entity in the real world will make an appropriate candidate key.
Individuals, for example, are usually referred to by their names, but a quick look at any phone
book will establish that names are hardly unique.
Of course, the name must provide a candidate key when combined with some other set of
attributes, but this can be awkward to determine. I once worked in an office with about 20 people,
of whom two were named Larry Simon and one was named Lary Simon. All three were Vice
Presidents. Amongst ourselves, they were "Short Lary," "German Larry," and "Blond Larry"; that's
height, nationality, and hair color combined with name, hardly a viable candidate key.
In situations like this, it's probably best to use a system-generated ID number, such as an
Autonumber or Identity field, but remember, don't try to make it mean anything. You need to be
careful, of course, that your users are adding apparent duplicates intentionally, but it's best to do
this as part of the user interface rather than imposing artificial (and ultimately unnecessary)
constraints on the data the system can maintain.

Primary key

RDBMS Concepts using SQL Server 2000

 19

PRIMARY KEY and UNIQUE Constraints
A central tenet of the relational model is that every row in a table is in some way unique and can
be distinguished in some way from every other row in the table. You could use the combination of
all columns in a table as this unique identifier, but the identifier is usually at most the combination
of a handful of columns, and often it's just one column: the primary key. Although some tables
might have multiple unique identifiers, each table can have only one primary key. For example,
perhaps the employee table maintains both an Emp_ID column and an SSN (social
security number) column, both of which can be considered unique. Such column pairs are often
referred to as alternate keys or candidate keys, although both terms are design terms and aren't
used by the ANSI SQL standard or by SQL Server. In practice, one of the two columns is logically
promoted to primary key using the PRIMARY KEY constraint, and the other is usually declared by
a UNIQUE constraint.Although neither the ANSI SQL standard nor SQL Server require it, it's
good practice to declare a PRIMARY KEY constraint on every table. Furthermore, you must
designate a primary key for a table that will be published for transaction-based replication.
Internally, PRIMARY KEY and UNIQUE constraints are handled almost identically, so it will be
discussed together here. Declaring a PRIMARY KEY or UNIQUE constraint simply results in a
unique index being created on the specified column or columns, and this index enforces the
column's uniqueness in the same way that a unique index created manually on a column would.
The query optimizer makes decisions based on the presence of the unique index rather than on
the fact that a column was declared as a primary key. How the index got there in the first place is
irrelevant to the optimizer.

Foreign key

FOREIGN KEY Constraints

One of the fundamental concepts of the relational model is the logical relationships between
tables. In most databases, certain relationships must exist (that is, the data must have referential
integrity) or else the data will be logically corrupt.
SQL Server automatically enforces referential integrity through the use of FOREIGN KEY
constraints. This feature is sometimes referred to as declarative referential integrity, or DRI, to
distinguish it from other features, such as triggers, that you can also use to enforce the existence
of the relationships.
Referential Actions
The full ANSI SQL-92 standard contains the notion of the referential action, sometimes
(incompletely) referred to as a cascading delete. SQL Server 7 doesn't provide this feature as
part of FOREIGN KEY constraints, but this notion warrants some discussion here because the
capability exists via triggers.
The idea behind referential actions is this: sometimes, instead of just preventing an update of
data that would violate a foreign key reference, you might be able to perform an additional,
compensating action that will still enable the constraint to be honored. For example, if you were to
delete a customer table that has references to orders, you can have SQL Server automatically
delete all those related order records (that is, cascade the delete to orders), in which case the
constraint won't be violated and the customer table can be deleted. This feature is intended for
both UPDATE and DELETE statements, and four possible actions are defined: NO ACTION,
CASCADE, SET DEFAULT, and SET NULL.

• NO ACTION The delete is prevented. This default mode, per the ANSI standard, occurs if
no other action is specified. NO ACTION is often referred to as RESTRICT, but this
usage is slightly incorrect in terms of how ANSI defines RESTRICT and NO ACTION.
ANSI uses RESTRICT in DDL statements such as DROP TABLE, and it uses NO

RDBMS Concepts using SQL Server 2000

 20

ACTION for FOREIGN KEY constraints. (The difference is subtle and unimportant. It's
common to refer to the FOREIGN KEY constraint as having an action of RESTRICT.)

• CASCADE A delete of all matching rows in the referencing table occurs.
• SET DEFAULT The delete is performed, and all foreign key values in the referencing

table are set to a default value.
• SET NULL The delete is performed, and all foreign key values in the referencing table

are set to NULL.

Introduction to Normalization

Basic Principles

The process of structuring the data in the problem space to achieve the two goals i.e. eliminating
redundancy and ensuring flexibility is called normalization. The principles of normalization re
tools for controlling the structure of data in the same way that a paper clip controls sheets of
paper. The normal forms (we'll discuss six) specify increasingly stringent rules for the structure of
relations. Each form extends the previous one in such a way as to prevent certain kinds of update
anomalies.
Bear in mind that the normal forms are not a prescription for creating a "correct" data model. A
data model could be perfectly normalized and still fail to answer the questions asked of it; or, it
might provide the answers, but so slowly and awkwardly that the database system built around it
is unusable. But if your data model is normalized that is, if it conforms to the rules of relational
structure the chances are high that the result will be an efficient, effective data model.
Before we turn to normalization, however, you should be familiar with a couple of underlying
principles.

Lossless Decomposition

The relational model allows relations to be joined in various ways by linking attributes. The
process of obtaining a fully normalized data model involves removing redundancy by dividing
relations in such a way that the resultant relations can be recombined without losing any of the
information. This is the principle of lossless decomposition.

From the given relation in figure1, you can derive two relations as shown in figure 2

Figure 1 An Unnormalized Relation

RDBMS Concepts using SQL Server 2000

 21

Figure 2 Can be divided into These 2 relations without losing any information

The concept of functional dependency is an extremely useful tool for thinking about data
structures. Given any tuple T, with two sets of attributes {X1...Xn} and {Y1...Yn} (the sets need not
be mutually exclusive), then set Y is functionally dependent on set X if, for any legal value of X,
there is only one legal value for Y.
For example, in the relation shown in Figure 3, every tuple that has the same values for
{CategoryName} will have the same value for {Description}. We can therefore say that the
attribute CategoryName functionally determines the attribute Description. Note that functional
dependency doesn't necessarily work the other way: knowing a value for Description won't allow
us to determine the corresponding value for CategoryID. You can indicate the functional
dependency between sets of attributes as shown in figure 4

In text, you can express functional dependencies as X __Y, which reads "X functionally
determines Y."

figure 4 Functional Dependency Diagram Are Largely self - Explanatory

Functional dependency is interesting to academics because it provides a mechanism for
developing something that starts to resemble a mathematics of data modeling. You can, for
example, discuss the reflexivity and transitivity of a functional dependency if you are so inclined.
In practical application, functional dependency is a convenient way of expressing what is a fairly
self-evident concept: Given any relation, there will be some set of attributes that is unique to each
tuple, and knowing those, it is possible to determine those attributes that are not unique.

RDBMS Concepts using SQL Server 2000

 22

Thus, given the tuple {X, Y}, if {X} is a candidate key, then all attributes {Y} must necessarily be
functionally dependent on {X}; this follows from the definition of candidate key. If {X} is not a
candidate key and the functional dependency is not trivial (that is, {Y} is not a subset of {X}), then
the relation will necessarily involve some redundancy, and further normalization will be required.
To return to the example shown in figure 4, by knowing the Category Name, we can easily
determine the Category Description.

First Normal Form

A relation is in first normal form if the domains on which its attributes are defined are scalar. This
is at once both the simplest and most difficult concept in data modeling. The principle is
straightforward: Each attribute of a tuple must contain a single value. But what constitutes a
single value? In the relation shown in figure 5, the Items attribute obviously contains multiple
values and is therefore not in first normal form. But the issue is not always so clear cut.

Figure 5 First Normal Form

We saw some of the problems involved in determining whether an attribute is scalar when we
looked at the modeling of names and addresses earlier. Dates are another tricky domain. They
consist of three distinct components: the day, the month, and the year. Ought they be stored as
three attributes or as a composite? As always, the answer can be determined only by looking to
the semantics of the problem space you're modeling.
If your system most often uses all three components of a date together, it is scalar. But if your
system must frequently manipulate the individual components of the date, you might be better off
storing them as separate attributes. You might not care about the day, for example, but only the
month and year.

In the specific instance of dates, because date arithmetic is tedious to perform, it will often make
your life easier if you use an attribute defined on the DateTime data type, which combines all
three components of the date and the time. The DateTime data types allow you to offload the
majority of the work involved in, for example, determining the date 37 days from today, to the
development environment.

Another place people frequently have problems with non-scalar values is with codes and flags.
Many companies assign case numbers or reference numbers that are calculated values, usually
something along the lines of REF0010398, which might indicate that this is the first case opened
in March 1998. While it's unlikely that you'll be able to alter company policy, it's not a good idea to
attempt to manipulate the individual components of the reference number in your data model. It's
far easier in the long run to store the values separately: {Reference#, Case#, Month, Year}. This
way, determining the next case number or the number of cases opened in a given year becomes
a simple query against an attribute and doesn't require additional manipulation. This has
important performance implications, particularly in client/server environments, where extracting a
value from the middle of an attribute might require that each individual record be examined locally
(and transferred across the network) rather than by the database server. Another type of non-
scalar attribute that causes problems for people is the bit flag. In conventional programming
environments, it's common practice to store sets of Boolean values as individual bits in a word,
and then to use bitwise operations to check and test them. Windows API programming relies
heavily on this technique, for example. In conventional programming environments, this is a

RDBMS Concepts using SQL Server 2000

 23

perfectly sensible thing to do. In relational data models, it is not. Not only does the practice violate
first normal form, but it's extraordinarily tedious and, as a general rule, inefficient.
There's another kind of non-scalar value to be wary of when checking a relation for first normal
form: the repeating group. Figure 6 shows an Invoice relation. Someone, at some point, decided
that customers are not allowed to buy more than three items. This is almost certainly an artificial
constraint imposed by the system, not the business. Artificial system constraints are evil, and in
this case, just plain wrong as well.

Figure 6 This Data Model Restricts the number of Items a Customer Can Purchase

Figure 7 This is repeating Group

Another example of a repeating group is shown in figure 7. This isn't as obvious an error, and
many successful systems have been implemented using a model similar to this. But this is really
just a variation of the structure shown in figure 6 and has the same problems. Imagine the query
to determine which products exceeded target by more than 10 percent any time in the first
quarter.

Second Normal Form

A relation is in second normal form if it is in first normal form and, in addition, all its attributes are
dependent on the entire candidate key. The key in in figure 8, for example, is {ProductName,
SupplierName}, but the SupplierPhoneNumber field is dependent only on the Supplier-Name, not
on the full composite key.

Figure 8 All Attributes in Relation should Depend on the Whole Key

RDBMS Concepts using SQL Server 2000

 24

in unpleasant maintenance problems.

Figure 9 These two Relation are in second normal Form

A better model would be that shown in figure 9. Logically, this is an issue of not trying to
represent two distinct entities, Products and Suppliers, in a single relation. By separating the
representation, you're not only eliminating the redundancy, you're also providing a mechanism for
storing information that you couldn't otherwise capture. In the example in figure 9, it becomes
possible to capture information about Suppliers before obtaining any information regarding their
products. That could not be done in the first relation, since neither component of a primary key
can be empty.The other way that people get into trouble with second normal form is in confusing
constraints that happen to be true at any given moment with those that are true for all time.

The relation shown in figure 10, for example, assumes that a supplier has only one address,
which might be true at the moment but will not necessarily remain true in the future.
Figure 10 Suppliers might have more than one Address

RDBMS Concepts using SQL Server 2000

 25

Third Normal Form

A relation is in third normal form if it is in second normal form and in addition all non-key attributes
are mutually independent. Let's take the example of a company that has a single salesperson in
each state. Given the relation shown in figure 11, there is a dependency between Region and
Salesperson, but neither of these attributes is reasonably a candidate key for the relation.

Figure 11 Although Mutually Dependent, neither Region nor Salesperson should be a
Candidate key

It's possible to get really pedantic about third normal form. In most places, for example, you can
determine a PostalCode value based on the City and Region values, so the relation shown in
figure 12 is not strictly in third normal form.

Figure 12 This Relationship is not in Strict Third Normal Form

The two relations shown in figure 13 are technically more correct, but in reality the only benefit
you're gaining is the ability to automatically look up the Postal Code when you're entering new
records, saving users a few keystrokes. This isn't a trivial benefit, but there are probably better

RDBMS Concepts using SQL Server 2000

 26

ways to implement this functionality, ones that don't incur the overhead of a relation join every
time the address is referenced.
Figure 13 These 2 relations are in Third Normal Form

As with every other decision in the data modeling process, when and how to implement third
normal form can only be determined by considering the semantics of the model. It's impossible to
give fixed rules, but there are some guidelines:

You should create a separate relation only when
• The entity is important to the model, or
• The data changes frequently, or
• You're certain there are technical implementation advantages

Postal codes do change, but not often; and they aren't intrinsically important in most systems. In
addition, a separate postal code table is impractical in most real-world applications because of
the varying rules for how postal codes are defined.

Further Normalisation

The first three normal forms were included in Codd's original formulation of relational theory, and
in the vast majority of cases they're all you'll need to worry about. The further normal
formsBoyce/Codd, fourth, and fifth have been developed to handle special cases, most of which
are rare.

Boyce/Codd Normal Form

Boyce/Codd normal form, which is considered a variation of third normal form, handles the
special case of relations with multiple candidate keys. In fact, for Boyce/Codd normal form to
apply, the following conditions must hold true:

• The relation must have two or more candidate keys.
• At least two of the candidate keys must be composite.

RDBMS Concepts using SQL Server 2000

 27

• The candidate keys must have overlapping attributes.

The easiest way to understand Boyce/Codd normal form is to use functional dependencies.
Boyce/Codd normal form states, essentially, that there must be no functional dependencies
between candidate keys. Take, for example, the relation shown in figure 14. The relation is in
third normal form (assuming supplier names are unique), but it still contains significant
redundancy.

Figure 14 This Relation is in Third Normal form but not in Boyce/Codd normal Form

The two candidate keys in this case are {SupplierID, ProductID} and {SupplierName, ProductID},
and the functional dependency diagram is shown in figure 15

SQL Server Database Architecture

Introduction

Because SQL Server is a client/server database management system, you will find components
of its architecture on both the client and the server itself.

RDBMS Concepts using SQL Server 2000

 28

Client-Server Architecture

Client Architecture

On the client, the SQL Server architecture consists of the client application, a database interface,
and a Net-Library. Clients use applications such as the SQL Server utilities, Microsoft Access, or
a custom application to access the SQL Server. The client application uses a database interface
to connect to and access resources on the SQL server. The database interface consists of an
application programming interface (API) and a data object interface. SQL Server supports two
classes of APIs: Object Linking And Embedding Database (OLE DB) and Open Database
Connectivity (ODBC). The OLE DB API uses the Component Object Model (COM)-based
interface and is modular. In contrast, the ODBC API uses calls to access the SQL Server directly
via the Tabular Data Stream (TDS) protocol. While OLE DB can be used to access many different
types of data sources, ODBC can be used to access data only in relational databases.
SQL Server supports two data object interfaces: ActiveX Data Objects and Remote Data Objects.
ActiveX Data Objects (ADO) enable you to encapsulate the OLE DB API commands in order to
reduce application development time. You can use ADO from Visual Basic, Visual Basic for
Applications, Active Server Pages, and the Microsoft Internet Explorer scripting object model.
Remote Data Objects (RDO) enable you to encapsulate the ODBC API. You can use RDO from
Visual Basic and Visual Basic for Applications. As a programmer, the API you choose dictates
which data object interface you can use (and vice versa). For example, if you use the OLE DB
API, you use ActiveX Data Objects. In contrast, if you use the ODBC API, you must use Remote
Data Objects.
At the lowest layer of the client architecture, you connect to the SQL server by using a Net-
Library. You use Net-Libraries to prepare read and write requests for sending by the appropriate
network protocol. You can configure both the client and the SQL server to use more than one
Net-Library. Note: Both the client and the server must have a Net-Library in common. SQL Server
supports TCP/IP, Named Pipes, IPX/SPX (NWLink), Banyan Vines, and AppleTalk ADSP.

Server Architecture

On the server, the SQL Server architecture consists of the SQL Server database engine, Open
Data Services, and the server's Net-Library. The SQL Server database engine actually processes
client requests. The database engine consists of two components: the relational engine and the
storage engine. The relational engine is responsible for parsing and optimizing queries; the
relational engine retrieves data from the storage engine. The storage engine is responsible for
retrieving and modifying data on your server's hard drives. Open Data Services manages clients'
connections to the server. Specifically, the server receives client requests and responds through
Open Data Services. The server's Net-Library accepts connection requests from a client's Net-
Library.

Tabular Data Stream

SQL Server uses the Tabular Data Stream (TDS) protocol to send data between the client and
the server. TDS packets, in turn, are then encapsulated in the protocol stack used by the Net-
Library. For example, if you are using SQL Server on a TCP/IP-based network, TDS packets are
encapsulated in TCP/IP packets.

RDBMS Concepts using SQL Server 2000

 29

Administration Architecture

SQL Server uses the SQL Distributed Management Objects (SQL-DMO) to write all of its
administrative utilities. SQL-DMO is a collection of Component Object Model (COM)-based
objects that are used by the administrative tools. SQL-DMO essentially enables you to create
administrative tools that hide the Transact SQL statements from the user. All of the SQL Server
graphical administrative tools use SQL-DMO. For example, you can create a database within
SQL Server Enterprise Manager without ever having to know or understand the CREATE
DATABASE Transact SQL-statement.

Application Architecture

When you design an application, there are several different client/server architectures you can
choose from. These architectures vary as to how much of the data processing is done by the SQL
server as compared to the client. Before you look at the architectures, it is important that you
understand that all client/server applications consist of three layers:

• Presentation- The user interface (this layer usually resides on the client).
• Business- The application's logic and rules for working with the data (this layer can be on

the server, client, or both).
• Data- The actual database itself, its rules for database integrity, and stored

procedures(this layer is typically only on the server).

Application architectures are usually categorized based on the number of computers that are
involved in the application. For example, an application that consists of a portion running on
the server and on the client is usually referred to as 2-tier. The following table describes the
different application architectures.

1. What components make up the database interface in the SQL Server architecture?

The database interface consists of an API and a data object interface. SQL Server supports
the OLE DB and ODBC APIs, and the ActiveX Data Objects and Remote Data Objects data
object interfaces.

RDBMS Concepts using SQL Server 2000

 30

2. What are the three layers in all client/server applications?

All client/server applications consist of the Presentation layer, the Business layer and the
Data layer.

Logical Architecture

The SQL Server Engine
Figure 3-1 shows the general architecture of SQL Server. For simplicity, I've made some minor
omissions and simplifications and ignored certain "helper" modules.
Now let's look in detail at the major modules.

The Net-Library

The Net-Library (often called Net-Lib, but in this book I'll use Net-Library) abstraction layer
enables SQL Server to read from and write to many different network protocols, and each such
protocol (such as TCP/IP sockets) can have a specific driver. The Net-Library layer makes it
relatively easy to support many different network protocols without having to change the core
server code.

A Net-Library is basically a driver that's specific to a particular network interprocess
communication (IPC) mechanism. (Be careful not to confuse driver with device driver.) All code in
SQL Server, including Net-Library code, makes calls only to the Microsoft Win32 subsystem. SQL
Server uses a common internal interface between Microsoft Open Data Services (ODS)—which
manages its use of the network—and each Net-Library. If your development project needs to
support a new and different network protocol, you can handle all network-specific issues by
simply writing a new Net-Library. In addition, you can load multiple Net-Libraries simultaneously,
one for each network IPC mechanism in use.

SQL Server uses the Net-Library abstraction layer on both the server and client machines,
making it possible to support several clients simultaneously on different networks. Microsoft
Windows NT/2000 and Windows 98 support the simultaneous use of multiple protocol stacks.
Net-Libraries are paired. For example, if a client application is using a Named Pipes Net-Library,
SQL Server must also be listening on a Named Pipes Net-Library. The client application
determines which Net-Library is actually used for the communication, and you can control the
client application's choice by using a tool called the Client Network Utility. You can easily
configure SQL Server to listen on multiple Net-Libraries by using the Server Network Utility, which
is available under Programs\Microsoft SQL Server on the Start menu.

SQL Server 2000 has two primary Net-Libraries: Super Socket and Shared Memory. TCP/IP,
Named Pipes, IPX/SPX, and so on are referred to as secondary Net-Libraries. The OLE DB
Provider for SQL Server, SQL Server ODBC driver, DB-Library, and the database engine
communicate directly with these two primary network libraries. Intercomputer connections
communicate through the Super Socket Net-Library. Local connections between an application
and a SQL Server instance on the same computer use the Shared Memory Net-Library if Shared
Memory support has been enabled (which it is, by default). SQL Server 2000 supports the Shared
Memory Net-Library on all Windows platforms.

RDBMS Concepts using SQL Server 2000

 31

The Super Socket Net-Library has two components:

Communication path

If the client is configured to communicate over TCP/IP Sockets or NWLink IPX/SPX connection,
the Super Socket Net-Library directly calls the Windows Socket 2 API for the communication
between the application and the SQL Server instance.
If the client is configured to communicate over a Named Pipes, Multiprotocol, AppleTalk, or
Banyan VINES connection, a subcomponent of the Super Socket Net-Library called the Net-
Library router loads the secondary Net-Library for the chosen protocol and routes all Net-Library
calls to it.

RDBMS Concepts using SQL Server 2000

 32

Encryption layer
The encryption is implemented using the Secure Sockets Layer (SSL) API. The level of
encryption, 40-bit or 128-bit, depends on the Windows version on the application and SQL
Server-based computers. Enabling encryption can slow network performance not only because of
the extra work of encrypting and decrypting communication between the client and the server but
also because an extra roundtrip is required between the client and the server every time a
connection is made.
Shared Memory Net-Library communication is inherently secure without the need for encryption.
The Shared Memory Net-Library never participates in intercomputer communication. The area of
memory shared between the application process and the database engine process cannot be
accessed from any other Windows process.
For compatibility with earlier versions of SQL Server, the Multiprotocol Net-Library continues to
support its own encryption. This encryption is specified independently of the SSL encryption and
is implemented by calling the Windows RPC encryption API.
Figure 3-2 (taken from SQL Server Books Online) shows SQL Server 2000's Net-Library
architecture.
The distinction between the IPC mechanisms and the underlying network protocols is important.
IPC mechanisms used by SQL Server include Named Pipes, RPC, SPX, and Windows Sockets.
Network protocols used include TCP/IP, NetBEUI, Shared Memory, NWLink IPX/SPX, Banyan
VINES SPP, and AppleTalk ADSP. Two Net-Libraries, Multiprotocol and Named Pipes, can be
used simultaneously over multiple network protocols (NetBEUI, NWLink IPX/SPX, and TCP/IP).
You can have multiple network protocols in your environment and still use only one Net-Library.
SQL Server 2000 running on Windows NT/2000 supports impersonation of security contexts to
provide an integrated logon authentication capability called Windows Authentication. Windows
Authentication operates over network protocols that support authenticated connections between
clients and servers. Such connections are referred to as trusted connections and are supported
by SQL Server 2000 using any available Net-Library. Instead of requiring a separate user
ID/password logon each time a connection to SQL Server is requested, SQL Server can
impersonate the security context of the user running the application that requests the connection.
If that user has sufficient privileges (or is part of a Windows NT/2000 domain group that does),
the connection is established. Note that Windows Authentication is not available when SQL
Server is running on Windows 98. When you connect to SQL Server running on Windows 98, you
must specify a SQL Server logon ID and password.

RDBMS Concepts using SQL Server 2000

 33

Which Net-Library Is Fastest?

Strictly speaking, the TCP/IP Sockets Net-Library is the fastest Net-Library. In a pure network test
that does nothing except throw packets back and forth between Net-Library pairs, the TCP/IP
Sockets Net-Library is perhaps 30 percent faster than the slowest Net-Library. But in LAN
environments and applications, the speed of the Net-Library probably makes little difference
because the network interface is generally not a limiting factor in a well-designed application.
On a LAN, however, turning on encryption does cause a performance hit. But again, most
applications probably wouldn't notice the difference. Your best bet is to choose the Net-Library
that matches your network protocols and provides the services you need in terms of unified
logon, encryption, and dynamic name resolution.

Open Data Services

Open Data Services (ODS) functions as the client manager for SQL Server; it's basically an
interface between server Net-Libraries and server-based applications, including SQL Server.

RDBMS Concepts using SQL Server 2000

 34

ODS manages the network: it listens for new connections, cleans up failed connections,
acknowledges "attentions" (cancellations of commands), coordinates threading services to SQL
Server, and returns result sets, messages, and status values back to the client.
SQL Server clients and the server speak a private protocol known as Tabular Data Stream (TDS).
TDS is a self-describing data stream. In other words, it contains tokens that describe column
names, datatypes, events (such as cancellations), and status values in the "conversation"
between client and server. The server notifies the client that it is sending a result set, indicates
the number of columns and datatypes of the result set, and so on—all encoded in TDS. Neither
clients nor servers write directly to TDS. Instead, the open interfaces of OLE-DB, ODBC, and DB-
Library at the client emit TDS using a client implementation of the Net-Library.
ODS accepts new connections, and if a client unexpectedly disconnects (for example, if a user
reboots the client computer instead of cleanly terminating the application), ODS automatically
frees resources such as locks held by that client.
You can use the ODS open interface to extend the functionality of SQL Server by writing
extended stored procedures. The code for the ODS API itself was formerly stored outside of SQL
Server as part of the DLL opends60.dll. In SQL Server 2000, to enhance the performance of SQL
Server's own internal mechanisms that need to use presupplied extended procedures, the code
that makes up ODS is internal to the SQL Server engine. Any extended stored procedure DLLs
that you create must link against opends60.dll, which contains stubs to access the real ODS
routines internal to SQL Server.

ODS input and output buffers

After SQL Server puts result sets into a network output buffer (write buffer) that's equal in size to
the configured packet size, the Net-Library dispatches the buffer to the client. The first packet is
sent as soon as the network output buffer is full or, if an entire result set fits in one packet, when
the batch is completed. (A batch is one or more commands sent to SQL Server to be parsed and
executed together. For example, if you're using OSQL.EXE, a batch is the collection of all the
commands that appear before a specific GO command.) In some exceptional operations (such as
one that provides progress information for database dumping or provides DBCC messages), the
output buffer is flushed and sent even before it is full or before the batch completes.
SQL Server has two input buffers (read buffers) and one output buffer per client. Double-buffering
is needed for the reads because while SQL Server reads a stream of data from the client
connection, it must also look for a possible attention. (This allows that "Query That Ate Cleveland"
to be canceled directly from the issuer. Although the ability to cancel a request is extremely
important, it's relatively unusual among client/server products.) Attentions can be thought of as
"out-of-band" data, although they can be sent with network protocols that do not explicitly have an
out-of-band channel. The SQL Server development team experimented with double-buffering and
asynchronous techniques for the output buffers, but these didn't improve performance
substantially. The single network output buffer works nicely. Even though the writes are not
posted asynchronously, SQL Server doesn't need to bypass the operating system caching for
these as it does for writes to disk.
Because the operating system provides caching of network writes, write operations appear to
complete immediately with no significant latency. If, however, several writes are issued to the
same client and the client is not currently reading data from the network, the network cache
eventually becomes full and the write blocks. This is essentially a throttle. As long as the client
application is processing results, SQL Server has a few buffers queued up and ready for the
client connection to process. But if the client's queue is already stacked up with results and is not
processing them, SQL Server stalls sending them and the network write operation to that
connection has to wait. Since the server has only one output buffer per client, data cannot be sent
to that client connection until it reads information off the network to free up room for the write to
complete. (Writes to other client connections are not held up, however; only those for the laggard
client are affected.) Stalled network writes can also affect locks. For example, if READ
COMMITTED isolation is in effect (the default), a share lock can normally be released after SQL

RDBMS Concepts using SQL Server 2000

 35

Server has completed its scan of that page of data. (Exclusive locks used for changing data must
always be held until the end of the transaction to ensure that the changes can be rolled back.)
However, if the scan finds more qualifying data and the output buffer is not free, the scan stalls.
When the previous network write completes, the output buffer becomes available and the scan
resumes. But as I stated earlier, that write won't complete until the client connection "drains"
(reads) some data to free up some room in the pipe (the virtual circuit between SQL Server and
client connection).
If a client connection delays processing results that are sent to it, concurrency issues can result
because locks are held longer than they otherwise would be. A kind of chain reaction occurs: if
the client connection has not read several outstanding network packets, further writing of the
output buffer at the SQL Server side must wait because the pipe is full. Since the output buffer is
not available, the scan for data might also be suspended because no space is available to add
qualifying rows. Since the scan is held up, any lock on the data cannot be released. In short, if a
client application does not process results in a timely manner, database concurrency can suffer.
The size of the network output buffer can also affect the speed at which the client receives the
first result set. As mentioned earlier, the output buffer is sent when the batch, not simply the
command, is done, even if the buffer is not full. If two queries exist in the same batch and the first
query has only a small amount of data, its results are not sent back to the client until the second
query is done or has supplied enough data to fill the output buffer. If both queries are fast, waiting
for both queries to finish is not a problem. But suppose the first query is fast and the second is
slow. And suppose the first query returns 1000 bytes of data. If the network packet size is 4096
bytes, the first result set must wait in the output buffer for the second query to fill it. The obvious
solution here is to either make the first command its own batch or make the network packet size
smaller. The first solution is probably best in this case, since it is typically difficult to fine-tune your
application to determine the best buffer size for each command. But this doesn't mean that each
command should be its own batch. Quite the contrary. In fact, under normal circumstances,
grouping multiple commands into a single batch is most efficient and is recommended because it
reduces the amount of handshaking that must occur between client and server.

ODS default Net-Libraries

On the server side, ODS provides functionality that mirrors that of ODBC, OLE DB, or DB-Library
at the client. Calls exist for an ODS server application to describe and send result sets, to convert
values between datatypes, to assume the security context associated with the specific connection
being managed, and to raise errors and messages to the client application.
ODS uses an event-driven programming model. Requests from servers and clients trigger events
that your server application must respond to. Using the ODS API, you create a custom routine,
called an event handler, for each possible type of event. Essentially, the ODS library drives
server application by calling its custom event handlers in response to incoming requests. ODS
server applications respond to the following events:

Connect events
When a connect event occurs, SQL Server initiates a security check to determine whether a
connection is allowed. Other ODS applications, such as a gateway to DB/2, have their own logon
handlers that determine whether connections are allowed. Events also exist that close a
connection, allowing the proper connection cleanup to occur.

RDBMS Concepts using SQL Server 2000

 36

Language events
When a client sends a command string, such as an SQL statement, SQL Server passes this
command along to the command parser. A different ODS application, such as a gateway, would
install its own handler that accepts and is responsible for execution of the command.

Remote stored procedure events
These events occur each time a client or SQL Server directs a remote stored procedure request
to ODS for processing.

ODS also generates events based on certain client activities and application activities. These
events allow an ODS server application to respond to changes to the status of the client
connection or of the ODS server application.
In addition to handling connections, ODS manages threads (and fibers) for SQL Server. It takes
care of thread creation and termination and makes the threads available to the User Mode
Scheduler (UMS). Since ODS is an open interface with a full programming API and toolkit,
independent software vendors (ISVs) writing server applications with ODS get the same benefits
that SQL Server derives from this component, including SMP-capable thread management and
pooling, as well as network handling for multiple simultaneous networks. This multithreaded
operation enables ODS server applications to maintain a high level of performance and
availability and to transparently use multiple processors under Windows NT/2000 because the
operating system can schedule any thread on any available processor.

The Relational Engine and the Storage Engine

The SQL Server database engine is made up of two main components, the relational engine and
the storage engine. These two pieces are clearly separated, and their primary method of
communication with each other is through OLE DB. The relational engine comprises all the
components necessary to parse and optimize any query. It also manages the execution of
queries as it requests data from the storage engine in terms of OLE DB row sets and then
processes the row sets returned. (Row set is the OLE DB term for a result set.) The storage
engine comprises the components needed to actually access and modify data on disk.

The command parser

The command parser handles language events raised by ODS. It checks for proper syntax and
translates Transact-SQL commands into an internal format that can be operated on. This internal
format is known as a query tree. If the parser doesn't recognize the syntax, a syntax error is
immediately raised and identifies where the error occurred. However, non-syntax error messages
cannot be explicit about the exact source line that caused the error. Because only the command
parser can access the source of the statement, the statement is no longer available in source
format when the command is actually executed.

The optimizer

The optimizer takes the query tree from the command parser and prepares it for execution. This
module compiles an entire command batch, optimizes queries, and checks security. The query
optimization and compilation result in an execution plan.

RDBMS Concepts using SQL Server 2000

 37

The first step in producing such a plan is to normalize each query, which potentially breaks down
a single query into multiple, fine-grained queries. After the optimizer normalizes a query, it
optimizes it, which means that the optimizer determines a plan for executing that query. Query
optimization is cost-based; the optimizer chooses the plan that it determines would cost the least
based on internal metrics that include estimated memory requirements, estimated CPU utilization,
and the estimated number of required I/Os. The optimizer considers the type of statement
requested, checks the amount of data in the various tables affected, looks at the indexes
available for each table, and then looks at a sampling of the data values kept for each index or
column referenced in the query. The sampling of the data values is called distribution statistics.
Based on the available information, the optimizer considers the various access methods and join
strategies it could use to resolve a query and chooses the most cost-effective plan. The optimizer
also decides which indexes, if any, should be used for each table in the query, and, in the case of
a multitable query, the order in which the tables should be accessed and the join strategy to use.
The optimizer also uses pruning heuristics to ensure that more time isn't spent optimizing a query
than it would take to simply choose a plan and execute it. The optimizer doesn't necessarily do
exhaustive optimization. Some products consider every possible plan and then choose the most
ost-effective one. The advantage of this exhaustive optimization is that the syntax chosen for a
query would theoretically never cause a performance difference, no matter what syntax the user
employed. But if you deal with an involved query, it could take much longer to estimate the cost of
every conceivable plan than it would to accept a good plan, even if not the best one, and execute
it.
After normalization and optimization are completed, the normalized tree produced by those
processes is compiled into the execution plan, which is actually a data structure. Each command
included in it specifies exactly which table will be affected, which indexes will be used (if any),
which security checks must be made, and which criteria (such as equality to a specified value)
must evaluate to TRUE for selection. This execution plan might be considerably more complex
than is immediately apparent. In addition to the actual commands, the execution plan includes all
the steps necessary to ensure that constraints are checked. Steps for calling a trigger are a bit
different from those for verifying constraints. If a trigger is included for the action being taken, a
call to the procedure that comprises the trigger is appended. If the trigger is an instead-of trigger,
the call to the trigger's plan replaces the actual data modification command. For after triggers, the
trigger's plan is branched to right after the plan for the modification statement that fired the
trigger, before that modification is committed. The specific steps for the trigger are not compiled
into the execution plan, unlike those for constraint verification.
A simple request to insert one row into a table with multiple constraints can result in an execution
plan that requires many other tables to also be accessed or expressions to be evaluated. The
existence of a trigger can also cause many additional steps to be executed. The step that carries
out the actual INSERT statement might be just a small part of the total execution plan necessary
to ensure that all actions and constraints associated with adding a row are carried out.

The SQL manager

The SQL manager is responsible for everything having to do with managing stored procedures
and their plans. It determines when a stored procedure needs recompilation based on changes in
the underlying objects' schemas, and it manages the caching of procedure plans so that other
processes can reuse them.
The SQL manager also handles autoparameterization of queries. In SQL Server 2000, certain
kinds of ad hoc queries are treated as if they were parameterized stored procedures, and query
plans are generated and saved for them. This can happen if a query uses a simple equality
comparison against a constant, as in the following statement:

SELECT * FROM pubs.dbo.titles
WHERE type = 'business'

RDBMS Concepts using SQL Server 2000

 38

This query can be parameterized as if it were a stored procedure with a parameter for the value
of type:

SELECT * FROM pubs.dbo.titles
WHERE type = @param

A subsequent query, differing only in the actual value used for the value oftype, can use the same
query plan that was generated for the original query.

The expression manager

The expression manager handles computation, comparison, and data movement. Suppose your
query contains an expression like this one:

SELECT @myqty = qty * 10 FROM mytable

The expression manager copies the value of qty from the row set returned by the storage engine,
multiplies it by 10, and stores the result in @myqty.

The query executor

The query executor runs the execution plan that the optimizer produced, acting as a dispatcher
for all the commands in the execution plan. This module loops through each command step of the
execution plan until the batch is complete. Most of the commands require interaction with the
storage engine to modify or retrieve data and to manage transactions and locking.
Communication between the relational engine and the storage engine The relational engine uses
OLE DB for most of its communication with the storage engine. The following description of that
communication is adapted from the section titled "Database Engine Components" in SQL Server
Books Online. It describes how a SELECT statement that processes
data from local tables only is processed:
The relational engine compiles the SELECT statement into an optimized execution plan. The
execution plan defines a series of operations against simple OLE DB row sets from the individual
tables or indexes referenced in the SELECT statement. The row sets requested by the relational
engine return the amount of data needed from a table or index to perform one of the operations
used to build the SELECT result set. For example, this SELECT statement requires a table scan
if it references a table with no indexes:

SELECT * FROM Northwind.dbo.ScanTable

The relational engine implements the table scan by requesting one row set containing all the rows
from ScanTable. This next SELECT statement needs only information available in an index:

SELECT DISTINCT LastName
FROM Northwind.dbo.Employees

The relational engine implements the index scan by requesting one row set containing the leaf
rows from the index that was built on the LastName column. The following SELECT statement
needs information from two indexes:
SELECT CompanyName, OrderID, ShippedDate
FROM Northwind.dbo.Customers AS Cst
JOIN Northwind.dbo.Orders AS Ord
ON (Cst.CustomerID = Ord.CustomerID)

RDBMS Concepts using SQL Server 2000

 39

The relational engine requests two row sets: one for the nonclustered index on Customers and
the other for one of the clustered indexes on Orders.
The relational engine uses the OLE DB API to request that the storage engine open the row sets.
As the relational engine works through the steps of the execution plan and needs data, it uses
OLE DB to fetch the individual rows from the row sets it asked the storage engine to open. The
storage engine transfers the data from the data buffers to the relational engine.

The relational engine combines the data from the storage engine row sets into the final result set
transmitted back to the user.
Not all communication between the relational engine and the storage engine uses OLE DB. Some
commands cannot be expressed in terms of OLE DB row sets. The most obvious and common
example is when the relational engine processes data definition language (DDL) requests to
create a table or other SQL Server object.

The Access Methods Manager

When SQL Server needs to locate data, it calls the access methods manager. The access
methods manager sets up and requests scans of data pages and index pages and prepares the
OLE DB row sets to return to the relational engine. It contains services to open a table, retrieve
qualified data, and update data. The access methods manager doesn't actually retrieve the
pages; it makes the request to the buffer manager, which ultimately serves up the page already in
its cache or reads it to cache from disk. When the scan is started, a look-ahead mechanism
qualifies the rows or index entries on a page. The retrieving of rows that meet specified criteria is
known as a qualified retrieval. The access methods manager is employed not only for queries
(selects) but also for qualified updates and deletes

for example, UPDATE with a WHERE clause.

A session opens a table, requests and evaluates a range of rows against the conditions in the
WHERE clause, and then closes the table. A session descriptor data structure (SDES) keeps
track of the current row and the search conditions for the object being operated on (which is
identified by the object descriptor data structure, or DES).

The Row Operations Manager and the Index Manager

You can consider the row operations manager and the index manager as components of the
access methods manager because they carry out the actual method of access. Each is
responsible for manipulating and maintaining its respective on-disk data structures, namely rows
of data or B-tree indexes. They understand and manipulate information on data and index pages.

The row operations manager

The row operations manager retrieves, modifies, and performs operations on individual rows. It
performs an operation within a row, such as "retrieve column 2" or "write this value to column 3."
As a result of the work performed by the access methods manager, as well as by the lock
manager and transaction manager, which will be discussed shortly, the row will have been found
and will be appropriately locked and part of a transaction. After formatting or modifying a row in
memory, the row operations manager inserts or deletes a row.
The row operations manager also handles updates. SQL Server 2000 offers three methods for
handling updates. All three are direct, which means that there's no need for two passes through

RDBMS Concepts using SQL Server 2000

 40

the transaction log, as was the case with deferred updates in versions of SQL Server prior to SQL
Server 7. SQL Server 2000 has no concept of a deferred data modification operation.

SQL Server 2000 has three update modes:

In-place mode
This mode is used to update a heap or clustered index when none of the clustering keys change.
The update can be done in place, and the new data is written to the same slot on the data page.

Split mode
This mode is used to update nonunique indexes when the index keys change. The update is split
into two operations—a delete followed by an insert—and these operations are performed
independently of each other.

Split with collapse mode
 This mode is used to update a unique index when the index keys change. After the update is
rewritten as delete and insert operations, if the same index key is both deleted and then
reinserted with a new value, the delete and insert are "collapsed" into a single update operation.

The index manager

The index manager maintains and supports searches on B-trees, which are used for SQL Server
indexes. An index is structured as a tree, with a root page and intermediate-level and lower-level
pages (or branches). A B-tree groups records that have similar index keys, thereby allowing fast
access to data by searching on a key value. The B-tree's core feature is its ability to balance the
index tree. (B stands for balanced.) Branches of the index tree are spliced together or split apart
as necessary so that the search for any given record always traverses the same number of levels
nd thus requires the same number of page accesses.
The traversal begins at the root page, progresses to intermediate index levels, and finally moves
to bottom-level pages called leaf pages. The index is used to find the correct leaf page. On a
qualified retrieval or delete, the correct leaf page is the lowest page of the tree at which one or
more rows with the specified key or keys reside. SQL Server supports both clustered and
nonclustered indexes. In a nonclustered index, shown in Figure 3-3, the leaf level of the tree (the
leaf pages of the index) contains every key value in the index along with a bookmark for each key
value. The bookmark indicates where to find the referenced data and can have one of two forms,
depending on whether the base table has a clustered index. If the base table has no clustered
index, the table is referred to as a heap. The bookmarks in nonclustered index leaf pages for a
heap are pointers to the actual records in which the data can be found, and these pointers consist
of a row ID (RID), which is a file number, a page number, and a row number on the page. If the
base table has a clustered index, the bookmark in any nonclustered index leaf page contains the
clustered index key value for the row.
After reaching the leaf level in a nonclustered index, you can find the exact location of the data,
although you still must separately retrieve the page on which that data resides. Because you can
access the data directly, you don't need to scan all the data pages to find a qualifying row. Better
yet, in a clustered index, shown in Figure 3-4, the leaf level actually contains the full data rows,
not simply the index keys. A clustered index keeps the data in a table logically ordered around the
key of the clustered index, and the leaf pages of a clustered index are in fact the data pages of
the table. All the data pages of a table with a clustered index are linked together in a doubly
linked list. Following the pages, and the rows on those pages, from the first page to the last page
provides the logical order to the data.
Because data can be ordered in only one way, only one clustered index can exist per table. This
makes the selection of the appropriate key value on which to cluster data an important
performance consideration.

RDBMS Concepts using SQL Server 2000

 41

You can also use indexes to ensure the uniqueness of a particular key value. In fact, the
PRIMARY KEY and UNIQUE constraints on a column work by creating a unique index on the
column's values. The optimizer can use the knowledge that an index is unique in formulating an
effective query plan. Internally, SQL Server always ensures that clustered indexes are unique by
adding a 4-byte uniqueifier to clustered index key values that occur more than once. This
uniqueifier becomes part of the key and is used in all levels of the clustered index and in
references to the clustered index key through all nonclustered indexes.
Since SQL Server maintains ordering in index leaf levels, you do not need to unload and reload
ata to maintain clustering properties as data is added and moved. SQL Server always inserts
rows into the correct page in clustered sequence. For a clustered index, the correct leaf page is
the data page in which a row is inserted. For a nonclustered index, the correct leaf page is the
one into which SQL Server inserts a row containing the key value (and bookmark) for the newly
inserted row. If data is updated and the key values of an index change, or if the row is moved to a
different page, SQL Server's transaction control ensures that all affected indexes are modified to
reflect these changes. With transaction control, index operations are performed as atomic
operations. The operations are logged and fully recovered in the event of a system failure.

Locking and Index Pages

As you'll see later, in the section on the lock manager, pages of an index use a slightly different
locking mechanism than regular data pages. A lightweight lock called a latch is used to lock upper
levels of indexes. Latches are not involved in deadlock detection because SQL Server 2000 uses
"deadlock-proof" algorithms for index maintenance.
You can customize the locking strategy for indexes on a table basis or index basis. You can use
the system stored procedure sp_indexoption to enable or disable page or row locks with any
particular index or, by specifying a table name, for every index on that table. The settable options
are DisAllowPageLocks and DisAllowRowLocks. If both of these options are set to TRUE for a
particular index, only table level locks are applied.

The Page Manager and the Text Manager

The page manager and the text manager cooperate to manage a collection of pages as named
databases. Each database is a collection of 8-KB disk pages, which are spread across one or
more physical files.
SQL Server uses eight types of disk pages: data pages, text/image pages, index pages, Page
Free Space (PFS) pages, Global Allocation Map (GAM and SGAM) pages, Index Allocation Map
(IAM) pages, Bulk Changed Map pages, and Differential Changed Map pages. All user data,
except for the text, ntext, and image datatypes, are stored on data pages. These three datatypes,
which are used for storing large objects (up to 2 GB each of text or binary data), can use a
separate collection of pages, so the data is not typically stored on regular data pages with the rest
of the rows. Instead, a pointer on the regular data page identifies the starting page and offset of
the text/image data. However, in SQL Server 2000, large object data that contains only a few
bytes can optionally be stored in the data row itself. Index pages store the Btrees that allow fast
access to data. PFS pages keep track of which pages in a database are available to hold new
data. Allocation pages (GAMs, SGAMs, and IAMs) keep track of the other pages. They contain
no database rows and are used only internally. Bulk Changed Map pages and Differential
Changed Map pages are used to make backup and recovery more efficient.
The page manager allocates and deallocates all types of disk pages, organizing extents of eight
pages each. An extent can be either a uniform extent, for which all eight pages are allocated to
the same object (table or index), or a mixed extent, which can contain pages from multiple
objects. If an object uses fewer than eight pages, the page manager allocates new pages for that
object from mixed extents. When the size of the object exceeds eight pages, the page manager
allocates new space for that object in units of entire uniform extents. This optimization prevents

RDBMS Concepts using SQL Server 2000

 42

the overhead of allocation from being incurred every time a new page is required for a large table;
this overhead is incurred only every eighth time. Perhaps most important, this optimization forces
data of the same table to be contiguous, for the most part. At the same time, the ability to use
mixed extents keeps SQL Server from wasting too much space if a database contains many
small tables.
To determine how contiguous a table's data is, you use the DBCC SHOWCONTIG command. A
table with a lot of allocation and deallocation can get fairly fragmented, and rebuilding the
clustered index (which also rebuilds the table) or running DBCC INDEXDEFRAG can improve
performance, especially when a table is accessed frequently using ordered index scans.

The Transaction Manager

A core feature of SQL Server is its ability to ensure that transactions follow the ACID properties.
Transactions must be atomic—that is, all or nothing. If a transaction has been committed, it must
be recoverable by SQL Server no matter what—even if a total system failure occurs one
millisecond after the commit was acknowledged. In SQL Server, if work was in progress and a
system failure occurred before the transaction was committed, all the work is rolled back to the
state that existed before the transaction began. Write-ahead logging makes it possible to always
roll back work in progress or roll forward committed work that has not yet been applied to the data
pages. Write-ahead logging ensures that a transaction's changes—the "before and after" images
of data—are captured on disk in the transaction log before a transaction is acknowledged as
committed. Writes to the transaction log are always synchronous—that is, SQL Server must wait
for them to complete. Writes to the data pages can be asynchronous because all the effects can
be reconstructed from the log if necessary. The transaction manager coordinates logging,
recovery, and buffer management. These topics are discussed later in this chapter; at this point,
we'll just look at transactions themselves.
The transaction manager delineates the boundaries of statements that must be grouped together
to form an operation. It handles transactions that cross databases within the same SQL Server,
and it allows nested transaction sequences. (However, nested transactions simply execute in the
context of the first-level transaction; no special action occurs when they are committed. And a
rollback specified in a lower level of a nested transaction undoes the entire transaction.) For a
distributed transaction to another SQL Server (or to any other resource manager), the transaction
manager coordinates with the Microsoft Distributed Transaction Coordinator (MS DTC) service
using operating system remote procedure calls. The transaction manager marks savepoints,
which let you designate points within a transaction at which work can be partially rolled back or
undone.
The transaction manager also coordinates with the lock manager regarding when locks can be
released, based on the isolation level in effect. The isolation level in which your transaction runs
determines how sensitive your application is to changes made by others and consequently how
long your transaction must hold locks to protect against those changes. Four isolation-level
semantics are available in SQL Server 2000: Uncommitted Read (also called "dirty read"),
Committed Read, Repeatable Read, and Serializable.
The behavior of your transactions depends on the isolation level. We'll look at these levels now,
but a complete understanding of isolation levels also requires an understanding of locking
because the topics are so closely related.

Uncommitted Read

Uncommitted Read, or dirty read (not to be confused with "dirty page," which I'll discuss later) lets
your transaction read any data that is currently on a data page, whether or not that data has been
committed. For example, another user might have a transaction in progress that has updated
data, and even though it's holding exclusive locks on the data, your transaction can read it
anyway. The other user might then decide to roll back his or her transaction, so logically those

RDBMS Concepts using SQL Server 2000

 43

changes were never made. If the system is a single-user system and everyone is queued up to
access it, the changes will not have been visible to other users. In a multiuser system, however,
you read the changes and take action based on them. Although this scenario isn't desirable, with
Uncommitted Read you can't get stuck waiting for a lock, nor do your reads issue share locks
(described in the next section) that might affect others.
When using Uncommitted Read, you give up the assurance of strongly consistent data in favor of
high concurrency in the system without users locking each other out. So when should you choose
Uncommitted Read? Clearly, you don't want to use it for financial transactions in which every
number must balance. But it might be fine for certain decision-support analyses—for example,
when you look at sales trends—for which complete precision isn't necessary and the tradeoff in
higher concurrency makes it worthwhile.

Committed Read

Committed Read is SQL Server's default isolation level. It ensures that an operation never reads
data that another application has changed but not yet committed. (That is, it never reads data that
logically never existed.) With Committed Read, if a transaction is updating data and consequently
has exclusive locks on data rows, your transaction must wait for those locks to be released before
you can use that data (whether you're reading or modifying). Also, your transaction must put
share locks (at a minimum) on the data that will be visited, which means that data might be
unavailable to others to use. A share lock doesn't prevent others from reading the data, but it
makes them wait to update the data. Share locks can be released after the data has been sent to
the calling client—they don't have to be held for the duration of the transaction.

� Although a transaction can never read uncommitted data when running with Committed Read
isolation, if the transaction subsequently revisits the same data, that data might have changed or
new rows might suddenly appear that meet the criteria of the original query. If data values have
hanged, we call that a non-repeatable read. New rows that appear are called
phantoms.

Repeatable Read

The Repeatable Read isolation level adds to the properties of Committed Read by ensuring that if
a transaction revisits data or if a query is reissued, the data will not have changed. In other words,
issuing the same query twice within a transaction will not pick up any changes to data values
made by another user's transaction. However, Repeatable Read isolation level does allow
phantom rows to appear.
Preventing nonrepeatable reads from appearing is a desirable safeguard. But there's no free
lunch. The cost of this extra safeguard is that all the shared locks in a transaction must be held
until the completion (COMMIT or ROLLBACK) of the transaction. (Exclusive locks must always be
held until the end of a transaction, no matter what the isolation level, so that a transaction can be
rolled back if necessary. If the locks were released sooner, it might be impossible to undo the
work.) No other user can modify the data visited by your transaction as long as your transaction is
outstanding. Obviously, this can seriously reduce concurrency and degrade performance. If
transactions are not kept short or if applications are not written to be aware of such potential lock
contention issues, SQL Server can appear to "hang" when it's simply waiting for locks to be
released.

You can control how long SQL Server waits for a lock to be released by using the session option
LOCK_TIMEOUT.

RDBMS Concepts using SQL Server 2000

 44

Serializable

The Serializable isolation level adds to the properties of Repeatable Read by ensuring that if a
query is reissued, rows will not have been added in the interim. In other words, phantoms will not
appear if the same query is issued twice within a transaction. More precisely, Repeatable Read
and Serializable affect sensitivity to another connection's changes, whether or not the user ID of
the other connection is the same. Every connection within SQL Server has its own transaction
and lock space. I use the term "user" loosely so as not to obscure the central concept.
Preventing phantoms from appearing is another desirable safeguard. But once again, there's no
free lunch. The cost of this extra safeguard is similar to that of Repeatable Read—all the shared
locks in a transaction must be held until completion of the transaction. In addition, enforcing the
Serializable isolation level requires that you not only lock data that has been read, but also lock
data that does not exist! For example, suppose that within a transaction we issue a SELECT
statement to read all the customers whose zip code is between 98000 and 98100, and on first
execution no rows satisfy that condition. To enforce the Serializable isolation level, we must lock
that "range" of potential rows with zip codes between 98000 and 98100 so that if the same query
is reissued, there will still be no rows that satisfy the condition. SQL Server handles this by using
a special kind of lock called a key-range lock. The Serializable level gets its name from the fact
that running multiple serializable transactions at the same time is the equivalent of running them
one at a time—that is, serially. For example, suppose transactions A, B, and C run
simultaneously at the Serializable level and each tries to update the same range of data. If the
order in which the transactions acquire locks on the range of data is B, C, and A, the result
obtained by running all three simultaneously is the same as if they were run one at a time in the
order B, C, and A. Serializable does not imply that the order is known in advance. The order is
considered a chance event. Even on a single-user system, the order of transactions hitting the
queue would be essentially random. If the batch order is important to your application, you should
implement it as a pure batch system.

The Lock Manager

Locking is a crucial function of a multiuser database system such as SQL Server. SQL Server lets
you manage multiple users simultaneously and ensures that the transactions observe the
properties of the chosen isolation level. At the highest level, Serializable, SQL Server must make
the multiuser system perform like a single-user system—as though every user is queued up to
use the system alone with no other user activity. Locking guards data and the internal resources
that make it possible for many users to simultaneously access the database and not be severely
affected by others' use.
The lock manager acquires and releases various types of locks, such as share locks for reading,
exclusive locks for writing, intent locks to signal a potential "plan" to perform some operation,
xtent locks for space allocation, and so on. It manages compatibility between the lock types,
resolves deadlocks, and escalates locks if needed. The lock manager controls table, page, and
row locks as well as system data locks. (System data, such as page headers and indexes, are
private to the database system.)
The lock manager provides two separate locking systems. The first enables row locks, page
locks, and table locks for all fully shared data tables, data pages and rows, text pages, and leaf-
level index pages and index rows. The second locking system is used internally only for restricted
system data; it protects root and intermediate index pages while indexes are being traversed.
This internal mechanism uses latches, a lightweight, short-term variation of a lock for protecting
data that does not need to be locked for the duration of a transaction. Full-blown locks would slow
the system down. In addition to protecting upper levels of indexes, latches protect rows while they
are being transferred from the storage engine to the relational engine. If you examine locks by
using the sp_lock stored procedure or a similar mechanism that gets its information from the
syslockinfo system table, you won't see or be aware of latches; you'll see only the locks for fully

RDBMS Concepts using SQL Server 2000

 45

shared data. However, counters are available in the System Monitor to monitor latch requests,
acquisitions, and releases.

Other Managers

Also included in the storage engine are managers for controlling utilities such as bulk load, DBCC
commands, backup and restore operations, and the Virtual Device Interface (VDI). VDI allows
ISVs to write their own backup and restore utilities and to access the SQL Server data structures
directly, without going through the relational engine. There is a manager to control sorting
operations and one to physically manage the files and backup devices on disk.

Data Integrity

Creating a model of the entities in the problem space and the relationships between them is only
part of the data modeling process. You must also capture the rules that the database system will
use to ensure that the actual physical data stored in it is, if not correct, at least plausible. In other
words, you must model the data integrity.

It's important to understand that the chances of being able to guarantee the literal correctness of
the data are diminishingly small. Take, for example, an order record showing that Mary Smith
purchased 17 hacksaws on July 15, 1999. The database system can ensure that Mary Smith is a
customer known to the system, that the company does indeed sell hacksaws, and that it was
taking orders on July 15, 1999. It can even check that Mary Smith has sufficient credit to pay for
the 17 hacksaws. What it can't do is verify that Ms. Smith actually ordered 17 hacksaws and not 7
or 1, or 17 screwdrivers instead. The best the system might do is notice that 17 is rather a lot of
hacksaws for an individual to purchase and notify the person entering the order to that effect.
Even having the system do this much is likely to be expensive to implement, probably more
expensive than its value warrants.

My point is that the system can never verify that Mary Smith did place the order as it's recorded; it
can verify only that she could have done so. Of course, that's all any record-keeping system can
do, and a well-designed database system can certainly do a better job than the average manual
system, if for no other reason than its consistency in applying the rules. But no database system,
and no database system designer, can guarantee that the data in the database is true, only that it
could be true. It does this by ensuring that the data complies with the integrity constraints that
have been defined for it.

Integrity Constraints

Some people refer to integrity constraints as business rules. However, the concept of business
rules is much broader; it includes all of the constraints on the system rather than just the
constraints concerning the integrity of the data. In particular, system securitythe definition of
which users can do what and under what circumstances they can do itis part of system
administration, not data integrity. But certainly security is a business requirement and will
constitute one or more business rules.
Data integrity is implemented at several levels of granularity. Domain, transition, and entity
constraints define the rules for maintaining the integrity of the individual relations. Referential
integrity constraints ensure that necessary relationships between relations are maintained.
Database integrity constraints govern the database as a whole, and transaction integrity

RDBMS Concepts using SQL Server 2000

 46

constraints control the way data is manipulated either within a single database or between
multiple databases.

Domain Integrity

A domain is the set of all possible values for a given attribute. A domain integrity constraintusually
just called a domain constraintis a rule that defines these legal values. It might be necessary to
define more than one domain constraint to describe a domain completely.

A domain isn't the same thing as a data type, and defining domains in terms of physical data
types is a tempting (and common) practice, but it can backfire. The danger is that you will
unnecessarily constrain the valuesfor example, by choosing an Integer data type because you
think it will be big enough in practice, rather than because 255 is the largest permitted value for
the domain.

That being said, however, data type can be a convenient shorthand in the data model, and for
this reason choosing a logical data type is often the first step in determining the domain
constraints in a system Dates are probably the best example of the benefits of this approach. I'd
recommend against defining the domain TransactionDate as "DateTime", which is a physical
representation. But defining it as "a date" allows you to concentrate on it being "between the
commencement of business and the present date, inclusive" and ignore all those rather tedious
rules about leap years.

Having chosen a logical data type, it might be appropriate to narrow the definition by, for
example, indicating the scale and precision of a numeric type, or the maximum length of string
values. This is very close to specifying a physical data type, but you should still be working at the
logical level.
The next aspect of domain integrity to consider is whether a domain is permitted to contain
unknown or nonexistent values. The handling of these values is contentious, and we'll be
discussing them repeatedly as we examine various aspects of database system design. For now,
it's necessary to understand only that there is a difference between an unknown value and a
nonexistent value, and that it is often (although not always) possible to specify whether either or
both of these is permitted for the domain.

The first point here, that "unknown" and "nonexistent" are different, doesn't present too many
problems at the logical level. My father does not have a middle name; I do not know my
neighbor's. These are quite different issues. There are implementation issues that need not yet
concern us, but the logical distinction is quite straightforward.

The second point is that, having determined whether a domain is allowed to include unknown or
nonexistent values, you'll need to decide whether either of these can be accepted by the system.
To return to our TransactionDate example, it's certainly possible for the date of a transaction to
be unknown, but if it occurred at all it occurred at some fixed point in time and therefore cannot be
nonexistent. In other words, there must be a transaction date; we just might not know it.

Now, obviously, we can be ignorant of anything, so any value can be unknown. That's not a
useful distinction. What we're actually defining here is not so much whether a value can be
unknown as whether an entity with an unknown value in this attribute should be stored. It might
be that it's not worth storing data unless the value is known, or it might be that we can't identify an
entity without knowing the value. In either case, you would prevent a record containing an
unknown value in the specified field from being added to the database.

RDBMS Concepts using SQL Server 2000

 47

This decision can't always be made at the domain level, but it's always worth considering since
doing so can make the job a little easier down the line. To some extent, your decision depends on
how generic your domains are. As an example, say that you have defined a Name domain and
declared the attributes GivenName, MiddleName, Surname, and CompanyName against it. You
might just as well have defined these attributes as separate domains, but there are some
advantages to using the more general domain definition because doing so allows you to capture
the overlapping rules (and in this case, there are probably a lot of them) in a single place.
However, in this case you won't be able to determine whether empty or unknown values are
acceptable at the domain level; you will have to define these properties at the entity level. The
final aspect of domain integrity is that you'll want to define the set of values represented by a
domain as specifically as possible. Our TransactionDate domain, for example, isn't just the set of
all dates; it's the set of dates from the day the company began trading until the current date. It
might be further restricted to eliminate Sundays, public holidays, and any other days on which the
company does not trade, although you need to be careful here. It's not unknown for employees to
be in the office even though business is officially "closed," and absolutely no reason to restrict
them from answering the phone to take an order when they are.

Sometimes the easiest way to describe a domain is to simply list the domain values. The domain
of Weekends is completely described by the set {"Saturday", "Sunday"}. Sometimes it will be
easier to list one or more rules for determining membership, as we did for TransactionDate. Both
techniques are perfectly acceptable, although a specific design methodology might dictate a
particular method of documenting constraints. The important thing is that the constraints be
captured as carefully and completely as possible.

Transition Integrity

Transition integrity constraints define the states through which a tuple can validly pass. The
State-Transition diagram , for example, shows the states through which an order can pass.

State Diagram for order processing

You would use transitional integrity constraints, for instance, to ensure that the status of a given
order never changed from "Entered" to "Completed" without passing through the interim states, or
to prevent a canceled order from changing status at all.

RDBMS Concepts using SQL Server 2000

 48

The status of an entity is usually controlled by a single attribute. In this case, transition integrity
can be considered a special type of domain integrity. Sometimes, however, the valid transitions
are controlled by multiple attributes or even multiple relations. Because transition constraints can
exist at any level of granularity, it's useful to consider them a separate type of constraint during
preparation of the data model.

The status of a customer might only be permitted to change from "Normal" to "Preferred" if the
customer's credit limit is above a specified value and he or she has been doing business with the
company for at least a year. The credit limit requirement would most likely be controlled by an
attribute of the Customers relation, but the length of time the customer has been doing business
with the company might not be explicitly stored anywhere. It might be necessary to calculate the
value based on the oldest record for the customer in the Orders relation.

Entity Integrity

Entity constraints ensure the integrity of the entities being modeled by the system. At the simplest
level, the existence of a primary key is an entity constraint that enforces the rule "every entity
must be uniquely identifiable."

In a sense, this is the entity integrity constraint; all others are technically entity-level integrity
constraints. The constraints defined at the entity level can govern a single attribute, multiple
attributes, or the relation as a whole.

The integrity of an individual attribute is modeled first and foremost by defining the attribute
against a specific domain. An attribute within a relation inherits the integrity constraints defined for
its domain. At the entity level, these inherited constraints can properly be made more rigorous,
but they cannot be relaxed. Another way of thinking about this is that the entity constraint can
specify a subset of the domain constraints but not a superset. For example, an OrderDate
attribute defined against the TransactionDate domain might specify that the date must be in the
current year, whereas the TransactionDate domain allows any date between the date business
commenced and the current date. An entity constraint cannot, however, allow OrderDate to
contain dates in the future, since the attribute's domain prohibits these.

Similarly, a CompanyName attribute defined against the Name domain might prohibit empty
values, even though the Name domain permits them. Again, this is a narrower, more rigorous
definition of permissible values than that specified in the domain.

In addition to narrowing the range of values for a single attribute, entity constraints can also affect
multiple attributes. A requirement that Shipping-Date be on or after OrderDate is an example of
such a constraint. Entity constraints can't reference other relations, however. It wouldn't be
appropriate, for example, to define an entity constraint that sets a customer DiscountRate (an
attribute of the Customer relation) based on the customer's TotalSales (which is based on
multiple records in the OrderItems relation). Constraints that depend on multiple relations are
database-level constraints; we'll discuss them later in this chapter.
Be careful of multiple-attribute constraints; they often indicate that your data model isn't fully
normalized. If you are restricting or calculating the value of one attribute based on another, you're
probably OK. An entity constraint that says "Status is not allowed to be 'Preferred' unless the
Customer record is at least one year old" would be fine. But if the value of one attribute
determines the value of anotherfor example, "If the customer record is older than one year, then
Status = 'Preferred'"then you have a functional dependency and you're in violation of third normal
form.

RDBMS Concepts using SQL Server 2000

 49

Referential Integrity

We already looked at the decomposition of relations to minimize redundancy and at foreign keys
to implement the links between relations. If these links are ever broken, the system will be
unreliable at best and unusable at worst. Referential integrity constraints maintain and protect
these links.

There is really only one referential integrity constraint: Foreign keys cannot become orphans. In
other words, no record in the foreign table can contain a foreign key that doesn't match a record
in the primary table. Tuples that contain foreign keys that don't have a corresponding candidate
key in the primary relation are called orphan entities.

 There are four ways orphan entities can be created:

• A tuple is added to the foreign table with a key that does not match a candidate key in the
primary table.

• The foreign key is changed to a value not in the primary table.
• The candidate key in the primary table is changed.
• The referenced record in the primary table is deleted.

All four of these cases must be handled if the integrity of a relationship is to be maintained. The
first case, the addition of an unmatched foreign key, is usually simply prohibited. But note that
unknown and nonexistent values don't countthat's a separate rule. If the relationship is declared
as optional, any number of unknown and nonexistent values can be entered without
compromising referential integrity.

The second and third causes of orphaned entities changing the candidate key value in the
referenced table shouldn't occur very often. (This would be an entity constraint, by the
way:"Candidate keys are not allowed to change.")

If your model does allow candidate keys to be changed, you must ensure that these changes are
made in the foreign keys as well. This is known as a cascading update. Both Microsoft Jet and
Microsoft SQL Server provide mechanisms for easily implementing cascading updates.

If your model allows foreign keys to change, in effect allowing the entity to be re-assigned, you
must ensure that the new value is valid. Again, Microsoft Jet and Microsoft SQL Server both allow
this constraint to be easily implemented, even though it doesn't have a specific name.
The final cause of orphan foreign keys is the deletion of the record containing the primary entity. If
one deletes a Customer record, for example, what becomes of that customer's orders? As with
candidate key changes, you can simply prohibit the deletion of tuples in the primary relation if
they are referenced in a foreign relation. This is certainly the cleanest solution if it is a reasonable
restriction for your system. When it's not, both the Jet database engine and SQL Server provide a
simple means of cascading the operation, known as a cascading delete.

But in this case, you also have a third option that's a little harder to implement because it can't be
implemented automatically. You might want to re-assign the dependent records. This isn't often
appropriate, but it is sometimes necessary. Say, for example, that CustomerA purchases
CustomerB. It might make sense to delete CustomerB and reassign all of CustomerB's orders to
CustomerA.

A special kind of referential integrity constraint is the maximum cardinality issue. In the data
model, rules such as "Managers are allowed to have a maximum of five individuals reporting to
them" are defined as referential constraints

RDBMS Concepts using SQL Server 2000

 50

Database Integrity

The most general form of integrity constraint is the database constraint. Database constraints
reference more than one relation: "All Products sold to Customers with the status of 'Government'
must have more than one Supplier." The majority of database constraints take this form, and, like
this one, may require calculations against multiple relations.

You should be careful not to confuse a database constraint with the specification of a work
process. A work process is something that is done with the database, such as adding an order,
whereas an integrity constraint is a rule about the contents of the database. The rules that define
the tasks that are performed using the database are part of the work process, not database
constraints. Work processes, can have a major impact on the data model, but they shouldn't be
made a part of it.

It isn't always clear whether a given business rule is an integrity constraint or a work process (or
something else entirely). The difference might not be desperately important. All else being equal,
implement the rule where it's most convenient to do so. If it's a straightforward process to express
a rule as a database constraint, do so. If that gets tricky (as it often can, even when the rule is
clearly an integrity constraint), move it to the middle tier or the front end, where it can be
implemented procedurally.

Transaction Integrity

The final form of database integrity is transaction integrity. Transaction integrity constraints
govern the ways in which the database can be manipulated. Unlike other constraints, transaction
constraints are procedural and thus are not part of the data model per se.

Transactions are closely related to work processes. The concepts are, in fact, orthogonal,
inasmuch as a given work process might consist of one or more transactions and vice versa. It
isn't quite correct, but it's useful to think of a work process as an abstract construct ("add an
order") and a transaction as a physical one ("update the OrderDetail table").

A transaction is usually defined as a "logical unit of work," which I've always found to be a
particularly unhelpful bit of rhetoric. Essentially, a transaction is a group of actions, all of which (or
none of which) must be completed. The database must comply with all of the defined integrity
constraints before the transaction commences and after it's completed, but might be temporarily
in violation of one or more constraints during the transaction.

The classic example of a transaction is the transfer of money from one bank account to another.
If funds are debited from Account A but the system fails to credit them to Account B, money has
been lost. Clearly, if the second command fails, the first must be undone. In database parlance, it
must be "rolled back." Transactions can involve multiple records, multiple relations, and even
multiple databases.

To be precise, all operations against a database are transactions. Even updating a single existing
record is a transaction. Fortunately, these low-level transactions are implemented transparently
by the database engine, and you can generally ignore this level of detail.

Both the Jet database engine and SQL Server provide a means of maintaining transactional
integrity by way of the BEGIN TRANSACTION, COMMIT TRANSACTION, and ROLLBACK
TRANSACTION statements. As might be expected, SQL Server's implementation is more robust
and better able to recover from hardware failure as well as certain kinds of software failure.
However, these are implementation issues and are outside the scope of this book. What is

RDBMS Concepts using SQL Server 2000

 51

important from a design point of view is to capture and specify transaction dependencies, those
infamous "logical units of work."

Declarative and Procedural Integrity

Relational database engines provide integrity support in two ways: declarative and procedural.
Declarative integrity support is explicitly defined ("declared") as part of the database schema.
Both the Jet database engine and SQL Server provide some declarative integrity support.
Declarative integrity is the preferred method for implementing data integrity. You should use it
wherever possible. SQL Server implements procedural integrity support by way of trigger
procedures that are executed ("triggered") when a record is inserted, updated, or deleted. The Jet
database engine does not support procedural integrity. When an integrity constraint cannot be
implemented using declarative integrity, and the system is using the Jet engine, the constraint
must be implemented in the front end.

Domain Integrity

SQL Server provides a limited kind of support for domains in the form of user-defined data types
(UDDTs). Fields defined against a UDDT will inherit the data type declaration as well as domain
constraints defined for the UDDT.

Equally importantly, SQL Server will prohibit comparison between fields declared against different
UDDTs, even when the UDDTs in question are based on the same system data type. For
example, even though the CityName domain and the CompanyName domain are both defined as
being char(30), SQL Server would reject the expression CityName = CompanyName. This can be
explicitly overridden by using the convert function CityName = CONVERT(char(30),
CompanyName), but the restriction forces you to think about it before comparing fields declared
against different domains. This is a good thing, since these comparisons don't often make
sense.UDDTs can be created either through the SQL Server Enterprise Manager or through the
system stored procedure sp_addtype. Either way, UDDTs are initially declared with a name or a
data type and by whether they are allowed to accept Nulls. Once a UDDT has been created,
default values and validation rules can be defined for it. A SQL Server rule is a logical expression
that defines the acceptable values for the UDDT (or for a field, if it is bound to a field rather than a
UDDT). A default is simply thata default value to be inserted by the system into a field that would
otherwise be Null because the user did not provide a value.

Binding a rule or default to a UDDT is a two-step procedure. First you must create the rule or
default, and then bind it to the UDDT (or field). The "it's not a bug, it's a feature" justification for
this two-step procedure is that, once defined, the rule or default can be reused elsewhere. I find
this tedious since in my experience these objects are reused only rarely. When defining a table,
SQL Server provides the ability to declare defaults and CHECK constraints directly, as part of the
table definition. (CHECK constraints are similar to rules, but more powerful.) Unfortunately this
one-step declaration is not available when declaring UDDTs, which must use the older "create-
and-then-bind" methodology. It is heartily to be wished that Microsoft add support for default and
CHECK constraint declarations to UDDTs in a future release of SQL Server.

A second way of implementing a kind of deferred domain integrity is to use lookup tables. This
technique can be used in both Microsoft Jet and SQL Server. As an example, take the domain of
USStates. Now, theoretically, you can create a rule listing all 50 states. In reality, this would be a
painful process, particularly with the Jet database engine, where the rule would have to be
retyped for every field declared against the domain.

RDBMS Concepts using SQL Server 2000

 52

Entity Integrity
In the database schema, entity constraints can govern individual fields, multiple fields, or the table
as a whole. Both the Jet database engine and SQL Server provide mechanisms for ensuring
integrity at the entity level. Not surprisingly, SQL Server provides a richer set of capabilities, but
the gap is not as great as one might expect.
At the level of individual fields, the most fundamental integrity constraint is of course the data
type. Both the Jet database engine and SQL Server provide a rich set of data types, as shown in

Table 1 The physical Data Types Suported by Microsoft Jet and SQL Server

RDBMS Concepts using SQL Server 2000

 53

SQL Data Types

Data stored in a relational database can be stored using a variety of data types. The primary
ORACLE data types are NUMBER, VARCHAR, and CHAR for storing numbers anda text data;
however, there are additional data types that are supported to support backward compatability
with products.given below:

RDBMS Concepts using SQL Server 2000

 54

Key Data Type

RDBMS Concepts using SQL Server 2000

 55

User-Defined Datatypes :

• Raw binary data, size bytes long, maximum size=255 bytes.

• A value that uniquely identifies a row in an Oracle database -it is returned by the pseudo-
olumn ROWID. Table columnsmay not be assigned this type.

• Same as VARCHAR2. Always use VARCHAR2.

A user-defined datatype (UDDT) provides a convenient way for you to guarantee consistent use
of underlying native datatypes for columns known to have the same domain of possible values.
For example, perhaps your database will store various phone numbers in many tables. Although
no single, definitive way exists to store phone numbers, in this database consistency is important.
You can create a phone_number UDDT and use it consistently for any column in any table that
keeps track of phone numbers to ensure that they all use the same datatype.

Here's how to create this UDDT:

EXEC sp_addtype phone_number, 'varchar(20)', 'not null'

RDBMS Concepts using SQL Server 2000

 56

And here's how to use the new UDDT when you create a table:

CREATE TABLE customer
(
cust_id smallint NOT NULL,
cust_name varchar(50) NOT NULL,
cust_addr1 varchar(50) NOT NULL,
cust_addr2 varchar(50) NOT NULL,
cust_city varchar(50) NOT NULL,
cust_state char(2) NOT NULL,
cust_zip varchar(10) NOT NULL,
cust_phone phone_number,
cust_fax varchar(20) NOT NULL,
cust_email varchar(30) NOT NULL,
cust_web_url varchar(20) NOT NULL
)

When the table is created, internally the cust_phone datatype is known to be varchar(20). Notice
that both cust_phone and cust_fax are varchar(20), although cust_phone has that declaration
through its definition as a UDDT.

Here's how the customer table appears in the entries in the syscolumns table for this table:

SELECT colid, name, xtype, length, xusertype, offset
FROM syscolumns WHERE id=object_id('customer')

colid name xtype length xusertype offset
------ ------------ ----- ------ --------- ------
1 cust_id 52 2 52 2
2 cust_name 167 50 167 -1
3 cust_addr1 167 50 167 -2
4 cust_addr2 167 50 167 -3
5 cust_city 167 50 167 -4
6 cust_state 175 2 175 4
7 cust_zip 167 10 167 -5
8 cust_phone 167 20 261 -6
9 cust_fax 167 20 167 -7
10 cust_email 167 30 167 -8
11 cust_web_url 167 20 167 -9

You can see that both the cust_phone and cust_fax columns have the same xtype (datatype),
although the cust_phone column shows that the datatype is a UDDT (xusertype = 261). The type
is resolved when the table is created, and the UDDT can't be dropped or changed as long as one
or more tables are currently using it. Once declared, a UDDT is static and immutable, so no
inherent performance penalty occurs in using a UDDT instead of the native datatype.
The use of UDDTs can make your database more consistent and clear. SQL Server implicitly
converts between compatible columns of different types (either native types or UDDTs of different
types).
Currently, UDDTs don't support the notion of subtyping or inheritance, nor do they allow a
DEFAULT value or CHECK constraint to be declared as part of the UDDT itself.

RDBMS Concepts using SQL Server 2000

 57

Changing a Datatype

By using the ALTER COLUMN clause of ALTER TABLE, you can modify the datatype or NULL
property of an existing column. But be aware of the following restrictions:

• The modified column can't be a text, image, ntext, or rowversion (timestamp) column.
• If the modified column is the ROWGUIDCOL for the table, only DROP ROWGUIDCOL is

allowed; no datatype changes are allowed.
• The modified column can't be a computed or replicated column.
• The modified column can't have a PRIMARY KEY or FOREIGN KEY constraint defined

on it.
• The modified column can't be referenced in a computed column.
• The modified column can't have the type changed to timestamp.
• If the modified column participates in an index, the only type changes that are allowed

are increasing the length of a variable-length type (for example, VARCHAR(10) to
VARCHAR(20)), changing nullability of the column, or both. If the modified column has a
UNIQUE OR CHECK constraint defined on it, the only

• change allowed is altering the length of a variable-length column. For a UNIQUE
• constraint, the new length must be greater than the old length.
• If the modified column has a default defined on it, the only changes that are allowed are

increasing or decreasing the length of a variable-length type, changing nullability, or
changing the precision or scale.

• The old type of the column should have an allowed implicit conversion to the new type.
• The new type always has ANSI_PADDING semantics if applicable, regardless of the

current setting.
• If conversion of an old type to a new type causes an overflow (arithmetic or size), the

ALTER TABLE statement is aborted.

using the ALTER COLUMN clause of the

ALTER TABLE statement

SYNTAX
ALTER TABLE table-name ALTER COLUMN column-name
 { type_name [(prec [, scale])] [COLLATE <collation name>]
 [NULL | NOT NULL]
 | {ADD | DROP} ROWGUIDCOL }

/* Change the length of the emp_name column in the employee
 table from varchar(30) to varchar(50) */
ALTER TABLE employee
ALTER COLUMN emp_name varchar(50)

Identity Property

It is common to provide simple counter-type values for tables that don't have a natural or efficient
primary key. Columns such as cust_id are usually simple counter fields. The IDENTITY property
makes generating unique numeric values easy. IDENTITY isn't a datatype; it's a column property
that you can declare on a whole-number datatype such as tinyint, smallint, int, or numeric/decimal
(having a scale of zero). Each table can have only one column with the IDENTITY property. The
table's creator can specify the starting number (seed) and the amount that this value increments
or decrements. If not otherwise specified, the seed value starts at 1 and increments by 1.

RDBMS Concepts using SQL Server 2000

 58

CREATE TABLE customer
(
cust_id smallint IDENTITY NOT NULL,
cust_name varchar(50) NOT NULL
)

To find out which seed and increment values were defined for a table, you can use the
IDENT_SEED(tablename) and IDENT_INCR(tablename) functions.

Statement:
SELECT IDENT_SEED('customer'), IDENT_INCR('customer')

Output:
1 1
for the customer table because values weren't explicitly declared and the default values were
used.

explicitly starts the numbering at 100 (seed) and increments the value by 20:

CREATE TABLE customer
(
cust_id smallint IDENTITY(100, 20) NOT NULL,
cust_name varchar(50) NOT NULL
)

The value automatically produced with the IDENTITY property is normally unique, but that isn't
guaranteed by the IDENTITY property itself. Nor is it guaranteed to be consecutive. For
efficiency, a value is considered used as soon as it is presented to a client doing an INSERT
operation. If that client doesn't ultimately commit the INSERT, the value never appears, so a
break occurs in the consecutive numbers. An unacceptable level of serialization would exist if the
next number couldn't be parceled out until the previous one was actually committed or rolled
back.

If you need exact sequential values without gaps, IDENTITY isn't the appropriate feature to use.
Instead, you should implement a next_number-type table in which you can make the operation of
bumping the number contained within it part of the larger transaction (and incur the serialization
of queuing for this value).

To temporarily disable the automatic generation of values in an identity column, you use the SET
IDENTITY_INSERT tablename ON option. In addition to filling in gaps in the identity sequence,
this option is useful for tasks such as bulk-loading data in which the previous values already exist.
For example, perhaps you're loading a new database with customer data from your previous
system. You might want to preserve the previous customer numbers but have new ones
automatically assigned using IDENTITY. The SET option was created exactly for cases like this.
Because of the SET option's ability to allow you to determine your own values for an IDENTITY
column, the IDENTITY property alone doesn't enforce uniqueness of a value within the table.
Although IDENTITY will generate a unique number if IDENTITY_INSERT has never been
enabled, the uniqueness is not guaranteed once you have used the SET option. To enforce
uniqueness (which you'll almost always want to do when using IDENTITY), you should also
declare a UNIQUE or PRIMARY KEY constraint on the column. If you insert your own values for
an identity column (using SET IDENTITY_INSERT), when automatic generation resumes, the
next value is the next incremented value (or decremented value) of the highest value that exists
in the table, whether it was generated previously or explicitly inserted.

RDBMS Concepts using SQL Server 2000

 59

If you're using the bcp utility for bulk loading data, be aware of the -E (uppercase) parameter if
your data already has assigned values that you want to keep for a column that has the IDENTITY
property. You can also use the Transact-SQL BULK INSERT command with the KEEPIDENTITY
option. For more information, see the SQL Server documentation for bcp and BULK INSERT.

The keyword IDENTITYCOL automatically refers to the specific column in a table that has the
IDENTITY property, whatever its name. If that column is cust_id, you can refer to the column as
IDENTITYCOL without knowing or using the column name or you can refer to it explicitly as

cust_id.

The following two statements work identically and return the same data:

SELECT IDENTITYCOL FROM customer
SELECT cust_id FROM customer

The column name returned to the caller is cust_id, not IDENTITYCOL, in both of these cases.
When inserting rows, you must omit an identity column from the column list and VALUES section.
(The only exception is when the IDENTITY_INSERT option is on.) If you do supply a column list,
you must omit the column for which the value will be automatically supplied.

Here are two valid INSERT statements for the customer table shown earlier:

INSERT customer VALUES ('ACME Widgets')
INSERT customer (cust_name) VALUES ('AAA Gadgets')

Selecting these two rows produces this output:

cust_id cust_name
------- ---------
1 ACME Widgets
2 AAA Gadgets
(2 row(s) affected)

Sometimes in applications, it's desirable to immediately know the value produced by IDENTITY
for subsequent use. For example, a transaction might first add a new customer and then add an
order for that customer. To add the order, you probably need to use the cust_id. Rather than
selecting the value from the customer table, you can simply select the special system function
@@IDENTITY, which contains the last identity value used by that connection. It doesn't
necessarily provide the last value inserted in the table, however, because another user might
have subsequently inserted data. If multiple INSERT statements are carried out in a batch on the
same or different tables, the variable has the value for the last statement only. In addition, if there
is an INSERT trigger that fires after you insert the new row and if that trigger inserts rows into a
table with an identity column, @@IDENTITY will not have the value inserted by the original
INSERT statement.

It might look like you're inserting and then immediately checking the value:

INSERT customer (cust_name) VALUES ('AAA Gadgets')
SELECT @@IDENTITY

However, if a trigger was fired for the INSERT, the value of @@IDENTITY might have changed.
There are two other functions that you might find useful when working with identity columns.
SCOPE_IDENTITY returns the last identity value inserted into a table in the same scope, which

RDBMS Concepts using SQL Server 2000

 60

could be a stored procedure, trigger, or batch. So if we replace @@IDENTITY with the
SCOPE_IDENTITY function in the code snippet above, we can see the identity value inserted into
the customer table. If an INSERT trigger also inserted a row that contained an identity column, it
would be in a different scope:

INSERT customer (cust_name) VALUES ('AAA Gadgets')
SELECT SCOPE_IDENTITY()

In other cases, you might want to know the last identity value inserted in a specific table, from any
application or user. You can get this value using the IDENT_CURRENT function, which takes a
table name as an argument:

SELECT IDENT_CURRENT('customer')

This doesn't always guarantee that you can predict the next identity value to be inserted, because
another process could insert a row between the time you check the value of IDENT_CURRENT
and the time you execute your INSERT statement.
You can't define the IDENTITY property as part of a UDDT, but you can declare the IDENTITY
property on a column that uses a UDDT. A column that has the IDENTITY property must always
be declared NOT NULL (either explicitly or implicitly); otherwise, error number 8147 will result
from the CREATE TABLE statement and CREATE won't succeed. Likewise, you can't declare the
DENTITY property and a DEFAULT on the same column. To check that the current identity value
is valid based on the current maximum values in the table, and to reset it if an invalid value is
found (which should never be the case), use the DBCC CHECKIDENT(tablename) statement.
Identity values are fully recoverable. If a system outage occurs while insert activity is taking place
with tables that have identity columns, the correct value will be recovered when SQL Server is
restarted. SQL Server accomplishes this during the checkpoint processing by flushing the current
identity value for all tables. For activity beyond the last checkpoint, subsequent values are
reconstructed from the transaction log during the standard database recovery process. Any
inserts into a table that have the IDENTITY property are known to have changed the value, and
the current value is retrieved from the last INSERT statement (post-checkpoint) for each table in
the transaction log. The net result is that when the database is recovered, the correct current
identity value is also recovered.
In rare cases, the identity value can get out of sync. If this happens, you can use the DBCC
CHECKIDENT command to reset the identity value to the appropriate number. In addition, the
RESEED option to this command allows you to set a new starting value for the identity sequence.

Constraints
Constraints provide a powerful yet easy way to enforce the data integrity in your database. Data
integrity comes in three forms:

• Entity integrity ensures that a table has a primary key. In SQL Server 2000, you can
guarantee entity integrity by defining PRIMARY KEY or UNIQUE constraints or by
building unique indexes. Alternatively, you can write a trigger to enforce entity integrity,
but this is usually far less efficient.

• Domain integrity ensures that data values meet certain criteria. In SQL Server 2000,
domain integrity can be guaranteed in several ways. Choosing appropriate datatypes can
ensure that a data value meets certain conditions—for example, that the data represents
a valid date. Other approaches include defining CHECK constraints or FOREIGN KEY
constraints or writing a trigger. You might also consider DEFAULT constraints as an
aspect of enforcing domain integrity.

• Referential integrity enforces relationships between two tables, a referenced table, and a
referencing table. SQL Server 2000 allows you to define FOREIGN KEY constraints to
enforce referential integrity, and you can also write triggers for enforcement. It's crucial to

RDBMS Concepts using SQL Server 2000

 61

note that there are always two sides to referential integrity enforcement. If data is
updated or deleted from the referenced table, referential integrity ensures that any data in
the referencing table that refers to the changed or deleted data is handled in some
way.On the other side, if data is updated or inserted into the referencing table, referential
integrity ensures that the new data matches a value in the referenced table.

Constraints are also called declarative data integrity because they are part of the actual
table definition. This is in contrast to programmatic data integrity enforcement, which uses
stored procedures or triggers. Here are the five types of constraints:

• PRIMARY KEY
• UNIQUE
• FOREIGN KEY
• CHECK
• DEFAULT

You might also sometimes see the IDENTITY property and the nullability of a column described
as constraints. I typically don't consider these attributes to be constraints; instead, I think of them
as properties of a column, for two reasons. First, as we'll see, each constraint has its own row in
the sysobjects system table, but IDENTITY and nullability information is not stored in sysobjects,
only in syscolumns. This makes me think that these properties are more like datatypes, which are
also stored in syscolumns. Second, when you use the special command SELECT INTO, a new
table can be created that is a copy of an existing table. All column names and datatypes are
copied, as well as IDENTITY information and column nullability. However, constraints are not
copied to the new table. This makes me think that IDENTITY and nullability are more a part of the
actual table structure than constraints are.

Primary key

PRIMARY KEY and UNIQUE Constraints

A central tenet of the relational model is that every row in a table is in some way unique and can
be distinguished in some way from every other row in the table. You could use the combination of
all columns in a table as this unique identifier, but the identifier is usually at most the combination
of a handful of columns, and often it's just one column: the primary key. Although some tables
might have multiple unique identifiers, each table can have only one primary key. For example,
perhaps the employee table maintains both an Emp_ID column and an SSN (social security
number) column, both of which can be considered unique. Such column pairs are often referred
to as alternate keys or candidate keys, although both terms are design terms and aren't used by
the ANSI SQL standard or by SQL Server. In practice, one of the two columns is logically
promoted to primary key using the PRIMARY KEY constraint, and the other is usually declared by
a UNIQUE constraint.Although neither the ANSI SQL standard nor SQL Server require it, it's
good practice to declare a PRIMARY KEY constraint on every table. Furthermore, you must
designate a primary key for a table that will be published for transaction-based replication.
Internally, PRIMARY KEY and UNIQUE constraints are handled almost identically, so it will be
discussed together here. Declaring a PRIMARY KEY or UNIQUE constraint simply results in a
unique index being created on the specified column or columns, and this index enforces the
column's uniqueness in the same way that a unique index created manually on a column
would.The query optimizer makes decisions based on the presence of the unique index rather
than on the fact that a column was declared as a primary key. How the index got there in the first
place is irrelevant to the optimizer.

RDBMS Concepts using SQL Server 2000

 62

Nullability
All columns that are part of a primary key must be declared (either explicitly or implicitly) as NOT
NULL. Columns that are part of a UNIQUE constraint can be declared to allow NULL. However,
for the purposes of unique indexes, all NULLs are considered equal. So if the unique index is on
a single column, only one NULL value can be stored (another good reason to try to avoid NULL
whenever possible). If the unique index is on a composite key, one of the columns can have
many NULLs as long as the value in the other column is unique.

If the constraint contains two int columns, exactly one row of each of these combinations will be
allowed:
NULL NULL
0 NULL
NULL 0
1 NULL
NULL 1

This behavior is questionable: NULL represents an unknown, but using it this way clearly implies
that NULL is equal to NULL. As you'll recall, avoid using NULLs, especially in key columns.

Index Attributes

You can explicitly specify the index attributes CLUSTERED or NONCLUSTERED when you
declare a constraint. If you don't, the index for a UNIQUE constraint will be nonclustered and the
index for a PRIMARY KEY constraint will be clustered (unless CLUSTERED has already been
explicitly stated for a unique index, because only one clustered index can exist per table). You
can specify the index FILLFACTOR attribute if a PRIMARY KEY or UNIQUE constraint is added
to an existing table using the ALTER TABLE command. FILLFACTOR doesn't make sense in a
CREATE TABLE statement because the table has no existing data, and FILLFACTOR on an
index affects how full pages are only when the index is initially created. FILLFACTOR isn't
maintained when data is added.

Choosing Keys

Try to keep the key lengths as compact as possible. Columns that are the primary key or that are
unique are most likely to be joined and frequently queried. Compact key lengths allow more index
entries to fit on a given 8-KB page, thereby reducing I/O, increasing cache hits, and speeding up
character matching. Clustered index keys are used as bookmarks in al your nonclustered
indexes, so a long clustered key will increase the size and decrease the I/O efficiency of all your
indexes. So if your primary key has a clustered index, you've got plenty of good reasons to keep
it short. When no naturally efficient compact key exists, it's often useful to manufacture a
surrogate key using the IDENTITY property on an int column. If int doesn't provide enough range,
a good second choice is a numeric column with the required precision and with scale 0.
Alternatively, you can consider a bigint for an identity column You might use this surrogate as the
primary key, use it for most join and retrieval operations, and declare a UNIQUE constraint on the
natural but inefficient columns that provide the logical unique identifier in your data. Or you might
dispense with creating the UNIQUE constraint altogether if you don't need to have SQL Server
enforce the uniqueness. Indexes slow performance of data modification statements because the
index as well as the data must be maintained.
Although it's permissible to do so, don't create a PRIMARY KEY constraint on a column of type
float or real. Because these are approximate datatypes, the uniqueness of such columns is also
approximate, and the results can sometimes be unexpected.

RDBMS Concepts using SQL Server 2000

 63

Removing PRIMARY KEY or UNIQUE Constraints

You can't directly drop a unique index created as a result of a PRIMARY KEY or UNIQUE
constraint by using the DROP INDEX statement. Instead, you must drop the constraint by using
ALTER TABLE DROP CONSTRAINT (or you must drop the table itself). This feature was
designed so that a constraint can't be compromised accidentally by someone who doesn't realize
that the index is being used to enforce the constraint.
There is no way to temporarily disable a PRIMARY KEY or UNIQUE constraint. If disabling is
required, use ALTER TABLE DROP CONSTRAINT and then later restore the constraint by using
ALTER TABLE ADD CONSTRAINT. If the index you use to enforce uniqueness is clustered,
when you add the constraint to an existing table, the entire table and all nonclustered indexes will
be internally rebuilt to establish the cluster order. This can be a time-consuming task, and it
requires about 1.2 times the existing table space as a temporary work area in the database would
require (2.2 times total, counting the permanent space needed) so that the operation can be
rolled back if necessary. However, you can rebuild an index that is enforcing a constraint by using
the DROP_EXISTING option of the CREATE INDEX statement. This drops and re-creates the
index behind the scenes as a single operation.

Creating PRIMARY KEY and UNIQUE Constraints

Typically, you declare PRIMARY KEY and UNIQUE constraints when you create the table
(CREATE TABLE). However, you can add or drop both by subsequently using the ALTER TABLE
command. To simplify matters, you can declare a PRIMARY KEY or UNIQUE constraint that
includes only a single column on the same line that you define that column in the CREATE
TABLE statement. Or you can declare the constraint as a separate line in your CREATE TABLE
statement. The approach you use is largely a matter of personal preference unless your
constraint involves multiple columns. Constraints defined along with a column definition can refer
only to that column.
Four ways to declare a PRIMARY KEY constraint on a single column. They all cause a unique,
clustered index to be created. Note the (abridged) output of the sp_helpconstraint procedure for
each—especially the constraint name.

EXAMPLE 1

CREATE TABLE customer
(
cust_id int IDENTITY NOT NULL PRIMARY KEY,
cust_name varchar(30) NOT NULL
)
GO

EXEC sp_helpconstraint customer
GO

>>>>

Object Name

customer

constraint_type

RDBMS Concepts using SQL Server 2000

 64

constraint_name

----------------------- ------------------------------
PRIMARY KEY (clustered) PK__customer__68E79C55

EXAMPLE 2

CREATE TABLE customer
(
cust_id int IDENTITY NOT NULL
 CONSTRAINT cust_pk PRIMARY KEY,
cust_name varchar(30) NOT NULL
)
GO

EXEC sp_helpconstraint customer
GO

>>>>

Object Name

customer

constraint_type constraint_name
----------------------- ---------------
PRIMARY KEY (clustered) cust_pk

No foreign keys reference this table.

EXAMPLE 3

CREATE TABLE customer
(
cust_id int IDENTITY NOT NULL,
cust_name varchar(30) NOT NULL,
 PRIMARY KEY (cust_id)
)
GO

EXEC sp_helpconstraint customer
GO

>>>>

Object Name

customer

RDBMS Concepts using SQL Server 2000

 65

constraint_type constraint_name
--------------- ---------------
PRIMARY KEY (clustered) PK__customer__59063A47

No foreign keys reference this table.

EXAMPLE 4

CREATE TABLE customer
(
cust_id int IDENTITY NOT NULL,
cust_name varchar(30) NOT NULL,
CONSTRAINT customer_PK PRIMARY KEY (cust_id)
)
GO

EXEC sp_helpconstraint customer
GO

>>>>

Object Name

customer

constraint_type

constraint_name

PRIMARY KEY (clustered) customer_PK

No foreign keys reference this table.

In Examples 1 and 3, an explicit name for the constraint is not provided, so SQL Server comes up
with the names. The names, PK__customer__68E79C55 and PK__customer__59063A47, seem
cryptic, but there is some method to this apparent madness. All types of single-column
constraints use this same naming scheme, which wil be discussed later in the chapter, and multi-
column constraints use a similar scheme. Whether you choose a more intuitive name, such as
cust_pk in Example 2 or customer_PK in Example 4, or the less intuitive (but information-
packed), system-generated name is up to you. Here's an example of creating a multi-column,
UNIQUE constraint on the combination of multiple columns. (The primary key case is essentially
identical.)

CREATE TABLE customer_location
(
cust_id int NOT NULL,
cust_location_number int NOT NULL,
CONSTRAINT customer_location_unique UNIQUE
 (cust_id, cust_location_number)
)
GO

RDBMS Concepts using SQL Server 2000

 66

EXEC sp_helpconstraint customer_location
GO

>>>
Object Name

customer_location

constraint_type constraint_name constraint_keys
--------------- ------------------------ ---------------
UNIQUE customer_location_unique cust_id,
(non-clustered) cust_location_number

No foreign keys reference this table.

As noted earlier, a unique index is created to enforce either a PRIMARY KEY or a UNIQUE
constraint. The name of the index is the same as the constraint name, whether the name was
explicitly defined or system-generated. The index used to enforce the
CUSTOMER_LOCATION_UNIQUE constraint in the above example is also named
customer_location_unique. The index used to enforce the column-level, PRIMARY KEY
constraint of the customer table in Example 1 is named PK__customer__68E79C55, which is the
system-generated name of the constraint. You can use the sp_helpindex stored procedure to see
information for all indexes of a given table.

EXEC sp_helpindex customer

>>>
index_name index_description index_keys

 ------------------ ----------

PK__customer__68E79C55 clustered, unique, cust_id
 primary key
 located on default

Foreign key

FOREIGN KEY Constraints

One of the fundamental concepts of the relational model is the logical relationships between
tables. In most databases, certain relationships must exist (that is, the data must have referential
integrity) or else the data will be logically corrupt.
SQL Server automatically enforces referential integrity through the use of FOREIGN KEY
constraints. This feature is sometimes referred to as declarative referential integrity, or DRI, to
distinguish it from other features, such as triggers, that you can also use to enforce the existence
of the relationships.
Referential Actions
The full ANSI SQL-92 standard contains the notion of the referential action, sometimes
(incompletely) referred to as a cascading delete. SQL Server 7 doesn't provide this feature as

RDBMS Concepts using SQL Server 2000

 67

part of FOREIGN KEY constraints, but this notion warrants some discussion here because the
capability exists via triggers.
The idea behind referential actions is this: sometimes, instead of just preventing an update of
data that would violate a foreign key reference, you might be able to perform an additional,
compensating action that will still enable the constraint to be honored. For example, if you were to
delete a customer table that has references to orders, you can have SQL Server automatically
delete all those related order records (that is, cascade the delete to orders), in which case the
constraint won't be violated and the customer table can be deleted. This feature is intended for
both UPDATE and DELETE statements, and four possible actions are defined: NO ACTION,
CASCADE, SET DEFAULT, and SET NULL.

• NO ACTION The delete is prevented. This default mode, per the ANSI standard, occurs if
no other action is specified. NO ACTION is often referred to as RESTRICT, but this
usage is slightly incorrect in terms of how ANSI defines RESTRICT and NO ACTION.
ANSI uses RESTRICT in DDL statements such as DROP TABLE, and it uses NO
ACTION for FOREIGN KEY constraints. (The difference is subtle and unimportant. It's
common to refer to the FOREIGN KEY constraint as having an action of RESTRICT.)

• CASCADE A delete of all matching rows in the referencing table occurs.
• SET DEFAULT The delete is performed, and all foreign key values in the referencing

table are set to a default value.
• SET NULL The delete is performed, and all foreign key values in the referencing table

are set to NULL.

SQL Server 2000 allows you to specify either NO ACTION or CASCADE when you define your
foreign key constraints. If you want to implement either SET DEFAULT or SET NULL, you can
use a trigger. Implementing the SET NULL action is very straightforward, which discusses
triggers in detail. One reason it's so straightforward is that while a FOREIGN KEY requires any
value in the referencing table to match a value in the referenced table, NULLs are not considered
to be a value, and having a NULL in the referencing table doesn't break any relationships.
Implementing the SET DEFAULT action is just a little more involved. Suppose you want to
remove a row from the referenced table and set the foreign key value in all referencing rows to -
9999. If you want to maintain referential integrity, you have to have a "dummy" row in the
referenced table with the primary key value of -9999.
Keep in mind that enforcing a foreign key implies that SQL Server will check data in both the
referenced and the referencing tables. The referential actions just discussed apply only to actions
that are taken on the referenced table. On the referencing table, the only action allowed is to not
allow an update or an insert if the relationship will be broken as a result.

Because a constraint is checked before a trigger fires, you can't have both a FOREIGN KEY
constraint to enforce the relationship when a new key is inserted into the referencing table and a
trigger that performs an operation such as SET NULL on the referenced table. If you do have
both, the constraint will fail and the statement will be aborted before the trigger to cascade the
delete fires. If you want to allow the SET NULL action, you have to write two triggers. You have to
have a trigger for delete and update on the referenced table to perform the SET NULL action and
a trigger for insert and update on the referencing table that disallows new data that would violate
the referential integrity.

If you do decide to enforce your referential integrity with triggers, you might still want to declare
the foreign key relationship largely for readability so that the relationship between the tables is
clear. You can then use the NOCHECK option of ALTER TABLE to disable the constraint, and
then the trigger will fire.

This note is just referring to AFTER triggers. SQL Server 2000 provides an additional type of
trigger called an INSTEAD OF trigger.

Here's a simple way to declare a primary key/foreign key relationship:

RDBMS Concepts using SQL Server 2000

 68

CREATE TABLE customer
(
cust_id int NOT NULL IDENTITY PRIMARY KEY,
cust_name varchar(50) NOT NULL
)
CREATE TABLE orders
(

order_id int NOT NULL IDENTITY PRIMARY KEY,
cust_id int NOT NULL REFERENCES customer(cust_id)
)
Since the default referential action is NO ACTION, the orders table could also have been written
in this way:
CREATE TABLE orders
(
order_id int NOT NULL IDENTITY PRIMARY KEY,
cust_id int NOT NULL REFERENCES customer(cust_id)
 ON UPDATE NO ACTION ON DELETE NO ACTION
)
The orders table contains the column cust_id, which references the primary key of the customer
table. An order (order_id) must not exist unless it relates to an existing customer (cust_id). With
this definition, you can't delete a row from the customer table if a row that references it currently
exists in the orders table, and you can't modify the cust_id column in a way that would destroy the
relationship.

A referential action can be specified for both DELETE and UPDATE operations on the referenced
table, and the two operations can have different actions.

You can choose to CASCADE any updates to the cust_id in customer but not allow (NO
ACTION) any deletes of referenced rows in customer.

Adding a FOREIGN KEY constraint to the orders table that does just that: it cascades any
updates to the cust_id in customer but does not allow any deletes of referenced rows in
customer:

CREATE TABLE orders
(
order_id int NOT NULL IDENTITY PRIMARY KEY,
cust_id int NOT NULL REFERENCES customer(cust_id)
 ON UPDATE CASCADE ON DELETE NO ACTION
)

The previous examples show the syntax for a single-column constraint—both the primary key and
foreign key are single columns. This syntax uses the keyword REFERENCES, and the term
"foreign key" is implied but not explicitly stated. The name of the FOREIGN KEY constraint is
generated internally, following the same general form described earlier for PRIMARY KEY and
UNIQUE constraints. Here's a portion of the output of sp_helpconstraint for both the customer
and orders tables. (The tables were created in the pubs sample database.)

EXEC sp_helpconstraint customer
>>>

Object Name

RDBMS Concepts using SQL Server 2000

 69

customer

constraint_type constraint_name constraint_keys
---------------- ---------------------- ---------------
PRIMARY KEY PK__customer__07F6335A cust_id
(clustered)

Table is referenced by
--
pubs.dbo.orders: FK__orders__cust_id__0AD2A005

EXEC sp_helpconstraint orders
>>>

Object Name

orders

constraint_type constraint_name delete_ update_
 action action
--------------- ----------------------------- --------- ------
FOREIGN KEY FK__orders__cust_id__0AD2A005 no action no action
PRIMARY KEY PK__orders__09DE7BCC
(clustered)

constraint_keys

cust_id REFERENCES pubs.dbo.customer(cust_id)
order_id

No foreign keys reference this table.
Constraints defined inline with the column declaration can reference only a single column. This is
also true for PRIMARY KEY and UNIQUE constraints. You must declare a multi-column
constraint as a separate table element. The following example shows a multi-column FOREIGN
KEY constraint:
CREATE TABLE customer
(
cust_id int NOT NULL,
location_num smallint NULL,
cust_name varchar(50) NOT NULL,
CONSTRAINT CUSTOMER_UNQ UNIQUE CLUSTERED (location_num, cust_id)
)

CREATE TABLE orders
(
order_id int NOT NULL IDENTITY CONSTRAINT ORDER_PK
 PRIMARY KEY NONCLUSTERED,
cust_num int NOT NULL,
cust_loc smallint NULL,

RDBMS Concepts using SQL Server 2000

 70

CONSTRAINT FK_ORDER_CUSTOMER FOREIGN KEY (cust_loc, cust_num)
REFERENCES customer (location_num, cust_id)
)
GO

EXEC sp_helpconstraint customer
EXEC sp_helpconstraint orders
GO

>>>
Object Name

customer

constraint_type constraint_name constraint_keys
------------------ ---------------- --------------------
UNIQUE (clustered) CUSTOMER_UNQ location_num, cust_id

Table is referenced by

pubs.dbo.orders: FK_ORDER_CUSTOMER

Object Name

orders

constraint_type constraint_name constraint_keys
---------------- ---------------- ------------------
FOREIGN KEY FK_ORDER_CUSTOMER cust_loc, cust_num
 REFERENCES pubs.dbo.customer
 (location_num, cust_id)

PRIMARY KEY ORDER_PK order_id
(non-clustered)

No foreign keys reference this table.

The following example shows the following variations on how you can create constraints:

• You can use a FOREIGN KEY constraint to reference a UNIQUE constraint (an alternate

key) instead of a PRIMARY KEY constraint. (Note, however, that referencing a PRIMARY
KEY is much more typical and is generally better practice.)

• You don't have to use identical column names in tables involved in a foreign key reference,
but doing so is often good practice. The cust_id and location_num column names are defined
in the customer table. The orders table, which references the customer table, uses the
names cust_num and cust_loc.

• The datatypes of the related columns must be identical, except for nullability and variable-
length attributes. (For example, a column of char(10) NOT NULL can reference one of
varchar(10) NULL, but it can't reference a column of char(12) NOT NULL. A column of type
smallint can't reference a column of type int.) Notice in the preceding example that
cust_id and cust_num are both int NOT NULL and that location_num and cust_loc are both
smallint NULL.

RDBMS Concepts using SQL Server 2000

 71

Unlike a PRIMARY KEY or UNIQUE constraint, an index isn't automatically built for the column or
columns declared as FOREIGN KEY. However, in many cases, you'll want to build indexes on
these columns because they're often used for joining to other tables. To enforce foreign key
relationships, SQL Server must add additional steps to the execution plan of every insert, delete,
and update (if the update affects columns that are part of the relationship) that affects either the
table referencing another table or the table being referenced. The execution plan, determined by
the SQL Server optimizer, is simply the collection of steps that carries out the operation. If no
FOREIGN KEY constraints exist, a statement specifying the update of a single row of the orders
table might have an execution plan like the following:

1. Find a qualifying order record using a clustered index.
2. Update the order record.

When a FOREIGN KEY constraint exists on the orders table, the same operation has more steps
in the execution plan:

1. Check for the existence of a related record in the customer table (based on the updated order
record) using a clustered index.
2. If no related record is found, raise an exception and terminate the operation.
3. Find a qualifying order record using a clustered index.
4. Update the order record.

The execution plan is more complex if the orders table has many FOREIGN KEY constraints
declared. Internally, a simple update or insert operation might no longer be possible. Any such
operation requires checking many other tables for matching entries. Because a seemingly simple
operation might require checking as many as 253 other tables (see the next paragraph) and
possibly creating multiple worktables, the operation might be much more complicated than it
looks and much slower than expected.
A table can have a maximum of 253 FOREIGN KEY references. This limit is derived from the
internal limit of 256 tables in a single query. In practice, an operation on a table with 253 or fewer
FOREIGN KEY constraints might still fail with an error because of the 256-table query limit if
worktables are required for the operation.
A database designed for excellent performance doesn't reach anything close to this limit of 253
FOREIGN KEY references. For best performance results, use FOREIGN KEY constraints
judiciously. Some sites unnecessarily use too many FOREIGN KEY constraints because the
constraints they declare are logically redundant. Take the following example. The orders table
declares a FOREIGN KEY constraint to both the master_customer and customer_location tables:
CREATE TABLE master_customer
(
cust_id int NOT NULL IDENTITY PRIMARY KEY,
cust_name varchar(50) NOT NULL
)

CREATE TABLE customer_location
(
cust_id int NOT NULL,
cust_loc smallint NOT NULL,
CONSTRAINT PK_CUSTOMER_LOCATION PRIMARY KEY (cust_id,cust_loc),
CONSTRAINT FK_CUSTOMER_LOCATION FOREIGN KEY (cust_id)
 REFERENCES master_customer (cust_id)
)

CREATE TABLE orders
(

order_id int NOT NULL IDENTITY PRIMARY KEY,

RDBMS Concepts using SQL Server 2000

 72

cust_id int NOT NULL,
cust_loc smallint NOT NULL,
CONSTRAINT FK_ORDER_MASTER_CUST FOREIGN KEY (cust_id)
 REFERENCES master_customer (cust_id),
CONSTRAINT FK_ORDER_CUST_LOC FOREIGN KEY (cust_id, cust_loc)
 REFERENCES customer_location (cust_id, cust_loc)
)
Although logically the relationship between the orders and master_customer tables exists, the
relationship is redundant to and subsumed by the fact that orders is related to customer_location,
which has its own FOREIGN KEY constraint to master_customer. Declaring a foreign key for
master_customer adds unnecessary overhead without adding any further integrity protection.

In the case just described, declaring a foreign key improves the readability of the table definition,
but you can achieve the same result by simply adding comments to the CREATE TABLE
command. It's perfectly legal to add a comment practically anywhere—even in the middle of a
CREATE TABLE statement. A more subtle way to achieve this result is to declare the constraint
so that it appears in sp_helpconstraint and in the system catalogs but then disable the constraint
by using the ALTER TABLE NOCHECK option. Because the constraint will then be unenforced,
an additional table isn't added to the execution plan.

The CREATE TABLE statement shown in the following example for the orders table omits the
redundant foreign key and, for illustrative purposes, includes a comment. Despite the lack of a
FOREIGN KEY constraint in the master_customer table, you still can't insert a cust_id that
doesn't exist in the master_customer table because the reference to the customer_location table
will prevent it.

CREATE TABLE orders
(
order_id int NOT NULL IDENTITY PRIMARY KEY,
cust_id int NOT NULL,
cust_loc smallint NOT NULL,
—- Implied Foreign Key Reference of:
—- (cust_id) REFERENCES master_customer (cust_id)
CONSTRAINT FK_ORDER_CUST_LOC FOREIGN KEY (cust_id, cust_loc)
 REFERENCES customer_location (cust_id, cust_loc)
)
Note that the table on which the foreign key is declared (the referencing table, which in this
example is orders) isn't the only table that requires additional execution steps. When being
updated, the table being referenced (in this case customer_location) must also have additional
steps in its execution plan to ensure that an update of the columns being referenced won't break
a relationship and create an orphan entry in the orders table. Without making any changes
directly to the customer_location table, you can see a significant decrease in update or delete
performance because of foreign key references added to other tables.

Practical Considerations for FOREIGN KEY Constraints

When using constraints, you should consider triggers, performance, and indexing. Let's take a
look at the ramifications of each Constraints are enforced before an AFTER triggered action is
performed. If the constraint is violated, the statement will abort before the trigger fires.

The owner of a table isn't allowed to declare a foreign key reference to another table unless the
owner of the other table has granted REFERENCES permission to the first table owner. Even if
the owner of the first table is allowed to select from the table to be referenced, that owner must

RDBMS Concepts using SQL Server 2000

 73

have REFERENCES permission. This prevents another user from changing the performance of
operations on your table without your knowledge or consent. You can grant any user
REFERENCES permission even if you don't also grant SELECT permission, and vice-versa. The
only exception is that the DBO, or any user who is a member of the db_owner role, has full
default permissions on all objects in the database.

Performance When deciding on the use of foreign key relationships, you must weigh the
protection provided against the corresponding performance overhead. Be careful not to add
constraints that form logically redundant relationships. Excessive use of FOREIGN KEY
constraints can severely degrade the performance of seemingly simple operations.
Indexing The columns specified in FOREIGN KEY constraints are often strong candidates for
index creation. You should build the index with the same key order used in the PRIMARY KEY or
UNIQUE constraint of the table that it references so that joins can be performed efficiently. Also
be aware that a foreign key is often a subset of the table's primary key. In the customer_location
table used in the preceding two examples, cust_id is part of the primary key as well as a foreign
key in its own right. Given that cust_id is part of a primary key, it's already part of an index. In this
example, cust_id is the lead column of the index, and building a separate index on it alone
probably isn't warranted. However, if cust_id is not the lead column of the index B-tree, it might
make sense to build an index on it.

Constraints

Constraint-Checking Solutions

Sometimes two tables reference one another, which creates a bootstrap problem. Suppose
Table1 has a foreign key reference to Table2, but Table2 has a foreign key reference to Table1.
Even before either table contains any data, you'll be prevented from inserting a row into Table1
because the reference to Table2 will fail. Similarly, you can't insert a row into Table2 because the
reference to Table1 will fail.
ANSI SQL has a solution: deferred constraints, in which you can instruct the system to postpone
constraint checking until the entire transaction is committed. Using this elegant remedy puts both
INSERT statements into a single transaction that results in the two tables having correct
references by the time COMMIT occurs. Unfortunately, no mainstream product currently provides
the deferred option for constraints. The deferred option is part of the complete SQL-92
specification, which no product has yet fully implemented.
SQL Server 2000 provides immediate constraint checking; it has no deferred option. SQL Server
offers three options for dealing with constraint checking: it allows you to add constraints after
adding data, it lets you temporarily disable checking of foreign key references, and it allows you
to use the bcp (bulk copy) program or BULK INSERT command to initially load data and avoid
checking FOREIGN KEY constraints. (You can override this default option with bcp or the BULK
INSERT command and force FOREIGN KEY constraints to be validated.) To add constraints after
adding data, don't create constraints via the CREATE TABLE command. After adding the initial
data, you can add constraints by using the ALTER TABLE command.
With the second option, the table owner can temporarily disable checking of foreign key
references by using the ALTER TABLE table NOCHECK CONSTRAINT statement. Once data
exists, you can reestablish the FOREIGN KEY constraint by using ALTER TABLE table CHECK
CONSTRAINT. Note that when an existing constraint is reenabled using this method, SQL Server
doesn't automatically check to see that all rows still satisfy the constraint. To do this, you can
simply issue a dummy update by setting a column to itself for all rows, determining whether any
constraint violations are raised, and then fixing them. (For example, you can issue UPDATE
orders SET cust_id = cust_id.)

RDBMS Concepts using SQL Server 2000

 74

Finally you can use the bcp program or the BULK INSERT command to initially load data. The
BULK INSERT command and the bcp program don't check any FOREIGN KEY constraints by
default. You can use the CHECK_CONSTRAINTS option to override this behavior. BULK
INSERT and bcp are faster than regular INSERT commands because they usually bypass normal
integrity checks and most logging.
When you use ALTER TABLE to add (instead of reenable) a new FOREIGN KEY constraint for a
table in which data already exists, the existing data is checked by default. If constraint violations
occur, the constraint isn't added. With large tables, such a check can be quite time-consuming.
You do have an alternative—you can add a FOREIGN KEY constraint and omit the check. To do
this, you specify the WITH NOCHECK option with ALTER TABLE. All subsequent operations will
be checked, but existing data won't be checked. As in the case of reenabling a constraint, you
can then perform a dummy update to flag any violations in the existing data. If you use this
option, you should do the dummy update as soon as possible to ensure that all the data is clean.
Otherwise, your users might see constraint error messages when they perform update operations
on the preexisting data even if they haven't changed any values.

Restrictions on Dropping Tables

If you're dropping tables, you must drop all the referencing tables or drop the referencing
FOREIGN KEY constraints before dropping the referenced table. For example, in the preceding
example's orders, customer_location, and master_customer tables, the following sequence
of DROP statements fails because a table being dropped is referenced by a table that still
exists—that is, customer_location can't be dropped because the orders table references it, and
orders isn't dropped until later:

DROP TABLE customer_location
DROP TABLE master_customer
DROP TABLE orders
Changing the sequence to the following works fine because orders is dropped first:
DROP TABLE orders
DROP TABLE customer_location
DROP TABLE master_customer
When two tables reference each other, you must first drop the constraints or set them to
NOCHECK (both operations use ALTER TABLE) before the tables can be dropped. Similarly, a
table that's being referenced can't be part of a TRUNCATE TABLE command. You must drop or
disable the constraint or else simply drop and rebuild the table.

Self-Referencing Tables

A table can be self-referencing—that is, the foreign key can reference one or more columns in the
same table. The following example shows an employee table in which a column for managers
references another employee entry:

CREATE TABLE employee
(
emp_id int NOT NULL PRIMARY KEY,
emp_name varchar(30) NOT NULL,
mgr_id int NOT NULL REFERENCES employee(emp_id)
)

The employee table is a perfectly reasonable table. However, in this case, a single INSERT
command that satisfies the reference is legal. For example, if the CEO of the company has an

RDBMS Concepts using SQL Server 2000

 75

emp_id of 1 and is also his own manager, the following INSERT will be allowed and can be a
useful way to insert the first row in a self-referencing table:

INSERT employee VALUES (1, 'Chris Smith', 1)

Although SQL Server doesn't currently provide a deferred option for constraints, self-referencing
tables add a twist that sometimes makes SQL Server use deferred operations internally. Consider
the case of a nonqualified DELETE statement that deletes many rows in the table. After all rows
are ultimately deleted, you can assume that no constraint violation will occur. However, violations
might occur during the DELETE operation because some of the remaining referencing rows might
be orphaned before they are actually deleted. SQL Server handles such interim violations
automatically and without any user intervention. As long as the self-referencing constraints are
valid at the end of the data modification statement, no errors are raised during processing.
To gracefully handle these interim violations, however, additional processing and worktables are
required to hold the work-in-progress. This adds substantial overhead and can also limit the
actual number of foreign keys that can be used. An UPDATE statement can also cause an interim
violation. For example, if all employee numbers are to be changed by multiplying each by 1000,
the following UPDATE statement would require worktables to avoid the possibility of raising an
error on an interim violation:

UPDATE employee SET emp_id=emp_id * 1000, mgr_id=mgr_id * 1000

The additional worktables and the processing needed to handle the worktables are made part of
the execution plan. Therefore, if the optimizer sees that a data modification statement could
cause an interim violation, the additional temporary worktables will be created even if no such
interim violations ever actually occur. These extra steps are needed only in the following
situations:

A table is self-referencing (it has a FOREIGN KEY constraint that refers back to itself).

• A single data modification statement (UPDATE, DELETE, or INSERT based on a
SELECT) is performed and can affect more than one row. (The optimizer can't determine
a priori, based on the WHERE clause and unique indexes, whether more than one row
could be affected.) Multiple data modification statements within the transaction don't
apply—this condition must be a single statement that affects multiple rows.

• Both the referencing and referenced columns are affected (which is always the case for
DELETE and INSERT operations, but might or might not be the case for UPDATE).

If a data modification statement in your application meets the preceding criteria, you can be sure
that SQL Server is automatically using a limited and special-purpose form of deferred constraints
to protect against interim violations.

CHECK Constraints
Enforcing domain integrity (that is, ensuring that only entries of expected types, values, or ranges
can exist for a given column) is also important. SQL Server provides two ways to enforce domain
integrity: CHECK constraints and rules. CHECK constraints allow you to define an expression for
a table that must not evaluate to FALSE for a data modification statement to succeed. The
constraint will allow the row if it evaluates to TRUE or to unknown. The constraint evaluates to
unknown when NULL values are present, and this introduces three-value logic. SQL Server
provides a similar mechanism to CHECK constraints, called rules, which are provided basically
for backward compatibility reasons. Rules perform almost the same function as CHECK
constraints, but they use different syntax and have fewer capabilities.
CHECK constraints make a table's definition more readable by including the domain checks in
the DDL. Rules have a potential advantage in that they can be defined once and then bound to

RDBMS Concepts using SQL Server 2000

 76

multiple columns and tables (using sp_bindrule each time), while you must respecify a CHECK
constraint for each column and table. But the extra binding step can also be a hassle, so this
capability for rules is beneficial only if a rule will be used in many places. Although performance
between the two approaches is identical, CHECK constraints are generally preferred over rules
because they're a direct part of the table's DDL, they're ANSI-standard SQL, they provide a few
more capabilities than rules (such as the ability to reference other columns in the same row or to
call a system function), and perhaps most important, they're more likely than rules to be further
enhanced in future releases of SQL Server.
CHECK constraints add additional steps to the execution plan to ensure that the expression
doesn't evaluate to FALSE (which would result in the operation being aborted). Although steps
are added to the execution plan for data modifications, these are typically much less expensive
than the extra steps discussed earlier for FOREIGN KEY constraints. For foreign key checking,
another table must be searched, requiring additional I/O. CHECK constraints deal only with some
logical expression for the specific row already being operated on, so no additional I/O is required.
Because additional processing cycles are used to evaluate the expressions, the system requires
more CPU use. But if there's plenty of CPU power to spare, the effect might well be
negligible.You can watch this by using Performance Monitor.
As with other constraint types, you can declare CHECK constraints on a single column or on
multiple columns. You must declare a CHECK constraint that refers to more than one column as
a separate element in the CREATE TABLE statement. Only single-column CHECK constraints
can be defined right along with the column definition, and only one CHECK constraint can be
defined with the column. All other CHECK constraints have to be defined as separate elements.
However, keep in mind that one constraint can have multiple logical expressions that can be
AND'ed or OR'ed together.
Some CHECK constraint features have often been underutilized by SQL Server database
designers, including the ability to reference other columns in the same row, use system and
niladic functions (which are evaluated at runtime), use combinations of expressions combined
with AND or OR, and use CASE expressions. The following example shows a table with multiple
CHECK constraints (as well as a PRIMARY KEY constraint and a FOREIGN KEY constraint) and
showcases some of these features:

CREATE TABLE employee
(
emp_id int NOT NULL PRIMARY KEY
 CHECK (emp_id BETWEEN 0 AND 1000),

emp_name varchar(30) NOT NULL CONSTRAINT no_nums
 CHECK (emp_name NOT LIKE '%[0-9]%'),

mgr_id int NOT NULL REFERENCES employee(emp_id),

entered_date datetime NULL CHECK (entered_date >=
 CURRENT_TIMESTAMP),

entered_by int CHECK (entered_by IS NOT NULL),
 CONSTRAINT valid_entered_by CHECK
 (entered_by = SUSER_ID(NULL) AND
 entered_by <> emp_id),

CONSTRAINT valid_mgr CHECK (mgr_id <> emp_id OR emp_id=1),

CONSTRAINT end_of_month CHECK (DATEPART(DAY, GETDATE()) < 28)
)
GO

EXEC sp_helpconstraint employee

RDBMS Concepts using SQL Server 2000

 77

GO
>>>>

Object Name

employee

constraint_type constraint_name constraint_keys
CHECK on column
emp_id

CK__employee__emp_id__2C3393D0 ([emp_id] >= 0 and
[emp_id] <=1000)

CHECK on column
entered_by

CK__employee__entered_by__300424B4 (((not(entered_by is
null))))

CHECK on column
entered_date

CK__employee__entered_date__2F10007B ([entered_date] >=
getdate())

CHECK Table Level end_of_month (datepart(day,
getdate()) <28)

FOREIGN KEY FK__employee__mgr_id__2E1BDC42 mgr_id
CHECK on column
emp_name

no_nums ([emp_name] not like
'%[0-9]%')

PRIMARY KEY
(clustered)

PK__employee__2B3F6F97 emp_id

CHECK Table Level
valid_entered_by

 ([entered_by] =
suser_id(null) and
[entered_by] <>
[emp_id])

CHECK Table Level
valid_mgr

 ([mgr_id] <> [emp_id] or
[emp_id] = 1)

Table is referenced by

pubs.dbo.employee: FK__employee__mgr_id__2E1BDC42
This example illustrates the following points:

• CHECK constraints can be expressed at the column level with abbreviated syntax
(leaving laming to SQL Server), such as the check on entered_date; at the column level
with an explicit name, such as the NO_NUMS constraint on emp_name; or as a table-
level constraint, such as the VALID_MGR constraint.

• CHECK constraints can use regular expressions—for example, NO_NUMS ensures that
a digit can never be entered as a character in a person's name.

• Expressions can be AND'ed and OR'ed together to represent more complex situations—
for example, VALID_MGR. However, SQL Server won't check for logical correctness at
the time a constraint is added to the table. Suppose you want to restrict the values in a
department_id column to either negative numbers or values greater than 100. (Perhaps
numbers between 0 and 100 are reserved.) You can add this column and constraint to
the table using ALTER TABLE

ALTER TABLE employee
add department_no int CHECK
 (department_no < 0 AND department_no > 100)

• Table-level CHECK constraints can refer to more than one column in the same row.
For example, VALID_MGR means that no employee can be his own boss, except

RDBMS Concepts using SQL Server 2000

 78

employee number 1, who is assumed to be the CEO. SQL Server currently has no
provision that allows you to check a value from another row or from a different table.

• You can make a CHECK constraint prevent NULL values—for example, CHECK
(entered_by IS NOT NULL). Generally, you simply declare the column NOT NULL.

• A NULL column might make the expression logically unknown. For example, a NULL
value for entered_date gives CHECK entered_date >=
CURRENT_TIMESTAMP an unknown value. This doesn't reject the row, however.
The constraint rejects the row only if the expression is clearly false, even if it isn't
necessarily true.

• You can use system functions, such as GETDATE, APP_NAME, DATALENGTH, and
SUSER_ID, as well as niladic functions, such as SYSTEM_USER,
CURRENT_TIMESTAMP, and USER, in CHECK constraints. This subtle feature is
powerful and can be useful, for example, to ensure that a user can change only
records that she has entered by comparing entered_by to the user's system ID, as
generated by SUSER_ID (or by comparing emp_name to SYSTEM_USER). Note
that niladic functions such as CURRENT_TIMESTAMP are provided for ANSI SQL
conformance and simply map to an underlying SQL Server function, in this case
GETDATE. So while the DDL to create the constraint on entered_date uses
CURRENT_TIMESTAMP, sp_helpconstraint shows it as GETDATE, which is the
underlying function. Either expression is valid, and they are equivalent in the CHECK
constraint. The VALID_ENTERED_BY constraint ensures that the entered_by
column can be set only to the currently connected user's ID, and it ensures that users
can't update their own records.

• A constraint defined as a separate table element can call a system function without
referencing a column in the table. In the example preceding this list, the
END_OF_MONTH CHECK constraint calls two date functions, DATEPART and
GETDATE, to ensure that updates can't be made after day 27 of the month (which is
when the business's payroll is assumed to be processed). The constraint never
references a column in the table. Similarly, a CHECK constraint might call the
APP_NAME function to ensure that updates can be made only from an application of
a certain name, instead of from an ad hoc tool such as SQL Query Analyzer.

As with FOREIGN KEY constraints, you can add or drop CHECK constraints by using ALTER
TABLE. When adding a constraint, by default the existing data is checked for compliance; you
can override this default by using the WITH NOCHECK syntax. You can later do a dummy update
to check for any violations. The table or database owner can also temporarily disable CHECK
constraints by using NOCHECK in the ALTER TABLE statement.

Default Constraints
A default allows you to specify a constant value, NULL, or the run-time value of a system function
if no known value exists or if the column is missing in an INSERT statement. Although you could
argue that a default isn't truly a constraint (because a default doesn't enforce anything), you can
create defaults in a CREATE TABLE statement using the CONSTRAINT keyword; therefore,
Henceforth defaults will be referred to as constraints. Defaults add little overhead, and you can
use them liberally without too much concern about performance degradation.
SQL Server provides two ways of creating defaults. First, you can create a default (CREATE
DEFAULT) and then bind the default to a column (sp_bindefault). This has been the case since
the original SQL Server release. Second, you can use default constraints. These were introduced
in 1995 with SQL Server 6.0 as part of the CREATE TABLE and ALTER TABLE statements, and
they're based on the ANSI SQL standard (which includes such niceties as being able to use
system functions). Using defaults is pretty intuitive. The type of default you use is a matter of
preference; both perform the same function internally. Future enhancements are likely to be
made to the ANSI-style implementation.

RDBMS Concepts using SQL Server 2000

 79

CHECK constraint discussion, now modified to include several defaults:

CREATE TABLE employee
(
emp_id int NOT NULL PRIMARY KEY DEFAULT 1000
 CHECK (emp_id BETWEEN 0 AND 1000),

emp_name varchar(30) NULL DEFAULT NULL CONSTRAINT no_nums
 CHECK (emp_name NOT LIKE '%[0-9]%'),

mgr_id int NOT NULL DEFAULT (1) REFERENCES
 employee(emp_id),

entered_date datetime NOT NULL CHECK (entered_date >=
 CONVERT(char(10), CURRENT_TIMESTAMP, 102))
 CONSTRAINT def_today DEFAULT
 (CONVERT(char(10), GETDATE(), 102)),

entered_by int NOT NULL DEFAULT SUSER_ID()
 CHECK (entered_by IS NOT NULL),

CONSTRAINT valid_entered_by CHECK (entered_by=SUSER_ID() AND
entered_by <> emp_id),

CONSTRAINT valid_mgr CHECK (mgr_id <> emp_id OR emp_id=1),

CONSTRAINT end_of_month CHECK (DATEPART(DAY, GETDATE()) < 28)
)
GO

EXEC sp_helpconstraint employee
GO

>>>

Object Name

Employee

constraint_type constraint_name constraint_keys
--------------- -------------------------------- ---------------
CHECK on column CK__employee__emp_id__2C3393D0 ([emp_id] >= 0
emp_id [emp_id] <=

1000)
CHECK on column CK__employee__entered_by__300424B4 (((not(
entered_by [entered_by]

is null))))
DEFAULT on column def_today convert(
entered_date char(10),

getdate(),
102))

DEFAULT on column DF__employee__emp_id__35BCFE0A (1000)
emp_id

RDBMS Concepts using SQL Server 2000

 80

DEFAULT on column DF__employee__emp_name__37A5467C (null)
emp_name
DEFAULT on column DF__employee__entered_by__3D5E1FD2 (suser_id())
entered_by
DEFAULT on column DF__employee__mgr_id__398D8EEE (1)
mgr_id
CHECK on column CK__employee__entered_date__2F10007B ([entered_date]
entered_date >= getdate())
CHECK Table Level end_of_month (datepart(day,
getdate()) <
28)
FOREIGN KEY FK__employee__mgr_id__2E1BDC42 mgr_id
CHECK on column no_nums ([emp_name]
emp_name not like
'%[0-9]%')

PRIMARY KEY PK__employee__2B3F6F97 emp_id
(clustered)

CHECK Table Level valid_entered_by (

[entered_by] =
suser_id(null)
and
[entered_by]
<> [emp_id])

CHECK Table Level valid_mgr ([mgr_id] <>

[emp_id] or
[emp_id] = 1)

Table is referenced by

pubs.dbo.employee: FK__employee__mgr_id__2E1BDC42

The preceding code demonstrates the following about defaults:

A default constraint is always a single-column constraint because it pertains only to one column
and can be defined only along with the column definition; you cannot define a default constraint
as a separate table element. You can use the abbreviated syntax that omits the keyword
CONSTRAINT and the specified name, letting SQL Server generate the name, or you can specify
the name by using the more verbose CONSTRAINT name DEFAULT syntax.

• A default value can clash with a CHECK constraint. This problem appears only at
runtime, not when you create the table or when you add the default using ALTER TABLE.
For example, a column with a default of 0 and a CHECK constraint that states that the
value must be greater than 0 can never insert or update the default value.

• Although you can assign a default to a column that has a PRIMARY KEY or a UNIQUE
constraint, it doesn't make much sense to do so. Such columns must have unique values,
so only one row could exist with the default value in that column. The preceding example
sets a DEFAULT on a primary key column for illustration, but in general, this practice is
unwise.

RDBMS Concepts using SQL Server 2000

 81

• You can write a constant value within parentheses, as in DEFAULT (1), or without them,
as in DEFAULT 1. A character or date constant must be enclosed in either single or
double quotation marks.

• One tricky concept is knowing when a NULL is inserted into a column as opposed to a
default value. A column declared NOT NULL with a default defined uses the default only
under one of the following conditions:

o The INSERT statement specifies its column list and omits the column with the
default.

The INSERT statement specifies the keyword DEFAULT in the values list (whether the column is
explicitly specified as part of the column list or implicitly specified in the values list and the column
list is omitted, meaning "All columns in the order in which they were created"). If the values list
explicitly specifies NULL, an error is raised and the statement fails; the default value isn't used. If
the INSERT statement omits the column entirely, the default is used and no error occurs. (This
behavior is in accordance with ANSI SQL.) The keyword DEFAULT can be used in the values list,
and this is the only way the default value will be used if a NOT NULL column is specified in the
column list of an INSERT statement (either, as in the following example, by omitting the column
list—which means all columns—or by explicitly including the NOT NULL column in the columns
list).

INSERT EMPLOYEE VALUES (1, 'The Big Guy', 1, DEFAULT, DEFAULT)

Table 6-10 summarizes the behavior of INSERT statements based on whether a column is
declared NULL or NOT NULL and whether it has a default specified. It shows the result for the
column for three cases:

Omitting the column entirely (no entry)
Having the INSERT statement use NULL in the values list
Specifying the column and using DEFAULT in the values list

Table 2 INSERT behavior with defaults.

Declaring a default on a column that has the IDENTITY property doesn't make sense, and SQL
Server will raise an error if you try it. The IDENTITY property acts as a default for the column. But
the DEFAULT keyword cannot be used as a placeholder for an identity column in the values list
of an INSERT statement. You can use a special form of INSERT statement if a table has a
default value for every column (an identity column does meet this criteria) or allows NULL. The
following statement uses the DEFAULT VALUES clause instead of a column list and values list:
INSERT employee DEFAULT VALUES

You can generate some test data by putting the IDENTITY property on a primary key column and
declaring default values for all other columns and then repeatedly issuing an INSERT statement
of this form within a Transact-SQL loop.

RDBMS Concepts using SQL Server 2000

 82

More About Constraints
This section offers some advice on working with constraints.

Constraint Names and System Catalog Entries
Earlier in this chapter, you learned about the cryptic-looking constraint names that SQL Server
generates. Consider again the following simple CREATE TABLE statement:

CREATE TABLE customer
(
cust_id int IDENTITY NOT NULL PRIMARY KEY,
cust_name varchar(30) NOT NULL
)

The constraint produced from this simple statement bears the nonintuitive name
PK__customer__68E79C55. The advantage of explicitly naming your constraint rather than using
the system-generated name is greater clarity. The constraint name is used in the error message
or any constraint violation, so creating a name such as CUSTOMER_PK probably makes more
sense to users than a name such as PK__customer__cust_i__0677FF3C. You should choose
your own constraint names if such error messages are visible to your users. The first two
characters (PK) show the constraint type—PK for PRIMARY KEY, UQ for UNIQUE, FK for
FOREIGN KEY, and DF for DEFAULT. Next are two underscore characters, which are used as a
separator. (You might be tempted to use one underscore to conserve characters and to avoid
having to truncate as much. However, it's common to use a single underscore in a table name or
a column name, both of which appear in the constraint name. Using two underscore characters
distinguishes the kind of a name it is and where the separation occurs.)
Next comes the table name (customer), which is limited to 116 characters for a PRIMARY KEY
constraint and slightly fewer characters for all other constraint names. For all constraints other
than PRIMARY KEY, there are then two more underscore characters for separation followed by
the next sequence of characters, which is the column name. The column name is truncated to
five characters if necessary. If the column name has fewer than five characters in it, the length of
the table name portion can be slightly longer.
And finally, the hexadecimal representation of the object ID for the constraint (68E79C55) comes
after another separator. (This value is used as the id column of the sysobjects system table and
the constid column of the sysconstraints system table.) Object names are limited to 128
characters in SQL Server 2000, so the total length of all portions of the constraint name must also
be less than or equal to 128.

The hexadecimal value 0x68E79C55 is equal to the decimal value 1760009301, which is the
value of constid in sysconstraints and of id in sysobjects.

These sample queries of system tables show the following:

A constraint is an object. A constraint has an entry in the sysobjects table in the xtype column of
C, D, F, PK, or UQ for CHECK, DEFAULT, FOREIGN KEY, PRIMARY KEY, and UNIQUE,
respectively.
Sysconstraints relates to sysobjects. The sysconstraints table is really just a view of the
sysobjects system table. The constid column in the view is the object ID of the constraint, and the
id column of sysconstraints is the object ID of the base table on which the constraint is declared.
If the constraint is a column-level CHECK, FOREIGN KEY, or DEFAULT constraint,
sysconstraints.colid has the column ID of the column. This colid in sysconstraints is related to the
colid of syscolumns for the base table represented by id. A table-level constraint or any
PRIMARY KEY/UNIQUE constraint (even if column level) always has 0 in this column.

RDBMS Concepts using SQL Server 2000

 83

To see the names and order of the columns in a PRIMARY KEY or UNIQUE constraint, you can
query the sysindexes and syscolumns tables for the index being used to enforce the constraint.
The name of the constraint and that of the index enforcing the constraint are the same, whether
the name was user-specified or system-generated. The columns in the index key are somewhat
cryptically encoded in the keys1 and keys2 fields of sysindexes. The easiest way to decode these
values is to simply use the sp_helpindex system stored procedure; alternatively, you can use the
code of that procedure as a template if you need to decode them in your own procedure.

Decoding the status Field
The status field of the sysconstraints view is a pseudo-bit-mask field packed with information. We
could also call it a bitmap, because each bit has a particular meaning. If you know how to crack
this column, you can essentially write your own sp_helpconstraint-like procedure. Note that the
documentation is incomplete regarding the values of this column. One way to start decoding this
column is to look at the definition of the sysconstraints view using the sp_helptext system
procedure. The lowest four bits, obtained by AND'ing status with 0xF (status & 0xF), contain the
constraint type. A value of 1 is PRIMARY KEY, 2 is UNIQUE, 3 is FOREIGN KEY, 4 is CHECK,
and 5 is DEFAULT. The fifth bit is on (status & 0x10 <> 0) when the constraint is a nonkey
constraint on a single column. The sixth bit is on (status & 0x20 <> 0) when the constraint is on
multiple columns or is a PRIMARY KEY or UNIQUE constraint.

Some of the documentation classifies constraints as either table-level or column-level. This
implies that any constraint defined on the line with a column is a column-level constraint and any
constraint defined as a separate line in the table or added to the table with the ALTER TABLE
command is a table-level constraint. However, this distinction does not hold true when you look at
sysconstraints. Although it is further documented that the fifth bit is for a column-level constraint,
you can see for yourself that this bit is on for any single column constraint except PRIMARY KEY
and UNIQUE and that the sixth bit, which is documented as indicating a table-level constraint, is
on for all multi-column constraints, as well as PRIMARY KEY and UNIQUE constraints.
Some of the higher bits are used for internal status purposes, such as noting whether a
nonclustered index is being rebuilt, and for other internal states. Table 6-11 shows some of the
other bit-mask values you might be interested in:

Table 3. Bitmap values in the status column of sysconstraints.

Bitmap Value Description

16

The constraint is a "column-level" constraint, which means that it's a single

column
constraint and isn't enforcing entity integrity

32

The constraint is a "table-level" constraint, which means that it's either a
multi-
column constraint, a PRIMARY KEY, or a UNIQUE constraint

512
The constraint is enforced by a clustered index.

1024 The constraint is enforced by a nonclustered index.
16384 The constraint has been disabled.

32767 The constraint has been enabled.
131072

SQL Server has generated a name for the constraint

RDBMS Concepts using SQL Server 2000

 84

Using this information, and not worrying about the higher bits used for internal status, you could
use the following query to show constraint information for the employee table:

SELECT
OBJECT_NAME(constid) 'Constraint Name',
 constid 'Constraint ID',
 CASE (status & 0xF)
 WHEN 1 THEN 'Primary Key'
 WHEN 2 THEN 'Unique'
 WHEN 3 THEN 'Foreign Key'
 WHEN 4 THEN 'Check'
 WHEN 5 THEN 'Default'
 ELSE 'Undefined'
 END 'Constraint Type',
 CASE (status & 0x30)
 WHEN 0x10 THEN 'Column'
 WHEN 0x20 THEN 'Table'
 ELSE 'NA'
 END 'Level'
FROM sysconstraints
WHERE id=OBJECT_ID('employee')

>>>

RDBMS Concepts and MS-SQL Server 2000
SQL Server Data Types

Constraint Name Constraint Constraint
 ID Type Level
-------------------------------------- ----------- ------------ ------
PK__employee__49C3F6B7
Primary Key

1237579447

 Table

DF__employee__emp_id__4AB81AF0 1253579504 Default Column
CK__employee__emp_id__4BAC3F29 1269579561 Check Column
DF__employee__emp_name__4CA06362
1285579618

 Default Column

no_nums 1301579675 Check Column
DF__employee__mgr_id__4E88ABD4 1317579732 Default Column
FK__employee__mgr_id__4F7CD00D
Foreign Key

1333579789

 Column

CK__employee__entered_date__5070F446
1349579846

 Check Column

def_today 1365579903 Default Column
DF__employee__entered_by__52593CB8 1381579960 Default Column
CK__employee__entered_by__534D60F1 1397580017 Check Column
valid_entered_by 1413580074 Check Table
valid_mgr 1429580131 Check Table
end_of_month 1445580188 Check Table

RDBMS Concepts using SQL Server 2000

 85

Constraint Failures in Transactions and Multiple-Row Data
Modifications

Many bugs occur in application code because the developers don't understand how failure of a
constraint affects a multiple-statement transaction declared by the user. The biggest
misconception is that any error, such as a constraint failure, automatically aborts and rolls back
the entire transaction. On the contrary, after an error is raised, it's up to the transaction to either
proceed and ultimately commit or to roll back. This feature provides the developer with the
flexibility to decide how to handle errors. (The semantics are also in accordance with the ANSI
SQL-92 standard for COMMIT behavior).

A simple transaction that tries to insert three rows of data. The second row contains a duplicate
key and violates the PRIMARY KEY constraint. Some developers believe that this example
wouldn't insert any rows because of the error that occurs in one of the statements; they think that
this error will cause the entire transaction to be aborted. However, this doesn't happen—instead,
the statement inserts two rows and then commits that change. Although the second INSERT fails,
the third INSERT is processed because no error checking has occurred between the statements,
and then the transaction does a COMMIT. Because no instructions were provided to take some
other action after the error other than to proceed, SQL Server does just that. It adds the first and
third INSERT statements to the table and ignores the second statement.

IF EXISTS (SELECT * FROM sysobjects WHERE name='show_error' AND
 type='U')
 DROP TABLE show_error
GO

CREATE TABLE show_error
(
col1 smallint NOT NULL PRIMARY KEY,
col2 smallint NOT NULL
)
GO

BEGIN TRANSACTION

INSERT show_error VALUES (1, 1)
INSERT show_error VALUES (1, 2)
INSERT show_error VALUES (2, 2)

COMMIT TRANSACTION
GO

SELECT * FROM show_error
GO

Server: Msg 2627, Level 14, State 1, Line 1
Violation of PRIMARY KEY constraint 'PK__show_error__6EF57B66'.
 Cannot insert duplicate key in object 'show_error'.

The statement has been terminated.

col1 col2
---- ----
1 1

RDBMS Concepts using SQL Server 2000

 86

2 2
Here's a modified version of the transaction. This example does some simple error checking
using the system function @@ERROR and rolls back the transaction if any statement results in
an error. In this example, no rows are inserted because the transaction is rolled back.

IF EXISTS (SELECT * FROM sysobjects WHERE name='show_error'
 AND type='U')
 DROP TABLE show_error
GO

CREATE TABLE show_error
(
col1 smallint NOT NULL PRIMARY KEY,
col2 smallint NOT NULL
)
GO

BEGIN TRANSACTION
INSERT show_error VALUES (1, 1)
IF @@ERROR <> 0 GOTO TRAN_ABORT
INSERT show_error VALUES (1, 2)
if @@ERROR <> 0 GOTO TRAN_ABORT
INSERT show_error VALUES (2, 2)
if @@ERROR <> 0 GOTO TRAN_ABORT
COMMIT TRANSACTION
GOTO FINISH

TRAN_ABORT:
ROLLBACK TRANSACTION

FINISH:

GO
SELECT * FROM show_error
GO

Server: Msg 2627, Level 14, State 1, Line 1
Violation of PRIMARY KEY constraint 'PK__show_error__70DDC3D8'.
 Cannot insert duplicate key in object 'show_error'.

The statement has been terminated.

col1 col2
---- ----
(0 row(s) affected)

Because many developers have handled transaction errors incorrectly and because it can be
tedious to add an error check after every command, SQL Server includes a SET statement that
aborts a transaction if it encounters any error during the transaction. (Transact-SQL has no
WHENEVER statement, although such a feature would be useful for situations like this.) Using
SET XACT_ABORT ON causes the entire transaction to be aborted and rolled back if any error is
encountered. The default setting is OFF, which is consistent with ANSI-standard behavior. By
setting the option XACT_ABORT ON, we can now rerun the example that does no error checking,
and no rows will be inserted:

IF EXISTS (SELECT * FROM sysobjects WHERE name='show_error'

RDBMS Concepts using SQL Server 2000

 87

 AND type='U')
 DROP TABLE show_error
GO

CREATE TABLE show_error
(
col1 smallint NOT NULL PRIMARY KEY,
col2 smallint NOT NULL
)
GO

SET XACT_ABORT ON
BEGIN TRANSACTION

INSERT show_error VALUES (1, 1)
INSERT show_error VALUES (1, 2)
INSERT show_error VALUES (2, 2)

COMMIT TRANSACTION
GO

SELECT * FROM show_error
GO

Server: Msg 2627, Level 14, State 1, Line 1
Violation of PRIMARY KEY constraint 'PK__show_error__72C60C4A'.
 Cannot insert duplicate key in object 'show_error'.

col1 col2
---- ----

(0 row(s) affected)

A final comment about constraint errors and transactions: a single data modification statement
(such as an UPDATE statement) that affects multiple rows is automatically an atomic operation,
even if it's not part of an explicit transaction. If such an UPDATE statement finds 100 rows that
meet the criteria of the WHERE clause but one row fails because of a constraint violation, no
rows will be updated.

The modification of a given row will fail if any constraint is violated or if a trigger aborts the
operation. As soon as a failure in a constraint occurs, the operation is aborted, subsequent
checks for that row aren't performed, and no trigger fires for the row. Hence, the order of these
checks can be important, as the following list shows

1. Defaults are applied as appropriate.
2. NOT NULL violations are raised.
3. CHECK constraints are evaluated.
4. FOREIGN KEY checks of referencing tables are applied.
5. FOREIGN KEY checks of referenced tables are applied.
6. UNIQUE/PRIMARY KEY is checked for correctness.
7. Triggers

RDBMS Concepts using SQL Server 2000

 88

Joins

You gain much more power when you join tables, which typically results in combining columns of
matching rows to project and return a virtual table. Usually, joins are based on the primary and
foreign keys of the tables involved, although the tables aren't required to explicitly declare keys.
The pubs database contains a table of authors (authors) and a table of book titles (titles). An
obvious query would be, "Show me the titles that each author has written and sort the results
alphabetically by author. I'm interested only in authors who live outside California." Neither the
authors table nor the titles table alone has all this information. Furthermore, a many-to-many
relationship exists between authors and titles; an author might have written several books, and a
book might have been written by multiple authors. So an intermediate table, titleauthor, exists
expressly to associate authors and titles, and this table is necessary to correctly join the
information from authors and titles. To join these tables, you must include all three tables in the
FROM clause of the SELECT statement, specifying that the columns that make up the keys have
the same values:

SELECT
'Author'=RTRIM(au_lname) + ', ' + au_fname,
'Title'=title
FROM authors AS A JOIN titleauthor AS TA
 ON A.au_id=TA.au_id -- JOIN CONDITION
JOIN titles AS T
 ON T.title_id=TA.title_id -- JOIN CONDITION
WHERE A.state <> 'CA'
ORDER BY 1

Here's the output:

Author Title
------------------------ ----------------------------------
Blotchet-Halls, Reginald Fifty Years in Buckingham Palace
 Kitchens
DeFrance, Michel The Gourmet Microwave
del Castillo, Innes Silicon Valley Gastronomic Treats
Panteley, Sylvia Onions, Leeks, and Garlic: Cooking
 Secrets of the Mediterranean
Ringer, Albert Is Anger the Enemy?
Ringer, Albert Life Without Fear
Ringer, Anne The Gourmet Microwave
Ringer, Anne Is Anger the Enemy?

Before discussing join operations further, let's study the preceding example. The author's last and
first names have been concatenated into one field. The RTRIM (right trim) function is used to strip
off any trailing whitespace from the au_lname column. Then we add a comma and a space and
concatenate on the au_fname column. This column is then aliased as simply Author and is
returned to the calling application as a single column

The RTRIM function isn't needed for this example. Because the column is of type varchar, trailing
blanks won't be present. RTRIM is shown for illustration purposes only

Another important point is that the ORDER BY 1 clause indicates that the results should be
sorted by the first column in the result set. It's more typical to use the column name rather than its
number, but using the column number provides a convenient shorthand when the column is an
expression and hence isn't present in the base table or view (virtual table) being queried.

RDBMS Concepts using SQL Server 2000

 89

Instead of using ORDER BY 1, you can repeat the same expression used in the select list and
specify ORDER BY RTRIM(au_lname) + ', ' + au_fname instead. Alternatively, SQL
server
provides a feature supported by the ANSI SQL-99 standard that allows sorting by columns not
included in the select list. So even though you don't individually select the columns au_lname or,
au_fname, you can nonetheless choose to order the query based on these columns by specifying
columns ORDER BY au_lname, au_fname. We'll see this in the next example. Notice also that
the query contains comments (-- JOIN CONDITION). A double hyphen (--) signifies that the rest
of the line is a comment (similar to // in C++). You can also use the C-style /* comment block */,
which allows blocks of comment lines.

Comments can be nested, but you should generally try to avoid this. You can easily introduce a
bug by not realizing that a comment is nested within another comment and misreading the code.

Now let's examine the join in the example above. The ON clauses specify how the tables relate
and set the join criteria, stating that au_id in authors must equal au_id in titleauthor, and title_id in
titles must equal title_id in titleauthor. This type of join is referred to as an equijoin, and it's the
most common type of join operation. To remove ambiguity, you must qualify the columns. You
can do this by specifying the columns in the form table.column, as in authors.au_id =
titleauthor.au_id. The more compact and common way to do this, however, is by specifying a
table alias in the FROM clause, as was done in this example. By following the titles table with the
word AS and the letter T, the titles table will be referred to as T anywhere else in the query where
the table is referenced. Typically, such an alias consists of one or two letters, although it can be
much longer (following the same rules as identifiers).

After a table is aliased, it must be referred to by the alias, so now we can't refer to authors.au_id
because the authors table has been aliased as A. We must use A.au_id. Note also that the state
column of authors is referred to as A.state. The other two tables don't contain a state column, so
qualifying it with the A. prefix isn't necessary; however, doing so makes the query more
readable—and less prone to subsequent bugs.

The join is accomplished using the ANSI JOIN SQL syntax, which was introduced in SQL Server
version 6.5. Many examples and applications continue to use an old-style JOIN syntax, which is
shown below. (The term "old-style JOIN" is actually used by the SQL-92 specification.) The ANSI
JOIN syntax is based on ANSI SQL-92. The main differences between the two types of join
formulations are

• The ANSI JOIN actually uses the keyword JOIN.
• The ANSI JOIN segregates join conditions from search conditions.

The ANSI JOIN syntax specifies the JOIN conditions in the ON clauses (one for each pair of
tables), and the search conditions are specified in the WHERE clause—for example, WHERE
state <> 'CA'. Although slightly more verbose, the explicit JOIN syntax is more readable. There's
no difference in performance; behind the scenes, the operations are the same. Here's how you
can respecify the query using the old-style JOIN syntax:

SELECT

'Author'=RTRIM(au_lname) + ', ' + au_fname,
'Title'=title
FROM authors A, titles T, titleauthor TA
WHERE
A.au_id=TA.au_id AND T.title_id=TA.title_id -- JOIN CONDITIONS
AND A.state <> 'CA'
ORDER BY 1

RDBMS Concepts using SQL Server 2000

 90

This query produces the same output and the same execution plan as the previous query.

One of the most common errors that new SQL users make when using the old-style JOIN syntax
is not specifying the join condition. Omitting the WHERE clause is still a valid SQL request and
causes a result set to be returned. However, that result set is likely not what the user wanted. In
the query above, omitting the WHERE clause would return the Cartesian product of the three
tables: it would generate every possible combination of rows between them. Although in a few
unusual cases you might want all permutations, usually this is just a user error. The number of
rows returned can be huge and typically doesn't represent anything meaningful.

The Cartesian product of the three small tables here (authors, titles, and titleauthor each have
less than 26 rows) generates 10,350 rows of (probably) meaningless output.

Using the ANSI JOIN syntax, it's impossible to accidentally return a Cartesian product of the
tables—and that's one reason to use ANSI JOINs almost exclusively. The ANSI JOIN syntax
requires an ON clause for specifying how the tables are related. In cases where you actually do
want a Cartesian product, the ANSI JOIN syntax allows you to use a CROSS JOIN operator,
which we'll examine in more detail later.

You might want to try translating some of them into queries using old-style JOIN syntax, because
you should be able to recognize both forms. If you have to read SQL code written earlier than
version 7, you're bound to come across queries using this older syntax.

The most common form of join is an equijoin, which means that the condition linking the two
tables is based on equality. An equijoin is sometimes referred to as aninner join to differentiate it
from an outer join, which I'l discuss shortly. Strictly speaking, an inner join isn't quite the same as
an equijoin; an inner join can use an operator such as less than (<) or greater than (>). So all
equijoins are inner joins but not all inner joins are equijoins. To make this distinction clear in your
code, you can use the INNER JOIN syntax in place of JOIN

FROM authors AS A INNER JOIN titleauthor TA ON A.au_id=TA.au_id

Other than making the syntax more explicit, there's no difference in the semantics or the
execution. By convention, the modifier INNER generally isn't used.

ANSI SQL-92 also specifies the natural join operation, in which you don't have to specify the
ables' column names. By specifying syntax such as FROM authors NATURAL JOIN titleauthor,

the system automatically knows how to join the tables without your specifying the column names
to match. SQL Server doesn't yet support this feature.

The ANSI specification calls for the natural join to be resolved based on identical column names
between the tables. Perhaps a better way to do this would be based on a declared primary key-
foreign key relationship, if it exists. Admittedly, declared key relationships have issues, too,
because there's no restriction that only one such foreign key relationship be set up. Also, if the
natural join were limited to only such relationships, all joins would have to be known in advance—
as in the old CODASYL days.

The FROM clause in this example shows an alternative way to specify a table alias—by omitting
the AS. The use of AS preceding the table alias, as used in the previous example, conforms to
ANSI SQL-92. From SQL Server's standpoint, the two methods are equivalent (stating FROM
authors AS A is identical to stating FROM authors A). Commonly, the AS formulation is used in
ANSI SQL-92 join operations and the formulation that omits AS is used with the old-style join
formulation. However, you can use either formulation—it's strictly a matter of preference.

RDBMS Concepts using SQL Server 2000

 91

Outer Joins

Inner joins return only rows from the respective tables that meet the conditions specified in the
ON clause. In other words, if a row in the first table doesn't match any rows in the second table,
that row isn't returned in the result set. In contrast, outer joins preserve some or all of the
unmatched rows. To illustrate how easily subtle semantic errors can be introduced, let's refer
back to the previous two query examples, in which we want to see the titles written by all authors
not living in California. The result omits two writers who do not, in fact, live in California. Are the
queries wrong? No! They perform exactly as written—we didn't specify that authors who currently
have no titles in the database should be included. The results of the query are as we requested.
In fact, the authors table has four rows that have no related row in the titleauthor table, which
means these "authors" actually haven't written any books. Two of these authors don't contain the
value CA in the state column, as the following result set shows.

au_id Author state
----------- ------------------- -----
341-22-1782 Smith, Meander KS
527-72-3246 Greene, Morningstar TN
724-08-9931 Stringer, Dirk CA
893-72-1158 McBadden, Heather CA

The titles table has one row for which there is no author in our database, as shown here. (Later,
you'll see the types of queries used to produce these two result sets.)

title_id title
-------- ----------------------------------
MC3026 The Psychology of Computer Cooking

To find out authors who live outside of California," the query would use an outer join so that
authors with no matching titles would be selected:

SELECT
'Author'=RTRIM(au_lname) + ', ' + au_fname,
'Title'=title
FROM
 (-- JOIN CONDITIONS
-- FIRST join authors and titleauthor
 (authors AS A
 FULL OUTER JOIN titleauthor AS TA ON A.au_id=TA.au_id
)
 -- The result of the previous join is then joined to titles
 FULL OUTER JOIN titles AS T ON TA.title_id=T.title_id
)
WHERE
state <> 'CA' OR state IS NULL
ORDER BY 1

Here's the output:

Here's the output:

Author Title
------------------------ ----------------------------------
NULL The Psychology of Computer Cooking
Blotchet-Halls, Reginald Fifty Years in Buckingham Palace

RDBMS Concepts using SQL Server 2000

 92

 Kitchens
DeFrance, Michel The Gourmet Microwave
del Castillo, Innes Silicon Valley Gastronomic Treats
Greene, Morningstar NULL
Panteley, Sylvia Onions, Leeks, and Garlic: Cooking
 Secrets of the Mediterranean
Ringer, Albert Is Anger the Enemy?
Ringer, Albert Life Without Fear
Ringer, Anne The Gourmet Microwave
Ringer, Anne Is Anger the Enemy?
Smith, Meander NULL

The query demonstrates a full outer join. Rows in the authors and titles tables that don't have a
corresponding entry in titleauthor are still presented, but with a NULL entry for the title or author
column. (The data from the authors table is requested as a comma between the last names and
the first names. Because we have the option CONCAT_NULL_YIELDS_NULL set to ON, the
result is NULL for the author column. If we didn't have that option set to ON, SQL Server would
have returned the single comma between the nonexistent last and first names.) A full outer join
preserves nonmatching rows from both the lefthand and righthand tables. In the example above,
the authors table is presented first, so it is the lefthand table when joining to titleauthor. The result
of that join is the lefthand table when joining to titles.

ANSI Outer Joins

The outer join formulations here are standard ANSI SQL-92. However, this is one area in which
there aren't enough good examples. Using OUTER JOIN with more than two tables introduces
some obscure issues; in fact, few products provide support for full outer joins.

You can generate missing rows from one or more of the tables by using either a left outer join or
a right outer join. So if we want to preserve all authors and generate a row for all authors who
have a missing title, but we don't want to preserve titles that have no author, we can reformulate
the query using LEFT OUTER JOIN, as shown below. This join preserves entries only on the
lefthand side of the join. Note that the left outer join of the authors and titleauthor
columns
generates two such rows (for Greene and Smith). The result of the join is the lefthand side of the
join to titles; therefore, the LEFT OUTER JOIN must be specified again to preserve these rows
with no matching titles rows.

SELECT
'Author'=RTRIM(au_lname) + ', ' + au_fname,
'Title'=title
FROM
(
(authors as A
LEFT OUTER JOIN titleauthor AS TA ON A.au_id=TA.au_id
)
LEFT OUTER JOIN titles AS T ON TA.title_id=T.title_id
)
Here's the output:

Author Title
------------------------ ----------------------------------
Blotchet-Halls, Reginald Fifty Years in Buckingham Palace

RDBMS Concepts using SQL Server 2000

 93

Kitchens
DeFrance, Michel The Gourmet Microwave
del Castillo, Innes Silicon Valley Gastronomic Treats
Greene, Morningstar NULL
Panteley, Sylvia Onions, Leeks, and Garlic: Cooking

Secrets of the Mediterranean
Ringer, Albert Is Anger the Enemy?
Ringer, Albert Life Without Fear
Ringer, Anne The Gourmet Microwave
Ringer, Anne Is Anger the Enemy?
Smith, Meander NULL

The query produces the same rows as the full outer join, except for the row for The Psychology of
Computer Cooking. Because we specified only LEFT OUTER JOIN, there was no request to
preserve titles (righthand) rows with no matching rows in the result of the join of authors and
titleauthor.
You must use care with OUTER JOIN operations because the order in which tables are joined
affects which rows are preserved and which aren't. In an inner join, the symmetric property holds
(if A equals B, then B equals A) and no difference results, whether something is on the left or the
right side of the equation, and no difference results in the order in which joins are specified. This
is definitely not the case for OUTER JOIN operations.

Consider the following two queries and their results:

QUERY 1

SELECT
'Author'= RTRIM(au_lname) + ', ' + au_fname,
'Title'=title
FROM (titleauthor AS TA
RIGHT OUTER JOIN authors AS A ON (A.au_id=TA.au_id))

FULL OUTER JOIN titles AS T ON (TA.title_id=T.title_id)
WHERE
A.state <> 'CA' or A.state is NULL
ORDER BY 1

Author Title
------------------------ ----------------------------------
NULL The Psychology of Computer Cooking
Blotchet-Halls, Reginald Fifty Years in Buckingham Palace
 Kitchens
DeFrance, Michel The Gourmet Microwave
del Castillo, Innes Silicon Valley Gastronomic Treats
Greene, Morningstar NULL
Panteley, Sylvia Onions, Leeks, and Garlic: Cooking
 Secrets of the Mediterranean
Ringer, Albert Is Anger the Enemy?
Ringer, Albert Life Without Fear
Ringer, Anne The Gourmet Microwave
Ringer, Anne Is Anger the Enemy?
Smith, Meander NULL

This query produces results semantically equivalent to the previous FULL OUTER JOIN
formulation, although we've switched the order of the authors and titleauthor tables. This query

RDBMS Concepts using SQL Server 2000

 94

and the previous one preserve both authors with no matching titles and titles with no matching
authors. This might not be obvious because RIGHT OUTER JOIN is clearly different than FULL
OUTER JOIN. However, in this case we know it's true because a FOREIGN KEY constraint
exists on the titleauthor table to ensure that there can never be a row in the titleauthor table that
doesn't match a row in the authors table, and the FOREIGN KEY columns in titleauthor are
defined to not allow NULL values. So we can be confident that the titleauthor RIGHT OUTER
JOIN to authors can't produce any fewer rows than would a FULL OUTER JOIN.

But if we modify the query ever so slightly by changing the join order again, look what happens:

QUERY 2

SELECT
'Author'=rtrim(au_lname) + ', ' + au_fname,
'Title'=title
FROM (titleauthor AS TA
FULL OUTER JOIN titles AS T ON TA.title_id=T.title_id)
RIGHT OUTER JOIN authors AS A ON A.au_id=TA.au_id
WHERE
A.state <> 'CA' or A.state is NULL
ORDER BY 1

Author Title
------------------------ ----------------------------------
Blotchet-Halls, Reginald Fifty Years in Buckingham Palace
 Kitchens
DeFrance, Michel The Gourmet Microwave
del Castillo, Innes Silicon Valley Gastronomic Treats
Greene, Morningstar NULL
Panteley, Sylvia Onions, Leeks, and Garlic: Cooking
 Secrets of the Mediterranean
Ringer, Albert Is Anger the Enemy?
Ringer, Albert Life Without Fear
Ringer, Anne The Gourmet Microwave
Ringer, Anne Is Anger the Enemy?
Smith, Meander NULL

At a glance, Query 2 looks equivalent to Query 1, although the join order is slightly different. But
notice how the results differ. Query 2 didn't achieve the goal of preserving the titles rows without
corresponding authors, and the row for The Psychology of Computer Cooking is again excluded.
This row would have been preserved in the first join operation:

FULL OUTER JOIN titles AS T ON TA.title_id=T.title_id

But then the row is discarded because the second join operation preserves only authors without
matching titles:

RIGHT OUTER JOIN authors AS A ON A.au_id=TA.au_id

Because the title row for The Psychology of Computer Cooking is on the lefthand side of this join
operation and only a RIGHT OUTER JOIN operation is specified, this title is discarded.

Just as INNER is an optional modifier, so is OUTER. Hence, LEFT OUTER JOIN can be
equivalently specified as LEFT JOIN, and FULL OUTER JOIN can be equivalently expressed as

RDBMS Concepts using SQL Server 2000

 95

FULL JOIN. However, although INNER is seldom used by convention and is usually only implied,
OUTER is almost always used by convention when specifying any type of outer join.

Because join order matters, use the parentheses and indentation carefully when specifying
OUTER JOIN operations. Indentation, of course, is always optional, and use of parentheses is
often optional. But as this example shows, it's easy to make mistakes that result in your queries
returning the wrong answers. As is true with almost all programming, simply getting into the habit
of using comments, parentheses, and indentation often results in such bugs being noticed and
fixed by a developer or database administrator before they make their way into your applications.

The Obsolete *= OUTER JOIN Operator

Prior to version 6.5, SQL Server had limited outer-join support in the form of the special operators
= and =. Many people assume that the LEFT OUTER JOIN syntax is simply a synonym for *=,
but this isn't the case. LEFT OUTER JOIN is semantically different from and superior to *=.

For inner joins, the symmetric property holds, so the issues with old-style JOIN syntax don't exist.
You can use either new-style or old-style syntax with inner joins. For outer joins, you should
consider the *= operator obsolete and move to the OUTER JOIN syntax as quickly as possible—
the *= operator might be dropped entirely in future releases of SQL Server.

ANSI's OUTER JOIN syntax, which was adopted in SQL Server version 6.5, recognizes that for
outer joins, the conditions of the join must be evaluated separately from the criteria applied to the
rows that are joined. ANSI gets it right by separating the JOIN criteria from the WHERE criteria.
The old SQL Server *= and =* operators are prone to ambiguities, especially when three or more
tables, views, or subqueries are involved. Often the results aren't what you'd expect, even though
you might be able to explain them. But sometimes you simply can't get the result you want. These
aren't implementation bugs; more accurately, these are inherent limitations in trying to apply the
outer-join criteria in the WHERE clause.

Who's Writing the Queries?

If you expect end users to understand the semantics of outer joins or deal correctly with NULL,
you might as well just give them a random data generator. These concepts are tricky, and it's
your job to insulate your users from them. Later in this chapter, you'll see how you can use views
to accomplish this.

When *= was introduced, no ANSI specification existed for OUTER JOIN or even for INNER
JOIN. Just the old-style join existed, with operators such as =* in the WHERE clause. So the
designers quite reasonably tried to fit an outer-join operator into the WHERE clause, which was
the only place where joins were ever stated. However, efforts to resolve this situation helped spur
the ANSI SQL committee's specification of proper OUTER JOIN syntax and semantics.
Implementing outer joins correctly is difficult, and SQL Server is one of the few mainstream
products that has done so.

To illustrate the semantic differences and problems with the old *= syntax, a series of examples
will be discussed using both new and old outer-join syntax. The following is essentially the same
outer-join query shown earlier, but this one returns only a count. It correctly finds the 11 rows,
preserving both authors with no titles and titles with no authors.

-- New style OUTER JOIN correctly finds 11 rows
SELECT COUNT(*)
FROM

RDBMS Concepts using SQL Server 2000

 96

 (
 -- FIRST join authors and titleauthor
 (authors AS A
 LEFT OUTER JOIN titleauthor AS TA ON A.au_id=TA.au_id
)

 -- The result of the previous join is then joined to titles
 FULL OUTER JOIN titles AS T ON TA.title_id=T.title_id
)
WHERE
state <> 'CA' OR state IS NULL

There's really no way to write this query—which does a full outer join—using the old syntax,
because the old syntax simply isn't expressive enough. Here's what looks to be a reasonable
try—but it generates several rows that you wouldn't expect:

-- Attempt with old-style join. Really no way to do FULL OUTER
-- JOIN. This query finds 144 rows--WRONG!!
SELECT COUNT(*)
FROM
 authors A, titleauthor TA, titles T
WHERE
A.au_id *= TA.au_id
AND
TA.title_id =* T.title_id
AND
(state <> 'CA' OR state IS NULL)

Now let's examine some issues with the old-style outer join using a simple example of only two
tables, Customers and Orders:

CREATE TABLE Customers

(
Cust_ID int PRIMARY KEY,
Cust_Name char(20)
)

CREATE TABLE Orders
(
OrderID int PRIMARY KEY,
Cust_ID int REFERENCES Customers(Cust_ID)
)
GO

INSERT Customers VALUES (1, 'Cust 1')
INSERT Customers VALUES (2, 'Cust 2')
INSERT Customers VALUES (3, 'Cust 3')
INSERT Orders VALUES (10001, 1)
INSERT Orders VALUES (20001, 2)
GO

At a glance, in the simplest case, the new-style and old-style syntax appear to work the same.
Here's the new syntax:

RDBMS Concepts using SQL Server 2000

 97

SELECT
'Customers.Cust_ID'=Customers.Cust_ID, Customers.Cust_Name,
 'Orders.Cust_ID'=Orders.Cust_ID
FROM Customers LEFT JOIN Orders
 ON Customers.Cust_ID=Orders.Cust_ID

Here's the output:

Customers.Cust_ID Cust_Name Orders.Cust_ID
----------------- --------- --------------
1 Cust 1 1
2 Cust 2 2
3 Cust 3 NULL

And here's the old-style syntax:

SELECT 'Customers.Cust_ID'=Customers.Cust_ID, Customers.Cust_Name,
 'Orders.Cust_ID'=Orders.Cust_ID
FROM Customers, Orders WHERE Customers.Cust_ID *= Orders.Cust_ID

Here's the output:

Customers.Cust_ID Cust_Name Orders.Cust_ID
----------------- --------- --------------
1 Cust 1 1
2 Cust 2 2
3 Cust 3 NULL

But as soon as you begin to add restrictions, things get tricky. What if you want to filter out Cust
2? With the new syntax it's easy, but remember not to filter out the row with NULL that the outer
join just preserved!

SELECT 'Customers.Cust_ID'=Customers.Cust_ID, Customers.Cust_Name,
'Orders.Cust_ID'=Orders.Cust_ID
FROM Customers LEFT JOIN Orders
 ON Customers.Cust_ID=Orders.Cust_ID
WHERE Orders.Cust_ID <> 2 OR Orders.Cust_ID IS NULL

Here's the output:

Customers.Cust_ID Cust_Name Orders.Cust_ID
----------------- --------- --------------
1 Cust 1 1
3 Cust 3 NULL

Now try to do this query using the old-style syntax and filter out Cust 2:

SELECT 'Customers.Cust_ID'=Customers.Cust_ID, Customers.Cust_Name,
'Orders.Cust_ID'=Orders.Cust_ID
FROM Customers, Orders
WHERE Customers.Cust_ID *= Orders.Cust_ID
AND (Orders.Cust_ID <> 2 OR Orders.Cust_ID IS NULL)

Here's the output:

RDBMS Concepts using SQL Server 2000

 98

Customers.Cust_ID Cust_Name Orders.Cust_ID
----------------- --------- --------------
1 Cust 1 1
2 Cust 2 NULL
3 Cust 3 NULL

Notice that this time, we don't get rid of Cust 2. The check for NULL occurs before the JOIN, so
the outer-join operation puts Cust 2 back. This result might be less than intuitive, but at least we
can explain and defend it. That's not always the case, as you'll see in a moment.

If you look at the preceding query, you might think that we should have filtered out
Customers.Cust_ID rather than Orders.Cust_ID. How did we miss that? Surely this query will fix
the problem:

SELECT 'Customers.Cust_ID'=Customers.Cust_ID, Customers.Cust_Name,
'Orders.Cust_ID'=Orders.Cust_ID
FROM Customers, Orders
WHERE Customers.Cust_ID *= Orders.Cust_ID
AND (Customers.Cust_ID <> 2 OR Orders.Cust_ID IS NULL)

Here's the output:

Customers.Cust_ID Cust_Name Orders.Cust_ID
----------------- --------- --------------
1 Cust 1 1
2 Cust 2 NULL
3 Cust 3 NULL

Oops! Same result. The problem here is that Orders.Cust_ID IS NULL is now being applied after
the outer join, so the row is presented again. If we're careful and understand exactly how the old
outer join is processed, we can get the results we want with the old-style syntax for this query.
We need to understand that the OR Orders.Cust_ID IS NULL puts back Cust_ID 2, so just take
that out. Here is the code:

 SELECT 'Customers.Cust_ID'=Customers.Cust_ID, Customers.Cust_Name,
 'Orders.Cust_ID'=Orders.Cust_ID
FROM Customers, Orders
WHERE Customers.Cust_ID *= Orders.Cust_ID
AND Customers.Cust_ID <> 2

Here's the output:

Customers.Cust_ID Cust_Name Orders.Cust_ID
----------------- --------- --------------
1 Cust 1 1
3 Cust 3 NULL

Finally! This is the result we want. And if you really think about it, the semantics are even
understandable (although different from the new style). Besides the issues of joins with more than
two tables and the lack of a full outer join, we also can't effectively deal with subqueries and
views (virtual tables). For example, let's try creating a view with the old-style outer join:

CREATE VIEW Cust_old_OJ AS
(SELECT Orders.Cust_ID, Customers.Cust_Name

RDBMS Concepts using SQL Server 2000

 99

FROM Customers, Orders
WHERE Customers.Cust_ID *= Orders.Cust_ID)

A simple select from the view looks fine:

SELECT * FROM Cust_old_OJ

And it gives this output:

Cust_ID Cust_Name
------- ---------
1 Cust 1
2 Cust 2
NULL Cust 3

But restricting from this view doesn't seem to make sense:

SELECT * FROM Cust_old_OJ WHERE Cust_ID <> 2
 AND Cust_ID IS NOT NULL

The output shows NULLs in the Cust_ID column, even though we tried to filter them out:

Cust_ID Cust_Name
------- ---------
1 Cust 1
NULL Cust 2
NULL Cust 3

If we expand the view to the full select and we realize that Cust_ID is Orders.Cust_ID, not
Customers.Cust_ID, perhaps we can understand why this happened. But we still can't filter out
those rows! In contrast, if we create the view with the new syntax and correct semantics, it works
exactly as expected:

CREATE VIEW Cust_new_OJ AS
(SELECT Orders.Cust_ID, Customers.Cust_Name
FROM Customers LEFT JOIN Orders
 ON Customers.Cust_ID=Orders.Cust_ID)
GO

SELECT * FROM Cust_new_OJ WHERE Cust_ID <> 2 AND Cust_ID IS NOT NULL

Here's what was expected:

Cust_ID Cust_Name
------- ---------

1 Cust 1

The new syntax performed the outer join and then applied the restrictions in the WHERE clause
to the result. In contrast, the old style applied the WHERE clause to the tables being joined and
then performed the outer join, which can reintroduce NULL rows. This is why the results often
seemed bizarre. However, if that behavior is what you want, you could apply the criteria in the
JOIN clause instead of in the WHERE clause.

The following example uses the new syntax to mimic the old behavior. The WHERE clause is
shown here simply as a placeholder to make clear that the statement Cust_ID <> 2 is in the JOIN
section, not in the WHERE section.

RDBMS Concepts using SQL Server 2000

 100

SELECT 'Customers.Cust_ID'=Customers.Cust_ID, Customers.Cust_Name,
 'Orders.Cust_ID'=Orders.Cust_ID
FROM Customers LEFT JOIN Orders
 ON Customers.Cust_ID=Orders.Cust_ID
 AND Orders.Cust_ID <> 2
WHERE 1=1

Here's the output:

Customers.Cust_ID Cust_Name Orders.Cust_ID
----------------- --------- --------------
1 Cust 1 1
2 Cust 2 NULL
3 Cust 3 NULL

As you can see, the row for Cust 2 was filtered out from the Orders table before the join, but
because it was NULL, it was reintroduced by the OUTER JOIN operation.

With the improvements in outer-join support, you can now use outer joins where you couldn't
previously. A bit later, you'll see how to use an outer join instead of a correlated subquery in a
common type of query.

Cross Joins

In addition to INNER JOIN, OUTER JOIN, and FULL JOIN, the ANSI JOIN syntax allows a
CROSS JOIN. Earlier, you saw that the advantage of using the ANSI JOIN syntax was that you
wouldn't accidentally create a Cartesian product. However, in some cases, creating a Cartesian
product might be exactly what you want to do. SQL Server allows you to specify a CROSS JOIN
with no ON clause to produce a Cartesian product.

For example, one use for CROSS JOINs is to generate sample or test data. For example, to
generate 10,000 names for a sample employees table, you don't have to come up with 10,000
individual INSERT statements. All you need to do is build a first_names table and a last_names
table with 26 names each (perhaps one starting with each letter of the English alphabet), and a
middle_initials table with the 26 letters. When these three small tables are joined using the
CROSS JOIN operator, the result is well over 10,000 unique names to insert into the employees
table. The SELECT statement used to generate these names looks like this:

SELECT first_name, middle_initial, last_name
FROM first_names CROSS JOIN middle_initials
 CROSS JOIN last_names

To summarize the five types of ANSI JOIN operations, consider two tables, TableA and TableB:

INNER JOIN (default)

TableA INNER JOIN TableB ON join_condition

The INNER JOIN returns rows from either table only if they have a corresponding row in the other
table. In other words, the INNER JOIN disregards any rows in which the specific join condition, as
specified in the ON clause, isn't met.

RDBMS Concepts using SQL Server 2000

 101

LEFT OUTER JOIN

TableA LEFT OUTER JOIN TableB ON join_condition

The LEFT OUTER JOIN returns all rows for which a connection exists between TableA and
TableB; in addition, it returns all rows from TableA for which no corresponding row exists in
TableB. In other words, it preserves unmatched rows from TableA. TableA is sometimes called
the preserved table. In result rows containing unmatched rows from TableA, any columns
selected from TableB are returned as NULL.

RIGHT OUTER JOIN

TableA RIGHT OUTER JOIN TableB ON join_condition

The RIGHT OUTER JOIN returns all rows for which a connection exists between TableA and
TableB; in addition, it returns all rows from TableB for which no corresponding row exists in
TableA. In other words, it preserves unmatched rows from TableB, and in this case TableB is the
preserved table. In result rows containing unmatched rows from TableB, any columns selected
from TableA are returned as NULL.

FULL OUTER JOIN

TableA FULL OUTER JOIN TableB ON join_condition

The FULL OUTER JOIN returns all rows for which a connection exists between TableA and
TableB. In addition, it returns all rows from TableA for which no corresponding row exists in
TableB, with any values selected from TableB returned as NULL. In addition, it returns all rows
from TableB for which no corresponding row exists in TableA, with any values selected from
TableA returned as NULL. In other words, FULL OUTER JOIN acts as a combination of LEFT
OUTER JOIN and RIGHT OUTER JOIN.

CROSS JOIN

TableA CROSS JOIN TableB

The CROSS JOIN returns all rows from TableA combined with all rows from TableB. No ON
clause exists to indicate any connecting column between the tables. A CROSS JOIN returns a
Cartesian product of the two tables.

Subqueries

SQL Server has an extremely powerful capability for nesting queries that provides a natural and
efficient way to express WHERE clause criteria in terms of the results of other queries. You can
express most joins as subqueries, although this method is often less efficient than performing a
join operation. For example, to use the pubs database to find all employees of the New Moon
Books publishing company, you can write the query as either a join (using ANSI join syntax) or as
a subquery.

RDBMS Concepts using SQL Server 2000

 102

Here's the query as a join (equijoin, or inner join):

SELECT emp_id, lname
FROM employee JOIN publishers ON employee.pub_id=publishers.pub_id
WHERE pub_name='New Moon Books'

This is the query as a subquery:

SELECT emp_id, lname
FROM employee
WHERE employee.pub_id IN
 (SELECT publishers.pub_id
 FROM publishers WHERE pub_name='New Moon Books')

You can write a join (equijoin) as a subquery (subselect), but the converse isn't necessarily true.
The equijoin offers an advantage in that the two sides of the equation equal each other and the
order doesn't matter. In certain types of subqueries, it does matter which query is the nested
query. However, if the query with the subquery can be rephrased as a semantically equivalent
JOIN query, the optimizer will do the conversion internally and the performance will be the same
whether you write your queries as joins or with subqueries.

Relatively complex operations are simple to perform when you use subqueries. For example,
earlier you saw that the pubs sample database has four rows in the authors table that have no
related row in the titleauthor table (which prompted our outer-join discussion).

The following simple subquery returns those four author rows:

 SELECT 'Author ID'=A.au_id,
 'Author'=CONVERT(varchar(20), RTRIM(au_lname) + ', '
 + RTRIM(au_fname)), state
FROM authors A
WHERE A.au_id NOT IN
 (SELECT B.au_id FROM titleauthor B)

Here's the output:

Author ID Author state
--------- ------------------- -----
341-22-1782 Smith, Meander KS
527-72-3246 Greene, Morningstar TN
724-08-9931 Stringer, Dirk CA
893-72-1158 McBadden, Heather CA

The IN operation is commonly used for subqueries, either to find matching values (similar to a
join) or to find nonmatching values by negating it (NOT IN), as shown above. Using the IN
predicate is actually equivalent to = ANY. If you wanted to find every row in authors that had at
least one entry in the titleauthor table, you could use either of these queries.

Here's the query using IN:

SELECT 'Author ID'=A.au_id,
 'Author'=CONVERT(varchar(20), RTRIM(au_lname) + ', '
 + RTRIM(au_fname)), state
FROM authors A

RDBMS Concepts using SQL Server 2000

 103

WHERE A.au_id IN
 (SELECT B.au_id FROM titleauthor B)

This is the query using equivalent formulation with = ANY:

SELECT 'Author ID'=A.au_id,
 'Author'=CONVERT(varchar(20), RTRIM(au_lname) + ', '
 + RTRIM(au_fname)), state
FROM authors A
WHERE A.au_id=ANY
 (SELECT B.au_id FROM titleauthor B)

Here's the output:

Author ID Author state
--------- -------------------- -----
172-32-1176 White, Johnson CA
213-46-8915 Green, Marjorie CA
238-95-7766 Carson, Cheryl CA
267-41-2394 O'Leary, Michael CA
274-80-9391 Straight, Dean CA
409-56-7008 Bennet, Abraham CA
427-17-2319 Dull, Ann CA
472-27-2349 Gringlesby, Burt CA
486-29-1786 Locksley, Charlene CA
648-92-1872 Blotchet-Halls, Regi OR
672-71-3249 Yokomoto, Akiko CA
712-45-1867 del Castillo, Innes MI
722-51-5454 DeFrance, Michel IN
724-80-9391 MacFeather, Stearns CA
756-30-7391 Karsen, Livia CA
807-91-6654 Panteley, Sylvia MD
846-92-7186 Hunter, Sheryl CA
899-46-2035 Ringer, Anne UT
998-72-3567 Ringer, Albert UT

Each of these formulations is equivalent to testing the value of au_id in the authors table to the
au_id value in the first row in the titleauthor table, and then OR'ing it to a test of the au_id value of
the second row, and then OR'ing it to a test of the value of the third row, and so on. As soon as
one row evaluates to TRUE, the expression is TRUE, and further checking can stop because the
row in authors qualifies. However, it's an easy mistake to conclude that NOT IN must be
equivalent to <> ANY, and some otherwise good discussions of the SQL language have made
this exact mistake. More significantly, some products have also erroneously implemented it as
such. Although IN is equivalent to = ANY, NOT IN is instead equivalent to <> ALL, not to <> ANY.

Careful reading of the ANSI SQL-92 specifications also reveals that NOT IN is equivalent to <>
ALL but is not equivalent to <> ANY. Section 8.4 of the specifications shows that R NOT IN T is
equivalent to NOT (R = ANY T). Furthermore, careful study of section 8.7 <quantified comparison
predicate> reveals that NOT (R = ANY T) is TRUE if and only if R <> ALL T is TRUE. In other
words, NOT IN is equivalent to <> ALL.

By using NOT IN, you're stating that none of the corresponding values can match. In other words,
all of the values must not match (<> ALL), and if even one does match, it's FALSE. With <> ANY,
as soon as one value is found to be not equivalent, the expression is TRUE. This, of course, is
also the case for every row of authors: rows in titleauthor will always exist for other au_id values,
and hence all authors rows will have at least one nonmatching row in titleauthor. That is, every

RDBMS Concepts using SQL Server 2000

 104

row in authors will evaluate to TRUE for a test of <> ANY row in titleauthor.

The following query using <> ALL returns the same four rows as the earlier one that used NOT
IN:

SELECT 'Author ID'=A.au_id,
 'Author'=CONVERT(varchar(20), RTRIM(au_lname) + ', '
 + RTRIM(au_fname)), state
FROM authors A
WHERE A.au_id <> ALL
 (SELECT B.au_id FROM titleauthor B)

Here is the output:

Author ID Author state
--------- ------------------- -----
341-22-1782 Smith, Meander KS
527-72-3246 Greene, Morningstar TN
724-08-9931 Stringer, Dirk CA
893-72-1158 McBadden, Heather CA

If you had made the mistake of thinking that because IN is equivalent to = ANY, then NOT IN is
equivalent to <> ANY, you would have written the query as follows. This returns all 23 rows in the
authors table!

SELECT 'Author ID'=A.au_id,
 'Author'=CONVERT(varchar(20), RTRIM(au_lname) + ', '
 + RTRIM(au_fname)), state
FROM authors A
WHERE A.au_id <> ANY
 (SELECT B.au_id FROM titleauthor B)

Here's the output:

Author ID Author state
--------- -------------------- -----
172-32-1176 White, Johnson CA
213-46-8915 Green, Marjorie CA
238-95-7766 Carson, Cheryl CA
267-41-2394 O'Leary, Michael CA
274-80-9391 Straight, Dean CA
341-22-1782 Smith, Meander KS
409-56-7008 Bennet, Abraham CA
427-17-2319 Dull, Ann CA
472-27-2349 Gringlesby, Burt CA
486-29-1786 Locksley, Charlene CA
527-72-3246 Greene, Morningstar TN
648-92-1872 Blotchet-Halls, Regi OR
672-71-3249 Yokomoto, Akiko CA
712-45-1867 del Castillo, Innes MI
722-51-5454 DeFrance, Michel IN
724-08-9931 Stringer, Dirk CA
724-80-9391 MacFeather, Stearns CA
756-30-7391 Karsen, Livia CA
807-91-6654 Panteley, Sylvia MD

RDBMS Concepts using SQL Server 2000

 105

846-92-7186 Hunter, Sheryl CA
893-72-1158 McBadden, Heather CA
899-46-2035 Ringer, Anne UT
998-72-3567 Ringer, Albert UT

The examples just shown use IN, NOT IN, ANY, and ALL to compare values to a set of values
from a subquery. This is common. However, it's also common to use expressions and compare a
set of values to a single, scalar value. For example, to find titles whose royalties exceed the
average of all royalty values in the roysched table by 25 percent or more, you can use this simple
uery:

SELECT titles.title_id, title, royalty
FROM titles
WHERE titles.royalty >=
 (SELECT 1.25 * AVG(roysched.royalty) FROM roysched)

This query is perfectly good because the aggregate function AVG (expression) stipulates that the
subquery must return exactly one value and no more. Without using IN, ANY, or ALL (or their
negations), a subquery that returns more than one row will result in an error. If you incorrectly
rewrote the query as follows, without the AVG function, you'd get run-time error 512:

SELECT titles.title_id, title, royalty
FROM titles
WHERE titles.royalty >=
 (SELECT 1.25 * roysched.royalty FROM roysched)

Here is the output:

Server: Msg 512, Level 16, State 1, Line 1
Subquery returned more than 1 value. This is not permitted when the
subquery follows =, !=, <, <= , >, >= or when the subquery is used as an expression

It is significant that this error is a run-time error and not a syntax error: in the SQL Server
implementation, if that subquery didn't produce more than one row, the query would be
considered valid and would execute.

The subquery in the following code returns only one row, so the query is valid and returns four
rows:

SELECT titles.title_id, royalty, title
FROM titles
WHERE titles.royalty >=
 (SELECT 1.25*roysched.royalty FROM roysched
 WHERE roysched.title_id='MC3021' AND lorange=0)

Here is the output:

title_id royalty title
-------- ----------- ---
BU2075 24 You Can Combat Computer Stress!
MC3021 24 The Gourmet Microwave
PC1035 16 But Is It User Friendly?
TC4203 14 Fifty Years in Buckingham Palace Kitchens

However, this sort of query can be dangerous, and you should avoid it or use it only when you
know that a PRIMARY KEY or UNIQUE constraint will ensure that the subquery returns only one

RDBMS Concepts using SQL Server 2000

 106

value. The query here appears to work, but it's a bug waiting to happen. As soon as another row
is added to the roysched table—say, with a title_id of MC3021 and a lorange of 0—the query
returns an error. No constraint exists to prevent such a row from being added.

You might argue that SQL Server should determine whether a query formation could conceivably
return more than one row regardless of the data at the time and then disallow such a subquery
formulation. The reason it doesn't is that such a query might be quite valid when the database
relationships are properly understood, so the power shouldn't be limited to try to protect naïve
users. Whether you agree with this philosophy or not, it's consistent with SQL in general—and
you should know by now that you can easily write a perfectly legal, syntactically correct query that
answers a question in a way that's entirely different from what you thought you were asking!

Correlated Subqueries

You can use powerful correlated subqueries to compare specific rows of one table to a condition
in a matching table. For each row otherwise qualifying in the main (or top) query, the subquery is
evaluated. Conceptually, a correlated subquery is similar to a loop in programming, although it's
entirely without procedural constructs such as do-while or for. The results of each execution of
the subquery must be correlated to a row of the main query. In the next example, for every row in
the titles table that has a price of $19.99 or less, the row is compared with each sales row for
stores in California for which the revenue (price × qty) is greater than $250. In other words, "Show
me titles with prices of under $20 for which any single sale in California was more than $250."

SELECT T.title_id, title
FROM titles T
WHERE price <= 19.99
AND T.title_id IN (

SELECT S.title_id FROM sales S, stores ST
 WHERE S.stor_id=ST.stor_id
 AND ST.state='CA' AND S.qty*T.price > 250
 AND T.title_id=S.title_id)

Here's the result:

title_id title
-------- -----------------------------
BU7832 Straight Talk About Computers
PS2091 Is Anger the Enemy?
TC7777 Sushi, Anyone?

Correlated subquery, like many subqueries, could have been written as a join (here using the old-
style JOIN syntax):

SELECT T.title_id, T.title
FROM sales S, stores ST, titles T
WHERE S.stor_id=ST.stor_id
AND T.title_id=S.title_id
AND ST.state='CA'
AND T.price <= 19.99
AND S.qty*T.price > 250

It becomes nearly impossible to create alternative joins when the subquery isn't doing a simple IN
or when it uses aggregate functions. For example, suppose we want to find titles that lag in sales

RDBMS Concepts using SQL Server 2000

 107

for each store. This could be defined as "Find any title for every store in which the title's sales in
that store are below 80 percent of the average of sales for all stores that carry that title and ignore
titles that have no price established (that is, the price is NULL)." An intuitive way to do this is to
first think of the main query that will give us the gross sales for each title and store, and then for
each such result, do a subquery that finds the average gross sales for the title for all stores. Then
we correlate the subquery and the main query, keeping only rows that fall below the 80 percent
standard.

For clarity, notice the two distinct queries, each of which answers a separate question. Then
notice how they can be combined into a single correlated query to answer the specific question
posed here. All three queries use the old-style JOIN syntax.

-- This query computes gross revenues by
-- title for every title and store
SELECT T.title_id, S.stor_id, ST.stor_name, city, state,
 T.price*S.qty
FROM titles AS T, sales AS S, stores AS ST
WHERE T.title_id=S.title_id AND S.stor_id=ST.stor_id

-- This query computes 80% of the average gross revenue for each
-- title for all stores carrying that title:
SELECT T2.title_id, .80*AVG(price*qty)

FROM titles AS T2, sales AS S2
WHERE T2.title_id=S2.title_id
GROUP BY T2.title_id

-- Correlated subquery that finds store-title combinations whose
-- revenues are less than 80% of the average of revenues for that
-- title for all stores selling that title
SELECT T.title_id, S.stor_id, ST.stor_name, city, state,
 Revenue=T.price*S.qty
FROM titles AS T, sales AS S, stores AS ST
WHERE T.title_id=S.title_id AND S.stor_id=ST.stor_id
AND T.price*S.qty <
 (SELECT 0.80*AVG(price*qty)
 FROM titles T2, sales S2
 WHERE T2.title_id=S2.title_id
 AND T.title_id=T2.title_id)

And the answer is (from the third query):

title_id stor_id stor_name city state Revenue
-------- ------- ------------------- ---- ----- -------
BU1032 6380 Eric the Read Books Seattle WA 99.95
MC3021 8042 Bookbeat Portland OR 44.85
PS2091 6380 Eric the Read Books Seattle WA 32.85
PS2091 7067 News & Brews Los Gatos CA 109.50
PS2091 7131 Doc-U-Mat: Quality Remulade WA 219.00

 Laundry and Books

When the newer ANSI JOIN syntax was first introduced, it wasn't obvious how to use it to write a
correlated subquery. It could be that the creators of the syntax forgot about the correlated
subquery case, because using the syntax seems like a hybrid of the old and the new: the
correlation is still done in the WHERE clause rather than in the JOIN clause.

RDBMS Concepts using SQL Server 2000

 108

Examine the two equivalent formulations of the above query using the ANSI JOIN syntax:

 SELECT T.title_id, S.stor_id, ST.stor_name, city, state,
 Revenue=T.price*S.qty
FROM titles AS T JOIN sales AS S ON T.title_id=S.title_id
 JOIN stores AS ST ON S.stor_id=ST.stor_id
WHERE T.price*S.qty <
 (SELECT 0.80*AVG(price*qty)
 FROM titles T2 JOIN sales S2 ON T2.title_id=S2.title_id
 WHERE T.title_id=T2.title_id)

SELECT T.title_id, S.stor_id, ST.stor_name, city, state,
 Revenue=T.price*S.qty
FROM titles AS T JOIN sales AS S
 ON T.title_id=S.title_id
 AND T.price*S.qty <
 (SELECT 0.80*AVG(T2.price*S2.qty)
 FROM sales AS S2 JOIN titles AS T2
 ON T2.title_id=S2.title_id
WHERE T.title_id=T2.title_id)
 JOIN stores AS ST ON S.stor_id=ST.stor_id

To completely avoid the old-style syntax with the join condition in the WHERE clause, we could
write this using a subquery with a GROUP BY in the FROM clause (by creating a derived table).
However, although this gets around having to use the old syntax, it might not be worth it. The
query is much less intuitive than either of the preceding two formulations, and it takes twice as
many logical reads to execute it.
SELECT T.title_id, S.stor_id, ST.stor_name, city, state,
Revenue = T.price * S.qty
FROM
titles AS T JOIN sales AS S
ON T.title_id = S.title_id
JOIN stores AS ST
ON S.stor_id = ST.stor_id
JOIN
(SELECT T2.title_id, .80 * AVG(price * qty) AS avg_val
FROM titles AS T2 JOIN sales AS S2
ON T2.title_id = S2.title_id
GROUP BY T2.title_id) AS AV ON T.title_id = AV.title_id
AND T.price * S.qty < avg_val
Often, correlated subqueries use the EXISTS statement, which is the most convenient syntax to
use when multiple fields of the main query are to be correlated to the subquery. (In practice,
EXISTS is seldom used other than with correlated subqueries.) EXISTS simply checks for a
nonempty set. It returns (internally) either TRUE or NOT TRUE (which we won't refer to as
FALSE, given the issues of three-valued logic and NULL). Because no column value is returned
and the only thing that matters is whether any rows are returned, convention dictates that a
column list isn't specified.
A common use for EXISTS is to answer a query such as "Show me the titles for which no stores
have sales."
SELECT T.title_id, title FROM titles T
WHERE NOT EXISTS
(SELECT 1
FROM sales S
WHERE T.title_id=S.title_id)
Here is the output:

RDBMS Concepts using SQL Server 2000

 109

title_id title
-------- ----------------------------------
MC3026 The Psychology of Computer Cooking
PC9999 Net Etiquette
Conceptually, this query is pretty straightforward. The subquery, a simple equijoin, finds all
matches of titles and sales. Then NOT EXISTS correlates titles to those matches, looking for
titles that don't have even a single row returned in the subquery.

Another common use of EXISTS is to determine whether a table is empty. The optimizer knows
that as soon as it gets a single hit using EXISTS, the operation is TRUE and further processing is
unnecessary. For example, here's how you determine whether the authors table is empty:

SELECT 'Not Empty' WHERE EXISTS (SELECT * FROM authors)
Here's an outer-join formulation for the problem described earlier: "Show me the titles for which
no stores have sales."
SELECT T1.title_id, title FROM titles T1
LEFT OUTER JOIN sales S ON T1.title_id=S.title_id
WHERE S.title_id IS NULL

Depending on your data and indexes, the outer-join formulation might be faster or slower than a
correlated subquery. But before deciding to write your query one way or the other, you might want
to come up with a couple of alternative formulations and then choose the one that's fastest in
your situation.

In this example, for which little data exists, both solutions run in subsecond elapsed time. But the
outer-join query requires fewer than half the number of logical I/Os than does the correlated
subquery. With more data, that difference would be significant.

This query works by joining the stores and titles tables and by preserving the titles for which no
store exists. Then, in the WHERE clause, it specifically chooses only the rows that it preserved in
the outer join. Those rows are the ones for which a title had no matching store.

At other times, a correlated subquery might be preferable to a join, especially if it's a self-join
back to the same table or some other exotic join. Here's an example. Given the following table
(and assuming that the row_num column is guaranteed unique), suppose we want to identify the
rows for which col2 and col3 are duplicates of another row:
row_num col2 col3
------- ---- ----
1 C D
2 A A
4 C B
5 C C
6 B C
7 C A
8 C B
9 C D
10 D D
We can do this in two standard ways. The first way uses a self-join. In a self-join, the table (or
view) is used multiple times in the FROM clause and is aliased at least once. Then it can be
treated as an entirely different table and you can compare columns between two "instances" of
the same table. A self-join to find the rows having duplicate values for col2 and col3 is easy to
understand:

SELECT DISTINCT A.row_num, A.col2, A.col3
FROM match_cols AS A, match_cols AS B

RDBMS Concepts using SQL Server 2000

 110

WHERE A.col2=B.col2 AND A.col3=B.col3 AND A.row_num <> B.row_num
ORDER BY A.col2, A.col3

row_num col2 col3

4 C B
8 C B
1 C D
9 C D

But in this case, a correlated subquery using aggregate functions provides a considerably more
efficient solution, especially if many duplicates exist:

SELECT A.row_num, A.col2, A.col3 FROM match_cols AS A
WHERE EXISTS (SELECT B.col2, B.col3 FROM match_cols AS B
WHERE B.col2=A.col2
AND B.col3=A.col3
GROUP BY B.col2, B.col3 HAVING COUNT(*) > 1)
ORDER BY A.col2, A.col3

This correlated subquery has another advantage over the self-join example—the row_num
column doesn't need to be unique to solve the problem at hand.

You can take a correlated subquery a step further to ask a seemingly simple question that's
surprisingly tricky to answer in SQL: "Show me the stores that have sold every title." Even though
it seems like a reasonable request, relatively few people can come up with the correct SQL query,
especially if I throw in the restrictions that you aren't allowed to use an aggregate function like
COUNT(*) and that the solution must be a single SELECT statement (that is, you're not allowed
to create temporary tables or the like).

The previous query already revealed two titles that no store has sold, so we know that with the
existing dataset, no stores can have sales for all titles. For illustrative purposes, let's add sales
records for a hypothetical store that does, in fact, have sales for every title. Following that, we'll
see the query that finds all stores that have sold every title (which we know ahead of time is only
the phony one we're entering here):

-- The phony store
INSERT stores (stor_id, stor_name, stor_address, city, state, zip)
VALUES ('9999', 'WE SUPPLY IT ALL', 'One Main St', 'Poulsbo',
'WA', '98370')

-- By using a combination of hard-coded values and selecting every
-- title, generate a sales row for every title
INSERT sales (stor_id, title_id, ord_num, ord_date, qty, payterms)
SELECT '9999', title_id, 'PHONY1', GETDATE(), 10, 'Net 60'
FROM titles

-- Find stores that supply every title
SELECT ST.stor_id, ST.stor_name, ST.city, ST.state
FROM stores ST
WHERE NOT EXISTS
(SELECT * FROM titles T1
WHERE NOT EXISTS
(SELECT * FROM titles T1
WHERE NOT EXISTS

RDBMS Concepts using SQL Server 2000

 111

(SELECT * FROM sales S
WHERE S.title_id=T1.title_id AND ST.stor_id=S.stor_id)
)

Here's the result:
stor_id stor_name city state
------- --------- ---- -----
9999 WE SUPPLY IT ALL Poulsbo WA

Although this query might be difficult to think of immediately, you can easily understand why it
works. In English, it says, "Show me the store(s) such that no titles exist that the store doesn't
sell." This query consists of the two subqueries that are applied to each store. The bottommost
subquery produces all the titles that the store has sold. The upper subquery is then correlated to
that bottom one to look for any titles that are not in the list of those that the store has sold. The
top query returns any stores that aren't in this list. This type of query is known as a relational
division, and unfortunately, it isn't as easy to express as we'd like. Although the query shown is
quite understandable, once you have a solid foundation in SQL, it's hardly intuitive. As is almost
always the case, you could probably use other formulations to write this query.

If you think of the query in English as "Find the stores that have sold as many unique titles as
there are total unique titles," you'll find the following formulation somewhat more intuitive:

SELECT ST.stor_id, ST.stor_name
FROM stores ST, sales SA, titles T
WHERE SA.stor_id=ST.stor_id AND SA.title_id=T.title_id
GROUP BY ST.stor_id,ST.stor_name
HAVING COUNT(DISTINCT SA.title_id)=(SELECT COUNT(*) FROM titles T1)

The following formulation runs much more efficiently than either of the previous two. The syntax is
similar to the preceding one but its approach is novel because it's just a standard subquery, not a
join or a correlated subquery. You might think it's an illegal query, since it does a GROUP BY and
a HAVING without an aggregate in the select list of the first subquery. But that's OK, both in
terms of what SQL Server allows and in terms of the ANSI specification

-- Find stores that have sold every title
SELECT stor_id, stor_name FROM stores WHERE stores.stor_id IN
(SELECT stor_id FROM sales GROUP BY stor_id
HAVING COUNT(DISTINCT title_id)=(SELECT COUNT(*) FROM titles)
)

Here's a formulation that uses a derived table—a feature that allows you to use a subquery in a
FROM clause. This capability lets you alias a virtual table returned as the result set of a SELECT
statement, and then lets you use this result set as if it were a real table. This query also runs
efficiently.

SELECT ST.stor_id, ST.stor_name
FROM stores ST,
(SELECT stor_id, COUNT(DISTINCT title_id) AS title_count
FROM sales
GROUP BY stor_id
) as SA
WHERE ST.stor_id=SA.stor_id AND SA.title_count=
(SELECT COUNT(*) FROM titles)

RDBMS Concepts using SQL Server 2000

 112

Functions

Introduction

The SQL language includes many functions that you can use to summarize data from a column
within a table. Collectively, the functions that enable you to summarize data are referred to as
aggregate functions. You might also hear aggregate functions referred to as group functions
because they operate on groups of rows to provide you with a single result.

Use the following syntax with aggregate functions:

USE database
SELECT FUNCTION(expression)
FROM table

You will typically replace expression with a column name. You can optionally include an
AS clause after the function so that SQL Server can display a heading for the column in the result
set. If you do not specify an alias when you use a function, SQL Server does not display a column
heading. When you use an aggregate function in your SELECT statement, you cannot include
other columns in the SELECT clause unless you use a GROUP BY clause.

The following query shows you how to find the highest rental price for a movie in the movie table:

USE movies
SELECT MAX(rental_price) AS H̀ighest Rental Fee'
FROM movie

It enables you to count the number of rows in the customer table in order to determine the total
number of customers:

USE movies
SELECT COUNT(*)
FROM customer

Aggregate functions and data types

You will most often use the aggregate functions on numeric data, but you can use some of these
functions against character data.

You can use the MAX() function against character-based columns as follows:

USE movies
SELECT MAX(title)
FROM movie

RDBMS Concepts using SQL Server 2000

 113

In this example, SQL Server returns the movie title of Ỳoung Frankenstein' because
alphabetically, it is the last movie title in the table. You cannot use the MIN() and MAX()
functions against the bit data type. Some of the other considerations for aggregate functions and
data types include:

• You can use the COUNT function against all data types. COUNT is the only aggregate
function you can use against text, ntext, and image data types.

• You can use only the int, smallint, decimal, numeric, float, real, money, and smallmoney
data types in the SUM() and AVG() functions.

Null values

Other than the COUNT function, the aggregate functions ignore null values in columns. All of the
aggregate functions base their calculations on the premise that the values in columns are
significant only if those values are not null. If you count the number of rows based on a column
with null values (such as COUNT(zip), SQL Server skips any rows that have null values in that
column. If you use COUNT(*), you will get the actual row count-even if a row has nothing but null
values in all columns.

Before you begin:

 You are logged on to Windows NT as user#. You have created a database named movies and
tables within it named movie, category, customer, rental, and rental_detail. You have defined
primary key, foreign key, default, and check constraints on the tables, and created nonclustered
indexes based on your primary keys. You have imported data into the tables. You have created
database diagrams for both the movies and pubs databases.

1. Write a query to find the average price of movies with a G rating.

USE movies
SELECT AVG(rental_price) AS Àverage Rental Fee'
FROM movie
WHERE rating = G̀'

2. What query would you use to find the title and price of the highest priced movie? (Hint:You
must use a subquery to find this information.)

USE movies
SELECT title, rental_price
FROM movie
WHERE rental_price = (SELECT MAX(rental_price) FROM movie)

Using group by to group the results of aggregate functions

You use the GROUP BY clause to divide the rows of a table into groups and then display
summary results for a specific column. You should not use the GROUP BY clause on a column in
which multiple rows have null values because SQL Server will treat all of the rows with null values
in that column as a group.

RDBMS Concepts using SQL Server 2000

 114

You might want to count the number of movies you have in stock for each rating (G, PG, an so
on). To find this information, you must use a GROUP BY clause to group the movies by rating-
and then count the number of movies in each group. Use the following syntax:

USE movies
SELECT rating, COUNT(movie_num)
FROM movie
GROUP BY rating

In this example, you can use COUNT(movie_num) because the structure of the movie table does
not permit null values in the movie_num column.

The GROUP BY clause requires a one-to-one relationship between the columns you specify in
the SELECT statement (other than the aggregate function) and the GROUP BY clause. For
example, the following query is invalid because the rating column is not included in the SELECT
clause:

USE movies
SELECT COUNT(movie_num)
FROM movie
GROUP BY rating

This query is also invalid because the rating column is not referenced in a GROUP BY clause:

USE movies
SELECT rating, COUNT(movie_num)
FROM movie

You can use a GROUP BY clause to enable you to calculate the total rental fee collected for each
invoice in the rental_detail table:

USE movies
SELECT invoice_num, SUM(rental_price)
FROM rental_detail
GROUP BY invoice_num

Using a WHERE clause

You can also add a WHERE clause to a query that contains an aggregate function in order to
restrict the groups on which the aggregate function performs its calculations. If you use a WHERE
clause, SQL Server groups only the rows that meet the condition you specify. For example, if you
want to see the average price of movies with a PG or R rating, you could use the following query:

USE movies
SELECT rating, AVG(rental_price)
FROM movie
WHERE rating = P̀G' OR rating = R̀'
GROUP BY rating

RDBMS Concepts using SQL Server 2000

 115

The WHERE clause must precede the GROUP BY clause. If you reverse the order of these
clauses, you will get a syntax error.

Using group by with having

If you want to restrict the rows returned by a query in which you are using an aggregate function
and a GROUP BY clause, you can use a HAVING clause instead of a WHERE clause. The
HAVING clause offers you a distinct advantage over a WHERE clause because it enables you to
use aggregate functions to restrict the rows returned in the result set.

You could use the following query to display the rating and average price of all movies for each
rating as long as the average price of those movies is greater than $2.50:

USE movies
SELECT rating, AVG(rental_price)
FROM movie
GROUP BY rating
HAVING AVG(rental_price) >= 2.50

One other difference between a WHERE clause and a HAVING clause is that the WHERE clause
restricts the groups of rows on which the aggregate function calculates its results; in contrast, the
aggregate function calculates values for all groups of rows but only displays those that meet the
HAVING clause's criteria in the result set.

1. Design a query based on the movies database that shows the total rental price collected for
each invoice in the rental_detail table.

USE movies
SELECT invoice_num, SUM(rental_price) AS T̀otal Rental Price'
FROM rental_detail
GROUP BY invoice_num

2. Design a query on the movies database that shows all invoices and their total rental price
where the total price was more than $4.00. (You should get 22 rows in the result set.)

USE movies
SELECT invoice_num, SUM(rental_price) AS T̀otal Rental Price'
FROM rental_detail
GROUP BY invoice_num
HAVING SUM(rental_price) > 4

3. Design a query that lists the category and average rental price of movies in the Comedy
category. (The category_num for Comedy is 1.)

RDBMS Concepts using SQL Server 2000

 116

SELECT category_num, AVG(rental_price) AS 'Average Rental Price'
FROM movie
GROUP BY category_num
HAVING category_num = 1

Using group by with the WITH ROLLUP operator

You can use the WITH ROLLUP operator to enable SQL Server to calculate totals for the
columns you include in a GROUP BY clause. You will typically use the WITH ROLLUP operator
on queries that include at least two columns in the GROUP BY clause. The WITH ROLLUP
operator then adds a totals row for each unique value in the first column of the GROUP BY
clause.

Consider the following query:

USE northwind
SELECT orderid, productid, SUM(quantity) AS T̀otal Quantity'
FROM [order details]
GROUP BY orderid, productid WITH ROLLUP
ORDER BY orderid, productid

This query displays the order ID, product ID, and the total quantity of each product purchased for
each order ID. In addition, because the query includes the WITH ROLLUP operator, SQL Server
Query Analyzer not only totals the quantity purchased for each product of each order, but also
generates a total for each order. SQL Server adds a row to the result set to display the running
totals. You can identify running totals because SQL Server Query Analyzer indicates them by
NULL in the result set. (In this example, the running total for all products for a particular orderid
displays NULL in the productid column.)

Using group by with the WITH CUBE operator

In contrast to the WITH ROLLUP operator, the WITH CUBE operator calculates totals for all
combinations of the columns in your GROUP BY clause (instead of calculating totals just for the
first column).

Using group by with the WITH CUBE operator

In contrast to the WITH ROLLUP operator, the WITH CUBE operator calculates totals for all
combinations of the columns in your GROUP BY clause (instead of calculating totals just for the
first column).

USE northwind
SELECT orderid, productid, SUM(quantity) AS T̀otal Quantity'
FROM [order details]
GROUP BY orderid, productid WITH CUBE
ORDER BY orderid, productid

RDBMS Concepts using SQL Server 2000

 117

In this example, SQL Server calculates not only the total quantity of products sold in each order,
but also the total quantity of all products sold (regardless of order ID and product ID), as well as
the total quantity of each product sold (regardless of the order ID). SQL Server displays NULL in
the columns with calculations resulting from the WITH CUBE operator. In this example, you will
see additional rows in the result set over what you saw when you used the WITH ROLLUP
operator

Using the GROUPING function

You can use the GROUPING function to add a column to indicate whether a column has been
used to return the result set. Further, you can use the GROUPING function with either the CUBE
or ROLLUP operators. Using the GROUPING function makes it easier for you to see which
columns have been used to generate the total rows.

Use the GROUPING function along with the WITH CUBE operator, use the following syntax:

USE northwind
SELECT orderid, GROUPING(orderid), productid, GROUPING(productid), SUM(quantity) AS
T̀otal Quantity'

FROM [order details]
GROUP BY orderid, productid
WITH CUBE
ORDER BY orderid, productid

In this example, SQL Server will display a 1̀' in the column it is using to group the results on, and
a 0̀' if it is not using the column. The GROUPING thus enables you to identify which columns
SQL Server used to generate its summary rows.

Using Compute and Compute by Clause

SQL Server supports both the COMPUTE and COMPUTE BY clauses for generating summary
rows in the result set. Both of these keywords are not included in the ANSI-SQL standard. You
can use these keywords for generating a result set, but you should not use them in any
applications.

You can use COMPUTE to display the total quantity of all products purchased in the order details
table by using the following query:

USE northwind
SELECT orderid, productid, quantity
FROM [order details]
ORDER BY orderid, productid
COMPUTE SUM(quantity)

This query adds a row to the end of the result set with the total quantity of all products purchased.

In contrast, you can use the COMPUTE BY clause to calculate a total quantity purchased in each
order by using the following query:

USE northwind
SELECT orderid, productid, quantity
FROM [order details]

RDBMS Concepts using SQL Server 2000

 118

ORDER BY orderid, productid
COMPUTE SUM(quantity)BY orderid

Display the top n rows in a result set

You can use the TOP n or TOP n PERCENT keywords to specify that you want SQL Server to
return only a specific number of rows in the result set. You must include an ORDER BY clause so
that SQL Server can determine the top x rows.

1. By using the movies database, write a query to list the titles of the top three movies based on
rental price. (Hint: make sure you use the DISTINCT keyword so that you get three unique titles.)

USE movies
SELECT DISTINCT TOP 3 title, rental_price
FROM movie
ORDER BY rental_price DESC

2. Use the movies database to write a query listing the top three invoice numbers based on total
money spent renting movies.

USE movies
SELECT TOP 3 invoice_num, SUM(rental_price)
FROM rental_detail
GROUP BY invoice_num
ORDER BY SUM(rental_price) DESC

3. Use the pubs database to write a query listing the titles and prices of the top five most
expensive books.

USE pubs
SELECT TOP 5 title, price
FROM titles
ORDER BY price DESC

RDBMS Concepts using SQL Server 2000

 119

Index

Indexes are the other significant user-defined, on-disk data structure besides tables. An index
provides fast access to data when the data can be searched by the value that is the index key.

In this chapter, you'll understand the physical organization of index pages for both types of SQL
Server indexes, clustered and nonclustered, the various options available when you create and
re-create indexes, when, and why to rebuild your indexes, SQL Server 2000's online index
defragmentation utility and about a tool for determining whether your indexes need
defragmenting.

Indexes allow data to be organized in a way that allows optimum performance when you access
or modify it. SQL Server does not need indexes to successfully retrieve results for your SELECT
statements or to find and modify the specified rows in your data modification statements. As your
tables get larger, the value of using proper indexes becomes obvious. You can use indexes to
quickly find data rows that satisfy conditions in your WHERE clauses, to find matching rows in
your JOIN clauses, or to efficiently maintain uniqueness of your key columns during INSERT and
UPDATE operations. In some cases, you can use indexes to help SQL Server sort, aggregate, or
group your data or to find the first few rows as indicated in a TOP clause.

It is the job of the query optimizer to determine which indexes, if any, are most useful in
processing a specific query. The final choice of which indexes to use is one of the most important
components of the query optimizer's execution plan. In this chapter, we’ll understand what
indexes look like and how they can speed up your queries.

Index Organization

Think of the indexes that you see in your everyday life—those in books and other documents.
Suppose you're trying to write a SELECT statement in SQL Server using the CASE expression,
and you're using two SQL Server documents to find out how to write the statement. One
document is the Microsoft SQL Server 2000 Transact-SQL Language Reference Manual. The
other is this book, Inside Microsoft SQL Server 2000. You can quickly find information in either
book about CASE, even though the two books are organized differently.

In the T-SQL language reference, all the information is organized alphabetically. You know that
CASE will be near the front, so you can just ignore the last 80 percent of the book. Keywords are
shown at the top of each page to tell you what topics are on that page. So you can quickly flip
through just a few pages and end up at a page that has BREAK as the first keyword and
CEILING as the last keyword, and you know that CASE will be on this page. If CASE is not on
this page, it's not in the book. And once you find the entry for CASE, right between BULK
INSERT and CAST, you'll find all the information you need, including lots of helpful examples.

Next, you try to find CASE in this book. There are no helpful key words at the top of each page,
but there's an index at the back of the book and all the index entries are organized alphabetically.
So again, you can make use of the fact that CASE is near the front of the alphabet and quickly
find it between "cascading updates" and "case-insensitive searches." However, unlike in the
reference manual, once you find the word CASE, there are no nice neat examples right in front of
you. Instead, the index gives you pointers. It tells you what pages to look at—it might list two or
three pages that point you to various places in the book. If you look up SELECT in the back of the
book, however, there might be dozens of pages listed, and if you look up SQL Server, there might
be hundreds.

RDBMS Concepts using SQL Server 2000

 120

These searches through the two books are analogous to using clustered and nonclustered
indexes. In a clustered index, the data is actually stored in order, just as the reference manual
has all the main topics in order. Once you find the data you're looking for, you're done with the
search. In a nonclustered index, the index is a completely separate structure from the data itself.
Once you find what you're looking for in the index, you have to follow pointers to the actual data.
A nonclustered index in SQL Server is very much like the index in the back of this book. If there is
only one page reference listed in the index, you can quickly find the information. If a dozen pages
are listed, it's quite a bit slower. If hundreds of pages are listed, you might think there's no point in
using the index at all. Unless you can narrow down your topic of interest to something more
specific, the index might not be of much help.

Both clustered and nonclustered indexes in SQL Server store their information using standard B-
trees, as shown in figure 21. A B-tree provides fast access to data by searching on a key value of
the index. B-trees cluster records with similar keys. The B stands for balanced, and balancing the
tree is a core feature of a B-tree's usefulness. The trees are managed, and branches are grafted
as necessary, so that navigating down the tree to find a value and locate a specific record takes
only a few page accesses. Because the trees are balanced, finding any record requires about the
same amount of resources, and retrieval speed is consistent because the index has the same
depth throughout.

Figure 21 A B-Tree for SQL Server Index

An index consists of a tree with a root from which the navigation begins, possible intermediate
index levels, and bottom-level leaf pages. You use the index to find the correct leaf page. The
number of levels in an index will vary depending on the number of rows in the table and the size
of the key column or columns for the index. If you create an index using a large key, fewer entries
will fit on a page, so more pages (and possibly more levels) will be needed for the index. On a
qualified select, update, or delete, the correct leaf page will be the lowest page of the tree in
which one or more rows with the specified key or keys reside. A qualified operation is one that
affects only specific rows that satisfy the conditions of a WHERE clause, as opposed to
accessing the whole table. In any index, whether clustered or nonclustered, the leaf level contains
every key value, in key sequence.

Clustered Indexes

RDBMS Concepts using SQL Server 2000

 121

The leaf level of a clustered index contains the data pages, not just the index keys. Another way
to say this is that the data itself is part of the clustered index. A clustered index keeps the data in
a table ordered around the key. The data pages in the table are kept in a doubly linked list called
the page chain. The order of pages in the page chain, and the order of rows on the data pages, is
the order of the index key or keys. Deciding which key to cluster on is an important performance
consideration. When the index is traversed to the leaf level, the data itself has been retrieved, not
simply pointed to.

Because the actual page chain for the data pages can be ordered in only one way, a table can
have only one clustered index. The query optimizer strongly favors a clustered index because
such an index allows the data to be found directly at the leaf level. Because it defines the actual
order of the data, a clustered index allows especially fast access for queries looking for a range of
values. The query optimizer detects that only a certain range of data pages must be scanned.

Most tables should have a clustered index. If your table will have only one index, it generally
should be clustered. Many documents describing SQL Server indexes will tell you that the
clustered index physically stores the data in sorted order. This can be misleading if you think of
physical storage as the disk itself. If a clustered index had to keep the data on the actual disk in a
particular order, it could be prohibitively expensive to make changes. If a page got too full and
had to be split in two, all the data on all the succeeding pages would have to be moved down.
Sorted order in a clustered index simply means that the data page chain is in order. If SQL Server
follows the page chain, it can access each row in clustered index order, but new pages can be
added by simply adjusting the links in the page chain. In SQL Server 2000, all clustered indexes
are unique. If you build a clustered index without specifying the unique keyword, SQL Server
forces uniqueness by adding a uniqueifier to the rows when necessary. This uniqueifier is a 4-
byte value added as an additional sort key to only the rows that have duplicates of their primary
sort key.

Nonclustered Indexes

In a nonclustered index, the lowest level of the tree (the leaf level) contains a bookmark that tells
SQL Server where to find the data row corresponding to the key in the index. A bookmark can
take one of two forms. If the table has a clustered index, the bookmark is the clustered index key
for the corresponding data row. If the table is a heap (in other words, it has no clustered index),
the bookmark is a RID, which is an actual row locator in the form File#:Page#:Slot#. (In contrast,
in a clustered index, the leaf page is the data page.)

The presence or absence of a nonclustered index doesn't affect how the data pages are
organized, so you're not restricted to having only one nonclustered index per table, as is the case
with clustered indexes. Each table can include as many as 249 nonclustered indexes, but you'll
usually want to have far fewer than that.

When you search for data using a nonclustered index, the index is traversed and then SQL
Server retrieves the record or records pointed to by the leaf-level indexes. For example, if you're
looking for a data page using an index with a depth of three—a root page, one intermediate page,
and the leaf page—all three index pages must be traversed. If the leaf level contains a clustered
index key, all the levels of the clustered index then have to be traversed to locate the specific row.
The clustered index will probably also have three levels, but in this case remember that the leaf
level is the data itself. There are two additional index levels separate from the data, typically one
less than the number of levels needed for a nonclustered index. The data page still must be
retrieved, but because it has been exactly identified there's no need to scan the entire table. Still,
it takes six logical I/O operations to get one data page. You can see that a nonclustered index is a
win only if it's highly selective.

RDBMS Concepts using SQL Server 2000

 122

Figure 22 illustrates this process without showing you the individual levels of the B-trees. To find
the first name for the employee named Anson, which has a nonclustered index on the last name
and a clustered index on the employee ID. The nonclustered index uses the clustered keys as its
bookmarks. Searching the index for Anson, SQL Server finds that the associated clustered index
key is 7. It then traverses the clustered index looking for the row with a key of 7, and it finds Kim
as the first name in the row I'm looking for.

Figure22 SQL server traverse both clusteres and non clustered Indexes to find the first
name for the employee names Anson

Creating an Index

The typical syntax for creating an index is straightforward:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
 ON table_name (column_name [ASC | DESC][,...n])

When you create an index, you must specify a name for it. You must also specify the table on
which the index will be built, and then one or more columns. For each column, you can specify
that the leaf level will store the key values sorted in either ascending (ASC) or descending
(DESC) order. The default is ascending. You can specify that SQL Server must enforce
uniqueness of the key values by using the keyword UNIQUE. If you don't specify UNIQUE,
duplicate key values will be allowed. You can specify that the index be either clustered or
nonclustered. Nonclustered is the default.

CREATE INDEX has some additional options available for specialized purposes. You can add a
WITH clause to the CREATE INDEX command:

[WITH
[FILLFACTOR = fillfactor]
[[,] [PAD_INDEX]
[[,] IGNORE_DUP_KEY]
[[,] DROP_EXISTING]
[[,] STATISTICS_NORECOMPUTE]

RDBMS Concepts using SQL Server 2000

 123

[[,] SORT_IN_TEMPDB]
]

FILLFACTOR is probably the most commonly used of these options. FILLFACTOR lets you
reserve some space on each leaf page of an index. In a clustered index, since the leaf level
contains the data, you can use FILLFACTOR to control how much space to leave in the table
itself. By reserving free space, you can later avoid the need to split pages to make room for a new
entry. But remember that FILLFACTOR is not maintained; it indicates only how much space is
reserved with the existing data at the time the index is built. If you need to, you can use the
DBCC DBREINDEX command to rebuild the index and reestablish the original FILLFACTOR
specified.

If you plan to rebuild all of a table's indexes, simply specify the clustered index with DBCC
DBREINDEX. Doing so internally rebuilds the entire table and all nonclustered indexes.

FILLFACTOR isn't usually specified on an index-by-index basis, but you can specify it this way for
fine-tuning. If FILLFACTOR isn't specified, the serverwide default is used. The value is set for the
server via sp_configure, fillfactor. This value is 0 by default, which means that leaf pages of
indexes are made as full as possible. FILLFACTOR generally applies only to the index's leaf
page (the data page for a clustered index). In specialized and high-use situations, you might want
to reserve space in the intermediate index pages to avoid page splits there, too. You can do this
by specifying the PAD_INDEX option, which uses the same value as FILLFACTOR.

The DROP_EXISTING option specifies that a given index should be dropped and rebuilt as a
single transaction. This option is particularly useful when you rebuild clustered indexes. Normally,
when a clustered index is dropped, every nonclustered index has to be rebuilt to change its
bookmarks to RIDs instead of the clustering keys. Then, if a clustered index is built (or rebuilt), all
the nonclustered indexes need to be rebuilt again to update the bookmarks. The
DROP_EXISTING option of the CREATE INDEX command allows a clustered index to be rebuilt
without having to rebuild the nonclustered indexes twice. If you are creating the index on the
exact same keys that it had previously, the nonclustered indexes do not need to be rebuilt at all. If
you are changing the key definition, the nonclustered indexes are rebuilt only once, after the
clustered index is rebuilt.

You can ensure the uniqueness of an index key by defining the index as UNIQUE or by defining a
PRIMARY KEY or UNIQUE constraint. If an UPDATE or INSERT statement would affect multiple
rows, and if even one row is found that would cause duplicate keys defined as unique, the entire
statement is aborted and no rows are affected. Alternatively, when you create the unique index,
you can use the IGNORE_DUP_KEY option so that a duplicate key error on a multiple-row
INSERT won't cause the entire statement to be rolled back. The nonunique row will be discarded,
and all other rows will be inserted or updated. IGNORE_DUP_KEY doesn't allow the uniqueness
of the index to be violated; instead, it makes a violation in a multiple-row data modification
nonfatal to all the nonviolating rows.

The SORT_IN_TEMPDB option allows you to control where SQL Server performs the sort
operation on the key values needed to build an index. The default is that SQL Server uses space
from the filegroup on which the index is to be created. While the index is being built, SQL Server
scans the data pages to find the key values and then builds leaf-level index rows in internal sort
buffers. When these sort buffers are filled, they are written to disk. The disk heads for the
database can then move back and forth between the base table pages and the work area where
the sort buffers are being stored. If, instead, your CREATE INDEX command includes the option
SORT_IN_TEMPDB, performance can be greatly improved, particularly if your tempdb database
is on a separate physical disk from the database you're working with, with its own controller. You
can optimize head movement because two separate heads read the base table pages and

RDBMS Concepts using SQL Server 2000

 124

manage the sort buffers. You can get even more improvement in index creation speed if your
tempdb is on a faster disk than your user database and you use the SORT_IN_TEMPDB option.
As an alternative to using the SORT_IN_TEMPDB option, you can create separate filegroups for
a table and its indexes. (That is, the table is on one filegroup and its indexes are on another.) If
the two filegroups are on different disks with their own controllers, you can also minimize the disk
head movement.

Constraints and Indexes

When you declare a PRIMARY KEY or UNIQUE constraint, a unique index is created on one or
more columns, just as if you had used the CREATE INDEX command. The names of indexes that
are built to support these constraints are the same as the constraint names. In terms of internal
torage and maintenance of indexes, there is no difference between unique indexes created using
the CREATE INDEX command and indexes created to support constraints. The query optimizer
makes decisions based on the presence of the unique index rather than on the fact that a column
was declared as a primary key. How the index got there in the first place is irrelevant to the query
optimizer.

When you create a table that includes PRIMARY KEY or UNIQUE constraints, you can specify
whether the associated index will be clustered or nonclustered, and you can also specify the
fillfactor. Since the fillfactor applies only at the time the index is created, and since there is no
data when you first create the table, it might seem that specifying the fillfactor at that time is
completely useless. However, if after the table is populated you decide to use DBCC
DBREINDEX to rebuild all your indexes, you can specify a fillfactor of 0 to indicate that SQL
Server should use the fillfactor that was specified when the index was created. You can also
specify a fillfactor when you use ALTER TABLE to add a PRIMARY KEY or UNIQUE constraint to
a table, and if the table already had data in it, the fillfactor value is applied when you build the
index to support the new constraint.

If you check the documentation for CREATE TABLE and ALTER TABLE, you'll see that the
SORT_IN_TEMPDB option is not available for either command. It really doesn't make sense to
specify a sort location when you first create the table because there's nothing to sort. However,
the fact that you can't specify this alternate location when you add a PRIMARY KEY or UNIQUE
constraint to a table with existing data seems like an oversight. Also note that
SORT_IN_TEMPDB is not an option when you use DBCC DBREINDEX. Again, there's no reason
why it couldn't have been included, but it isn't available in this release.

The biggest difference between indexes created using the CREATE INDEX command and
indexes that support constraints is in how you can drop the index. The DROP INDEX command
allows you to drop only indexes that were built with the CREATE INDEX command. To drop
indexes that support constraints, you must use ALTER TABLE to drop the constraint. In addition,
to drop a PRIMARY KEY or UNIQUE constraint that has any FOREIGN KEY constraints
referencing it, you must first drop the FOREIGN KEY constraint. This can leave you with a
window of vulnerability while you redefine your constraints and rebuild your indexes. While the
FOREIGN KEY constraint is gone, an INSERT statement can add a row to the table that violates
your referential integrity.

One way to avoid this problem is to use DBCC DBREINDEX, which drops and rebuilds all your
indexes on a table in a single transaction, without requiring the auxiliary step of removing
FOREIGN KEY constraints. Alternatively, you can use the CREATE INDEX command with the
DROP_EXISTING option. In most cases, you cannot use this command on an index that supports
a constraint. However, there is an exception.

RDBMS Concepts using SQL Server 2000

 125

The following command attempts to rebuild the index on the title_id column of the titles table in
the pubs database:

CREATE CLUSTERED INDEX UPKCL_titleidind ON titles(title_id)
 WITH DROP_EXISTING

SQL Server returned this error message to me:

Server: Msg 1907, Level 16, State 1, Line 1
Cannot re-create index 'UPKCL_titleidind'. The new index definition
does not match the constraint being enforced by the existing index.

How would you have known that this index supported a constraint? First of all, the name includes
UPKCL, which is a big clue. However, the output of sp_helpindex tells us only the names of the
indexes, the property (clustered or unique), and the columns the index is on. It doesn't tell us if
he index supports a constraint. However, if we execute sp_help on a table, the output will tell us
that UPKCL_titleidind is a PRIMARY KEY constraint. The error message indicates that we can't
use the DROP_EXISTING clause to rebuild this index because the new definition doesn't match
the current index. We can use this command as long as the properties of the new index are
exactly the same as the old. In this case, we can rephrase the command as follows so that the
CREATE INDEX is successful:

CREATE UNIQUE CLUSTERED INDEX UPKCL_titleidind ON titles(title_id)
 WITH DROP_EXISTING

The Structure of Index Pages

Index pages are structured much like data pages. As with all other types of pages in SQL Server,
index pages have a fixed size of 8 KB, or 8192 bytes. Index pages also have a 96-byte header,
but just like in data pages, there is an offset array at the end of the page with two bytes for each
row to indicate the offset of that row on the page. However, if you use DBCC PAGE with style 1 to
print out the individual rows on an index page, the slot array is not shown. If you use style 2, it will
only print out all the bytes on a page with no attempt to separate the bytes into individual rows.
You can then look at the bottom of the page and notice that each set of two bytes does refer to a
byte offset on the page. Each index has a row in the sysindexes table, with an indid value of
either 1, for a clustered index, or a number between 2 and 250, indicating a nonclustered index.
An indid value of 255 indicates LOB data (text, ntext or image information). The root column value
contains a file number and page number where the root of the index can be found. You can then
use DBCC PAGE to examine index pages, just as you do for data pages.

The header information for index pages is almost identical to the header information for data
pages. The only difference is the value for type, which is 1 for data and 2 for index. The header of
an index page also has nonzero values for level and indexId. For data pages, these values are
both always 0.

There are basically three different kinds of index pages: leaf level for nonclustered indexes, node
(nonleaf) level for clustered indexes, and node level for nonclustered indexes. There isn't really a
separate structure for leaf level pages of a clustered index because those are the data pages,
which we've already seen in detail. There is, however, one special case for leaf-level clustered
index pages.

RDBMS Concepts using SQL Server 2000

 126

Clustered Index Rows with a Uniqueifier

If your clustered index was not created with the UNIQUE property, SQL Server adds a 4-byte field
when necessary to make each key unique. Since clustered index keys are used as bookmarks to
identify the base rows being referenced by nonclustered indexes, there needs to be a unique way
to refer to each row in a clustered index. SQL Server adds the uniquifier only when necessary—
that is, when duplicate keys are added to the table. We'll use the same table which we initially
used to illustrate the row structure of a table with all fixed-length columns. We'll create an
identical table with a different name, then add a clustered (nonunique) index to the table:

Clustered Index Rows with a Uniqueifier

If your clustered index was not created with the UNIQUE property, SQL Server adds a 4-byte field
when necessary to make each key unique. Since clustered index keys are used as bookmarks to
identify the base rows being referenced by nonclustered indexes, there needs to be a unique way
to refer to each row in a clustered index. SQL Server adds the uniquifier only when necessary—
that is, when duplicate keys are added to the table. We'll use the same table which we initially
used to illustrate the row structure of a table with all fixed-length columns. We'll create an
identical table with a different name, then add a clustered (nonunique) index to the table:

USE pubs
GO
CREATE TABLE Clustered_Dupes
 (Col1 char(5) NOT NULL,
 Col2 int NOT NULL,
 Col3 char(3) NULL,
 Col4 char(6) NOT NULL,
 Col5 float NOT NULL)
GO
CREATE CLUSTERED INDEX Cl_dupes_col1 ON Clustered_Dupes(col1)

The rows in syscolumns are without the clustered index. However, if you look at the sysindexes
row for this table, you'll notice something different.

SELECT first, indid, keycnt, name FROM sysindexes
WHERE id = object_id ('Clustered_Dupes')

RESULT:

first indid keycnt name
-------------- ------ ------ ---------------

0x000000000000 1 2 Cl_dupes_col1

The column called keycnt, which indicates the number of keys an index has, is 2. If we had
created this index using the UNIQUE qualifier, the keycnt value would be 1. If we had looked at
the sysindexes row before adding a clustered index, when the table was still a heap, the row for
the table would have had a keycnt value of 0. Add the initial row and then look at sysindexes
to find the first page of the table:

INSERT Clustered_Dupes VALUES ('ABCDE', 123, null, 'CCCC', 4567.8)
GO

RDBMS Concepts using SQL Server 2000

 127

SELECT first, root, id,indid FROM sysindexes
WHERE id = object_id('Clustered_Dupes')

RESULT:

first root id indid
---------- -------- --------- --------
0xB50500000100 0xB30500000100 1426104121 1

The first column tells me that the first page of the table is 1461 (0x05B5), so we can use DBCC
PAGE to examine that page. Remember to turn on trace flag 3604 prior to executing this
undocumented DBCC command.

DBCC TRACEON (3604)
GO
DBCC PAGE (5,1,1461, 1)

 We can reproduce it again here, in Figure 23. When you read the row output from DBCC PAGE,
remember that each two displayed characters represents a byte and that the bytes are displayed
from right to left within each group of 4 bytes in the output. For character fields, you can just treat
each byte as an ASCII code and convert that to the associated character. Numeric fields are
tored with the low-order byte first, so within each numeric field, we must swap bytes to determine
what value is being stored. Right now, there are no duplicates of the clustered key, so no extra
information has to be provided. However, if we add two additional rows, with duplicate values in
col1, the row structure changes:

INSERT Clustered_Dupes VALUES ('ABCDE', 456, null, 'DDDD', 4567.8)
INSERT Clustered_Dupes VALUES ('ABCDE', 64, null, 'EEEE', 4567.8)

Figure 23 Data row containing all fixed length columns, and a unique value in the clustered
key column

The first difference in the second two rows is that the bits in the first byte (TagA) are different. Bit
5 is on, giving TagA a value of 0x30, which means the variable block is present in the row.

RDBMS Concepts using SQL Server 2000

 128

Without this bit on, TagA would have a value of 0x10. The "extra" variable-length portions of the
second two rows are shaded in the figure. You can see that 8 extra bytes are added when we
have a duplicate row. In this case, the first 4 extra bytes are added because the uniqueifier is
considered a variable-length column. Since there were no variable-length columns before, SQL
Server adds 2 bytes to indicate the number of variable-length columns present. These bytes are
at offsets 33-34 in these rows with the duplicate keys and have the value of 1. The next 2 bytes,
(offsets 35-36) indicate the position where the first variable length column ends. In both these
rows, the value is 0x29, which converts to 41 decimal. The last 4 bytes (offsets 37-40) are the
actual uniqueifier. In the second row, which has the first duplicate, the uniquifier is 1. The third
row has a uniquifier of 2.

Index Space Requirements

Now you understand the structure and number of bytes in individual index rows, but you really
need to be able to translate that into overall index size. In general, the size of an index is based
on the size of the index keys, which determines how many index rows can fit on an index page
and the number of rows in the table.

RDBMS Concepts using SQL Server 2000

 129

B-Tree Size
When we talk about index size, we usually mean the size of the index tree. The clustered index
does include the data, but since you still have the data even if you drop the clustered index, we're
usually just interested in how much additional space the nonleaf levels require. A clustered
index's node levels typically take up very little space. You have one index row for each page of
table data, so the number of index pages at the level above the leaf (level 1) is the bytes available
per page divided by the index key row size, and this quotient divided into the number of data
pages. You can do a similar computation to determine the pages at level 2. Once you reach a
level with only one page, you can stop your computations because that level is the root.

Consider a table of 10,000 pages and 500,000 rows with a clustered key of a 5-byte fixed-length
character. As you saw in Figure 8-5, the index key row size is 12 bytes, so we can fit 674 (8096
bytes available on a page / 12 bytes per row) rows on an index page. Since we need index rows
to point to all 10,000 pages, we'll need 15 index pages (10000 / 674) at level 1. Now, all these
index pages need pointers at level 2, and since one page can contain 15 index rows to point to
these 15 pages, level 2 is the root. If our 10,000-page table also has a 5-byte fixed-length
character nonclustered index, the leaf-level rows (level 0) will be 11 bytes long as they will each
contain a clustered index key (5 bytes), a nonclustered index key (5 bytes) and 1 byte for the
status bits. The leaf level will contain every single nonclustered key value along with the
corresponding clustered key values. An index page can hold 736 index rows at this leaf level. We
need 500,000 index rows, one for each row of data, so we need 680 leaf pages. If this
nonclustered index is unique, the index rows at the higher levels will be 12 bytes each, so 674
index rows will fit per page, and we'll need two pages at level 1, with level 2 as the one root page.

So how big are these indexes compared to the table? For the clustered index, we had 16 index
pages for a 10,000-page table, which is less than 1 percent of the size of the table. We
frequently use 1 percent as a ballpark estimate for the space requirement of a clustered index,
even though you can see that in this case it's an overly large estimate. On the other hand, our
nonclustered index needed 683 pages for the 10,000-page table, which is about 6 percent
additional space. For nonclustered indexes, it is much harder to give a good ballpark figure.
Nonclustered index keys are frequently much larger, or even composite, so it's not unusual to
have key sizes of over 100n bytes. In that case, we'd need a lot more leaf level pages, and the
total nonclustered index size could be 30 or 40 percent of the size of the table. Sometime we can
see nonclustered indexes that are as big or bigger than the table itself. Once you have two or
three nonclustered indexes, you need to double the space to support these indexes. Remember
that SQL Server allows you to have up to 249 nonclustered indexes! Disk space is cheap, but is it
that cheap? You still need to plan your indexes carefully.

Actual vs. Estimated Size

The actual space used for tables or indexes, as opposed to the ballpark estimates I just
described, is stored in the sysindexes table. A column called rowcnt contains the number of data
rows in the table. A column called dpages contains, for a clustered index or a heap, the number
of data pages used; for all other indexes, dpages contains the number of index pages used. For
LOB data (text, ntext, or image), with an indid value of 255, dpages is 0. Sysindexes also has a
column called reserved, which, for a clustered index or a heap contains the number of data pages
reserved; for a nonclustered index, it contains the number of pages reserved for the index itself;
and for LOB data, reserved is a count of the pages allocated.

Finally, there is a column in sysindexes called used. For clustered indexes or heaps, it contains
the total number of pages used for all index and table data. For LOB data, used is the number of
LOB pages. For nonclustered indexes, used is the count of index pages. Because no specific
value is just the number of nonleaf, or nondata, pages in a clustered index, you must do

RDBMS Concepts using SQL Server 2000

 130

additional computations to determine the total number of index pages for a table, not including the
data.

The stored procedure sp_spaceused examines these values and reports the total size used by a
table. Keep in mind that these values in sysindexes are not updated every time a table or index is
modified. In particular, immediately after you create a table and after some bulk operations,
sp_spaceused might not accurately reflect the total space because the values in sysindexes are
not accurate.

You can force SQL Server to update the sysindexes data in two ways. The simplest way to force
the space used values to be updated is to ask for this when you execute the sp_spaceused
procedure. The procedure takes two optional parameters: the first is called @objname and is a
table name in the current database, and the second is called @updateusage, which can have a
value of TRUE or FALSE. If you specify TRUE, the data in sysindexes will be updated. The
default is FALSE.

Forcing SQL Server to update the space used data for a table called charge:

exec sp_spaceused charge, true

Here's the result:

name rows reserved data index_size unused
-------- --------- ------------ ----------- ------------ ---------
charge 100000 10328 KB 5384 KB 4696 KB 248 KB

Remember that after the first 8 pages are allocated to a table, SQL Server grants all future
allocations in units of 8 pages, called extents. The sum of all the allocations is the value of
reserved. It might be that only a few of the 8 pages in some of the extents actually have data in
them and are counted as used, so that the reserved value is frequently higher than the
used value. The data value is computed by looking at the data column in sysindexes for the
clustered index or heap and adding any LOB pages. The index_size value is computed by taking
the used value from sysindexes for the clustered index or heap, which includes all index
pages for all indexes. Because this value includes the number of data pages, which are at the
leaf level of the clustered index, we must subtract the number of data pages from used pages to
get the total number of index pages. The procedure sp_spaceused does all of its space reporting
in KB, which we can divide by 8 to get the number of pages. The unused value is then the leftover
amount after we subtract the data value and the index_size value from the reserved value.

You can also use the DBCC UPDATEUSAGE command to update the space information for
every table and index in sysindexes. Or, by supplying additional arguments, you can have the
values updated for only a single table, view, or index. In addition, DBCC UPDATEUSAGE gives
you a report of the changes it made. You might want to limit the command to only one table
because the command works by actually counting all the rows and all the pages in each table it's
interested in. For a huge database, this can take a lot of time. In fact, sp_spaceused with the
@updateusage argument set to TRUE actually calls DBCC UPDATEUSAGE and suppresses the
report of changes made.

The following command updates the space used information for every table in the current
database:

DBCC UPDATEUSAGE (0)

Here's some of the output I received when I ran this in the Northwind database:

RDBMS Concepts using SQL Server 2000

 131

DBCC UPDATEUSAGE: sysindexes row updated for table 'syscolumns' (index ID 2):
 USED pages: Changed from (2) to (5) pages.
 RSVD pages: Changed from (2) to (5) pages.
DBCC UPDATEUSAGE: sysindexes row updated for table 'Orders' (index ID 2):
 USED pages: Changed from (2) to (5) pages.
 RSVD pages: Changed from (2) to (5) pages.
DBCC UPDATEUSAGE: sysindexes row updated for table 'Orders' (index ID 3):
 USED pages: Changed from (2) to (5) pages.
 RSVD pages: Changed from (2) to (5) pages.

DBCC UPDATEUSAGE: sysindexes row updated for table 'Order Details' (index ID 3):
 USED pages: Changed from (2) to (6) pages.
 RSVD pages: Changed from (2) to (6) pages.

You can use this command to update both the used and reserved values in sysindexes. It's great
to have a way to see how much space is being used by a particular table or index, but what if
we're getting ready to build a database and we want to know how much space our data and
indexes will need? For planning purposes, it would be nice to know this information ahead of
time.

If you've already created your tables and indexes, even if they're empty, SQL Server can get
column and datatype information from the syscolumns system table, and it should be able to see
any indexes you've defined in the sysindexes table. There shouldn't be a need for you to type all
this information into a spreadsheet. The CD also includes a set of stored procedures you can use
o calculate estimated space requirements when the table and indexes have already been built.
The main procedure is called sp_EstTableSize, and it requires only two parameters: the table
name and the anticipated number of rows. The procedure calculates the storage requirements for
the table and all indexes by extracting information from the sysindexes, syscolumns, nd
systypes tables. The result is only an estimate when you have variable-length fields. The
procedure has no way of knowing whether a variable-length field will be completely filled, half full,
or mostly empty in every row, so it assumes that variable-length columns will be filled to the
maximum size. If you know that this won't be the case with your data, you can create a second
table that more closely matches the expected data. For example, if you have a varchar(1000)
field that you must set to the maximum because a few rare entries might need it but 99 percent of
your rows will use only about 100 bytes, you can create a second table with a varchar(100) field
and run sp_EstTableSize on that table.

Managing an Index

SQL Server maintains your indexes automatically. As you add new rows, it automatically inserts
them into the correct position in a table with a clustered index, and it adds new leaf-level rows to
your nonclustered indexes that will point to the new rows. When you remove rows, SQL Server
automatically deletes the corresponding leaf-level rows from your nonclustered indexes. Here
you'll see some specific examples of the changes that take place within an index as data
modification operations take place.

Types of Fragmentation

In general, you need to do very little in terms of index maintenance. However, indexes can
become fragmented. The fragmentation can be of two types. Internal fragmentation occurs when
space is available within your index pages—that is, when the indexes are not making the most

RDBMS Concepts using SQL Server 2000

 132

efficient use of space. External fragmentation occurs when the logical order of pages does not
match the physical order, or when the extents belonging to a table are not contiguous.

Internal fragmentation means that the index is taking up more space than it needs to. Scanning
the entire table involves more read operations than if no free space were available on your pages.
However, internal fragmentation is sometimes desirable—in fact, you can request internal
fragmentation by specifying a low fillfactor value when you create an index. Having room on a
page means that there is space to insert more rows without having to split a page. Splitting is a
relatively expensive operation and can lead to external fragmentation because when a page is
split, a new page must be linked into the indexes page chain, and usually the new page is not
contiguous to the page being split.

External fragmentation is truly bad only when SQL Server is doing an ordered scan of all or part
of a table or index. If you're seeking individual rows through an index, it doesn't matter where
those rows are physically located—SQL Server can find them easily. If SQL Server is doing an
unordered scan, it can use the IAM pages to determine which extents need to be fetched, and the
IAM pages list the extents in disk order, so the fetching can be very efficient. Only if the pages
need to be fetched in logical order, according to their index key values, do you need to follow the
page chain. If the pages are heavily fragmented, this operation is more expensive than if there
were no fragmentation.

Detecting Fragmentation

You can use the DBCC SHOWCONTIG command to report on the fragmentation of an index.
Here's the syntax:

DBCC SHOWCONTIG
 [({ table_name | table_id | view_name | view_id }
 [, index_name | index_id]
)
]
 [WITH { ALL_INDEXES
 | FAST [, ALL_INDEXES]
 | TABLERESULTS [, { ALL_INDEXES }]
 [, { FAST | ALL_LEVELS }]
 }
]

You can ask to see the information for all the indexes on a table or view or just one index, and
you can specify the object and index by name or by ID number. Alternatively, you can use the
ALL_INDEXES option, which provides an individual report for each index on the object,
regardless of whether a specific index is specified.

Here's some sample output from running a basic DBCC SHOWCONTIG on the order details table
in the Northwind database:

DBCC SHOWCONTIG scanning 'Order Details' table...
Table: 'Order Details' (325576198); index ID: 1, database ID: 6
TABLE level scan performed.
- Pages Scanned................................: 9
- Extents Scanned..............................: 6
- Extent Switches..............................: 5
- Avg. Pages per Extent........................: 1.5
- Scan Density [Best Count:Actual Count].......: 33.33% [2:6]

RDBMS Concepts using SQL Server 2000

 133

- Logical Scan Fragmentation: 0.00%
- Extent Scan Fragmentation: 16.67%
- Avg. Bytes Free per Page.....................: 673.2
- Avg. Page Density (full).....................: 91.68%

By default, DBCC SHOWCONTIG scans the page chain at the leaf level of the specified index
and keeps track of the following values:

• Average number of bytes free on each page (Avg. Bytes Free per Page)
• Number of pages accessed (Pages scanned)
• Number of extents accessed (Extents scanned)
• Number of times a page had a lower page number than the previous page in the scan

(This value for Out of order pages is not displayed, but it is used for additional
computations.)

• Number of times a page in the scan was on a different extent than the previous page in
• the scan (Extent Switches)

SQL Server also keeps track of all the extents that have been accessed, and then it determines
how many gaps are in the used extents. An extent is identified by the page number of its first
page. So, if extents 8, 16, 24, 32, and 40 make up an index, there are no gaps. If the extents are
8, 16, 24, and 40, there is one gap. The value in DBCC SHOWCONTIG's output called Extent
Scan Fragmentation is computed by dividing the number of gaps by the number of extents, so in
this example the Extent Scan Fragmentation is ¼, or 25 percent. A table using extents 8, 24, 40,
and 56 has 3 gaps, and its Extent Scan Fragmentation is ¾, or 75 percent. The maximum
number of gaps is the number of extents - 1, so Extent Scan Fragmentation can never be 100
percent.

The value in DBCC SHOWCONTIG's output called Logical Scan Fragmentation is computed by
dividing the number of Out Of Order Pages by the number of pages in the table. This value is
meaningless in a heap.

You can use either the Extent Scan Fragmentation value or the Logical Scan Fragmentation
value to determine the general level of fragmentation in a table. The lower the value, the less
fragmentation there is. Alternatively, you can use the value called Scan Density, which is
computed by dividing the optimum number of extent switches by the actual number of extent
switches. A high value means that there is little fragmentation. Scan Density is not valid if the
table spans multiple files, so all in all it is less useful than the other values.

You can use DBCC SHOWCONTIG to have the report returned in a format that can be easily
inserted into a table. If you have a table with the appropriate columns and datatypes, you can
execute the following:

INSERT INTO CONTIG_TABLE
 EXEC ('dbcc showcontig ([order details])
 with all_indexes, tableresults')

Here's a subset of the results:

ObjectName IndexId Level Pages Rows
----------------- ----------- ----------- ----------- -----------
Order Details 1 0 9 2155
Order Details 2 0 4 2155
Order Details 3 0 4 2155

RDBMS Concepts using SQL Server 2000

 134

Many more columns are returned if you specify TABLERESULTS. In addition to the values that
the nontabular output returns, you also get the values listed in Table 8-3.

Table 4 Additional columns returned when TABLERESULTS is specified.
Column Meaning
ObjectName Name of the table or view processed.
ObjectId ID of the object processed.
IndexName Name of the index processed (NULL for a heap).
IndexId ID of the index (0 for a heap).
Level Level of the index. Level 0 is the leaf (or data) level of the index. The

level number increases moving up the tree toward the index root. The
level is 0 for a heap. By default, only level 0 is reported. If you specify
ALL_LEVELS along with TABLERESULTS, you get a row for each level
of the index.

Pages Number of pages comprising that level of the index or the entire heap.
Rows Number of data or index records at that level of the index. For a heap,

this is the number of data records in the entire heap.
MinimumRecordSize Minimum record size in that level of the index or the entire heap.
MaximumRecordSize Maximum record size in that level of the index or the entire heap.
AverageRecordSize Average record size in that level of the index or the entire heap.
ForwardedRecords Number of forwarded records in that level of the index or the entire

heap.
Extents Number of extents in that level of the index or the entire heap.

One last option available to DBCC SHOWCONTIG is the FAST option. The command takes less
time to run when you specify this option, as you might imagine, because it gathers only data that
is available from the IAM pages and the nonleaf levels of the index, and it returns only these
values:

• Pages Scanned
• Extent Switches
• Scan Density
• Logical Scan Fragmentation

Since the level above the leaf has pointers to every page, SQL Server can determine all the page
numbers and determine the Logical Scan Fragmentation. In fact, it can also use the IAM pages to
determine the Extent Scan Fragmentation. However, the purpose of the FAST option is to
determine whether a table would benefit from online defragmenting, and since online
defragmenting cannot change the Extent Scan Fragmentation, there is little benefit in reporting it.

Removing Fragmentation

Several methods are available for removing fragmentation from an index. First, you can rebuild
he index and have SQL Server allocate all new contiguous pages for you. You can do this by sing
a simple DROP INDEX and CREATE INDEX, but I've already discussed some reasons why this s
not optimal. In particular, if the index supports a constraint, you can't use the DROP INDEX
ommand. Alternatively, you can use DBCC DBREINDEX, which can rebuild all the indexes on a
table in a single operation, or you can use the drop_existing clause along with CREATE INDEX.

The drawback of these methods is that the table is unavailable while the index is being rebuilt. If
you are rebuilding only nonclustered indexes, there is a shared lock on the table, which means
that no modifications can be made, but other processes can SELECT from the table. Of course,
they cannot take advantage of the index you're rebuilding, so the query might not perform as well

RDBMS Concepts using SQL Server 2000

 135

as it should. If you're rebuilding the clustered index, SQL Server takes an exclusive lock, and no
access is allowed at all.

SQL Server 2000 allows you to defragment an index without completely rebuilding it. In this
release, DBCC INDEXDEFRAG reorders the leaf level pages into physical order as well as
logical order, but using only the pages that are already allocated to the leaf level. It basically does
an in-place ordering, similar to a sorting technique called bubble-sort. This can reduce the logical
fragmentation to 0 to 2 percent, which means that an ordered scan through the leaf level will be
much faster. In addition, DBCC INDEXDEFRAG compacts the pages of an index, based on the
original fillfactor, which is stored in the sysindexes table. This doesn't mean that the pages always
end up with the original fillfactor, but SQL Server uses that as a goal. The process does try to
leave at least enough space for one average-size row after the defragmentation takes place. In
addition, if a lock cannot be obtained on a page during the compaction phase of DBCC
INDEXDEFRAG, SQL Server skips the page and doesn't go back to it. Any empty pages created
as a result of this compaction are removed.

DBCC INDEXDEFRAG(0, 'charge', 1)

Here's the output:

Pages Scanned Pages Moved Pages Removed
------------- ----------- -------------
673 668 12

The algorithm SQL Server uses for DBCC INDEXDEFRAG finds the next physical page in a file
belonging to the leaf level and the next logical page in the leaf level with which to swap it. It finds
the next physical page by scanning the IAM pages for that index. The single-page allocations are
not included in this release. Pages on different files are handled separately. The algorithm finds
the next logical page by scanning the leaf level of the index. After each page move, all locks and
latches are dropped and the key of the last page moved is saved. The next iteration of the
algorithm uses the key to find the next logical page. This allows other users to update the table
and index while DBCC INDEXDEFRAG is running.

Suppose the leaf level of an index consists of these pages, in this order:

47 22 83 32 12 90 64

The first step is to find the first physical page, which is 12, and the first logical page, which is 47.
These pages are then swapped, using a temporary buffer as a holding area. After the first swap,
the leaf level looks like this:

12 22 83 32 47 90 64

The next physical page is 22, which is the same as the next logical page, so no work is done. The
next physical page is 32, which is swapped with the next logical page, 83, to look like this:

12 22 32 83 47 90 64

After the next swap of 47 with 83, the leaf level looks like this:

12 22 32 47 83 90 64

The 64 is swapped with 83:

12 22 32 47 64 90 83

RDBMS Concepts using SQL Server 2000

 136

And finally, 83 and 90 are swapped:

12 22 32 47 64 83 90

Keep in mind that DBCC INDEXDEFRAG uses only pages that are already part of the index leaf
level. No new pages are allocated. In addition, the defragmenting can take quite a while on a
large table. You get a report every five minutes on the estimated percentage completed.

Using an Index

Hopefully, you're aware of at least some of the places that indexes can be useful in your SQL
Server applications. I'll list a few of the situations in which you can benefit greatly from indexes

Looking for Rows

The most straightforward use of an index is to help SQL Server find one or more rows in a table
that satisfy a certain condition. For example, if you're looking for all the customers who live in a
particular state (for example, your WHERE clause is WHERE state = 'WI'), you can use an index
on the state column to find those rows more quickly. SQL Server can traverse the index from the
root, comparing index key values to 'WI', to determine whether 'WI' exists in the table and then
find the data associated with that value.

Joining

A typical join tries to find all the rows in one table that match rows in anther table. Of course, you
can have joins that aren't looking for exact matching, but you're looking for some sort of
relationship between tables, and equality is by far the most common relationship. A query plan for
a join frequently starts with one of the tables, finds the rows that match the search conditions, and
then uses the join key in the qualifying rows to find matches in the other table. An index on the
join column in the second table can be used to quickly find the rows that match.

Sorting

A clustered index stores the data logically in sorted order. The data pages are linked together in
order of the clustering keys. If you have a query to ORDER BY the clustered keys or by the first
column of a composite clustered key, SQL Server does not have to perform a sort operation to
return the data in sorted order.

If you have a nonclustered index on the column you're sorting by, the sort keys themselves are in
order at the leaf level. For example, consider the following query:

SELECT firstname, lastname, state, zipcode
FROM customers
ORDER BY zipcode

The nonclustered index will have all the zip codes in sorted order. However, we want the data
pages themselves to be accessed to find the firstname and lastname values associated with the
zipcode. The query optimizer will decide if it's faster to traverse the nonclustered index leaf level

RDBMS Concepts using SQL Server 2000

 137

and from there access each data row or to just perform a sort on the data. If you're more
concerned with getting the first few rows of data as soon as possible and less concerned with the
overall time to return all the results, you can force SQL Server to use the nonclustered index with
the FAST hint.

Inverse Indexes

SQL Server allows you to sort in either ascending or descending order, and if you have a
clustered index on the sort column, SQL Server can use that index and avoid the actual
sorting.The pages at the leaf level of the clustered index are doubly linked, so SQL Server can
use a clustered index on lastname to satisfy this query

SELECT * FROM customers ORDER BY lastname DESC

as easily as it can use the same index for this query:

SELECT * FROM customers ORDER BY lastname

SQL Server 2000 allows you to create descending indexes. Why would you need them if an
ascending index can be scanned in reverse order? The real benefit is when you want to sort with
a combination of ascending and descending order. For example, take a look at this query:

SELECT * FROM employees
ORDER BY lastname, salary DESC

The default sort order is ascending, so the query wants the names ordered alphabetically by last
name, and within duplicate last names, the rows should be sorted with the highest salary first and
lowest salary last. The only kind of index that can help SQL Server avoid actually sorting the data
is one with the lastname and salary columns sorted in opposite orders, such as this one:

CREATE CLUSTERED INDEX name_salary_indx
ON employees (lastname, salary DESC)

If you execute sp_help or sp_helpindex on a table, SQL Server will indicate whether the index is
descending by placing a minus (-) after the index key. Here's a subset of some sp_helpindex
output:

index_name index_description index_keys
--------------------- -------------------------------- -------------------
lastname_salary_indx nonclustered located on PRIMARY LastName, Salary(-)

Grouping

One way that SQL Server can perform a GROUP BY operation is by first sorting the data by the
grouping column. For example, if you want to find out how many customers live in each state, you
can write a query with a GROUP BY state clause. A clustered index on state will have all the rows
with the same value for state in logical sequence, so the sorting and grouping operations will be
very fast.

Maintaining Uniqueness

RDBMS Concepts using SQL Server 2000

 138

Creating a unique index (or defining a PRIMARY KEY or UNIQUE constraint that builds a unique
index) is by far the most efficient method of guaranteeing that no duplicate values are entered
into a column. By traversing an index tree to determine where a new row should go, SQL Server
can detect within a few page reads that a row already has that value. Unlike all the other uses of
indexes described in this section, using unique indexes to maintain uniqueness isn't just one
option among others. Although SQL Server might not always traverse a particular unique index to
determine where to try to insert a new row, SQL Server will always use the existence of a unique
index to verify whether a new set of data is acceptable.

Summary

We now know how SQL Server indexes organize the data on disk and help you access your data
more quickly than if no indexes existed. Indexes are organized as B-trees, which means that you
will always traverse through the same number of index levels when you traverse from the root to
any leaf page. To use an index to find a single row of data, SQL Server never has to read more
pages than there are levels in an appropriate index.

You also learned about all the options available when you create an index, how to determine the
amount of space an index takes up, and how to predict the size of an index that doesn't have any
data yet.

Indexes can become fragmented in SQL Server 2000, but the performance penalty for
fragmentation is usually much less than in earlier versions of SQL Server. When you want to
defragment your indexes, you have several methods to choose from, one of which allows the
index to continue to be used by other operations, even while the defragmentation operation is
going on.

Finally, you learned about some of the situations in which you can get the greatest performance
gains by having the appropriate indexes on your tables.

RDBMS Concepts using SQL Server 2000

 139

Views

Introduction

You can use a view to save almost any SELECT statement as a separate database object. This
SELECT statement enables you to create a result set that you can use just as you would any
table. In a sense, you can think of a view as a "virtual" table. Views do not actually contain data-
they simply consist of SELECT statements for extracting data from the actual tables in your
database.
The tables on which you base a view are referred to as base tables. You can use a view to create
a subset of a base table by selecting only some of its columns, or you can use a view to display
columns from multiple base tables by using a join statement.

Why Use Views ?

One of the best advantages of views is that you can give your server's users permissions only to
the view itself and not the underlying data. Thus, a view provides you with additional security. You
can also use views to enable users to see some but not all columns in a table-so if a table
contains a column with sensitive information, you can use a view to restrict users from seeing that
column. For example, if you have an employee table that contains employee names, addresses,
and salaries, you can create a view to enable users to see the employee names and addresses,
but not salaries.
You can also use views as a way to hide a complex database design. If you have normalized the
design of your database such that data is spread out over multiple tables, it can be difficult for
users to learn how to retrieve data from those tables. By using views, you can relieve users from
having to learn how to write SQL statements to join the tables.

Creating a View

You create a view by using the CREATE VIEW Transact-SQL statement. You can include a total
of 1,024 columns in a view. You cannot combine the CREATE VIEW with other SQL statements
in the same batch. If you want to use other statements (such as USE database) with the CREATE
VIEW statement, you must follow those statements with the GO keyword.

Use the following syntax to create a view:

USE database
GO
CREATE VIEW view_name AS
SELECT column_list
FROM table_name

Replace view_name with the name you want to assign to the view. You should come up with a
naming convention for your views that makes it easier for you to differentiate between tables and
views. For example, you might try using "view" as part of all of your view names. Replace
column_list with the list of columns you want to include in the view, and table_name with the
name of the table on which you want to base the view.

RDBMS Concepts using SQL Server 2000

 140

If you want to create a view that consists only of each customer's name and phone number, use
the following syntax:

USE movies
GO

CREATE VIEW dbo.CustView AS
SELECT lname, fname, phone
FROM customer

You can optionally specify a list of column names so that SQL Server will use these names for
the columns in the view instead of the column names from the table in the SELECT portion of the
statement. For example, in the following query, the (lname, fname) clause assigns these names
to the columns in the view instead of the names au_lname, au_fname:

USE pubs
GO
CREATE VIEW dbo.PracticeView
(lname, fname)
AS
SELECT au_lname, au_fname
FROM authors

Restrictions

You cannot include the ORDER BY, COMPUTE, or COMPUTE BY clauses in the SELECT
statement you use to create a view. In addition, you cannot use the SELECT INTO keywords.
Your view cannot refer to temporary tables. For example, the following SQL statement is invalid:

CREATE VIEW dbo.TestView AS
SELECT col1, col2
FROM #temp_table

Permissions
If your users have permissions to the database in which you create the view, they will inherit
permissions to the view itself. However, if your users do not inherit permissions to the view, you
must assign them permissions or they will not be able to access the view. You do not have to give
users permissions to the base tables on which you create a view-you just have to give users
permissions to the view itself provided you are both the owner of the table and the view.

Ownership
The views that you create depend on the base tables (or other views). SQL Server refers to
objects that depend on other objects as dependent. Objects can have either the same or different
owners. If the same owner owns both the view and the table, that owner (typically you) needs
only to assign users permissions to the view. Likewise, when users access your view, SQL
Server need check users permissions only for that view.
If you (or another user with sufficient permissions) create a view based on a table for which you
are not the owner, SQL Server considers the ownership chain to be "broken." Each object's
owner can change users' permissions; thus, SQL Server must check users' permissions for the

RDBMS Concepts using SQL Server 2000

 141

view and all objects on which the view depends. Checking users' permissions for each object
hurts your server's performance. Microsoft recommends that you do not break the ownership
chain (meaning create views with different owners from the base tables) in order to avoid
degrading the performance of your server.

To avoid breaking the ownership chain, you should explicitly specify the owner of the view when
you create it. You should typically make the database owner (dbo) user the owner of all views
along with all of the other objects in a database.

You make the dbo user the owner of a view by using the following syntax:

CREATE VIEW dbo.view_name AS
SELECT column_list
FROM table_name

Nested views

SQL Server enables you to create a view based on another view (this is also called a nested
view). However, nested views can be much more difficult to troubleshoot because you must
search through multiple view definitions to find a problem. For this reason, Microsoft recommends
that you create separate views instead.

Creating a View based on Joined Tables

You can create a view based on joined tables by using a table join as part of your SELECT
statement. You can use the following syntax to create a view based on a table join:

CREATE VIEW view_name
(column_list)
AS
SELECT columns
FROM table1 JOIN table2
ON join_condition

If you want to create a view that contains the title of each book in the pubs database, along with
the author's royalty percentage for that book, you could use the following query:

USE pubs
GO
CREATE VIEW dbo.TitleRoyaltyView
AS
SELECT t.title, r.royalty
FROM titles AS t JOIN roysched AS r
ON t.title_id JOIN r.title_id

You should base views only on inner joins, not outer joins. While SQL Server enables you to
specify an outer join in the SELECT statement, you will get unpredictable results.

RDBMS Concepts using SQL Server 2000

 142

SQL Server frequently returns null values for the inner table in the outer join.

Steps to create views from joined tables………..
Step 1:

Step 2:

RDBMS Concepts using SQL Server 2000

 143

Step 3:

Step 4:

RDBMS Concepts using SQL Server 2000

 144

Step 5:

Step 6:

RDBMS Concepts using SQL Server 2000

 145

RDBMS Concepts using SQL Server 2000

 146

Displaying view definitions

You can use the following system views to display information about a database's views.

To view a list of views defined in a database, you can use the following syntax:

SELECT *
FROM information_schema.tables
WHERE table_type = v̀iew'

To view the SELECT statement that makes up a view, use the sp_helptext stored procedure. Use
the following syntax:

sp_helptext view_name

Preventing users from displaying view definitions

SQL Server stores a view's definition in the syscomments table; however, you should not delete
the definition from this table as a technique for hiding the view definition. Instead, you should use
encryption. (Although you can delete the definition of the view and it will still work, Microsoft
recommends that you not delete it from syscomments to avoid problems when you upgrade to
future versions of SQL Server.)

You can optionally add the WITH ENCRYPTION operator to prevent users from reading a view's
definition, as follows:

CREATE VIEW view_name
WITH ENCRYPTION
AS
select_statement

Modifying a view

You can alter a view by either dropping and re-creating it, or by using the ALTER VIEW
statement. If you drop a view, you must re-create any permissions assignments when you re-
create the view. In contrast, if you change a view by using the ALTER VIEW statement, the view

RDBMS Concepts using SQL Server 2000

 147

retains whatever permissions you had assigned to your users. You can use the following syntax
to change an existing view:

ALTER VIEW view_name
(column_list)
AS
select_statement

If you created the view with the WITH ENCRYPTION operator, you must include that option in the
ALTER VIEW statement.

Dropping a view

You drop a view by using the DROP VIEW statement. When you delete a view, SQL Server
automatically deletes the view definition and any permissions you have assigned to users for it. If
you delete a table that is referenced by a view, SQL Server does not automatically drop the view.
Thus, you must manually drop the view. You can use the sp_depends stored procedure to
determine if a table has any dependent views by using the following syntax:

sp_depends object_name

You must be the owner of a view to delete it. However, if you are a member of the sysadmins
server role or the database owner database role, you can drop a view that is owned by another
user by specifying the owner's name in the DROP VIEW statement.

Use the following syntax to delete a view:

DROP VIEW [owner.]view_name

Using views to work with data

You can insert, update, and delete rows from a table by using a view. Note that views do not
contain the actual data in a table-instead, views are simply windows to the data in the table. Note:
If you have configured any of the columns in the tables on which the view is based to not permit
nulls, and these columns are not contained in the view, you will not be able to insert rows into the
table. Depending on the update statement, you might not be able to change the table either. You
cannot modify the data in more than one table through a view. If a view is based on joined tables,
you can modify the data in only one of the joined tables, not both. If you want to modify the data
in both tables on which a view is based, you will need to write separate statements for modifying
the data in each table.
Because views are essentially windows to your tables, you cannot insert, update, or delete rows if
your statements will violate data integrity. For example, the rental and rental_detail tables in the
ovies database are linked together in a primary key to foreign key relationship based on the
invoice_num column. Thus, you cannot change a value in the invoice_num column in either table,
nor can you change it through a view.

Use the following syntax to insert data into a table by using a view:

INSERT INTO view_name
VALUES(value_list)

RDBMS Concepts using SQL Server 2000

 148

Replace the value_list with a list of values you want to insert into the columns contained in the
view.

Use the following syntax to update data through a view:

UPDATE view_name
SET column_name = value
WHERE condition

Likewise, you can use the following syntax to delete rows through a view:

DELETE FROM view_name
WHERE condition

1. What are some advantages of using views?

Views help provide additional security as you can give your server's users permissions only to the
view itself and not the underlying data.With views you can restrict users from seeing sensitive
information. Views can also be used as a way to hide a complex database design.

2. You would like to prevent anyone from reading the statement you used to build a view. What
should you do?

You can prevent users from displaying a view definition by encrypting it. You encrypt a view
definition by adding the WITH ENCRYPTION clause after the CREATE VIEW statement as
follows:

CREATE VIEW view_name
WITH ENCRYPTION
AS
SELECT statement

RDBMS Concepts using SQL Server 2000

 149

Programming with Transact-SQL

Microsoft Transact-SQL allows you to use standard SQL as a programming language to write
logic that can execute within the database engine. This extremely powerful capability is one of the
keys to the success and growth of Microsoft SQL Server. Transact-SQL simplifies application
development and reduces the amount of conversation necessary between the client application
and the server by allowing more code to be processed at the server.
The SELECT statement, which is the foundation for effective use of Transact-SQL. Before
reading any further, be sure you have a good understanding of the concepts presented in that
chapter. These extensions allow you to easily write complex routines entirely in SQL, and they
provide the basis for the additional power of Transact-SQL over standard SQL. Later in this
chapter, you’ll see some extensive examples that sometimes use Transact-SQL in nonintuitive
ways, but it will be far from exhaustive coverage of what is possible using the Transact-SQL
language.

Transact-SQL as a Programming Language

Is Transact-SQL really a programming language? On the one hand, Microsoft doesn't claim that
Transact-SQL is an alternative to C, C++, Microsoft Visual Basic, COBOL, Fortran, or such 4GL
development environments as Sybase PowerBuilder or Borland Inprise Delphi. You'd be hard-
pressed to think of a substantial application that you could write entirely in Transact-SQL, and
every one of those other languages or tools exists to do exactly that. Also, Transact-SQL offers
no user interface and no file or device I/O, and the programming constructs are simple and
limited.
On the other hand, you can argue that Transact-SQL is a specialized language that is best used
in addition to one of those other languages or tools. It allows SQL Server to be programmed to
execute complex tasks such as declaring and setting variables, branching, looping, and error
checking, without the need for code to be written in another language. You can write reusable
routines that you subsequently invoke and pass variables to. You can introduce bugs if you make
an error in logic or syntax. Your Transact-SQL code can quickly get so complicated that you'll be
glad you can use the same debugger to debug Transact-SQL routines that you use for C, C++,
and Java development.
With Transact-SQL routines, conditional logic executes within the SQL Server engine and even
within an executing SQL statement. This can greatly improve performance—the alternative would
be message passing between the client process and the server. In today's increasingly
networked world, reducing round-trip conversations is a key to developing and deploying efficient
applications. Some might claim that the emergence of the Internet makes client/server computing
irrelevant. But in fact, the typically slow network conditions found in Internet applications make
client/server computing more important—operations should be written so that the client/server
conversation is minimized. The best way to do this is to use the programming aspects of
Transact-SQL to let whole routines execute remotely, without the need for intermediate
processing at the client. The corresponding performance gains are phenomenal. In addition, by
having SQL Server, rather than the application, handle the database logic, applications can often
better insulate themselves from change. An application can execute a procedure simply by calling
it and passing some parameters, and then the database structure or the procedure can change
radically while the application remains entirely unaffected. As long as the inputs and outputs of
the procedure are unchanged, the application is shielded from underlying changes to the
database. The ability to encapsulate the database routines can result in a more efficient
development environment for large projects in which the application programmers are often
distinct from the database experts.

RDBMS Concepts using SQL Server 2000

 150

Programming at Multiple Levels
In the early days of database management systems, a single computer handled all processing.
This was what we now call the one-tier model. The advent of client/server computing introduced
the classic two-tier model: a server receiving requests from and providing data to a separate
client. The newest approach, the three-tier model, places an intermediate layer between
the database server and the client application. Figure 24 shows the two-tier client/server model,
and Figure 25 shows the three-tier model, which some programmers find preferable for some
applications.
Figure 24 Two Tier Data Model figure 25 Three tier Data Model

The two-tier model has a client (first tier) and a server (second tier); the client handles application
and presentation logic, and the server handles data services and business services. The two-tier
model uses the so-called fat client—the client does a large amount of application
rocessing locally. Many solutions are deployed using this topology; certainly the lion's share of
today's non-Internet client/server solutions are two-tier.

In the three-tier model, a thin client handles mostly presentation tasks. Supporters of the three-
tier approach point out that this model allows the client computer to be less powerful; allows a

RDBMS Concepts using SQL Server 2000

 151

variety of client operating environments (obviously the case with Internet browsers); and reduces
the complexity of installing, configuring, and maintaining software at the client. The client
connects to an application server that handles the application process. The application server
then connects to the database server, handling data services. The application server is typically a
more powerful machine than the client, and it handles all the issues of application code
maintenance, configuration, operations, and so on.

Presumably, far fewer application servers exist than clients; therefore, server costs and issues
should be reduced in the three-tier model. (The three tiers are logical concepts; the actual
number of computers involved might be more or less than three.) Typically, you're part of a three-
tier model when you use the Internet with a browser and access a Web page residing on an
Internet server that performs database work. An example of a three-tier application is a mail-order
company's Web page that checks current availability by using ODBC calls to access its inventory
in SQL Server.

Both two-tier and three-tier solutions have advantages and disadvantages, and each can be
viewed as a potential solution to a given problem. The specifics of the problem and the
constraints imposed by the environment (including costs, hardware, and expertise of both the
development staff and the user community) should drive the solution's overall design. However,
some people claim that a three-tier solution means that such capabilities as stored procedures,
rules, constraints, or triggers are no longer important or shouldn't be used. In a three-tier solution,
the middle tier doing application logic is still a client from the perspective of the database services
(that is, SQL Server). Consequently, for that tier, it's still preferable that remote work be done
close to the data. If the data can be accessed by servers other than the application server,
integrity checking must be done at the database server as well as in the application. Otherwise,
you've left a gaping hole through which the integrity checks in the application can be
circumvented.

The client sends the commands and processes the results, and it makes no difference to SQL
Server whether an application server process does this or whether the process that the end user
is running directly does it. The benefits of the programmable server provide much more efficient
network use and better abstraction of data services from the application and application server.

Three-Tier Solution That Works

Perhaps the single most successful three-tier solution available today is R/3 from SAP. The
financial and operations capabilities that R/3 provides use a three-tier model, with a terminal-like
interface connected to the R/3 application server that then accesses Microsoft SQL Server. The
R/3 application server wisely and heavily uses stored procedures that provide both performance
gains and development efficiency.

Transact-SQL Programming Constructs

Transact-SQL extends standard SQL by adding many useful programming constructs. These
constructs will look familiar to developers experienced with C/C++, Basic, Visual Basic, Fortran,
Java, Pascal, and similar languages. The Transact-SQL extensions are wonderful additions to the
original SQL standard. Before the extensions were available, requests to the database were
always simple, single statements. Any conditional logic had to be provided by the calling
application. With a slow network or via the Internet, this would be disastrous, requiring many trips
across the network—more than are needed by simply letting conditions be evaluated at the
server and allowing subsequent branching of execution.

RDBMS Concepts using SQL Server 2000

 152

Variables

Without variables, a programming language wouldn't be particularly useful. Transact-SQL is no
exception. Variables that you declare are local variables, which have scope and visibility only
within the batch or stored procedure in which you declare them. (The next chapter discusses the
details of batches and stored procedures.) In code, the single @ character designates a local
variable. SQL Server 2000 introduces the ability to store and retrieve session context information,
which allows information to be available throughout a connection; in any stored procedure,
function, or trigger; and across batches. You can use this session context information like a
session variable, with a scope broader than that of SQL Server's local variables but not as broad
as that of a true global variable.
Transact-SQL has no true global variables that allow information to be shared across
connections. Older documentation refers to certain parameterless system functions as global
variables because they're designated by @@, which is similar to the designation for local
variables.
User-declared global variables would be a nice enhancement that we might see in a future
release. Until then, temporary tables provide a decent alternative for sharing values among
connections.

Local Variables

You declare local variables at the beginning of a batch or a stored procedure. You can
subsequently assign values to local variables with the SELECT statement or the SET statement,
using an equal (=) operator. The values you assign using the SET statement can be constants,
other variables, or expressions. When you assign values to a variable using a SELECT
statement, you typically select the values from a column in a table. The syntax for declaring and
using the variables is identical, regardless of the method you use to assign the values to the
variable. In the following example, a variable is declared, assigned it a value using the SET
statement, and then used that variable in a WHERE clause:

DECLARE @limit money
SET @limit = $10
SELECT * FROM titles
WHERE price <= @limit

However, you typically use SELECT when the values to be assigned are found in a column of a
table. A SELECT statement used to assign values to one or more variables is called an
assignment SELECT. You can't combine the functionality of the assignment SELECT and a
"regular" SELECT in the same statement. That is, if a SELECT statement is used to assign
values to variables, it can't also return values to the client as a result set. In the following simple
example, two variables are declared, assigned values to them from the roysched table, and then
we would select their values as a result set:

DECLARE @min_range int, @hi_range int -- Variables declared
SELECT @min_range=MIN(lorange),
 @hi_range=MAX(hirange) FROM roysched -- Variables assigned
SELECT @min_range, @hi_range -- Values of variables
 returned as result

A single DECLARE statement can declare multiple variables. When you use a SELECT
statement for assigning values, you can assign more than one value at a time. When you use
SET to assign values to variables, you must use a separate SET statement for each variable.

RDBMS Concepts using SQL Server 2000

 153

The following SET statement returns an error:

SET @min_range = 0, @hi_range = 100
Be careful when you assign variables by selecting a value from the database—you want to
ensure that the SELECT statement will return only one row. It's perfectly legal to assign a value to
a variable in a SELECT statement that will return multiple rows, but the variable's value might not
be what you expect: no error message is returned, and the variable has the value of the last row
returned.

Suppose that the following stor_name values exist in the stores table of the pubs database:

stor_name

Eric the Read Books
Barnum's
News & Brews
Doc-U-Mat: Quality Laundry and Books
Fricative Bookshop
Bookbeat

The following assignment runs without error but is probably a mistake:

DECLARE @stor_name varchar(30)
SELECT @stor_name=stor_name FROM stores

The resulting value of @stor_name is the last row, Bookbeat. But consider the order returned,
without an ORDER BY clause, as a chance occurrence. Assigning a variable to a SELECT
statement that returns more than one row usually isn't intended, and it's probably a bug
introduced by the developer. To avoid this situation, you should qualify the SELECT statement
with an appropriate WHERE clause to limit the result set to the one row that meets your criteria.
Alternatively, you can use an aggregate function, such as MAX, MIN, or SUM, to limit the number
of rows returned. Then you can select only the value you want. If you want the assignment to be
to only one row of a SELECT statement that might return many rows (and it's not important which
row that is), you should at least use SELECT TOP 1 to avoid the effort of gathering many rows,
with all but one row thrown out. (In this case, the first row would be returned, not the last. You
could use ORDER BY to explicitly indicate which row should be first.) You might also consider
checking the value of @@ROWCOUNT immediately after the assignment and, if it's greater than
1, branch off to an error routine.
Also be aware that if the SELECT statement assigning a value to a variable doesn't return any
rows, nothing will be assigned. The variable will keep whatever value it had before the
assignment SELECT statement was run. For example, suppose we use the same variable twice
to find the first names of authors with a particular last name:

DECLARE @firstname varchar(20)
SELECT @firstname = au_fname
FROM authors
WHERE au_lname = 'Greene'
SELECT @firstname -- Return the first name as a result
SELECT @firstname = au_fname
FROM authors
WHERE au_lname = 'Ben-Gan'
SELECT @firstname -- Return the first name as a result

RDBMS Concepts using SQL Server 2000

 154

If you run the previous code, you'll see the same first name returned both times because no
authors with the last name of Ben-Gan exist, at least not in the pubs database!

You can also assign a value to a variable in an UPDATE statement. This approach can be useful
and more efficient than using separate statements to store the old value of a column and assign it
a new value. The following UPDATE will reduce the price of one book by 20 percent, and save
the original price in a variable:

DECLARE @old_price money

UPDATE title
SET @old_price = price = price * 0.8
WHERE title_id = 'PC2091'

A variable can be assigned a value from a subquery, and in some cases it might look like there's
no difference between using a subquery and a straight SELECT. For example, the following two
batches return exactly the same result set:

-- First batch using a straight SELECT:
DECLARE @firstname varchar(20)
SELECT @firstname = au_fname
FROM authors
WHERE au_lname = 'Greene'
SELECT @firstname

-- Second batch using a subquery:

DECLARE @firstname varchar(20)
SELECT @firstname = (SELECT au_fname
FROM authors
WHERE au_lname = 'Greene')
SELECT @firstname
However, if we leave off the WHERE clause, these two batches will behave very differently. As
we saw earlier in the example selecting from the stores table, the first batch will leave the variable
with the value that the last row supplied:
DECLARE @firstname varchar(20)
SELECT @firstname = au_fname
FROM authors
SELECT @firstname

RESULT:

Akiko

This one row is returned because the assignment to the variable is happening for every row that
the query would return. With no WHERE clause, every row in the table is returned, and for every
row, the first name value is assigned to the variable, overriding whatever value was assigned by
the previous row returned. We are left with the value from the last row because there are no more
values to override that one.

However, when a subquery is used and the WHERE clause is ignored, the result is very
different:

DECLARE @firstname varchar(20)
SELECT @firstname = (SELECT au_fname
FROM authors)

RDBMS Concepts using SQL Server 2000

 155

SELECT @firstname

RESULT:

Server: Msg 512, Level 16, State 1, Line 0
Subquery returned more than 1 value. This is not permitted when the
subquery follows =, !=, <, <= , >, >= or when the subquery is used
as an expression.

NULL

In this case, the query returns an error. When you use a subquery, the entire subquery is
processed before any assignment to the variable is made. The subquery's result set contains 23
rows, and then all 23 rows are used in the assignment to the variable. Since we can assign only a
single value to a variable, the error message is generated.

Session Variables

SQL Server 2000 allows you to store and retrieve session-level context information by directly
querying the sysprocesses table in the master database. Normally it is recommended that you
never access the system tables directly, but for this release, direct access of sysprocesses is the
only way to retrieve this information. A construct is supplied for setting this information, but you
have nothing other than direct system table access for retrieving it.
The sysprocesses table in the master database in SQL Server 2000 has a 128-byte field called
context_info of type binary, which means you have to manipulate the data using hexadecimal
values. You can use the entire column to store a single value or, if you're comfortable with
manipulating binary values, you can use different groups of bytes for different purposes. The
following statements store the price of one particular book in the context_info column:

DECLARE @cost money
SELECT @cost = price FROM titles
WHERE title_id = 'bu1032'
SET context_info @cost

If we stored this value in a local variable, it would have the scope of only a single query batch and
we wouldn't be able to come back after executing several more batches and check the value. But
storing it in the sysprocesses table means that the value will be available as long as my
connection is active. The sysprocesses table has one row for each active process in SQL Server,
and each row is assigned a unique Server Process ID (spid) value. A system function @@spid
returns the process ID for the current connection. Using @@spid, we can find the row in
sysprocesses that contains the context_info value.

Using SET context_info, we can assign a money value to the binary column. If you check the
documentation for the CONVERT function, you'll see that money is implicitly convertible to binary.
For convenience, in Figure 26 we have reproduced the chart that shows which datatypes are
implicitly and explicitly convertible.

If, instead, we had tried to assign a character value to CONTEXT_INFO, we would have received
an error message because the chart in Figure 10-3 tells us that conversion from character to
binary must be done explicitly. The SET CONTEXT_INFO statement stores the assigned value in
the fewest number of bytes, starting with the first byte. So we can use the SUBSTRING function
to extract a value from the context_info column, and since the money datatype is stored in 8
bytes, we need to get the first 8 bytes of the column. we can then convert those first 8 bytes to
money:

RDBMS Concepts using SQL Server 2000

 156

SELECT convert(money, substring(context_info, 1, 8))
FROM master..sysprocesses
WHERE spid = @@spid

If we hadn't taken only the first 8 bytes of the context_info field, as shown below, and tried to
convert that directly to money, SQL Server would have assumed that the money value was in the
last 8 bytes of the 128-byte field, and return a 0.

SELECT convert(money, context_info)
FROM master..sysprocesses
WHERE spid = @@spid

figure 26 Conversion table from SQL server Documentation

Since the context_info column is 128 bytes long, there's lot of room to work with. We can store
another price in the second set of 8 bytes if we are careful. We need to take the first 8 bytes and
concatenate them to the second price value after converting it to hexadecimal. Concatenation
works for hexadecimal values the same way as it does for character strings, and the operator is
the plus (+):

DECLARE @cost money, @context binary(128)
SELECT @cost = price FROM titles
 WHERE title_id = 'ps2091'
SELECT @context =
 convert(binary(8),context_info) + convert(binary(8), @cost)

RDBMS Concepts using SQL Server 2000

 157

FROM master..sysprocesses
WHERE spid = @@spid
SET context_info @context
Now the second 8 bytes contains the second price, and if we use the SUBSTRING function
appropriately, we can extract either price value from the context_info column:

SELECT First_price = convert(money, substring(context_info, 1, 8))
FROM master..sysprocesses
WHERE spid = @@spid

SELECT Second_price = convert(money, substring(context_info, 9, 8))
FROM master..sysprocesses
WHERE spid = @@spid

Control-of-Flow Tools

Like any programming language worth its salt, Transact-SQL provides a decent set of control-of-
flow tools. (True, Transact-SQL has only a handful of tools—perhaps not as many as you'd like—
but they're enough to make it dramatically more powerful than standard SQL.) The control-of-flow
tools include conditional logic (IF…ELSE and CASE), loops (only WHILE, but it comes with
CONTINUE and BREAK options), unconditional branching (GOTO), and the ability to return a
status value to a calling routine (RETURN). Table 10-1 presents a quick summary of these
control-of-flow constructs.

Table 5 Control-of-flow constructs in Transact-SQL

RDBMS Concepts using SQL Server 2000

 158

CASE

The CASE expression is enormously powerful. Although CASE is part of the ANSI SQL-92
specification, it's not required for ANSI compliance certification, and few database products other
than Microsoft SQL Server have implemented it. If you have experience with an SQL database
system other than Microsoft SQL Server, chances are you haven't used CASE. If that's the case
(pun intended), you should get familiar with it now. It will be time well spent. CASE was added in
version 6, and once you get used to using it, you'll wonder how SQL programmers ever managed
without it.
CASE is a conceptually simpler way to do IF-ELSE IF-ELSE IF-ELSE IF-ELSE_type operations.
It's roughly equivalent to a switch statement in C. However, CASE is far more than shorthand for
IF—in fact, it's not really even that. CASE is an expression, not a control-of-flow keyword, which
means that it can be used only inside other statements. You can use CASE in a SELECT
statement in the SELECT list, in a GROUP BY clause, or in an ORDER BY clause. You can use it
in the SET clause of an UPDATE statement. You can include CASE in the values list for an
INSERT statement. You can also use CASE in a WHERE clause in any SELECT, UPDATE, or
DELETE statement. Anywhere that Transact-SQL expects an expression, you can use CASE to
determine the value of that expression.
Here's a simple example of CASE. Suppose we want to classify books in the pubs database by
price. We want to segregate them as low-priced, moderately priced, or expensive. And we'd like
to do this with a single SELECT statement and not use UNION. Without CASE, we can't do it.
With CASE, it's a snap:

SELECT
title,
price,
'classification'=CASE
 WHEN price < 10.00 THEN 'Low Priced'
 WHEN price BETWEEN 10.00 AND 20.00 THEN 'Moderately Priced'
 WHEN price > 20.00 THEN 'Expensive'
 ELSE 'Unknown'
 END
FROM titles

A NULL price won't fit into any of the category buckets.

Here are the abbreviated results.

title price classification
------------------------------------- ------ -----------------
The Busy Executive's Database Guide 19.99 Moderately Priced
Cooking with Computers: Surreptitious 11.95 Moderately Priced
Balance Sheets
You Can Combat Computer Stress! 2.99 Low Priced
Straight Talk About Computers 19.99 Moderately Priced
Silicon Valley Gastronomic Treats 19.99 Moderately Priced

The Gourmet Microwave 2.99 Low Priced

The Psychology of Computer Cooking NULL Unknown
But Is It User Friendly? 22.95 Expensive

RDBMS Concepts using SQL Server 2000

 159

If all the conditions after your WHEN clauses are equality comparisons against the same value,
you can use an even simpler form so that you don't have to keep repeating the expression.
Suppose we want to print the type of each book in the titles table in a slightly more user-friendly
fashion—for example, Modern Cooking instead of mod_cook. We could use the following
SELECT statement:

SELECT
title,
price,
'Type' = CASE
 WHEN type = 'mod_cook' THEN 'Modern Cooking'
 WHEN type = 'trad_cook' THEN 'Traditional Cooking'
 WHEN type = 'psychology' THEN 'Psychology'
 WHEN type = 'business' THEN 'Business'
 WHEN type = 'popular_comp' THEN 'Popular Computing'
 ELSE 'Not yet decided'
 END
FROM titles

In this example, because every condition after WHEN is testing for equality with the value in the
type column, we can use an even simpler form. You can think of this simplification as factoring
out the type = from every WHEN clause, and you can place the type column at the top of the
CASE expression:

SELECT
title,
price,
'Type' = CASE type
 WHEN 'mod_cook' THEN 'Modern Cooking'
 WHEN 'trad_cook' THEN 'Traditional Cooking'
 WHEN 'psychology' THEN 'Psychology'
 WHEN 'business' THEN 'Business'
 ELSE 'Not yet decided'
 END
FROM titles

You can use CASE in some unusual places; because it's an expression, you can use it anywhere
that an expression is legal. Using CASE in a view is a nice technique that can make your
database more usable to others. Using CASE in an UPDATE statement can make the update
easier. More important, CASE can allow you to make changes in a single pass of the data that
would otherwise require you to do multiple UPDATE statements, each of which would have to
scan the data.

Cousins of CASE

SQL Server provides three nice shorthand derivatives of CASE: COALESCE, NULLIF, and
ISNULL. COALESCE and NULLIF are both part of the ANSI SQL-92 specification; they were
added to version 6 at the same time that CASE was added. ISNULL is a longtime SQL Server
function.

COALESCE This function is equivalent to a CASE expression that returns the first NOT NULL
expression in a list of expressions.

COALESCE(expression1, expression2, ... expressionN)

RDBMS Concepts using SQL Server 2000

 160

If no non-null values are found, COALESCE returns NULL (which is what expressionN was, given
that there were no non-null values). Written as a CASE expression, COALESCE looks like this:

CASE
 WHEN expression1 IS NOT NULL THEN expression1
 WHEN expression2 IS NOT NULL THEN expression2
ELSE expressionN
END

NULLIF This function is equivalent to a CASE expression in which NULL is returned if
expression1 = expression2.

NULLIF(expression1, expression2)

If the expressions aren't equal, expression1 is returned. NULLIF can be handy if you use dummy
values instead of NULL, but you don't want those dummy values to skew the results produced by
aggregate functions. Written using CASE, NULLIF looks like this:

CASE
 WHEN expression1=expression2 THEN NULL
 ELSE expression1
END

ISNULL This function is almost the mirror image of NULLIF:

ISNULL(expression1, expression2)

ISNULL allows you to easily substitute an alternative expression or value for an expression that's
NULL. The use of ISNULL to substitute the string 'ALL' for a GROUPING NULL when
using CUBE and to substitute a string of question marks ('????') for a NULL value. The results
were more clear and intuitive to users. The functionality of ISNULL written instead using CASE
looks like this:

CASE
 WHEN expression1 IS NULL THEN expression2
 ELSE expression1
END

The second argument to ISNULL (the value to be returned if the first argument is NULL) can be
an expression or even a SELECT statement. Say, for example, that we want to query the titles
table. If a title has NULL for price, we want to instead use the lowest price that exists for any
book. Without CASE or ISNULL, this isn't an easy query to write. With ISNULL, it is easy:

SELECT title, pub_id, ISNULL(price, (SELECT MIN(price)
 FROM titles)) FROM titles
For comparison, here's an equivalent SELECT statement written with the longhand CASE
formulation:

SELECT title, pub_id,
 CASE WHEN price IS NULL THEN (SELECT MIN(price) FROM titles)
 ELSE price
 END
FROM titles

RDBMS Concepts using SQL Server 2000

 161

PRINT

Transact-SQL, like other programming languages, provides printing capability through the PRINT
and RAISERROR statements. I'll discuss RAISERROR momentarily, but first we'll take a look at
the PRINT statement.

PRINT is the most basic way to display any character string of up to 8000 characters. You can
display a literal character string or a variable of type char, varchar, nchar, nvarchar, datetime, or
smalldatetime. You can concatenate strings and use functions that return string or date values. In
addition, PRINT can print any expression or function that is implicitly convertible to a character
datatype. (Refer to Figure 10-3 to determine which datatypes are implicitly convertible.)
It seems like every time you learn a new programming language, the first assignment is to write
the "Hello World" program. Using Transact-SQL, it couldn't be easier:

PRINT 'Hello World'
Even before you saw PRINT, you could've produced the same output in your SQL Query
Analyzer screen with the following:

SELECT 'Hello World'
So what's the difference between the two? The PRINT statement returns a message, nothing
more.

The SELECT statement returns output like this:

Hello World

(1 row(s) affected)
The SELECT statement returns the string as a result set. That's why we get the (1 row(s)
affected) message. When you use SQL Query Analyzer to submit your queries and view your
results, you might not see much difference between the PRINT and the SELECT statements. But
for other client tools (besides ISQL, OSQL, and SQL Query Analyzer), there could be a big
difference. PRINT returns a message of severity 0, and you need to check the documentation for
the client API that you're using to determine how messages are handled. For example, if you're
writing an ODBC program, the results of a PRINT statement are handled by SQLError.

On the other hand, a SELECT statement returns a set of data, just like selecting prices from a
table does. Your client interface might expect you to bind data to local (client-side) variables
before you can use them in your client programs. Again, you'll have to check your documentation
to know for sure. The important distinction to remember here is that PRINT returns a message
and SELECT returns data.

PRINT is extremely simple, both in its use and in its capabilities. It's not nearly as powerful as,
say, printf in C. You can't give positional parameters or control formatting. For example, you can't
do this:

PRINT 'Today is %s', GETDATE()
Part of the problem here is that %s is meaningless. In addition, the built-in function GETDATE
returns a value of type datetime, which can't be concatenated to the string constant. So, you can
do this instead:

PRINT 'Today is ' + CONVERT(char(30), GETDATE())

RDBMS Concepts using SQL Server 2000

 162

RAISERROR

RAISERROR is similar to PRINT but can be much more powerful. RAISERROR also sends a
message (not a result set) to the client; however, RAISERROR allows you to specify the specific
error number and severity of the message. It also allows you to reference an error number, the
text of which you can add to the sysmessages table. RAISERROR makes it easy for you to
develop international versions of your software. Rather than using multiple versions of your SQL
code when you want to change the language of the text, you need only one version. You can
simply add the text of the message in multiple languages. The user will see the message in the
language used by the particular connection.
Unlike PRINT, RAISERROR accepts printf-like parameter substitution as well as formatting
control. RAISERROR can also allow messages to be logged to the Windows NT or Windows
2000 event service, making the messages visible to the Windows NT or Windows 2000 Event
Viewer, and it allows SQL Server Agent alerts to be configured for these events. In many cases,
RAISERROR is preferable to PRINT, and you might choose to use PRINT only for quick-and-dirty
situations. For production-caliber code, RAISERROR is usually a better choice. Here's the
syntax:
RAISERROR ({msg_id | msg_str}, severity, state[, argument1
[, argumentn]])
[WITH LOG]|[WITH NOWAIT]

After you call RAISERROR, the system function @@ERROR returns the value passed as
msg_id. If no ID is passed, the error is raised with error number 50000, and @@ERROR is set to
that number. Error numbers lower than 50000 are reserved for SQL Server use, so choose a
higher number for your own messages.
You can also set the severity level; an informational message should be considered severity 0 (or
severity 10; 0 and 10 are used interchangeably for a historical reason that's not important). Only
someone with the system administrator (SA) role can raise an error with a severity of 19 or
higher. Errors of severity 20 and higher are considered fatal, and the connection to the client is
automatically terminated.
By default, if a batch includes a WAITFOR statement, results or messages are not returned to the
client until the WAITFOR has completed. If you want the messages generated by your
RAISERROR statement to be returned to the client immediately, even if the batch contains a
subsequent WAITFOR, you can use the WITH NOWAIT option. You must use the WITH LOG
option for all errors of severity 19 or higher. For errors of severity 20 or higher, the message text
isn't returned to the client. Instead, it's sent to the SQL Server error log, and the error number,
text, severity, and state are written to the operating system event log. A SQL Server system
administrator can use the WITH LOG option with any error number or any severity level.
Errors written to the operating system event log from RAISERROR go to the application event
log, with MSSQLServer as the source if the server is the default server, and
MSSQL$InstanceName as the source if your server is a named instance. These errors have
event ID 17060. (Errors that SQL Server raises can have different event IDs, depending on which
component they come from.) The type of message in the event log depends on the severity used
in the RAISERROR statement. Messages with severity 14 and lower are recorded as
informational messages, severity 15 messages are warnings, and severity 16 and higher
messages are errors. Note that the severity used by the event log is the number that's passed to
RAISERROR, regardless of the stated severity in sysmessages. If you look at the data section of
the event log for a message raised from RAISERROR, or if you're reading from the event log in a
program, you can choose to display the data as bytes or words.
You can use any number from 1 through 127 as the state parameter. You might pass a line
number that tells where the error was raised. But in a user-defined error message, state has no
real relevance to SQL Server. For internally generated error messages, the value of state is an
indication of where in the code the error came from. It can sometimes be of use to Microsoft
Product Support personnel to know the value of state that was returned with an error message.

RDBMS Concepts using SQL Server 2000

 163

There's a little-known way to cause isql.exe or OSQL.EXE (the command-line query tools) to
terminate. Raising any error with state 127 causes isql or OSQL to immediately exit, with a return
code equal to the error number. (You can determine the error number from a batch command file
by inspecting the system ERRORLEVEL value.) You could write your application so that it does
something similar—it's a simple change to the error-handling logic. This trick can be a useful way
to terminate a set of scripts that would be run through isql or OSQL. You could get a similar result
by raising a high-severity error to terminate the connection. But using a state of 127 is actually
simpler, and no scary message will be written to the error log or event log for what is a planned,
routine action.

You can add your own messages and text for a message in multiple languages by using the
sp_addmessage stored procedure. By default, SQL Server uses U.S. English, but you can add
languages. SQL Server distinguishes U.S. English from British English because of locale settings,
such as currency. The text of messages is the same. The procedure sp_helplanguage shows you
what languages are available on your SQL Server instance. If a language you are interested in
doesn't appear in the list returned by sp_helplanguage, take a look at the script instlang.sql,
which can be found in the INSTALL subdirectory of your SQL Server instance installation files.
This script adds locale settings for additional languages but does not add the actual translated
error messages. Suppose we want to rewrite "Hello World" to use RAISERROR, and we want the
text of the message to be able to appear in both U.S. English and German (language ID of 1).

Here's how:

EXEC sp_addmessage 50001, 10, 'Hello World', @replace='REPLACE'
-- New message 50001 for U.S. English
EXEC sp_addmessage 50001, 10, 'Hallo Welt' , @lang='Deutsch',
 @replace='REPLACE'
- New message 50001 for German

When RAISERROR is executed, the text of the message becomes dependent on the SET
LANGUAGE setting of the connection. If the connection does a SET LANGUAGE Deutsch, the
text returned for RAISERROR (50001, 10, 1) will be Hallo Welt. If the text for a language doesn't
exist, the U.S. English text (by default) is returned. For this reason, the U.S. English message
must be added before the text for another language is added. If no entry exists, even in U.S.
English, error 2758 results:

Msg 2758, Level 16, State 1

RAISERROR could not locate entry for error n in Sysmessages.

We could easily enhance the message to say whom the "Hello" is from by providing a parameter
marker and passing it when calling RAISERROR. (For illustration, we'll use some printf-style
formatting, #6x, to display the process number in hexadecimal format.)

EXEC sp_addmessage 50001, 10,
 'Hello World, from: %s, process id: %#6x', @replace='REPLACE'
When user kalend executes
DECLARE @parm1 varchar(30), @parm2 int
SELECT @parm1=USER_NAME(), @parm2=@@spid
RAISERROR (50001, 15, -1, @parm1, @parm2)

this error is raised:

Msg 50001, Level 15, State 1
Hello, World, from: kalend, process id: 0xc

RDBMS Concepts using SQL Server 2000

 164

FORMATMESSAGE

If you have created your own error messages with parameter markers, you might need to inspect
the entire message with the parameters replaced by actual values. RAISERROR makes the
message string available to the client but not to your SQL Server application. To construct a full
message string from a parameterized message in the sysmessages table, you can use the
function FORMATMESSAGE.
If we consider the last example from the preceding RAISERROR section, we can use
FORMATMESSAGE to build the entire message string and save it in a local variable for further
processing. Here's an example of the use of FORMATMESSAGE:

DECLARE @parm1 varchar(30), @parm2 int, @message varchar(100)
SELECT @parm1=USER_NAME(), @parm2=@@spid
SELECT @message = FORMATMESSAGE(50001, @parm1, @parm2)
PRINT 'The message is: ' + @message

This returns the following:

The message is: Hello World, from: kalend, process id: Oxc
Note that no error number or state information is returned.

Operators

Transact-SQL provides a large collection of operators for doing arithmetic, comparing values,
doing bit operations, and concatenating strings. These operators are similar to those you might
be familiar with in other programming languages. You can use Transact-SQL operators in any
expression, including in the select list of a query, in the WHERE or HAVING clauses of queries, in
UPDATE and IF statements, and in CASE expressions.

Arithmetic Operators

We won't go into much detail here because arithmetic operators are pretty standard stuff. If you
need more information, please refer to the online documentation. Table 10-2 shows the arithmetic
operators.

Table 6 Arithmetic operators in Transact-SQL

Symbol Operation Used with These Datatypes
+ Addition int, smallint, tinyint, bigint, numeric, decimal, float, real, money,

smallmoney, datetime and smalldatetime
- Subtraction int, smallint, tinyint, bigint, numeric, decimal, float, real, money,

smallmoney, datetime and smalldatetime
* Multiplication int, smallint, tinyint, bigint, numeric, decimal, float, real, money, and

smallmoney
/ Division int, smallint, tinyint, bigint, numeric, decimal, float, real, money, and

smallmoney
% Modulo int, smallint, tinyint, and bigint

As with other programming languages, in Transact-SQL you need to consider the datatypes
you're using when you perform arithmetic operations. Otherwise, you might not get the results
you expect.

RDBMS Concepts using SQL Server 2000

 165

For example, which of the following is correct?
1 / 2 = 0
1 / 2 = 0.5

If the underlying datatypes are both integers (including bigint, tinyint and smallint), the correct
answer is 0. If one or both of the datatypes are float (including real) or numeric/decimal, the
correct answer is 0.5 (or 0.50000, depending on the precision and scale of the datatype). When
an operator combines two expressions of different datatypes, the datatype precedence rules
specify which datatype is converted to the other. The datatype with the lower precedence is
converted to the datatype with the higher precedence.

Here's the precedence order for SQL Server datatypes:

sql_variant (highest)
datetime
smalldatetime
float
real
decimal
money
smallmoney
bigint
int
smallint
tinyint
bit
ntext
text
image
timestamp (rowversion)
uniqueidentifier
nvarchar
nchar
varchar
char
varbinary
binary (lowest)

As you can see from the precedence list, an int multiplied by a float produces a float. If you need
to use data of type sql_variant in an arithmetic operation, you must first convert the sql_variant
data to its base datatype. You can explicitly convert to a given datatype by using the CAST
function or its predecessor, CONVERT.

The addition (+) operator is also used to concatenate character strings. In this example, we want
to concatenate last names, followed by a comma and a space, followed by first names from the
authors table (in pubs), and then we want to return the result as a single column:

SELECT 'author'=au_lname + ', ' + au_fname FROM authors

Here's the abbreviated result:

author

White, Johnson
Green, Marjorie

RDBMS Concepts using SQL Server 2000

 166

Carson, Cheryl
O'Leary, Michael

Bit Operators

Table 10-3 shows the SQL Server bit operators.

Table 7. SQL Server bit operators.

Symbol Meaning
& Bitwise AND (two operands)
| Bitwise OR (two operands)
^ Bitwise exclusive OR (two operands)
~ Bitwise NOT (one operand)

The operands for the two-operand bitwise operators can be any of the datatypes of the integer or
binary string datatype categories (except for the image datatype), with the exception that both
operands cannot be a type of binary string. So, one of the operands can be binary or varbinary,
but they can't both be binary or varbinary. In addition, the right operand can be of the bit datatype
only if the left operand is of type bit. Table 10-4 shows the supported operand datatypes.

Table 8. Datatypes supported for two-operand bitwise operators.
Left Operand Right Operand
Binary int, smallint, tinyint or bigint
Bit int, smallint, tinyint, bigint or bit
Int int, smallint, tinyint, bigint, binary, or varbinary
Smallint int, smallint, tinyint, bigint, binary, or varbinary
Tinyint int, smallint, tinyint, bigint binary, or varbinary
Bigint int, smallint, tinyint, bigint, binary, or varbinary
Varbinary int, smallint, tinyint, or bigint

The single operand for the bitwise NOT operator must be one of the integer datatypes. Often, you
must keep a lot of indicator-type values in a database, and bit operators make it easy to set up bit
masks with a single column to do this. The SQL Server system tables use bit masks. For
example, the status field in the sysdatabases table is a bit mask. If we wanted to see all
databases marked as read-only, which is the 11th bit or decimal 1024 (210), we could use this
query:

SELECT 'read only databases'=name FROM master..sysdatabases
WHERE status & 1024 > 0

This example is for illustrative purposes only. You shouldn't query the system catalogs directly.
Sometimes the catalogs need to change between product releases, and if you query directly, your
applications can break because of these required changes. Instead, you should use the provided
system catalog stored procedures and object property functions, which return catalog information
in a standard way. If the underlying catalogs change in subsequent releases, the property
functions are also updated, insulating your application from unexpected changes. So, for this
example, to see whether a particular database was marked read-only, we could use the
DATABASEPROPERTY function:

SELECT DATABASEPROPERTY('mydb', 'IsReadOnly')

A return value of 1 would mean that mydb was set to read-only status.

Keeping such indicators as bit datatype columns can be a better approach than using an int as a
bit mask. It's more straightforward—you don't always need to look up your bit-mask values for

RDBMS Concepts using SQL Server 2000

 167

each indicator. To write the "read only databases" query we just looked at, you'd need to check
the documentation for the bit-mask value for "read only." And many developers, not to mention
end users, aren't that comfortable using bit operators and are likely to use them incorrectly. From
a storage perspective, bit columns don't require more space than equivalent bit-mask columns
require. (Eight bit fields can share the same byte of storage.)

But you wouldn't typically want to do that with a "yes/no" indicator field anyway. If you have a
huge number of indicator fields, using bit-mask columns of integers instead of bit columns might
be a better alternative than dealing with hundreds of individual bit columns. However, there's
nothing to stop you from having hundreds of bit columns. You'd have to have an awful lot of bit
fields to actually exceed the column limit because a table in SQL Server can have up to 1024
columns. If you frequently add new indicators, using a bit mask on an integer might be better. To
add a new indicator, you can make use of an unused bit of an integer status field rather than do
an ALTER TABLE and add a new column (which you must do if you use a bit column). The case
for using a bit column boils down to clarity.

Comparison Operators

Table 9 shows the SQL Server comparison operators.

Table 9. SQL Server comparison operators.
Symbol Meaning
= Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Not equal to (ANSI standard)
!= Not equal to (not ANSI standard)
!> Not greater than (not ANSI standard)
!< Not less than (not ANSI standard)

Comparison operators are straightforward. Only a few related issues might be confusing to a
novice SQL Server developer:

• When you deal with NULL, remember the issues with three-value logic and the truth tables. Also
understand that NULL is an unknown.
• Comparisons of char and varchar data (and their Unicode counterparts) depend on the collation
value associated with the column. Whether comparisons evaluate to TRUE depends on the sort
rder installed.
• Comparison of sql_variant values involves special rules that break down the SQL Server
atatype hierarchy shown previously into datatype families, as shown in Table 10-6. The following
script creates a table that I can use to illustrate some of the issues involved in comparing values
of type sql_variant:

CREATE TABLE variant2
(a sql_variant, b sql_variant)
GO
INSERT INTO variant2 VALUES (CAST (111 as int), CAST(222 as money))
GO
INSERT INTO variant2 VALUES (CAST (333 as int), CAST(444 as char(3)))
GO

Here are the special rules governing comparison of sql_variant values:

RDBMS Concepts using SQL Server 2000

 168

• When sql_variant values of different base datatypes are compared and the base datatypes are
in different datatype families, the value whose datatype family is higher in the hierarchy chart is
considered the higher of the two values.

You can see this behavior by executing the following query:

SELECT *
FROM variant2
WHERE a > b
Result:
a b
----- -----
333 444
The second row inserted had a value of base type int and a value of base type char. Even though
you would normally think that 333 is not greater than 444 because 333 is of datatype int and the
family exact numeric, it is considered higher than 444, of datatype char, and of the family
Unicode.

• When sql_variant values of different base datatypes are compared and the base datatypes are
in the same datatype family, the value whose base datatype is lower in the hierarchy chart is
implicitly converted to the other datatype and the comparison is then made.

You can see this behavior by executing the following query:

SELECT *
FROM variant2
WHERE a < b
Result:
a b
-------------------- -----------------
222.0000
In this case, the two base types are int and money, which are in the same family, so 111 is
considered less than 222.0000.

• When sql_variant values of the char, varchar, nchar, or varchar datatypes are compared, they
are evaluated based on additional criteria, including the locale code ID (LCID), the LCID version,
the comparison flags use for the column's collation, and the sort ID.

Table 10 Datatype families for use when comparing sql_variant values.
Datatype Hierarchy Datatype Family
sql_variant sql_variant
datetime datetime
smalldatetime datetime
float approximate numeric
real approximate numeric
decimal exact numeric
money exact numeric
smallmoney exact numeric
bigint exact numeric
int exact numeric
smallint exact numeric
tinyint exact numeric
bit exact numeric
nvarchar Unicode
nchar Unicode
varchar Unicode

RDBMS Concepts using SQL Server 2000

 169

char Unicode
varbinary binary
binary binary
uniqueidentifier uniqueidentifier

Logical and Grouping Operators (Parentheses)

The three logical operators (AND, OR, and NOT) are vitally important in expressions, especially
in the WHERE clause. You can use parentheses to group expressions and then apply logical
perations to the group. In many cases, it's impossible to correctly formulate a query without using
parentheses. In other cases, you might be able to avoid them, but your expression won't be very
intuitive and the absence of parentheses could result in bugs. You could construct a convoluted
expression using some combination of string concatenations or functions, bit operations, or
arithmetic operations instead of using parentheses, but there's no good reason to do this.

Using parentheses can make your code clearer, less prone to bugs, and easier to maintain.
Because there's no performance penalty beyond parsing, you should use parentheses liberally.
Below is a query that you couldn't readily write without using parentheses. This query is simple,
and in English the request is well understood. But you're also likely to get this query wrong in
Transact-SQL if you're not careful, and it clearly illustrates just how easy it is to make a mistake.
Find authors who do not live in either Salt Lake City, UT, or Oakland, CA.

Following are four examples that attempt to formulate this query. Three of them are wrong. Test
yourself: which one is correctly stated? (As usual, multiple correct formulations are possible—not
just the one presented here.)

EXAMPLE 1
SELECT au_lname, au_fname, city, state FROM authors
WHERE
city <> 'OAKLAND' AND state <> 'CA'
OR
city <> 'Salt Lake City' AND state <> 'UT'

EXAMPLE 2
SELECT au_lname, au_fname, city, state FROM authors
WHERE
(city <> 'OAKLAND' AND state <> 'CA')
OR
(city <> 'Salt Lake City' AND state <> 'UT')

EXAMPLE 3
SELECT au_lname, au_fname, city, state FROM authors
WHERE
(city <> 'OAKLAND' AND state <> 'CA')
AND
(city <> 'Salt Lake City' AND state <> 'UT')

EXAMPLE 4
SELECT au_lname, au_fname, city, state FROM authors
WHERE
NOT
(
(city='OAKLAND' AND state='CA')
OR

RDBMS Concepts using SQL Server 2000

 170

(city='Salt Lake City' AND state='UT')
)
you can see that only Example 4 operates correctly. This query would be much more difficult to
write without some combination of parentheses, NOT, OR (including IN, a shorthand for OR), and
AND. You can also use parentheses to change the order of precedence in mathematical and
logical operations. These two statements return different results:

SELECT 1.0 + 3.0 / 4.0 -- Returns 1.75
SELECT (1.0 + 3.0) / 4.0 -- Returns 1.00

The order of precedence is similar to what you learned back in algebra class (except for the bit
operators). Operators of the same level are evaluated left to right. You use parentheses to
change precedence levels to suit your needs, when you're unsure, or when you simply want to
make your code more readable. Groupings with parentheses are evaluated from the innermost
grouping outward. Table 11 shows the order of precedence.

Table 11 Order of precedence in mathematical and logical operations, from highest to lowest.
Operation Operators
Bitwise NOT ~
Multiplication/division/modulo * / %
Addition/subtraction + / -
Bitwise exclusive OR ^
Bitwise AND &
Bitwise OR |
Logical NOT NOT
Logical AND AND
Logical OR OR

If you didn't pick the correct example, you can easily see the flaw in Examples 1, 2, and 3 by
examining the output. Examples 1 and 2 both return every row. Every row is either not in CA or
not in UT because a row can be in only one or the other. A row in CA isn't in UT, so the
expression returns TRUE. Example 3 is too restrictive—for example, what about the rows in San
Francisco, CA? The condition (city <> 'OAKLAND' AND state <> 'CA') would evaluate to (TRUE
and FALSE) for San Francisco, CA, which, of course, is FALSE, so the row would be rejected
when it should be selected, according to the desired semantics.

Scalar Functions

Aggregate functions, such as MAX, SUM, and COUNT operate on a set of values to produce a
single aggregated value. In addition to aggregate functions, SQL Server provides scalar
functions, which operate on a single value. Scalar is just a fancy term for single value. You can
also think of the value in a single column of a single row as scalar. Scalar functions are
enormously useful—the Swiss army knife of SQL Server. You've probably noticed that scalar
functions have been used in several examples already—we'd all be lost without them.

You can use scalar functions in any legal expression, such as:

• In the select list
• In a WHERE clause, including one that defines a view
• Inside a CASE expression
• In a CHECK constraint
• In the VALUES clause of an INSERT statement
• In an UPDATE statement to the right of the equals sign in the SET clause

RDBMS Concepts using SQL Server 2000

 171

• With a variable assignment
• As a parameter inside another scalar function

SQL Server provides too many scalar functions to remember. The best you can do is to
familiarize yourself with those that exist, and then, when you encounter a problem and a light bulb
goes on in your head to remind you of a function that will help, you can look at the online
documentation for details. Even with so many functions available, you'll probably find yourself
wanting some functions that don't exist. You might have a specialized need that would benefit
from a specific function. The following sections describe the scalar functions that are supplied
with SQL Server 2000. We'll first look at the CAST function because it's especially important.

Conversion Functions

SQL Server provides three functions for converting datatypes: the generalized CAST function, the
CONVERT function—which is analogous to CAST but has a slightly different syntax—and the
more specialized STR function

The CAST function is a synonym for CONVERT and was added to the product to comply with
ANSI-92 specifications. You'll see CONVERT used in older documentation and older code. CAST
is possibly the most useful function in all of SQL Server. It allows you to change the datatype
when you select a field, which can be essential for concatenating strings, joining columns that
weren't initially envisioned as related, performing mathematical operations on columns that were
defined as character but which actually contain numbers, and other similar operations. Like C,
SQL is a fairly strongly typed language.
Some languages, such as Visual Basic or PL/1 (Programming Language 1), allow you to almost
indiscriminately mix datatypes. If you mix datatypes in SQL, however, you'll often get an error.
Some conversions are implicit, so, for example, you can add or join a smallint and an int without
any such error; trying to do the same between an int and a char, however, produces an error.
Without a way to convert datatypes in SQL, you would have to return the values back to the client
application, convert them there, and then send them back to the server. You might need to create
temporary tables just to hold the intermediate converted values. All of this would be cumbersome
and inefficient.
Recognizing this inefficiency, the ANSI committee added the CAST operator to SQL-92. SQL
Server's CAST—and the older CONVERT—provides a superset of ANSI CAST functionality. The
CAST syntax is simple:

CAST (original_expression AS desired_datatype)

Suppose we want to concatenate the job_id (smallint) column of the employee table with the
lname (varchar) column. Without CAST, this would be impossible (unless it was done in the
application). With CAST, it's trivial:

SELECT lname + '-' + CAST(job_id AS varchar(2)) FROM employee

Here's the abbreviated output:
Accorti-13
Afonso-14
Ashworth-6
Bennett-12
Brown-7
Chang-4
Cramer-2
Cruz-10
Devon-3

RDBMS Concepts using SQL Server 2000

 172

Specifying a length shorter than the column or expression in your call to CAST is a useful way to
truncate the column. You could use the SUBSTRING function for this with equal results, but you
might find it more intuitive to use CAST. Specifying a length when you convert to char, varchar,
decimal, or numeric isn't required, but it's recommended. Specifying a length shields you better
from possible behavioral changes in newer releases of the product.

Although behavioral changes generally don't occur by design, it's difficult to ensure 100 percent
consistency of subtle behavioral changes between releases. The development team strives for
such consistency, but it's nearly impossible to ensure that no behavioral side effects result when
new features and capabilities are added. There's little point in relying on the current default
behavior when you can just as easily be explicit about what you expect.

You might want to avoid CAST when you convert float or numeric/decimal values to character
strings if you expect to see a certain number of decimal places. CAST doesn't currently provide
formatting capabilities for numbers. The older CONVERT function has some limited formatting
capabilities, which we'll see shortly. Formatting floating-point numbers and such when converting
to character strings is another area that's ripe for subtle behavior differences. So if you need to
transform a floating-point number to a character string in which you expect a specific format, you
can use the other conversion function, STR. STR is a specialized conversion function that always
converts from a number (float, numeric, and so on) to a character datatype, but it allows you to
explicitly specify the length and number of decimal places that should be formatted for the
character string. Here's the syntax:

STR(float_expression, character_length, number_of_decimal_places)

Remember that character_length must include room for a decimal point and a negative sign if
they might exist. Also be aware that STR rounds the value to the number of decimal places
requested, while CAST simply truncates the value if the character length is smaller than the size
required for full display. Here's an example of STR:

SELECT discounttype, 'Discount'=STR(discount, 7, 3) FROM discounts

And here's the output:

discounttype Discount
------------ --------
Initial Customer 10.500
Volume Discount 6.700
Customer Discount 5.000

You can think of the ASCII and CHAR functions as special type-conversion functions, but we'll
discuss them later in this chapter along with string functions.

If all you're doing is converting an expression to a specific datatype, you can actually use either
CAST or the older CONVERT. However, the syntax of CONVERT is slightly different and allows
for a third, optional argument. Here's the syntax for CONVERT:

CONVERT (desired_datatype[(length)], original_expression
 [, style])

CONVERT has an optional third parameter, style. This parameter is most commonly used when
you convert an expression of type datetime or smalldatetime to type char or varchar.
You can also use it when you convert float, real, money, or smallmoney to a character datatype.

RDBMS Concepts using SQL Server 2000

 173

When you convert a datetime expression to a character datatype, if the style argument
isn't specified, the conversion will format the date with the default SQL Server date format (for
example, Oct 3 1999 2:25PM). By specifying a style type, you can format the output as you want.
You can also specify a shorter length for the character buffer being converted to, in order to
perhaps eliminate the time portion or for other reasons. Table 10-8 shows the various values you
can use as the style argument.

Table 12 Values for the style argument of the CONVERT function when you convert a datetime
expression to a character expression.

Style Number without Style Number with Output Type Style
Century (yy) Century (yyyy)
_ 0 or 100 Default mon dd yyyy hh:miAM

(or PM)
1 101 USA mm/dd/yyyy
2 102 ANSI yyyy.mm.dd
3 103 British/ French dd/mm/yyyy
4 104 German dd.mm.yyyy
5 105 Italian dd-mm-yyyy
6 106 _ dd mon yyyy
7 107 _ mon dd, yyyy
_ 8 or 108 _ hh:mm:ss
_ 9 or 109 Default + mon dd yyyy

milliseconds hh:mi:ss: mmmAM
(or PM)

10 110 USA mm-dd-yy
11 111 JAPAN yy/mm/dd
12 112 ISO yymmdd
_ 13 or 113 Europe default + dd mon yyyy

milliseconds hh:mi:ss:mmm (24h)

14 114 _ hh:mi:ss:mmm (24h)
20 or 120 ODBC canonical yyyy-mm-dd

hh:mi:ss(24h)
21 or 121 ODBC canonical yyyy-mm-dd

+
milliseconds hh:mi:ss.mmm(24h)

Although SQL Server uses style 0 as the default when converting a datetime value to a character
string, SQL Query Analyzer (and OSQL) use style 121 when displaying a datetime value.

Since we just passed a change in the century, using two-character formats for the year could be a
bug in your application just waiting to happen! Unless you have a compelling reason not to, you
should always use the full year (yyyy) for both the input and output formatting of dates to prevent
any ambiguity.
SQL Server has no problem dealing with the year 2000—in fact, the change in century isn't even
a boundary condition in SQL Server's internal representation of dates. But if you represent a year
by specifying only the last two digits, the inherent ambiguity might cause your application to make
an incorrect assumption. When a date formatted that way is entered, SQL Server's default
behavior is to interpret the year as 19yy if the value is greater than or equal to 50 and as 20yy if
the value is less than 50. That might be OK now, but by the year 2050 you won't want a two-digit
year of 50 to be interpreted as 1950 instead of 2050. (If you simply assume that your application
will have been long since retired, think again. A lot of COBOL programmers in the 1960s didn't
worry about the year 2000.)

RDBMS Concepts using SQL Server 2000

 174

SQL Server 2000 allows you to change the cutoff year that determines how a two-digit year is
interpreted. A two-digit year that is less than or equal to the last two digits of the cutoff year is in
the same century as the cutoff year. A twodigit year that is greater than the last two digits of the
cutoff year is in the century that precedes the cutoff year. You can change the cutoff year by
using the Properties dialog box for your SQL server in SQL Server Enterprise Manager and
selecting the Server Settings tab. Or you can use the sp_configure stored procedure:

EXEC sp_configure 'two digit year cutoff', '2000'

In this example, since two digit year cutoff is 2000, all two-digit years other than 00 are
interpreted as occurring in the 20th century. With the default two digit year cutoff value of 2049,
the two-digit year 49 is interpreted as 2049 and the two-digit year 50 is interpreted as 1950. You
should be aware that although SQL Server uses 2049 as the cutoff year for interpreting dates,
OLE Automation objects use 2030. You can use the two digit year cutoff option to provide
consistency in date values between SQL Server and client applications. However, to avoid
ambiguity with dates, you should always use four-digit years in your data.
You don't need to worry about how changing the two digit year cutoff value will affect your
existing data. If data is stored using the datetime or smalldatetime datatypes, the full four-digit
year is part of the internal storage. The two digit year cutoff value controls only how SQL Server
interprets date constants such as 10/12/99.

Day First or Month First

The two digit year cutoff value determines how SQL Server interprets the 99 in 10/12/99, but this
date constant has another ambiguity. Are we talking about October 12 or December 10? The SET
option DATEFORMAT determines whether SQL Server interprets a numeric three-part date as
month followed by day, day followed by month, or even year followed by month. The default value
of DATEFORMAT is controlled by the language you're using, but you can change it using the
SET DATEFORMAT command. There are six possible values for DATEFORMAT, which should
be self-explanatory: mdy, dmy, ymd, ydm, dym, and myd. Only the first three are commonly used.
Note that DATEFORMAT controls only how SQL Server interprets date constants that are
entered by you or your program. It does not control how date values are displayed. As we've
mentioned, output format is controlled by the client or by having SQL Server convert the datetime
value to a character string and using a style option.

Here's an example that shows how changing the DATEFORMAT value can change how input
dates are interpreted:

SET DATEFORMAT mdy
SELECT 'FORMAT is mdy' = CONVERT(datetime, '7/4/2000')
SET DATEFORMAT dmy
SELECT 'FORMAT is dmy' = CONVERT(datetime, '7/4/2000')

RESULTS:

FORMAT is mdy

2000-07-04 00:00:00.000

FORMAT is dmy

2000-04-07 00:00:00.000
You might consider using ISO style when you insert dates. This format has the year followed by
month and then the day, with no punctuation. This style is always recognizable, no matter what

RDBMS Concepts using SQL Server 2000

 175

the SQL Server default language and no matter what the DATEFORMAT setting. Here's the
above conversion command with dates supplied in ISO format:

SET DATEFORMAT mdy
SELECT 'FORMAT is mdy' = CONVERT(datetime, '20000704')
SET DATEFORMAT dmy
SELECT 'FORMAT is mdy' = CONVERT(datetime, '20000704')
RESULTS:
FORMAT is mdy

2000-07-04 00:00:00.000

FORMAT is mdy

2000-07-04 00:00:00.000

Be sure to always put your dates in quotes. If we had left off the quotes, SQL Server would
assume we meant the number 20,000,704 and would interpret that as the number of days after
January 1, 1900. It would try to figure out the date that was that many days after the base date,
which is out of the range of possible datetime values that SQL Server can store.
One other date format can override your default language or DATEFORMAT setting, but it
behaves a little inconsistently. If you enter a date in all numeric format with the year first but you
include punctuation (as in 1999.05.02), SQL Server will assume that the first part is the year even
if your DATEFORMAT is dmy. SQL Server will still use your DATEFORMAT setting to determine
the order of the month and the day values. So if your DATEFORMAT is mdy, SELECT
CONVERT(datetime, '1999.5.2') will return 1999-05-02 00:00:00.000, and if your DATEFORMAT
is dmy, SELECT CONVERT(datetime, '1999.5.2') will return 1999-02-05 0:00:00.000
and SELECT CONVERT(datetime, '1999.5.22') will return an out-of-range error. This seems
quite inconsistent. SQL Server is partially ignoring the DATEFORMAT, but not completely. We
suggest that you avoid this format for inputting dates, and if you're going to use all numbers,
leave out the punctuation. Instead of setting the DATEFORMAT value, you can use the style
argument when you convert from a character string to a datetime value. You must be sure to
enter the date in the format that the style requires, as indicated in Table 10-8 (shown earlier).
These two statements return different values:

SELECT CONVERT(datetime, '10.12.99',1)

SELECT CONVERT(datetime, '10.12.99',4)

The first statement assumes that the date is style 1, mm.dd.yy, so the string can be converted to
the corresponding datetime value and returned to the client. The client then returns the datetime
value according to its own display conventions. The second statement assumes that the date is
represented as dd.mm.yy. If we had tried to use style 102 or 104, both of which require a four-
digit year, we would have received a conversion error because we specified only a two-digit year.
CONVERT can also be useful if you insert the current date using the GETDATE function but don't
consider the time elements of the datetime datatype to be meaningful. (Remember that
SQL Server doesn't currently have separate date and time datatypes.) You can use CONVERT to
format and insert datetime data with only a date element. Without the time specification in the
GETDATE value, the time will consistently be stored as 12:00AM for any given date. That
eliminates problems that can occur when you search among columns or join columns of datetime.
For example, if the date elements are equal between columns but the time element is not, an
equality search will fail. You can eliminate this equality problem by making the time portion
consistent. Consider this:

RDBMS Concepts using SQL Server 2000

 176

CREATE TABLE my_date (Col1 datetime)
INSERT INTO my_date VALUES (CONVERT(char(10), GETDATE(), 112))

In this example, the CONVERT function converts the current date and time value to a character
string that doesn't include the time. However, because the table we're inserting into expects a
datetime value, the new character string is converted back to a datetime datatype using the
default time of midnight.
You can also use the optional style argument when you convert float, real, money, or smallmoney
to a character datatype. When you convert from float or real, the style allows you to force the
output to appear in scientific notation and also allows you to specify either 8 or 16 digits. When
you convert from a money type to a character type, the style allows you to specify whether you
want a comma to appear every three digits and whether you want two digits to the right of the
decimal point or four.

In Table 13, the column on the left represents the style values for float or real conversion to
character data.

Table 13 Values for the style argument of the CONVERT function when you convert a floating-
point expression to a character datatype

Style Value Output
0 (the default) Six digits maximum. In scientific notation when appropriate.
1 Always eight digits. Always scientific notation.
2 Always sixteen digits. Always scientific notation.

In Table 14, the column on the left represents the style value for money or smallmoney
conversion to character data.

Table 14.Values for the style argument of the CONVERT function when you convert a money
expression to a character datatype

Style
Value Output
0 (the No commas to the left of the decimal point. Two digits appear to the right of the
default) decimal point. Example: 4235.98.

1 Commas every three digits to the left of the decimal point. Two digits appear to the right
 of the decimal point. Example: 3,510.92.
2 No commas to the left of the decimal point. Four digits appear to the right of the decimal

point. Example: 4235.9819.

Here's an example from the pubs database. The advance column in the titles table lists
the advance paid by the publisher for each book, and most of the amounts are greater than
$1000. In the titles table, the value is stored as a money datatype. The following query returns the
value of advance as a money value, a varchar value with the default style, and as varchar with
each of the two optional styles:

SELECT "Money" = advance,
 "Varchar" = CONVERT(varchar(10), advance),
 "Varchar-1" = CONVERT(varchar(10), advance, 1),
 "Varchar-2" = CONVERT(varchar(10), advance, 2)
FROM titles

RDBMS Concepts using SQL Server 2000

 177

Here's the abbreviated output:

Money Varchar Varchar-1 Varchar-2
--------------------- ---------- ---------- ----------
5000.0000 5000.00 5,000.00 5000.0000
5000.0000 5000.00 5,000.00 5000.0000
10125.0000 10125.00 10,125.00 10125.0000
5000.0000 5000.00 5,000.00 5000.0000
.0000 0.00 0.00 0.0000
15000.0000 15000.00 15,000.00 15000.0000
NULL NULL NULL NULL
7000.0000 7000.00 7,000.00 7000.0000
8000.0000 8000.00 8,000.00 8000.0000

Be aware that when you use CONVERT, the conversion occurs on the server and the value is
sent to the client application in the converted datatype. Of course, it's also common for
applications to convert between datatypes, but conversion at the server is completely separate
from conversion at the client. It's the client that determines how to display the value returned. In
the previous example, the results in the first column have no comma and four decimal digits. This
is how SQL Query Analyzer displays values of type money that it receives from SQL Server. If we
run this same query using the command-line ISQL tool, the (abbreviated) results look like this:

Money Varchar Varchar-1 Varchar-2
-------------- ------------ ---------- -----------------
5,000.00 5000.00 5,000.00 5000.0000
5,000.00 5000.00 5,000.00 5000.0000
10,125.00 10125.00 10,125.00 10125.0000
5,000.00 5000.00 5,000.00 5000.0000

0.00 0.00 0.00 00

15,000.00 15000.00 15,000.00 15000.0000
(null) (null) (null) (null)
7,000.00 7000.00 7,000.00 7000.0000
8,000.00 8000.00 8,000.00 8000.0000

In addition to determining how to display a value of a particular datatype, the client program
determines whether the output should be left-justified or right-justified and how NULLs are
displayed. It is frequently asked how to change this default output to, for example, print money
values with four decimal digits in SQL Query Analyzer.
Unfortunately, SQL Query Analyzer has its own set of predefined formatting specifications, and,
for the most part, you can't change them. Other client programs, such as report writers, might ive
you a full range of capabilities for specifying the output format, but SQL Query Analyzer isn't a
report writer.

Here's another example of how the display can be affected by the client. If we use the GETDATE
function to select the current date, it is returned to the client application as a datetime datatype.
The client application will likely convert that internal date representation to a string for display. On
the other hand, if we use GETDATE but also explicitly use CONVERT to change the datetime to
character data, the column is sent to the calling application already as a character string. So let's
see what one particular client will do with that returned data. The command-line program ISQL is

RDBMS Concepts using SQL Server 2000

 178

a DB-Library program and uses functions in DBLibrary for binding columns to character strings.
DB-Library allows such bindings to automatically pick up locale styles based on the settings of the
workstation running the application. (You must select the Use International Settings option in the
SQL Server Client Network Utility in order for this to occur by default.) So a column returned
internally as a datetime datatype is converted by isql.exe into the same format as the locale
setting of Windows. A column containing a date representation as a character string is not
reformatted, of course.
When we issue the following SELECT statement with SQL Server configured for U.S. English as
the default language and with Windows NT and Windows 2000 on the client configured as
English (United States), the date and string look alike:

SELECT
'returned as date'=GETDATE(),
'returned as string'=CONVERT(varchar(20), GETDATE())

returned as date returned as string
------------------ -------------------
Dec 3 2000 3:10PM Dec 3 2000 3:10PM

But if we change the locale in the Regional Options application of the Windows 2000 Control
Panel to French (Standard), the same SELECT statement returns the following:

returned as date returned as string
----------------- -------------------
3 déc. 2000 15:10 Dec 3 2000 3:10PM

You can see that the value returned to the client in internal date format was converted at the
client workstation in the format chosen by the application. The conversion that uses CONVERT
was formatted at the server.

This discussion is also relevant to formatting numbers and currency with different regional
settings. We cannot use the command-line OSQL program to illustrate the same behavior. OSQL,
like SQL Query Analyzer, is an ODBC-based program, and datetime values are converted to
ODBC Canonical format, which is independent of any regional settings.

Using OSQL, the previous query would return this result:

 returned as date returned as string
--------------------------- --------------------
2000-12-03 15:10:24.793 Dec 3 2000 3:10PM

The rest of the book primarily uses CAST instead of CONVERT when converting between
datatypes. CONVERT is used only when the style argument is needed.
Some conversions are automatic and implicit, so using CAST is unnecessary (but OK). For
example, converting between numbers with types int, smallint, tinyint, float, numeric, and so on
happens automatically and implicitly as long as an overflow doesn't occur, in which case you'd
get an error for arithmetic overflow. Converting numbers with decimal places to integer datatypes
results in the truncation of the values to the right of the decimal point—without warning.
(Converting between decimal or numeric datatypes requires that you explicitly use CAST if a loss
of precision is possible.)
Even though Figure 10-3 indicates that conversion from character strings to datetime values can
happen implicitly, this conversion is possible only when SQL Server can figure out what the
datetime value needs to be. If you use wildcards in your character strings, SQL Server might not
be able to do a proper conversion.
Suppose we use the following query to find all orders placed in August 1996 and stored in the
orders table in the Northwind database:

RDBMS Concepts using SQL Server 2000

 179

USE Northwind
SELECT * FROM orders WHERE OrderDate BETWEEN '8/1/96' and '8/31/96'

Because all the dates have a time of midnight in the orders table, SQL Server will correctly
interpret this query and return 25 rows. It converts the two string constants to datetime values,
and then it can do a proper chronological comparison. However, if your string has a wildcard in
it,SQL Server cannot convert it to a datetime, so instead it converts the datetime into a string. To
do this, it uses its default date format, which, as you've seen, is mon dd yyyy hh:miAM (or PM).
So this is the format you have to match in the character string with wildcards. Obviously, %1996%
will match but '8/1/%' won't. Although SQL Server is usually very flexible in how dates can be
entered, once you compare a datetime to a string with wildcards, you can assume only the default
format.

Note that in the default format, there are two spaces before a single-digit day. So if we want to
find all rows in the orders table with an OrderDate of July 8, 1996, at any time, we have to use the
following and be sure to put two spaces between Jul and 8:

 WHERE OrderDate LIKE 'Jul 8 1996%'

Other conversions, such as between character and integer data, can be performed explicitly only
by using CAST or CONVERT. Conversions between certain datatypes are nonsensical—for
example, between a float and a datetime—and attempting such an operation results in error 529,
which states that the conversion is impossible. Figure 10-3, reprinted from the SQL Server
documentation, is one that you'll want to refer to periodically for conversion issues.

Date and Time Functions

Operations on datetime values are common, such as "get current date and time," "do date
arithmetic—50 days from today is what date," or "find out what day of the week falls on a specific
date." Programming languages such as C or Visual Basic are loaded with functions for operations
like these. Transact-SQL also provides a nice assortment to choose from, as shown in Table 10-
11. The datetime parameter is any expression with a SQL Server datetime datatype or one that
can be implicitly converted, such as an appropriately formatted character string like 1999.10.31.
The datepart parameter uses the encodings shown in Table 10-12. Either the full name or the
abbreviation can be passed as an argument.

Table 15. Date and time functions in Transact-SQL

RDBMS Concepts using SQL Server 2000

 180

Table 16. Values for the date part parameter

datepart (Full Name) Abbreviation Values

Year Yy 1753—9999
Quarter Qq 1—4
Month Mm 1—12
dayofyear Dy 1—366
Day Dd 1—31
Week Wk 1—53
weekday Dw 1—7 (Sunday-Saturday)
Hour Hh 0—23
Minute Mi 0—59
Second Ss 0—59
millisecond Ms 0—999

Like other functions, the date functions provide more than simple convenience. Suppose we need
to find all records entered on the second Tuesday of every month and all records entered within
48 weeks of today. Without SQL Server date functions, the only way we could accomplish such a
query would be to select all the rows and return them to the application and then filter them there.
With a lot of data and a slow network, this can get ugly. With the date functions, the process is
simple and efficient, and only the rows that meet these criteria are selected. For this example,
let's assume that the records table includes these columns:

Record_number int
Entered_on datetime

This query returns the desired rows:

SELECT Record_number, Entered_on
FROM records

RDBMS Concepts using SQL Server 2000

 181

WHERE
DATEPART(WEEKDAY, Entered_on) = 3
-- Tuesday is 3rd day of week (in USA)
AND
DATEPART(DAY, Entered_on) BETWEEN 8 AND 14
-- The 2nd week is from the 8th to 14th
AND
DATEDIFF(WEEK, Entered_on, GETDATE()) <= 48
-- Within 48 weeks of today

The day of the week considered "first" is locale-specific and depends on the DATEFIRST
setting.SQL Server 2000 also allows you to add or subtract an integer to or from a datetime
value. This is actually just a shortcut for the DATEADD function, with a datepart of day. For
example, the following two queries are equivalent. They each return the date 14 days from today:

SELECT DATEADD(day, 14, GETDATE())

SELECT GETDATE() + 14
The date functions don't do any rounding. The DATEDIFF function just subtracts the components
from each date that correspond to the datepart specified. For example, to find the number of
years between New Year's Day and New Year's Eve of the same year, this query would return a
value of 0. Because the datepart specifies years, SQL Server subtracts the year part of the two
dates, and because they're the same, the result of subtracting them is 0:

SELECT DATEDIFF(yy, 'Jan 1, 1998', 'Dec 31, 1998')

However, if we want to find the difference in years between New Year's Eve of one year and New
Year's Day (the next day), the following query would return a value of 1 because the difference in
the year part is 1:

SELECT DATEDIFF(yy, 'Dec 31, 1998', 'Jan 1, 1999')

There's no built-in mechanism for determining whether two date values are actually the same day
unless you've forced all datetime values to use the default time of midnight. (We saw a technique
for doing this earlier.) If you want to compare two datetime values (@date1 and @date2)
to determine whether they're on the same day, regardless of the time, one technique is to use a
three-part condition like this:

IF (DATEPART(mm, @date1) = DATEPART(mm, @date2)) AND
 (DATEPART(dd, @date1) = DATEPART(dd, @date2)) AND
 (DATEPART(yy, @date1) = DATEPART(yy, @date2))
PRINT 'The dates are the same'

But there is a much simpler way. Even though these two queries both return the same dd value, if
we try to find the difference in days between these two dates, SQL Server is smart enough to
know that they are different dates:

SELECT DATEPART(dd, '7/5/99')
SELECT DATEPART(dd, '7/5/00')

So, the following query returns the message that the dates are different:

IF DATEDIFF(dd, '7/5/99','7/5/00') = 0
 PRINT 'The dates are the same'
ELSE PRINT 'The dates are different'

RDBMS Concepts using SQL Server 2000

 182

And the following general form allows us to indicate whether two dates are really the same date,
irrespective of the time:

IF DATEDIFF(day, @date1, @date2) = 0
 PRINT 'The dates are the same'

Math Functions

Transact-SQL math functions are straightforward and typical. Many are specialized and of the
type you learned about in trigonometry class. If you don't have an engineering or mathematical
application, you probably won't use those. A handful of math functions are useful in general types
of queries in applications that aren't mathematical in nature. ABS, CEILING, FLOOR, and
ROUND are the most useful functions for general queries to find values within a certain range.
The random number function, RAND, is useful for generating test data or conditions. You'll see
examples of RAND later in this chapter.
Table 17 shows the complete list of math functions and a few simple examples. Some of the
examples use other functions in addition to the math ones to illustrate how to use functions within
functions.

Table 17. Math functions in Transact-SQL

Function Parameters Result

ABS (numeric_expr) Absolute value of the numeric expression. Results returned are of the

same type as numeric_expr.
ACOS (float_expr) Angle (in radians) whose cosine is the specified approximate

numeric (float) expression.
ASIN (float_expr) Angle (in radians) whose sine is the specified approximate numeric

(float) expression.
ATAN (float_expr) Angle (in radians) whose tangent is the specified approximate

numeric (float) expression.
ATN2 (float_expr1,

float_expr2) Angle (in radians) whose tangent is (float_expr1/float_expr2)
between two approximate numeric (float) expressions.

CEILING (numeric_expr)Smallest integer greater than or equal to the numeric expression.
Result returned is the integer portion of the same type as
numeric_expr.

COS (float_expr) Trigonometric cosine of the specified angle (in radians) in an
approximate numeric (float) expression.

COT (float_expr) Trigonometric cotangent of the specified angle (in radians) in an
approximate numeric (float) expression.

DEGREES (numeric_expr) Degrees converted from radians of the numeric expression. Results
are of the same type as numeric_expr.

EXP (float_expr) Exponential value of the specified approximate numeric (float)
expression.

FLOOR (numeric_expr) Largest integer less than or equal to the specified numeric
expression. Result is the integer portion of the same type as
numeric_expr.

LOG (float_expr) Natural logarithm of the specified approximate numeric (float)
expression.

LOG10 (float_expr) Base-10 logarithm of the specified approximate numeric (float)
expression.

PI () Constant value of 3.141592653589793.

RDBMS Concepts using SQL Server 2000

 183

POWER (numeric_expr,y)Value of numeric expression to the power of y, where y is a numeric
datatype (bigint, decimal, float, int, money, numeric, real, smallint,
smallmoney, or tinyint). Result is of the same type as numeric_expr.

RADIANS (numeric_expr) Radians converted from degrees of the numeric expression. Result
is of the same type as numeric_expr.

RAND ([seed]) Random approximate numeric (float) value between 0 and 1,
optionally specifying an integer expression as the seed.

ROUND (numeric_expr,
length) Numeric expression rounded off to the length (or precision)

specified as an integer expression (bigint, tinyint, smallint, or int).
Result is of the same type as numeric_expr. ROUND always returns
a value even if length is illegal. If the specified length is positive and
longer than the digits after the decimal point, 0 is added after the
fraction digits. If the length is negative and larger than or equal to
the digits before the decimal point, ROUND returns 0.00.

SIGN (numeric_expr) Returns the positive (+1), zero (0), or negative (-1) sign of the
numeric expression. Result is of the same type as numeric_expr.

SIN (float_expr) Trigonometric sine of the specified angle (measured in radians) in
an approximate numeric (float) expression.

SQRT (float_expr) Square root of the specified approximate numeric (float) expression.
SQUARE (float_expr) Square of the specified approximate numeric (float) expression.
TAN (float_expr) Trigonometric tangent of the specified angle (measured in radians)

The following examples show some of the math functions at work

EXAMPLE 1

Produce a table with the sine, cosine, and tangent of all angles in multiples of 10, from 0 through
180. Format the return value as a string of eight characters, with the value rounded to five
decimal places. (We need one character for the decimal point and one for a negative sign, if
needed.)

DECLARE @degrees smallint
DECLARE @radians float
SELECT @degrees=0
SELECT @radians=0
WHILE (@degrees <= 180)
BEGIN
 SELECT
 DEGREES=@degrees,
 RADIANS=STR(@radians, 8, 5),
 SINE=STR(SIN(@radians), 8, 5),
 COSINE=STR(COS(@radians), 8, 5),
 TANGENT=STR(TAN(@radians), 8, 5)
 SELECT @degrees=@degrees + 10
 SELECT @radians=RADIANS(CONVERT(float, @degrees))
END

This example actually produces 19 different result sets because the SELECT statement is issued
once for each iteration of the loop. These separate result sets are concatenated and appear as
one result set in this example. That works fine for illustrative purposes, but you should avoid
doing an operation like this in the real world, especially on a slow network. Each result set carries
with it metadata to describe itself to the client application.

RDBMS Concepts using SQL Server 2000

 184

And here are the results concatenated as a single table:

DEGREES RADIANS SINE COSINE TANGENT
------- ------- ------- ------- -------
0 0.00000 0.00000 1.00000 0.00000

10 0.17453 0.17365 0.98481 0.17633

20 0.34907 0.34202 0.93969 0.36397

30 0.52360 0.50000 0.86603 0.57735

40 0.69813 0.64279 0.76604 0.83910

50 0.87266 0.76604 0.64279 1.19175

60 1.04720 0.86603 0.50000 1.73205

70 1.22173 0.93969 0.34202 2.74748

80 1.39626 0.98481 0.17365 5.67128

90 1.57080 1.00000 0.00000 *******

100 1.74533 0.98481 -0.1736 -5.6713

110 1.91986 0.93969 -0.3420 -2.7475

120 2.09440 0.86603 -0.5000 -1.7321

130 2.26893 0.76604 -0.6428 -1.1918

140 2.44346 0.64279 -0.7660 -0.8391

150 2.61799 0.50000 -0.8660 -0.5774

160 2.79253 0.34202 -0.9397 -0.3640
170 2.96706 0.17365 -0.9848 -0.1763

3.14159 0.00000 -1.0000 -0.0000

EXAMPLE 2

Express in whole-dollar terms the range of prices (non-null) of all books in the titles table. This
example combines the scalar functions FLOOR and CEILING inside the aggregate functions MIN
and MAX:

SELECT 'Low End'=MIN(FLOOR(price)),
 'High End'=MAX(CEILING(price))
FROM titles

And the result:

Low End High End
------- --------

RDBMS Concepts using SQL Server 2000

 185

2.00 23.00

EXAMPLE 3

Use the same records table that was used in the earlier date functions example. Find all records
within 150 days of September 30, 1997. Without the absolute value function ABS, you would
have to use BETWEEN or provide two search conditions and AND them to account for both 150
days before and 150 days after that date. ABS lets you easily reduce that to a single search
condition.
SELECT Record_number, Entered_on
FROM records
WHERE
ABS(DATEDIFF(DAY, Entered_on, '1997.09.30')) <= 150

Plus or minus 150 days

String Functions

String functions make it easier to work with character data. They let you slice and dice character
data, search it, format it, and alter it. Like other scalar functions, string functions allow you to
perform functions directly in your search conditions and SQL batches that would otherwise need
to be returned to the calling application for further processing. The string functions appear in
Table 18 For more detailed information, consult the online documentation.

 Table 18. String functions in Transact-SQL

Function Parameters Result
ASCII (char_expr) Indicates the numeric code value of the leftmost

character of a character expression.
CHAR (integer_expr) Returns the character represented by the ASCII code.

The ASCII code should be a value from 0 through 255;
otherwise, NULL is returned.

CHARINDEX ('pattern', expression) Returns the starting position of the specified exact
pattern. A pattern is a char_expr. The second
parameter is an expression, usually a column name, in
which SQL Server searches for pattern.

DIFFERENCE (char_expr1, char_expr2)Shows the difference between the values of two
character expressions as returned by the SOUNDEX
function. DIFFERENCE compares two strings and
evaluates the similarity between them, returning a value
0 through 4. The value 4 is the best match.

LEFT (char_expression, Returns int_expression characters from the
int_expression) left of the char_ expression.

LEN (char_expression) Returns the number of characters, rather than the
number of bytes, of char_expression, excluding trailing
blanks.

LOWER (char_expr) Converts uppercase character data to lowercase.
LTRIM (char_expr) Removes leading blanks.
NCHAR (int_expression) Returns the Unicode character with code

int_expression, as defined by the Unicode standard.
PATINDEX ('%pattern%', expression)Returns the starting position of the first occurrence of

pattern in the specified ex- pression, or 0 if the pattern
isn't found.

QUOTENAME

RDBMS Concepts using SQL Server 2000

 186

QUOTENAME ('char_string'
[,'quote_character']) Returns a Unicode string with quote_character used as

the delimiter to make the input string a valid SQL Server
delim- ited identifier.

REPLACE ('char_expression1',

'char_expression2',
'char_expression3') Replaces all occurrences of char_expression2 in

char_expression1 with char_expression3.
REPLICATE (char_expr, integer_expr) Repeats a character expression a specified number of

times. If integer_expr is negative, NULL is returned.
REVERSE (char_expr) Returns the char_expr backwards. This function takes a

constant, variable, or column as its parameter.
RIGHT (char_expr, integer_expr)Returns part of a character string starting integer_expr

characters from the right. If integer_expr is negative,
NULL is returned.

RTRIM (char_expr) Removes trailing blanks.
SOUNDEX (char_expr) Returns a four-character (SOUNDEX) of two strings.

The SOUNDEX function converts an alpha string to a
four-digit code used to find similar-sounding words or
names.

SPACE (integer_expr) Returns a string of repeated spaces. The number of
spaces is equal to integer_expr. If integer_expr is
negative, NULL is returned.

STR (float_expr [, length Returns character data converted from numeric data
[,decimal]]) The length is the total length, including decimal point,

sign, digits, and spaces. The decimal value is the
number of spaces to the right of the decimal point.

STUFF (char_expr1, start, Deletes length characters from char_expr1 at start and
` length, char_expr2) then inserts char_expr2 into char_expr1 at start.
SUBSTRING (expression, start, length) Returns part of a character or binary string. The first

parameter can be a character or binary string, a column
name, or an expression that includes a column name.
The second parameter specifies where the substring
begins. The third parameter specifies the number of
characters in the substring.

UNICODE ('nchar_expression') Returns the integer value, as defined by the Unicode
standard, for the first character of nchar_expression.

UPPER (char_expr) Converts lowercase character data to uppercase.

ASCII and CHAR functions

The function name ASCII is really a bit of a misnomer. ASCII is only a 7-bit character set and
hence can deal with only 128 characters. The character parameter to this function doesn't need
to be an ASCII character. The ASCII function returns the code point for the character set
associated with the database or the column if the argument to the function is a column from a
table. The return value can be from 0 through 255. For example, if the current database is using a
Latin-1 character set, the following statement returns 196, even though the character Ä isn't
an ASCII character.

SELECT ASCII('Ä')

RDBMS Concepts using SQL Server 2000

 187

The CHAR function is handy for generating test data, especially when combined with RAND and
REPLICATE. CHAR is also commonly used for inserting control characters such as tabs and
carriage returns into your character string. Suppose, for example, that we want to return authors'
last names and first names concatenated as a single field, but with a carriage return (0x0D, or
decimal 13) separating them so that without further manipulation in our application, the names
occupy two lines when displayed. The CHAR function makes this simple:

SELECT 'NAME'=au_fname + CHAR(13) + au_lname
FROM authors

Here's the abbreviated result:

NAME

Johnson
White
Marjorie
Green
Cheryl
Carson
Michael
O'Leary
Dean
Straight
Meander
Smith
Abraham
Bennet
Ann
Dull

UPPER and LOWER functions

These functions are useful if you must perform case-insensitive searches on data that is case
sensitive. The following example copies the authors table from the pubs database into a
new table, using a case-sensitive collation for the authors' name fields.

SELECT au_id,
 au_lname = au_lname collate Latin1_General_CS_AS,
 au_fname = au_fname collate Latin1_General_CS_AS,
 phone, address, city, state, zip, contract
INTO authors_CS
FROM authors

This query finds no rows in the new table even though author name Cheryl Carson is included in
that table:

SELECT COUNT(*) FROM authors_CS WHERE au_lname='CARSON'

If we change the query to the following, the row will be found:

SELECT COUNT(*) FROM authors_CS WHERE UPPER(au_lname)='CARSON'

RDBMS Concepts using SQL Server 2000

 188

If the value to be searched might be of mixed case, you need to use the function on both sides of
the equation. This query will find the row in the case-sensitive table:

DECLARE @name_param varchar(30)
SELECT @name_param='cArSoN'
SELECT COUNT(*) FROM authors_CS WHERE UPPER(au_lname)=UPPER(@name_param)

In these examples, even though we might have an index on au_lname, it won't be useful because
the index keys aren't uppercase. However, we could create a computed column on
UPPER(au_lname) and build an index on the computed column.
You'll also often want to use UPPER or LOWER in stored procedures in which character
parameters are used. For example, in a procedure that expects Y or N as a parameter, you'll
likely want to use one of these functions in case y is entered instead of Y.

TRIM functions

The functions LTRIM and RTRIM are handy for dealing with leading or trailing blanks. Recall that
by default (and if you don't enable the ANSI_PADDING setting) a varchar datatype is
automatically right-trimmed of blanks, but a fixed-length char isn't. Suppose that we want to
concatenate the type column and the title_id column from the titles table, with a colon separating
them but with no blanks. The following query doesn't work because the trailing blanks are
retained from the type column:

SELECT type + ':' + title_id FROM titles

Here's the result (in part):

business :BU1032
business :BU1111
business :BU2075
business :BU7832
mod_cook :MC2222
mod_cook :MC3021
UNDECIDED :MC3026
popular_comp:PC1035
popular_comp:PC8888
popular_comp:PC9999

But RTRIM returns what we want:

SELECT RTRIM(type) + ':' + title_id FROM titles

And here's the result (in part):

business:BU1032
business:BU1111
business:BU2075
business:BU7832
mod_cook:MC2222
mod_cook:MC3021
UNDECIDED:MC3026
popular_comp:PC1035
popular_comp:PC8888

RDBMS Concepts using SQL Server 2000

 189

popular_comp:PC9999

String manipulation functions

Functions are useful for searching and manipulating partial strings that include SUBSTRING,
CHARINDEX, PATINDEX, STUFF, REPLACE, REVERSE, and REPLICATE. CHARINDEX and
PATINDEX are similar, but CHARINDEX demands an exact match and PATINDEX works with a
regular expression search.

You can also use CHARINDEX or PATINDEX as a replacement for LIKE. For example, instead of
saying WHERE name LIKE '%Smith%', you can say WHERE CHARINDEX('Smith', name) > 0.

Suppose we want to change occurrences of the word "computer" within the notes field of the titles
table and replace it with "Hi-Tech Computers." Assume that SQL Server is case sensitive and, for
simplicity, that we know that "computer" won't appear more than once per column. The regular
expression computer[^s] always finds the word "computer" and ignores "computers," so it'll work
perfectly with PATINDEX.

Here's the data before the change:

SELECT title_id, notes

FROM titles WHERE notes LIKE '%[Cc]omputer%'

title_id notes
-------- --
BU7832 Annotated analysis of what computers can do for you: a
 no-hype guide for the critical user.
PC8888 Muckraking reporting on the world's largest computer
 hardware and software manufacturers.
PC9999 A must-read for computer conferencing.
PS1372 A must for the specialist, this book examines the
 difference between those who hate and fear computers
 and those who don't.
PS7777 Protecting yourself and your loved ones from undue
 emotional stress in the modern world. Use of computer
 and nutritional aids emphasized.

You might consider using the REPLACE function to make the substitution. However, REPLACE
requires that we search for a specific string that can't include wildcards like [^s]. Instead, we can
use the older STUFF function, which has a slightly more complex syntax. STUFF requires that we
specify the starting location within the string to make a substitution. We can use PATINDEX to
find the correct starting location, and PATINDEX allows wildcards:

UPDATE titles
SET notes=STUFF(notes, PATINDEX('%computer[^s]%', notes),
 DATALENGTH('computer'), 'Hi-Tech Computers')
WHERE PATINDEX('%computer[^s]%', notes) > 0

Here's the data after the change:

RDBMS Concepts using SQL Server 2000

 190

SELECT title_id, notes
FROM titles
WHERE notes LIKE '%[Cc]omputer%'

title_id notes
-------- --
BU7832 Annotated analysis of what computers can do for you: a
 no-hype guide for the critical user.
PC8888 Muckraking reporting on the world's largest Hi-Tech
 Computers hardware and software manufacturers.
PC9999 A must-read for Hi-Tech Computers conferencing.
PS1372 A must for the specialist, this book examines the
 difference between those who hate and fear computers
 and those who don't.
PS7777 Protecting yourself and your loved ones from undue
 emotional stress in the modern world. Use of Hi-Tech
 Computers and nutritional aids emphasized.

Of course, we could have simply provided 8 as the length parameter of the string "computer" to
be replaced. But we used yet another function, LEN, which would be more realistic if we were
creating a general-purpose, search-and-replace procedure. Note that DATALENGTH returns
NULL if the expression is NULL, so in your applications, you might go one step further and use
DATALENGTH inside the ISNULL function to return 0 in the case of NULL. The REPLICATE
function is useful for adding filler characters—such as for test data. (In fact, generating test data
seems to be about the only practical use for this function.) The SPACE function is a special-
purpose version of REPLICATE: it's identical to using REPLICATE with the space character.
EVERSE reverses a character string. You can use REVERSE in a few cases to store and, more
importantly, to index a character column backward to get more selectivity from the index. But in
general, these three functions are rarely used.

SOUNDEX and DIFFERENCE Functions

If you've ever wondered how telephone operators are able to give you telephone numbers so
quickly when you call directory assistance, chances are they're using a SOUNDEX algorithm. The
SOUNDEX and DIFFERENCE functions let you search on character strings that sound similar
when spoken. SOUNDEX converts each string to a four-character code. DIFFERENCE can then
be used to evaluate the level of similarity between the SOUNDEX values for two strings as
returned by SOUNDEX. For example, you could use these functions to look at all rows that sound
like "Erickson," and they would find "Erickson," "Erikson," "Ericson," "Ericksen," "Ericsen," and so
on.
SOUNDEX algorithms are commonplace in the database business, but the exact implementation
can vary from vendor to vendor. For SQL Server's SOUNDEX function, the first character of the
four-character SOUNDEX code is the first letter of the word, and the remaining three characters
are single digits that describe the phonetic value of the first three consonants of the word with the
underlying assumption that there's one consonant per syllable. Identical consonants right next to
each other are treated as a single consonant. Only nine phonetic values are possible in this
scheme because only nine possible digits exist. SOUNDEX relies on phonetic similarities
between sounds to group consonants together. In fact, SQL Server's SOUNDEX algorithm uses
only seven of the possible nine digits. No SOUNDEX code uses the digits 8 or 9.

Vowels are ignored, as are the characters h and y, so "Zastrak" would have the same code as
"Zasituryk." If no second or subsequent consonant exists, the phonetic value for it is 0. In
addition, SQL Server's SOUNDEX algorithm stops evaluating the string as soon as the first
nonalphabetic character is found. So if you have a hyphenated or two-word name (with a space in

RDBMS Concepts using SQL Server 2000

 191

between), SOUNDEX ignores the second part of the name. More seriously, SOUNDEX stops
processing names as soon as it finds an apostrophe. So "O'Flaherty," "O'Leary," and "O'Hara" all
have the same SOUNDEX code, namely O000.
DIFFERENCE internally compares two SOUNDEX values and returns a score from 0 through 4 to
indicate how close the match is. A score of 4 is the best match, and 0 means no matches were
found. Executing DIFFERENCE(a1, a2) first generates the four-character SOUNDEX values for
a1 (call it sx_a1) and a2 (call it sx_a2). Then, if all four values of the SOUNDEX value sx_a2
match the values of sx_a1, the match is perfect and the level is 4. Note that this compares the
SOUNDEX values by character position, not by actual characters.

The names "Smythe" and "Smith" both have a SOUNDEX value of S530, so their difference level
is 4, even though the spellings differ. If the first character (a letter, not a number) of the
SOUNDEX value sx_a1 is the same as the first character of sx_a2, the starting level is 1. If the
first character is different, the starting level is 0. Then each character in sx_a2 is successively
compared to all characters in sx_a1. When a match is found, the level is incremented and the
next scan on sx_a1 starts from the location of the match. If no match is found, the next sx_a2
character is compared to the entire four-character list of sx_a1.

The preceding description of the algorithms should make it clear that SOUNDEX at best provides
an approximation. Even so, sometimes it works extremely well. Suppose we want to query the
authors table for names that sound similar to "Larsen." We'll define similar to mean "having a
SOUNDEX value of 3 or 4":

SELECT au_lname,
Soundex=SOUNDEX(au_lname),
Diff_Larsen=DIFFERENCE(au_lname, 'Larson')
FROM authors
WHERE
DIFFERENCE(au_lname, 'Larson') >= 3

Here's the result:

au_lname Soundex Diff_Larsen
-------- ------- -----------
Carson C625 3
Karsen K625 3

In this case, we found two names that rhyme with "Larsen" and didn't get any bad hits of names
that don't seem close. For example, do you think "Bennet" and "Smith" sound similar? Well,
SOUNDEX does. When you investigate, you can see why the two names have a similar
SOUNDEX value. The SOUNDEX values have a different first letter, but the m and n sounds are
converted to the same digit, and both names include a t, which is converted to a digit for the third
position. "Bennet" has nothing to put in the fourth position, so it gets a 0. For Smith, the h
becomes a 0. So, except for the initial letter, the rest of the SOUNDEX strings are the same.
Hence, the match.
This type of situation happens often with SOUNDEX—you get hits on values that don't seem
close, although usually you won't miss the ones that are similar. So if you query the authors table
for similar values (with a DIFFERENCE value of 3 or 4) as "Smythe," you get a perfect hit on
"Smith" as you'd expect, but you also get a close match for "Bennet," which is far from obvious:

SELECT au_lname,
Soundex=SOUNDEX(au_lname),

RDBMS Concepts using SQL Server 2000

 192

Diff_Smythe=DIFFERENCE(au_lname, 'Smythe')
FROM authors
WHERE
DIFFERENC3E(au_lname, 'Smythe') >= 3

au_lname Soundex Diff_Smythe
-------- ------- -----------

Smith S530
Bennet B530

 4
 3

Sometimes SOUNDEX misses close matches altogether. This happens when consonant blends
are present. For example, you might expect to get a close match between "Knight" and "Nite." But
you get a low value of 1 in the DIFFERENCE between the two:

SELECT
"SX_KNIGHT"=SOUNDEX('Knight'),
"SX_NITE"=SOUNDEX('Nite'),
"DIFFERENCE"=DIFFERENCE('Nite', 'Knight')

SX_KNIGHT SX_NITE DIFFERENCE
--------- ------- ----------
K523 N300 1

System Functions

System functions are most useful for returning certain metadata, security, or configuration
settings. Table 19 lists of some of the more commonly used system functions, and it's followed by
a brief discussion of the interesting features of a few of them. For complete details, see the SQL
Server online documentation.

Table 19 System functions in Transact-SQL

Function Parameters Description
APP_NAME NONE Returns the program name for the current

connection if one has been set by the
program before you log on.

COALESCE (expression1, expression2, ...
expressionN) A specialized form of the CASE statement.

Returns the first non-null expression.
COL_LENGTH ('table_name', 'column_name')

The defined (maximum) storage length of a
column.

COL_NAME (table_id, column_id) The name of the column.
DATALENGTH ('expression') The length of an expression of any

datatype.
DB_ID (['database_name']) The database identification number.
DB_NAME ([database_id]) The database name.
GETANSINULL (['database_name']) The default nullability for the database.

Returns 1 when the nullability is the ANSI
NULL default.

RDBMS Concepts using SQL Server 2000

 193

HOST_ID NONE The process ID of the application calling
SQL Server on the workstation. (If you look
at the PID column on the Processes tab in
Windows Task Manager, you will see this
number associated with the client
application.)

HOST_NAME NONE The workstation name.
IDENT_INCR ('table_or_view') The increment value specified during

creation of an identity column of a table or
view that includes an identity column.

IDENT_SEED ('table_or_view') The seed value specified during creation of
an identity column of a table or view that
includes an identity column.

INDEX_COL ('table_name', index_id, key_id)
The indexed column name(s).

ISDATE (expression_of_possible_date)
Checks whether an expression is a
datetime datatype or a string in a
recognizable datetime format. Returns 1
when the expression is compatible with the
datetime type; otherwise, returns 0.

ISNULL (expression, value) Replaces NULL entries with the specified
value.

ISNUMERIC (expression_of_possible_number)
Checks whether an expression is a
numeric datatype or a string in a
recognizable number format. Returns 1
when the expression is compatible with
arithmetic operations; otherwise, returns 0.

NULLIF (expression1, expression2)
A specialized form of CASE. The resulting
expression is NULL when expression1 is
equivalent to expression2.

OBJECT_ID ('object_name') The database object identification number.
OBJECT_NAME (object_id) The database object name.
STATS_DATE (table_id, index_id) The date when the statistics for the

specified index (index_id) were last
updated.

SUSER_SID (['login_name']) The security identification number (SID) for
the user's login name.

SUSER_SNAME ([server_user_sid]) The login identification name from a user's
security identification number (SID).

USER_ID (['user_name']) The user's database ID number.
USER_NAME ([user_id]) The user's database username.

The DATALENGTH function is most often used with variable-length data, especially character
strings, and it tells you the actual storage length of the expression (typically a column name). A
fixed-length datatype always returns the storage size of its defined type (which is also its actual
storage size), which makes it identical to COL_LENGTH for such a column. The DATALENGTH
of any NULL expression returns NULL. The OBJECT_ID, OBJECT_NAME, SUSER_SNAME,
SUSER_SID, USER_ID, USER_NAME, COL_NAME, DB_ID, and DB_NAME functions are
commonly used to more easily eliminate the need for joins between system catalogs and to get
run-time information dynamically.

RDBMS Concepts using SQL Server 2000

 194

Recognizing that an object name is unique within a database for a specific user, we can use the
following statement to determine whether an object by the name "foo" exists for our current user
ID; if so, we can drop the object (assuming that we know it's a table).

 IF (SELECT id FROM sysobjects WHERE id=OBJECT_ID('foo')
 AND uid=USER_ID() AND type='U') > 0
 DROP TABLE foo

System functions can be handy with constraints and views. Recall that a view can benefit from
the use of system functions. For example, if the accounts table includes a column that is the
system login ID of the user to whom the account belongs, we can create a view of the table that
allows the user to work only with his or her own accounts. We do this simply by making the
WHERE clause of the view something like this:

WHERE system_login_id=SUSER_SID()

Or if we want to ensure that updates on a table occur only from an application named
CS_UPDATE.EXE, we can use a CHECK constraint in the following way:

CONSTRAINT APP_CHECK(APP_NAME()='CS_UPDATE.EXE')

For this particular example, the check is by no means foolproof because the application must set
the app_name in its login record. A rogue application could simply lie. To prevent casual use by
someone running an application like isql.exe, the preceding constraint might be just fine for your
needs. But if you're worried about hackers, this formulation isn't appropriate. Other functions,
such as SUSER_SID, have no analogous way to be explicitly set, so they're better for security
operations like this.
The ISDATE and ISNUMERIC functions can be useful for determining whether data is
appropriate for an operation. For example, suppose your predecessor didn't know much about
using a relational database and defined a column as type char and then stored values in it that
were naturally of type money. Then she compounded the problem by sometimes encoding letter
codes in the same field as notes. You're trying to work with the data as is (eventually you'll clean
it up, but you have a deadline to meet), and you need to get a sum and average of all the values
whenever a value that makes sense to use is present. (If you think this example is contrived, talk
to a programmer in an MIS shop of a Fortune 1000 company with legacy applications.) Suppose
the table has a varchar(20) column named acct_bal with these values:

acct_bal

205.45
E
(NULL)
B
605.78
32.45
8
98.45
64.23
8456.3

If you try to simply use the aggregate functions directly, you'll get error 409:

SELECT SUM(acct_bal). AVG(acct_bal)
FROM bad_column_for_money

RDBMS Concepts using SQL Server 2000

 195

MSG 235, Level 16, State 0
Cannot covert CHAR value to MONEY. The CHAR value has incorrect syntax.

But if you use both CONVERT() in the select list and ISNUMERIC() in the WHERE clause to
choose only those values for which a conversion would be possible, everything works great:

SELECT
"SUM"=SUM(CONVERT(money, acct_bal)),
"AVG"=AVG(CONVERT(money, acct_bal))
FROM bad_column_for_money
WHERE ISNUMERIC(acct_bal)=1
SUM AVG
-------- --------
9,470 1.352.95

Metadata Functions

In earlier versions of SQL Server, the only way to determine which options or properties an object
had was to actually query a system table and possibly even decode a bitmap status column. SQL
Server 2000 provides a set of functions that return information about databases, files, filegroups,
indexes, objects, and datatypes.

For example, to determine what recovery model a database is using, you can use the
DATABASEPROPERTYEX function:

IF DATABASEPROPERTYEX('pubs', 'Recovery') <> 'SIMPLE'
 /*run a command to backup the transaction log */

Many of the properties that you can check for using either the DATABASEPROPERTY and
DATABASEPROPERTYEX functions correspond to database options that you can set using the
sp_dboption stored procedure. One example is the AUTO_CLOSE option, which determines the
value of the IsAutoClose property. Other properties, such as IsInStandBy, are set internally by
SQL Server. The documentation also provides the complete list of properties and possible values
for use with the following functions:

• COLUMNPROPERTY
• FILEGROUPPROPERTY
• FILEPROPERTY
• INDEXPROPERTY
• OBJECTPROPERTY
• TYPEPROPERTY

Niladic Functions

ANSI SQL-92 has a handful of what it calls niladic functions—a fancy name for functions that
don't accept any parameters. Niladic functions were first implemented in version 6, and each one
maps directly to one of SQL Server's system functions. They were actually added to SQL Server
6 for conformance with the ANSI SQL-92 standard; all of their functionality was already provided,
however. Table 20 lists the niladic functions and their equivalent SQL Server system functions.

Table 20. Niladic functions and their equivalent SQL Server functions.

Niladic Function Equivalent SQL Server System Function
CURRENT_TIMESTAMP GETDATE
SYSTEM_USER SUSER_SNAME
CURRENT_USER USER_NAME

RDBMS Concepts using SQL Server 2000

 196

SESSION_USER USER_NAME
USER USER_NAME

If you execute the following two SELECT statements, you'll see that they return identical results:

SELECT CURRENT_TIMESTAMP, USER, SYSTEM_USER, CURRENT_USER,
SESSION_USER

SELECT GETDATE(), USER_NAME(), SUSER_SNAME(),
USER_NAME(), USER_NAME()

Other Parameterless Functions

However, these values aren't variables because you can't declare them and you can't assign
them values. These functions are global only in the sense that any connection can access their
values. However, in many cases the value returned by these functions is specific to the
connection. For example, @@ERROR represents the last error number generated for a specific
connection, not the last error number in the entire system. @@ROWCOUNT represents the
number of rows selected or affected by the last statement for the current connection.
Many of these parameterless system functions keep track of performance-monitoring information
for your SQL Server. These include @@CPU_BUSY, @@IO_BUSY, @@PACK_SENT, and
@@PACK_RECEIVED.

Some of these functions are extremely static, and others are extremely volatile. For example,
@@version represents the build number and code freeze date of the SQL Server executable
(Sqlservr.exe) that you're running. It will change only when you upgrade or apply a service pack.
Functions like @@ROWCOUNT are extremely volatile. Take a look at the following code and its
results.

pub_id pub_name city state country
------ ------------------------- -------------------- ----- ----------
0736 New Moon Books Boston MA USA
0877 Binnet & Hardley Washington DC USA
1389 Algodata Infosystems Berkeley CA USA
1622 Five Lakes Publishing Chicago IL USA
1756 Ramona Publishers Dallas TX USA
9901 GGG&G München NULL Germany
9952 Scootney Books New York NY USA
9999 Lucerne Publishing Paris NULL France

(8 row(s) affected)

8
(1 row(s) affected)

1

(1 row(s) affected)
Note that the first time @@ROWCOUNT was selected, it returned the number of rows in the
publishers table (8). The second time @@ROWCOUNT was selected, it returned the number of
rows returned by the previous SELECT @@ROWCOUNT (1). Any query you execute that affects
rows will change the value of @@ROWCOUNT.

RDBMS Concepts using SQL Server 2000

 197

Table-Valued Functions
SQL Server 2000 provides a set of system functions that return tables; because of this, the
functions can appear in the FROM clause of a query. To invoke these functions, you must use the
special signifier :: as a prefix to the function name and then omit any database or owner name.
Several of these table-valued functions return information about traces you have defined. Another
one of the functions can also be useful during monitoring and tuning, as shown in this example:

SELECT *
FROM ::fn_virtualfilestats(5,1)

The function fn_virtualfilestats takes two parameters, a database ID and a file ID, and it returns
statistical information about the I/O on the file. Here is some sample output from running this
query on the pubs database:

 Number Number Bytes Bytes

DbId FileId TimeStamp Reads Writes Read Written IoStallMS
---- ------ --------- ------ ------ ------- ------- ---------
5 1 38140863 44 0 360448 0 3164

Because the function returns a table, you can control the result set by limiting it to only certain
columns or to rows that meet certain conditions. As another example, the function
fn_helpcollations lists all the collations supported by SQL Server 2000. An unqualified SELECT
from this function would return 753 rows in two columns.

SELECT name
FROM ::fn_helpcollations()
WHERE name LIKE 'SQL%latin%CI%'
 AND name NOT LIKE '%pref%'

RESULT:

name

SQL_Latin1_General_CP1_CI_AI
SQL_Latin1_General_CP1_CI_AS
SQL_Latin1_General_CP1250_CI_AS
SQL_Latin1_General_CP1251_CI_AS
SQL_Latin1_General_CP1253_CI_AI
SQL_Latin1_General_CP1253_CI_AS
SQL_Latin1_General_CP1254_CI_AS
SQL_Latin1_General_CP1255_CI_AS
SQL_Latin1_General_CP1256_CI_AS
SQL_Latin1_General_CP1257_CI_AS
SQL_Latin1_General_CP437_CI_AI
SQL_Latin1_General_CP437_CI_AS
SQL_Latin1_General_CP850_CI_AI
SQL_Latin1_General_CP850_CI_AS

