


Undergraduate Topics in Computer Science 



undergraduates studying in all areas of computing and information science.  From core foundational 
and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and 
modern approach and are ideal for self-study or for a one- or two-semester course.  The texts are all 
authored by established experts in their fields, reviewed by an international advisory board, and contain 
numerous examples and problems. Many include fully worked solutions. 

Also in this series 

Iain D. Craig 
Object-Oriented Programming Languages: Interpretation 
978-1-84628-773-2 

Max Bramer 
Principles of Data Mining 
978-1-84628-765-7 

Hanne Riis Nielson and Flemming Nielson 
Semantics with Applications: An Appetizer 
978-1-84628-691-9 

Michael Kifer and Scott A. Smolka 
Introduction to Operating System Design and Implementation: The OSP 2 Approcah 
978-1-84628-842-5 

Practical Distributed Processing 
978-1-84628-840-1 

Undergraduate Topics in Computer Science' (UTiCS) delivers high-quality instructional content for 

Phillip J. Brooke and Richard F. Paige 



Frank Klawonn 

ABC

Introduction to 
Computer Graphics 
Using Java 2D and 3D 



Series editor 
Ian Mackie, École Polytechnique, France and King s College London, UK 

Advisory board 
Samson Abramsky, University of Oxford, UK 
Chris Hankin, Imperial College London, UK 
Dexter Kozen, Cornell University, USA 
Andrew Pitts, University of Cambridge, UK 
Hanne Riis Nielson, Technical University of Denmark, Denmark 
Steven Skiena, Stony Brook University, USA 
Iain Stewart, University of Durham, UK 
David Zhang, The Hong Kong Polytechnic University, Hong Kong 

British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library 

Undergraduate Topics in Computer Science ISSN 1863-7310 
ISBN: 978-1-84628-847-0 e-ISBN: 978-1-84628-848-7 

© Springer-Verlag London Limited 2008 

Originally published in the German language by Friedr. Vieweg & Sohn Verlag, 65189 Wiesbaden, 
Germany, as “Frank Klawonn: Grundkurs Computergrafik mit Java. 1. Auflage”. © Friedr. Vieweg & 
Sohn Verlag |GWV Fachverlage GmbH, Wiesbaden 2005 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted 
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or 
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the 
case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing 
Agency.  Enquiries concerning reproduction outside those terms should be sent to the publishers. 

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a 
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for 
general use. 

The publisher makes no representation, express or implied, with regard to the accuracy of the information 
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that 
may be made.   

Printed on acid-free paper 

9  8  7  6  5  4  3  2  1 

springer.com 

Frank Klawonn, MSc, PhD 
Department of Computer Science 
University of Applied Sciences Braunschweig/Wolfenbuettel 
Germany 

Library of Congress Control Number:  2007939533

,



Preface

Early computer graphics started as a research and application field that was
the domain of only a few experts, for instance in the area of computer aided
design (CAD). Nowadays, any person using a personal computer benefits from
the developments in computer graphics. Operating systems and application
programs with graphical user interfaces (GUIs) belong to the simplest appli-
cations of computer graphics. Visualisation techniques, ranging from simple
histograms to dynamic 3D animations showing changes of winds or currents
over time, use computer graphics in the same manner as popular computer
games. Even those who do not use a personal computer might see the results of
computer graphics on TV or in cinemas where parts of scenes or even a whole
movie might be produced by computer graphics techniques.

Without powerful hardware in the form of fast processors, sufficiently large
memory and special graphics cards, most of these applications would not have
been possible. In addition to these hardware requirements efficient algorithms
as well as programming tools that are easy to use and flexible at the time are
required. Nowadays, a standard personal computer is sufficient to generate im-
pressive graphics and animations using freely available programming platforms
like OpenGL or Java 3D. In addition to at least an elementary understanding
of programming, the use of such platforms also requires basic knowledge about
the underlying background, concepts and methods of computer graphics.

Aims of the book

The aim of this book is to explain the necessary background and principles of
computer graphics combined with direct applications in concrete and simple
examples. Coupling the theory with the practical examples enables the reader
to apply the technical concepts directly and to visually understand what they



vi Preface

mean.
Java 2D and Java 3D build the basis for the practical examples. Wherever

possible, the introduced concepts and theory of computer graphics are imme-
diately followed by their counterparts in Java 2D and Java 3D. However, the
intention of this book is not to provide a complete introduction to Java 2D
or Java 3D, which would both need a multivolume edition themselves without
even touching the underlying theoretical concepts of computer graphics.

In order to directly apply computer graphics concepts introduced in this
book, the book focusses on the parts of Java 2D and Java 3D that are absolutely
relevant for these concepts. Sometimes a simple solution is preferred over the
most general one so that not all possible options and additional parameters
for an implementation will be discussed. The example programs are kept as
simple as possible in order to concentrate on the important concepts and not
to disguise them in complex, but more impressive scenes.

There are some selected additional topics—for instance the computation of
shadows within computer graphics—that are introduced in the book, although
Java 3D does not provide such techniques yet.

Why Java?

There are various reasons for using Java 2D and Java 3D as application plat-
forms. The programming language Java becomes more and more popular in
applications and teaching so that extensions like Java 2D/3D seem to be the
most obvious choice. Many universities use Java as the introductory program-
ming language, not only in computer science, but also in other areas so that
students with a basic knowledge in Java can immediately start to work with
Java 2D/3D. Specifically, for multimedia applications Java is very often the
language of first choice.

Overview

The first chapters of the book focus on aspects of two-dimensional computer
graphics like how to create and draw lines, curves and geometric shapes, han-
dling of colours and techniques for animated graphics.

Chapter 5 and all following chapters cover topics of three-dimensional com-
puter graphics. This includes modelling of 3D objects and scenes, producing
images from virtual 3D scenes, animation, interaction, illumination and shad-
ing. The last chapter introduces selected special topics, for example special
effects like fog, sound effects and stereoscopic viewing.



Preface vii

Guidelines for the reader

In order to be able to apply the computer graphics concepts introduced in this
book, the reader will need only very elementary knowledge of the programming
language Java. The example programs in this book use Java 3D but also Java
2D in the first chapters, since two-dimensional representations are essential for
computer graphics and the geometrical concepts are easier to understand in
two dimensions than in three. The necessary background of Java 2D and Java
3D is included as application sections in this book.

Although the coupling of theory and practice was a main guideline for
writing this book, the book can also be used as an introduction to the gen-
eral concepts of computer graphics without focussing on specific platforms or
learning how to use Java 2D or Java 3D. Skipping all sections and subsections
containing the word “Java” in their headlines, the book will remain completely
self-contained in the sense of a more theoretical basic introduction to computer
graphics. For some of the computer graphics concepts introduced in this book
it is assumed that the reader has basic knowledge about vectors, matrices and
elementary calculus.

Supplemental resources

Including the complete source code of all mentioned example programs would
have led to a thicker, but less readable book. In addition, no one would like to
take the burden of typing the source code again in order to run the examples.
Therefore, the book itself only contains those relevant excerpts of the source
code that are referred to in the text. The complete source code of all example
programs and additional programs can be downloaded from the book web site
at

http://public.rz.fh-wolfenbuettel.de/∼klawonn/computergraphics

This online service also provides additional exercises concerning the theo-
retical background as well programming tasks including sketches of solutions,
teaching material in the form of slides and some files that are needed for the
example programs. The links mentioned in the appendix and further links to
some interesting web sites can also be found at the online service of this book.

Acknowledgements

Over the years, the questions, remarks and proposals of my students had a great
influence on how this book was written. I cannot list all of them by name, but I
would like to mention at least Daniel Beier, Thomas Weber, Jana Volkmer and
especially Dave Bahr for reading the manuscript and their extremely helpful



viii Preface

comments. I also would like to thank Katharina Tschumitschew and Gerry
Gehrmann for designing the online service of the book and for some 3D models
that I could use in my programs. The book was first published in German
and without the encouragement and support of Catherine Brett from Springer
Verlag in London this English version would have been impossible. Thanks also
to Frank Ganz from Springer, who seems to know everything about LATEX. My
very personal thanks go to my parents and my wife Keiko for their love and
for always accepting my sometimes extremely heavy overload of work.

Wolfenbüttel Frank Klawonn
September 2007



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Application fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 From a real scene to an image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organisation of the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Basic principles of two-dimensional graphics . . . . . . . . . . . . . . . . 7
2.1 Raster versus vector graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The first Java 2D program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Basic geometric objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Basic geometric objects in Java 2D . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Geometric transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Homogeneous coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Applications of transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Geometric transformations in Java 2D . . . . . . . . . . . . . . . . . . . . . . 33
2.9 Animation and movements based on transformations . . . . . . . . . . 37
2.10 Movements via transformations in Java 2D . . . . . . . . . . . . . . . . . . 39
2.11 Interpolators for continuous changes . . . . . . . . . . . . . . . . . . . . . . . . 41
2.12 Implementation of interpolators in Java 2D . . . . . . . . . . . . . . . . . . 44
2.13 Single or double precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3. Drawing lines and curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 Lines and pixel graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 The midpoint algorithm for lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



x Contents

3.3 Structural algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Pixel densities and line styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Different line styles with Java 2D . . . . . . . . . . . . . . . . . . . . . 66
3.5 Line clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 The midpoint algorithm for circles . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.7 Drawing arbitrary curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8 Antialiasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.8.1 Antialiasing with Java 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.9 Drawing thick lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.9.1 Drawing thick lines with Java 2D . . . . . . . . . . . . . . . . . . . . . 84
3.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4. Areas, text and colours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1 Filling areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Buffered images in Java 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Double buffering in Java 2D . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 Loading and saving of images with Java 2D . . . . . . . . . . . . 94
4.2.3 Textures in Java 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Displaying text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Text in Java 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Grey images and intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6 Colour models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.1 Colours in Java 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Colour interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.8 Colour interpolation with Java 2D . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5. Basic principles of three-dimensional graphics . . . . . . . . . . . . . . 113
5.1 From a 3D world to a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Geometric transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.2 Geometric transformations in Java 3D . . . . . . . . . . . . . . . . 119

5.3 The scenegraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Elementary geometric objects in Java 3D . . . . . . . . . . . . . . . . . . . . 123
5.5 The scenegraph in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6 Animation and moving objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.7 Animation in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.8 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.8.1 Projections in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



Contents xi

6. Modelling three-dimensional objects . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1 Three-dimensional objects and their surfaces . . . . . . . . . . . . . . . . . 149
6.2 Topological notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 Modelling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.4 Surface modelling with polygons in Java 3D . . . . . . . . . . . . . . . . . 159
6.5 Importing geometric objects into Java 3D . . . . . . . . . . . . . . . . . . . 162
6.6 Parametric curves and freeform surfaces . . . . . . . . . . . . . . . . . . . . . 163

6.6.1 Parametric curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.6.2 Efficient computation of polynomials . . . . . . . . . . . . . . . . . . 170
6.6.3 Freeform surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.7 Normal vectors for surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.7.1 Normal vectors in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7. Visible surface determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.1 The clipping volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.1.1 Clipping in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2 Principles of algorithms for visible surface determination . . . . . . 183

7.2.1 Image-precision and object-precision algorithms . . . . . . . . 183
7.2.2 Back-face culling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2.3 Spatial partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 Image-precision techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.1 The z-buffer algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.2 Scan line technique for edges . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.3.3 Ray casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.4 Priority algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8. Illumination and shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.1 Light sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.2 Light sources in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.3 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.4 Shading in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.5 Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.5.1 Constant and Gouraud shading in Java 3D . . . . . . . . . . . . 222
8.6 Shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.7 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.7.1 Transparency in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8.8 Textures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.9 Textures in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.10 The radiosity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
8.11 Ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236



xii Contents

8.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9. Special effects and virtual reality . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
9.1 Fog and particle systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
9.2 Fog in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.3 Dynamic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.4 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.5 Interaction in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.6 Collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
9.7 Collision detection in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
9.8 Sound effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
9.9 Sound effects in Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
9.10 Stereoscopic viewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
9.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Appendix: Useful links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Appendix: Example programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Appendix: References to Java 2D classes and methods . . . . . . . . . . 273

Appendix: References to Java 3D classes and methods . . . . . . . . . . 275

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281



List of Figures

1.1 From a scene to an image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Original image, vector and pixel graphics . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The tip of an arrow drawn as raster graphics in two different reso-

lutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 An alternative representation for pixels . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The Java 2D API extends AWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The result of the first Java 2D program . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 A self-overlapping, a nonconvex and a convex polygon . . . . . . . . . . . . . 14
2.7 Definition of quadratic and cubic curves . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Fitting a cubic curve to a line without sharp bends . . . . . . . . . . . . . . . 16
2.9 Union, intersection, difference and symmetric difference of a circle

and a rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 An example for a GeneralPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 An example for a rectangle and an ellipse . . . . . . . . . . . . . . . . . . . . . . . . 20
2.12 An arc of an ellipse, a segment and an arc with its corresponding

chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 Scaling applied to a rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.14 A rotation applied to a rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.15 A shear transformation applied to a rectangle . . . . . . . . . . . . . . . . . . . . 26
2.16 Translation of a rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.17 Homogeneous coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.18 Differing results on changing the order for the application of a trans-

lation and a rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.19 From world to window coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.20 A moving clock with a rotating hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



xiv List of Figures

2.21 Changing one ellipse to another by convex combinations of trans-
formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.22 Two letters each defined by five points and two quadratic curves . . . 43
2.23 Stepwise transformation of two letters into each other . . . . . . . . . . . . . 44

3.1 Pseudocode for a näıve line drawing algorithm . . . . . . . . . . . . . . . . . . . 50
3.2 Lines resulting from the näıve line drawing algorithm . . . . . . . . . . . . . 50
3.3 The two candidates for the next pixel for the line drawing algorithm 53
3.4 The new midpoint depending on whether the previously drawn pixel

was E or NE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Drawing a line with the Bresenham algorithm . . . . . . . . . . . . . . . . . . . . 60
3.6 A repeated pixel pattern for drawing a line on pixel raster . . . . . . . . . 61
3.7 Different pixel densities depending on the slope of a line . . . . . . . . . . . 64
3.8 Different line styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.9 Different dash lengths for the same bitmask . . . . . . . . . . . . . . . . . . . . . . 66
3.10 Examples for different line styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.11 Different cases for line clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.12 Bit code for Cohen-Sutherland clipping . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.13 Cohen-Sutherland line clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.14 Cyrus-Beck line clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.15 Potential intersection points with the clipping rectangle . . . . . . . . . . . 74
3.16 Finding the pixel where a line enters the clipping rectangle . . . . . . . . 75
3.17 Exploiting symmetry for drawing circles . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.18 Midpoint algorithm for circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.19 Drawing arbitrary curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.20 Unweighted area sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.21 Estimation of the area by sampling with refined pixels . . . . . . . . . . . . 81
3.22 Weighted area sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.23 Pixel replication and the moving pen technique . . . . . . . . . . . . . . . . . . . 83
3.24 Different line endings and joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Odd parity rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Scan line technique for filling polygons . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 A scan line intersecting two vertices of a polygon . . . . . . . . . . . . . . . . . 89
4.4 Filling a polygon can lead to aliasing effects . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Filling an area with a texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Italic and boldface printing for letters given in raster graphics . . . . . . 97
4.7 Grey-level representation based on halftoning for a 2×2 (top line)

and on 3×3 pixel matrices (3 bottom lines) . . . . . . . . . . . . . . . . . . . . . . 100
4.8 Distribution of the energies over the wavelengths for high (left) and

low (right) saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.9 RGB and CMY model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



List of Figures xv

4.10 HSV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.11 HLS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.12 Compatible triangulations of two images . . . . . . . . . . . . . . . . . . . . . . . . 108
4.13 Computation of the interpolated colour of a pixel . . . . . . . . . . . . . . . . . 110

5.1 A right-handed coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 A chair constructed with elementary geometric objects . . . . . . . . . . . . 120
5.3 A scene composed of various elementary objects . . . . . . . . . . . . . . . . . . 121
5.4 The scenegraph for figure 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 The overall scenegraph for Java 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.6 Excerpt of the scenegraph with dynamic transformations . . . . . . . . . . 131
5.7 Progression of the Alpha-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.8 Perspective and parallel projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.9 Mapping an arbitrary plane to a plane parallel to the x/y-plane . . . . 141
5.10 Derivation of the matrix for the perspective projection . . . . . . . . . . . . 141
5.11 Vanishing point for perspective projection . . . . . . . . . . . . . . . . . . . . . . . 145
5.12 One-, two- and three-point perspective projections . . . . . . . . . . . . . . . . 145

6.1 Isolated and dangling edges and faces . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Triangulation of a polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3 Orientation of polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4 A tetrahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.5 A set M ⊂ R

2 of points, its interior, boundary, closure and regular-
isation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6 Modelling a three-dimensional object with voxels . . . . . . . . . . . . . . . . . 154
6.7 Recursive partition of an area into squares . . . . . . . . . . . . . . . . . . . . . . . 155
6.8 The quadtree for figure 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.9 An object that was constructed using elementary geometric objects

and set-theoretic operations shown on the right . . . . . . . . . . . . . . . . . . 157
6.10 Two objects and their sweep representations . . . . . . . . . . . . . . . . . . . . . 157
6.11 Tesselation of the helicopter scene in figure 5.3 . . . . . . . . . . . . . . . . . . . 158
6.12 Representation of a sphere with different tesselations . . . . . . . . . . . . . . 158
6.13 Two curves obtained from a surface that is scanned along the coor-

dinate axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.14 An interpolation polynomial of degree 5 defined by the control points

(0,0), (1,0), (2,0), (3,0), (4,1), (5,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.15 B-spline with knots P1, P4, P7 and inner Bézier points P2, P3, P5, P6 . 168
6.16 Condition for the inner Bézier points for a twice differentiable, cubic

B-spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.17 A parametric freeform surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.18 A net of Bézier points for the definition of a Bézier surface . . . . . . . . . 173
6.19 A triangular grid for the definition of a Bézier surface . . . . . . . . . . . . . 174



xvi List of Figures

6.20 Normal vectors to the original surface in the vertices of an approx-
imating triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.21 Interpolated and noninterpolated normal vectors . . . . . . . . . . . . . . . . . 177

7.1 The angle α determines the range on the projection plane that cor-
responds to the width of the display window . . . . . . . . . . . . . . . . . . . . . 180

7.2 The clipping volume for parallel projection (top) and perspective
projection (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 A front face whose normal vector forms an acute angle with the
direction of projection and a back face whose normal vector forms
an obtuse angle with the direction of projection . . . . . . . . . . . . . . . . . . 185

7.4 Partitioning of the clipping volume for image-precision (left) and
object-precision algorithms (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.5 Principle of the z-buffer algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.6 Determining the active edges for the scan lines v1, v2, v3, v4 . . . . . . . . 191
7.7 Ray casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.8 Projection of a polygon to decide whether a point lies within the

polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.9 Supersampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.10 No overlap in the x-coordinate (left) or the y-coordinate (right) . . . . 196
7.11 Does one polygon lie completely in front or behind the plane induced

by the other? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.12 Determining whether a polygon lies completely in front of the plane

induced by the other polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.13 A case where no correct order exists in which the polygons should

be projected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.1 Objects with and without illumination and shading effects . . . . . . . . . 201
8.2 Cone of light from a spotlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.3 The Warn model for a spotlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.4 The functions (cos γ)64, (cos γ)8, (cos γ)2, cos γ . . . . . . . . . . . . . . . . . . . 205
8.5 Light intensity depending on the angle of the light . . . . . . . . . . . . . . . . 210
8.6 Diffuse reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.7 Diffuse and specular reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.8 Computation of ideal specular reflection . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.9 The halfway vector h in Phong’s model . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.10 A sphere in different tesselations rendered with flat shading . . . . . . . . 218
8.11 The colour intensity as a function over a triangle for Gouraud shading 219
8.12 Scan line technique for the computation of Gouraud shading . . . . . . . 220
8.13 Interpolated normal vectors for Phong shading . . . . . . . . . . . . . . . . . . . 221
8.14 Shadow on an object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.15 50% (left) and 25% (right) screen-door transparency . . . . . . . . . . . . . . 225



List of Figures xvii

8.16 Using a texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.17 Modelling a mirror by a reflection mapping . . . . . . . . . . . . . . . . . . . . . . 228
8.18 Bump mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.19 Illumination among objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.20 Determination of the form factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.21 Determination of the form factors according to Nusselt . . . . . . . . . . . . 235
8.22 Recursive ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

9.1 Linear and exponential fog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
9.2 Skeleton and skinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
9.3 Bounding volume in the form of a cube and a sphere . . . . . . . . . . . . . . 250
9.4 Parallax and accommodation for natural and artificial stereoscopic

viewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
9.5 Parallax for stereoscopic viewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



1
Introduction

Computer graphics provides methods to generate images using a computer. The
word “image” should be understood in a more abstract sense here. An image
can represent a realistic scene from the real world, but graphics like histograms
or pie charts as well as the graphical user interface of a software tool are also
considered as images. The following section provides a brief overview on typical
application fields and facets of computer graphics.

1.1 Application fields

Graphical user interfaces can be considered as an application of computer
graphics, although they do not play an important role in computer graphics
anymore. On the one hand, there are standard programming tools and APIs
(Application Programming Interfaces) for the implementation of graphical user
interfaces and on the other hand the main emphasis of user interfaces is the
construction of user-friendly human computer interfaces and not the generation
of complex graphics.

In advertising and certain fields of art pictures are sometimes designed using
the computer only or photos serve as a basis and are modified or changed with
computer graphics techniques.

Large amounts of data are collected in business, industry, economy and
science. In addition to suitable data analysis techniques, methods for visualising
high-dimensional data are needed. Such visualisation techniques reach much



2 1. Introduction

further than simple representations like graphs of functions, pie or bar charts—
graphics that can already be generated by today’s standard spreadsheet tools.
Two- or three-dimensional visualisations of high-dimensional data, problem-
specific representations of the data [28, 39, 43] or animations that show dynamic
aspects like the flow of currents or the change of weather phenomena belong to
this class of applications of computer graphics.

Apart from constructing and representing such more abstract graphics, the
generation of realistic images and sequences of images—not necessarily of the
real world—are the main application field of computer graphics. Other ar-
eas, that were the driving force in the early days of computer graphics, are
CAD/CAM (Computer-Aided Design/Manufacturing) for the design and con-
struction of objects like cars or chassis. The objects are designed using a suit-
able computer graphics software and their geometry is stored in computers.
Nowadays, not only industrial products are designed in the computer, but also
buildings, gardens or artificial environments for computer games. Very often,
real existing objects have to be modelled and combined with hypothetical ob-
jects, for instance when an architect wants to visualise how a possible extension
of an old house might look. The same applies to flight or driving simulators,
where existing landscapes and cities need to be modelled in the computer.

The possibilities of designing, modelling and visualising objects play an
important role in computer graphics, but also the generation of realistic models
and representations of objects based on measurement data. There are various
techniques to obtain such data. 3D laser scanners can be used to scan the surface
of objects or a set of calibrated cameras allows to reconstruct 3D information of
objects from their images. Medical informatics [11] is another very important
application field of computer graphics where measurements are available in the
form of X-ray images or data from computerised tomography and ultrasonic
testing. Such data allows a 3D visualisation of bones or viscera.

The combination of real data and images with techniques from computer
graphics will probably gain more importance than it has today. Computer
games allow to navigate through scenes and to view the scenes from differ-
ent angles. For movies, as they are shown on TV or in cinemas, the choice
of the viewpoint is not possible anymore once the movie has been produced.
Even if various cameras where used to capture the same scene from different
angles, one can only choose between the perspectives of the different cameras.
But it is not possible to view the scene from a position between the cameras.
The elementary techniques allowing a free choice of the viewpoint are avail-
able in principle today [4]. However, this will not only need “intelligent” TV
sets, but also the processing of the movie from several perspectives. In order
to view a scene from a viewpoint different from the cameras, the 3D scene
is reconstructed using image processing methods exploiting the information



1.2 From a real scene to an image 3

coming from the different perspectives of the cameras. Once the scene is recon-
structed, computer graphics techniques can show it from any viewpoint, not
only from the camera perspectives. For this application, a combination of image
analysis and image recognition techniques with image synthesis methods—i.e.,
computer graphics algorithms—is required [46].

Other important fields of application of computer graphics are virtual reality
[27], where the user should be able to move and act more or less freely in a
virtual 3D world, and augmented reality [23], where the real world is enriched
by additional information in the form of text or virtual objects.

1.2 From a real scene to an image

The various application examples of computer graphics discussed in the previ-
ous section demonstrate already that a large variety of different problems and
tasks must be solved within computer graphics. Figure 1.1 illustrates crucial
steps that are needed in order to generate an image from a real or virtual scene.

(a) (b) (c) (d)

Figure 1.1 From a scene to an image

As a first step, the objects in the scene in figure 1.1(a) have to be modelled
with the techniques and methods provided by a computer graphics tool. In
general, these models will not be exact copies of the real or virtual objects
of the scene, but only approximations of them. Depending on how detailed
the objects should be modelled, how much effort one wants to invest and on
the techniques provided by the computer graphics tool, the approximation of
the objects can be almost exact or very rough only. Figure 1.1(b) illustrates
this problem of approximation by assuming that the computer graphics tool is
very restricted and the bowl in the real scene can only be approximated by a
semisphere.



4 1. Introduction

The modelled objects usually cover a much larger region than the part that
is visible for the virtual viewer from his viewpoint. The model might for instance
include a group of buildings surrounded by gardens and the viewer can move in
the buildings and through the gardens. When the viewer is in a room of one of
the buildings looking into the room, but not outside the window, he can only
see a very small fraction of the objects of this virtual world. Most of the objects
can therefore be neglected, when the image is generated. Taking the viewer’s
position and the direction of his view into account, a three-dimensional region
must be defined that determines which objects might be visible for the viewer
(see figure 1.1(c)). The computation of which objects belong completely or at
least partly to this region is called clipping or, more specifically, 3D-clipping.
Not all objects located in the clipping region might be visible for the viewer,
since some of them might be hidden from the viewer’s view by other objects
that are closer to the viewer.

The visible objects in the clipping region need to be projected onto a two-
dimensional plane in order to obtain a flat pixel image as shown in figure 1.1(d)
that can be printed out or shown on a computer screen. This projection requires
the application of hidden line and hidden surface algorithms in order to find out
whether objects or parts of the objects are visible or hidden by other objects.
The effects of light like shading, shadows and reflection are extremely important
issues for the generation of realistic images. 2D-clipping is also necessary to
decide which parts of the projection of an object in the 3D-clipping region lie
within the projection plane.

The whole process of generating a pixel image from a three-dimensional
virtual scene is called rendering. The successive composition of the single tech-
niques that are roughly outlined in figure 1.1 is also referred to as the rendering

pipeline. The details of the rendering pipeline depend on the chosen techniques
and algorithms, for instance whether shadows can be neglected or not. In [18]
five different rendering pipelines are explained only within the context of light-
ing and shading.

1.3 Organisation of the book

The organisation of the book reflects the structure of the rendering pipeline.
Chapters 2, 3 and 4 cover fundamental aspects of the last part of the rendering
pipeline focussing exclusively on two-dimensional images. On the one hand, the
techniques for two-dimensional images comprise one part of the rendering of
three-dimensional virtual scenes. On the other hand, they can be viewed on
their own for instance as a drawing tool.



1.3 Organisation of the book 5

Chapter 2 outlines the basic principles of vector and raster graphics and
simple modelling techniques for planar objects and their animation including
a short introduction to Java 2D for the illustrative examples.

Chapter 3 provides an overview on algorithmic aspects for raster graphics
that are of high importance for drawing lines and curves. Chapter 4 covers
the representation and drawing of areas, a rough outline on the problems of
drawing letters and numbers using different fonts as well an overview on colour
representation.

The next chapters are devoted to modelling, representation and rendering of
three-dimensional virtual scenes and provide in parallel an introduction to Java
3D. Chapters 5 and 6 discuss the basic principles for modelling and handling
three-dimensional objects and scenes in computer graphics.

Various techniques for the hidden line and hidden surface problem—i.e., to
identify which objects are hidden from the view by other objects—are described
in Chapter 7.

In order to generate photo-realistic images, it is necessary to incorporate
lighting effects like shading, shadows and reflections. Chapter 8 deals with this
important topic.

Finally, Chapter 9 covers a selection of further interesting techniques and
topics like special effects, interaction and stereoscopic viewing which is required
for the understanding of virtual reality applications.

The appendix contains links to web pages that might be of interest to the
reader of this book. All example programs mentioned in this book are also listed
in the appendix including references to the pages where they are discussed in
more detail.



2
Basic principles of two-dimensional

graphics

This chapter introduces basic concepts that are required for the understand-
ing of two-dimensional graphics. Almost all output devices for graphics like
computer monitors or printers are pixel-oriented. Therefore, it is crucial to dis-
tinguish between the representation of images on these devices and the model
of the image itself which is usually not pixel-oriented, but defined as scalable
vector graphics, i.e., floating point values are used for coordinates.

2.1 Raster versus vector graphics

Before an object can be shown on a computer monitor or a printer, a model
describing the object’s geometry is required, unless the object is an image
itself. Modelling of geometrical objects is usually done in the framework of
vector-oriented or vector graphics. A more complex object is modelled as a
combination of elementary objects like lines, rectangles, circles, ellipses or arcs.
Each of these elementary objects can be defined by a few coordinates, describing
the location of the object, and some parameters like the radius for a circle. A
very simple description of the house in figure 2.1(a) in terms of vector graphics
is shown in figure 2.1(b). The house can be defined as a sequence of points or
vectors. It must also be specified within the sequence of points whether two
neighbouring points should be connected by a line or not. Dotted lines in figure



8 2. Basic principles of two-dimensional graphics

(a) (b) (c)

Figure 2.1 Original image, vector and pixel graphics

2.1(b) refer to points in the sequence that should not be connected by a line.
The vector graphics-oriented description of objects is not directly suitable

for the representation on a purely pixel-oriented device like an LCD monitor or
printer. From a theoretical point of view, it would be possible to display vector
graphics directly on a CRT1 monitor by running the cathode ray—or, in case of
colour display, the three cathode rays—along the lines defined by the sequence
of points and switch the ray on or off, depending on whether the corresponding
connecting line should be drawn. In this case, the monitor might not be flicker
free anymore since the cathode ray might take too long to refresh the screen
for a more complex image in vector graphics, so that fluorescent spots on the
screen might fade out, before the cathode ray returns. Flicker-free monitors
should have a refresh rate of 60 Hz. If a cathode ray were to run along the
contour lines of objects represented in vector graphics, the refresh rate would
depend on how many lines the objects contain, so that a sufficiently fast refresh
rate could not be guaranteed in this operational mode. Therefore, the cathode
ray scans the screen line by line leading to a guaranteed and constant refresh
rate, independent of the image to be drawn.

Computer monitors, printers and also various formats for storing images like
bitmaps or JPEG are based on raster or raster-oriented graphics, also called
pixel or pixel-oriented graphics. Raster graphics uses a pixel matrix of fixed
size. A colour can be assigned to each pixel of the raster. In the simplest case
of a black-and-white image a pixel takes one of the two values black or white.

In order to display vector-oriented graphics in the form of raster graphics,
all geometrical shapes must be converted into pixels. This procedure is called
scan conversion. On the one hand, this can lead to high computational efforts.
A standard monitor has more than one million pixels. For each of them, it
must be decided which colour to assign to it for each image. On the other
hand, undesired aliasing effects occur in the form of jagged edges, known as
1 Cathode ray tube.



2.1 Raster versus vector graphics 9

jaggies or staircasing. The term aliasing effect originates from the field of signal
processing and refers to artifacts, i.e., superficial undesired effects that can
occur, when a discrete sampling rate is used to measure a continuous signal.
A grey-scale image can be viewed as a two-dimensional signal. In this sense, a
coloured image based on the three colours red, green and blue, is nothing else
than three two-dimensional signals, one for each colour.

Even if an image will be displayed in terms of raster-oriented graphics, it
still has advantages to model and store it in a vector-oriented format. Raster
graphics is bound to a specific resolution. Once the resolution is fixed, the
full information contained in the vector-oriented image cannot be recovered
anymore, leading to serious disadvantages, when the image is displayed on a
device with a different resolution or when the image needs to be enlarged or
scaled down. Figure 2.2 shows the tip of an arrow and its representation in the
form of raster graphics for two different resolutions. If only the more coarse
pixel image in the middle is stored, it is impossible to reconstruct the refined
pixel image on the right-hand side without additional information. One could
only produce an image appearing in the same form as the one in the middle by
simply identifying four pixels of the refined image with one pixel in the coarser
image. If the quotient of the pixel resolution is not an integer number, the
transformation from a raster graphics with one resolution to a raster graphics
with another resolution becomes even more complicated and will lead to new
aliasing effects, even if the new resolution is higher than the original one.

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

Figure 2.2 The tip of an arrow drawn as raster graphics in two different
resolutions

In most cases, when a pixel matrix is considered in this book, each pixel
is represented by a square between the lines of a grid as shown in figure 2.2.
However, sometimes another representation is more convenient where pixels are
illustrated as circles on the points where the lines of the grid cross. Figure 2.3
shows the pixel with the grid coordinates (5,3).



10 2. Basic principles of two-dimensional graphics

�

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 9

Figure 2.3 An alternative representation for pixels

2.2 The first Java 2D program

Before modelling of two-dimensional objects is discussed in more detail, a short
introduction into how Java 2D can be used to generate images in general is
provided. The first chapters of this book dealing exclusively with problems and
questions of two-dimensional graphics refer to Java 2D. Chapter 5 and the
latter chapters will use Java 3D for three-dimensional modelling, animation
and representations.

It is not the aim of this book to provide a complete introduction to Java 2D
and Java 3D. Instead, the main intention of this book is to enable even those
readers with only very basic knowledge in Java to use and apply the more theo-
retical concepts of computer graphics immediately within the framework of Java
2D and Java 3D. For this reason, the example programs are kept as simple as
possible and not all available options and settings will be explained in detail, in
order to better focus on the main aspects and concepts. For readers who are al-
ready more familiar with Java programming the book provides an introduction
to Java 2D and 3D that enables the reader to study the more advanced options
and possibilities of these two Application Programming Interfaces (APIs) with
the help of specific literature and the API documentations.

Detailed information concerning Java 2D can be found in books like [24, 29],
in the API documentation and the Java tutorial, that are available on the
Internet (see the appendix).

Java 2D is an API belonging to the kernel classes of the Java 2 (formerly
JDK 1.2) and later platforms so that it is not necessary to carry out additional
installations to use Java 2D classes, as long as a Java platform is installed on
the computer.

Java 2D extends some of the AWT2 packages of Java by additional classes
and also introduces new packages within AWT. Java 2D can be viewed as a
2 Abstract Windowing Toolkit.



2.2 The first Java 2D program 11

component under Java’s graphics components AWT and Swing (see figure 2.4).
Although AWT is seldom used anymore, the introductory examples for

Java 2D in this book are based on AWT. The reason is that within AWT it is
easily possible to program simple animations without the technique of double
buffering that will be used later on in this book.

Java2D API

AWT

Swing

Figure 2.4 The Java 2D API extends AWT

AWT components that are displayed on the computer screen contain a
paint method with a Graphics object as its argument. In order to use the
facilities of Java 2D for the corresponding AWT component, it is necessary to
cast this Graphics object into a Graphics2D object. The class Graphics2D

within Java 2D extends the class Graphics. The following simple Java class
SimpleJava2DExample.java demonstrates this simple casting procedure. In
order to keep the printed code examples short, comments are only included in
the programs that can be downloaded from the web site of this book, but not
in the printed versions. The result of this program is shown in figure 2.5.

Figure 2.5 The result of the first Java 2D program



12 2. Basic principles of two-dimensional graphics

import java.awt.*;

public class SimpleJava2DExample extends Frame

{

SimpleJava2DExample()

{

addWindowListener(new MyFinishWindow());

}

public void paint(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.drawString("Hello world!",30,50);

}

public static void main(String[] argv)

{

SimpleJava2DExample f = new SimpleJava2DExample();

f.setTitle("The first Java 2D program");

f.setSize(350,80);

f.setVisible(true);

}

}

The method addWindowListener, called in the constructor, enables the
closing of the window by clicking on the cross in the upper right corner. The
method uses a simple additional class MyFinishWindow.java, that can also be
downloaded from the web site of this book. The main method generates the
corresponding window, defines the title of the window, determines its size by
350 pixels in width and 80 pixels in height and finally displays it. This structure
of the main method will be used for all Java 2D examples in this book. For
other programs, it will only be necessary to replace SimpleJava2DExample by
the corresponding class name and—if desired—to change the title of the window
and its size.

The image or graphics to be displayed is defined within the paint method.
The first line of this method will always be the same in all examples here: It
carries out the casting of the Graphics object to a Graphics2D object. The
remaining code lines in the paint method depend on what is to be displayed
and will be different for each program. In the example here, only the text “Hello
worl” is printed at the window coordinates (30,50).

When specifying window coordinates, the following two aspects should be
taken into account.



2.2 The first Java 2D program 13

– The point (0,0) is located in the upper left corner of the window. The window
extends to the right (in the example program 350 pixels) and downwards (in
the example program 80 pixels). This means that the y-axis of the coordinate
system does not point upwards, but downwards since the pixel lines in the
window are counted from the top to the bottom. How to avoid this problem
of an inverted y-axis will be explained later on.

– The window includes margins on all its four sides. Especially the upper mar-
gin, containing the title of the window, is quite broad. It is not possible to
draw anything on or outside these margins within the paint method. Trying
to draw an object on the margin or outside the window will not lead to an
error or exception. The clipping procedure will simply make sure that the
object or its corresponding part is not drawn. Therefore, when a window
of a size of 350 × 80 pixels is defined as in the example program, a slightly
smaller area is available for drawing. The width of the margins depends on
the operating system platform. The example programs avoid this problem
by defining a window that is large enough and by not drawing objects too
close to any of the margins. The exact width of the margins can also be
determined within the class, for instance within the paint method using

Insets ins = this.getInsets();

The width of the left, right, upper and lower margin in pixels is given by
ins.left, ins.right, ins.top and ins.bottom, respectively.

The first example of a Java 2D program did not require any additional
computations before the objects—in this case only text—could be drawn. For
real graphics it is usually necessary to carry out more or less complicated
computations in order to define and position the objects to be displayed. Java
2D distinguishes between the definition of objects and drawing objects. An
object that has been defined will not be drawn or shown in the corresponding
window, until a draw- or fill method is called with the corresponding object
as argument. Therefore, Java 2D also differentiates between modelling objects
based on vector graphics using floating point arithmetics and displaying or
drawing objects on the screen based on raster graphics with scan conversion
and integer arithmetics.

In order to keep the example programs in this book as simple and under-
standable as possible, the computations required for defining and positioning
the geometric objects are carried out directly in the paint method. For more
complex animated graphics, i.e., for graphics with moving or changing objects,
this can lead to flickering effects and also to the effect that the window might
react very slowly, for instance when it should be closed while the animation is
still running. Java assigns a high priority to the paint method so that other



14 2. Basic principles of two-dimensional graphics

events like closing of the window cannot be carried out immediately. In order
to avoid this undesired effect, one can carry out all computations to construct
or position objects outside the paint method and instead call the repaint

method only, when objects have to be drawn. The double buffering technique,
introduced later on in section 4.2, provides an even better solution.

2.3 Basic geometric objects

The basic geometric objects in computer graphics are usually called primi-

tives or graphics output primitives. They include geometric entities like points,
straight and curved lines and areas as well as character strings. The basic prim-
itives are the following ones.

Points that are uniquely defined by their x- and y-coordinate. Points are usu-
ally not drawn themselves. Their main function is the description of other
objects like lines that can be defined by their two endpoints.

Lines, polylines or curves can be defined by two or more points. Whereas for
a line two points are needed, curves require additional control points. Poly-
lines are connected sequences of lines.

Areas are usually bounded by closed polylines or polygons. Areas can be filled
with a colour or a texture.

Figure 2.6 A self-overlapping, a nonconvex and a convex polygon

The simplest curve is a line segment or simply a line. A sequence of line
where the following line starts where the previous one ends is called a poly-

line. If the last line segment of a polyline ends where the first line segment
started, the polyline is called a polygon. For various applications—for instance
for modelling surfaces—additional properties of polygons are required. One of
such properties is that the polygon should not overlap with itself. Convexity is
another important property that is often needed. A polygon or, more generally,
an area or a region is convex if whenever two points are within the region the



2.3 Basic geometric objects 15

connecting line between these two points lies completely inside the region as
well. Figure 2.6 shows a self-overlapping polygon, a nonconvex polygon and
a convex polygon. For the nonconvex polygon two points inside the polygon
are chosen and connected by a dotted line that lies not completely inside the
polygon.

In addition to lines and piecewise linear polylines, curves are also common in
computer graphics. In most cases, curves are defined as parametric polynomials
that can also be attached to each other like lines in a polyline. The precise
definition and computation of these curves will be postponed until chapter 6.
Here it is sufficient to understand the principle of how the parameters of a
curve influence its shape. In addition to the endpoints of the curve, one or
more control points have to be specified. Usually, two control points are used
leading to a cubic curve or only one control point is used in order to define a
quadratic curve. The curve begins and ends in the two specified endpoints. In
general, it will not pass through control points. The control points define the
direction of the curve in the two endpoints.

In the case of a quadratic curve with one control point one can imagine
the lines connecting the control point with the two endpoints. The connecting
lines are the tangents of the quadratic curve in the two endpoints. Figure
2.7 illustrates the definition of a quadratic curve on the left-hand side. The
quadratic curve is given by two endpoints and one control point through which
the curve does not pass. The tangents in the endpoints are also shown here as
dotted lines. For a cubic curve as shown on the right-hand side of the figure,
the tangents in the two endpoints can be defined independently by the two
control points.

Figure 2.7 Definition of quadratic and cubic curves

When fitting quadratic or cubic curves together in order to form a longer,
more complicated curve, it is not sufficient to simply use the endpoint of the
previous curve as a starting point for the next curve. The resulting joint curve
would be continuous, but not smooth, i.e., sharp bends might occur. In order
to avoid sharp bends, the tangent of the endpoint of the previous curve and the



16 2. Basic principles of two-dimensional graphics

following curve must point into the same direction. This means the endpoint,
which is equal to the starting point of the next curve, and the two control
points defining the two tangents must be collinear. This means they must lie
on the same line. Therefore, the first control point of a succeeding curve must
be on the line defined by the last control and endpoint of the previous curve.

In the same way a curve can be fitted to a line without causing a sharp
bend by locating the first control point on the prolongation of the line. Figure
2.8 illustrates this principle.

Figure 2.8 Fitting a cubic curve to a line without sharp bends

Other important curves in computer graphics are circles, ellipses and circu-
lar and elliptic arcs.

In the same sense as polygons, circles and ellipses define areas. Areas are
bounded by a closed curve. When only the shell or margin of the area should
be drawn, there is no difference to drawing arbitrary curves. In contrast to
lines and simple curves, areas can be filled by colours and textures. From the
algorithmic point of view, filling of an area is very different from drawing curves.

Axes-parallel rectangles, whose sides are parallel to the coordinate axes, play
an important role in computer graphics. Although they can be understood as
special cases of polygons, they are simpler to handle since it is already sufficient
to specify two opposing vertices.

Instead of specifying a polygon or the boundary directly in order to define
an area, it is sometimes more convenient to construct a more complicated
area by combining previously defined areas using set-theoretic operations. The
most important operations are union, intersection, difference and symmetric
difference. The union joins two areas to a larger area whereas their intersection

consists of the part belonging to both areas. The difference of an area with
another removes all parts from the first area that also belong to the second area.
The symmetric difference corresponds to a pointwise exclusive OR-operation
applied to the two areas. The symmetric difference is the union of the two
areas without their intersection. Figure 2.9 shows the results of applying these
operations to two areas in the form of a circle and a rectangle.



2.4 Basic geometric objects in Java 2D 17

Figure 2.9 Union, intersection, difference and symmetric difference of a circle
and a rectangle

Geometric transformations like scalings will be discussed in section 2.5.
They provide another way of constructing new areas from already existing
ones.

2.4 Basic geometric objects in Java 2D

All methods for generating geometric objects as they were described in the
previous section are also available within the Java 2D framework. The abstract
class Shape with its various subclasses allows the construction of various two-
dimensional geometric objects. Vector graphics is used to define Shape objects,
whose real-valued coordinates can either be given as float- or double-values.
Shapes will not be drawn until the draw or the fill method is called with
the corresponding Shape as argument in the form graphics2d.draw(shape)

or graphics2d.fill(shape), respectively. The draw method draws only the
margin or circumference of the Shape object, whereas the whole area defined
by the corresponding Shape object is filled, when the fill method is called.

The abstract class Point2D for points is not a subclass of Shape. Points
cannot be drawn directly. If one wants to draw a point, i.e., a single pixel, then a
line from this point to the same point can be drawn instead. Objects of the class
Point2D are mainly used to specify coordinates for other geometric objects. In
most cases, it is also possible to define these coordinates also directly by two
single values determining the x- and the y-coordinate. Therefore, the class
Point2D will not occur very often in the example programs. The abstract class
Point2D is extended by the two classes Point2D.Float and Point2D.Double.
When using the abstract class Point2D it is not necessary to specify whether
coordinates are given as float- or double-values. The same concept is also
used for most of the other geometric objects.



18 2. Basic principles of two-dimensional graphics

The elementary geometric objects in Java 2D introduced in the following
extend the class Shape, so that they can be drawn by applying one of the
methods draw or fill.

The abstract class Line2D defines lines. One way to define a line from point
(x1, y1) to point (x2, y2) is the following:

Line2D.Double line = new Line2D.Double(x1,y1,x2,y2);

The parameters x1, y1, x2 and y2 are of type double. Similarly, Line2D.Float
requires the same parameters, but of type float. It should be emphasised
again that the defined line will not yet be drawn. Only when the method
g2d.draw(line) is called, will the line appear on the screen.

Analogously to lines, quadratic curves are modelled by the abstract class
QuadCurve2D. The definition of a quadratic curve requires two endpoints and
one control point. The quadratic curve is constructed in such a way that it con-
nects the two endpoints (x1, y1) and (x2, y2) and the tangents in the endpoints
meet in the control point (crtlx,crtly), as illustrated by the left curve in figure
2.7. One way to define quadratic curves in Java 2D is the following:

QuadCurve2D.Double qc = new QuadCurve2D.Double(x1,y1,

ctrlx,ctrly,

x2,y2);

Cubic curves need two control points instead of one in order to define the
tangents in the two endpoints independently as shown by the right curve
in figure 2.7. Java 2D provides the abstract class CubicCurve2D for mod-
elling cubic curves. Analogously to the cases of lines and quadratic curves,
CubicCurve2D.Double is a subclass of CubicCurve2D allowing to define a cu-
bic curve in the following way:

CubicCurve2D.Double cc =

new CubicCurve2D.Double(x1,y1,

ctrlx1,ctrly1,

ctrlx2,ctrly2,

x2,y2);

The program CurveDemo.java demonstrates the usage of the classes
Line2D.Double, QuadCurve2D.Double and CubicCurve2D.Double.

The class GeneralPath allows the construction not only of polylines, i.e.,
sequences of lines, but also mixed sequences of lines, quadratic and cubic curves
in Java 2D. A GeneralPath starts in the origin of the coordinate system, i.e., in
the point (0,0). The class GeneralPath provides four basic methods for defining
a sequence of lines, quadratic and cubic curves. Each method will append a
corresponding line or curve to the endpoint of the last element in the sequence
of the GeneralPath. The methods lineTo, quadTo and curveTo append a line,



2.4 Basic geometric objects in Java 2D 19

a quadratic and a cubic curve, respectively, as the next element in the sequence
of the GeneralPath. These methods are used within GeneralPath in the same
way as in Line2D, QuadCurve2D and CubicCurve2D except that the definition
of the first endpoint of the line or curve is omitted since this point is already
determined by the endpoint of the previous line or curve in the GeneralPath.
The coordinates of the points must be specified as float-values. In addition to
these three methods for curves and lines, the class GeneralPath also contains
the method moveTo that allows to jump from the endpoint of the previous
curve to another point without connecting the points by a line or curve. A
GeneralPath must always start with the method moveTo, defining the starting
point of the general path.

Figure 2.10 An example for a GeneralPath

Figure 2.10 shows the outline of a car that was generated by the following
GeneralPath:

GeneralPath gp = new GeneralPath();

//Start at the lower left corner of the car

gp.moveTo(60,120);

gp.lineTo(80,120); //front underbody

gp.quadTo(90,140,100,120); //front wheel

gp.lineTo(160,120); //middle underbody

gp.quadTo(170,140,180,120); //rear wheel

gp.lineTo(200,120); //rear underbody

gp.curveTo(195,100,200,80,160,80); //rear

gp.lineTo(110,80); //roof

gp.lineTo(90,100); //windscreen

gp.lineTo(60,100); //bonnet

gp.lineTo(60,120); //front



20 2. Basic principles of two-dimensional graphics

g2d.draw(gp); //Draw the car

The coordinate system shown in figure 2.10 refers to the window coordi-
nates, so that the y-axis points downwards. The complete class for drawing the
car can be found in the example program GeneralPathCar.java.

An area can be defined by its boundary that might be specified as a
GeneralPath object. In addition to the class GeneralPath Java 2D also pro-
vides classes for axes-parallel rectangles and ellipses as basic geometric objects.

By the class Rectangle2D.Double, extending the abstract class
Rectangle2D, an axes-parallel rectangle can be defined in the following way:

Rectangle2D.Double r2d =

new Rectangle2D.Double(x,y,width,height);

The rectangle is determined by its opposite corners (x, y) and (x + width, y +
height) on the diagonal. Taking into account that the y-axis in the window
where the rectangle will be drawn points downwards, a rectangle is defined
whose upper left corner is located at the position (x, y) and whose lower right
corner is at (x + width, y + height). Figure 2.11 shows a rectangle on the left-
hand side that was defined by

Rectangle2D.Double r2d =

new Rectangle2D.Double(50,60,150,100);

It should be emphasised again that this constructor will only define the rec-
tangle in the same way as for all other Shape objects that were introduced so
far. It is still necessary to call the method g2d.draw(r2d) in order to show the
rectangle in the corresponding window.

Figure 2.11 An example for a rectangle and an ellipse

In the same way as rectangles, axes-parallel ellipses can be defined in Java
2D. An ellipse is determined by its bounding rectangle which can be specified



2.4 Basic geometric objects in Java 2D 21

with the same parameters as Rectangle2D objects. The ellipse shown in figure
2.11 on the right-hand side was generated by

Ellipse2D.Double elli =

new Ellipse2D.Double(250,60,150,100);

For illustration purposes the bounding rectangle that was used to generate
the ellipse is also shown in figure 2.11. The figure was generated by the class
RectangleEllipseExample.java.

A circle is a special case of an ellipse, where the bounding rectangle is a
square. A circle with centre point (x, y) and radius r can be generated by

Ellipse2D.Double circle =

new Ellipse2D.Double(x-r,y-r,2*r,2*r);

With the class Arc2D elliptic arcs and, of course, circular arcs can be defined.

Arc2D.Double arc = new

Arc2D.Double(rect2D,start,extend,type);

– rect2D specifies the bounding rectangle of the corresponding ellipse in the
form of a Rectangle2D.

– start is the angle where the arc is supposed to start relative to the bounding
rectangle viewed as a square. The angle is given as a float-value in terms
of degrees.3 The angle corresponds to the angle with the x-axis only in the
special case when a circular arc is defined, i.e., when the bounding rectangle
is a square. Otherwise, the angle is determined relative to the rectangle. For
example, a starting angle of 45◦ means that the starting point of the arc
lies on the connecting line from the centre of the rectangle to its upper right
corner.

– extend is the opening angle of the arc, i.e., the arc extends from the start
angle start to the angle start + extend. Analogously to the start angle,
extend corresponds to the true angle of the arc only in the case of a circular
arc. The angle start + extend is again interpreted relative to the bounding
rectangle in the same way as start. extend must also be specified as a
float-value in degrees.

– type can take one of the three values Arc2D.OPEN, Arc2D.PIE and
Arc2D.CHORD, specifying whether only the arc itself, the corresponding seg-
ment or the arc with the chord of the ellipse, respectively, should be con-
structed.

3 Arc2D is the only exception where angles are specified in the unit radians. Otherwise
angles in Java 2D and Java 3D must be specified in radiant.



22 2. Basic principles of two-dimensional graphics

Figure 2.12 shows from left to right an arc of an ellipse, a segment and an arc
together with the corresponding chord. In all cases a starting angle of 45◦ and
an opening angle of 90◦ were chosen. For illustration purposes the bounding
rectangle is also shown in the figure. One can see clearly that the arc starts
on the intersection of the ellipse with the line from the centre of the bounding
rectangle to its upper right corner, according to the choice of the starting angle
of 45◦. Obviously, the line defined by the centre point of the rectangle and the
starting point of the ellipse meets the x-axis in a smaller angle than 45◦ since a
flat, but long bounding rectangle was chosen. The same applies to the opening
angle. The actual opening angle is not 90◦, but it corresponds to the angle
between the lines from the centre of the bounding rectangle to its upper right
and to its upper left corner. An example for using the class Arc2D can be found
in the file ArcExample.java, which was also used to generate figure 2.12.

Figure 2.12 An arc of an ellipse, a segment and an arc with its corresponding
chord

An area can be defined as a rectangle, an ellipse or in the form of a
GeneralPath. At the end of section 2.3 a technique for defining areas based on
the set-theoretic operations union, intersection, set difference and symmetric
difference was explained. Applying these operations to already defined areas,
new shapes of areas can be defined. Java 2D offers the class Area for this pur-
pose. From a Shape object s, for instance a Rectangle2D, an Ellipse2D, a
closed GeneralPath or an Arc2D, representing the segment of an ellipse or an
ellipse arc with its chord, an Area object with the same outline can be defined
by

Area a = new Area(Shape s);

The above-mentioned set-theoretic operations can be applied to such Area ob-
jects to generate new areas. Given two Area objects areaA and areaB, the
following methods are available, implementing the corresponding set-theoretic
operations.

– areaA.add(areaB) computes the union of areaA and areaB.

– areaA.intersect(areaB) computes the intersection of areaA and areaB.



2.5 Geometric transformations 23

– areaA.subtract(areaB) yields areaA without the parts lying in areaB, i.e.,
their difference.

– areaA.exclusiveOr(areaB) constructs the union of areaA and areaB with-
out their intersection, i.e., their symmetric difference.

The Area object areaA contains the result of the application of the correspond-
ing set-theoretic operation. An Area object can be used as an argument of the
methods draw, which will only draw the outline of the area, and fill, which
will fill the whole area, in the same way as these methods are used for Shape

objects. The file AreaExample.java, which was also used to generate figure 2.9
on page 17, demonstrates the use of Area objects.

2.5 Geometric transformations

In addition to geometric objects, geometric transformations play a crucial role
in computer graphics. Geometric transformations can be used to position ob-
jects, i.e., to shift them to another position or to rotate them, to change the
shape of objects, for instance to stretch or shrink them in one direction, or to
move objects or change the shape of objects step by step in animated scenes.

Before discussing geometric transformations in more detail, it is necessary
to explain some general conventions. In computer graphics, points as well as
vectors are used. From a purely mathematical point of view, both can be repre-
sented as elements of the space R

n, i.e., as a tuple of real numbers. Especially in
physics, it is very important to distinguish clearly between these two concepts
of points and vectors. In the framework of this book and from the viewpoint
of computer graphics, it is very common to switch between the interpretations
of a tuple of real numbers as a point and as a vector, giving more flexibility in
handling certain matters. A tuple (x1, . . . , xn) ∈ R

n might occur in one equa-
tion as a point and in the next equation it might be interpreted as a vector.
Hopefully, physicists will tolerate the abuse of notation in the context of this
book. For equations within this book, column vectors will be used consistently.
Within the text, points are sometimes written as row vectors in order to avoid
stretching of text lines. In those cases where a point is explicitly understood
as a column vector, the symbol for transposing vectors will be used, i.e., the
point will be written as (x, y)� ∈ R

2 and (x, y, z)� ∈ R
3, respectively.

The dot product of two vectors u and v will be denoted in the following



24 2. Basic principles of two-dimensional graphics

way, which is also very common in statistics:

u� · v = (u1, . . . , un) ·

⎛
⎜⎝

v1

...
vn

⎞
⎟⎠ =

n∑
i=1

ui · vi.

The most important geometric transformations are scaling, rotation, shear-
ing and translation.

A scaling leads to stretching or shrinking of objects in the direction of the
x- and the y-axis. A scaling S(sx, sy) maps the point (x, y) to the point (x′, y′)
given by (

x′

y′

)
=
(

sx · x
sy · y

)
=
(

sx 0
0 sy

)
·
(

x′

y′

)
.

sx is the scaling factor in the direction of the x-axis. If |sx| > 1 holds, then a
stretching in the direction of the x-axis is carried out. For |sx| < 1 shrinking
takes place. If sx is negative, in addition to stretching or shrinking in the x-
direction, a reflection with respect to the y-axis is applied. In the same way,
sy leads to stretching or shrinking in the direction of the y-axis and a negative
value of sy incorporates an additional reflection with respect to the x-axis.

Figure 2.13 Scaling applied to a rectangle

Applying a scaling to an object means that the scaling is carried out point-
wise. The same holds for all other geometric transformations. They carry out
pointwise transformations of objects. As an example, the translation with the
scaling factors sx = 2 and sy = 0.5 is considered, stretching along the x-axis by
the factor 2 and shrinking in the direction of the y-axis by the factor 0.5. The



2.5 Geometric transformations 25

application of this scaling to the rectangle whose lower left corner is located at
the point (80,120) and whose upper right corner is at (180,180) yields a rectan-
gle whose width has doubled with half the original height. But in addition, the
centre of the rectangle is also transformed so that the transformed rectangle
is shifted to the lower right compared to the original rectangle. Figure 2.134

shows the original rectangle and the rectangle after scaling by dashed lines. A
scaling is always carried out with respect to the origin of the coordinate sys-
tem. Applying a scaling to an object that is not centred around the origin of
the coordinate system will lead to a translation of the (centre of the) object in
addition to the scaling.

Another important group of geometric transformations are rotations that
are determined by a single parameter, the rotation angle. The rotation is carried
out anticlockwise around the origin of the coordinate system in case of a positive
angle. A negative angle means that the rotation is carried out in a clockwise
manner. The rotation R(θ) by the angle θ maps the point (x, y) to the point
(x′, y′) given by
(

x′

y′

)
=
(

x · cos(θ) − y · sin(θ)
x · sin(θ) + y · cos(θ)

)
=
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
·
(

x

y

)
.

A rotation is always carried out around the origin of the coordinate system.
Therefore, a similar shifting effect as in the case of scalings happens, when an
object is not centred around the origin. In figure 2.14 a rotation by an angle
of 45◦ was carried out, mapping the original rectangle to the rectangle drawn
with dashed lines.

The shear transformation is another elementary geometric transformation
that causes a certain deformation of objects. Similar to scalings, the shear
transformation requires two parameters, however, not on the main diagonal of
the transformation matrix, but on the other two positions. Applying a shear
transformation Sh(sx, sy) to a point (x, y) yields the point (x′, y′) with the new
coordinates

(
x′

y′

)
=
(

x + sx · y
y + sy · x

)
=
(

1 sx

sy 1

)
·
(

x

y

)
.

As in the case of scalings and rotations, shear transformations are carried
out with respect to the origin of the coordinate system, so that an object
that is not centred around the origin will not only be deformed by a shear
transformation, but also shifted. The dashed rectangle is obtained from the
original rectangle in figure 2.15 by applying a shear transformation with the
parameters sx = 1 and sy = 0.

4 The figure is drawn in the usual representation and not in the standard Java 2D
window coordinate representation where the y-axis would point downwards.



26 2. Basic principles of two-dimensional graphics

Figure 2.14 A rotation applied to a rectangle

Figure 2.15 A shear transformation applied to a rectangle

Since sy = 0 was chosen for this shear transformation, the shearing takes
place in the direction of the y-axis. When the shearing should be carried out
in the direction of the x-axis, sx = 0 must hold.

The last elementary or primitive geometric transformation to be considered
here is very simple, but differs from the other three types of elementary trans-
formations that were introduced so far in an important aspect. A translation

T (dx, dy) causes a shift by the vector d = (dx, dy)�. This means the translation



2.5 Geometric transformations 27

maps the point (x, y) to the point
(

x′

y′

)
=
(

x + dx

y + dy

)
=
(

x

y

)
+
(

dx

dy

)
.

In figure 2.16 a translation defined by the vector d = (140, 80)� is applied
to a rectangle, mapping it to the dashed rectangle.

Figure 2.16 Translation of a rectangle

In contrast to the other transformations introduced so far, translations are
not linear, so that they cannot be represented in terms of matrix multipli-
cation. A matrix multiplication will always leave the zero vector unchanged,
whereas a translation will shift all points including the origin of the coordinate
system corresponding to the zero vector. Translations are affine, but not linear
mappings.

Within computer graphics, more complex transformations are usually de-
scribed or generated as compositions of elementary geometric transformations.
A transformation composed of scalings, rotations and shear transformations can
be specified by a single matrix, obtained as the product of the matrices encoding
the corresponding elementary transformations. When also translations are in-
volved, the composition of transformation can no longer be computed by simple
matrix multiplication and represented by a single matrix. If all this was possible
within matrix calculus, this would be a great advantage in terms of memory—
just a single matrix is required to represent a complex transformations—and
in terms of computational efficiency since all that would be needed for fast
computations are efficient implementations of matrix operations.



28 2. Basic principles of two-dimensional graphics

In order to represent also translations in matrix form, another representa-
tion of the coordinates of points is introduced. The next section will discuss
this alternative representation called homogeneous coordinates in more detail.

2.6 Homogeneous coordinates

This section introduces the representation of points in the two-dimensional
plane in homogeneous coordinates. The same concept will also be applied later
on to points in the three-dimensional space for the same reason, to allow the
representation of 3D translations in matrix form. Homogeneous coordinates

use an additional dimension for the representation of points. The point (x, y, z)
in homogeneous coordinates is identified with the point

(x

z
,
y

z

)
in Cartesian

coordinates. The z-component of a point in homogeneous coordinates must not
be zero. When the point (x0, y0) in Cartesian coordinates has to be transformed
into homogeneous coordinates, the representation (x0, y0, 1) can be used. This
is, however, not the only way to represent the point (x0, y0) in homogeneous
coordinates. Any representation of the form (z ·x0, z ·y0, z) where z �= 0 encodes
also the same point. The points {(x, y, z) ∈ R

3 | (x, y, z) = (z · x0, z · y0, z)} lie
on a line in the space R

3 passing through the origin of the coordinate system.
The line is given by the system of equations

x − x0 · z = 0,

y − y0 · z = 0.

Any point on this line, except the origin of the coordinate system, is a represen-
tative in homogenous coordinates of the point (x0, y0) in Cartesian coordinates.
Fixing a value for z for the representation in homogeneous coordinates, for in-
stance z = 1, the Cartesian x/y-plane is represented by a parallel plane with
the corresponding constant z-value.

Figure 2.17 illustrates these relations. All points on the line shown in fig-
ure 2.17 represent the same point in the two-dimensional Cartesian plane R

2.
Choosing a constant value for z, for instance one of the planes shown in figure
2.17, the corresponding plane is a homogeneous representative of the Cartesian
plane R

2.
The origin of the Cartesian coordinate system corresponds to any point of

the form (0, 0, z) (z �= 0) in homogeneous coordinates. This point is no longer a
necessary fixed point of a linear mapping in terms of homogeneous coordinates,
i.e., a linear mapping from R

3 to R
3. The linear mapping can map this point

to another point in homogeneous coordinates.



2.6 Homogeneous coordinates 29

�

�

�

Figure 2.17 Homogeneous coordinates

In homogeneous coordinates a translation can now be written as matrix
multiplication:

⎛
⎝

x′

y′

1

⎞
⎠ =

⎛
⎝

x + dx

y + dy

1

⎞
⎠ =

⎛
⎝

1 0 dx

0 1 dy

0 0 1

⎞
⎠ ·

⎛
⎝

x

y

1

⎞
⎠ .

The other elementary transformation can be extended to homogeneous co-
ordinates in a straightforward manner, leading to the following set of transfor-
mation matrices:

transformation notation matrix

translation T (dx, dy)

⎛
⎝

1 0 dx

0 1 dy

0 0 1

⎞
⎠

scaling S(sx, sy)

⎛
⎝

sx 0 0
0 sy 0
0 0 1

⎞
⎠

rotation R(θ)

⎛
⎝

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎞
⎠

shear transformation S(sx, sy)

⎛
⎝

1 sx 0
sy 1 0
0 0 1

⎞
⎠

Rotations and translations preserve lengths and angles. Scalings and shear
transformations do not preserve lengths and angles in general, but at least
parallel lines will be mapped to parallel lines again.



30 2. Basic principles of two-dimensional graphics

With this matrix representation in homogeneous coordinates, the composi-
tion of geometric transformations can be computed by matrix multiplication.

All matrices, introduced for the elementary geometric transformations are
of the form ⎛

⎝
a c e

b d f

0 0 1

⎞
⎠ . (2.1)

It is easy to verify that the product of two such matrices results again in
a matrix of the same form. Therefore, geometric transformations are usually
represented and stored in this way in computer graphics. This does not only
apply to transformations that operate on the two-dimensional plane, but also
to transformations in the three-dimensional space that will be discussed in
chapter 5. It is now obvious that a graphics card of a computer must—among
other things—be able to carry out matrix operations as fast as possible.

Original Translation 1. Translation, 2. Rotation

Rotation 1. Rotation, 2. Translation

Figure 2.18 Differing results on changing the order for the application of a
translation and a rotation

For the composition of transformations it should be taken into account that
the order in which the transformations are applied is of importance. Matrix mul-



2.7 Applications of transformations 31

tiplication is a noncommutative operation. The right part of figure 2.18 shows
the different results that are obtained, when the order in which translation and
rotation are applied is changed. When first a translation with the translation
vector (40, 20)� and afterwards a rotation by 45◦ is applied, then the rectangle
on the left-hand side of figure 2.18 is mapped to the upper rectangle on the
right. When the rotation is carried out first and afterwards the translation, the
result is the lower right rectangle. This effect occurs in general in all cases,
when geometric transformations of different types are combined. Only when
transformations of the same type, i.e., only rotations, only translations, only
scalings or only shear transformations, are composed, the order in which the
transformations are applied is of no importance.

It should also be taken into account that transformations in matrix nota-
tion or as compositions of mappings are carried out from right to left. The
transformation

(T (dx, dy) ◦ R(θ))(v)

or in matrix notation
⎛
⎝

1 0 dx

0 1 dy

0 0 1

⎞
⎠ ·

⎛
⎝

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎞
⎠ · v

means that first the rotation R(θ) and then the translation T (dx, dy) is applied
to the point v.

2.7 Applications of transformations

This section introduces typical applications and problems that can be solved
using geometric transformations.

In computer graphics it is common to define objects in an arbitrary co-
ordinate system in floating point arithmetics, the so-called world coordinates.
In order to generate an image of specific objects on the computer screen or
another output device, a rectangular clipping region, called viewport, must be
specified. The viewport determines which region of the “object world” is visi-
ble. Therefore, it is necessary to find a transformation that maps the objects
in the viewport, given in world coordinates, to the window coordinates of the
computer screen.

Figure 2.19 illustrates the problem and its solution. The rectangle with the
lower left corner at (xmin, ymin) and the upper right corner at (xmax, ymax) in
the upper left part of the figure defines the viewport or the clipping region, a
window specified in the world coordinate system. This part of the object world



32 2. Basic principles of two-dimensional graphics

�
��

�
�
�
��

�

(xmin, ymin)
�(xmax, ymax)

�

�

x

y

window in the
world coordinate
space

�
��

�

�

�

x

y

window in the
origin of the world
coordinate space

����
�

�

u

v

scaled window in the
origin of the monitor
coordinate space

����
�

(umin, vmin)

�(umax, vmax)

�

�

u

v

final position
of the window

Figure 2.19 From world to window coordinates

should be shown on the computer screen in a window defined by the rectangle
with (umin, vmin) as its lower left and (umax, vmax) as its upper right corner,
given in the coordinates of the computer monitor. These two windows can have
different sizes. Even the shape of the two rectangles does not have to coincide.

The mapping from the viewport to the computer monitor can be realized
as a composition of the following transformations. In the first step, the view-
port window is shifted to the origin of the coordinate system by a suitable
translation. In the next step, the viewport window is scaled in such a way
that it matches the size of the window on the computer screen. Finally, an-
other translation will position the scaled window at the correct location on the
computer screen. Altogether, the following sequence of elementary geometric
transformations has to be carried out:

T (umin, vmin) ◦ S

(
umax − umin

xmax − xmin
,
vmax − vmin

ymax − ymin

)
◦ T (−xmin,−ymin). (2.2)



2.8 Geometric transformations in Java 2D 33

In equation (2.2) ◦ denotes the composition or concatenation of mappings. It
should be noted again that the transformations are carried out from right to
left in this formula.

As mentioned before, rotations R(θ) defined by a rotation matrix as de-
scribed on page 29 will always carry out the rotation around the origin of the
coordinate system. When the centre of the rotation is supposed to be another
point (x0, y0), one can achieve this by applying first a translation shifting the
point (x0, y0) to the origin of the coordinate system, then carry out the ro-
tation around the origin and afterwards reverse the initial translation. This
means that a rotation through the angle θ around the point (x0, y0) can be
implemented by the following composition of transformations:

R(θ, x0, y0) = T (x0, y0) ◦ R(θ) ◦ T (−x0,−y0). (2.3)

In the same way, a scaling can be carried out with respect to the point (x0, y0)
instead of the origin of the coordinate system, by simply replacing the rotation
in (2.3) by the corresponding scaling.

Pixel coordinates within a window on the computer screen are usually spec-
ified in such a way that the first component refers to the pixel column, whereas
the second component refers to the pixel row, where pixel rows are counted
from top to bottom. As a consequence, the x-axis points as usual from left to
right, but the y-axis is oriented in a reverse manner, i.e., it points downwards
instead of upwards. When the specification in standard Cartesian coordinates
is preferred, one can simply apply suitable geometric transformations, before
drawing objects in the window coordinate system. In order to reverse the di-
rection of the y-axis, a reflection with respect to the x-axis has to be carried
out. After this reflection, the y-axis points upwards, but the origin of the coor-
dinate system of the window still remains in the upper left corner, so that only
objects with negative y-components would be visible. Therefore, after the re-
flection a translation is also carried out. The translation is a shift in y-direction
by the height h of the window, measured in pixels. In this way, the origin of
the coordinate system is mapped to the lower left corner of the window. The
reflection is a scaling with the parameters sx = 1 and sy = −1. Altogether the
transformation is given by

T (0, h) ◦ S(1,−1). (2.4)

2.8 Geometric transformations in Java 2D

The class AffineTransform is the basis for geometric transformations in Java
2D where geometric transformations are also implemented by matrices in



34 2. Basic principles of two-dimensional graphics

homogeneous coordinates. The most important constructors are:

– AffineTransform id = new AffineTransform()

generates the identical transformation, that is encoded by the unity matrix.
This default constructor generates a transformation that maps every point
to itself.

– The constructor

AffineTransform at = new AffineTransform(a,d,b,e,c,f)

allows the specification of an arbitrary transformation matrix. The arguments
a, . . . , f define the six Double-parameters of the transformation matrix. The
matrix (2.1) on page 30 shows the assignment of the arguments to the cor-
responding matrix parameters.

The elementary geometric transformations can be generated in the following
way:

Rotation:

– For rotations the class AffineTransform provides the two methods
affTrans.setToRotation(angle) that defines the transformation
affTrans as a rotation through the angle angle around the origin of
the coordinate system and affTrans.setToRotation(angle,x,y) set-
ting the transformation affTrans to a rotation through the angle angle
around the point (x, y), respectively.

– The method affTrans.rotation(angle) and the corresponding method
affTrans.rotation(angle,x,y) extend the transformation
affTrans by a rotation around the origin of the coordinate system or
around the point (x, y). This means that the matrix that encodes the
original transformation affTrans is multiplied from the right by a ma-
trix for the corresponding rotation. As a consequence, when affTrans is
applied to an object, the rotation is carried out first and afterwards the
original transformation in affTrans is applied.

Scaling:

– The method affTrans.setToScale(sx,sy) defines the transformation
affTrans as a scaling with the scaling factors sx for the x- and sy for
the y-axis with respect to the origin of the coordinate system.

– The method affTrans.scale(sx,sy) extends the transformation
affTrans by a corresponding scaling. The extension is to be understood
in the same way as in the case of rotations, i.e., as a matrix multiplication
from the right.



2.8 Geometric transformations in Java 2D 35

Shear transformation:

– The method affTrans.setToShear(sx,sy) defines the transformation
affTrans as a shear transformation with the shear values sx for the x-
and sy for the y-axis with respect to the origin of the coordinate system.

– The method affTrans.shear(sx,sy) extends the transformation
affTrans by a corresponding shear transformation, again in terms of
matrix multiplication from the right.

Translation:

– The method affTrans.setToTranslation(dx,dy) defines the transfor-
mation affTrans as translation by the vector (dx, dy)�.

– The method affTrans.translate(dx,dy) extends the transformation
affTrans by a corresponding translation in the same manner as for ro-
tations, scalings and shear transformations, i.e., as matrix multiplication
from the right.

The following methods for the composition of such affine transformations
are available in the class AffineTransform:

– By at1.concatenate(at2) the affine transformation at2 is appended to the
affine transformation at1 in terms of matrix multiplication from the right,
so that first at2 and then the original transformation at1 is carried out.

– By at1.preConcatenate(at2) the affine transformation at2 is combined
with the affine transformation at1 in the sense of matrix multiplication from
the left. This means that first the original transformation at1 and then at2

is carried out.

In both cases, the composition of the two transformations is stored in at1.
An affine transformation that is defined as an instance affTrans of the class

AffineTransform can be applied to a Shape object s in the following way:

Shape transformedShape = affTrans.createTransformedShape(s);

The method createTransformedShape returns the transformed object again
as an instance of the class Shape.

In the same way, affine transformations can be applied to an Area object
a, for instance in the form

Area transformedArea = affTrans.createTransformedArea(a);

An affine transformation can also be applied to the Graphics2D object g2d
by



36 2. Basic principles of two-dimensional graphics

g2d.transform(affTrans);

In this case, the corresponding affine transformation will be applied to all ob-
jects before they are drawn.

Figures 2.13–2.16 and the images in figure 2.18 were generated using these
methods in the following programs:

– ScalingExample.java,

– RotationExample.java,

– ShearingExample.java,

– TranslationExample.java,

– TransformationOrderExample.java,

– TransformationOrderExampleT.java,

– TransformationOrderExampleRT.java,

– TransformationOrderExampleR.java and

– TransformationOrderExampleTR.java.

In all of these figures a standard Cartesian coordinate system instead of the
window coordinate system was used for the representation of the objects, so
that the y-axis points upwards in the window. In order to achieve this effect, an
affine transformation according to (2.4) was applied to the Graphics2D object
yielding the desired orientation of the y-axis and the desired location of the
origin of the coordinate system.

AffineTransform yUp = new AffineTransform();

yUp.setToScale(1,-1);

AffineTransform translate = new AffineTransform();

translate.setToTranslation(xOffset,windowHeight-yOffset);

yUp.preConcatenate(translate);

g2d.transform(yUp);

In (2.4) the values xOffset and yOffset do not occur. This means they are
assumed to be zero there. Setting both values to zero means that the origin of
the coordinate system is in the lower left corner of the window, a point that is
on the margin of the window and therefore, it is not possible to draw this point.
Thus, the origin of the coordinate system was slightly shifted to the interior of
the window by choosing xOffset=140 and yOffset=150, so that the origin of
the coordinate system is visible inside the window.



2.9 Animation and movements based on transformations 37

2.9 Animation and movements based on
transformations

So far, geometric transformations were only applied in a static manner in or-
der to map one coordinate system to another or to describe positioning and
deformation of objects. Geometric transformations are also suitable to model
moving objects, for instance moving the hands of a clock carrying out a rotation
of 6◦ per second or per minute or 30◦ per hour. Continuous movements must be
decomposed into small stepwise movements which can be described by geomet-
ric transformations. The stepwise changes between two images must be small
enough and the time between two images in a sequence must be short enough
in order to let the movement appear as a continuous or floating movement and
not as jumps from one state to another.

Once the movement of an object is modelled by suitable geometric trans-
formations, the object must be drawn, the transformed object has to be com-
puted, the old object must be deleted and the new transformed object has to
be drawn again. Deleting the old object causes problems for raster graphics.
Deleting means in this case to overwrite the object. In order to overwrite the
pixels of the old object a background image must be specified. For more com-
plex objects, overwriting the pixels belonging to the old object would require
to render the object again in order to determine which pixels were covered
by the old object. Therefore, instead of overwriting single moving objects it is
common to write the complete image buffer again, instead of modifying the old
one. However, the new image is usually not written directly into the window
buffer, but into a virtual buffer which will be copied to the window buffer after
the image has been completed. This technique is also called double buffering

and will be explained in more detail in section 4.2.
As a simple example for a moving object, a moving clock with a single hand

for the seconds is considered sliding from the lower left to the upper right of
a display window. The clock itself consists of a quadratic frame and the single
rectangular hand for the seconds. The hands for minutes and hours could be
modelled in the same way, but are not included here for reasons of simplicity.
A translation is needed in order to move the quadratic frame of the clock from
the lower left to the upper right corner of the window. This translation must
also be applied to the hand for the seconds. In addition to the translation, the
hand must also rotate. Figure 2.20 shows some snapshots of the moving clock.

Assuming that the clock should move in each step two units to the right
and one unit up, this could be modelled by a translation

Tclock,step = T (2, 1).



38 2. Basic principles of two-dimensional graphics

Figure 2.20 A moving clock with a rotating hand

For the hand a rotation of the form

Thand,step = R(−π/180)

is needed in order to turn the hand by −π/180, i.e., by 6◦ clockwise in each
step. One end of the hand is fixed in the centre of the clock which is therefore
also the centre of the rotation. Even if the clock were initially centred in the
origin of the coordinate system, it would move out of the origin after one step
already and the centre of rotation for the hand would no longer be the origin.

There are two possible strategies to describe and handle such composed
movements as in the case of the hand, where a translation as well as a rotation
has to be carried out. One way would be to track the position of the corre-
sponding object—in this case the hand of the clock—and to shift the centre of
the rotation accordingly. In the general case, it is not sufficient to track only
the translation of an object. If, for instance, the object is also supposed to
be scaled along one of its axes, it is also necessary to know the orientation of
the object in order to apply the scaling properly. As an example, the hand of
the clock could get longer or shorter while it is rotating without changing its
width. In the beginning, the corresponding scaling had to be a scaling along
the y-axis. But once the hand starts to rotate, the axis of scaling must also be
rotated. Otherwise the hand would not only become longer or shorter, but also
thicker or thinner.

Although this strategy for modelling continuous movements of objects is
applicable, the following second strategy seems to be more convenient and sim-
pler to implement. The principle of this second strategy is to leave the objects
in their initial positions and to compute accumulated geometric transforma-
tions which are applied to the objects before they are drawn. For the example



2.10 Movements via transformations in Java 2D 39

of the clock one could use three more transformations in addition to the above-
mentioned two transformations:

T
(new)
clock,accTrans = Tclock,step ◦ T

(old)
clock,accTrans

T
(new)
hand,accRotation = Thand,step ◦ T

(old)
hand,accRotation

Thand,acc = Tclock,accTrans ◦ Thand,accRotation.

Tclock,accTrans and Thand,accRotation are initialized by the identical transforma-
tions and are then updated in each step according to the specified equations.
Tclock,accTrans specifies the translation which has to be carried out in order to
shift the clock from the initial position to the actual position. Tclock,accTrans

is applied to the initial frame of the clock that is centred in the origin of the
coordinate system. Thand,accRotation describes the rotation around the origin of
the coordinate system that must be applied to the hand of the clock in or-
der to reach its actual position within the clock centred around the origin. In
addition to this rotation, the hand must also move along with the clock. There-
fore, after rotating the hand around the origin, the corresponding translation
Tclock,accTrans is also applied to the hand. It is important that the rotation is
carried out first and only then the translation is applied.

Scenegraphs as they are introduced in chapter 5 provide a more convenient
alternative to this way of modelling movements and animations.

2.10 Movements via transformations in Java 2D

This section explains how to implement the simple example of the moving clock
of the previous section in Java 2D. Within the book, only the most essential
parts of the source code are shown. The full source code for this example can
be found in the class NonSynchronizedClock.java.

In order to specify the location of the objects and the transformations in
standard coordinates with the y-axis pointing upwards, the transformation yUp

introduced on page 36 is applied to the Graphics2D object.
Initially, the frame of the clock will be centred in the origin of the coordinate

system. It is represented by the object clockFrame of the class Rectangle2D.
The single hand of the clock named clockHand is also generated as an object
from the class Rectangle2D. Its initial position is chosen in such a way that
it starts in the origin of the coordinate system and points upwards with the
y-axis as its centre axis.

The transformations Tclock,step, Thand,step, Tclock,accTrans, Thand,accRotation

and Thand,acc as described above are represented by the objects



40 2. Basic principles of two-dimensional graphics

singleTranslation, singleRotation, accumulatedTranslation,
accumulatedRotation and handTransform, respectively, all belonging to the
class AffineTransform.

The transformation singleTranslation is defined as a translation by the
vector (2, 1)�, whereas singleRotation is a clockwise rotation by an angle of
6◦. Both transformations remain unchanged, while the program is running.

The transformation accumulatedRotation is initialised as the identity. The
transformation accumulatedTranslation could also be initialised as the iden-
tity. But this would lead to the effect that the clock starts its movement centred
in the lower left corner of the window, so that in the beginning only the up-
per left quarter of the clock would be visible. Therefore, a suitable translation
is chosen for the initialisation of accumulatedTranslation ensuring that the
clock is fully visible, when the animation is started.

A loop is used to compute the stepwise changing positions of the clock
and the hand. In this loop, the transformations accumulatedTranslation,
accumulatedRotation and handTransform are updated according to the equa-
tions specified on page 39. This is realised by the following lines of code:

accumulatedTranslation.preConcatenate(singleTranslation);

accumulatedRotation.preConcatenate(singleRotation);

handTransform.setTransform(accumulatedRotation);

handTransform.preConcatenate(accumulatedTranslation);

The first line corresponds to the first equation, the second line to the second
equation and the last two lines implement the last equation.

After the transformations have been updated in this way, the old image
must be deleted and afterwards the frame of the clock and its hand have to be
drawn again. Before these objects are drawn, the corresponding transformations
are applied to them making sure that they are positioned at their updated
locations.

g2d.draw(accumulatedTranslation.createTransformedShape(

clockFrame));

g2d.fill(handTransform.createTransformedShape(clockHand));

The initial objects clockFrame and clockHand for the frame of the clock and
for its hand, respectively, are not changed in the loop. Only the transformations
applied to them change and the updated transformations are used to generate
new objects of the class Shape that are drawn in each step.

The implementation proposed here has various disadvantages. Since all com-
putations for the animation are carried within the paint method, this might
lead to flickering and it might also be difficult to stop the animation since the
paint method has a high priority in order to avoid showing half-ready images.



2.11 Interpolators for continuous changes 41

For MAC computers the animation might not work at all since all computa-
tions in the paint method will be carried out completely, before anything is
drawn on the screen. The program NonSynchronizedClock.java also uses a
very primitive sustain method for the intermediate time between two frames.
This method implements active waiting which should be avoided in program-
ming. The double buffering technique introduced in section 4.2 offers a much
better solution than the one provided here which was only presented for reasons
of simplicity.

2.11 Interpolators for continuous changes

The previous two sections have demonstrated how moving objects can be mod-
elled on the basis of suitable transformations. Single stepwise transformations
describe the changes of the objects from one image frame to the next one.
The composition of these stepwise transformations determines the complete
movement of an object.

But there are also other ways to model movements or changes of objects in
animated graphics. An alternative approach is based on the two descriptions of
the initial state of the considered object and of its desired final state. The aim
is then to find an animation that shows a continuous transition of the object
from the initial to its final state. The movement of an object along a line can
either be modelled by small stepwise translations to be carried out between
two image frames as in the previous two sections or by simply specifying the
initial and the end position of the object and then carrying out interpolations
between these two positions. In the example of the clock from the previous
two sections, one would not define the transformation Tclock,step = T (2, 1) to
be applied repeatedly to the clock in a sequence of, for instance, 100 images.
Instead, it would be sufficient to specify the initial and the end position of the
object, say p0 = (0, 0)� and p1 = (200, 100)�.

The points pα on the connecting line between the points p0 and p1 are
simply the convex combinations of these two points given by

pα = (1 − α) · p0 + α · p1, α ∈ [0, 1].

α = 0 yields the initial point p0, α = 1 leads to the end point p1 and α = 0.5
defines the point in the middle between p0 and p1.

This principle of convex combinations can be applied not only to points or
vectors, but also to matrices. Later on, in section 4.7 the principle of convex
combinations will also be applied to colours to generate continuous changes
from one colour to another.



42 2. Basic principles of two-dimensional graphics

In order to understand how convex combinations applied to matrices can be
used to generate animations, two affine transformations are considered, given by
the matrices M0 and M1 in homogeneous coordinates. The convex combination
Mα of the two matrices is defined as

Mα = (1 − α) · M0 + α · M1, α ∈ [0, 1].

Note that Mα is again a matrix describing an affine transformation in homoge-
neous coordinates. In the simplest case, the two matrices encode translations
mapping an object to its initial and its desired final position. The matrices Mα

correspond to intermediate translations. Mα places the object on the points on
the line connecting the initial and the end position. For α = 0, Mα maps the
object to its initial position and for α = 1 to its final position.

However, convex combinations are not restricted to translations. In princi-
ple, the matrices M0 and M1 can represent any two affine transformations that
do not even have to belong to the same type of transformation. One could be
a rotation, the other a scaling combined with a shearing.

In this way, a continuous transformation can be implemented between two
objects obtained from the same object by applying two different transforma-
tions. Figure 2.21 illustrates this process for two ellipses that were both gener-
ated from the same basic object—also an ellipse—by applying different scalings
and transformations. The ellipse in the upper left corner is obtained from the
basic ellipse by applying the first transformation, whereas the second transfor-
mation yields the ellipse in the lower right corner. Applying convex combina-
tions of these two transformations to the basic ellipse leads to the ellipses in
between.

Figure 2.21 Changing one ellipse to another by convex combinations of trans-
formations

Another technique for continuous interpolation between two objects S and
S′ assumes that both objects are determined by n points P1 = (x1, y1), . . . , Pn =
(xn, yn) and P ′

1 = (x′
1, y

′
1), . . . , P

′
n = (x′

n, y′
n), respectively, and by lines or



2.11 Interpolators for continuous changes 43

quadratic and cubic curves defined using these points. It is important that the
lines or curves in both objects are determined by the corresponding points.
This means, if a quadratic curve defined by the points P1, P3 and P8 is part of
object S, then the corresponding quadratic curve defined by the points P ′

1, P ′
3

and P ′
8 must be part of object S′.

Figure 2.22 Two letters each defined by five points and two quadratic curves

Figure 2.22 shows two simple objects in the form of the two letters D and C.
For each of them five control points P1, . . . , P5 and P1′, . . . , P5′, respectively,
are specified. Both letters are described by two quadratic curves:

– One curve uses the corresponding first and second point as endpoints and
the third point as control point. In the case of the letter D the three points
are P1, P2 and P3, respectively, for the letter C the corresponding points
are P1′, P2′ and P3′, respectively.

– The other quadratic curve of each letter has the corresponding first and
fourth point as endpoints and the corresponding fifth point as control point.

In order to continuously transform the two objects—in this case the letters
D and C—into each other, convex combinations are applied again. Instead of
having convex combinations of transformations as in the previous example of
the ellipses, here convex combinations between pairs of corresponding points
Pi and P ′

i are considered.

P
(α)
i = (1 − α) · Pi + α · P ′

i .



44 2. Basic principles of two-dimensional graphics

For an intermediate image α ∈ [0, 1] the corresponding lines or curves are now
drawn on the basis of the points P

(α)
i . In the example of transforming the letter

D into the letter C one would draw two quadratic curves, one defined by the
points P

(α)
1 , P

(α)
2 and P

(α)
3 , the other defined by the points P

(α)
4 , P

(α)
5 and

P
(α)
3 .

Figure 2.23 shows intermediate images obtained for the convex combina-
tions with α = 0, 0.2, 0.4, 0.6, 0.8, 1 based on the points and the corresponding
quadratic curves as illustrated in figure 2.22.

Figure 2.23 Stepwise transformation of two letters into each other

Further applications of interpolators in connection with colours and raster
graphics will be introduced in section 4.7.

2.12 Implementation of interpolators in Java 2D

This sections explains in more detail how the two techniques for interpolators
introduced in the previous section can be implemented in Java 2D.

The first example of a continuous transition from one ellipse to
another as illustrated in figure 2.21 is realised in the class
ConvexCombTransforms.java. In the first part of the program the basic ellipse
elli and two affine transformations initialTransform and finalTransform

are defined. The two transformations transform the basic ellipse into the initial
ellipse in the beginning of the animation and the final ellipse at the end of the
animation. In order to compute the convex combinations of the two transforma-
tions the corresponding matrices are required. They are obtained by applying
the method getMatrix to initialTransform and finalTransform.

double[] initialMatrix = new double[6];

initialTransform.getMatrix(initialMatrix);



2.13 Single or double precision 45

double[] finalMatrix = new double[6];

finalTransform.getMatrix(finalMatrix);

The coefficients of the two matrices are stored in the one-dimensional arrays
initialMatrix and finalMatrix according to the representation of transfor-
mation matrices (2.1) on page 30. The intermediate images are generated in a
loop where in each step a new convex combination of the two arrays is com-
puted. The arrays are treated in the same way as vectors5 so that their convex
combination yields an array of the same length. The elements of this new array
can again be interpreted as the coefficients of a transformation matrix in ho-
mogeneous coordinates. This transformation is then applied to the basic ellipse
and in each step of the loop the resulting transformed ellipse is drawn.

The transformation of the letter D into the letter C is implemented
in the class DToCMorphing.java. Figure 2.22 showing the initial state—the
letter D—and the final state—the letter C—was generated by the classes
SimpleLetterD.java and SimpleLetterC.java. For the transformation of the
two letters into each other, two arrays are defined for each letter, one array for
the x-coordinates of the control points and one array for the y-coordinates. An-
other two arrays are needed for the computation of the convex combinations
of the control points. In each step of the loop the new convex combination is
computed and the computed control points are used to draw the corresponding
quadratic curves to generate the corresponding intermediate image.

2.13 Single or double precision

For longer animated graphics with moving objects a large number of transfor-
mations have to be applied successively. This means that a large number of
matrix multiplications must be carried out. Although the roundoff error for a
single matrix multiplication might be negligible, roundoff errors can accumu-
late over time and might lead to undesired effects. In most cases such roundoff
errors will be noticeable in the graphics to be drawn since the numerical com-
putations to be carried out in computer graphics are usually not critical from
the numerical point of view. Inverting a matrix to reverse a transformation
is an example for an exception where roundoff errors might have serious ef-
fects on the graphics, when the matrix is badly conditioned. But most of the
calculations in computer graphics do not encounter such problems.

For illustration purposes the example of the second hand of a clock is con-
sidered. The hand is 100 units or pixels long. The tip of the hand is at the point
5 Vectors in the mathematical sense, not as the class Vector in Java.



46 2. Basic principles of two-dimensional graphics

time x y

double

1 minute 99.99999999999973 −4.8572257327350600E-14
2 minutes 99.99999999999939 −9.2981178312356860E-14
3 minutes 99.99999999999906 −1.3739009929736312E-13
4 minutes 99.99999999999876 −1.4571677198205180E-13
5 minutes 99.99999999999857 −2.2204460492503130E-13
6 minutes 99.99999999999829 −2.9143354396410360E-13
7 minutes 99.99999999999803 −3.1641356201816960E-13
8 minutes 99.99999999999771 −3.7331249203020890E-13
9 minutes 99.99999999999747 −4.2604808569990380E-13
10 minutes 99.99999999999715 −4.5657921887709560E-13
8 hours 99.99999999986587 −2.9524993561125257E-11

float

1 minute 100.00008 −1.1175871E-5
2 minutes 100.00020 −1.4901161E-5
3 minutes 100.00032 −1.8626451E-5
4 minutes 100.00044 −1.1920929E-5
5 minutes 100.00056 −8.9406970E-6
6 minutes 100.00068 −3.1292439E-5
7 minutes 100.00085 −5.3644180E-5
8 minutes 100.00100 −7.2270630E-5
9 minutes 100.00108 −8.0466270E-5
10 minutes 100.00113 −8.4191560E-5
8 hours 100.00328 −1.9669533E-4

Table 2.1 Effects of roundoff errors

(100, 0) in the beginning. The hand is rotated clockwise around the origin by 6◦

per second. This means that the transformation R(−6◦) in terms of a rotation
matrix is applied each time. After every full minute—after 60 multiplications of
the rotations matrix by itself—the hand should return to its original position.

Table 2.1 shows the computed positions of the tip of the hand after various
time intervals using double (double) and single (float) precision. In both
cases the roundoff errors are negligible, especially when taking into account
that drawing in raster graphics will require rounding to integer values in the
end anyway. Even after eight hours demanding 28800 matrix multiplications,
single precision will still be sufficient to obtain the exact values in terms of
raster graphics. This is only valid if the accumulated rotation is applied to the
hand in its initial position or if the new position of the hand is stored in vector



2.13 Single or double precision 47

graphics, i.e., using floating point arithmetic, and every second a single rotation
by 6◦ is applied to the updated position of the hand. If the coordinates of the
hand are stored in raster graphics using only integer values and a single rotation
by 6◦ is applied to the updated hand in pixel coordinates every second, already
after one minute a wrong position of (95,−2) instead of (100, 0) is calculated.

Although computations with double precision values are less error-prone,
the accuracy of single precision is sufficient for most applications in computer
graphics taking into account that raster graphics will require rounding numbers
to integer values in the end, so that numerical errors less than 0.5 are invisible
anyway.

Especially for three-dimensional scenes with complex objects a very large
number of points is needed to define the objects. In this case the memory
requirements very often have a higher priority and single precision is preferred
over double precision in order to reduce the amount of memory needed for
storing the objects.



48 2. Basic principles of two-dimensional graphics

2.14 Exercises

Exercise 2.1

Use a GeneralPath to draw a rectangle with rounded corners.

Exercise 2.2

A simple two-dimensional solar system model with one sun and one planet
should be animated. The centre of the sun is located in the origin of the coor-
dinate system. The spherical planet with a radius of 10 units rotates anticlock-
wise around the sun on a circular orbit with constant speed. The radius of the
planet’s orbit (the distance between the centres of the sun and the planet) is
200 units. In the beginning of the animation the centre of the planet is located
at the point (200, 0). During one rotation around the sun, the planet rotates
365 times anticlockwise around its own axes. Consider the point on the planet
that is closest to the sun in the beginning of the animation. Use geometric
transformations to describe where the point will be located after the planet
has finished one third of its orbit.

Exercise 2.3

Choose the constant c in the matrix

⎛
⎝

c 0 6
0 c 4
0 0 c

⎞
⎠

in such a way that the matrix represents a translation by the vector (3, 2)� in
homogeneous coordinates.

Exercise 2.4

Use Java 2D for an animation illustrating the movement of the point in exercise
2.2.

Exercise 2.5

Use Java 2D to animate a beating heart that moves along a line in a window
on the computer screen.

Exercise 2.6

Apply the technique for transforming one letter into another as illustrated in
figure 2.22 for the letters D and C to other letters, for instance your initials.



3
Drawing lines and curves

The previous chapter has introduced basic objects and geometric transfor-
mations for two-dimensional computer graphics using the principles of vector
graphics. As already mentioned in the introduction, drawing geometric objects
in a raster graphics framework requires efficient algorithms. This chapter il-
lustrates the basic problems and solutions in the context of drawing lines and
curves within raster graphics.

3.1 Lines and pixel graphics

Drawing a line connecting the points (x0, y0) and (x1, y1) within a raster graph-
ics framework seems to be a very simple task. However, it will turn out that a
näıve approach can lead to inefficient algorithms or even unacceptable results.
For reasons of simplicity, it is assumed that the two points to be connected
by the line lie on the pixel raster. This means their coordinates are given by
integer values. Without loss of generality it is assumed that the first point is
not located right of the second point. This means that x0 ≤ x1 holds. If this is
not satisfied, the two points can simply be exchanged for drawing the line.

The näıve approach to drawing the corresponding line on the pixel raster
would step incrementally through the x-coordinates starting from x0 and end-
ing at x1 and compute the corresponding y-value for each x-value. Since the
y-value will usually not be an integer value, it must be rounded to the closest
integer value in order to draw the closest pixel on the raster with the cor-



50 3. Drawing lines and curves

responding x- and the rounded y-value. Figure 3.1 describes this strategy in
pseudocode.

void drawLine(int x0, int y0, int x1, int y1)

{

int x;

double dy = y1 - y0;

double dx = x1 - x0;

double m = dy/dx;

double y = y0;

for (x=x0; x<=x1; x++)

{

drawPixel(x, round(y));

y = y + m; //or: y = y0 + m*(x - x0);

}

}

Figure 3.1 Pseudocode for a näıve line drawing algorithm

����������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

�������������

���
�����

�����
����

�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�

�

�

Figure 3.2 Lines resulting from the näıve line drawing algorithm

First of all, it should be noted that this algorithm will fail in the case of
a vertical line where x0 = x1 holds, leading to a division by zero error when
the slope m of the line is computed. Of course, this special case could easily
be treated separately. Although the algorithm will no longer have problems
with division by zero it will still fail to draw acceptable lines as can be seen in
figure 3.2. The upper, horizontal line is as perfect as can be expected in raster



3.1 Lines and pixel graphics 51

graphics. The line below with a slightly negative slope is also drawn correctly
in terms of raster graphics, taking into account that—at least at the moment—
pixels can either be drawn in full black colour or they can be left white. The
ideal line that is approximated by the drawn pixels is also included in the figure
for illustration purposes.

However, the line in the lower left with the highly negative slope is not
drawn correctly, even in terms of the necessary discretisation for raster graphics.
A number of pixels are missing that should be drawn for the raster graphics
representation of the line. The problem is caused by the fact that the increment
for the x-values is one, but due to the large absolute slope of the line the y-
value of the line will change by more than one. This leads to the gaps in the
representation of the line in raster graphics, since the increments, or the jumps,
in the y-values are larger than one. The same effect will occur for all lines with
an absolute slope larger than one. The higher the slope of the line, the larger
the gaps in the pixel representation will be.

Exchanging the roles of the x- and the y-axis for drawing lines with an
absolute slope greater than one solves the problem. This means that instead of
incrementing the x-values by one and computing the corresponding y-value, the
y-values are incremented and the corresponding rounded x-values are computed
for the line. This also solves the previously mentioned problem of division by
zero for vertical lines. A vertical line with infinite slope becomes a horizontal
line with slope zero, when the coordinate axes are exchanged.

Drawing a line on a pixel raster is a task within computer graphics which
has to be carried out many times even for a single image. Therefore, efficient
line drawing algorithms are needed to speed up drawing images. One could use
the näıve line drawing algorithm described in figure 3.1 and extend it by the
necessary exchange of the coordinate axes for lines with absolute slope larger
than one. But there are still two choices in the last line of the pseudocode. The
first formula requires only a single addition to compute the y-value of the line
for the next step. The second one needs two additions1 and one multiplication.
A multiplication demands more computation time than an addition. Therefore,
the first version for the computation of the y-value should be preferred. The
only disadvantage of this formula is the danger of accumulated roundoff errors.
However, this can be neglected, since the number of iterations in the loop is
limited by the number of pixels on the x- and the y-axis. So even in the case
of a larger high-resolution monitor, the loop cannot contain more than a few
thousand iterations. Because rounding to an integer number must be carried
out in the end anyway, even the accumulated roundoff error can be neglected.
1 To be precise: One addition and one subtraction.



52 3. Drawing lines and curves

3.2 The midpoint algorithm for lines

Drawing lines can be carried out in a way much faster than the näıve line draw-
ing algorithm from the previous section. The näıve line drawing algorithm is
based on floating point arithmetic for determining rounded integer pixel coordi-
nates. Since integer arithmetic is much faster than floating point arithmetic, a
considerable speed-up of the line drawing algorithm could be achieved, if float-
ing point arithmetic could be avoided completely. A line drawing algorithm
relying only on integer arithmetic was introduced by J.E. Bresenham [5]. This
algorithm will be explained in the following.

When examining the näıve line drawing algorithm in detail, it was already
noted that it should be ensured that the line to be drawn has an absolute slope
of at most one. For a line with absolute slope greater than one, the roles of the
coordinate axes are exchanged for drawing, leading to a line with absolute slope
less than one in the modified coordinate system. So in any case, before starting
to compute the actual pixels representing a line, the first step is to decide which
coordinate axis should be considered as the x-axis in order to ensure that the
line has an absolute slope of at most one. Therefore, it is assumed for the
following considerations that a line with absolute slope less than one should
be drawn. The considerations are even restricted to the case that the slope is
between 0 and 1. For lines with a slope between 0 and −1 a corresponding
algorithm can be developed analogously.

If a line with slope between 0 and 1 is drawn pixel by pixel and the last pixel
which was drawn is located at (xp, yp), then there are only two choices for the
next pixel. It is obvious that the x-coordinate of the next pixel is xp+1 = xp+1.
Since the line has a nonnegative slope, the next y-value cannot be smaller than
the previous one. On the other hand, the slope of the line is bounded by one so
that it cannot jump over two pixels in the y-direction, when the x-coordinate
is incremented by one. Altogether, this means that the pixel to be drawn after
the pixel (xp, yp) can only be one of the two pixels (xp+1, yp+1) = (xp + 1, yp)
or (xp+1, yp+1) = (xp + 1, yp + 1). Therefore, in each step of the line drawing
algorithm there are only two choices for the pixel to be drawn.

Figure 3.3 illustrates the situation. The right (“eastern”) neighbouring pixel
of (xp, yp) is marked by E, the neighbouring pixel to the upper right (“north-
eastern”) by NE.

The pixel to be drawn is the one closer to the point Q on the ideal line with
x-coordinate xp+1. In order to decide whether the pixel E or NE is the correct
choice, the midpoint M between these two pixels is considered. If M lies below
the ideal line, the upper pixel must be drawn, i.e., NE is the correct choice.
If M is above the line, E should be chosen. In case M lies exactly on the line,
one can choose either of the two pixels. The decision for pixel NE corresponds



3.2 The midpoint algorithm for lines 53

� � �

� �

�

������������������

������������������

������������������

������������������

������������������

������������������

������������������

������������������

������������������

������������������

������������������

�

(xp, yp)

M

Q

NE

E

Figure 3.3 The two candidates for the next pixel for the line drawing algo-
rithm

to rounding 0.5 to one, the decision for E corresponds to rounding 0.5 to zero.
It is not important which of the two alternatives is chosen. But once a choice
is made, one should always stick to the same alternative, when the midpoint
lies exactly on the line.

The above considerations reduce the choice for the pixel to be drawn in
each step of a line drawing algorithm to two alternatives. In the following, this
reduction to two alternatives will be further exploited to avoid floating point
arithmetic and use only integer computations in order to decide whether the
midpoint M is above or below the ideal line, inducing which pixel should be
drawn.

A line considered as a function in the mathematical sense is usually specified
in the form

y = f(x) = m · x + b. (3.1)

This notation reflects the intuition of a computational procedure. For any given
x-value the corresponding unique y-value can be calculated using this simple
equation. In the context of computer graphics, this representation is not always
the most suitable one. On the one hand, vertical lines cannot be represented in
the notation of equation (3.1). On the other hand, this notation is not very use-
ful to follow the considerations above that involve the location of the midpoint
between two pixels with respect to the line. Of course, it would be possible
to calculate the corresponding y-value on the line by equation (3.1) and then



54 3. Drawing lines and curves

compare it with the y-value of the midpoint. However, the comparison then
becomes superfluous, since there is no need to consider the midpoint anymore,
because the pixel to be drawn can be obtained directly by rounding the com-
puted y-value. Therefore, another representation of lines than (3.1) is preferred.

Any function y = f(x), especially a simple function like a line, can be
rewritten in implicit form as

F (x, y) = 0. (3.2)

The implicit form does no longer consider the function in terms of an explicit
computational procedure, but as a definition for the graph of the function. The
graph of a function consists of all points belonging to the set

{
(x, y) ∈ R

2 | F (x, y) = 0
}

.

This is the set of pairs (x, y) that fulfil the implicit equation (3.2) defining the
function. A line can be written in implicit representation in the form

F (x, y) = A · x + B · y + C = 0. (3.3)

For example, the line y = m · x + b can be rewritten as

F (x, y) = m · x − y + b = 0. (3.4)

This representation is much better suited for the purpose of determining
whether a point, especially the midpoint M that will be considered here, is
above, below or on a given line. Inserting the point (xM , yM ) into equation
(3.4) leads to three possible outcomes, assuming m ≥ 0.

– F (xM , yM ) = 0: The point (xM , yM ) is on the considered line.

– F (xm, ym) > 0: If the point would be on the line, the corresponding value
yM had to be greater. In other words, yM is too small, so that the point
(xM , yM ) lies below the line.

– F (xm, ym) < 0: In this case, if the point would be on the line, the correspond-
ing value yM had to be smaller. Therefore, the point (xM , yM ) lies above the
line.

This means that it is sufficient to know the sign of F (xM , yM ) in order to
decide where the point (xM , yM ) lies with respect to the line defined by the
implicit equation (3.4). Making use of this implicit equation it is now possible
to avoid floating point arithmetic for the determination of the location of the
midpoint. Taking into account that the connecting line between the given pixels
(x0, y0) and (x1, y1) should be drawn, equation (3.4) can be reformulated, so



3.2 The midpoint algorithm for lines 55

that only integer operations are needed for the computation. The line through
the points (x0, y0) and (x1, y1) can be written in the form

y − y0

x − x0
=

y1 − y0

x1 − x0
.

Solving for y and defining the integer values2 dx = x1 − x0 and dy = y1 − y0,
leads to

y =
dy

dx
x + y0 −

dy

dx
x0.

This gives the implicit form

0 =
dy

dx
x − y + y0 −

dy

dx
x0.

Multiplication of this equation by the factor dx yields the final implicit form

F (x, y) = dy · x − dx · y + C = 0 (3.5)

where
C = dx · y0 − dy · x0.

The aim of these considerations and calculations was to restrict the com-
putations for drawing a line to integer arithmetic. Based on the underlying
assumption that the line has a slope between zero and one, it could be con-
cluded that for the pixel to be drawn in each step there are only two choices.
In order to decide which of the two pixels is the correct one, the location of
the line with respect to the midpoint M between the two pixels is considered
as illustrated in figure 3.3 on page 53. For this purpose, the representation of
the line in implicit form is very useful. Inserting the midpoint into the implicit
equation, the resulting sign indicates the location of the midpoint with respect
to the line. The midpoint M = (xM , yM ) lies on the raster in the x-direction
and in the middle between two raster points in the y-direction. Therefore, its
x-coordinate xM is an integer value, whereas the y-coordinate yM has the form

yM = y
(0)
M +

1
2

where the value y
(0)
M is also an integer value. Using the implicit form (3.5) for

the line and inserting the value yM , floating point operations are still required.
However, multiplying equation (3.5) by the factor 2, the implicit form for the
considered line becomes

F̃ (x, y) = 2 · dy · x − dx · 2 · y + 2 · C = 0. (3.6)

2 Note that (x0, y0) and (x1, y1) are assumed to be pixels, so that x0, x1, y0 and y1

must be integer values.



56 3. Drawing lines and curves

When the midpoint M = (xM , yM ) is inserted into this equation, the compu-
tations can be reduced to integer arithmetic. Instead of inserting the value yM

with 0.5 as the value after the decimal point directly, the term 2 · yM can be
replaced by the integer value 2 · y(0)

M + 1.
In this way, the computations for drawing lines can be reduced completely to

integer arithmetic. Nevertheless, equation (3.6) is not used directly for drawing
lines since it still contains multiplications that are more expensive in terms of
computational costs than additions or subtractions. The multiplications can
be avoided by an incremental computation scheme. Instead of calculating the
value (3.6) for the midpoint M in each step directly, only the value for the first
midpoint is computed and afterwards the change of (3.6) in each step is added
to the previously computed value.

Instead of equation (3.6) the form (3.5) is used for the derivation of the
incremental computation scheme. In each step, the decision variable

d = F (xM , yM ) = dy · xM − dx · yM + C

determines whether the pixel above or below the midpoint M = (xM , yM )
should be drawn. The upper pixel NE must be chosen for d > 0, the lower
pixel E in the case of d < 0. How does d change in each step, when going
from one pixel to the next? Assuming that the pixel (xp, yp) has been drawn
correctly in terms of rounding the y-value, how does d change, when the pixel
(xp+1, yp+1) has been drawn and the next midpoint is inserted to determine the
pixel (xp+2, yp+2)? Two cases must be distinguished here that are illustrated
in figure 3.4.

Case 1: E, i.e., (xp+1, yp+1) = (xp + 1, yp) was the pixel to be drawn after
(xp, yp). This case corresponds to the left situation in figure 3.4. Therefore,
the midpoint Mnew to be considered for drawing the pixel (xp+2, yp+2) has
the coordinates

(
xp + 2, yp + 1

2

)
. Inserting this point into equation (3.5)

yields the following value for the decision variable d:

dnew = F

(
xp + 2, yp +

1
2

)
= dy · (xp + 2) − dx ·

(
yp +

1
2

)
+ C.

In the previous step for determining the pixel (xp+1, yp+1), the midpoint(
xp + 1, yp + 1

2

)
had to be inserted into equation (3.5), so that the decision

variable took the value

dold = F

(
xp + 1, yp +

1
2

)
= dy · (xp + 1) − dx ·

(
yp +

1
2

)
+ C.

Thus, the change of the decision variable is in this case given by

∆E = dnew − dold = dy.



3.2 The midpoint algorithm for lines 57

� � �

� �

�

																

																

																

																

																

																

																

																

																

																

																

(xp, yp)(xp+1, yp+1)

Mold

NE

E

Mnew

� � �

� �

�

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

(xp, yp)

(xp+1, yp+1)

Mold

NE

E

Mnew

Figure 3.4 The new midpoint depending on whether the previously drawn
pixel was E or NE

Case 2: NE, i.e., (xp+1, yp+1) = (xp +1, yp +1) was the pixel to be drawn after
(xp, yp). This case corresponds to the right situation in figure 3.4. So here
the midpoint Mnew =

(
xp + 2, yp + 3

2

)
must be considered for finding the

pixel (xp+2, yp+2). Thus, the value for the decision variable is

dnew = F

(
xp + 2, yp +

3
2

)
= dy · (xp + 2) − dx ·

(
yp +

3
2

)
+ C.

The previous value of the decision variable d is the same as in the first case
of the pixel E, resulting in the change of the decision variable given by

∆NE = dnew − dold = dy − dx.

Combining the two cases together, the change of the decision variable is

∆ =
{

dy if E was chosen,
dy − dx if NE was chosen.

This means

∆ =
{

dy if dold < 0,

dy − dx if dold > 0.

∆ is always an integer value, so that the decision variable d will only be changed
by integer values.

In order to be able to compute the value of the decision variable d in each
step, in addition to its change the initial value of d is also needed. The initial



58 3. Drawing lines and curves

value is obtained by inserting the first midpoint into equation (3.5). The first
pixel to be drawn for the line has the coordinates (x0, y0). Therefore, the first
midpoint to be considered is

(
x0 + 1, y0 + 1

2

)
, so that the initial value of the

decision variable becomes

dinit = F

(
x0 + 1, y0 +

1
2

)

= dy · (x0 + 1) − dx ·
(

y0 +
1
2

)
+ C

= dy · x0 − dx · y0 + C + dy − dx

2

= F (x0, y0) + dy − dx

2

= dy − dx

2
.

The value F (x0, y0) is zero since the initial point (x0, y0) lies by definition on
the line to be drawn.

Unfortunately, the initial value dinit is not an integer value, except when
dx happens to be even. Since the change dx of d is always integer-valued, this
problem can be avoided by considering the new decision variable D = 2 · d.
This corresponds to replacing the implicit form (3.5) of the line to be drawn
by the implicit form

D = F̂ (x, y) = 2 · F (x, y) = 2 · dy · x − 2 · dx · y + 2 · C = 0.

For determining the pixel to be drawn, it does not matter whether the decision
variable d or D = 2 ·d is used, since only the sign of D is relevant for the choice
of the pixel.

Putting everything together leads to the following equations for initialising
and updating the decision variable D.

Dinit = 2 · dy − dx, (3.7)

Dnew = Dold + ∆ where

∆ =
{

2 · dy if Dold < 0,

2 · (dy − dx) if Dold > 0.
(3.8)

The decision variable can only take integer values. For the initialisation of
D one multiplication and one subtraction is required. The two values for ∆

should also be computed only once in the beginning. This needs two more
multiplications and one subtraction. The iterative update of ∆ in each step
can then be accomplished by a single addition.



3.2 The midpoint algorithm for lines 59

dx = 10 − 2 = 8
dy = 6 − 3 = 3
∆E = 2 · dy = 6
∆NE = 2 · (dy − dx) = −10

Dinit = 2 · dy − dx = −2 (E)
Dinit+1 = Dinit + ∆E = 4 (NE)
Dinit+2 = Dinit+1 + ∆NE = −6 (E)
Dinit+3 = Dinit+2 + ∆E = 0 (E?)
Dinit+4 = Dinit+3 + ∆E = 6 (NE)
Dinit+5 = Dinit+4 + ∆NE = −4 (E)
Dinit+6 = Dinit+7 + ∆E = 2 (NE)
Dinit+7 = Dinit+6 + ∆NE = −8 (E)
Dinit+8 = Dinit+7 + ∆E = −2

Table 3.1 Steps required for the calculation of the line connecting the points
(2,3) and (10,6) using the midpoint algorithm

The problem of drawing a line connecting the points (2,3) and (10,6) shall
illustrate the principle of this algorithm, also called midpoint algorithm or
named after its inventor Bresenham algorithm. The resulting values for the
initialisation and for the decision variable are given step by step in Table 3.1.

After setting the start pixel (2,3), the initial decision variable Dinit results
in the negative value of −2, so that the next pixel to be drawn is the one “east”
or right of the start pixel. The decision variable must be changed by ∆E = 6.
This makes the new decision variable positive, meaning that the next pixel to
be drawn should be “northeast” or right above the previous pixel and that
the decision variable should be changed by the value ∆NE . This results in a
zero-value for the decision variable in the next step. In other words, the line
passes exactly through the midpoint between the two candidates for the next
pixel to be drawn. Here, the convention is assumed to prefer the “eastern” pixel
in such cases. The remaining values can be calculated analogously. Figure 3.5
shows the resulting pixel line.

The precondition for the application of the midpoint algorithm is that the
line to be drawn has a slope between 0 and 1. It was already mentioned that
the roles of the x- and the y-axis can be exchanged for drawing lines with an
absolute slope greater than 1. In this case, the y-values are incremented step by
step and the decision variable D is used for the computation of the correspond-
ing x-value. By exchanging the roles of the coordinate axes if necessary, it can
always be guaranteed that the slope of the line to be drawn is between −1 and



60 3. Drawing lines and curves

2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10 11

��
���

��
��

Figure 3.5 Drawing a line with the Bresenham algorithm

1. The above-described midpoint algorithm can only take care of lines with a
slope between 0 and 1. In a completely analogous way, an algorithm for lines
with a slope between −1 and 0 can be derived. Instead of the “northeastern”
pixel, the “southeastern” pixel has to be considered for the midpoint algorithm
for lines with slope between −1 and 0.

A crucial prerequisite for the midpoint algorithm is the assumption that
the line to be drawn connects two pixels. This restricts the endpoints of the
line to integer coordinates. For a line that was modelled in a vector graphics
framework, it is not guaranteed at all that the endpoints fulfil this requirement.
In this case, the line connecting the endpoints with rounded coordinates is
drawn. This might lead to a small deviation of the pixel line obtained from
rounding the y-coordinates compared to the ideal line. However, the deviation
is at most one pixel and can therefore be tolerated for the higher computational
efficiency.

3.3 Structural algorithms

The midpoint algorithm requires in addition to the computations for the ini-
tialisation n operations to draw a line of n pixels, so that its computational
complexity is linear. Structural algorithms try to reduce this complexity fur-
ther by analysing repeated patterns that occur when a line is drawn on a pixel
raster. Figure 3.6 illustrates such a repeated pattern with an overall length of
five pixels. In order to better identify the repeated pattern, the pixels within
one pattern are marked differently. The basic pattern in figure 3.6 consists of
a first pixel (filled circle), two neighbouring pixels right above the first pixel
(simple circles), followed by two other neighbouring pixels (double circles) right
above the previous ones. Let D denote a diagonal step (drawing a “northeast-
ern” pixel) and H a horizontal step (drawing an “eastern” pixel). Then drawing



3.3 Structural algorithms 61

the pixel line can be described by a repetition of the basic pattern DHDHD.























�
��

�� ��
�

��
�� ��

�
��

�� ��
�

Figure 3.6 A repeated pixel pattern for drawing a line on pixel raster

If the line in figure 3.5 on page 60 would not end at the point (10,6), the
corresponding pattern HDHHDHDHD would be repeated again. This can
also be seen from the calculations of the midpoint algorithm in Table 3.1 on
page 59. The initial value Dinit of the decision variable is equal to the last value
Dinit+8 in the table. Continuing the calculations of the midpoint algorithm
would therefore lead to the same results as shown in the table.

Since it was assumed that the endpoints (x0, y0) and (x1, y1) of the line to
be drawn lie on the pixel raster, the numbers x0, y0, x1, y1 must be integers and
therefore also the values dx = x1−x0 and dy = y1−y0. The line has a rational
slope of dy

dx . For drawing the line, the y-values

dy

dx
· x + b (3.9)

with a rational constant b and integer values x have to be rounded, no matter
whether this calculation is carried out explicitly as in the näıve line drawing
algorithm or implicitly as in the midpoint algorithm. It is obvious that only
a finite number of different remainders is possible for the computation of the
y-values (3.9). Therefore, any pixel line connecting two endpoints on the pixel
raster must be based on a repeated pattern, although the pattern might be
quite long. In the worst case the repetition of the pattern would only start
again when the final endpoint of the line is reached.

Structural algorithms make use of this fact for drawing lines and determine
the underlying basic pattern that defines the line. This can lead to a reduction
for line drawing to a logarithmic complexity, but with the price of more complex
integer operations than simple additions.



62 3. Drawing lines and curves

For the same reasons as in the context of the midpoint algorithm, the con-
siderations for structural algorithms will also be restricted to lines with a slope
between zero and one. A structural algorithm constructs the repeated pattern
for drawing the pixels as a sequence of horizontal (H) and diagonal steps (D),
based on the following principles.

Given the two endpoints (x0, y0) and (x1, y1) of a line with slope between
zero and one, the values dx = x1−x0 and dy = y1−y0 are computed. In addition
to the initial pixel dx more pixels have to be drawn. For these dx pixels dy

diagonal steps are required. The remaining (dx− dy) must be horizontal steps.
The problem to be solved consists of finding the correct order of the diagonal
and horizontal steps. The sequence3 Hdx−dyDdy, containing the correct number
of horizontal and diagonal steps but probably in the wrong order, is used as a
first approximation for the drawing pattern of the line. A suitable permutation
of this initial sequence will yield the correct sequence for drawing the line.

Brons’ algorithm constructs the correct permutation of the initial sequence
Hdx−dyDdy in the following way [7, 8].

– If dx and dy (and therefore also (dx − dy)) have a common divisor greater
than one, i.e., g = gcd(dx, dy) > 1, then the pixel line can be drawn by g

repetitions of a sequence of length dx/g.

– Therefore, it can be assumed without loss of generality that dx and dy have
no common divisor.

– Let P and Q be two words (sequences) over the alphabet {D,H}.

– From a starting sequence P pQq with frequencies p and q having no common
divisor and assuming without loss of generality 1 < q < p, the integer division

p = k · q + r, 0 < r < q

leads to the permutated sequence

(P kQ)q−r(P k+1Q)r if (q − r) > r,

(P k+1Q)r(P kQ)q−r if r > (q − r).

– Apply the same procedure in a recursive manner to the subsequences of
length r and (q − r), respectively, until r = 1 or (q − r) = 1 holds.

As an example how to apply this procedure, drawing a line from the point
(x0, y0) = (0, 0) to the point (x1, y1) = (82, 34) is considered. Obviously, dx =
82, dy = 34 and therefore gcd(dx, dy) = 2 holds. The line has a slope of dy/dx =
17/41. Starting from the initial pixel (x0, y0) that is located on the ideal line, the

3 Hdx−dyDdy means (dx − dy) letters H followed by dy letters D.



3.4 Pixel densities and line styles 63

next pixel on the ideal line is reached after 41 pixels. Therefore, it is sufficient
to construct a sequence for drawing the first half of the line up to the pixel
(41, 17) and to repeat this sequence for drawing the remaining pixels. Therefore,
the values d̃x = dx/2 = 41 and d̃y = dy/2 = 17 are considered. So the initial
sequence is H24D17 and the corresponding integer division with p = 24 and
q = 17 yields 24 = 1 · 17 + 7. This leads to the sequence (HD)10(H2D)7 with
p = 10 and q = 7. Integer division for this sequence produces 10 = 1 · 7 + 3,
resulting in the sequence (HDH2D)4((HD)2H2D)3. Here p = 4 and q = 3
holds and the final integer division yields 4 = 1 · 3 + 1. The corrected sequence
of intermediate steps is therefore

(HDH2D(HD)2H2D)2((HDH2D)2(HD)2((HD)2H2D))1.

This sequence has to be applied twice for drawing the pixel line connecting the
points (0,0) and (82,34).

3.4 Pixel densities and line styles

Drawing lines in a raster graphics framework causes various undesired effects.
The pixel grid leads to jaggies or staircasing instead of straight lines. This
so-called aliasing effect and how to avoid it will be discussed in section 3.8 in
more detail. So far it was assumed that the width of a line should be one pixel,
resulting in very thin lines. Drawing thicker lines will be the topic of section
3.9. The density of thin lines where one pixel is set per step in the x- or y-
direction depends on the slope of the line. Figure 3.7 illustrates this effect. The
highest pixel density is achieved for horizontal lines. An increasing slope leads
to thinner lines and the lowest density is reached at a slope of one. Since lines
with a larger absolute slope than one are drawn by exchanging the roles of the
coordinate axes, the pixel density increases again for lines with a slope greater
than one. The same applies to lines with negative slopes.

Analysing the example of a line connecting the points (0, 0) and (n,m) with
m ≤ n will provide a better understanding of the influence of the slope of a
line on its pixel density. No matter how m, i.e., the slope, is chosen, the line
will always contain n pixels, not counting the first pixel at (0, 0). The pixel
densities depending on the choice of m are listed in Table 3.2. The last line of
the table contains the general formula for arbitrary values m ≤ n.

The horizontal line, having a length of n and containing n pixels, has the
highest pixel density. The pixel density of a diagonal line with slope one reduces
to 1/

√
2 ≈ 0.7, roughly 70% of the density of a horizontal line. If not only black

and white, but also grey pixels with different intensities can be drawn, one can



64 3. Drawing lines and curves

Figure 3.7 Different pixel densities depending on the slope of a line

m Slope Length of the line Pixel density

0 0 n 1

n

4
1
4

n ·
√

1 +
1
16

1√
1 + 1

16

n 1 n ·
√

2
1√
2

m
m

n
n ·
√

1 +
(m

n

)2 1√
1 +
(

m
n

)2

Table 3.2 Pixel densities for lines with different slopes

try to compensate this effect by using the maximum intensity only for diagonal
lines and drawing horizontal and vertical lines with only 70% intensity of the
diagonal lines. However, this compensation strategy will reduce the overall
intensity, since only lines with the lowest pixel density obtain full intensity.
The intensity for all other lines will be reduced, so that they look more palish.

The slope of a line not only can influence how thick it occurs on a pixel
raster, but it can also have similar effects when lines are drawn with different
line styles. A line style determines the way a line is drawn. So far it was always
assumed that the two endpoints of a line had to be connected by a solid line.
This corresponds to the default or standard line style. Other common line styles
include dotted or dashed lines.

Bitmasks offer a simple way for defining different line styles. A bitmask
is a finite sequence of zeros and ones. The repeated bitmask is mapped to
the pixels of the line. Only those pixels are drawn where a one occurs in the
bitmask. Pixels where the bitmask has a zero are skipped.



3.4 Pixel densities and line styles 65

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
� � � � � � � � � � � � � � � � � � � � � solid

1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
� � � �� � � �� � � � dashed

1 0 0 1 1 1 1 1 10 0 0 0 0 00 0 0 0 0 0
� � � � � � � dotted
	 	 	 	 	 	 	

1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0
� � � � � � � � � � � � � � � self defined

	 	 	

Figure 3.8 Different line styles

Figure 3.8 illustrates how bitmasks determine which pixels have to be drawn
and how the resulting line looks, when a specific bitmask is chosen for a line
style. For each line, the underlying bitmask is shown once in the beginning in
slightly enlarged boldface digits, afterwards the repetitions of the bitmask are
shown in the normal font. Below the bitmask the corresponding sequence of
pixels is drawn in a magnified manner. Below the pixels it is illustrated how the
corresponding line style should look. The first bitmask for drawing a solid line
consists of a single 1. For a dashed line one could use, for instance, the bitmask
111000 with three pixels drawn and three pixels skipped, alternatingly.

Since a bitmask determines the pixels to be drawn based on the way the
line is traversed, i.e., the corresponding coordinate axis, similar effects occur
as they have already been discussed for pixel densities in connection with the
slope of the line. For instance, for a dashed line the length of the dashes based
on a bitmask depends on the slope of the line. If the bitmask 1n0n is used,
i.e., n pixels are drawn and n pixels are skipped alternatingly, the length of a
single dash varies with the slope of the line. For vertical and horizontal lines the
length of a single dash is n, whereas a line with a slope of 45◦ will have dashes
with a length of n ·

√
2. This means that diagonal lines have dashes that are

40% longer than those of horizontal or vertical lines. Figure 3.9 illustrates how
the slope of a line influences the length of the dashes, when a simple bitmask
is used.



66 3. Drawing lines and curves

��

��

��

��

��

��
��

��
��

��

Figure 3.9 Different dash lengths for the same bitmask

3.4.1 Different line styles with Java 2D

Java 2D provides the class BasicStroke not only for defining different line
styles, but also for controlling the thickness of lines as well as the shape of
line endings and joins between lines in a polyline. The default thickness of a
line is 1.0 pixel in Java 2D and since such lines tend to be very thin on high-
resolution output devices, it is recommended to choose a larger value for the
line thickness. This can be achieved in the following way.

BasicStroke bsThickLine = new BasicStroke(3.0f);

g2d.setStroke(bsThickLine);

In this case the chosen line thickness is specified as 3.0 pixels.
For defining dash patterns, the constructor

BasicStroke bsDash =

new BasicStroke(thickness,

BasicStroke.CAP_BUTT,

BasicStroke.JOIN_BEVEL,

2.0f,

dashPattern,dashPhase);

can be used. The float-value thickness specifies the thickness of the line to
be drawn. The three following parameters determine how the endings of lines
should look and how joins in polylines should be drawn. The corresponding ef-
fects and choices will be explained in section 3.9. The float-array dashPattern

defines the desired dash pattern. For drawing a dashed line, whose dashes
are 20 pixels long with gaps in between with a length of 10 pixels, the array
dashPattern must have two entries, the corresponding values 20 and 10.

float[] dashPattern = new float[]{20,10};



3.5 Line clipping 67

The float-value dashPhase determines at which position in the dash pattern
drawing should begin.

Figure 3.10 shows a selection of lines for which different dash patterns were
defined. For the left line, only the simple constructor new BasicStroke(3.0f)

was used to make it a little bit thicker. The three rightmost lines were drawn
with the above-given dash pattern dashPattern. The two rightmost lines have
an offset of dashPhase=0, whereas the offset was set to 10 for the line in the
middle. Comparing the two rightmost lines shows that Java 2D does not work
with a simple bitmask which is applied to pixels. Java 2D computes the dash
pattern in such a way that the dash length is kept independent of the slope of
the line.

Figure 3.10 Examples for different line styles

The second line to the left is based on a dashPattern with the values
4,5,8,5,12,5,16,5,20,5, so that the gaps between the dashes have a constant
length of 5, whereas the lengths of the dashes increase from 4 to 20.

Figure 3.10 was generated by the program StrokingExample.java.

3.5 Line clipping

When objects of a more complex “world” are modelled in terms of vector
graphics, it is necessary to specify which section of the world—the scene—is
chosen for display. Then it must be decided for each object whether it belongs
completely or at least partially to the section of the world to be displayed.
The task of deciding whether objects belong to the scene to be displayed or
whether they can be neglected for the specific scene is called clipping. The part
of the world to be displayed is the clipping area or clipping region. This section
focusses on specific algorithms for clipping lines.



68 3. Drawing lines and curves

In the case of line clipping, four different cases, as illustrated in figure 3.11,
are possible.

Figure 3.11 Different cases for line clipping

– Both endpoints of the line lie within the clipping area. This means the line
is included completely in the clipping area, so that the whole line must be
drawn.

– One endpoint of the line lies within, the other outside the clipping area. It is
necessary to determine the intersection point of the line with the bounding
rectangle of the clipping area. Only a part of the line should be drawn.

– Both endpoints are located outside the clipping area and the line does not
intersect the clipping area. In this case, the line lies completely outside the
clipping area and can be neglected for the scene.

– Both endpoints are located outside the clipping area and the line intersects
the clipping area. The two intersection points of the line with the clipping
area must be determined. Only the part of the line between these two inter-
section points should be drawn.

A straightforward way to implement line clipping would be to compute all
intersection points of the line with the bounding rectangle of the clipping area.
It should be noted that this problem is more difficult than determining the
intersection points of infinite lines. The line to be drawn has limited extension
bounded by its two endpoints. For the clipping procedure it is important to
know whether an intersection point lies between or outside the two endpoints
of the line segment. The same applies to the four edges of the bounding rec-
tangle of the clipping area. The edges have also limited extension. Intersection
points outside the edges or outside the endpoints of the considered line have no



3.5 Line clipping 69

influence on drawing the line. For the computation of the intersection points it
is useful to represent the line segment between the two endpoints (x0, y0) and
(x1, y1) as a convex combination of these two points.

g(t) =
(

x(t)
y(t)

)
= (1 − t) ·

(
x0

y0

)
+ t ·

(
x1

y1

)
(0 ≤ t ≤ 1). (3.10)

Let (xmin, ymin) and (xmax, ymax) be the lower left and the upper right cor-
ner, respectively, of the rectangle defining the clipping area. As an example for
the necessary computations for clipping, the calculation of a possible intersec-
tion point of the line with the lower edge of the clipping rectangle is described
in the following. For determining a possible intersection point the formulae for
the two lines, the line segment (3.10) and the lower edge, must be equal.

(1− t1) ·
(

x0

y0

)
+ t1 ·

(
x1

y1

)
= (1− t2) ·

(
xmin

ymin

)
+ t2 ·

(
xmax

ymin

)
. (3.11)

Two equations for t1 and t2 result from considering the x- and y-component of
equation (3.11). If this system of two linear equations does not have a unique
solution, the two lines are parallel, so that the lower edge of the clipping rec-
tangle would not be important for clipping the line. If the system of equations
has a unique solution, the following cases must be distinguished.

– t1 < 0 and t2 < 0: The intersection point lies not between the endpoints of
the line segment and lies before xmin.

– 0 ≤ t1 ≤ 1 and t2 < 0: The line segment intersects the extension of the lower
edge before xmin.

– t1 > 1 and t2 < 0: The intersection point lies not between the endpoints of
the line segment and lies before xmin.

– t1 < 0 and 0 ≤ t2 ≤ 1: The intersection point of the line with the lower edge
lies before (x0, y0).

– 0 ≤ t1 ≤ 1 and 0 ≤ t2 ≤ 1: The line segment intersects the lower edge.

– t1 > 1 and 0 ≤ t2 ≤ 1: The intersection point of the line with the lower edge
lies behind (x1, y1).

– t1 < 0 and t2 > 1: The intersection point lies not between the endpoints of
the line segment and lies behind xmax.

– 0 ≤ t1 ≤ 1 and t2 > 1: The line segment intersects the extension of the lower
edge behind xmax.

– t1 > 1 and t2 > 1: The intersection point lies not between the endpoints of
the line segment and lies behind xmax.



70 3. Drawing lines and curves

Similar considerations can be carried out for the other edges of the clipping
rectangle. Combining the results for the single edges will provide the necessary
information as to which part of the line should be drawn.

The Cohen-Sutherland line clipping algorithm (see for instance [18]) tries
to avoid the complex computations of intersection points for lines. To simplify
the calculations, the plane is divided into nine areas described by a 4-bit code.
The bit code b

(P )
1 b

(P )
2 b

(P )
3 b

(P )
4 ∈ {0, 1}4 is assigned to the point according to

the following rules.

b
(P )
1 = 1 ⇔ xp < xmin,

b
(P )
2 = 1 ⇔ xp > xmax,

b
(P )
3 = 1 ⇔ yp < .ymin,

b
(P )
4 = 1 ⇔ yp > ymax

Figure 3.12 shows the nine areas and their corresponding bit codes.

�
(xmin, ymin)

�
(xmax, ymax)

1010 0010 0110

1000 0000 0100

1001 0001 0101

Figure 3.12 Bit code for Cohen-Sutherland clipping

Clipping should be applied to a line connecting the two endpoints P and
Q. The corresponding bit code b(P ) and b(Q) of P and Q, respectively, can be
determined by simple comparisons of numbers. For drawing the correct part of
the line, three cases must be distinguished. The part of the line that has to be
drawn is determined in an iterative procedure. The first two cases terminate
the calculations. In the third case, the line segment is further subdivided.

Case 1: The bitwise logical disjunction of the bit codes of the two points yields
b(P ) ∨ b(Q) = 0000.

Then both points lie within the clipping rectangle, the whole line PQ must
be drawn, and no further clipping is needed for this line.



3.5 Line clipping 71

Case 2: The bitwise logical conjunction of the bit codes of the two points yields
b(P ) ∧ b(Q) �= 0000.

This means that the two bit codes must share the entry one in at least one
position. If the common one of the two bit codes is at the first position,
then the whole line is left of the clipping rectangle. If the common one is
at the second position, the whole line lies right of the clipping rectangle.
Analogously, a common one at the third or fourth position indicates that
the line lies completely below or completely above the clipping rectangle.
In all these cases no further clipping is required for the line.

Case 3: Neither the first nor the second case apply.

Then b(P ) �= 0000 and b(Q) = 0000 must be true.

Without loss of generality, it can be assumed that b(P ) �= 0000. Otherwise
the points P and Q are simply exchanged. Note that b(P ) = 0000 = b(Q)

is impossible, since this would lead to case 1. Since the bit code of P must
contain a value one, P cannot lie within the clipping rectangle. The bit code
of P cannot contain a one at more than two positions. From the definition
of the bit code it is clear that it is impossible to have a one simultaneously
at the first two positions, since the point cannot lie left and right of the
clipping rectangle at the same time. The same applies to the last position.
Now it is necessary to compute possible intersection points of the line with
edges of the clipping rectangle. Starting from point P the line can enter
the clipping rectangle only via an edge that is associated with a one in the
bit code of P . If the first component of the bit code is one, this means that
P lies left of the clipping rectangle and the line might enter the clipping
rectangle via its left edge. The same holds for the other edges and the
corresponding position of the one in the bitcode. So there can be one or at
most two possible edges by which the line might enter the clipping area.

If there is only one possible edge as a candidate for the intersection with
the line, the intersection point of the line with the prolongation of the
corresponding edge is determined and the point P is replaced by this in-
tersection point. If there are two candidate edges, the intersection of the
line with the prolongation of one of the edges is determined and the point
P is replaced by this intersection point. In both cases, the algorithm starts
again with the updated point P . In this way, the line is shortened and the
shortened line is treated in the same way as the original one until one of
the first two cases of the algorithm applies.



72 3. Drawing lines and curves

Figure 3.13 illustrates how the Cohen-Sutherland line clipping algorithm
works. The line PQ is reduced stepwise to the lines S1Q, S2Q, S2S3 and finally
to S2S4. The last line lies completely within the clipping rectangle and can be
drawn immediately.

1010 0010 0110

1000 0000 0100

1001 0001 0101


















�
P

�
Q

�S1

�
S2

�S3

�
S4

Figure 3.13 Cohen-Sutherland line clipping

The Cyrus-Beck line clipping algorithm [14] uses normals of the edges of
the clipping rectangle to determine the part of the line which should be drawn.
The line is represented in a parametric form in terms of a convex combination
of its endpoints p0 and p1 as introduced in equation (3.10) on page 69.

g(t) = (1 − t) · p0 + t · p1 = p0 + (p1 − p0) · t (t ∈ [0, 1]).

For each of the four edges of the clipping rectangle, a normal vector is deter-
mined in such way that it points outwards of the rectangle. The corresponding
normal vector for the left edge is therefore (−1, 0)�, for the lower edge it is
(0,−1)�, and for the upper and the right edge the normal vectors (0, 1)� and
(1, 0)� are obtained, respectively.

Figure 3.14 illustrates the principle of the Cyrus-Beck line clipping algo-
rithm for the left edge of the clipping rectangle. In addition to the normal
vector n a point on the corresponding edge is also chosen. For the left edge this
point is denoted by pE in figure 3.14.

The vector connecting the point pE with a point on the line defined by the
points p0 and p1 can be written in the following form.

p0 + (p1 − p0)t − pE .

For the intersection point of the line with the corresponding edge of the clipping
rectangle

0 = n�
E · (p0 + (p1 − p0)t − pE) = n�

E · (p0 − pE) + n�
E · (p1 − p0)t



3.5 Line clipping 73

�

�

�

�

� � � � �

� � � � �� � � � � �

	

�




	

Figure 3.14 Cyrus-Beck line clipping

must hold. This equation requires that the vector connecting pE with the inter-
section point must be orthogonal to the normal vector nE , since the connection
vector must be parallel to the left edge of the clipping rectangle. Solving for t

yields

t = −n�
E · (p0 − pE)

n�
E · (p1 − p0)

. (3.12)

The denominator can only be zero, if either p0 = p1 holds, meaning that the
line to be clipped consists only of a single point, or if the line is orthogonal to
the normal vector nE . The latter case implies that the line is parallel to the
edge E, so that no intersection point with this edge has to be computed.

The value t is determined for each of the four edges of the clipping rectangle
in order to determine whether the line to be drawn intersects the corresponding
edge. A value of t outside the interval [0, 1] indicates that the line does not
intersect the corresponding edge of the clipping rectangle. The dot products
in the numerator and the denominator of equation (3.12) are simplified to
choosing the x- or the y-component of (p0 −pE) and (p1 −p0) and a possible
change of the sign since the normal vectors nE are all of the form ±(1, 0)� or
±(0, 1)�.

A t-value between zero and one in equation (3.12) means that the line to be
drawn either intersects the corresponding edge itself or the prolongation of the
edge. Therefore, only those intersection points for t-values between zero and
one are potential points where the line enters or leaves the clipping rectangle.
These points are marked as possible entering (PE) and possible leaving points
(PL). All of them lie between the endpoints of the line, but not necessarily on
an edge of the clipping rectangle. Figure 3.15 illustrates the situation.

The angle between the line p0p1 and the normal vector n of the corre-
sponding edge of the clipping rectangle determines whether a point should be
marked PE or PL.



74 3. Drawing lines and curves

PE PE

PL PL

P

P

0

1

Figure 3.15 Potential intersection points with the clipping rectangle

– If the angle is larger than 90◦, the intersection point should be marked PE.

– If the angle is less than 90◦, the intersection point should be marked PL.

For the decision PE or PL it is sufficient to determine the sign of the dot
product

n� · (p1 − p0).

In the case of PE, the sign will be negative. PA will lead to a positive sign.
Since only one of the components of the normal vector n is nonzero, the sign of
the dot product is obtained by considering only the signs of the corresponding
component of the vector p1 − p0 and the nonzero component of the normal
vector.

In order to determine which part of the line lies within the clipping rectan-
gle, the largest value tE for PE-points and the smallest value tL for possible
PL-points must be computed. If tE ≤ tL holds, then the part of the line be-
tween the points p0 + (p1 − p0)tE and p0 + (p1 − p0)tL must be drawn. In
case of tE > tL the line lies out of the clipping rectangle and nothing has to be
drawn.

Apart from determining which part of a line should be drawn for a given
clipping area, computing the first pixel of the line inside the clipping rectangle
is another problem. In general, it is not sufficient to calculate the rounded
coordinates of the intersection point of the line with the corresponding edge of
the clipping rectangle where the line enters the clipping area. Figure 3.16 shows
an example where this procedure would lead to an incorrect result. The left or
“eastern” edge of the clipping rectangle is marked with “left,” the lower or
“southern” edge with “lower.” In this example, the first pixel would be missed
if rounding the coordinates of the intersection point of the line with the lower
edge was applied. For lines with a smaller slope, the procedure could miss many



3.6 The midpoint algorithm for circles 75

left

lower
lower - 0.5
lower - 1

Figure 3.16 Finding the pixel where a line enters the clipping rectangle

more pixels. Therefore, instead of the intersection of the line with the edge,
its intersection point with the edge shifted 0.5 unit downwards is computed.
The rounded x-value of this intersection point gives the correct position where
drawing of the line should start. The other edges are treated analogously.

3.6 The midpoint algorithm for circles

In section 3.2 an efficient line drawing algorithm based solely on integer arith-
metic was introduced. This midpoint algorithm can be generalised to drawing
circles and also various other curves under certain restrictions. The main con-
straint for circles is that the centre or midpoint (xm, ym) of the circle must
be located on a pixel, i.e., xm and ym must be integer values. In this case,
it is sufficient to develop an algorithm for drawing circles centred around the
origin of the coordinate system. For circles with midpoint (xm, ym) the same
algorithm can be applied as for circles with midpoint (0, 0), but all points are
drawn with an offset of (xm, ym).

In order to determine the pixels to be drawn for a circle centred around
the origin of the coordinate system, the calculations are only carried out for an
eighth part of the circle. The other pixels can be derived directly by symmetry
arguments as figure 3.17 shows. If the pixel (x, y) has to be drawn within
the considered hatched eighth part of the circle, then the pixels (±x,±y) and
(±y,±x) have to be drawn in the other parts of the circle.

For the generalisation of the midpoint or Bresenham algorithm to circles
[6], another constraint is introduced. It is assumed that the radius R is integer-
valued. In the considered eighth part of the circle, the slope of the circle line
decreases from 0 to −1. Analogously to the case of drawing lines with a slope
between zero and one, the number of candidates for the next pixel to be drawn
can be reduced to two. If the pixel (xp, yp) has been drawn in one step, the



76 3. Drawing lines and curves

(x,y)

(y,x)

(y,-x)

(x,-y)(-x,-y)

(-y,-x)

(-y,x)

(-x,y)

Figure 3.17 Exploiting symmetry for drawing circles

next pixel can only be the pixel E with coordinates (xp + 1, yp) or SE with
coordinates (xp + 1, yp − 1) as is illustrated in figure 3.18.

E

M

SE

M

M

(x  ,y  )p p

E

SE

Figure 3.18 Midpoint algorithm for circles

In the same way as in the case of the midpoint algorithm for lines, the
decision which pixel is the correct one to be drawn in the next step is based on
a decision variable involving the midpoint between the two pixel candidates.
For this purpose, the equation for the circle x2 + y2 = R2 is rewritten in the
form

d = F (x, y) = x2 + y2 − R2 = 0. (3.13)

For this implicit equation and a point (x, y) the following statements are
obvious.



3.6 The midpoint algorithm for circles 77

– F (x, y) = 0 ⇔ (x, y) lies on the circle.

– F (x, y) > 0 ⇔ (x, y) lies outside the circle.

– F (x, y) < 0 ⇔ (x, y) lies inside the circle.

In order to decide whether pixel E or SE is the next pixel to be drawn, the
midpoint M is inserted into equation (3.13) leading to the following decisions.

– If d > 0 holds, then SE must be drawn.

– If d < 0 holds, then E must be drawn.

As in the case of the midpoint algorithm, the value of the decision variable
d is not computed in each step by inserting the midpoint M directly. Instead,
only the change of d is calculated in each step. Starting with pixel (xp, yp) which
is assumed to be drawn correctly, the change of d is calculated for the transition
from pixel (xp+1, yp+1) to (xp+2, yp+2). Two cases must be distinguished here.

Case 1: E, i.e., (xp+1, yp+1) = (xp + 1, yp) was the pixel drawn after (xp, yp).
This corresponds to the case shown in figure 3.18. The midpoint ME

to be considered for drawing the pixel (xp+2, yp+2) has the coordinates(
xp + 2, yp − 1

2

)
. Inserting this midpoint into equation (3.13) yields the

following value for the decision variable d.

dnew = F

(
xp + 2, yp − 1

2

)
= (xp + 2)2 +

(
yp − 1

2

)2

− R2.

In the previous step for determining the pixel (xp+1, yp+1), the mid-
point

(
xp + 1, yp + 1

2

)
was considered. Inserting this midpoint into equation

(3.13) gives

dold = F

(
xp + 1, yp − 1

2

)
= (xp + 1)2 +

(
yp − 1

2

)2

− R2

as the previous value for the decision variable d. The change of the decision
variable is in this case

∆E = dnew − dold = 2xp + 3.

Case 2: SE, i.e., (xp+1, yp+1) = (xp + 1, yp − 1) was the pixel drawn af-
ter (xp, yp). In this case, the next midpoint to be considered is MSO =(
xp + 2, yp − 3

2

)
(see figure 3.18). Then the value for the decision variable

is

dnew = F

(
xp + 2, yp − 3

2

)
= (xp + 2)2 +

(
yp − 3

2

)2

− R2.



78 3. Drawing lines and curves

The previous value of d is the same as in the case of the pixel E, so that
the change of the decision variable is given by

∆SE = dnew − dold = 2xp − 2yp + 5.

Taking these two cases together, the change of the decision variable is

∆ =
{

2xp + 3 if E was chosen,
2xp − 2yp + 5 if SE was chosen.

This means

∆ =
{

2xp + 3 if dold < 0,

2xp − 2yp + 5 if dold > 0,

so that the change ∆ of the decision variable d is always an integer value.
In order to compute the decision variable d in each step, in addition to

its change the initial value is also needed. The first pixel to be drawn has the
coordinates (0, R), so that

(
1, R − 1

2

)
is the first midpoint to be considered.

The initial value for d is therefore

F

(
1, R − 1

2

)
=

5
4
− R. (3.14)

As in the case of lines, the change of the decision variable is always integer-
valued, but the initial value is not. The same principle as for lines could be
applied to circles. Using the modified decision variable D = 4 · d would resolve
the problem of the initial floating point value. A simpler solution is, however,
to simply ignore the resulting digits after the decimal dot in equation (3.14)
for the initialisation of d. The reason why this does not lead to any mistakes
for the drawing of the circle is very simple. In each step, it is only of interest
whether d has a positive or a negative value. Since d will always be changed by
an integer value, the sign of d is the same with or without the digits after the
decimal dot.

For the derivation of the midpoint algorithms for drawing circles it was
assumed that the centre of the circle is in the origin of the coordinate system
or at least a point on the pixel raster. In addition, the constraint that the
radius must have an integer value was introduced. The midpoint algorithm can
be extended easily to circles with an arbitrary, not necessarily integer-valued
radius. Since the radius does not occur in the update equations for the decision
variable d, the radius must only be considered for the initialisation of d. For a
floating point radius R the first pixel to be drawn is (0, round(R)), leading to(
1, round(R) − 1

2

)
as the first midpoint that must be considered. Therefore, d

must be initialised with the value

F

(
1, round(R) − 1

2

)
=

5
4
− round(R).



3.7 Drawing arbitrary curves 79

For the same reasons as for circles with an integer-valued radius, the digits
after the decimal dots can be ignored. This makes the initialisation of d integer-
valued and the change of d remains integer-valued independent of the radius.

3.7 Drawing arbitrary curves

The midpoint algorithm can be generalised not only to circles, but also to other
curves, for instance ellipses [26, 35, 47]. A very restrictive requirement of the
midpoint algorithm is that the slope of the curve to be drawn must lie between
0 and 1 or between 0 and −1. For drawing arbitrary curves, or at least contin-
uous curves, the plot of the graph is based on piecewise approximations of the
curve by short lines. For drawing the continuous function y = f(x) it is not
sufficient to iterate stepwise through the x-values and draw the corresponding
pixel with the rounded y-coordinate. Whenever the function has an absolute
slope larger than one, the same problem of pixel gaps occurs as already hap-
pened with the näıve line drawing algorithm in figure 3.2 on page 50. Lines have
a constant slope that can be determined easily. Therefore, the problem of pixel
gaps can be avoided for lines by simply exchanging the roles of the coordinate
axes for drawing a line with an absolute slope greater than one. This means
that in this case the inverse function of the line is drawn along the y-axis. Ar-
bitrary functions have neither a constant slope, nor can the slope or the inverse
function be calculated easily for arbitrary functions. For this reason, drawing
arbitrary curves is carried out by stepwise iterating through the desired range
on the x-axis and computing the corresponding rounded y-values. However, not
only these pixels are drawn, but also the connecting line between pixels with
neighbouring x-values is drawn based on the midpoint algorithm for lines.

Figure 3.19 illustrates the principle for drawing a continuous function y =
f(x) in the interval [x0, x1] with x0, x1 ∈ N. The filled circles are the pixels of
the form (x, round(f(x))) for integer-valued x-coordinates. The empty circles
correspond to the pixels that are drawn when two of the computed pixels
with neighbouring x-coordinates shown as full circles are connected by a line.
Drawing a curve in this way might not lead to exactly the same pixels that
would result if always the closest pixel to the curve was chosen. However, the
deviation is at most one pixel.



80 3. Drawing lines and curves

int yRound1, yRound2;

yRound1 = round(f(x0))

for (int x=x0; x<x1; x++)

{

yRound2 = round(f(x+1));

drawLine(x,yRound1,x+1,yRound2);

yRound1 = yRound2;

}












 


 









�


�

�
�


�
�

�
�
�



Figure 3.19 Drawing arbitrary curves

3.8 Antialiasing

The term aliasing effect originates from the field of signal processing and refers
to phenomena that occur when a continuous signal is sampled in a discrete
manner with a constant rate. Drawing a line or curve is a similar procedure.
The ideal line or curve as a continuous function is sampled by the pixel raster.
The most common aliasing effects in computer graphics are the staircasing
effects that occur when continuous curves or objects with smooth boundaries
are mapped to a pixel raster. Assuming that lines must have a width of only
one pixel and pixels can only be black or white, nothing can be done to avoid
aliasing effects.

For grey-scale images or images that allow colour intensities, aliasing effects
can be reduced. The basic idea of reducing staircasing effects for drawing lines
and curves is to soften the boundaries of the line by decreasing the intensity.
This technique is called antialiasing, for which various approaches are avail-
able. Some of these approaches are outlined in the following, explaining their
principles for drawing lines.

Unweighted area sampling interprets a line as a long, but very thin rectangle.
A pixel is not understood as a point, but as a small square that can be filled
with colour. The intensity of the pixel is chosen proportionally to the area of the
pixel’s square that is covered by the rectangle that represents the line. Figure
3.20 illustrates this concept.

The main disadvantage of this method is that for each pixel’s square the
intersection with a rectangle representing the line must be determined and the
area of this intersection must be computed, requiring high computational costs.
A simple heuristic approach to estimate the proportion of the pixel’s square



3.8 Antialiasing 81

Figure 3.20 Unweighted area sampling

that is covered by the line rectangle uses an imaginary refined pixel grid on
each pixel’s square. The proportion of refined pixels in the square that also lie
in the line rectangle gives a good estimation for the desired intensity of the
pixel. In this way, the pixel whose refined 5×5 pixel grid is shown in figure 3.21
would obtain an intensity equal to 11/25.

Figure 3.21 Estimation of the area by sampling with refined pixels

� �

�
� �

�

� � � � � �

Figure 3.22 Weighted area sampling

Weighted area sampling does not only consider the area of the pixel’s square
that is covered by the line rectangle, but takes also a weighting function w(x, y)
into account. w(x, y) has the highest value in the centre of the pixel and



82 3. Drawing lines and curves

decreases with increasing distance. A typical weighting function is shown in
figure 3.22. The weighting function is defined on a circle A around pixel P as
can be seen in the left part of the figure. The intensity for the pixel is given by

∫
AP

w(x, y)dx dy∫
A

w(x, y)dx dy

where AP is the intersection of the circle with the line rectangle. Although
this formula might appear complicated and computationally inefficient, since
integrals are involved, the intensity of the pixel depends only on its distance to
the ideal line, at least when a weighting function is used as illustrated in the
right part of figure 3.22. The intensity can be written as a function I(dP ) where
dP stands for the distance of pixel P to the line. The number of displayable
intensity values is usually limited, for computer screens by 256. Instead of con-
sidering the real function I : [0,∞) → [0, 1], it is sufficient to restrict to a
discrete version Î : [0,∞) → {0, ..., imax} of the function, when the available
levels of intensities are 0, ..., imax. Scanning the pixel raster in the neighbour-
hood of the line in order to determine the intensity for each pixel, means that
for each pixel a corresponding value of Î must be computed. This task is re-
lated to the problem of drawing a line or curve y = f(x) on a pixel raster.
For drawing a line, the procedure scans the pixel raster step by step—in this
case only along one of the coordinate axes—and determines the corresponding
rounded value of the function round(f(x)). The differences versus antialiasing
are that the pixel raster is not only scanned along a coordinate axis, but in
the neighbourhood of a line and that the discrete value Î to be determined
is not the y-value of the pixel to be drawn, but the corresponding discretised
intensity value. Based on this analogy, the concept of the midpoint algorithm
was also extended to antialiasing, requiring only integer arithmetic to deter-
mine the discrete intensity value. Examples for such antialiasing techniques are
Gupta-Sproull antialiasing [22] and the algorithm of Pitteway and Watkinson
[36]. For a detailed description of these algorithms the reader is referred to the
original work [22, 36] or to [18, 25].

3.8.1 Antialiasing with Java 2D

In Java 2D the method

g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

will make sure that all Shape and area objects, i.e., all objects that do not
represent text, are drawn using antialiasing.



3.9 Drawing thick lines 83

To apply antialiasing to drawing text, the method must be called with the
following parameters.

g2d.setRenderingHint(RenderingHints.KEY_TEXT_ANTIALIASING,

RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

3.9 Drawing thick lines

Today’s output devices have a high resolution that leads to very thin lines,
when lines are rendered with only one pixel as their width. Various techniques
for drawing thick lines with a thickness of more than one pixel are available.
The simplest approach is pixel replication. For drawing a curve with a slope
between −1 and 1, with each pixel the n pixels below and above are also
drawn, so that the curve has a thickness of 2n+1 pixels in the y-direction. The
same effect that lines with larger slope look thinner as was demonstrated in
section 3.4 occurs here as well. It was mentioned in section 3.1 that for drawing
lines with an absolute slope larger than one the roles of the coordinate axes
should be exchanged. Even for drawing arbitrary curves, this technique will be
applied as was explained in section 3.7. This is the reason why only lines with
slope between −1 and 1 are considered here. The principle of pixel replication
is illustrated in the left-hand side of figure 3.23. The right part of the figure
shows the moving pen technique. For drawing a pixel a thick pen with a tip of
for instance 5×5 pixels is used, so that in addition to the pixel in the centre all
other pixels belonging to the tip of the pen are also drawn.

Figure 3.23 Pixel replication and the moving pen technique

Pixel replication can be viewed as a special case of the moving pen technique
where the tip has a rectangular shape with a width of one pixel in one direction.
As in the case of pixel replication, a line with higher slope up to an absolute
slope of one will look thinner when a squared tip is used for the moving pen
technique.

In order to avoid drawing the same pixel multiple times in the case of the
moving pen technique, the shape of the tip should be taken into account. For



84 3. Drawing lines and curves

the tip in figure 3.23 consisting of 5×5 pixels and a line with a slope between
zero and one, all 25 pixels have to be drawn in the first step. In the following
steps, only the five pixels to the right, in case the right (eastern) pixel is the
next pixel for the line, or nine pixels must be drawn, when the northeastern
pixel is the next pixel of the line.

Another strategy for drawing thick lines considers the lines as thin rectan-
gles or, more generally, as polygons that have to be filled. Techniques for filling
polygons will be the topic of the next chapter.

When thick lines are drawn, line endings and joins in polylines can be mod-
elled in different ways. Simple pixel replication results in lines whose endings
are always parallel to one of the coordinate axes. This problem can be solved
when the lines are considered as filled rectangles. But this leads to other prob-
lems at the joins for polylines. Figure 3.24 shows different ways line endings
and joins between thick lines could be drawn. The thickness of the lines is ex-
aggerated in the figure in order to display the effects clearly. In the leftmost
part of the figure lines are considered as rectangles leading to an undesired
effect where two lines meet. For the other three cases in the figure this bad
effect is amended in three different ways. A prolongation of the outer lines of
the rectangles until they meet as in the second case in figure 3.24 produces a
sharp tip. For the next image, the join was cut off and the last image on the
right uses the segment of a circle to join the lines.

Figure 3.24 Different line endings and joins

3.9.1 Drawing thick lines with Java 2D

The way line endings and joins should be drawn can be controlled by the class
BasicStroke within Java 2D. This class was introduced in section 3.4.1 for
drawing dashed and thicker lines. The constructor

new BasicStroke(thickness,ending,join);



3.9 Drawing thick lines 85

defines the thickness of line as the float-value thickness. The value ending

determines how line endings should be drawn. The following values are avail-
able.

– BasicStroke.CAP BUTT: The endings are cut off straight, orthogonal to the
direction of the line. (Figure 3.24, second image from the left)

– BasicStroke.CAP ROUND: A half circle is attached to each line ending. (Fig-
ure 3.24, second image from the right)

– BasicStroke.CAP SQUARE: A rectangle is appended to the line ending, so
that the line is prolongated by half of its thickness. (Figure 3.24, right image)

The variable join, defining how lines in a polyline should be joined, allows
the following values.

– BasicStroke.JOIN MITER: The outer edges of the line rectangles are pro-
longed until they meet, leading to a join with a sharp tip (figure 3.24, second
image from the left). For acute angles of the lines, the tip can be extremely
long. To avoid this effect, another float-value can be specified, defining the
maximum length of the tip. If the tip exceeds this length, then the following
join mode is used.

– BasicStroke.JOIN BEVEL: The join is a straight cut-off, orthogonal to the
middle line between the two lines to be connected. (Figure 3.24, second image
from the right)

– BasicStroke.JOIN ROUND: The line endings are cut off at the join and a
circle segment similar to the style BasicStroke.JOIN BEVEL for line endings
is attached to the join. The angle of the circle segment is chosen such that
the lines form the tangents at the circle segment. (Figure 3.24, right image).

Figure 3.24 was generated by the program LineEndings.java.



86 3. Drawing lines and curves

3.10 Exercises

Exercise 3.1

Derive the midpoint algorithm for drawing lines with a slope between −1 and
0.

Exercise 3.2

Apply the structural algorithm in section 3.3 to draw the line in figure 3.6.

Exercise 3.3

Extend the program GeneralPathCar.java for drawing the car of figure 2.10.
Show the control points for the quadratic and cubic curves and connect the
endings of the curves with their corresponding control points by dashed lines.

Exercise 3.4

The midpoint algorithm shall be applied to drawing a part of the graph of the
function y = −a

√
x + b (a, b ∈ N

+).

(a) For which x-values is the slope between −1 and 0?

(b)Rewrite the function in a suitable implicit form F (x, y) = 0. Use d = F (x, y)
as a decision variable to develop the midpoint algorithm. How does d change
depending on whether the eastern (E) or the southeastern (SE) point was
drawn in the previous step of the midpoint algorithm?

(c) How should the initial value dinit for d be chosen, if (x0, y0) =
(
a2,−a2 + b

)
is the first point of the curve to be drawn?

(d) How can the rational values for the decision variable be avoided?



4
Areas, text and colours

Filling areas is applied in the context of drawing thick lines where thick lines
are considered as long rectangles. But filling areas and polygons is also a general
technique of computer graphics that is also needed as a drawing mode. This
chapter contains in addition to techniques for filling areas also basic models for
colours and a short introduction to handling text in images.

4.1 Filling areas

Areas are usually bounded by polygons or closed sequences of curves. In order
to fill a polygon, points inside the polygon must be distinguished from exterior
ones. For polygons whose edges do not intersect, it is obvious which points
should be considered as inner and outer points. For polygons with intersecting
edges it is not immediately clear what its inner parts are. The odd parity

rule provides a definition of inner and outer points based on the following
considerations.

If one starts to move along a line from an inner point of a polygon in one
direction, then a bounding edge of the polygon must be reached at some point
on the line. If the polygon is not convex, then it might happen that other edges
are met, when the movement along the line is continued. Since the movement
along the line was started at an inner point, one changes from the inner to the
outer part of the polygon when the first polygon edge is met. After the second
intersection point along the line with an edge, the polygon is entered again. So



88 4. Areas, text and colours

each time, when the line meets an edge, a change from the inside to the outside
of the polygon or vice versa takes place. Since the polygon is bounded, the last
edge that is met along the line must correspond to a change from the inside to
the outside of the polygon. Because the starting point was assumed to be an
inner point of the polygon, the intersection point with the first edge must also
represent a change from inside to outside.

Figure 4.1 Odd parity rule

Figure 4.1 illustrates the application of the odd parity rule to selected points
inside and outside a polygon. For each point a line is drawn and the number of
intersection points of the line with edges of the polygon is given in the figure.
If the number is odd, then the point is an interior (“int”) point of the polygon,
otherwise it is an exterior (“ext”) point.

The odd parity rule is a useful mathematical definition of interior and ex-
terior points of a polygon, but it is not suited for implementation, since the
computational costs would be unacceptable if the rule is applied separately
to each pixel. Instead, a scan line technique is applied. Scan line techniques
are very common in computer graphics. They carry out computations along a
line, the scan line, usually along lines parallel to one of the coordinate axes. For
each pixel row, the corresponding line is considered, and the intersection points
of the line with polygon edges are determined. These intersection points are
sorted in ascending order with respect to their x-coordinates. Let x1 < . . . < xn

be the x-coordinates of the intersection points. This means the scan line en-
ters the polygon at x1, leaves the polygon at x2, enters it again at x3 until
it finally leaves the polygon at xn. Therefore, exactly the pixels between x1

and x2, between x3 and x4, etc. and between xn−1 and xn must be drawn for
filling the polygon. The number n of intersection points must be even includ-
ing the possible value zero. Figure 4.2 illustrates the principle of this scan line
technique.



4.1 Filling areas 89

Figure 4.2 Scan line technique for filling polygons

For the implementation of the scan line technique, some specific problems
need extra attention. One of these problems is clipping. It is necessary to com-
pute all intersection points of the scan line with the polygon. But only those
pixels need to be drawn that lie within the clipping area. Therefore, draw-
ing might not start at the first intersection point x1. Another problem occurs
when the scan line intersects vertices of the polygon. These cases need special
treatment. In figure 4.3, the scan line intersects two vertices of the polygon. At
the first vertex a change from the exterior to the interior part of the polygon
takes place. At the second vertex, the scan line remains outside the polygon.
The treatment of vertices as intersection points requires considering the angles
between the scan line and the edges that are attached to the corresponding
vertices. Horizontal edges also need a special treatment.

Figure 4.3 A scan line intersecting two vertices of a polygon

Filling and drawing the outlines of polygons are usually viewed as two
different drawing modes. There might be pixels that belong to the interior as
well as to the boundary of the polygon at the same time, especially when the
polygon is drawn with thick lines. Antialiasing can also lead to points that
belong to the interior and the boundary of the polygon. In order to avoid gaps
at the boundary when a polygon should be filled and its boundary should be
drawn as well, antialiasing must be applied to the outer part of the edges but
not to their inner parts. Polygons with long acute-angled edges might introduce



90 4. Areas, text and colours

new aliasing effects when they are filled. The connected interior of the polygon
might be represented as a disconnected set of pixels as the example in figure
4.4 demonstrates.

Figure 4.4 Filling a polygon can lead to aliasing effects

Instead of filling an area with one colour, a texture can also be used for
filling. A texture can be an arbitrary image. Very often, textures are patterns,
for instance in the form of grains of wood. Before an area can be filled with
a texture, the position where the texture should start must be defined. Filling
then means to draw the texture and to apply clipping with respect to the area
that should be filled. Since areas can have an arbitrary shape, clipping might
have to be applied to a nonrectangular region. Sometimes the image defining
the texture is too small to fill the complete area. In this case, the texture must
be used repeatedly like tiles to fill the whole area. Here it is also necessary to
apply clipping with respect to the area to be filled, and also an anchor must
be specified. The anchor defines a starting point from which the texture is laid
like tiles. The brick pattern texture on the left of figure 4.5 is used to fill the
rectangle on the right. The black circle marks the anchor.

Figure 4.5 Filling an area with a texture

When a texture is used repeatedly for filling an area, fissures might be
visible at the places where the texture is repeated. This effect can also be seen



4.2 Buffered images in Java 2D 91

in figure 4.5. The horizontal fissure is more articulated than the vertical one.
This effect can be avoided when a texture is used where the left and right
as well as the upper and lower edges fit together perfectly. There are also
techniques to modify a texture in such a way that fissures will not occur. The
best modification strongly depends on the type of texture. For textures with a
very regular geometric pattern like the bricks in figure 4.5, it might be necessary
to modify the whole geometric pattern. For textures with unstructured patterns
like marble, it is very often sufficient to apply colour interpolation techniques
at the edges as they are described in section 4.7.

4.2 Buffered images in Java 2D

The class BufferedImage in Java 2D is very useful for various purposes in
connection with images. This section demonstrates how images can be loaded,
how they can be used as textures and how images can be saved directly without
the need of screen dumps. The previously mentioned double buffering technique
is also introduced.

A BufferedImage, a subclass of Image, is an image in the memory of
the computer. The usual drawing and filling commands are available for a
BufferedImage, but a BufferedImage can also be drawn on an object of
the class Image. In this way, a BufferedImage can be drawn on another
BufferedImage or on a window on the computer screen.

The constructor

BufferedImage bi = new BufferedImage(width,height,

BufferedImage.TYPE_INT_RGB);

generates a BufferedImage, whose width and height in pixels are given by the
integer values width and height. The constant BufferedImage.TYPE INT RGB

refers to the fact that the standard colour model is used for the BufferedImage.
The method createGraphics() generates a Graphics2D object for the
BufferedImage.

Graphics2D g2dbi = bi.createGraphics();

The Graphics2D object g2dbi can be used in the same way as the
Graphics2D object g2d in the context of drawing on a window on the com-
puter screen. Methods like g2dbi.draw(...) or g2dbi.fill(...) will draw
on the BufferedImage bi instead of the window on the computer screen. Since
bi is only a virtual image in the memory, the results from calling these methods
are not visible directly. The method1

1 The last parameter of this method is set to null here. It is an ImageObserver



92 4. Areas, text and colours

g2d.drawImage(bi,xpos,ypos,null);

allows bi to show in the window on the computer screen. bi will be drawn
within the rectangle defined by the two opposing corners (xpos,ypos) and
(xpos+width,ypos+height). It is also possible to draw bi onto another
BufferedImage. In this case, the Graphics2D object g2d has to be replaced by
the Graphics2D object of the corresponding BufferedImage.

4.2.1 Double buffering in Java 2D

It was mentioned in section 2.9 that it is not recommended to carry out all com-
putations needed for drawing within the paint method. At least for animated
graphics, it is better to exclude the computations from the paint method and
to draw the desired image first on a BufferedImage outside the paint method.
In the paint method only the updated BufferedImage will be drawn on the
screen. In this case, the paint method should be called by the repaint method
in each step.

For the implementation of the double buffering technique, it is necessary
to modify the class that was used so far for drawing images on the screen.
The computations that were so far carried out within the paint method will
be transferred to a new class. The old class for the window on the computer
screen is extended by the following two attributes.

public BufferedImage bi;

public Graphics2D g2dbi;

These two attributes are the BufferedImage which has to be drawn within
the paint method and its corresponding Graphics2D object. The constructor
should make sure that they are initialised with the corresponding instances.
Since the repaint method calls the update method of the window which over-
writes the complete window, and because this can lead to flickering effects, the
update method should be overwritten and the corresponding BufferedImage

bi should be drawn in the update method. When the window is drawn the
first time, the paint method is called, so that the update method should be
called there as well. Altogether, the paint and the update method should be
overwritten in the following way.

which would be needed if the BufferedImage bi to be drawn is not completely
available when the method drawImage is called. This could, for instance, happen
when bi is a larger image that is downloaded from the Internet. Such cases will
not be considered here.



4.2 Buffered images in Java 2D 93

public void paint(Graphics g)

{

update(g);

}

public void update(Graphics g)

{

g2d = (Graphics2D) g;

g2d.drawImage(bi,0,0,null);

}

Because the update method is called repeatedly for animations, its Graphics2D
object g2d is defined as an attribute of the class, so that it is not necessary to
generate it each time. This implementation and further details can be found
in the file BufferedImageDrawer.java, which can be used as a generic class
for the double buffering technique. The image sequence to be drawn is com-
puted outside this class. The clock, already known from section 2.10, will serve
as an example. All calculations for drawing the clock now take place in the
class DoubleBufferingClockExample.java. Since the paint method of the
BufferedImageDrawer will be called in short time intervals again and again,
this class is implemented as an extension of the Java class TimerTask. Any sub-
class of TimerTask must have a run method. This method is called repeatedly
with fixed time intervals in between. The run method contains the same com-
mands that are already known from the for-loop of the old paint method of
the class NonSynchronizedClock for the clock without double buffering. Only
the following changes are necessary.

– Instead of the Graphics2D object of the paint method of the window, the
Graphics2D object of the corresponding BufferedImage bi is used.

– Instead of overwriting the image, i.e., the BufferedImage bi, by a white
rectangle each time, before the image is updated, another BufferedImage

is used as a background image. Therefore, this background image is drawn
each time on bi, before the updated clock itself is drawn. The background
image also contains a fixed rectangular frame around the whole scene that
will not change during the animation.

– At the end of the run method the repaint method of the
BufferedImageDrawer is called.

The initialisations take place in the main method and in the constructor of
DoubleBufferingClockExample. The run method, which computes the image
sequence and initiates the drawing of the updated image on the screen each
time, is called repeatedly by



94 4. Areas, text and colours

Timer t = new Timer();

t.scheduleAtFixedRate(dbce,0,delay);

dbce is an instance of the class DoubleBufferingClockExample and delay

specifies after how many milliseconds the image should be updated. The second
value defines the waiting time until the run method is called the first time, i.e.,
the time until the animation is started.

4.2.2 Loading and saving of images with Java 2D

For loading an image in JPEG format, only the method

Image theImage =

new javax.swing.ImageIcon("file.jpg").getImage();

is required. The loaded image can then be drawn on the window on the
computer screen or on another BufferedImage by the method drawImage

that was already explained for the class BufferedImage. The file
ImageLoadingExample.java demonstrates how a JPEG image can be loaded
and displayed in a window.

In order to save an image in JPEG format which was generated using Java
2D, the following steps are needed. First, a BufferedImage is generated and the
desired image is drawn on this BufferedImage. After drawing is completed, the
image can be saved by the commands within the try section of the following
code excerpt.

theImage = new BufferedImage(width,height,

BufferedImage.TYPE_INT_RGB);

Graphics2D g2dImage = theImage.createGraphics();

//Drawing the desired image

g2dImage.draw(...);

...

//Saving the image

try

{

FileOutputStream fos = new FileOutputStream("file.jpg");

JPEGImageEncoder jie = JPEGCodec.createJPEGEncoder(fos);

jie.encode(theImage);

}

catch (Exception e)

{

System.out.println(e);

}



4.2 Buffered images in Java 2D 95

A complete example for saving a self-generated image can be found in the file
ImageSavingExample.java.

4.2.3 Textures in Java 2D

Images in the form of JPEG files can be loaded and directly drawn in the
corresponding window. But they can also be used as textures to fill areas or
shapes. For filling an area by a texture in Java 2D without repetition of the
texture, clipping can be applied with respect to the corresponding Shape. First,
the JPEG image must be loaded into an instance theImage of the class Image
and a Shape s has to be defined which should be filled with the texture. It is
recommended to first remember the old clipping area which can be obtained
by the method getClip. Then the method setClip can be used to define the
corresponding Shape as the new clipping area. After the texture has been drawn
with the drawImage method, the old clipping area should be reactivated with
the setClip method.

Shape clipShape = g2d.getClip();

g2d.setClip(s);

g2d.drawImage(theImage,50,50,null);

g2d.setClip(clipShape);

If the texture is too small or positioned wrongly, it might not fill the area
defined by the Shape s completely.

In order to fill an area repeatedly with a texture, the class TexturePaint

can be used. The texture must be available as a BufferedImage buffImage. A
rectangle in the constructor of TexturePaint defines the position and the size
of a single copy of the texture. So this rectangle defines how the texture is laid
like tiles on the plane. The texture will become visible when a given Shape s

is filled with it. This corresponds to opening a window with the corresponding
shape through which the texture tiles can be seen.

TexturePaint tp =

new TexturePaint(buffImage,

new Rectangle(0,0,buffImage.getWidth(),

buffImage.getHeight()));

g2d.setPaint(tp);

g2d.fill(s);

The file Texture2DExample.java demonstrates the use of the two techniques
for displaying textures.



96 4. Areas, text and colours

4.3 Displaying text

Printing and displaying text is a field with a long tradition with roots in ty-
pography and printing technology. The details of letter and text representation
cannot be covered within this book, so that the following two sections discuss
only a very small selection of problems within this complex topic. General in-
formation about letter fonts and their representation can, for instance, be found
in [30].

For displaying text, a font must be chosen which will be used for the symbols
and characters to be printed. The size of a font is given in the unit pt (points)
with 1 pt ≈ 0.3515 mm. A font contains more than just the specification of its
size and the descriptions of the shapes of its letters or symbols. For each symbol
it is necessary to specify the baseline. Not all letters are above the baseline.
Letters like “g” or “p” reach below the baseline. Even this information is not
sufficient, since symbols in the font can also have different widths. In this case,
the font is called proportional font. In a proportional font each symbol or letter
has its own width and even the distance between letters is not constant but
varies with the combination of the letters. Certain pairs of letters are printed
closer together than others. Kerning2 refers to this concept. Ligatures even
construct a new connected symbol for certain pairs of letters. Double-f as in
“coffee” or the combination “fi” as in “first” are subject to ligatures.3 Kerning
and ligatures depend on the chosen font.

Another important aspect of fonts are modifications like boldface or italic

fonts.
Fonts can be stored in terms of raster or vector graphics. The advantage

of raster graphics is that no additional rendering is needed when symbols of
the font have to be drawn. The corresponding pixels are directly given by the
defined raster image of the symbol. The disadvantage of storing fonts in terms
of raster graphics is that individual raster graphics are needed for different
sizes of the same font and for the different styles (normal, boldface, italic).
As already mentioned in section 2.1, it is not recommended to try to generate
fonts in different sizes by applying scaling to the raster graphics images. There
are techniques for deriving raster graphics from a normal font for the boldface
and the italic style of the font. For the italic style, pixel lines are shifted to the
right. The higher the pixel line in the symbol, the more it is shifted to the right.
For boldface printing, the whole symbol is copied and shifted one pixel to the
right. Figure 4.6 illustrates this technique. The letter on the left is defined in
a relatively rough pixel raster. The letter in the middle is the resulting italic
2 Compare the word “Van”—“Van” with and without kerning.
3 Compare the following words printed with and without ligature: coffee—coffee,

first—first.



4.4 Text in Java 2D 97

version, the letter on the right the boldface printing.

Figure 4.6 Italic and boldface printing for letters given in raster graphics

These techniques for italic and boldface fonts and scaling of fonts for differ-
ent sizes lead to unacceptable results, so that fonts are usually stored in terms
of vector graphics. Nevertheless, rendering fonts in an optimal way remains a
nontrivial problem [31].

4.4 Text in Java 2D

The method

g2d.drawString("text",posx,posy);

in Java 2D draws a string—here the string “text”—at the position (xpos,ypos).
A default font is used to draw the string. Java 2D offers a variety of methods
to choose and modify fonts. Since the focus of this book is not on text repre-
sentation, only very few methods will be introduced here. A new font can be
chosen by the command

Font f = new Font("type",Font.STYLE,size);

The name of the font is specified by the string “type”. A list of fonts available
on the specific computer is obtained with the following lines of code.

Font[] fl =

GraphicsEnvironment.getLocalGraphicsEnvironment(

).getAllFonts();

for (int i=0; i<fl.length; i++)

{

System.out.println(fl[i].getName());

}



98 4. Areas, text and colours

All names appearing in this list can be used for type. Arial, Times New

Roman, sansserif are typical standard fonts. Possible values STYLE for style
are PLAIN (normal), ITALIC (italic), BOLD (boldface) and ITALIC | BOLD

(italic and boldface). The integer value size specifies the size of the font in the
unit pt, not in pixels. After calling the method g2d.setFont(f), drawString
will use the font f.

In addition to the above-mentioned parameters, a font can also be modified
in Java 2D by applying transformations to the font.

Font transformedFont = f.deriveFont(affTrans);

f is an arbitrary Font and affTrans is an affine transformation of the class
AffineTransform. This technique can be applied in connection with the trans-
formation yUp from section 2.8. yUp was used to make the y-axis of a window
pointing upwards. This involves a reflection which is applied to all drawn ob-
jects, unfortunately also to strings. As a result, the drawString method will
produce text which is written upside down. This problem can be solved by
transforming the desired font in such a way that its letters would occur upside
down. Drawing the upside down symbols again upside down, will let them oc-
cur in normal readable fashion. The suitable transformation affTrans to be
applied to the font should carry out a reflection with respect to the x-axis and
afterwards a translation in the y-direction by the height of the font. Otherwise
all letters would occur below instead of above their intended line. This tech-
nique was, for instance, applied in the file RotationExample.java to make
sure that the shown coordinate system has the correct orientation.

It is also possible to apply transformations to single symbols of a font only.
One can define a String s that contains the symbols to be transformed. Then
a GlyphVector is derived from the string.

FontRenderContext frc = g2d.getFontRenderContext();

GlyphVector gv = f.createGlyphVector(frc,s);

The GlyphVector contains the characters of the String s. f is the Font to
be used for the symbols in s. The method gv.getNumGlyphs() returns the
number of characters in the GlyphVector and in the String.

Point2D p = gv.getGlyphPosition(i);

yields the coordinates of the ith character. The method

Shape glyph = gv.getGlyphOutline(i);

transforms the ith character into a Shape object. The desired AffineTransform

at can then be applied to this Shape object to modify and to position it.

Shape transGlyph = at.createTransformedShape(glyph);



4.5 Grey images and intensities 99

Finally, the transformed character transfGlyph can be drawn by the method
g2d.fill(transfGlyph). The file TextExample.java demonstrates the use of
these methods.

4.5 Grey images and intensities

So far it was always assumed that a pixel is coloured black or white. The
only exception was made in the context of antialiasing techniques for draw-
ing smooth boundaries of curves to reduce the staircasing effect. The human
perception of light intensities is mainly a relative one. A 60-watt light bulb is
much brighter in comparison to a 20-watt light bulb than a 100-watt light bulb
in comparison to a 60-watt light bulb. In both cases the difference is 40 watts.
Nevertheless, the 60 watts is three times as bright as 20 watts, whereas 100
watts is not even twice as bright as 60 watts.

For grey-scale and colour images only a finite number of intensity levels
can be used. The intensity levels should be chosen according to the human
perception. This means the intensity levels should not increase linearly, but
exponentially. Starting from the lowest intensity (black for grey-values) I0, the
intensities should be chosen according to the rule

I0 = I0, I1 = rI0, I2 = rI1 = r2I0, . . .

up to a maximum intensity In = rnI0 where r > 1 is a constant. The average
human vision system is able to distinguish between grey-levels when they differ
by at least 1%, i.e., if r > 1.01 holds [50]. Choosing R = 1.01 and assuming
a normalised maximum intensity of In = 1 and minimum intensity I0 for a
specific output device, from 1.01nI0 ≤ 1 it follows that

n ≤
ln
(

1
I0

)

ln(1.01)

grey-levels are sufficient for the representation on the corresponding output
device. A finer resolution of the intensity levels would not make a visible differ-
ence. Based on these considerations, Table 4.1 contains the maximum number
of intensity levels for different output media.

If an output device allows only binary pixels, for instance a black-and-
white laser printer, different intensity levels can be represented for the price of
a lower resolution. The technique is called halftoning and it combines binary
pixels to larger pixels. For instance, if 2×2 smaller pixels form a larger pixel, five
intensity levels are expressible. Combining 3×3 smaller pixels to form a larger
pixel allows 10 different intensity levels and the combination of n×n pixels leads



100 4. Areas, text and colours

Medium I0 (ca.) Max. no. of grey-levels

monitor 0.005-0.025 372-533
newspaper 0.1 232

photo 0.01 464
slide 0.001 695

Table 4.1 Intensity levels for different output media (according to [10])

to n2 + 1 possible intensity levels. Of course, the resolution is getting worse,
the larger the combined pixels are chosen. The coarsened resolution must still
be high enough so that the pixel raster is not immediately visible.

The different intensity levels are achieved by drawing a different number
of smaller pixels in the corresponding combined larger pixel. If a larger pixel
should be drawn with intensity k

n2 , k out of the n×n smaller pixels will be
drawn. The k pixels should be chosen in such a way that they are neighbouring
pixels and they do not form a regular pattern like a line. Otherwise, this might
introduce new visual artifacts like stripes in an area of identical intensity values.

Figure 4.7 shows the representation of five grey-levels by a matrix of 2×2
pixels and below the representation of ten grey-levels based on a 3×3 pixel
matrix.

Figure 4.7 Grey-level representation based on halftoning for a 2×2 (top line)
and on 3×3 pixel matrices (3 bottom lines)



4.6 Colour models 101

Dither matrices provide a simple way to define which pixels in an n×n

matrix should be set to represent different intensity levels. For the intensity
level k

n2 , those pixels should be chosen whose corresponding entries in the
dither matrix are greater than k. The five pixel matrices from the first line in
figure 4.7 are encoded by the dither matrix D2, the ten 3×3 pixel matrices by
the dither matrix D3 where

D2 =
(

0 2
3 1

)
, D3 =

⎛
⎝

6 8 4
1 0 3
5 2 7

⎞
⎠ .

Halftoning can also be applied to nonbinary intensity levels in order to refine
the intensity levels further. For instance, using 2×2 pixel matrices where each
pixel can have four different intensity levels yields 13 possible intensity levels:

(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 1
1 1

)
,

(
2 1
1 1

)
,

(
2 1
1 2

)
,

(
2 2
1 2

)
,

(
2 2
2 2

)
,

(
3 2
2 2

)
,

(
3 2
2 3

)
,

(
3 3
2 3

)
,

(
3 3
3 3

)
.

For instance, the first matrix in the second line represents the fifth intensity
level.4 For this intensity level, one of the four pixels should be drawn with the
grey-level 2, the other three with the grey-level 1.

4.6 Colour models

The human eye can see light starting with a wavelength of about 300-400 nm
(violet) up to roughly 700-800 nm (red). From the theoretical point of view, a
colour is defined by the distribution of the intensities over the visible spectrum
of the light. For colour perception, the human eye has three different types of
receptors. Each receptor type is more sensitive to a certain smaller range of the
spectrum. They are called red-, green- and blue-receptors. The blue-receptors
are in general less sensitive than the other two. The main characteristics of a
colour for human perception are the following ones.
4 The lowest intensity level is 0.



102 4. Areas, text and colours

– hue corresponding to the dominant wavelength in the spectrum of the colour,

– saturation or purity which is high when the spectrum consists of a narrow
peak at the dominant wavelength, and which is low for a flatter spectrum,
and

– intensity or lightness depending on the energy of the spectrum. The higher
the energy of the single frequencies, the higher is the intensity.

Figure 4.8 shows the distribution of energies for the frequencies or wavelengths
for a spectrum with a high and a low saturation. The perceived intensity de-
pends on the average height of the spectrum.

	 
 
 � 
 

� �  � � � � � � � � � � � �

� � � � � �

	 
 
 � 
 

� �  � � � � � � � � � � � �

� � � � � �

Figure 4.8 Distribution of the energies over the wavelengths for high (left)
and low (right) saturation

Perception of colours is based on three components or receptors in the
human eye, and also the intuitive understanding of colours is based on three
components, hue, saturation and lightness. Therefore, most colour models in
computer graphics also use three components to represent colours leading to a
three-dimensional colour space.

There are additive and subtractive colour models. In additive colour models
the colour is determined by a superposition of light of different colours. Colours
are aggregated in an additive fashion, when the background itself is black or
dark. A computer monitor is a typical example where additive colour models
are used. The addition of all colours yields white. The situation is different for
printers. Colours are applied to a white background (paper). Mixing all colours
will yield black in this case.

The most common colour model in computer graphics is the RGB model.
Most of the monitors also work with the RGB model. The RGB model is an
additive model and each colour is composed of the three primary colours red,
green and blue. Therefore, three values R,G,B ∈ [0, 1] are sufficient to specify
a colour. The minimum intensity is zero, one is the maximum intensity for each
of the primary colours. (0, 0, 0) corresponds to black, (1, 1, 1) is white, (x, x, x)
defines a lighter or darker grey, depending on the choice of x, (1, 0, 0) encodes



4.6 Colour models 103

red, (0, 1, 0) green and (0, 0, 1) blue. Usually, for the coding of the intensity of
a colour, one byte is used, so that each of the primary colours has 256 different
levels of intensity. Instead of three floating point values between zero and one,
it is therefore also very common to specify three integer values between 0 and
255 for the intensities in order to define a colour.

Not every colour can be represented exactly as an additive combination of
the three primary colours red, green and blue. For this reason, the Commission
Internationale de l’Éclairage (CIE) introduced a model with three artificial
colours X, Y and Z which can represent any other colour. However, finding
suitable combinations of the three artificial colours to model a desired colour
is not very intuitive, so that the CIEXYZ model is seldom used.

The subtractive CMY model is the dual to the RGB model and is used for
printers and plotters. The primary colours are cyan, magenta and yellow. The
transformation from an RGB colour to its CMY representation is given by the
equation ⎛

⎝
C

M

Y

⎞
⎠ = 1 −

⎛
⎝

R

G

B

⎞
⎠ .

� � 

� � � � �

� � � �
�
� �
� �

� � � � � �

� � � �

� � � � � � �

�
�
 � �

Figure 4.9 RGB and CMY model

Figure 4.9 shows the colour cube. Each vertex represents a specific colour.
For the RGB model, the origin of the coordinate system is the lower left rear
vertex at the colour black. The origin of the coordinate system for the CMY
model is in the upper right front vertex at the colour white. The diagonal
between these vertices contains all greytones.

Today, most printers do not use the CMY model. They are based on four-
colour printing with the CMYK model where the fourth additional colour K is



104 4. Areas, text and colours

black.5 In this direct way, black is better represented than by mixing the three
other colours. The transformation from the CMY model to the CMYK model
is given by the following equations.

K := min{C,M, Y },
C := C − K,

M := M − K,

Y := Y − K.

With these equations, at least one of the four values C, Y,M,K will always be
equal to zero.

The YIQ model is not based on three primary colours as in the RGB and
the CMY model, but it uses the three components luminance Y and two values
I and Q characterising the chromaticity, the type of colour. This colour model
is also used in the American NTSC television norm. When a coloured represen-
tation has to be transformed into a grey-scale representation, for instance for
black-and-white TV, the Y -component alone defines the corresponding grey-
scale intensity. The transformation from the RGB model to the YIQ model is
given by the following matrix.

⎛
⎝

Y

I

Q

⎞
⎠ =

⎛
⎝

0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311

⎞
⎠ ·

⎛
⎝

R

G

B

⎞
⎠ .

The property that the value Y determines the luminance or intensity directly
is also helpful when computer monitors with different brightness should be
adjusted, so that the colours they show are more or less the same for identical
RGB values. It is much easier to adjust only the Y -value of the YIQ model
than to adjust the three values R, G and B at the same time.

Like the YIQ model, the HSV model is not based on three elementary
colours, but on the three parameters hue, saturation and value (intensity). The
HSV model represents the colour space as a pyramid standing on its tip. The
tip corresponds to the colour black. The hue H is given by an angle around the
vertical axis. Principal colours are represented by angles, starting with red at
0◦, having yellow at 60◦, green at 120◦, blue at 240◦ and purple at 300◦. The
saturation S of a colour ranges from zero along the V -axis to one at the sides.
The value V encodes lightness. The higher V is, the lighter the colour. Figure
4.10 illustrates the HSV model.

The HLS model is based on similar ideas as the HSV model. The hue is
defined in the same way as in the HSV model. The lightness is defined by a
5 Since the letter B is already used for blue in the RGB model, K is used for black,

standing for key colour.



4.6 Colour models 105

� � 
 � � � � �

�

�

� � � � � � � � �  � �

 � 


 � ! �

" � � �

# � � � � $ � � � % �

& � '

( � � � � � �

Figure 4.10 HSV model

value between zero and one. The saturation depends on the distance to the
middle axis representing the grey-values. The saturation is also between zero
and one. Figure 4.11 shows two versions of the HLS model. Sometimes, the
HLS model is interpreted as a cylinder as in the left-hand side of the figure.
But sometimes the double cone on the right is preferred for the HLS model. The
double cone reflects the fact that it does not make sense to speak of saturation
for the colours black and white, when grey-values are already characterised by
the luminance value.

!

"

#

� �  � �

$ � � � �

� � � � � � �  %

& � � �

% � � � � � �  � �

"

!

#

Figure 4.11 HLS model



106 4. Areas, text and colours

Algorithms to transform colours from the HSV and the HLS model to the
RGB model and back can be found in [18]. The HSV and the HLS model count
as perception-oriented colour models since they reflect the intuitive perception
of colours better. Specifying the parameters of a desired colour is easier with
perception-oriented models than with models like RGB or CMY. For the latter
models, graphic programs very often support the specification of colours by
providing a colour palette.

Like the HSV and the HLS model, the CNS model is another perception-
oriented colour model based on the specification of the type of the colour, its
saturation and its lightness. The CNS model does not use numbers for these
parameters but words. For the type of the colour, values like purple, red, orange,
brown, yellow, green, blue are available including mixtures like yellowish green,
green-yellow or greenish yellow. The lightness can be defined as one of the
values very dark, dark, medium, light and very light. The saturation can be
greyish, moderate, strong or vivid. The number of possible combinations of
these expressions is much smaller than the number of colours expressible with
the RGB model. But the description of the colour is much more intuitive.

4.6.1 Colours in Java 2D

With the exception of the CNS model, Java 2D supports all colour models
mentioned in the previous section. Because most applications are based on the
RGB model, within this book only this model will be used. The class Color

allows to define colours based on RGB values using the constructor

Color col = new Color(r,g,b);

The values r,g,b are either float-values between zero and one, specifying
the red, green and blue intensity, respectively, or they can be integer values
between 0 and 255, defining the corresponding intensity levels for the colours.
The class Color also provides some constants for standard colours, for instance
Color.red or Color.yellow. Another constructor needs only a single integer
parameter. From the byte coding of these integer values the corresponding byte
values, yielding numbers between 0 and 255, for the three colours red, green
and blue are derived. Integers are coded by four bytes. Colours can also use
the fourth byte as the so-called alpha-value which defines how transparent the
colour is.

When the method

g2d.setPaint(col);

is called, everything drawn with methods of the Graphics2D object g2d will be
drawn in the colour col until setPaint is called again with another colour.



4.7 Colour interpolation 107

4.7 Colour interpolation

Most of the colour models are based on a three-dimensional colour space in
which colours are defined by three components. Within the RGB model a colour
can be associated with a vector (r, g, b) ∈ [0, 1]3. This interpretation of colours
also allows the definition of convex combinations of colours. One application of
such convex combinations are colour gradients. If an area should not be filled
with a homogeneous colour but with changing colour, this can be achieved by
a colour gradient. Two colours (r0, g0, b0) and (r1, g1, b1) must be defined for
two points p0 and p1. The colour (r0, g0, b0) is used in the point p0, the colour
(r1, g1, b1) in the point p1. For points on the connecting line between p0 and
p1, the corresponding convex combination of the colours is used. For the point
p = (1−α)p1+αp0 (where α ∈ [0, 1]) the colour (1−α)·(r0, g0, b0)+α·(r1, g1, b1)
is used.

Colour interpolation can also help to amend textures that are used repeat-
edly to fill an area. As mentioned in section 4.1, fissures as in a tile pattern
might occur at the boundaries of the texture. Image processing techniques in-
clude smoothing operators [46] to let edges appear less sharp. Simple smoothing
operators are characterised by a weight matrix that defines how the colour val-
ues of pixels should be modified. For instance, the weight matrix

0.1 0.1 0.1
0.1 0.2 0.1
0.1 0.1 0.1

means that the smoothing operator assigns a new colour to a pixel in the
following way. The new colour is the weighted sum of the pixel’s colour with
weight 0.2 and the colours of its eight neighbour pixels, each one with a weight
of 0.1. The smoothing operator is applied to each pixel. Depending on how
strong the smoothing effect should be, the weights can be changed, for instance
all weights could have the same value 1/9 to achieve a stronger smoothing
effect. The weight matrix can also be enlarged to take not only the colours of
the direct neighbours of a pixel into account. For smooth transitions at the
boundaries of a texture, the smoothing operator must be applied to pixels at
the edges of the texture. For this purpose, the pixels on the right edge should
be considered as left neighbours of the pixels at the left edge and vice versa.
The same applies to the pixels at the lower and upper edge.

Interpolators were already discussed in section 2.11 in the context of con-
tinuous movements of objects. These interpolators were based on geometric
transformations. One application for such animated graphics was the trans-
formation of one geometric object into another one by convex combinations
of transformations. Another interesting example is the transformation of one



108 4. Areas, text and colours

image to another which will be discussed here in more detail. The simplest way
to transform two images of the same size into each other is to apply convex com-
binations of the intensity values of the corresponding intensities for red, green
and blue at every pixel. This will lead to a continuous blending of the two im-
ages. While one image fades away, the other one appears. More realistic effects
can be achieved, when also the geometric shapes in the two images are trans-
formed properly into each other. In this case, geometric transformations are
also needed in addition to colour interpolation. A common technique that does
more than just blending the two images is based on a triangulation of the two
images. A triangulation is a partition using triangles. The two triangulations
must use the same number of vertices and the triangles in the triangulations
must be chosen accordingly. This means that if the points pi, pj and pk form
a triangle of the triangulation in the first image, then the corresponding points
in the second image must also form a triangle of the triangulation of the second
image. It is not necessary that points which correspond to each other in the
two images have the same coordinates.

Figure 4.12 Compatible triangulations of two images

Each triangle of a triangulation determines a section of the corresponding
image. Such a section has a corresponding section in the other image although
the two triangles might be different in size and shape. Figure 4.12 illustrates this
situation. On the left-hand side, two faces are shown that should be transformed
into each other. The right part of the figure shows compatible triangulations of
the two images. Each triangle is responsible for a certain section in the images.
For instance, the upper triangle includes the forehead of the corresponding face,
the lower triangle the chin. It should be noted that the number of points for
the triangulation is identical for both images, but the points do not have the
same positions.

In order to transform one image into the other step by step with interme-
diate images, first the triangulation of the corresponding intermediate image
must be determined. The points for the triangulation result from convex com-
binations of the associated points in the two images. The triangles for the



4.7 Colour interpolation 109

intermediate image are defined in the same way as for the other two images. If
the points pi, pj and pk form a triangle in the first image and the associated
points p′

i, p′
j and p′

k form a triangle in the second image, then the points

(1 − α)p� + αp′
�, � ∈ {i, j, k}

form a triangle in the intermediate image.
Within one triangle, the colour for the pixels is determined by colour inter-

polation. Before the colour of a pixel in the intermediate image can be com-
puted, the triangle in which the pixel lies must be determined. If the pixel
belongs to more than one triangle, in case it lies on an edge or a vertex of
a triangle, then any of these triangles can be chosen. The task is to find out
whether a pixel q lies within a triangle defined by the points p1,p2,p3. As
long as the triangle is not degenerated to a line or a point, there is exactly one
representation of q in the form

q = α1 · p1 + α2 · p2 + α3 · p3 (4.1)

where
α1 + α2 + α3 = 1. (4.2)

This is a system of linear equations with three variables α1, α2, α3 and three
equations. The vector equation (4.1) contributes two equations, one for the x-
and one for the y-coordinate. The third equation is the constraint (4.2). The
point q lies within the triangle defined by the points p1,p2,p3 if and only if
0 ≤ α1, α2, α3 ≤ 1 holds, i.e., if q can be written as a convex combination of
p1,p2,p3.

After the triangle in which the considered pixel lies and the corresponding
values α1, α2, α3 have been determined, the colour of the pixel is calculated as
a convex combination of the colours of the corresponding pixels in the first and
the second image. The triangle in the intermediate image is associated to one
triangle in the first and the second image. For each of these two triangles the
convex combination of its vertices with weights α1, α2, α3 specifies the point
corresponding to the considered pixel in the intermediate image. Rounding
might be required to obtain a pixel from the point coordinates. The colour of
the pixel in the intermediate image is a convex combination of the colours of
these two pixels in the first and the second image.

Figure 4.13 illustrates this principle. The triangle in the middle belongs to
the intermediate image in which the pixel lies for which the colour should be
determined. The left and right triangle are the corresponding triangles in the
first and the second image. The pixels in the three triangles originate from the
same convex combination of the vertices in the corresponding triangle.



110 4. Areas, text and colours

Figure 4.13 Computation of the interpolated colour of a pixel

4.8 Colour interpolation with Java 2D

The Java 2D class GradientPaint provides a simple way for colour interpo-
lation or colour gradients. A colour gradient between the two points (x0,y0)

and (x1,y1) can be defined by

GradientPaint gradPaint =

new GradientPaint(x0,y0,colour0,x1,y1,colour1, repeat);

which is activated by

g2d.setPaint(gradPaint);

The coordinates of the points should be float values. The colour0 is used in
the point (x0,y0), the colour colour1 in point (x1,y1). Points on the line
connecting these two points obtain their colour from the corresponding con-
vex combination of colour0 and colour1. The same colour gradient is applied
to lines parallel to the connecting line between (x0,y0) and (x1,y1). The
Boolean value repeat specifies whether the colour gradient should be repeated
before (x0,y0) and after (x1,y1). If false is chosen for repeat, then pixels be-
fore (x0,y0) are drawn with the colour colour0 and pixels behind (x1,y1) are
drawn with the colour colour1. In case of true, the colour gradient is repeated
again and again. Behind the point (x1,y1) the interpolation is continued from
colour colour1 back to colour colour0, then again to colour1 etc. The point
(x0,y0) is treated analogously. The file GradientPaintExample.java demon-
strates the use of GradientPaint.

Methods for colour gradients are provided in the class GradientPaint, but
more general colour interpolation techniques as described at the end of section
4.7 cannot be implemented by a simple GradientPaint. For these colour in-
terpolation techniques, it is necessary to read and set the colour of pixels in
an image. For this purpose, the following methods are available in Java 2D.
The colour of the pixel with coordinates (x, y) in the BufferedImage bi can
be obtained by



4.8 Colour interpolation with Java 2D 111

int rgbValue = bi.getRGB(x,y);

Color pixelColour = new Color(rgbValue);

The method getRGB(x,y) returns the colour as a single integer value in which
each colour of the primary colours red, green and blue is encoded by one byte.
In order to access the corresponding values red, green and blue directly, a new
colour instance of the Color is generated from which the RGB-values can be
obtained by

int red = pixelColour.getRed();

int green = pixelColour.getGreen();

int blue = pixelColour.getBlue();

as integer values in the range from 0 to 255.
For interpolating or mixing the colours of a set of pixels, the colour of each

pixel must be determined as described above. Then the corresponding values
for red, green and blue can be combined as a suitable convex combination,
depending on how the pixel colours should be interpolated or mixed. If rMix,
gMix and bMix denote the interpolated values for the three colours, then the
pixel with coordinates (x, y) in the BufferedImage mixedBi obtains this colour
by

Color mixedColour = new Color(rMix, gMix, bMix);

mixedBi.setRGB(x,y,pixelColour.getRGB());

The method setRGB requires the colour encoded in the form of an integer value,
not as an instance of the class Color.

The class MorphingCandS.java uses this technique for colour interpola-
tion in order to transform one image into another one step by step. For
both images suitable compatible triangulations must be defined in advance.
The interpolation between the two images, as described at the end of section
4.7 and as illustrated in figure 4.13 on page 110, is carried out in the class
TriangulatedImage.java.



112 4. Areas, text and colours

4.9 Exercises

Exercise 4.1

Mark the interior of the polygon shown below according to the odd parity rule.

Exercise 4.2

Rewrite the program ConvexCombTransforms.java by applying double buffer-
ing.

Exercise 4.3

Create an image with Java 2D and store it as a JPEG file. Use the stored image
as a texture for filling an ellipse.

Exercise 4.4

Define an algorithm for filling an annulus with a nonlinear colour gradient.
Assume that two colours at 0◦ and 180◦ are specified and the interpolation
between these two colours shall take place along the arc of the circle. Use polar
coordinates to describe the points in the annulus. Implement your algorithm
for this colour interpolation technique in Java 2D.



5
Basic principles of three-dimensional

graphics

This chapter and all following ones are devoted to methods and problems in
connection with the representation of three-dimensional scenes. Before the top-
ics are discussed in more detail, the following section provides a short overview
on which tasks and problems occur on the way from the real world or an ab-
stract 3D model to the representation on the computer screen or another output
device.

5.1 From a 3D world to a model

Before anything can be drawn on the computer screen, a three-dimensional
virtual world of objects must be defined and stored in the computer. The same
principle applies even to two-dimensional virtual worlds. Geometric objects
like rectangles, circles or polygons must be specified before they can be drawn.
The three-dimensional virtual world can contain much more than what will
be displayed in one moment on the computer screen. The virtual world might
consist of a building or even a city, perhaps a larger landscape, but the viewer
will only see a small part of this virtual world, for instance only a single room
in a building. Of course, the viewer can move around in the virtual world and
explore it. But in the above examples he will never see the whole virtual world
in one single image.



114 5. Basic principles of three-dimensional graphics

The first step consists in modelling the objects of the virtual world. The
description of a three-dimensional object must contain information about its
geometry but also properties of its surface. What is the object’s colour? Is the
surface shiny or dull?

There are two different approaches for modelling the geometry of objects.
In many applications of computer graphics, the objects do not have existing
counterparts in reality. This is the case for fantasy worlds of computer games
as well as for models of concept cars or possible future buildings that have not
been built yet and might or might not be built in the future. In these cases, the
designer or programmer of the virtual world needs methods for constructing
and modelling three-dimensional virtual objects. Even if existing objects are to
be modelled, such construction and modelling techniques might be necessary.
For existing buildings or furniture some principal measurements like height or
width might be available. But such information is by far not enough to generate
a realistic representation of the objects. The objects might, for instance, have
rounded corners.

In other cases, detailed measurements of the geometric structure of objects
might be available. 3D laser scanners provide detailed information about an
object’s surface geometry. However, the raw data coming from 3D laser scanners
are not suitable for a direct use in virtual worlds of computer graphics. They
are usually processed further automatically with additional manual corrections
to yield simpler surface models. The same applies to techniques for measuring
inner geometric structures. Steel girders in buildings or bridges are an example
where such techniques are applied. Another important and quickly developing
application field in this context is medical informatics. X-ray, ultrasonic and
tomography techniques provide information about skeletal and tissue structures
from which 3D models of bones and organs can be derived.

The first step in computer graphics is therefore the creation of a computer
model of the virtual world, either manually by a designer or programmer, or
automatically derived from measurements. To represent a specific part of this
virtual world, the viewer’s position and direction of view in the virtual world
must be defined. This also includes his field of view, the viewing angle and the
distance he can see. In this way, a three-dimensional clipping region is defined
so that only objects within the region need to be considered for rendering.

However, so far the image will remain black when no lights are added to the
virtual world. The sources of light, their locations as well as their characteristics
must be defined. Characteristics are for instance the colour of the light or
whether the light shines only in one direction like a spotlight. Only with this
information is it possible to compute how much light a single object receives,
whether it is in the shadow or in the bright light.



5.2 Geometric transformations 115

Determining which objects are visible and which objects are hidden by
others within the clipping region is another problem.

Finally, additional special effects might be needed in the scene like fog,
smoke or reflections.

5.2 Geometric transformations

As in the two-dimensional case, geometric transformations also play a crucial
role in three-dimensional computer graphics.

Three-dimensional coordinates in this book will always refer to a right-

handed coordinate system. Using the thumb of the right hand for the x-axis,
the forefinger for the y-axis and the middle finger for the z-axis, one obtains
the correct orientation of the coordinate system. In a right-handed coordinate
system the x-axis is mapped to the y-axis by a positive, i.e., anticlockwise,
rotation of 90◦ around the z-axis. The y-axis is mapped by a positive rotation
of 90◦ around the x-axis to the z-axis and the z-axis is transformed to the
x-axis by a positive rotation of 90◦ around the y-axis to the x-axis. Figure 5.1
illustrates a right-handed coordinate system.

x

y

z

Figure 5.1 A right-handed coordinate system

A rotation by a positive angle around an oriented axis in the three-
dimensional space refers to an anticlockwise rotation for a viewer to whom
the axis points. This definition of positive rotations is consistent with rotations
in the two-dimensional x/y-plane around the origin of the coordinate system
when it is interpreted as a rotation around the z-axis. In order to determine
whether a rotation is positive or negative, one can also apply the right-hand

rule. When the thumb of the right hand points in the same direction as the



116 5. Basic principles of three-dimensional graphics

rotation axis and the other fingers form a fist, then the bent fingers indicate
the direction of positive rotation.

In section 2.6 homogeneous coordinates were introduced in order to be able
to express all affine transformations in the plane in terms of matrix multi-
plications. The same principle of extending the coordinates by an additional
dimension is also applied in the case of points and affine transformations in
the three-dimensional space. A point in the three-dimensional space R

3 is rep-
resented by four coordinates (x̃, ỹ, z̃, w) where w �= 0. The point (x̃, ỹ, z̃, w)
in homogeneous coordinates stands for the point

(
x̃
w , ỹ

w , z̃
w

)
∈ R

3 in Carte-

sian coordinates. The point (x, y, z) ∈ R
3 can be represented in homogeneous

coordinates in the form (x, y, z, 1). This is, however, not the only way. Any
representation in the form (x · w, y · w, z · w, w) with w �= 0 encodes the same
point as well.

A translation by the vector (dx, dy, dz)� can be written as a matrix multi-
plication in homogeneous coordinates in the following way.

⎛
⎜⎜⎝

x′

y′

z′

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x + dx

y + dy

z + dz

1

⎞
⎟⎟⎠ .

The translation matrix is

T (dx, dy, dz) =

⎛
⎜⎜⎝

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

⎞
⎟⎟⎠ .

A scaling by the factors sx, sy, sz is given by
⎛
⎜⎜⎝

x′

y′

z′

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

sx · x
sy · y
sz · z

1

⎞
⎟⎟⎠

with

S(sx, sy, sz) =

⎛
⎜⎜⎝

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎞
⎟⎟⎠

as scaling matrix.
In the two-dimensional case, it was sufficient to consider rotations around

the origin of the coordinate system. By applying suitable transformations



5.2 Geometric transformations 117

in addition, rotations around arbitrary points can be defined. In the three-
dimensional case, instead of a centre point a rotation axis must be specified.
The three elementary rotations in the three-dimensional space are the rota-
tions around the coordinate axes. A rotation around the z-axis by the angle θ

in homogeneous coordinates is given by
⎛
⎜⎜⎝

x′

y′

z′

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠

with the rotation matrix

Rz(θ) =

⎛
⎜⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

This rotation matrix corresponds to the one already known from the two-
dimensional case. It is only extended by the z-dimension. A rotation around
the z-axis leaves the z-coordinates of a point unchanged. The matrices for
rotations around the x- and the y-axis can be obtained from the above matrix
by exchanging the roles of the corresponding axes so that a rotation around
the x-axis by the angle θ is described by the matrix

Rx(θ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎞
⎟⎟⎠

and a rotation around the y-axis by the angle θ by the matrix

Ry(θ) =

⎛
⎜⎜⎝

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

⎞
⎟⎟⎠ .

By combining these three elementary rotations around the coordinate axes
with suitable translations, a rotation around an arbitrary axis and an arbitrary
angle can be realised. Given an arbitrary rotation axis and a rotation angle,
the first step is to apply a translation T (dx, dy, dz), shifting the rotation’s axis
in such a way that it passes through the origin of the coordinate system. Af-
terwards, a rotation around the z-axis is carried out, mapping the translated
rotation axis to the y/z-plane. Then this axis can be transformed into the



118 5. Basic principles of three-dimensional graphics

z-axis by a rotation around the x-axis. Now the original rotation can be car-
ried out as a rotation around the z-axis by the angle θ. Finally, all previous
transformations have to be reversed again. Altogether, the transformation

T (−dx,−dy,−dz) · Rz(−θz) · Rx(−θx) · Rz(θ) · Rx(θx) · Rz(θz) · T (dx, dy, dz)

is obtained. It should be noted that the transformations are carried out like
matrix multiplications from right to left.

In all above-mentioned transformation matrices the last row is (0, 0, 0, 1).
Applying matrix multiplication to such matrices preserves this property.

In the two-dimensional case there is exactly one transformation matrix that
maps three noncollinear1 points to three other noncollinear points. Correspond-
ingly, in the three-dimensional case there exists exactly one transformation ma-
trix that maps four noncoplanar2 points to four other noncoplanar points. Given
four noncoplanar points p1,p2,p3,p4 ∈ R

3 and the target points p′
1,p

′
2,p

′
3,p

′
4,

the transformation matrix is obtained by solving the system of linear equations

p′
i = M · pi (i = 1, 2, 3, 4). (5.1)

The matrix

M =

⎛
⎜⎜⎝

a b c d

e f g h

i j k l

0 0 0 1

⎞
⎟⎟⎠

in homogeneous coordinates must be derived from the four vector equations
(5.1), each of them representing three3 equations, one for the x-, the y- and
the z-component, from which the twelve parameters of the matrix M can be
calculated.

In this sense, transformations can be interpreted as changing from one co-
ordinate system to another. This property will be used later on, for instance to
view the same scene from different perspectives.

5.2.1 Java 3D

Unlike Java 2D, Java 3D does not belong to the standard Java framework
and needs to be installed separately. Information about where Java 3D can be
downloaded freely and how to install it can be found at the end of this book
and on the web page of the book.
1 Points not lying on the same line.
2 Points not lying on the same plane.
3 Since the vectors are given in homogeneous coordinates, there are actually four

equations, but the fourth one is always of the form 0 · px + 0 · py + 0 · pz + 1 · 1 = 1.



5.2 Geometric transformations 119

It is not the intention of this book to provide a complete introduction and
overview on Java 3D. The main goal is to demonstrate how the computer
graphics concepts introduced in this book can be used in practical examples in
a quick and easy way. Some of the introduced concepts go even further than
Java 3D at its present state to outline further perspectives. Nevertheless, the
small selection of Java 3D classes and methods explained in this book will equip
the reader with enough knowledge to get started with Java 3D and to write
animated 3D graphics programs with interaction. Readers who would like to
learn Java 3D in further detail are referred to books like [9, 33, 41, 42, 48], the
Java 3D API documentation and the Java 3D tutorial. Special topics, like the
design of 3D user interfaces with Java 3D, can be found in [1].

5.2.2 Geometric transformations in Java 3D

Instances of the class Transform3D store three-dimensional transformations as
matrices in homogeneous coordinates similarly to the class AffineTransform

for two-dimensional affine transformations. The constructor

Transform3D tf = new Transform3D();

generates the identity transformation corresponding to the unit matrix. The
method

tf.rotX(theta);

defines tf as a rotation by the angle theta around the x-axis. Correspondingly,
the methods rotY and rotZ specify rotations around the y- and the z-axis,
respectively. Using

tf.set(new AxisAngle4d(x,y,z,theta));

a rotation by the angle theta around the axis in the direction of the float-
vector (x, y, z)� is defined.

A translation by the float-vector (x, y, z)� is specified by

tf.setTranslation(new Vector3f(x,y,z));

The method

tf.setScale(new Vector3f(x,y,z));

leads to the scaling S(x, y, z).
The method tf.setScale(factor) defines a scaling with the same scaling

factor factor for the x-, y- and z-direction.
An arbitrary transformation can be specified by tf.set(matrix) where

matrix is a one-dimensional double-array with 16 values specifying the entries



120 5. Basic principles of three-dimensional graphics

in the matrix. It should be noted that the last row of the matrix can also be
defined. Usually, the last row should be (0, 0, 0, 1). tf.get(matrix) stores the
matrix associated with the transformation tf in the (one-dimensional) double-
array matrix.

The composition of transformations in the sense of matrix multiplication
can be realised by tf.mul(tf1,tf2) or tf1.mul(tf2). In the first case, the
transformation resulting from the composition of the transformations tf1 and
tf2 is stored in the transformation tf, in the latter case in the transformation
tf1. Since the composition of transformations is carried out in Java 3D in the
same way as matrix multiplications are computed, the rightmost transformation
will be applied first. This means that the resulting transformation corresponds
to first applying the transformation tf2 and then tf1.

Figure 5.2 A chair constructed with elementary geometric objects

5.3 The scenegraph

For modelling a three-dimensional scene, geometric objects have to be defined
and positioned in the scene. Techniques for constructing and modelling geomet-
ric objects are discussed in chapter 6. In addition to defining elementary objects
like boxes, spheres, cylinders or cones, there are more sophisticated techniques
for modelling complex objects. Complex objects are usually composed of sim-
pler smaller objects. The chair in figure 5.2 is an object that is composed of



5.3 The scenegraph 121

elementary geometric objects. The legs and the seat are boxes, the backrest is
a cylinder.

In order to model the chair, the corresponding elementary geometric objects
must be defined with the intended admeasurements and then these objects have
to be positioned correctly. To position an object correctly, suitable transforma-
tions need to be applied to it. If the whole chair should occur at another position
in the scene, for instance farther to the right, then a corresponding transforma-
tion must be applied to all its parts. For an object designer or a programmer,
it would be a quite tedious task to ensure explicitly that this transformation
is applied to every single part, especially when much more complicated objects
than the simple chair are considered. Therefore, instead of thinking of each par-
ticular geometric object as an independent instance, a scenegraph is defined in
which the objects are grouped in a hierarchy of transformation groups. In the
case of the chair, the chair itself would be a transformation group on its own,
combining the legs, the seat and the backrest into one group. A transformation
applied to the transformation group of the chair will automatically be applied
to all members of the transformation group. In this way, the whole chair can be
positioned anywhere in the scene by an arbitrary transformation without the
need to state explicitly that this transformation should be applied to all parts
of the chair.

To explain the concept of scenegraphs better, a slightly more complex ex-
ample than the simple chair is considered. The scene contains a very simplified
helicopter positioned on a cubical platform. A simplified tree also belongs also
to the scene that is shown in figure 5.3.

Figure 5.3 A scene composed of various elementary objects



122 5. Basic principles of three-dimensional graphics

A possible scenegraph of this scene is shown in figure 5.4. The root of the
scenegraph has two child nodes. Both are transformation groups. Elementary
geometric objects, other transformation groups or transformations can be as-
signed to a transformation group as child nodes. The transformation groups
tgHeliPlat and tgTree represent the helicopter including the platform and the
tree, respectively. Both of these transformation groups have a transformation
as a direct child node. The transformation tfHeliPlat positions the helicopter
together with the platform at the desired place in the scene, the transformation
tfTree does the same for the tree.

� � �

� ) � � �

� � * � � �

� � � � � � � � � �

� � + � �  � ,

� � * � ! � -

� � �  � , � . + � �  � ,

� � ! � -

� . * � � �

� . � � � � � � � �
� � � � � � ) % / � � �

� � � � � � . % � �

� . � � � � . % � �
/ � � � . % � �

� . � � � � ) % / � � �

� � * � � �
� � " � 0 � �

� � & % � % �

) � 0 � �
� � � � � . * � � � � % � % � � . & % � % �

Figure 5.4 The scenegraph for figure 5.3

The transformation group tfTree also has two transformation groups as child
nodes. tgTrunk stands for the trunk of the tree and tgLeaves for the treetop.
The transformation group has only one child node in the form of an elementary
geometric object tgTrunk, a cylinder that is generated in the origin of the co-
ordinate system. The transformation group tgLeaves consists of the elementary
geometric object leaves in the form of a cylinder and a transformation tfLeaves.
This transformation moves the treetop which was also generated in the origin
of the coordinate system to the top of the tree trunk.

The transformation group tgHeliPlat for the helicopter and the platform is
built in a similar way. It contains a transformation for positioning the platform



5.4 Elementary geometric objects in Java 3D 123

together with the helicopter correctly in the scene, and there are two other
child nodes, the individual transformation groups tgHelicopter and tgPlatform
for the helicopter and the platform, respectively. The helicopter transformation
group itself has a transformation tfHelicopter to position the helicopter on top
of the platform and three other transformation groups containing elementary
geometric objects. The cockpit of the helicopter is a sphere, the tail and the
rotor blade are boxes. The transformations tfTail and tfRotor are needed to
position the tail at the end and the rotor blade on top of the cockpit.

5.4 Elementary geometric objects in Java 3D

To be able to show objects of a three-dimensional scene, it is not sufficient to
outline their geometry only. It is also necessary to specify what the surface of
the object looks like. A colour or a texture must be assigned to the surface.
Even this is not sufficient for more realistic images. Reflection properties of
the surface, e.g., how shiny it is, are also needed. The appearance of the sur-
face of an object is defined in the class Appearance in Java 3D. More details
of the class Appearance will be explained in connection with illumination in
chapter 8. Here, the focus is on basic geometry and transformations. Therefore,
a simplified default appearance is used until chapter 8. A simple instance of
Appearance is generated in the following way.

Appearance myApp = new Appearance();

setToMyDefaultAppearance(myApp,new Color3f(r,g,b));

The method setToMyDefaultAppearance is not a standard method of Java 3D.
It was written for the purpose of this book. The method can be found in some
of the example programs, for instance in the class StaticSceneExample.java.
The method assigns a desired colour given by an instance of the class Color3f
to the Appearance myApp. The colour is defined by the three float-values
r,g,b∈ [0, 1] specifying the intensities for red, blue and green.

After an Appearance myApp has been created, the following elementary
geometric objects can be defined within Java 3D. In the following, all floating
point values are of the type float, unless otherwise stated.

A box is generated by

Box xyzBox = new Box(x,y,z,myApp);

The box has the size (2x) × (2y) × (2z) and is centred in the origin of the
coordinate system. Unless specific transformations are applied or the viewpoint
of the viewer in the scene is changed, the x-axis in Java 3D points to the right,
the y-axis upwards and the z-axis in the direction forward to the viewer.



124 5. Basic principles of three-dimensional graphics

Sphere rSphere = new Sphere(r,myApp);

defines a sphere with radius r and midpoint in the origin of the coordinate
system. A cylinder with radius r and height h whose centre point is again in
the origin of the coordinate system is generated by

Cylinder rhCylinder = new Cylinder(r,h,myApp);

The cylinder is positioned in such a way that the axis along its height coincides
with the y-axis. This means the cylinder extends h/2 units above and below
the x/z-plane.

In the same way a cone with radius r and height h is constructed by

Cone rhCone = new Cone(r,h,myApp);

The cone is positioned in the same way as the cylinder centred around the
y-axis with its tip h/2 units above the x/z-plane.

5.5 The scenegraph in Java 3D

Java 3D offers a complex scenegraph with a variety of different structures.
Most of the programs in this book are based on a division into three branches.
One branch is for modelling the objects within the scene, their positions and
possible animated movements. Another branch is responsible for illumination,
providing one or more light sources. The third branch takes care of the view
of the scene. The position of the viewer and the direction of his view belong
to this branch. Information about his field of view, like the angle or how far
he can see, is also found in this branch. Even options like 3D-viewing with
a head-mounted display providing different images for the left and right eye
could be incorporated in this branch. The class SimpleUniverse in Java 3D
simplifies the definition of this branch, the so-called view platform. The para-
meters are set to default values and the programmer is freed from providing
detailed definitions. There are also methods to modify the default parameter
settings, which will be introduced later on. For the purpose of this book, the
options provided by the class SimpleUniverse are sufficient. In later sections,
more details about the parameter settings in SimpleUniverse and their modi-
fications will be explained. Since this section is only concerned with modelling
of geometric objects, the default settings of SimpleUniverse are simply taken
as they are. Figure 5.5 shows the general scenegraph for Java 3D and the role
of the class SimpleUniverse, making the programming task a little easier.

All Java 3D classes in this book have the same basic structure, except for
small modifications for specific applications. As a first step, some standard Java



5.5 The scenegraph in Java 3D 125

� � � � ! � � 1 � �  � � , �

+ % ) � � �

 � � � ) �

# � % ! /

 � � � ) �

# � % ! /

 � � � ) �

# � % ! /

" % � � � � � �  � � � ) � + � � � � , � � � � � � � � � . % � �

� � � / � � � 1 � �  � � , �

Figure 5.5 The overall scenegraph for Java 3D

and Java 3D packages need to be imported. This is usually done by

import javax.vecmath.*;

import com.sun.j3d.utils.geometry.*;

import com.sun.j3d.utils.universe.*;

import javax.media.j3d.*;

import com.sun.j3d.utils.behaviors.vp.*;

import javax.swing.JFrame;

In special cases additional classes or packages are required. For the representa-
tion on the computer screen an instance of the Java class JFrame is used. The
corresponding class with the Java 3D program must therefore extend the class
JFrame.

public class MyJava3DClass extends JFrame

The class with the Java 3D program will also need an instance of the class
Canvas3D as one of its attributes.

public Canvas3D myCanvas3D;

The constructor of the class has the following structure.



126 5. Basic principles of three-dimensional graphics

public MyJava3DClass()

{

this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

myCanvas3D = new Canvas3D(

SimpleUniverse.getPreferredConfiguration());

SimpleUniverse simpUniv = new SimpleUniverse(myCanvas3D);

simpUniv.getViewingPlatform().setNominalViewingTransform();

createSceneGraph(simpUniv);

addLight(simpUniv);

setTitle("Title");

setSize(700,700);

getContentPane().add("Center", myCanvas3D);

setVisible(true);

}

The first method setDefaultCloseOperation has nothing to do with Java 3D.
It is only for closing the display window in which the virtual scene will be shown
and for terminating the program. Afterwards the SimpleUniverse is built with
its default settings. The method createSceneGraph must be implemented in-
dividually for each program or scene. All geometric objects, information about
their surfaces and dynamic changes can be incorporated in this method, rep-
resenting the content branch in figure 5.5. Further details about the content
branch will be provided later on in this section. The method addLight defines
the illumination of the scene and it can also be implemented differently for
each virtual scene, depending on whether the scene is an open air scenario with
sunlight or located in a room with artificial light. The details of this method
and illumination are explained in chapter 8. The last four lines of the construc-
tor are again concerned with the display window, not with Java 3D specific
tasks. They determine the title of the window, its size as well as its layout, and
display the window.

It is very useful to include the following three lines of code after the method
addLight is called.

OrbitBehavior ob = new OrbitBehavior(myCanvas3D);

ob.setSchedulingBounds(new BoundingSphere(

new Point3d(0.0,0.0,0.0),Double.MAX_VALUE));

simpUniv.getViewingPlatform().setViewPlatformBehavior(ob);

These three lines enable navigation through the scene using the mouse. Moving



5.5 The scenegraph in Java 3D 127

the mouse while pressing its left button, the scene is rotated. The right mouse
button is for moving through the scene. Zooming can be achieved by press-
ing the ALT-key together with the left mouse button and moving the mouse.
How this is actually realised from the computer graphics point of view will be
described in section 5.8.

Once the methods createSceneGraph and addLight have been imple-
mented, all that has to be done is to call the constructor of the corresponding
created class in the main method.

public static void main(String[] args)

{

MyJava3DClass myJava3D = new MyJava3DClass();

}

How to implement the method createSceneGraph, depending on the spe-
cific scene to be modelled, shall be demonstrated with the example in figure
5.3 on page 121. The associated scenegraph is shown in figure 5.4 on page
122. Only the construction of the tree will be explained in detail here. The
helicopter together with the platform is built in the same way. The complete
program code can be found in the class StaticSceneExample.java.

As a first step the tree trunk is created. Before an instance of the corre-
sponding geometric object can be defined, it is necessary to specify a suitable
Appearance with a brown colour for the tree trunk.

Appearance brownApp = new Appearance();

setToMyDefaultAppearance(brownApp,

new Color3f(0.5f,0.2f,0.2f));

Then the tree trunk can be defined as a cylinder with height 0.4 and radius
0.05, centred in the origin of the coordinate system.

float trunkHeight = 0.4f;

Cylinder trunk = new Cylinder(0.05f,trunkHeight,brownApp);

Afterwards, an instance tgTrunk of the class TransformGroup is generated
and the tree trunk is assigned to this transformation group by the method
addChild.

TransformGroup tgTrunk = new TransformGroup();

tgTrunk.addChild(trunk);

After the transformation group has been created for the tree trunk, the treetop
can be handled in a similar manner. Since the treetop should have a green
instead of a brown colour, a new instance greenApp of the class Appearance

has to be generated. In the example program, this Appearance has already



128 5. Basic principles of three-dimensional graphics

been created for the cockpit of the helicopter. The treetop is generated as a
cone centred in the origin of the coordinate system.

float leavesHeight = 0.4f;

Cone leaves = new Cone(0.3f,leavesHeight,greenApp);

The treetop should be positioned on top of the trunk. This means, it must be
lifted by half the height of the tree trunk plus half of the height of the treetop.
It is only half the height for both objects since the corresponding cylinder
and cone are centred in the origin of the coordinate system. The following
transformation is defined for this purpose.

Transform3D tfLeaves = new Transform3D();

tfLeaves.setTranslation(

new Vector3f(0.0f,

(trunkHeight+leavesHeight)/2,

0.0f));

Now a transformation group can be generated for the treetop. Since this trans-
formation group has to incorporate the above translation, it is not sufficient to
use the default constructor without parameters as in the case of the tree trunk.
Otherwise both the trunk and the treetop would remain centred around the
origin of the coordinate system. The corresponding constructor for the transfor-
mation group tfLeaves will be called with the previously defined translation
as its argument. Then the treetop can be assigned to the transformation group
by the method addChild.

TransformGroup tgLeaves = new TransformGroup(tfLeaves);

tgLeaves.addChild(leaves);

So far, the tree has been constructed correctly, but its trunk is centred around
the origin of the coordinate system. This might not be the desired position in
the scene. In order to position the whole tree, another transformation group
has to be defined. As a first step, a suitable transformation must be defined,
then the transformation group can be created with this transformation, and
finally the single transformation groups tgTrunk and tgLeaves for the trunk
and the treetop can by assigned to the transformation group for the whole tree.

Transform3D tfTree = new Transform3D();

tfTree.setTranslation(new Vector3f(-0.6f,0.0f,0.0f));

TransformGroup tgTree = new TransformGroup(tfTree);

tgTree.addChild(tgTrunk);

tgTree.addChild(tgLeaves);



5.5 The scenegraph in Java 3D 129

The advantage of this hierarchical structure becomes obvious here. Once the
tree has been constructed, i.e., once the treetop is positioned correctly on top
of the trunk, the whole tree can be positioned anywhere in the scene without
worrying about the fact that the corresponding transformation has to be ap-
plied to all single parts of the tree. With this hierarchical structure, the two
transformations—one for positioning the treetop on top of the trunk and one
for positioning the tree itself—are automatically applied correctly to the tree-
top. Especially, more complex objects built from more than just two elementary
geometric objects can be handled and controlled in a very comfortable way in
a scenegraph. When the scene is displayed, the underlying rule for the calcula-
tions is very simple. The scenegraph has to be traversed and all transformations
along a path to a geometric object have to be applied to this object.

It is also possible to use the same object, for instance the tree, more than
just once in the same scene. The class Link is required for this, which will be
explained in section 9.2.

The helicopter and the platform are built in the same way based on the
hierarchical structure shown in the scenegraph in figure 5.4 on page 122. In
this case, not only translations are applied to position the objects, but also a
rotation in addition to the platform in order to turn it slightly. In principle,
any transformation defined directly by a corresponding method or matrix, or
specified as a composition of elementary transformations can be assigned to a
transformation group. For the purpose of positioning an object, combinations
of translations and rotations are sufficient. When objects should be enlarged
or made smaller, scalings are required.

After all transformation groups for a scene have been created and organised
in a suitable hierarchical structure, the transformation groups on the top of the
hierarchical structure must be assigned to the scene itself. In the example of
the helicopter scene, there are only two top transformation groups: tgTree for
the tree and tgHeliPlat for the helicopter together with the platform. For the
details of the construction of the transformation group tgHeliPlat the reader
is referred again to the program StaticSceneExample.java.

The BranchGroup, containing the scene, can now be generated. The trans-
formation groups tgTree and tgHeliPlat are assigned to the BranchGroup by
the method addChild. Afterwards the BranchGroup should be compiled by the
method compile and assigned to the SimpleUniverse by calling the method
addBranchGraph.

BranchGroup theScene = new BranchGroup();

theScene.addChild(tgHeliPlat);

theScene.addChild(tgTree);

theScene.compile();

su.addBranchGraph(theScene);



130 5. Basic principles of three-dimensional graphics

Figure 5.3 on page 121 was generated with the class
StaticSceneExample.java. For better viewing purposes, the scene was slightly
tilted by mouse movements. Also a white background instead of the default
black background in Java 3D was added to the scene. How to change the back-
ground colour or add a background image will be explained in more detail in
chapter 8.

5.6 Animation and moving objects

So far, only static three-dimensional scenes were considered. For dynamic
scenes, similar techniques as described in section 2.9 for the two-dimensional
case are applied. Movements can be implemented as piecewise interpolations
or convex combinations between positions or states. The same applies to other
transitions, for instance a slow change from one colour to another or the transi-
tion from bright light to the dark. In the two-dimensional case, complex or com-
bined movements, as for instance in the example of the moving clock with rotat-
ing hand, were modelled by explicit compositions of single transformations. A
scenegraph also simplifies modelling and handling complex or combined move-
ments. Each transformation group can have its own movement which is then
applied to all objects that are located below the corresponding transformation
group in the hierarchy of the scenegraph. For the example of the moving clock,
the hand would be assigned to a transformation group with a rotation and this
transformation group could be a child of another transformation group with
the frame of the clock and the movement of the whole clock. In this way, the
rotation and the linear movement of the clock would be applied automatically
to the hand. The principle is the same as for static transformations to position
objects. The transformations in a transformation group in the upper part of
the scenegraph are applied to all nodes below the corresponding transformation
group.

To illustrate the principle of modelling animations, the helicopter scene in
figure 5.3 on page 121 is considered again. The helicopter is supposed to start
the rotor blade and should then take off from the platform in a slightly tilted
upwards direction. This means that the rotor blade itself will carry out a helix-
like movement, composed of the rotation of the blade and the linear movement
of the helicopter. Based on a suitable scenegraph, the complex movement can be
described and handled in a very simple manner. The rotor blade is generated in
the origin of the coordinate system and a rotation around the y-axis is assigned
to the transformation group of the rotor blade. Then the whole transformation
group of the rotor blade including its rotation is assigned to another transfor-



5.6 Animation and moving objects 131

mation group that positions the rotor blade on top of the cockpit. This will have
the effect that the blade no longer rotates in the origin of the coordinate sys-
tem but on top of the cockpit. When the whole helicopter is positioned on the
platform and also when the platform together with the helicopter is positioned
somewhere in the scene, the blade including its rotation will be transformed in
the correct way. A linear movement for the take-off of the helicopter from the
platform will be assigned to the transformation group of the helicopter. Again,
this movement will also be applied to the blade including the rotation.

For dynamic scenes, it is not only possible to assign objects, other transfor-
mation groups and transformations for positioning objects to a transformation
group. Interpolators for the description of the dynamic changes can also be as-
signed to transformation groups. Figure 5.6 shows an excerpt of the extended
scenegraph for the helicopter in which the rotation of the rotor blade and the
take-off of the helicopter can be described. The names of those transforma-
tion groups that contain dynamic movements, i.e., interpolators, start with the
letters tgm for Transformation Group with Movement.

� � � � � � � � � �

� . � � � � � � � �

� � � � � � � ) % / � � �

� � � � � � . % � �

� . � � � � . % � �/ � � � . % � �� . � � � � ) % / � � �

� � * � � �

� � " � 0 � �

� � � & % � % �

) � 0 � � � � � � � . * � � � � % � % �

� . & % � % �

0 � � � � � � 0 �

� � & % � % �
/ % , 2 � �

� � � � � � ) % / � � �

Figure 5.6 Excerpt of the scenegraph with dynamic transformations



132 5. Basic principles of three-dimensional graphics

The transformation group tgmRotor contains the rotor blade constructed
as a box centred in the origin of the coordinate system and two dynamic rota-
tions br and brStart around the y-axis. These two movements are carried out
one after the other. The first one starts the rotor blade slowly and then the
second one takes over to model the accelerated rotation of the blade. Only after
the accelerated rotation has started, the helicopter should take off. The linear
movement of the helicopter for the take-off is implemented in the transforma-
tion group tgmHelicopter.

It is important to separate positioning from dynamic movements within
the transformation groups. It should be avoided to have static and dynamic
transformations in the same transformation group. In this case, it is not clear
whether the static or the dynamic transformations should be carried out first.
Therefore, such a transformation group should be split into two transformation
groups, one for the static and one for the dynamic part. One of the transfor-
mation groups should be the child of the other one. Which one should be the
parent and which one the child depends on how the movement is intended. In
the example of the helicopter, the rotor blade is first rotated in the origin of the
coordinate system. This happens in the transformation group tgmRotor. Then
this transformation group becomes a child of the transformation group tgRotor
which positions the rotor together with its rotation on top of the cockpit.

The same applies to the linear movement of the helicopter. The take-off of
the helicopter is described in the transformation group tgmHelicopter relative
to the origin of the coordinate system. Afterwards, the helicopter together with
its movement is positioned on the platform in the parent transformation group
tgHelicopter so that the take-off takes place from the top of the platform. It
would also be possible to exchange the order of these two transformation groups
in the scenegraph. The way the movement was modelled here, corresponds to
the following principle. The helicopter should take off from the platform and
ascend for h units, measured from the platform. The height of the platform
itself is of no importance for the ascend. The helicopter will fly exactly h units.
However, if the helicopter should ascent from the platform until it has reached
a fixed height, measured from the ground, the duration of the flight depends
on the height of the platform. In this case, it might make sense to exchange
the two transformation groups for the movement and the positioning of the
helicopter. Nevertheless, the movement of the helicopter in the transformation
group tgmHelicopter would have to be defined in a different way, since it starts
from another point.



5.7 Animation in Java 3D 133

5.7 Animation in Java 3D

For animated scenes Java 3D provides the abstract class Interpolator with
a number of subclasses. There, Java 3D extends the basic principle which was
introduced in section 2.11. For modelling a continuous change within an anima-
tion, an initial and a final state are needed. For example, the animation could
be a linear movement of an object between two points along a line in the form
of a translation or a circular movement along an orbit in the form of a rota-
tion. It could also be the transition from one colour to another one. The initial
state is associated with the value zero, the final state with one. Intermediate
states correspond to values between zero and one. The interpretation of the
initial and the final state and the computation of intermediate states depends
on the type of interpolation, whether a linear movement between two positions,
a circular orbit or the change between two colours is desired. There are certain
basic parameters that are required for an interpolator, independent of the pre-
cise interpretation of the states. For example, the following specifications are
always needed for an interpolator.

– When should the interpolation start?

– Should the interpolation only go from state zero to state one or should it
also be reversed?

– How long should the transition from state zero to state one take?

– Should the transition between the two states zero and one be carried out
with constant speed or should it accelerate slowly in the beginning at state
zero until a maximum speed is reached and then slow down again to have a
smooth stop in state one?

– Should the interpolation be carried out just once or should it be repeated?

In Java 3D, these properties are specified within the class Alpha. An Alpha

object must be associated with every interpolator. To generate an instance of
the class Alpha, the following constructor can be used.

Alpha a = new Alpha(lc,id,tt,pdd,iad,iard,aa1d,dad,dard,aa0d);

Figure 5.7 illustrates the meaning of the main parameters of Alpha, which will
be explained in the following in detail. For a better understanding of the single
parameters, the example of the helicopter is used again. The corresponding
Alpha object shall be used to describe the timing of the linear movement of the
helicopter. The state zero corresponds to the initial position of the helicopter
at the ground. In state one the helicopter is at its highest point.

The integer value lc specifies the attribute loopCount which determines
how often the interpolator should be repeated. For instance, the helicopter



134 5. Basic principles of three-dimensional graphics

 � �   � � 

 �  � � 
   � 

 � �   � � 

� � � '  � �

�




�  ( �

Figure 5.7 Progression of the Alpha-values

could ascent and descend three times. In this case, one would choose lc=3.
Setting lc=-1 implies that the interpolator is repeated without end. This means
that the helicopter would never stop the alternating scheme of ascending and
descending. The second parameter id for the attribute mode defines in which
direction the interpolator should be carried out. There are three possibilities.

– id=Alpha.INCREASING ENABLE: Only the interpolation from state zero to
state one is carried out. If lc>1 is chosen, it will be carried out more than
once. In this case, the helicopter would only ascend and jump back to its
initial position instead of flying back after the ascend is finished.

– id=Alpha.DECREASING ENABLE: Only the interpolation from state one to
state zero is carried out so that the helicopter could only descend for landing.
Instead of a slow take-off it would jump to the highest position.

– id=Alpha.INCREASING ENABLE+Alpha.DECREASING ENABLE: Here, the inter-
polator alternates between the transition from state zero to state one
and the reverse transition. This is the correct solution for the helicopter.
The helicopter could alternate between ascending and descending. How-
ever, for modelling the movement of the rotor blade, one would only define
id=Alpha.INCREASING ENABLE, since the blade should rotate only in one
direction and not backwards as well.

All other parameters in the above-mentioned constructor for Alpha are of the
type long. They are integer values specifying times or time intervals in mil-
liseconds.

The attribute triggerTime of Alpha is given by the value tt. tt determines
after how many milliseconds after the start of the program Alpha should deliver
the first values. pdd determines the value of the attribute phaseDelayDuration.



5.7 Animation in Java 3D 135

Alpha remains in the state zero for phaseDelayDuration milliseconds after
the triggerTime has passed. In all programs presented here, it is sufficient
to use only one of the two values triggerTime or phaseDelayDuration. The
example programs will always assume phaseDelayDuration=0 and the start
of the animation will be controlled by triggerTime alone. In the example of
the helicopter, triggerTime should be chosen in such a way that the take-off
of the helicopter starts after the slow blade rotation is finished and the fast
blade rotation has begun.

The parameter iad defines how long the transition time
increasingAlphaDuration from the state zero to the state one should take.
For the helicopter, this is the time it should take from take-off to reach the
highest point. The next parameter iard determines the value of the attribute
increasingAlphaRampDuration. In the case of the helicopter and in many
other applications, it is not realistic that the object remains in the initial posi-
tion until the triggerTime has passed and then suddenly moves without con-
tinuous acceleration from state zero to state one. iard specifies the duration
of the linear acceleration phase until the constant maximum speed is reached.
The value iard is also used for slowing down the movement, before state one
is reached, so that the object comes to a smooth and not a sudden stop. The
speed is decreased linearly. The appropriate continuous accelerations and the
appropriate constant maximum speed are calculated by Java 3D automatically.

After the transition from state zero to state one is completed, aa1d deter-
mines the value alphaAtOneDuration, i.e., how long state one should be kept.
For the helicopter, this would correspond to the time it would spend hovering
in the air at its top position.

The values dad and dard are used for the attributes
decreasingAlphaDuration and decreasingAlphaRampDuration, respectively.
They have the same meaning as increasingAlphaDuration and
increasingAlphaRampDuration, respectively. However, they do not refer to
the transition from state zero to state one but to the reverse transition from
state one to state zero. Therefore, in the helicopter example, dad determines
how long the descending flight of the helicopter should take. Accordingly, dard
specifies how long the phase of acceleration and slowing down should be.

Finally, aa0d is for the attribute alphaAtZeroDuration, i.e., how long to
stay in the state zero after a cycle from state zero to state one and back has
been completed. This value is only of importance when the movement or tran-
sition should be repeated, i.e., when the parameter lc for loopCount was either
greater than 1 or −1. If a repetition is desired, the sequence consisting of



136 5. Basic principles of three-dimensional graphics

– increasingAlphaDuration,

– alphaAtOneDuration,

– decreasingAlphaDuration and

– alphaAtZeroDuration

is iterated, taking into account the values for increasingAlphaRampDuration
and decreasingAlphaRampDuration for the acceleration and braking time.

The specified durations increasingAlphaDuration and
increasingAlphaRampDuration are only relevant when
Alpha.INCREASING ENABLE was set within the parameters id. Analogously, the
durations decreasingAlphaDuration and decreasingAlphaRampDuration are
only taken into account when Alpha.DECREASING ENABLE was set.

The class Alpha serves as a description of the timing of a movement or,
more generally, of an interpolator. The interpolator itself to which the Alpha

object is associated determines what the state changes look like. The Alpha

object calculates the appropriate value between zero and one for the state at
any time. Java 3D provides a number of standard interpolators. Some selected
interpolators will be explained here in more detail.

The PositionInterpolator is responsible for movements between two
points along a straight line.

PositionInterpolator pi =

new PositionInterpolator(alpha,transformgroup,axis,

startingPoint,endPoint);

The first argument of this constructor is an instance of the class Alpha to
describe the timing of the movement along the straight line. The second ar-
gument specifies the transformation group in which the interpolator should be
applied. The instance axis of the class Transform3D determines the axis or the
line along which the movement should take place. This axis should be created
before the constructor of the interpolator is called.

Transform3D axis = new Transform3D();

In this way, the identical transformation is generated. If this transformation
is used directly in the constructor of the interpolator, then the axis for the
movement will be the x-axis. If a movement along another axis should take
place, the transformation axis must be defined in such a way that it maps
the x-axis onto the desired axis. For instance, a movement along the y-axis is
achieved by a rotation around the z-axis by 90◦ since this transformation maps
the x-axis to the y-axis. In this case, one would add the line

axis.rotZ(Math.PI/2);



5.7 Animation in Java 3D 137

before calling the constructor for the PositionInterpolator.
The values startingPoint and endPoint determine the states zero and one,

i.e., the starting and the endpoint of the linear movement along the specified
axis. The starting point should be located at the same position as the object or
transformation group to which the position interpolator is applied. For instance,
if one generated an object centred in the origin of the coordinate system to
be moved along the x-axis, the choice of startingPoint=1 would lead to a
sudden jump of the object to the starting point (1, 0, 0) when the movement
is initiated. Vice versa, if the object has been shifted to some other point than
the origin of the coordinate system and a position interpolator along the x-axis
with startingPoint=0 is defined for the corresponding transformation group,
then the object would jump back to the origin of the coordinate system at the
start of the movement.

For the definition of an interpolator further specifications are needed. A
bounding region must be assigned to interpolators and a number of other con-
cepts in Java 3D. This bounding region determines whether the corresponding
concept should be taken into account for rendering or not, depending on the
viewer’s position. When the bounding region does not contain the viewer or
a part of the clipping region, the corresponding concept is not applied. For
instance, in an office building with a large number of rooms, each room might
have a clock hanging on the wall. If the viewer is inside one of the offices, it is
not necessary to compute the movement of the hands of the clocks in the other
rooms since the viewer will not be able to see them, as long as he stays in his
office. Therefore, the movement of the clock hands would be restricted to the
bounding region coinciding with the office in which the clock is located. The
avoidance of calculating unnoticed changes and movement can save a signifi-
cant amount of computation time for larger virtual worlds. The interpolator is
reactivated, once the viewer enters its bounding region again. The interpola-
tor is not started at the same point where it was frozen when the viewer had
left the room. Based on the Alpha object associated with the interpolator and
the current time, the actual state of the interpolator can be computed exactly,
even though the intermediate states have not been calculated while the viewer
was outside the bounding region. In the example of the office building with the
clocks, the clock would stop its movement, once the viewer has left the room.
But when the viewer enters the room again, the clock will simply jump to the
current time and continue its movement so that the viewer will not notice that
intermediate states were not calculated.

The class BoundingSphere with the constructor

BoundingSphere bs = new BoundingSphere(new Point3d(x,y,z),r);



138 5. Basic principles of three-dimensional graphics

can be used to define a bounding region. In this way, a spherical bounding region
with radius r and centre point (x, y, z) is specified. For an unlimited bounding
region, one can choose r=Double.MAX VALUE. The class BoundingBox allows
the definition of bounding regions in the form of a box.

After the definition of a suitable bounding region bs, this bounding region
has to be assigned to the interpolator pi by

pi.setSchedulingBounds(bs);

For static objects which will not be changed or moved in a scene, certain
rendering properties can be calculated in advance for efficiency reasons in Java
3D. Therefore, it is necessary to state explicitly by

transformationgroup.setCapability(

TransformGroup.ALLOW_TRANSFORM_WRITE);

that the corresponding transformation group transformationgroup can be
changed by transformations during the animation. Finally, the interpolator pi
has to be assigned to its transformation group by

transformationgroup.addChild(pi);

The class RotationInterpolator can be used to model rotations in the
same way as position interpolators are used for linear movements. In the con-
structor

RotationInterpolator ri =

new RotationInterpolator(alpha,transformgroup,axis,

startAngle,endAngle);

the parameters alpha and transformgroup have the same meaning as in the
case of position interpolators. The rotation axis is specified by the instance
axis of the class Transform3D. If axis is the identity, i.e., it was created by the
default constructor of Transform3D without further modifications, then the y-
axis will become the rotation axis. For another rotation axis, the transformation
axis must be defined in such a way that the y-axis is mapped onto the desired
rotation axis. For instance,

Transform3D axis = new Transform3D();

axis.rotX(Math.PI/2);

defines a rotation around the z-axis. The parameters startAngle and endAngle

specify the starting and the final angle of the rotation in radians. It should be
noted that negative angles and angles larger than 2π are mapped to the interval
[0, 2π]. For instance, choosing π as the starting and 4π as the final angle, will
only lead to a rotation starting at π and ending at 2π, but not to 1.5 full
rotations.



5.8 Projections 139

For rotation interpolators the same lines of code concerning the bounding
region and the associated transformation group are required as in the case of
position interpolators.

In the same way, scalings can be defined based on the class
ScaleInterpolator with the constructor

ScaleInterpolator si =

new ScaleInterpolator(alpha,transformgroup,axis,

startScale,endScale);

If the scaling should not be carried out with respect to the origin of the co-
ordinate system, the Transform3D axis should be defined in such a way that
it maps the origin to the desired fixed point of the scaling. The parameters
startScale and endScale determine the scaling factors for the states zero
and one, respectively. Usually, startScale=1 will be chosen. Otherwise, the
object will first be scaled to the value of startScale in a sudden jump, before
the continuous scaling of the interpolator is started, unless the object has been
scaled before. For instance, to let an object grow to double its size, one would
define startScale=1 and endScale=2.

Examples for the use of position and rotation interpolators can be found
in the example programs SimpleAnimation3d.java of the helicopter, where a
position interpolator models the flight and rotation interpolators are respon-
sible for rotations of the rotor blade. A scaling interpolator can be found in
the example program InteractionExample.java, which will be described in
chapter 9.

5.8 Projections

So far, transformations were used to position objects in a scene or to move
them in animations. For the representation of a three-dimensional scene on
a flat computer screen a projection to the two-dimensional plane is required.
Such projections can also be described in terms of geometric transformations.

For the representation of a three-dimensional scene, the viewer’s position
and the projection plane need to be defined. The viewer looks in the direction
of the projection plane, which can be interpreted as a kind of window behind
which the virtual world lies. The projection of an object onto this plane is
obtained by connecting the points of the object with the centre of projection

and computing the intersection points of these lines, called projectors, with the
projection plane. This method is illustrated on the left-hand side of figure 5.8.
It is called perspective projection.



140 5. Basic principles of three-dimensional graphics

Figure 5.8 Perspective and parallel projection

When the centre of projection is moved farther and farther away from the
projection plane and finally moved to infinity, the projectors become parallel
lines. In this case, it is not necessary to specify a centre of projection, only the
direction of the projection is needed. For such a parallel projection, the projec-
tors are all parallel to this direction. Usually it is assumed that the direction
of projection is perpendicular to the projection plane. A parallel projection is
shown on the right-hand side of figure 5.8.

Before considering arbitrary projections, the special case of a parallel pro-
jection with a projection plane z = z0, a plane parallel to the x/y-plane, is
described by an affine transformation in more detail. This parallel projection
maps the point (x, y, z) to the point (x, y, z0). In homogeneous coordinates,
this mapping can be written as a matrix multiplication in the following form.

⎛
⎜⎜⎝

x

y

z0

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 z0

0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠ . (5.2)

Based on this representation, now any parallel projection can be described in
the form of matrix multiplication in homogeneous coordinates. If the projection
plane is not parallel to the x/y-plane, another transformation has to be carried
out before the matrix in equation (5.2) is applied. This transformation maps the
projection plane to the x/y-plane. This can always be achieved by a rotation
around the y-axis, followed by a rotation around the x-axis as illustrated in
figure 5.9.

Therefore, it is sufficient for the understanding of parallel projections to
examine only parallel projections to the x/y-plane. For other parallel projec-
tions, the above-described transformation is applied to the whole scene first



5.8 Projections 141

�

�

)

�

�

)

�

�

)

Figure 5.9 Mapping an arbitrary plane to a plane parallel to the x/y-plane

and then a parallel projection to a plane parallel to the x/y-plane is carried
out. It is even sufficient to consider only parallel projections to the x/y-plane
since a suitable translation along the z-axis can map any plane parallel to the
x/y-plane itself.

y

x

z z z

y
y’

0

Figure 5.10 Derivation of the matrix for the perspective projection

Perspective projections can also be represented in the form of a matrix mul-
tiplication in homogeneous coordinates. As in the case of parallel projections, a
specific perspective projection is considered first. It is assumed that the centre
of projection lies in the origin of the coordinate system and that the projection
plane is a plane parallel to the x/y-plane in the form z = z0. As can be seen
from figure 5.10, one can apply one of the intercept theorems to derive the
equations

x′

x
=

z0

z
and

y′

y
=

z0

z

and therefore
x′ =

z0

z
· x and y′ =

z0

z
· y.



142 5. Basic principles of three-dimensional graphics

This means the perspective projection maps the point (x, y, z) to the point

(x′, y′, z0) =
(z0

z
· x,

z0

z
· y, z0

)
. (5.3)

This mapping can be written in homogeneous coordinates in the following way.
⎛
⎜⎜⎝

x

y

z
z
z0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

z0
0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠ . (5.4)

When the resulting point
(
x, y, z, z

z0

)
is transformed back to Cartesian coordi-

nates by dividing the first three components by the last one, the desired point
in equation (5.3) is obtained.

The matrix for the perspective projection in equation (5.4) does not have
the property of all previous matrices in homogeneous coordinates that the last
row is (0, 0, 0, 1). Therefore, the resulting point is not obtained in normalised
homogeneous coordinates with 1 as its fourth component.

In a similar way as for parallel projections, the specific choice of a per-
spective projection with the origin of the coordinate system as its centre of
projection and a projection plane parallel to the x/y-plane is not restrictive at
all. Any perspective projection can be reduced to this specific projection when
suitable transformations are applied in advance. First the centre of projection
of the considered perspective projection is translated into the origin of the co-
ordinate system. Then the same transformations as in the case of the parallel
projection as shown in figure 5.9 are applied in order to make the projection
plane parallel to the x/y-plane.

Another special case of a perspective projection shall be considered here.
Instead of having the centre of projection in the origin of the coordinate system,
the centre is shifted along the z-axis by the translation (0, 0,−z0)� so that
the projection plane becomes the x/y-plane. Applying the same considerations
based on the intercept theorem as in figure 5.10 to compute the perspective
projection of the point (x, y, z) to the point (x′, y′, 0), one obtains

x′ =
z0

z0 + z
· x =

x

1 + z
z0

and y′ =
z0

z0 + z
· y =

y

1 + z
z0

. (5.5)

This mapping can be written in matrix form in homogeneous coordinates in
the following way.

⎛
⎜⎜⎝

x

y

0
1 + z

z0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1

z0
1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠ . (5.6)



5.8 Projections 143

Again, the resulting point
(
x, y, 0, 1 + z

z0

)
in homogeneous coordinates corre-

sponds to the projected point in Cartesian coordinates in equation (5.5).
It was already demonstrated that, with a suitable transformation, any per-

spective projection can be reduced to a perspective projection with the centre
of projection in the origin of the coordinate system and a projection plane
parallel to the x/y-plane. This specific perspective projection can be reduced
to the perspective projection in equation (5.6) by a translation by the vector
(0, 0,−z0). For the understanding of the properties of perspective projections it
is therefore sufficient to examine only the specific projection in equation (5.6).
All other perspective projections can be interpreted as this specific projection
together with an affine mapping which is applied to the virtual world before
the projection. The matrix in equation (5.6) can be decomposed into a product
of two matrices.

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1

z0
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

z0
1

⎞
⎟⎟⎠ . (5.7)

The left matrix on the right-hand side of this equation corresponds exactly to
the matrix in equation (5.2) with z0 = 0, encoding a parallel projection to the
x/y-plane. It was shown before that any perspective projection Apersp can be
reduced to the perspective projection Apersp,z0 in equation (5.6) by applying a
suitable transformation in advance.

Apersp = Apersp,z0 · T.

Based on the decomposition of the perspective projection Apersp,z0 in equation
(5.7) one obtains

Apersp =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ · T̃

where

T̃ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

z0
1

⎞
⎟⎟⎠ · T.

This means that even any perspective projection can be considered as a suit-
able transformation T̃ followed by a parallel projection to the x/y-plane. As
explained before, also all parallel projections can be reduced to this special par-
allel projection. Therefore, projection can always be viewed as applying some



144 5. Basic principles of three-dimensional graphics

transformation to the virtual world and then applying a parallel projection
to the x/y-plane. For this reason it is sufficient to consider only the parallel
projection to the x/y-plane whenever projections are mentioned.

The parallel projection to the x/y-plane simply assigns the value zero to
the z-coordinate. In order to understand the effects of perspective projections
a little better, the right matrix

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

z0
1

⎞
⎟⎟⎠ (5.8)

in the decomposition in equation (5.7) is examined in more detail. The x/y-
plane, i.e., all points with z = 0, remains unchanged, since it is the projection
plane. Considering a point of the form

(
0, 0, 1

w

)
with w ∈ R, w �= 0, it can be

written in homogeneous coordinates as (0, 0, 1, w). The matrix (5.8) maps this
point to the point

(
0, 0, 1, 1

z0
+ w
)

in homogeneous coordinates. In Cartesian
coordinates this means

(
0, 0,

1
w

)
�→
(

0, 0,
z0

1 + z0 · w

)
.

Letting the parameter w go to zero slowly, the point
(
0, 0, 1

w

)
slides along the

z-axis to infinity whereas its image
(
0, 0, z0

1+z0·w

)
converges to the finite point

(0, 0, z0). This means that the hypothetical point at infinity on the z-axis is
mapped to a concrete noninfinite point. Considering all lines through the point(
0, 0, 1

w

)
, the images of these lines obtained by the matrix (5.8) meet in the

point
(
0, 0, z0

1+z0·w

)
. Letting w go to zero, the lines through the point

(
0, 0, 1

w

)
become lines parallel to the z-axis. The matrix maps these parallel lines meeting
in the hypothetical point at infinity on the z-axis to lines through the point
(0, 0, z0). This point is called vanishing point.

These theoretical considerations prove the well-known effect that parallel
lines leading away from the viewer do not look parallel any more in a perspective
projection. They meet in the vanishing point. Figure 5.11 shows the typical
example of a railway that seems to get narrower with increasing distance until
it vanishes in a single point.

Horizontal and vertical lines remain parallel when this perspective projec-
tion is applied. The vanishing point is only of interest for lines that lead away
from the viewer. If another projection plane is chosen for the perspective pro-
jection, then there might be two or even three vanishing points. The number
of vanishing points is equal to the number of coordinate axes that the pro-
jection plane intersects. Figure 5.12 illustrates the effects for the projection of



5.8 Projections 145

* � �  % �  � � � ' �  � �

Figure 5.11 Vanishing point for perspective projection

a cube when there are one, two or three vanishing points. The corresponding
projections are called one-, two- and three-point perspective projections.

Figure 5.12 One-, two- and three-point perspective projections

In this section, it has been demonstrated that an arbitrary projection of a
scene can be viewed as a suitable geometric transformation of the scene followed
by a parallel projection to the x/y-plane. Changing the viewer’s position or his
direction of view corresponds to another transformation that is applied to the
scene. Instead of transforming the viewer, the reverse transformation is simply
applied to the scene. For modelling a moving viewer it is therefore sufficient
to include the whole scene in its own transformation group in order to apply
the reverse transformations of the viewer within this transformation group. For
instance, when the viewer turns to the right, the whole scene is rotated to the



146 5. Basic principles of three-dimensional graphics

left instead.

5.8.1 Projections in Java 3D

By default, perspective projection is applied in Java 3D for showing scenes. If
a parallel projection is preferred, this can be achieved by the following method
to be called in the constructor of the corresponding Java 3D class.

simpUniv.getViewer().getView().setProjectionPolicy(

View.PARALLEL_PROJECTION);

The class ViewParallelProjection.java uses parallel instead of perspective
projection to show the static scene with the helicopter that was introduced in
sections 5.3 and 5.2.2.

The method

simpUniv.getViewingPlatform().setNominalViewingTransform();

within the class SimpleUniverse positions the viewer such that he can see the
range from −1 to 1 on the x- and the y-axis in the x/y-plane. One can also define
another initial position of the viewer by defining a suitable transformation vt

as an instance of the class Transform3D and applying the method

simpUniv.getViewingPlatform().getViewPlatformTransform().

setTransform(vt);

If the viewer should carry out a fixed movement, this can either be im-
plemented in Java 3D by applying the reverse movement or transformation to
the whole scene or directly in the BranchGroup of the ViewPlatform. Inter-
active movements of the viewer, i.e., interactive navigation through the scene,
controlled by the mouse can be realised with the OrbitBehavior that was in-
troduced in section 5.5. As an alternative, the keyboard can also be used to
navigate interactively through the scene. This technique will be introduced in
section 9.7.



5.9 Exercises 147

5.9 Exercises

Exercise 5.1

Draw a scenegraph for the chair in figure 5.2. Construct the chair with the
following basic geometric objects: box(x,y,z) which generates a box of width
2x, height 2y and depth 2z centred around the origin of the coordinate system,
and cylinder(r,h) which creates a cylinder with radius r and height h also
centred around the origin. Specify in each leaf of the tree the geometric object
to be constructed or the corresponding transformation to be applied. The chair
stands on the x/z-plane centred over the origin of the coordinate system with
its rest in the back. The chair has the following measurements.

– Legs of height 1.0 with a squared profile with width 0.1

– A squared seat with width 0.8 and thickness 0.2

– A cylindrical backrest with radius 0.4 and thickness 0.2

Exercise 5.2

Extend the program SimpleAnimation3d.java by adding a rotating rear blade
to the helicopter.

Exercise 5.3

Write a program that shows the single parts of the chair in figure 5.2 separately
next to each other and then combines them to the chair in an animated scene.

Exercise 5.4

The perspective projection to the plane with normal vector (
√

3
3 ,

√
3

3 ,
√

3
3 )�

through the point (1, 2, 3) and the origin of the coordinate system as centre
of the projection shall be reduced to a parallel projection onto the x/y-plane.
Specify a suitable transformation as a composition of elementary geometric
transformations and the transformation in equation (5.7).



6
Modelling three-dimensional objects

In the previous chapter, objects of the virtual world were constructed with
elementary geometric shapes like boxes, spheres, cylinders and cones. These
simple shapes are not sufficient to model surfaces of more complex objects.
This chapter introduces a variety of techniques for modelling three-dimensional
objects and their surfaces.

6.1 Three-dimensional objects and their surfaces

Before discussing methods for modelling three-dimensional objects, it should be
clarified what kind of objects are considered in computer graphics. In principle,
any subset of the space R

3 could be seen as a three-dimensional object. How-
ever, this would mean that even single points, edges or planes are considered
to be three-dimensional. One could view a piece of paper as a two-dimensional
plane. But even the thinnest paper has a nonzero thickness and is therefore an
extremely flat box. Figure 6.1 shows some examples of how three-dimensional
objects should not look like. Isolated or dangling edges and faces as seen in the
figure should be avoided.

For the purpose of showing a three-dimensional object, its surface is of
importance, not the set of points in the three-dimensional space that are oc-
cupied by the object. Transparent objects can be considered as an exception.
Therefore, the intention of computer graphics techniques for modelling ob-
jects usually focusses on surfaces and not on sets of points in R

3. In certain



150 6. Modelling three-dimensional objects

� � � � � � � ' � �

� � � � � � . � ) �

� , % � � � � ' � , % � � � � '

. � ) � � ' � �

Figure 6.1 Isolated and dangling edges and faces

applications, for instance when objects are measured with 3D scanners or in
the case of tomography data, no explicit definition of the surface of the object
is available. In such cases it is very common that the object is first described as
a three-dimensional set of points and then the object’s surface is derived from
this set.

Figure 6.2 Triangulation of a polygon

There are various sophisticated techniques for modelling complex surfaces
with round and bent shapes. However, these models are usually not taken
directly for the generation of an image of a scene. Instead, surfaces are approx-
imated by a larger number of polygons, triangles in most cases, in order to
simplify computations for illumination and projection. For arbitrary surfaces it
might even be impossible to find an analytical expression for the representation
of the projection. Efficient and fast calculations of projections would become
impossible. The situation is much easier for polygons. The intersection point
of a plane polygon with a line representing a projector is simple and fast. The
approximation of a curved surface by polygons is called tesselation. Using only
triangles for the polygons is no real restriction since any polygon can be parti-
tioned into triangles. Figure 6.2 shows a triangulation of a polygon. The dashed
lines split the polygon into triangles. Triangles have the advantage that very



6.1 Three-dimensional objects and their surfaces 151

efficient computer graphics algorithms are available for them, which can also
be directly implemented on a graphics card. Another disadvantage of polygons
with more than three edges is that it must be assured that all vertices lie in
the same plane.

The single triangles or polygons for modelling a surface are usually oriented
in order to determine which side of the polygon is on the outside of the surface.
The orientation is given by the order of the polygon’s vertices. The vertices are
listed in anticlockwise order when looking onto the surface from the outside of
the object.

In figure 6.3 this means that the triangle with the vertices 0,1,2 is oriented
in the direction of the viewer. The viewer can see the front of this part of the
surface. The same triangle, but with orientation 0,2,1 of the vertices would
remain invisible for the viewer since he can only see this part of the surface
from the back. The surface would be invisible since it is impossible to see the
surface of a solid three-dimensional object from the inside. When polygons have
an orientation, rendering can be accelerated significantly since surfaces that do
not point to the viewer can be ignored for the whole rendering process.


 �

3 3

�


Figure 6.3 Orientation of polygons

Isolated and dangling faces should be avoided since they can lead to unre-
alistic effects. They can be seen from one side, but become invisible from the
other.

Figure 6.4 shows a tetrahedron with vertices P0,P1,P2,P3. The four faces
in the form of triangles of the tetrahedron can be defined by the following
groups of vertices.

– P0,P3,P1

– P0,P2,P3

– P0,P1,P2

– P1,P3,P2



152 6. Modelling three-dimensional objects

For the specification of the triangles, the vertices of each triangle are listed in
an anticlockwise manner when looking at the corresponding triangle from the
outside of the tetrahedron.

��

�

�

�


+

,

Figure 6.4 A tetrahedron

6.2 Topological notions

This section introduces elementary concepts from topology to better under-
stand the problems of modelling three-dimensional objects and their surfaces.
The definitions are given for the general case R

p. Here they are only needed
for the cases p = 3 and p = 2. The latter case is used for illustration purposes.
Areas are the two-dimensional counterparts of three-dimensional objects.

In the left-hand side, figure 6.5 shows a set M of points in the plane with
isolated and dangling edges. Based on the topological notions which are intro-
duced in the following, this set of points can be regularised, resulting in the
area on the right-hand side of the figure without isolated or dangling edges.

� ( � � � � � � � � � � ( � � � � 0 % ! � ' � ( � � � � ) � � ( � � � � � � � � � � ( �

Figure 6.5 A set M ⊂ R
2 of points, its interior, boundary, closure and

regularisation



6.2 Topological notions 153

In order to explain the topological notions, a set M ⊂ R
p is considered in

the following. A subset U ⊂ R
p is called a neighbourhood of the point x0 ∈ R

p

if there exists ε > 0 such that

{x ∈ R
P | ‖ x − x0 ‖< ε} ⊆ U.

In the two- and the three-dimensional case, this means that a neighbourhood of
a point must contain at least a small circle or sphere, respectively, around the
point. A point x ∈ M is called an inner point of M if there is a neighbourhood
U of x such that U ⊆ M holds. In the two- and the three-dimensional case,
this means that there must be at least a small circle or sphere around a point
x, completely contained in M , to be an inner point of M .

The set
in(M) = {x ∈ M | x is an inner point of M}

of all inner points of M is called the interior or kernel of M . The interior of M

is shown directly next to the set M in figure 6.5.
A point x is called a boundary point of M if every neighbourhood of x has

nonempty intersections with M as well as with the complement of M . The set

bound(M) = {x ∈ M | x is a boundary point of M}

of all boundary points of M is called the boundary of M , which is illustrated
in the middle of figure 6.5. The interior of a set can also be defined as the set
without its boundary.

in(M) = M\bound(M).

M is called an open set if M coincides with its interior, i.e., if in(M) = M

holds.
The union of a set M with its boundary

cl(M) = M ∪ bound(M)

is the closure of M , which is shown as the second set from the right in figure
6.5.

M is called closed if the closure of M is M itself, i.e., if cl(M) = M holds.
The regularisation of M is the closure of the interior of M .

reg(M) = cl(in(M)).

The regularisation of a set will cut off isolated as well as dangling edges and
faces as can be seen on the right-hand side of figure 6.5.

The set M is called regular if reg(M) = M holds, i.e., if the set coincides
with its regularisation.

In addition to the regularisation of three-dimensional objects, it might also
be necessary to remove inner surfaces. The inner surfaces of a hollow object will
never be needed for rendering so that it is better to remove them completely
for efficiency reasons.



154 6. Modelling three-dimensional objects

6.3 Modelling techniques

Voxels are a very simple technique for modelling three-dimensional objects.
The three-dimensional space is partitioned into a grid of small, equisized cubes,
called voxels. Voxels are the three-dimensional counterpart of a pixel grid. A
three-dimensional object is defined by those voxels that lie within the interior
of the object. Voxels are suitable for modelling objects based on tomography
data, which provide information about the tissue density inside the measured
body or object. For instance, if the bones of a body should be represented,
those voxels would be considered where a density corresponding to bones has
been measured.

Figure 6.6 illustrates the representation of a three-dimensional object based
on voxels.

Figure 6.6 Modelling a three-dimensional object with voxels

The computational costs in terms of memory and time for handling voxel
models can be enormous. Seeing the voxel grid as the three-dimensional coun-
terpart of a two-dimensional pixel grid and using similar resolution, this would
mean that instead of 1000 × 1000 pixels, 1000 × 1000 × 1000 = 109 voxels are
needed. It is out of discussion that such models can be used for immediate
image generation.

Octrees are an efficient alternative to voxel models. They are based on voxels
with varying size. Only in those parts where a fine resolution is needed, small
voxels are used. For instance, when a sphere-like object should be modelled by
voxels, there is no need to fill the sphere with a large number of small voxels. It
is sufficient to fit one big voxel into the sphere and use smaller voxels only for
the representation of the surface. For an octree, the object to be modelled is
first fit into a sufficiently large cube or a box. Then this cube is split into eight
smaller cubes. Smaller cubes that lie completely inside or completely outside
the object are marked with in and off, respectively. For these cubes, there is no
need for further refinement. The other cubes are marked with on, indicating



6.3 Modelling techniques 155

that the cube intersects the surface of the object. All cubes marked with on

are further subdivided into smaller cubes and the smaller cubes are marked
and processed in the same way until the maximum desired resolution, i.e., the
minimum allowed cube size, is reached.

Figure 6.7 Recursive partition of an area into squares

For illustration purposes, the two-dimensional counterpart of octrees is con-
sidered here. They are based on the same principle, partitioning an area into
squares or rectangles of varying size. Since larger squares are divided into four
smaller squares, they are called quadtrees. Figure 6.7 shows an area surrounded
by a square which is recursively partitioned into smaller squares. Smaller
squares are only divided further if they intersect the boundary of the area.
The process is stopped when the squares have reached a predefined minimum
size. The corresponding quadtree is shown in figure 6.8. Octrees are similar to
quadtrees, but their inner nodes have eight instead of four child nodes since
cubes are divided into eight subcubes.

Voxel models and octrees are tailored for representing objects based on data
obtained using specific 3D measurement techniques. For efficiency purposes, a
raw voxel model can be turned into an octree easily. Nevertheless, both mod-
els are not suitable for realistic representations of object surfaces. For proper
illumination and light reflection effects, it is very important to take the slope
of the surface into account. The cubes in voxel models and octrees have no
tilted surfaces. Their surfaces always point in the direction of the coordinate
axis. Therefore, for objects that are modelled by voxels or octrees, the sur-
faces should be approximated by parametric freeform surfaces, which will be
introduced in section 6.6.

When real objects are measured and the data should be used directly for
generating 3D models, then voxels and octrees might be a good approach. But



156 6. Modelling three-dimensional objects

% � � � % . .

Figure 6.8 The quadtree for figure 6.7

there are better suited techniques for modelling virtual objects that are usu-
ally integrated into specific object modelling and CAD tools. It would be too
tedious to describe virtual curved objects by specifying an enormous amount
of tiny voxels. One technique better suited for direct modelling is the CSG

scheme where CSG stands for constructive solid geometry. The CSG scheme
is based on a collection of elementary geometric objects. Transformations and
regularised set-theoretic operations can be applied to these objects to construct
more complex objects. Set-theoretic operations like union, intersection and dif-
ference were introduced in section 2.3 in the context of two-dimensional objects.
The same principles apply to three-dimensional objects. Regularisation is car-
ried out in addition to avoid isolated and dangling edges and faces. Figure 6.9
shows an object on the left which was constructed from the elementary objects
box and cylinder. The right part of the figure specifies how the corresponding
elementary objects were combined with set-theoretic operations to obtain the
object on the left. The necessary transformations are not included in the figure.
For instance, the centre part of the shown object is generated from a box from
which a cylinder was subtracted, resulting in the half-circle-shaped bulge.

Another useful solid modelling technique is the sweep representation. A
three-dimensional object is generated from a two-dimensional shape that is
moved along a trajectory. For instance, the horseshoe-shaped object on the left
in figure 6.10 is created from a rectangle which is moved along an arc. The
tent shape on the right-hand side of the figure originates from a triangle sliding
along a line.

The probably most important modelling technique, which will be introduced
in section 6.6, is based on freeform surfaces that are defined by parametric



6.3 Modelling techniques 157

�

� �

�

� � � � � � � � 	 
 � �  � � � �

Figure 6.9 An object that was constructed using elementary geometric ob-
jects and set-theoretic operations shown on the right

4 5

4 5

Figure 6.10 Two objects and their sweep representations

curves. As mentioned before, curved surfaces will be approximated by plane
polygons for the generation of images. The description of the surface of an
object by polygons requires a list of points—the vertices of the polygons—
and a list of polygons composed of these points. Apart from this geometrical
structure, information about the colour or texture of the surface as well as
normal vectors assigned to the polygons or vertices is needed for calculating
the correct illumination and shading caused by light reflections. So when a
curved surface is approximated by polygons, not only the vertices and faces of
the polygons are stored, but also normal vectors of the original surface in the
vertices of the polygons.

Also the surfaces of the elementary geometric objects in the simple scene
with the helicopter in figure 5.3 on page 121 are approximated by triangles.
Figure 6.11 shows the underlying tesselation.

The larger the number of triangles, the better the curved surface can be
approximated. Figure 6.12 shows a sphere for which the tesselation was refined
from left to right. The left sphere is approximated by only eight triangles. The
computational effort increases with the number of triangles. The approxima-
tion of a surface by triangles can be carried out off-line before the rendering



158 6. Modelling three-dimensional objects

Figure 6.11 Tesselation of the helicopter scene in figure 5.3

process. But also the calculations for light reflections on the surface, the deter-
mination of which objects or polygons are hidden from view by others as well as
collision detection, i.e., whether moving objects collide, become more complex
with an increasing number of triangles. Usually, a higher resolution will lead to
a quadratic increase of the computational costs because, for example, doubling
the resolution in each dimension for a two-dimensional surface approximation
requires four times as many triangles.

Figure 6.12 Representation of a sphere with different tesselations

For this reason, the same object might be stored in different resolutions in
a virtual world. For instance, there is no need to have a detailed model of each
tree when a forest is viewed from the distance. A very rough approximation with
few triangles is sufficient for each tree. For an extremely refined resolution, each
triangle might not even cover a single pixel in the projection when the tree is
viewed from the distance. So the computational effort can be reduced drastically



6.4 Surface modelling with polygons in Java 3D 159

when simplified tesselations of the trees are used in this case. However, once
the viewer approaches the forest, more refined tesselations are required for a
realistic image. The viewer might even stand in front of a tree and look at the
structure of single leaves. This requires a very high resolution with triangles.
This technique of storing an object with different tesselations and deciding
which resolution should be used depending on the distance of the viewer to the
object is called level of detail (LOD).

6.4 Surface modelling with polygons in Java 3D

The representation of a scene in Java 3D is also based on tesselations of the
objects. The elementary geometric objects in Java 3D that were introduced in
section 5.4 are approximated by triangles. Figure 6.11 shows the tesselations for
the elementary geometric objects in the program StaticSceneExample.java.
A representation in the form of a wire frame model as shown in figure 6.11 can
be achieved in Java 3D by setting the PolygonAttributes of the corresponding
Appearance myApp.

PolygonAttributes polygAttr = new PolygonAttributes();

polygAttr.setPolygonMode(PolygonAttributes.POLYGON_LINE);

myApp.setPolygonAttributes(polygAttr);

Figure 6.11 was generated with the program TesselationBWExample.java.
No colours were used, all objects are drawn with the same black Appearance

for which the PolygonAttributes were set as described above. In the pro-
gram TesselationExample.java the original colours of the scene are kept and
PolygonAttributes were only set for the green Appearance so that only the
cockpit of the helicopter, its tail and the treetop are shown as wire frames.

The resolution for the tesselation of the elementary geometric objects can
also be controlled in Java 3D. The only exception is the box. It has six rectan-
gular faces and each of them can be exactly modelled by two triangles so that
there is no need for a higher resolution.



160 6. Modelling three-dimensional objects

The constructor

Sphere s =

new Sphere(r,Sphere.GENERATE_NORMALS,res,sphereApp);

generates a sphere with radius r and the Appearance sphereApp whose surface
is approximated by res triangles at the circumference. This constructor was
used in the program TesselationResolution.java with different values for
the resolution res to create figure 6.12.

The constructors

Cylinder c =

new Cylinder(r,h,Cylinder.GENERATE_NORMALS,xres,yres,app);

and

Cone c = new Cone(r,h,Cone.GENERATE_NORMALS,xres,yres,app);

generate a cylinder and a cone, respectively, with radius r, height h and
Appearance app. For the approximation of the surfaces, xres triangles are
used around the circumference and yres triangles along the height. For a nice
approximation, the value xres should be chosen larger whereas for yres even
the value 2 might be sufficient.

Java 3D offers a variety of ways to model surfaces of geometric objects by
approximations with polygons. Here, as one representative of these methods,
only approximations with triangles are considered. Usually, the approximation
of complex surfaces by triangles will not be specified directly. Instead, suitable
software tools are used for this purpose. For measurements of existing objects
there are programs that can convert the data into surfaces. CAD programs
and other design tools offer a selection of methods like freeform surfaces, CSG
and sweep representation together with elementary geometric objects. How to
import objects or files created with such tools into Java 3D will be explained
in section 6.5.

For modelling surfaces of objects directly with triangles, the class
GeometryArray is available. In the first step, the vertices of the triangles must
be stored in an array.

Point3f[] vertexCoordinates =

{

new Point3f(x0,y0,z0),

...

};

The coordinates of the points are given as float-values. For the tetrahedron
in figure 6.4 on page 152, this array would contain four instances of the class
Point3f. This array specifies only the points for vertices, but not which points



6.4 Surface modelling with polygons in Java 3D 161

should form a triangle. An integer array is responsible for this. For each trian-
gle, the indices of the corresponding points in the Point3f array are entered
subsequently into this array. For the tetrahedron in figure 6.4 the array would
have the following entries.

int triangles[] = {

0,3,1,

0,2,3,

0,1,2,

1,3,2

};

The number of vertices and the number of triangles coincide just by chance for
a tetrahedron. For other geometrical shapes this will not be the case. A cube,
for example, would require eight vertices and twelve triangles, two for each side
of the cube. It is important to specify the points for each triangle in the correct
order. The points should be given in anticlockwise order when looking at the
surface from the outside.

The following lines of code generate an instance ga of the class
GeometryArray from the specified vertices and triangles.

GeometryInfo gi =

new GeometryInfo(GeometryInfo.TRIANGLE_ARRAY);

gi.setCoordinates(vertexCoordinates);

gi.setCoordinateIndices(triangles);

NormalGenerator ng = new NormalGenerator();

ng.generateNormals(gi);

GeometryArray ga = gi.getGeometryArray();

Then this GeometryArray ga can be used to create an instance of the class
Shape3D with a predefined Appearance app.

Shape3D myShape = new Shape3D(ga,app);

This Shape3D object can be integrated into a scene in the same way as the
elementary geometric objects cube, sphere, cylinder and cone.

A tetrahedron is constructed in this way in the class
GeomArrayExample.java. It is interesting to see what happens if the vertices
of one of the triangles are specified in the wrong order. One could, for instance,
change the order of the points in the first triangle from 0,1,3 to 0,3,1. The front
face of the tetrahedron will obtain the reverse orientation and becomes invisible
from the front.



162 6. Modelling three-dimensional objects

6.5 Importing geometric objects into Java 3D

Although it is in principle possible to model surfaces of complex geometric
objects with triangles, it is an impossible task to specify all triangles explicitly.
Various file formats for 3D computer graphics objects can be imported into
Java 3D programs. In this way, modelling and design tools can be used to
create complex geometric objects which can then be integrated into animated
scenes in Java 3D. As an example, importing files in the Wavefront Object

format will be explained here in detail. In the appendix and on the web site of
this book, there are links to web sites where three-dimensional objects in this
format can be downloaded as well as links to programs for creating objects in
Wavefront Object format.

Files in Wavefront Object format are normal ASCII files containing the
following information. Comment lines start with the symbol #. The vertices
needed for modelling the three-dimensional object start with the letter v fol-
lowed by three values determining the x-, y- and z-coordinate of the corre-
sponding vertex. In the same way, normal vectors are specified starting with
vn (vertex normals) instead of v. In addition, points for attaching textures can
be defined. They are marked by vt (texture vertices). The description of poly-
gons starts with the letter f (face). A polygon is defined by the indices of its
vertices. Indices of corresponding normal vectors also belong to polygons. The
letter g (group) is used for groupings. In this way, polygons can be combined to
a group and can be addressed as subobjects. For example, a helicopter might
have groups for the cockpit, the rotor blade and the tail. A name can be as-
signed to each group. Then Java 3D can directly access such groups and, for
instance, assign individual colours to them.

With the following lines of code the file filename.obj in Wavefront Object
format can be loaded to a Java 3D scene.

ObjectFile f = new ObjectFile(ObjectFile.RESIZE);

Scene s = null;

try

{

s = f.load("filename.obj");

}

catch (Exception e)

{

System.out.println("File loading failed:" + e);

}

Then this loaded object can be assigned to a transformation group tg, as usual,
with the method addChild using the method getSceneGroup.



6.6 Parametric curves and freeform surfaces 163

tg.addChild(s.getSceneGroup());

The method getNamedObjects provides a Hashtable with the names of all
groups that are defined in the loaded file so that subobjects can be accessed.
The following lines of code print the names of these subobjects.

Hashtable namedObjects = s.getNamedObjects();

Enumeration enum = namedObjects.keys();

String name;

while (enum.hasMoreElements())

{

name = (String) enum.nextElement();

System.out.println("Name: "+name);

}

If there is, for example, a subobject with the name partName and this subobject
should obtain a new colour given by the Appearance app, then this can be
achieved by

Shape3D part = (Shape3D) namedObjects.get("partName");

part.setAppearance(app);

In this way, it is also possible to use only parts of an object in Wavefront Object
format in a scene. After loading the Wavefront Object file, the whole object is
not assigned to the transformation group tg as above, but only the subobject
with the group name partName is chosen and endowed with the Appearance

app by the following lines of code.

Shape3D part = (Shape3D) namedObjects.get("partName");

Shape3D extractedPart = (Shape3D) part.cloneTree();

extractedPart.setAppearance(app);

tg.addChild(extractedPart);

The program Load3DExample.java demonstrates how to include an object in
Wavefront Object format into a Java 3D program, how to print out all its
group names, and how to assign a colour to a specific subobject. The program
Extract3DExample.java shows how to extract a single subobject and how to
include only this subobject with a desired colour in a scene.

6.6 Parametric curves and freeform surfaces

For the representation of a scene as an image, the surfaces of geometric objects
are approximated by triangles. But an explicit description of surfaces with



164 6. Modelling three-dimensional objects

triangles is not suitable for modelling. Freeform surfaces are much better suited
for this purpose. They are the three-dimensional counterpart of curves in the
plane as described in section 2.3. Like these curves, a freeform surface is defined
by a finite set of points which it approximates. Saving geometric objects based
on freeform surfaces does not cause any problems when the object is scaled.
Tesselations are not well suited for scaling an objects. They will lead to similar
problems as scalings of raster graphics. For a given freeform surface, the number
of triangles for the tesselation can be chosen depending on the desired precision
and resolution. The freeform surfaces provide also exact information about the
normal vectors to the surface which are very important for illumination and
shading.

Figure 6.13 Two curves obtained from a surface that is scanned along the
coordinate axes

Modelling curved surfaces is based on parametric curves. When a surface
is scanned parallel to one of the coordinate axes, one obtains a curve in the
three-dimensional space. Figure 6.13 shows two curves that are obtained from
scanning a surface. Understanding parametric curves in the three-dimensional
space is essential for the understanding of curved surfaces. Therefore, a brief in-
troduction to parametric curves is given, before freeform surfaces are discussed.

6.6.1 Parametric curves

When a curve in the three-dimensional space or in the plane should be defined
by a finite set of points—the so-called control points—the following properties
will make modelling and adjusting such curves easier.

Controllability: The influence of the parameters on the shape of the curve can
be understood in an intuitive way. When the shape of a curve has to be
changed, it should be clear for the user which parameters he should modify
in which way in order to achieve the desired change.

Locality principle: It must be possible to carry out local changes on the curve.



6.6 Parametric curves and freeform surfaces 165

Modifying one control point should only change the curve in the neigh-
bourhood of this control point and not alter the curve completely.

Smoothness: The curve should satisfy certain smoothness properties. It should
not only be continuous without jumps, it should have no sharp bends. The
latter property requires the curve to be differentiable. In some cases it
is even necessary that higher derivatives exist. It also desirable that the
curve is of bounded variation. This means it should stay somehow close to
its control points.

Interpolation refers to curves that pass through all control points whereas
approximation only requires that the curve gets close to the control point, but it
does not have to pass through them. Given (n+1) control points, there is always
an interpolation polynomial of degree n or less that passes exactly through the
control points. Nevertheless, interpolation with polynomials is not suited for
the modelling purposes of computer graphics. Apart from the problem that the
evaluation of polynomials of higher degree leads to high computational costs,
interpolation polynomials do not satisfy the locality principle. The modification
of a single control point usually affects all coefficients of the polynomial and
changes the whole curve. Clipping for such polynomials is also not easy, since
a polynomial interpolating a given set of control points can deviate arbitrarily
from the region around the control points. Therefore, it is not sufficient to
consider only the control points for clipping of such interpolation polynomials.
The curve must be computed directly to check whether it passes through the
clipping area. Another problem of polynomials of higher degree is that they
tend to oscillate between the control points.

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5

f(x)

Figure 6.14 An interpolation polynomial of degree 5 defined by the control
points (0,0), (1,0), (2,0), (3,0), (4,1), (5,0)



166 6. Modelling three-dimensional objects

Figure 6.14 shows an interpolation polynomial of degree 5, defined by six
control points through which it passes. With the exception of one control point,
all others are located on the x-axis. The polynomial oscillates around the control
points and has a clear overshoot above the highest control point. It does not
stay within the convex hull of the control points.

The undesired properties of interpolation polynomials can be amended by
dropping the strict requirement that the polynomial must pass through all
control points. Instead, it is sufficient to approximate some of the control points
only. Bernstein polynomials of degree n are a class of polynomials with better
properties than interpolation polynomials. The i-th Bernstein polynomial of
degree n (i ∈ {0, . . . , n}) is given by the equation

B
(n)
i (t) =

(
n

i

)
· (1 − t)n−i · ti (t ∈ [0, 1]).

Bernstein polynomials satisfy two important properties.

B
(n)
i (t) ∈ [0, 1] for all t ∈ [0, 1].

This means that the evaluation of a Bernstein polynomial within the unit inter-
val will only yield values between zero and one. This property and the following
one will be needed later on for constructing curves that stay within the convex
hull of their control points.

n∑
i=0

B
(n)
i (t) = 1 for all t ∈ [0, 1].

In every position of the unit interval the Bernstein polynomials add up to one.
Bézier curves use Bernstein polynomials of degree n to approximate (n+1)

control points b0, . . . ,bn ∈ R
p. For the purposes of computer graphics only the

cases of the plane with p = 2 and the three-dimensional space with p = 3 are
of interest. The control points are also called Bézier points. The curve

x(t) =
n∑

i=0

bi · B(n)
i (t) (t ∈ [0, 1]) (6.1)

defined by these points is called a Bézier curve of degree n.
The Bézier curve interpolates the first and the last point, this means x(0) =

b0 and x(1) = bn hold. In general, the curve does not pass through the other
control points. The tangent vector to the Bézier curve in the first and the last
point can be calculated in the following way.

ẋ(0) = n · (b1 − b0),

ẋ(1) = n · (bn − bn−1).



6.6 Parametric curves and freeform surfaces 167

This means that the tangent vector in the first point b0 points in the direction
of the point b1 and the tangent vector in the last point bn points in the direction
of the point bn−1. This principle is already known from the definition of cubic
curves in figure 2.7 on page 15.

Fixing the value t in equation (6.1), one obtains a convex combination of
the control points b0, . . . ,bn, since the values x(t) of the Bernstein polynomials
add up to one in every point t. Therefore, the Bézier curve stays within the
convex hull of the control points.

When an affine transformation is applied to the control points, the result-
ing Bézier curve with respect to the new control points coincides with the
transformed Bézier curve. Therefore, Bézier curves are invariant under affine
transformations like rotation, translation or scaling. Bézier curves are also sym-
metric with respect to their control points. The control points b0, . . . ,bn and
bn, . . . ,b0 lead to the same curve. The curve is only passed through in the
reverse direction.

When a convex combination of two sets of control points is used to de-
fine a new set of control points, then the resulting Bézier curve is the convex
combination of the corresponding Bézier curves.

– If the control points b̃0, . . . , b̃n define the Bézier curve x̃(t) and

– the control points b̂0, . . . , b̂n define the Bézier curve x̂(t),

– then the control points αb̃0 + βb̂0, . . . , αb̃n + βb̂n define the Bézier curve
x(t) = αx̃(t) + βx̂(t) if α + β = 1, α, β ≥ 0 holds.

When all control points lie on a line or a parabola, then the resulting Bézier
curve will be the corresponding line or parabola. Bézier curves also preserve cer-
tain geometrical shape properties like monotonicity or convexity of the control
points.

Despite the nice properties of Bézier curves, they are not suited for larger
sets of control points since this would lead to polynomials of high degree. (n+1)
control points usually define a Bézier curve which is a polynomial of degree n.
Therefore, instead of Bézier curves, B-splines are preferred to define approx-
imating curves for a given set of control points. B-splines are composed of a
number of Bézier curves of lower polynomial degree—usually degree three or
four. For this purpose, for a sequence of n control points (for instance n = 4) a
Bézier curve is computed and the last control point of the sequence is used as
the starting point of the next sequence for the next Bézier curve. In this way,
B-splines interpolate those control points where the single Bézier curves are
glued together. These junctions are also called knots. The other control points
are called inner Bézier points. Figure 6.15 shows a B-spline which is composed
of two Bézier curves of degree 3.



168 6. Modelling three-dimensional objects

P P

P P

1

4

P
6

7

3

P
2

P
5

Figure 6.15 B-spline with knots P1, P4, P7 and inner Bézier points
P2, P3, P5, P6

In order to avoid sharp bends at junctions between the Bézier curves, each
knot and its two neighbouring inner Bézier points should be collinear. In this
way, the B-spline will be differentiable also in the knots. This method for avoid-
ing sharp bends was illustrated in figure 2.8 on page 16. By choosing the inner
Bézier points properly, a B-spline of degree n can be differentiated (n−1) times.
Cubic B-splines are based on polynomials of degree three and can therefore be
twice differential when the inner Bézier points are chosen correctly. In addi-
tion to the collinearity condition, another restriction must be imposed on the
neighbouring inner Bézier points. The B-spline in figure 6.16 is composed of
two Bézier curves of degree 3. It is defined by the knots P1, P4, P7 and the in-
ner Bézier points P2, P3, P5, P6. In order to guarantee that the B-spline is twice
differentiable, the segments of the tangents must have the same proportions as
indicated in figure 6.16.

B-splines preserve the nice properties of Bézier curves. They stay within
the convex hull of the control points, they are invariant under affine transfor-
mations, symmetric in the control points, they interpolate the first and the last
control point and they satisfy the locality principle.

A B-spline is piecewise composed of Bézier curves. They can be described
in homogeneous coordinates in the form

⎛
⎜⎜⎝

Px(t)
Py(t)
Pz(t)

1

⎞
⎟⎟⎠ .

Px(t), Py(t), Pz(t) are polynomials in t. When a perspective projection in the
form of a matrix as in equation (5.6) is applied to this representation of a Bézier



6.6 Parametric curves and freeform surfaces 169

� � �

� � �

�

�

�

�

�

�




+

,
�

-

.

/

0

Figure 6.16 Condition for the inner Bézier points for a twice differentiable,
cubic B-spline

curve, one obtains
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1

z0
1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

Px(t)
Py(t)
Pz(t)

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Px(t)
Py(t)

0
Pz(t)

z0
+ 1

⎞
⎟⎟⎟⎠ .

Therefore, the projection of a Bézier curve as a parametric curve is no longer
a polynomial in Cartesian coordinates, but a rational function.

⎛
⎜⎜⎜⎜⎜⎝

Px(t)
Pz(t)

z0
+1

Py(t)
Pz(t)

z0
+1

0

⎞
⎟⎟⎟⎟⎟⎠

.

Since a perspective projection of a B-spline or a Bézier curve will lead to a
rational function anyway, one can already use rational functions for modelling
curves in the three-dimensional space. The perspective projection of a ratio-
nal function is again a rational function. Therefore, it is very common to use
NURBS (nonuniform rational B-splines) instead of B-spline. NURBS are gener-
alisations of B-splines based on extensions of Bézier curves to rational functions
in the following form.

x(t) =
∑n

i=0 wi · bi · B(n)
i (t)∑n

i=0 wi · B(n)
i (t)

.



170 6. Modelling three-dimensional objects

The adjustable weights wi are called form parameters. A larger weight wi in-
creases the influence of the control point bi on the curve. For support of this
interpretation and to avoid singularities, it is usually required that all weights
wi are positive.

6.6.2 Efficient computation of polynomials

In order to draw a parametric curve, polynomials have to be evaluated. The
same applies to freeform surfaces. In most cases, polynomials of degree 3 are
used. This section presents an efficient scheme for evaluating polynomials,
which is based on similar principles of incremental computations as introduced
in the context of the midpoint algorithm in section 3.2. Although floating point
arithmetic cannot be avoided for polynomials in this way, it is at least possible
to reduce the repeated calculations to additions only.

For drawing a cubic curve, the parametric curve is evaluated at equidis-
tant values of the parameter t. The corresponding points are computed and
connected by line segments. The same applies to freeform surfaces, which are
also modelled by parametric curves or surfaces in the form of polynomials. For
evaluating a polynomial f(t) at the points t0, t1 = t0+δ, t2 = t0+2δ, . . . with a
step width of δ > 0, a scheme of forward differences is applied. The polynomial
has to be evaluated once for the initial value f0 = f(t0) at the point t0 and
then the changes

∆f(t) = f(t + δ) − f(t)

are added in an incremental fashion as

f(t + δ) = f(t) + ∆f(t)

or
fn+1 = fn + ∆fn.

For a polynomial f(t) = at3 + bt2 + ct + d of degree 3, this leads to

∆f(t) = 3at2δ + t(3aδ2 + 2bδ) + aδ3 + bδ2 + cδ.

In this way, the evaluation of polynomials of degree 3 can be reduced to an
addition of ∆-values. The computation of these ∆-values requires evaluations
of polynomials of degree 2. These polynomials are also not explicitly evaluated.
The same scheme of forward differences is also applied to them.

∆2f(t) = ∆(∆f(t)) = ∆f(t + δ) − ∆f(t)

= 6aδ2t + 6aδ3 + 2bδ2.



6.6 Parametric curves and freeform surfaces 171

The ∆-values of the original polynomial of degree 3 are calculated from the
equation

∆fn = ∆fn−1 + ∆2fn−1.

A multiplication is still necessary for the computation of the ∆2-values. Ap-
plying the scheme of forward differences once again, one obtains

∆3f(t) = ∆2f(t + δ) − ∆2f(t) = 6aδ3.

With this final step, multiplications are only required for the computation of
the initial value at t0 = 0.

f0 = d,

∆f0 = aδ3 + bδ2 + cδ,

∆2f0 = 6aδ3 + 2bδ2,

∆3f0 = 6aδ3.

For the calculation of all further values, only additions are needed. Table 6.1
illustrates this principle of difference schemes. Table 6.2 shows the calculations
of the forward differences for an example, the polynomial f(t) = t3 + 2t + 3,
i.e., a = 1, b = 0, c = 2, d = 3, with a step width of δ = 1.

t0 = 0 t0 + δ t0 + 2δ t0 + 3δ . . .

f0 → + → + → + . . .

∆f0
↗
→ + ↗

→ + ↗
→ + . . .

∆2f0
↗
→ + ↗

→ + ↗
→ + . . .

∆3f0
↗
→ ∆3f0

↗
→ ∆3f0

↗
→ ∆3f0 . . .

Table 6.1 Forward difference for a general polynomial of degree 3

6.6.3 Freeform surfaces

As mentioned in section 6.6, freeform surfaces are closely related to parametric
curves. Freeform surfaces have two parameters to describe the two-dimensional
surface, whereas only one parameter t is needed for curves. When one parameter
of a freeform surface is considered as fixed, then the variation of the other
parameter yields a curve on the surface as can be seen in figure 6.17.



172 6. Modelling three-dimensional objects

t = 0 t = 1 t = 2 t = 3 t = 4 . . .

3 → 6 → 15 → 36 → 75 . . .

3 ↗
→ 9 ↗

→ 21 ↗
→ 39 ↗

→ 63 . . .

6 ↗
→ 12 ↗

→ 18 ↗
→ 24 ↗

→ 30 . . .

6 ↗
→ 6 ↗

→ 6 ↗
→ 6 ↗

→ 6 . . .

Table 6.2 Forward differences for the polynomial f(t) = t3 +2t+3 with step
width δ = 1

s

t

P  (t)

P  (t)t=0

t=0.2

t=0.4

t=0.6

t=0.8

t=1

1

2

Figure 6.17 A parametric freeform surface

Bézier surfaces are composed of Bézier curves with parameters s and t.

x(s, t) =
n∑

i=0

m∑
j=0

bij · B(n)
i (s) · B(m)

j (t) (s, t ∈ [0, 1]).

Most common are Bézier curves of degree 3. This means m = n = 3. For the
definition of a Bézier surface (m + 1) · (n + 1) Bézier points bij , i.e., 16 in the
case of cubic Bézier surfaces, have to be specified. Figure 6.18 illustrates how
a net of Bézier points determines the Bézier surface.

Bézier surfaces have similar nice properties as Bézier curves. The four points
at the corners b00,b0m,bn0,bnm lie on the surface. This does not apply to the
other control points in general. The surface stays within the convex hull of
the control point. Curves with a constant value s = s0 are Bézier curves with
respect to the points



6.7 Normal vectors for surfaces 173

Figure 6.18 A net of Bézier points for the definition of a Bézier surface

bj =
n∑

i=0

bij · B(n)
j (s0)

and analogously for curves with constant parameter t = t0.
Since tesselations, as they are required in computer graphics, approximate

surfaces with triangles and not with rectangles, Bézier surfaces of degree n,
usually n = 3, are sometimes defined over a grid of triangles in the following
way.

x(t1, t2, t3) =
∑

i,j,k≥0: i+j+k=n

bijk · B(n)
ijk (t1, t2, t3).

The corresponding Bernstein polynomials are given by

B
(n)
ijk (t1, t2, t3) =

n!
i!j!k!

· ti1 · tj2 · tk3

where t1 + t2 + t3 = 1, t1, t2, t3 ≥ 0 and i + j + k = n (for i, j, k ∈ N). The
triangular grid is shown in figure 6.19.

6.7 Normal vectors for surfaces

Aspects of illumination and shading in connection with light reflections are
crucial for generating realistic 3D images. Light reflections depend on the angle
of the light with respect to the surface. Surface normal vectors are needed for
the calculation of these angles. Illumination and shading techniques will be
described in detail in section 8. In this section, normal vectors are introduced
that will be needed later on for illumination and shading purposes.



174 6. Modelling three-dimensional objects

1 - 2 � 2 � 3
1 , 2 
 2 � 3 1 + 2 + 2 � 3 1 
 2 , 2 � 3

1 � 2 - 2 � 3

1 , 2 � 2 
 3

1 + 2 � 2 + 3

1 
 2 � 2 , 3

1 � 2 � 2 - 3

1 � 2 , 2 
 3

1 � 2 + 2 + 3

1 � 2 
 2 , 3

1 + 2 
 2 
 3 1 
 2 + 2 
 3

1 
 2 
 2 + 3

Figure 6.19 A triangular grid for the definition of a Bézier surface

A triangle always defines a plane and all normal vectors of such a flat
triangle point in the same direction. If the plane induced by a triangle is given
by the equation

Ax + By + Cz + D = 0, (6.2)

then the vector (A,B,C)� is a nonnormalised1 normal vector to the plane.
This is true for the following reason. If n = (nx, ny, nz)� is a not necessarily
normalised normal vector to the plane and v = (vx, vy, vz)� is a point in the
plane, then the point (x, y, z)� lies also in the plane if and only if the vector
connecting v and (x, y, z)� lies in the plane. This means the connecting vector
must be orthogonal to the normal vector.

0 = n� ·
(
(x, y, z)� − v

)
= nx · x + ny · y + nz · z − n� · v.

Choosing A = nx, B = ny, C = nz and D = n� · v, equation (6.2) for the
plane is obtained.

When a triangle is given by the three noncollinear points P1,P2,P3, the
normal vector can be calculated by the cross product by

n = (P2 − P1) × (P3 − P1).

The cross product of two vectors (x1, y1, z1)� and (x2, y2, z2)� is defined as the
vector ⎛

⎝
x1

y1

z1

⎞
⎠×

⎛
⎝

x2

y2

z2

⎞
⎠ =

⎛
⎝

y1 · z2 − y2 · z1

z1 · x2 − z2 · x1

x1 · y2 − x2 · y1

⎞
⎠ .

1 For a normalised vector v, ‖ v ‖= 1 must hold.



6.7 Normal vectors for surfaces 175

The cross product is zero when the two vectors are collinear.
Equation (6.2) provides a nonnormalised normal vector to the plane. The

value D is obtained by inserting one of the points of the triangle, i.e., one point
in the plane, into this equation.

D = n� · P1.

The normal vector at a point x(s0, t0) of a freeform surface is the normal
vector to the tangent plane in the corresponding point. The tangent plane is
determined by the tangent vectors at x(s0, t0) to the two parametric curves
p(s) = x(s, t0) and q(t) = x(s0, t).

(
∂

∂s
x(s, t0)

)

s=s0

=

⎛
⎝ ∂

∂s

n∑
i=0

m∑
j=0

bij · B(n)
i (s) · B(m)

j (t0)

⎞
⎠

s=s0

=
m∑

j=0

B
(m)
j (t0) ·

n∑
i=0

bij ·
(

∂B
(n)
i (s)
∂s

)

s=s0

,

(
∂

∂t
x(s0, t)

)

t=t0

=

⎛
⎝ ∂

∂t

n∑
i=0

m∑
j=0

bij · B(n)
i (s0) · B(m)

j (t)

⎞
⎠

t=t0

=
n∑

i=0

B
(n)
i (s0) ·

m∑
j=0

bij ·
(

∂B
(m)
j (t)
∂t

)

t=t0

.

These two tangent vectors are parallel to the surface in the point (s0, t0) and
induce the tangent plane in this point. The cross product of these tangent
vectors is then the normal vector to the surface at the point x(s0, t0).

Figure 6.20 Normal vectors to the original surface in the vertices of an
approximating triangle

When a freeform surface is approximated by triangles, the normal vectors
for the triangles should not be derived from the triangles but from the freeform



176 6. Modelling three-dimensional objects

surface directly. Of course, it is impossible to store a normal vector for every
single point in an approximating triangle. But at least, the normal vectors for
the three vertices of the triangle should be computed and stored as the normal
vectors to the surface in the corresponding points. In this way, a plane triangle
can have three different normal vectors that are inherited from the original
surface. None of these normal vectors might coincide with the normal vector
to the plane defined by the triangle as can be seen in figure 6.20.

6.7.1 Normal vectors in Java 3D

The normal vectors for the elementary geometric objects cube, sphere, cylinder
and cone are determined automatically in Java 3D. For objects loaded from a
file, for instance in Wavefront Object format, the normal vectors are usually
provided in the file along with object coordinates. When objects are modelled
directly by triangles in Java 3D, the normal vectors can also be specified explic-
itly. This will seldom be needed since complex objects are usually not designed
directly in Java 3D. They will be constructed with a suitable design tool and im-
ported to Java 3D as Wavefront Object files. Nevertheless, a simple technique
for controlling the generation of normal vectors in the class GeometryArray

shall be described here.
When an object is defined by triangles in Java 3D with the class

GeometryArray, an instance ng of the class NormalGenerator must be cre-
ated as described on page 161. It is possible to modify the computation of
normal vectors before the normal vectors for the GeometryInfo object gi are
calculated by calling the method ng.generateNormals(gi). The method

ng.setCreaseAngle(angle);

should be called directly before the method ng.generateNormals(gi). The
value angle specifies up to which angle the normal vectors of neighbouring
triangles should be interpolated. The idea behind this interpolation is that
neighbouring triangles with a very flat angle approximate a smooth curved
surface. So the edge between the triangles is not part of the approximated sur-
face. However, if the angle is too sharp, then the neighbouring triangles model
a real edge on the approximated surface and this edge should be preserved.
Figure 6.21 illustrates the principle of interpolated normal vectors on the left-
hand side. The angle between the two triangles is so flat that it can be assumed
that the edge is not desired and therefore, the normal vectors are interpolated.
There is a very sharp angle between the two triangles on the right-hand side of
figure 6.21. The resulting edge is intended and the normal vectors should not
be interpolated.



6.7 Normal vectors for surfaces 177

Figure 6.21 Interpolated and noninterpolated normal vectors

When the default constructor new NormalGenerator() is used, the angle
will be set to zero. Interpolation between normal vectors will not be carried
out. The method setCreaseAngle can change the angle and set it even to a
value that will cause interpolation between triangles with a very sharp edge in
between. In the program NormalsForGeomArrays.java, the same tetrahedron
as in the program GeomArrayExample.java is generated. However, the angle
for interpolation is set to π, i.e., 180◦, so that normal vectors between neigh-
bouring triangles are always interpolated. The edges of the tetrahedron, which
were clearly visible in the program GeomArrayExample.java, become almost
invisible now.



178 6. Modelling three-dimensional objects

6.8 Exercises

Exercise 6.1
The surface of the object on the right shall
be modelled with triangles. Define suit-
able coordinates for the six vertices and
specify the triangles based on the vertices.
Make sure that the orientation of each
triangle is chosen correctly. The vertices
of a triangle should occur in anticlockwise
order when looking at the surface from
outside the object. The object itself is
two units high, one unit in depth and

�

�

�

�

�

�

five units wide. Write a Java 3D program to model and display the object. Use
the technique that was explained in section 6.4.

Exercise 6.2
Draw the quadtree for the triangle on the right
up to a depth of two. The root (level 0) of the
quadtree corresponds to the dashed square.

Exercise 6.3

Display the spheres from figure 6.12, which were generated with the program
TesselationResolution.java, as wire frame models. Display also the ship
which is loaded in the program Load3DExample.java as a wire frame model.

Exercise 6.4

Use Java 2D to draw a twice differentiable curve based on the technique de-
scribed for figure 6.16.



7
Visible surface determination

In order to display a three-dimensional scene, the visible objects must be de-
termined. There are two aspects of such visibility considerations. First of all,
clipping will remove all objects that are not in the range that the viewer can
oversee. Rendering is only necessary for the objects inside the clipping region.
Problems in connection with clipping for two-dimensional graphics have been
discussed in chapters 3 and 4. Clipping for three-dimensional scenes will be
slightly more complicated. However, there is an additional aspect which only
occurs in the three-dimensional case. An object might be in the viewer’s view-
ing range, but it is invisible for the viewer since it is covered by other objects
from sight. This chapter focusses on three-dimensional clipping and algorithms
for determining visible objects.

7.1 The clipping volume

The specification of a number of parameters concerning the viewer is needed,
before a scene from a three-dimensional world can be displayed. The coordinates
of the point where the viewer stands are needed as well as in which direction
the viewer looks. This information is still not sufficient. The projection plane
must be defined as well. The projection plane corresponds to the plane for
displaying, usually the computer screen. The computer screen or any other
display can only show a limited sector of the infinite projection plane. This
sector is usually rectangular. Instead of defining the rectangle explicitly on the



180 7. Visible surface determination

projection plane, an angle of view can be specified. This angle determines the
viewer’s field of vision. The angle defines how far the field of view extends to
the left and the right from the viewer. This determines the width of the clipping
rectangle on the projection plane. It corresponds to the width of the window
on the computer screen that is used for displaying the scene. The height of
the rectangle can then be chosen proportionally to the height of the display
window. Figure 7.1 shows a view from above on the field of view.

�

/ � % 6 � ) � � % � � / � � � �

' � , / � � � � � � � ' % �

� � � � � � � � � ' � �

 � � � � �

Figure 7.1 The angle α determines the range on the projection plane that
corresponds to the width of the display window

In principle, these specifications are sufficient for clipping. Then the three-
dimensional clipping region—the clipping volume—corresponds to a pyramid
of infinite height in case of perspective projection and to a box with infinite
extension in one direction in case of parallel projection. As a consequence, an
arbitrary large number of objects might be located in the clipping volume.
When the viewer takes a closer look at a flower on a meadow in the virtual
world, the city in the far background of the scene must still be rendered com-
pletely. The resulting computational effort can be unacceptable. The following
considerations show also that this approach is not realistic.

The distance a person can see is almost unlimited. One can even see stars
in the night sky that are light-years away. A person can also see a finger posi-
tioned closely in front of his eyes. But it is impossible to see the finger and the
night sky at the same time. The eyes adjust to a specific distance. Only objects
approximately in this distance are in focus. Objects much farther away or much
closer are out of focus. For instance, when one focusses on a very distant object
and then places a finger close in front of one eye, one can almost not notice
the finger. The same effect also occurs when one focusses on something very
close. While reading a book, one will not notice birds flying in the sky or cars
passing by in the distance. At one moment in time, the focus is adjusted to a
fixed distance and there is a range around this distance in which objects can



7.1 The clipping volume 181

be seen in focus. This fact is modelled in computer graphics by clipping planes,
the front and the back clipping plane. The front clipping plane specifies the
shortest distance in which objects can still be seen and the back clipping plane
defines the largest distance in which objects are still in focus. For a perspective
projection, the clipping volume has the shape of a frustum of a pyramid, a
pyramid whose tip was cut off. The clipping volume for a parallel projection
reduces to a box. The projection plane lies in between the front and the back
clipping plane and corresponds to the distance of optimal focus. Objects lo-
cated between the front clipping plane and the projection plane should occur
in front of the computer screen. However, this effect can only be achieved with
techniques supporting stereoscopic viewing, which will be discussed in chapter
9. The relations between the front and back clipping plane and the projection
plane are illustrated in figure 7.2.

0 � ) - � ) � � / / � � �

/ � � � �

. � % � � �

) � � / / � � � � / � � � �

/ � % 6 � ) � � % �

/ � � � �

0 � ) - � ) � � / / � � �

/ � � � �

. � % � � �

) � � / / � � � � / � � � �

/ � % 6 � ) � � % �

/ � � � �

Figure 7.2 The clipping volume for parallel projection (top) and perspective
projection (bottom)

It was explained in section 5.8 how any projection can be decomposed into
a transformation T followed by a parallel projection onto the x/y-plane. There-
fore, three-dimensional clipping can be carried out in a simple and efficient way



182 7. Visible surface determination

by first applying the transformation T to all objects and then computing the
parallel projection onto the x/y-plane. In this way, the clipping volume even for
perspective projections will be transformed to the box-shaped clipping volume
of the parallel projection. The edges of this box are parallel to the coordinate
axes. The box can be defined by two vertices on its diagonal with coordinates
(xmin, ymin, zmin) and (xmax, ymax, zmax), respectively. In order to check whether
an object lies within the clipping volume, it is sufficient to find out whether at
least one point (px, py, pz) of the object is located in the box. This is satisfied
if and only if

xmin ≤ px ≤ xmax and ymin ≤ py ≤ ymax and zmin ≤ pz ≤ zmax

holds.

7.1.1 Clipping in Java 3D

Within the class SimpleUniverse default settings for the clipping parameters
are automatically chosen. How to change the position of the viewer was ex-
plained in section 5.8.1.

In order to modify the angle for the field of view or the clipping planes, it
is necessary to access the View of the SimpleUniverse, which is obtained by
the following method.

View v = simpUniv.getViewer().getView();

The method

v.setFieldOfView(angle);

sets the angle for the field of view to the value angle (in radians). The methods

v.setFrontClipDistance(fcdist);

v.setBackClipDistance(bcdist);

allow the user to define the distances fcdist and bcdist of the viewer to the
front and the back clipping plane, respectively. With

v.getPhysicalBody().setNominalEyeOffsetFromNominalScreen(

distance);

the distance of the projection plane to the viewer can be modified to the value
distance.

In the class ClippingPlanes.java the angle for the field of view is narrowed
to 30◦ compared to the default value of 45◦. In addition, the front clipping
plane is moved backwards and the back clipping plane is moved closer to the



7.2 Principles of algorithms for visible surface determination 183

viewer. The helicopter scene in figure 5.3 on page 121, originally generated with
the program StaticSceneExample.java, is shown again with these modified
clipping parameters. Since the clipping volume is significantly narrowed, parts
of the scene are no longer visible.

7.2 Principles of algorithms for visible surface
determination

Clipping is responsible for determining which objects of a virtual 3D world are
at least partly within the clipping volume. These objects are candidates for the
visible objects in the scene. Not all of these objects will be visible since objects
farther away from the viewer might be hidden from sight by other objects closer
to the viewer. The problem of determining which objects are visible and which
ones are not is referred to as hidden line and hidden surface elimination or
visible line and visible surface determination.

Since any projection can always be decomposed into a suitable geometric
transformation of the virtual world followed by a parallel projection to the
x/y-plane, considerations concerning the visibility of objects will refer to this
special case of a parallel projection in this chapter.

7.2.1 Image-precision and object-precision algorithms

A simple algorithm for determining the visible objects in a scene might be based
on the following principle. The rectangle on the projection plane corresponding
to the display window for the scene is endowed with the same pixel raster. Then
a ray is cast through each pixel in the direction of projection, i.e., parallel to
the z-axis. The colour of the pixel is given by the object which the ray first
hits. The technique is referred to as an image-precision algorithm since it is
based on the pixel raster of the image to be computed. An image-precision
algorithm has a complexity of n · p for an image with p pixels and n objects.
For a typical resolution of a computer screen, p would be around one million
pixels. The number of objects can vary strongly with the scene. Objects are
the polygons or triangles that model the surface. Therefore, thousands or even
100,000 objects might be contained in a complex scene.

Other strategies for visible surface determination than image-precision algo-
rithms are not based on the pixel raster, but take the relative positions among
the objects into account. Such techniques are called object-precision algorithms.
After it has been determined which objects or which parts of the objects are



184 7. Visible surface determination

visible, only those objects are projected onto the pixel raster. Object-precision
algorithms have to compare objects pairwise to find out which objects are hid-
den from view. This leads to a quadratic complexity in the number of objects,
i.e., a complexity of n(n−1)/2 for a scene with n objects in the worst case. Usu-
ally, the number of objects in a scene will be much smaller than the number of
pixels so that n2 � n ·p holds and object-precision algorithms seem to be supe-
rior to image-precision algorithms. However, the single steps of object-precision
algorithms are much more complex than those of image-precision algorithms.
One advantage of object-precision algorithms is that they work independent of
the resolution since they carry out the determination of visible objects inde-
pendent of the pixel raster. Only for the final projection of the visible objects
the pixel raster is needed.

7.2.2 Back-face culling

Independent of the chosen strategy for determining the visible surfaces, the
number of candidate objects, i.e., the number of triangles or polygons, should be
reduced to a minimum. Clipping already removes all objects outside the clipping
volume. But even roughly 50% of the objects within the clipping volume can
also be ignored for visibility considerations. Those polygons that do not face
the viewer can neither be visible nor can they hide other objects from view.
The latter point assumes that all geometric objects are solid. This means if the
backside of an object hides another object from view, then this object must also
be hidden from view by the frontside. Removing all triangles or polygons that
point away from the viewer before starting the actual visibility determination
is called back-face culling.

It was explained in section 6.1 that triangles and polygons for surfaces ob-
tain an orientation by the order in which their vertices are specified. A polygon
is visible only from that side where its vertices appear in anticlockwise order.
Taking this into account, the normal vector of a polygon can also be oriented
in such a way that it always points in the direction from where the polygon is
visible. If such a normal vector points away from the viewer, he is looking at
the polygon from its backside so that it cannot be visible for him. The polygon
can be ignored for visibility considerations. For a parallel projection to the x/y-
plane, the direction of projection is parallel to the z-axis. The z-axis points to
the viewer. A polygon can only be visible from the front in the case of an acute
angle between the polygon’s normal vector and the direction of projection, i.e.,
the z-axis.



7.2 Principles of algorithms for visible surface determination 185

Figure 7.3 A front face whose normal vector forms an acute angle with the
direction of projection and a back face whose normal vector forms an obtuse
angle with the direction of projection

The tetrahedron in figure 7.3 illustrates this principle. The two parallel
vectors indicate the direction of projection. They point in the same direction
as the z-axis. The other two vectors are the normal vectors to two faces of
the tetrahedron. The normal vector of the front face forms an acute angle
with the direction of projection. Therefore, this face will be visible unless there
is some other object between it and the observer. The normal vector of the
back face forms an obtuse angle with the direction of projection. Back-face
culling will remove the corresponding triangle. It will be ignored for visibility
considerations.

A face can be removed by back-face calling if and only if its normal vector
forms an obtuse angle with the direction of projection, i.e., when the angle is
larger than 90◦. The dot product of the normal vector n = (nx, ny, nz)� and
the unit vector in the direction of projection ez = (0, 0, 1)� yields

e�z · n = cos(ϕ)· ‖ ez ‖ · ‖ n ‖ (7.1)

where ϕ is the angle between the two vectors and ‖ v ‖ is the length of the vector
v. The length of a vector can never be negative and both vectors are not the
zero-vector. This means that the right-hand side of equation (7.1) is negative
if and only if cos(ϕ) < 0, i.e., if ϕ > 90◦ holds. The sign of the dot product
(7.1) indicates whether the face with the normal vector n has to be taken into
account for the visibility considerations. All faces where the dot product yields
a negative value can be neglected for the visibility considerations. Since one of
the vectors in the dot product is the unit vector for the z-axis, the dot product
simplifies to

e�z · n = (0, 0, 1) ·

⎛
⎝

nx

ny

nz

⎞
⎠ = nz.



186 7. Visible surface determination

Therefore, no multiplications or additions are needed to determine the sign of
this dot product. It is sufficient to check the sign of the z-component of the
normal vector n.

For a parallel projection to the x/y-plane, back-face culling means that all
polygons whose normal vectors have a negative z-component can be removed
before further visibility considerations are carried out.

7.2.3 Spatial partitioning

Back-face culling reduces the computational effort for visibility considerations.
Spatial partitioning also tries to remove the computational effort further. The
clipping volume is subdivided into disjoint regions, for instance into eight boxes
of equal size. The objects are assigned to the corresponding box or boxes with
which they have a nonempty intersection. An object that crosses the boundary
of a box will be assigned to more than one box.

In case of an object-precision algorithm, only the objects within the same
box have to be checked for visibility considerations for visible surface deter-
mination. If one box is behind another, all its objects will be projected before
the objects from the box in front. In this way, objects from the front box will
automatically overwrite objects from the box behind it that are hidden from
view. For a partition of the clipping volume into k boxes, the n objects in the
scene will be equally distributed over the boxes in the ideal case. This means

that the computational complexity is reduced from n2 to k ·
(

n
k

)2 = n2

k . This
is, however, only true if no object crosses the border of a box and the objects
are equally distributed over the boxes, i.e., each box contains n

k objects. This
assumption will definitely not be valid anymore when the partition contains a
larger number of boxes and the boxes become too small.

Figure 7.4 Partitioning of the clipping volume for image-precision (left) and
object-precision algorithms (right)



7.3 Image-precision techniques 187

For image-precision algorithms it is better to partition the clipping volume
into boxes as is shown on the left of figure 7.4. The clipping rectangle on
the projection plane is partitioned into smaller rectangles and each smaller
rectangle induces a box in the clipping volume. For each pixel only those objects
have to be considered that lie within the box that is associated with the smaller
rectangle in which the pixel lies.

Recursive subdivision algorithms divide the clipping region farther and fur-
ther until a region is small enough to decide which object is visible in it. An
upper bound for the maximum depth of such recursive partitioning is given by
the resolution of the image. Area subdivision algorithms partition the clipping
rectangle on the projection plane recursively so that they are image-precision
methods. Octree algorithms partition the clipping volume and are therefore
object-precision methods.

7.3 Image-precision techniques

Three image-precision techniques will be introduced in this section. The most
popular and important one is the z-buffer or depth-buffer algorithm.

7.3.1 The z-buffer algorithm

The z-buffer or depth-buffer algorithm is the most often applied technique
for determining visible surfaces. The z-buffer algorithm is an image-precision
technique which is based on the following principle. It uses a frame buffer for
the colours of the pixels in the image and a z- or depth-buffer in which a z-
value is entered for each pixel. The z-buffer is initialised with the distance or
z-coordinate of the back clipping plane. The frame buffer is initialised with
the background image or background colour. The objects are projected in an
arbitrary order and the projections are stored in the frame buffer. If all objects
were entered in this way into the frame buffer, then objects projected later
would overwrite earlier projected objects when their projections overlap. Since
the order of projection is not fixed, this could lead to the wrong result that
objects farther away from the viewer hide objects from view that are closer to
the viewer. Therefore, before a pixel of a projected object is entered into the
frame buffer, its z-value, i.e., its distance to the projection plane, is compared
to the value entered for the corresponding pixel so far in the z-buffer. If the
value in the z-buffer is larger than the z-value of the point of the object that led
to the projected pixel, then the new pixel colour is entered into the frame buffer



188 7. Visible surface determination

and the z-value is also updated. If, on the other hand, the z-value corresponding
to the projected pixel is larger than the value in the z-buffer, then neither the
frame buffer nor the z-buffer is changed.

�

�

�

� � � � � � � 	

� 	 � � � � � � � � � 	

�

�

�

�

� � � � � � � 	

� 	 � � � � � � � � � 	

�

� �

� �

�

�

�

� � � � � � � 	

� 	 � � � � � � � � � 	

�

�

�

�

�

� � �

� � � � � �

Figure 7.5 Principle of the z-buffer algorithm

The principle of the z-buffer algorithm is illustrated in figure 7.5. There
are two objects to be projected, a rectangle and an ellipse. The viewer looks
at the scene from below the projection plane or the frame buffer. The frame
buffer is initialised with the background colour—in this case white—and the
z-buffer is initialised with the z-value of the back clipping plane. The values
are not shown here. They could be −∞ here, i.e., the back clipping plane could
be moved to infinity. The rectangle is projected first. Since the rectangle lies
within the clipping volume and its z-values are smaller than the z-values of the
back clipping plane, the rectangle is projected to the frame buffer and its z-



7.3 Image-precision techniques 189

coordinates are entered in the z-buffer. When the ellipse is projected afterwards,
it turns out that its z-values are even smaller where the ellipse and the rectangle
overlap. Therefore, the ellipse overwrites the projection of the rectangle partly
in the frame buffer and its z-values are also entered in the z-buffer.

Had the ellipse been projected before the rectangle, then the following would
happen. When the rectangle is projected, there are already values in the z-buffer
that are smaller than the z-values of the rectangle. Therefore, the rectangle will
not be projected into the frame buffer where already smaller z-values coming
from the ellipse are entered in the z-buffer. So even in this order of projection,
the final result would be the same as in figure 7.5.

It should be noted that the z-values of an object are usually not constant.
It must be decided individually for each pixel whether it should be entered into
the frame and the z-buffer or not.

The z-buffer algorithm can be applied in a very efficient manner for ani-
mated scenes with moving objects when the viewer does not change his position.
All objects that do not move form the background of the image. They need to
be entered into the frame and the z-buffer just once. So each time a new image
for the animated scene is generated, the frame and z-buffer are initialised with
the static part of the scene. Only the moving objects have to be re-entered
into the buffers. If a moving object is hidden from another static object in
the scene, then this will be noticed since the z-value has been initialised with
a corresponding lower value. The moving object will not be entered into the
buffers in this case.

In order to enter polygons into the frame and the z-buffer, a scan line
technique is applied to each pixel row in the projection plane. Let the plane
induced by the polygon be given by the equation

A · x + B · y + C · z + D = 0. (7.2)

The z-value along a scan line can be computed in the following form.

znew = zold + ∆z

since the z-values of a plane change in a linear fashion when they are sampled
along a line. Let zold be the z-coordinate of the projected polygon at pixel
(x, y). The new z-coordinate znew for the following pixel (x + 1, y) must satisfy
equation (7.2) for the plane as well as the previous point (x, y, zold) since both



190 7. Visible surface determination

points lie in the plane.

0 = A · (x + 1) + B · y + C · znew + D

= A · (x + 1) + B · y + C · (zold + ∆z) + D

= A · x + B · y + C · zold + D︸ ︷︷ ︸
= 0

+A + C · ∆z

= A + C · ∆z.

Therefore, the change of the z-coordinate along the scan line is

∆z = −A

C
.

7.3.2 Scan line technique for edges

For the z-buffer algorithm, the projection of single polygons can be carried out
on the basis of a scan line technique. As an alternative it is also possible to
project the edges of all polygons and to apply a scan line technique to determine
which polygons should be drawn.

The coordinate axes of the rectangular clipping area on the projection plane
are denoted by u and v. This scan line technique is based on three tables. The
edge table contains all nonhorizontal edges and has the following structure.

vmin u(vmin) vmax ∆u Polygon numbers

vmin is the smallest v-value of the projected edge, u(vmin) the u-value corre-
sponding to vmin. vmax denotes the largest v-value of the edge. ∆u is the slope
of the projected edge. The column polygon numbers contains the list of all
polygons to which the edge belongs. The edges are sorted in increasing order
with respect to their vmin-values. For identical vmin-values, edges with a smaller
u(vmin)-value come first.

The second table of this scan line technique is the polygon table, containing
information about the polygons in the following form.

Polygon No. A B C D Colour In-flag

The polygon number serves as a key or identifier for the polygon. The coeffi-
cients A,B,C,D define the plane corresponding to the polygon in terms of the
equation

Ax + By + Cz + D = 0.

The column colour contains the colour or information about the shading of the
polygon. If only a single value can be entered there, the possibilities for realistic



7.3 Image-precision techniques 191

shading are very restricted. In-flag indicates whether the actual position on the
scan line lies within or outside the polygon.

The last table contains the list of all active edges. Active edges are those
edges which intersect the actual scan line. These edges are sorted by the u-
components of the intersection points in increasing order. The number of rows
of the table of active edges can be different for each scan line. The number of
rows and the entries of the other two tables remain constant except for the
entries in the column with the In-flag.

�
�

�
�

�
�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

Figure 7.6 Determining the active edges for the scan lines v1, v2, v3, v4

For the configuration shown in figure 7.6, the following edges are active for
the scan lines v1, v2, v3, v4, respectively.

v1 : P3P1, P1P2

v2 : P3P1, P1P2, P6P4, P5P4

v3 : P3P1, P6P5, P3P2, P5P4

v4 : P6P5, P5P4.

When a single scan line is considered, the active edges are determined first
and all In-flags are set to zero. When the line is scanned, each time an edge is
crossed, the In-flags of the associated polygons have to be inverted from 0 to 1
or from 1 back to 0 since crossing an edge means that one enters or leaves the
polygon. At each pixel, the visible polygon among those with In-flag=1 has to
be determined. For this purpose, the z-value of each polygon with In-flag=1 is
computed based on the equation for the plane. The polygon with the smallest
z-value is the one that is visible at the considered pixel. The corresponding z-
value of the polygon can be determined in an incremental fashion in the same
way as in the z-buffer algorithm.



192 7. Visible surface determination

7.3.3 Ray casting

Ray casting is another image-precision technique for visible surface determi-
nation. For each pixel in the clipping rectangles of the projection plane a ray
parallel to the direction of projection is cast. The ray should start at the front
clipping plane and end at the back clipping plane. The first object that the ray
meets determines the colour of the pixel. Ray casting is suitable for parallel
projection as well as perspective projection without an additional transforma-
tion that turns the perspective projection into a parallel projection. The rays
are parallel to the direction of projection for a parallel projection and for a per-
spective projection the rays are cast along the connections between the centre
of projection and the pixels. Figure 7.7 illustrates the ray casting technique.
Pixels correspond to the centres of the centres of the squares of the projection
plane in the figure.

Figure 7.7 Ray casting

For a perspective projection with its centre of projection in the point
(x0, y0, z0), the ray to the pixel with the coordinates (x1, y1, z1) can be pa-
rameterised by

x = x0 + t · ∆x, y = y0 + t · ∆y, z = z0 + t · ∆z (7.3)

where
∆x = x1 − x0, ∆y = y1 − y0, ∆z = z1 − z0.

For values t < 0 the ray is behind the centre of projection, for t ∈ [0, 1] between
the centre of projection and the projection plane, and for t > 1 it is behind the
projection plane.



7.3 Image-precision techniques 193

In order to determine whether the ray intersects a polygon and, if yes,
where it meets the polygon, the intersection point of the ray with the plane
Ax+By +Cz +D = 0 induced by the polygon is calculated. Afterwards a test
is carried out, yielding whether the intersection point lies within the polygon.

Inserting the ray (7.3) into the equation for the plane, one obtains for t the
solution

t = −Ax0 + By0 + Cz0 + D

A∆x + B∆y + C∆z
.

Given that the equation Ax + By + Cz + D = 0 describes a plane, i.e., at
least one of the coefficients A,B,C is nonzero, the denominator can become
zero if and only if the ray is parallel to the plane. In this case, the plane is not
important for the projection to the considered pixel.

x

z

y

Figure 7.8 Projection of a polygon to decide whether a point lies within the
polygon

In order to determine whether the intersection point lies within the polygon,
the polygon is projected together with the intersection point to one of the
planes defined by the axes of the coordinate system. This means that one of
the coordinates is set to zero. To avoid problems with roundoff errors, the plane
that should be chosen for projection should be the one that is most parallel to
the plane of the polygon. This means that the normal vector to the polygon
plane and the normal vector to the projection plane should be as parallel as
possible. The angle between these two normal vectors should be close to 0◦ or
180◦. In other words, their dot product should either be close to one or −1
given that the normal vectors are normalised. The dot product of the normal
vector (A,B,C) with a normal vector to a plane defined by two coordinate axes
is simply the component of (A,B,C) that will be set to zero for the projection.
Therefore, the projection plane is chosen orthogonal to the component which



194 7. Visible surface determination

has the greatest absolute value in (A,B,C). After the projection, the odd parity
rule is applied to decide whether the intersection point lies within the projected
polygon as is illustrated in figure 7.8.

Coherence should be taken into account for ray casting in order to reduce
the computational complexity. Coherence refers to exploiting considerations
like the following ones.

– Neighbouring pixels usually obtain their colour from the same polygon.

– Once a ray intersects a polygon, it is not necessary to calculate intersections
with polygons which are farther away.

Without exploiting coherence, 1000 · 1000 · 100, i.e., 100 million intersection
tests would have to be carried out for a resolution of 1000×1000 pixels and 100
objects in the scene. Coherence can, for instance, reduce the computation time
in the following way. When the polygon has been computed which determines
the colour of a pixel, the intersection test for the neighbouring pixels should
be applied first to this polygon. When the new ray intersects this polygon as
well—and the chance is quite high—no intersection tests with polygons farther
away are required anymore.

Ray casting can lead to aliasing effects when the back clipping plane is
very far away. The background is composed of more or less randomly inter-
sected objects in the far distance so that neighbouring pixels representing the
background might not have the same or a similar colour. To avoid this effect,
supersampling can be applied. For one pixel more than one ray is cast as shown
in figure 7.9. The colour of the pixel is calculated as the mean or weighted mean
of the corresponding colours obtained from the objects that the rays meet.

Figure 7.9 Supersampling



7.4 Priority algorithms 195

The computational effort will increase only slightly in this case since most
of the additional rays can be used for more than one pixel. In figure 7.9 where
four rays are cast for each pixel in an m×n pixel matrix, only (m+1) · (n+1)
different rays instead of m ·n without supersampling have to be computed. The
additional effort is

(m + 1) · (n + 1) − m · n = m + n + 1.

For a resolution of 1000 × 1000 pixels the computational costs increase by
approximately 0.2%.

7.4 Priority algorithms

The order in which objects are projected is not important at all for the z-
buffer algorithm. By taking the information in the z-buffer into account, it can
be guaranteed that objects which are farther away from the viewer will not
overwrite closer objects, even if a distant object is projected later. The aim of
priority algorithms is to find a suitable order in which objects can be projected
so that no conflicts occur during the projection. This means that the distant
objects have to be projected first and the closer objects later on. This would
also guarantee that the projection of a distant object cannot overwrite a closer
object. If a suitable order of projection can be found for the objects, there is no
need for a z-buffer. The order of projection is also independent of the resolution
so that priority algorithms belong to the class of object-precision techniques.

In the following, two objects, i.e., two polygons P and Q, are considered.
The aim is to find out whether the order in which the polygons are projected
is important. In other words, does one polygon hide at least parts of the other
from view? It should be made sure that in such case the polygon closer to the
viewer is projected after the other one. If there is no overlap of the z-coordinates
of the two polygons, then the one with larger z-coordinates, the more distant
one, is projected first. If the z-coordinates overlap, further tests have to be
carried out.

In order to check whether the polygons overlap in the z-coordinate, it is
sufficient to compare the z-components of their vertices. If the z-components
of all vertices of one polygon are smaller than the z-components of all vertices
of the other polygon, then there is no overlap in the z-coordinates.

If the x- or the y-coordinates of the polygons P and Q do not overlap,
then the order of projection is not important for these polygons since their
projections will be next to each other, as can be seen in figure 7.10 and neither



196 7. Visible surface determination

of the two can hide the other from view. The test whether the x- or the y-
coordinates do not overlap, can be carried out in the same way as for the
z-coordinate.

�




�




Figure 7.10 No overlap in the x-coordinate (left) or the y-coordinate (right)

If there are overlaps in all coordinates, the next test to be carried out is
whether one polygon lies completely in front of or behind the plane that is
induced by the other polygon. These two possibilities are illustrated in figure
7.11. In the left-hand side of the figure, the polygon should be projected first
which lies behind the plane induced by the other. In the right-hand side of the
figure, the polygon that lies completely in front of the plane induced by the
other should be projected later.

Figure 7.11 Does one polygon lie completely in front or behind the plane
induced by the other?

These two cases can be checked based on correctly oriented normal vectors.
As an example, only the case in the right-hand side of figure 7.11 will be
explained in detail. The normal vector to the plane induced by the polygon
is the same normal vector as for the polygon itself. The normal vector must
point to the viewer and not away from him. Otherwise, the polygon had been
removed before by back-face culling. An arbitrary point in the plane is chosen



7.4 Priority algorithms 197

and the vectors connecting the point in the plane with the vertices of the other
polygon are considered. If the one polygon lies completely in front of the other
polygon, then all these vectors must have an angle of less than 90◦ with the
normal vector to the plane. This is the case if and only if the dot product of
each of these vectors with the normal vector to the plane is positive. Figure
7.12 illustrates this fact. The angles between the normal vector to the plane
and the vectors to the vertices of the other polygon are all smaller than 90◦.

 ! 	 � � � ! � � � � � � " 	 �  � � � ! � � �

# " � ! � � ! � $ � � % � 
 � � 	 � � �

� � & � � � ! � % � 	 '

� � 	 � � � � � � � � � 	

Figure 7.12 Determining whether a polygon lies completely in front of the
plane induced by the other polygon

Figure 7.13 A case where no correct order exists in which the polygons
should be projected



198 7. Visible surface determination

Unfortunately, these criteria are not always sufficient to determine a suitable
order of projection for the objects. There are cases as in figure 7.13 where it is
impossible to achieve a correct image by any order of projection. If none of the
above criteria is applicable, it is necessary for the priority algorithm to further
subdivide the polygons participating in the conflict in order to find a correct
order of projection. Even if such cases will not happen very often, it is not easy
to determine a suitable subdivision of the corresponding polygons.



7.5 Exercises 199

7.5 Exercises

Exercise 7.1

Change the clipping volume in the program TesselationResolution.java in
such a way that only the two spheres in the middle are visible and that their
front parts are also cut off.

Exercise 7.2

If one assumes in figure 7.8 that the polygons are triangles, it is necessary
to project the polygons and apply the odd parity rule afterwards in order to
determine whether the intersection point lies within the triangle. Describe an
algorithm for triangles without using projections.

Exercise 7.3

Describe an algorithm for testing whether the case in the left-hand side of figure
7.11 applies. The solution can be based on similar considerations as in figure
7.12.



8
Illumination and shading

Projections, required for displaying a three-dimensional scene on a two-dimen-
sional plane or screen, were discussed in section 5.8. A projection is a special
type of mapping from the three-dimensional space to a plane. In this sense,
a projection describes only where a point or an object has to be drawn on
the projection plane. The determination of visible surfaces in chapter 7 also
focussed only on the question which objects should be drawn or projected and
which ones are hidden from view by others. The information where an object
should be drawn on the projection plane, i.e., which pixels are covered by the
object, is not at all sufficient for a realistic representation of a three-dimensional
scene. Figure 8.1 shows the projections of a grey sphere and a grey cube, both
in two variants. The first variant simply assigns the colour of the sphere and
the cube directly to the pixels that are occupied by the corresponding object.
This leads to geometric shapes with a homogeneous colour losing almost the

Figure 8.1 Objects with and without illumination and shading effects



202 8. Illumination and shading

complete information about the three-dimensional structure. The projection of
the sphere is a grey circle, the cube becomes a grey hexagon.

Taking illumination and light reflections into account leads to different
light effects on the surfaces of the three-dimensional objects and to a non-
homogeneous shading of their projections. In this way, even the flat images
appear vivid and provide a three-dimensional impression as can be seen in fig-
ure 8.1 where the effects of illumination were taken into account for the second
sphere and the second cube. Shading refers to rendering an object’s surface
with illumination and light reflection effects. This chapter introduces the nec-
essary background and techniques for illumination and shading in computer
graphics.

From a theoretical point of view, the computations for shading described
in the following sections would have to be carried out for each wavelength of
the light individually. Since this is impossible, the computations will always be
restricted to the three primary colours red, green and blue in order to determine
the RGB-values for the representation.

8.1 Light sources

In addition to information about the objects and the viewer, the description
of a three-dimensional scene must also include information about illumination
of the scene. A single light source or a number of light sources can contribute
to the illumination of a scene. In most cases, light sources will provide white
or “grey” light, i.e., white light which does not have the full intensity. But also
coloured light coming from a traffic light or the more red or orange light from
the sun at dawn can occur in a scene. The colour and intensity of a light source
are defined by suitable RGB-values.

The simplest form of light is ambient light. Ambient light does not come
from a specific light source and has no direction. It represents the light that
is more or less everywhere in the scene, originating from multiple reflections
of light at various surfaces. In a room with a lamp on a table, it will not be
completely dark under the table although the lamp cannot shed its light di-
rectly under the table. The light is reflected by the surface of the table, the
walls, the ceiling and the floor. Of course, the light under the table will have a
lower intensity, but it will still be there with approximately the same intensity
everywhere, not coming from a specific direction. Ambient light is a simplifica-
tion of the computations for illumination. From the theoretical point of view,
there is nothing like ambient light. The correct way to take ambient light into
account would be to trace the multiple reflections of the light completely. This



8.1 Light sources 203

would increase the computational effort enormously, so that this approach is
not (yet) well suited for real-time computer graphics. An approach to compute
the ambient light correctly is introduced in section 8.10.

For ambient light it is sufficient to specify its colour. A directional light

source has in addition to a colour also a direction. The light rays from a direc-
tional light source are parallel. Directional light is used to model light coming
from a source in almost infinite distance, for instance sunlight.

A lamp is modelled as a point light source. A point light source has a posi-
tion and the light rays spread in all directions from this position. The intensity
of the light decreases with increasing distance. This effect is called attenua-

tion. The following argument shows that the intensity of the light decreases
quadratically with the distance to the light source. If a point light source is in
the centre of a sphere with radius r, then the full energy of the light will be
distributed equally on the inner part of the surface of the sphere. If the sphere
is replaced by a bigger sphere with radius R, then the full energy of the light
will not change. But it is now distributed to a larger surface. The ratio of the
surfaces of the two spheres is

4πr2

4πR2
=
( r

R

)2

.

For a ratio of r/R = 1/2 each point on the inner part of the surface of the
larger sphere receives therefore only one quarter of the energy of a point on the
inner part of the surface of the smaller sphere.

The theoretical model for attenuation would then be to multiply the in-
tensity of the light from a point light source by the factor 1/d2 when it hits
the surface of an object at distance d to the light source. The intensity of the
light source will decrease very quickly with the distance so that the intensity
differences for larger distances will be almost unnoticeable. However, for ob-
jects very close to the light source, drastic differences will occur. The intensity
could be arbitrarily large and would tend to infinity when a surface is directly
in front of the light source. In order to avoid these effects, the decrease of the
intensity caused by attenuation is modelled by a general quadratic polynomial
in the denominator in the form

fatt = min
{

1
c1 + c2d + c3d2

, 1
}

(8.1)

where the constants c1, c2, c3 can be chosen individually for each point light
source. d is the distance of an object to the light source. This formula guarantees
that the intensity can never exceed the value 1. The constants can also be
adjusted so that a more moderate attenuation effect occurs than with the simple
form 1/d2. The coefficient c2 for the linear term can also be used to model
atmospheric attenuation. The quadratic decrease of the light intensity comes



204 8. Illumination and shading

from the distribution of the energy of the light onto a larger surface for an
increasing distance. In addition, part of the light is absorbed by dust particles
in the air causing atmospheric opacity. This leads obviously to a linear decrease
of the intensity with increasing distance. The number of dust particles a light
ray can hit grows proportionally with distance it covers.

Another common light source are spotlights. In contrast to a point light
source, a spotlight has a direction in which it spreads its light in the form of
a cone. A spotlight is characterised by the colour of its light, its location, the
direction in which it shines and an angular limit that describes the extension of
the cone of light. Attenuation is computed for a spotlight on the basis of equa-
tion (8.1) in the same way as for point light sources. The quadratic decrease of
the intensity with increasing distance can also be deduced from figure 8.2 where
it can be seen that the full energy of the light from the spotlight is distributed
over a circle whose radius growth is linear with the distance. Therefore, the
surface grows quadratically with the distance.

Figure 8.2 Cone of light from a spotlight

For a more realistic model of a spotlight, it should be taken into account
that the intensity of the light is smaller close to the boundary of the cone of
light than at the centre. In the Warn model [49], a parameter p is used to
control how fast the intensity of the light decreases from the centre of the cone
to its boundary. Consider a point on a surface that is illuminated by a spotlight.
Let l be a vector that points from the point where the spotlight is located to
a point on the surface of the illuminated object, and let lS be the axis of the
cone pointing in the direction of the light. Then the intensity of light at the
point on the surface coming from the spotlight is computed in the Warn model
by

I = IS · fatt · (cos γ)p = IS · fatt ·
(
−l�S · l

)p
. (8.2)

IS is the intensity of the spotlight, fatt is the distance-dependent factor for
attenuation as in equation (8.1) and γ is the angle between l and lS . The value
p controls how much the spotlight is focussed. For p = 0 the spotlight behaves
in the same way as a point light source. The larger p is chosen, the more the
light concentrated around the axis of the cone and the smaller is the intensity



8.1 Light sources 205

at the boundary of the cone. The cosine in equation (8.2) can be computed
as the dot product of the vectors l and lS if they are normalised, i.e., if both
of them have the length one. Figure 8.3 illustrates the situation in the Warn
model.

�

�
� 4

�

Figure 8.3 The Warn model for a spotlight

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 8.4 The functions (cos γ)64, (cos γ)8, (cos γ)2, cos γ

Figure 8.4 shows the effect of the parameter p. The function (cos γ)p is
drawn for the values p = 1, 2, 8, 64. For p = 1, the rightmost curve, the intensity
drops slowly to zero with increasing angle γ. For higher values of p, even small
deviations from the axis of the cone, i.e., small angles γ, lead already to very
small intensities, since (cos γ)p is almost zero.



206 8. Illumination and shading

It should be noted that the intensity IS in equation (8.2) of the Warn model
can have different values for each colour, or at least for each of the primary
colours red, green and blue.

8.2 Light sources in Java 3D

Java 3D provides classes for all light sources which have been introduced in the
previous section. As mentioned in section 5.5, most of the programs here will
have a separate branch in the scenegraph for the lights. In the same way as for
objects in the scene, an instance bgLight of the class BranchGroup has to be
created first. All lights will be entered into this branch group with the method
addChild. The branch group bgLight itself will be included in the scene by
adding it to the SimpleUniverse with the method addBranchGraph.

For each light source, a colour must be defined by three float-values be-
tween zero and one for the RGB-intensities.

Color3f lightColour = new Color3f(r,g,b);

Each light source can have a different colour. In the same way as for interpo-
lators in section 5.7, a bounding region must be assigned to each light source.
For this purpose, one can generate an instance bs of the class BoundingSphere
as was described on page 137.

Ambient light is then created with the class AmbientLight in the following
way.

AmbientLight ambLight = new AmbientLight(lightColour);

ambLight.setInfluencingBounds(bs);

bgLight.addChild(ambLight);

The colour of ambient light will usually be a grey one, i.e., the intensities
for red, green and blue will be chosen equally, but definitely lower than one.
The methods setInfluencingBounds and addChild have to be applied in the
same way for all other light sources to specify the bounding region of the light
source and to add it to BranchGroup bgLight.

A directional light source is generated with the class DirectionalLight. In
addition to the colour, the direction of the parallel light rays must be specified
in the form of a vector (x, y, z)� consisting of three float-values. An instance
of the class Vector3f is used for this purpose.

Vector3f lightDir = new Vector3f(x,y,z);

DirectionalLight dirLight =

new DirectionalLight(lightColour,lightDir);



8.2 Light sources in Java 3D 207

For a point light source, a colour must be defined and two instances
location and attenuation of the class Point3f that are determined by three
float-values in the same way as Vector3f.

PointLight pLight =

new PointLight(lightColour,location,attenuation);

The instance location determines the position of the point light source. The
three components of attenuation specify the coefficients in equation (8.1) for
attenuation.

The class SpotLight models spotlights.

SpotLight spLight =

new SpotLight(lightColour,location,attenuation

direction,angle,concentration);

The same parameters as for point light sources are required, i.e., colour, posi-
tion and attenuation. In addition, the direction in which the spotlight shines
is defined by the Vector3f direction. The float-value angle defines the
angular limit corresponding to half of the opening angle of the cone of light.
The float-value concentration between 0 and 120 determines how much the
spotlight is focussed to the centre axis. For the value zero, the light will have
the same intensity at the axis of the cone and at the boundary. The intensity
drops abruptly to zero at the boundary of the cone. The value 120 defines a
spotlight whose light is strongly focussed on the axis of the cone and very weak
at the boundary.

The BranchGroup for the light can contain an arbitrary number of light
sources of the same or of different type. If the light sources are directly as-
signed to the BranchGroup, they remain static where they were positioned.
Moving light sources can be implemented in the BranchGroup bgLight in the
same way as moving objects in the BranchGroup theScene as was described
in section 5.7. Instead of assigning a light source directly to the BranchGroup

bgLight, a transformation group with an interpolator can be defined to which
the light source is added. Then this transformation group is assigned to
the BranchGroup bgLight. It is also possible to include light sources in the
BranchGroup theScene or in a transformation group within theScene when a
light source is directly connected with an object. In this way, the object and
the light source will carry out the same movement.

As an example, the class MovingLight.java implements a moving direc-
tional light source. Other example programs where different light sources are
used will be described in section 8.4.

Light sources themselves are invisible. They only send out light which is
reflected by objects in the scene. For instance, if a scene contains a point light



208 8. Illumination and shading

source, the viewer cannot see it, even if he look in the direction of the light
source. When there are no objects in the scene, the scene will remain com-
pletely dark. If a light source should be visible, it is necessary to include a
corresponding object in the scene, for instance a light bulb or a torch. It is also
necessary to assign the corresponding bright colour of the light to the object
or the part of the object that is intended to emit the light. How surfaces or
objects can be defined which emit light themselves will be explained in section
8.4.

8.3 Reflection

In order to achieve illumination and shading effects as in figure 8.1 on page 201,
it necessary to specify for all surfaces of objects in the scene how they reflect
light. The illumination model that is constructed here is not correct from the
physical point of view. Ambient light as it is modelled in scenes so far does
not exist in reality per se, nor is it constant everywhere. Ambient light is a
simplification of real illumination for the purpose of computational simplicity
and efficiency. For the same reasons, the light which is reflected by objects is
not taken into account for further illumination calculations. Objects in a virtual
scene only reflect light from defined light sources. They do not reflect the light
which is shed on them by reflections of other objects. Ambient light replaces
these complex reflections. Section 8.10 will introduce a far more complex model
where the light reflections between objects are explicitly calculated.

This section explains light reflection on a surface in detail. A point on a
surface of an object is considered and for this point the colour is computed
which should be assigned to it taking all light sources in the scene into account
as well as the reflection properties of the surface. The single effects introduced
in the following usually occur in combination. For each effect, an RGB-value is
determined, modelling the reflection of the surface in the corresponding point
when only this effect is considered. In order to determine the final colour of
the point on the surface, all these effects have to be added. It should be taken
into account that the overall intensity for each of the three primary colours red,
green and blue is limited by one.

Objects might emit light themselves. It should be emphasised again that
the emitted light is only taken into account for this object so that it will occur
brighter for the viewer. The emitted light will not illuminate other objects in
this simple model. If an object emits light, then this emission contributes a
corresponding intensity to each of the primary colours red, green and blue. By
this light emitting effect alone, a pixel on the surface of the object i will obtain



8.3 Reflection 209

an intensity of
I = ki.

This intensity must be specified separately for red, green and blue. The object
might not emit white light and have therefore different intensities for the three
primary colours. The correct specification would be

I(red) = k
(red)
i I(green) = k

(green)
i I(blue) = k

(blue)
i .

Since the structure of the illumination equation for all effects will always be
the same for the three primary colours, for each effect only one equation for the
computation of the intensity will be provided. The corresponding computations
have to be carried for the three primary colours and might also lead to different
intensities as in the above case when the object does not emit white light, but
light of a different colour.

An object emitting light is not considered as a light source in the scene.
It only shines for the viewer. Objects emitting light should be combined with
a corresponding light source. A light bulb would be modelled by a point light
source and a geometric object emitting light. The point light source illuminates
the scene, but remains invisible itself. The object does not illuminate other
objects, but it shines for the viewer and makes the point light source visible.
The intensity on the surface generated by emitting light is constant and does
not lead to any 3D effects. When there are no light sources in the scene and only
objects emitting light, this will result in the same homogeneous flat projections
as in figure 8.1 on page 201 for the leftmost object and the second object from
the right.

All following illumination effects result from reflections of light coming from
light sources in the scene. The illumination equation is always of the form

I = Ilight source · fpixel.

Ilight source is the intensity of the light coming from the light source. fpixel is
a factor that depends on various parameters. For instance, the colour of the
surface, its shininess, the distance to the light source in case attenuation must
be taken into account, and the angle at which the light hits the surface in the
considered pixel.

For ambient light, the illumination equation is

I = ka · IS

where IS is the intensity of ambient light. ka is the reflection coefficient of the
surface for ambient light. In the same way as for objects emitting light, ambient
light alone will not lead to any 3D effects. The projections of objects occur flat
and have a homogeneous colour. 3D effects result only from light to which a



210 8. Illumination and shading

direction can be assigned, in contrast to ambient light coming from all directions
or no specific direction. Only if light has a direction, can a nonhomogeneous
shading occur on an object’s surface. On dull surfaces, a light ray is reflected
into all directions equally. How much light is reflected depends on the intensity
of the light, the reflection coefficient of the surface and the angle at which the
light hits the surface. Figure 8.5 illustrates the influence of the angle at which
the light hits the surface. The same energy of light, i.e., the full energy of the
light source, reaches the circle, no matter whether it stands perpendicular to
the axis of the cone of light or whether it is tilted. But the tilted area is larger
than the perpendicular one. This means that the tilted area receives less light
per point or pixel than the perpendicular one. The more the area is tilted, the
less energy of light will be available per point.

Figure 8.5 Light intensity depending on the angle of the light

This effect is also responsible for the fact that it is warmer at the equator,
where the sun’s rays hit the surface of the earth perpendicular, at least in
spring and autumn, and colder at the north and south pole. The seasons also
result from this effect since the axis of the earth is tilted differently to the sun
over the year. During the time between March and September the northern
hemisphere is tilted to the sun, during the other half of the year the southern
hemisphere is tilted to the sun.

This effect of light reflection for purely dull surfaces can be computed ac-
cording to Lambert’s cosine law by the illumination equation

I = IL · kd · cos θ (8.3)

where IL is the intensity of the light hitting the surface, 0 ≤ kd ≤ 1 is the
reflection coefficient of the surface or the material, and θ is the angle between
the normal vector n to the surface in the considered point and the vector l
pointing in the direction where the light comes from. Figure 8.6 illustrates this
situation. This kind of reflection on dull surfaces is called diffuse reflection.

The illumination equation (8.3) for diffuse reflection is only valid for angles θ

between 0◦ and 90◦. Otherwise, the light ray hits the surface from the backside



8.3 Reflection 211

�

�
�

Figure 8.6 Diffuse reflection

so that no reflection occurs. In the case of directional light coming from a light
source in infinite distance, the variable IL in equation (8.3) has the same value
everywhere. In the case of a point light source, IL is the intensity of the light
source multiplied by the attenuation factor in equation (8.1), which depends
on the distance of the point on the surface to the light source. For a spot light
in addition to attenuation, the factor in equation (8.2) modelling how much
the spotlight is focussed must be taken into account.

In principle, the illumination equations have to be evaluated for each pixel.
Section 8.5 will introduce approximation techniques by which the illumination
equations are only evaluated explicitly for certain pixels, usually the vertices of
the surface polygons, and for the remaining pixels the value resulting from their
illumination equation is estimated by simpler interpolation schemes. Neverthe-
less, even if the illumination equations are only computed for the vertices of
the surface polygons in the scene, this might still be a large number. Therefore,
the computationally expensive cosine in equation (8.3) is computed based on
the dot product of the normal vector n to the surface and the vector l pointing
in the direction where the light comes from. Both vectors must be normalised
for this purpose. The same principle has already been applied in the context of
equation (8.2) on page 204. In this way, equation (8.3) becomes

I = IL · kd · (n� · l).

In the case of a directional light source and a plane surface, the vectors l
and n remain constant on the surface. Then the surface will be shaded homo-
geneously with the same colour. One can see this effect in figure 8.1 on page
201 for the cube on the right which was illuminated by directional light. The
faces of the cube are shaded differently since the light hits them in different
angles. But the shading on a single face is constant.

Diffuse reflection on dull surfaces reflects the light into all directions. Spec-

ular reflection occurs on shiny surfaces. Such shiny surfaces reflect at least a



212 8. Illumination and shading

portion of the light in a similar way as a mirror. In contrast to diffuse reflection,
ideal specular reflection takes place only in one direction. The vector pointing
to the source of light is mirrored about the normal vector of the surface. The
vector in the direction of the light and the vector pointing in the direction of
the reflection have the same angle with the normal vector to the surface. The
difference between diffuse and specular reflection is illustrated in figure 8.7.

� " � � � � � 	 � 	 � � � � � � ! � �

 ! � � � � �

	 � � � � � � ! � �

$ 	 � � �  � � � � � � 	 � � 	 � ! � & � � � 
 � 	

Figure 8.7 Diffuse and specular reflection

Shiny surfaces very often have a very thin transparent layer, for instance
varnish. When light hits the surface, part of the light penetrates the varnish
layer and is reflected on the dull surface of the object. This part of the light
is subject to diffuse reflection and the colour of the reflected light depends
strongly on the ground colour of the dull surface. Another part of the light
is directly reflected on the transparent layer by specular reflection. Therefore,
specular reflection does usually not change the colour of the light. This effect
can also be seen in figure 8.1 on page 201. The second object from the left
has a shiny white spot on its surface although the colour of the object itself is
grey. This white spot is due to specular reflection. Shading caused by diffuse
reflection depends only on the angle at which the light hits the surface and
on the reflection coefficient. The position of the viewer is of no importance for
calculating effects coming from diffuse reflection. Whether or where the viewer
can see specular reflection depends on his position. In the case of a plane surface
which is illuminated by a single light source, there will be exactly one point on
the surface where the viewer can see ideal specular reflection. This is, however,
only true for perfect mirrors. For surfaces that are more or less shiny, the light
vector is reflected roughly in the direction around the ideal specular reflection.
In this way a circular brighter area occurs on the surface instead of only a
single light point in which ideal specular reflection takes place. Before models
for nonideal specular reflection can be introduced, it is necessary to find a



8.3 Reflection 213

computation scheme for the direction of ideal specular reflection.
In figure 8.8, l denotes the vector pointing in the direction from which the

light hits the surface in the considered point. n is the normal vector to the
surface in this point. The vector v points in the direction of the viewer, i.e., in
the direction of projection. r denotes the direction of ideal specular reflection.
The normal vector n has the same angle with the vectors l and r.

�

�

�

�

� �
�

�

��

� �

� �

Figure 8.8 Computation of ideal specular reflection

In order to compute the direction r of ideal specular reflection for normalised
vectors n and l, the auxiliary vector s is introduced, as can be seen in figure
8.8 on the right. The projection of l to n corresponds to the shortened vector
n, denoted by s in the figure. Since n and l are assumed to be normalised, this
projection vector is s = n · cos θ. The vector r must therefore satisfy

r = n · cos(θ) + s. (8.4)

The auxiliary vector s can be determined from l and the projection of l onto
n.

s = n · cos(θ) − l.

Inserting s into equation (8.4) yields

r = 2 · n · cos(θ) − l.

As already in the case of diffuse reflection, the dot product can be used to
calculate the angle between the vectors n and l: n� · l = cos θ. Therefore, the
normalised vector in the direction of ideal specular reflection is

r = 2 · n(n� · l) − l.

It is again assumed that the surface is not illuminated from the backside. This
means 0◦ ≤ θ < 90◦ must hold. This is true if and only if the dot product n� · l
is positive.



214 8. Illumination and shading

Only for an ideal mirror, specular reflection will take place exclusively in
the direction of the vector r. For most shiny surfaces, specular reflection can
be seen around the ideal direction. The more the viewer deviates from the
direction of ideal specular reflection, the smaller the effect of nonideal specular
reflection will be. The Phong illumination model [34] takes this into account
by reducing the intensity of specular reflection based on the angle α in figure
8.8. The intensity of specular reflection decreases while α increases.

I = IL · W (θ) · (cos(α))n. (8.5)

IL is the intensity of the light which might have been reduced already by an
attenuation factor for a point light source and by an additional factor for a
spotlight, depending on the deviation from the axis of the cone of light. The
value 0 ≤ W (θ) ≤ 1 is the fraction of the light which is directly reflected at the
shiny surface, i.e., the fraction of the light to which specular reflection applies.
In most cases, W (θ) = ksr will be a constant specular reflection coefficient of
the surface independent of the angle θ. n is the specular reflection exponent of
the surface. For a perfect mirror, n = ∞ would hold. A smaller n leads to a less
focussed specular reflection. Figure 8.4 on page 205 shows the cosine function
with different exponents n. For n = 64, the function tends to zero very quickly
so that specular reflection can be seen only very close to the ideal direction
of specular reflection. Choosing n = 1 would result in a much larger area of
visible specular reflection. The more shiny a surface is, the higher the value of
the specular reflection exponent should be chosen.

The value of the cosine function in equation (8.5) can again be computed by
the dot product when the vectors n and r are normalised. cos α = r� · v. The
vector r will be normalised already when the vectors l and n are normalised.
This follows directly from figure 8.8.

The Phong illumination model is not based on principles of physics. It is a
heuristic method to enhance realistic effects of specular reflection. A modified
version of the Phong illumination model replaces the deviation of the view
direction from the direction of ideal specular reflection, the angle α, by another
angle based on the halfway vector between the direction of the light source
and the viewer direction. The viewer can see ideal specular reflection when
the halfway vector between l and v coincides with the normal vector n to the
surface. A reasonable measure for the deviation from the direction of specular
reflection is therefore the angle β between the normal vector n and the halfway
vector h of l and v, as is shown in figure 8.9.

In the modified Phong illumination model, the term cosα in equation (8.5)
is replaced by the term cos β, which can again be written as a dot product.

cos β = n� · h.



8.3 Reflection 215

�

��

� �
�

�

�

�

Figure 8.9 The halfway vector h in Phong’s model

The halfway vector h is given by

h =
l + v

‖ l + v ‖ .

In case of directional light and parallel projection, the halfway vector h does
not change, in contrast to the vector r in the original Phong illumination model
so that the calculations for illumination can be reduced in the modified Phong
illumination model.

The considerations in this section always referred to one light source, a single
point on a surface and three primary colours red, green and blue. When there is
more than one light source and also ambient light Iambient light in the scene, the
single computed intensities have to be summed up. In case the corresponding
surface is also emitting light itself, this intensity Iself emission must also be added.
This leads to the following overall illumination equation for the point on the
surface.

I = Iself emission + Iambient light · ka (8.6)

+
∑

j

Ij · fatt · gcone ·
(
kd · (n� · lj) + ksr · (r�j · v)n

)
.

ka is the reflection coefficient for ambient light which is usually identical to the
reflection coefficient kd for diffuse reflection. Ij is the intensity of the j-th light
source. For a directional light source, the two factors fatt and gcone are equal
to one. Only for a point light source, the first factor, modelling attenuation,
depends on the distance and for a spotlight the second factor takes into account
how fast the intensity of the light decreases to the boundary of the cone of
light. n, l, v and r are the vectors known from figure 8.8 and 8.6, respectively.
Equation (8.6) is based on the original Phong illumination model for specular
reflection. The reflection coefficient ksr for specular reflection is usually not
identical to the coefficients kd and ka.



216 8. Illumination and shading

The intensity I in equation (8.6) is bounded by one. If the sum exceeds one,
then the intensity is simply cut off at one.

The application of equation (8.6) for the three colours red, green and blue
does not require much additional computational costs since the coefficients
Iself emission, Iambient light, Ij , ka, kd and ksr might be different for each colour,
but are given and do not have to be computed by an algorithm. The other
coefficients need more complex calculations. They are the same for every colour,
but depend on the chosen point on the surface and the properties of the light
source.

Deferred Shading [45] is a recent technique to speed up the calculations
when there are multiple light sources in the scene. It is based on the z-buffer
algorithm. The original z-buffer might carry out all these complex computations
for the projection of a surface only to find out at a later stage that all efforts
were superfluous since the surface is not visible and another surface overwrites
the projection. In the worst case, unnecessary computations for illumination
are carried out again and again until finally the surface or object closest to the
viewer is rendered. Deferred Shading first applies the z-buffer algorithm only to
fill the depthbuffer with the corresponding z-values of the visible objects and
ignores the frame buffer. In the second pass of the algorithm the frame buffer is
also filled. But since the z-values are already entered, only those objects need
to be projected to the frame buffer that are really visible.

8.4 Shading in Java 3D

In Java 3D, an Appearance is assigned to each object to characterise the prop-
erties of the object’s surface. The class Appearance was already used in section
6.4 to display objects as wire frame models. A very important attribute of
Appearance is the Material. The properties of the material and therefore the
surface are specified in the following constructor.

Material ma = new Material(ambientColour,emissiveColour,

diffuseColour,specularColour,

shininessValue);

The first four parameters are colours that are defined by instances of the
class Color3f which was introduced in section 5.4. The colour
ambientColour defines how much ambient light is reflected by the material. If
ambient light is added to the scene by an instance of the class AmbientLight as
was described in section 8.2, then the contribution of ambient light reflection
for a surface of the corresponding material is computed in the following way.



8.4 Shading in Java 3D 217

Given the RGB-values (ra, ga, ba) of ambientColour for the material and the
RGB-values (rl, gl, bl) for ambient light in the scene, the intensities for the
reflection of ambient light are determined by (ra · rl, ga · gl, ba · bl). To these in-
tensities the values for self-emitting light specified in emissiveColour and the
calculated values for diffuse and specular reflection have to be added. How much
light is reflected for diffuse and specular reflection is defined by diffuseColour

and specularColour. These colours correspond to the intensities kd and ksr,
respectively, in equation (8.6). They are multiplied with the corresponding val-
ues coming from light sources of the classes DirectionalLight, PointLight
and SpotLight. The last parameter shininessValue is a float-value between
1 and 128 for the shininess of the material or surface. The larger the value,
the more shiny the surface will be. The value shininessValue is the specular
reflection exponent in the Phong illumination model.

Once a Material ma has been generated in this way, an Appearance having
the reflection properties ma can be created with the method setMaterial.

Appearance app = new Appearance();

app.setMaterial(ma);

This Appearance app can be used for objects to let the object’s surface appear
with the corresponding colour and reflection properties of the Material ma.

Although it is possible to use four different colours in the constructor for
materials, it is not recommended to do so. Most objects do not emit light
themselves so that emissiveColour will be black in most cases. The colours
for diffuse reflection and for the reflection of ambient light should be identical
or ambientColour could be chosen slightly less intense than diffuseColour.
The colour for specular reflection is very often white, a light grey or the same
colour as for diffuse reflection, but with higher intensity.

The program LightingExample.java displays two objects, a shiny sphere
and a dull cube, that are illuminated by four light sources: ambient light, a
directional light source, a point light source and a spotlight. For a better un-
derstanding of illumination and shading effects, it is recommended to the reader
to modify the parameters of the instances of the class Material and to observe
the changes. It is also possible to switch off light sources, simply by declar-
ing the line where the corresponding light source is added to the BranchGroup

bgLight with the method addChild as a comment line.
The program LightingExample2.java demonstrates undesired effects that

can occur when the four colours in the constructor of Material are chosen
completely different. The program uses a moving light source. The program
MovingSpotLight.java illustrates how a spotlight with abruptly dropping in-
tensity at the boundary of its cone of light can also lead to unrealistic effects.
If the last parameter in the constructor SpotLight is changed from 0 to 1 in



218 8. Illumination and shading

the program, the undesired effect vanishes.

8.5 Shading

For the computation of light reflections on a surface in section 8.3, it was
assumed that the normal vector to the surface is known in each point. In
order to compute the correct colour of a pixel on the projection plane, it is
not only necessary to determine which object surface is visible at the pixel,
but also in which point the projector through the pixel meets the surface. For
cubic freeform surfaces this would mean that a system of equations had to be
solved whose variables occur in the power of three, leading to unacceptable
computational effort per pixel. Therefore, light reflections are not calculated
directly for the freeform surfaces, but for their approximations with polygons.
What does this mean for the normal vectors to the surface? A very simple
approach would ignore the original normal vectors to the freeform surfaces and
use the normal vectors to the plane polygons instead.

Figure 8.10 A sphere in different tesselations rendered with flat shading

Constant or flat shading simplifies this idea even further. For a polygon,
the colour is determined only for a single pixel based on one normal vector.
All other pixels resulting from the projection of the polygon obtain the same
colour, leading to a homogeneous colour for the projection of the polygon. This
approach is correct under the following assumptions.

– The light source is in infinite distance so that n� · l is constant. This applies
only to directional light sources.

– The viewer is in infinite distance so that n� · v is constant. This is true for
parallel projections.

– The polygon represents the real surface of the object and is not just an
approximation of a curved surface.

– No specular reflection occurs.



8.5 Shading 219

With these assumptions, shading can be computed in a fast and simple way,
but will not lead to realistic images. Figure 8.10 shows the same sphere as in
figure 6.12 on page 158, also in different tesselations. However, flat shading was
applied in figure 8.10. Even the rightmost refined approximation by triangles
still shows clear faces on the surface of the sphere whereas they are almost
invisible already for a medium resolution in the figure on page 158.

An extremely refined resolution is needed for flat shading to avoid the effects
of visible faces. One reason for this problem is also the preprocessing carried
out automatically in the human vision system which intensifies contrast, i.e.,
edges, so that even small edges are already noticed.

Therefore, instead of flat shading interpolated shading is preferred. Inter-
polated shading requires the definition of normal vectors in the vertices of a
polygon or triangle. Here only the case of triangles will be considered. The
normal vectors in the three vertices of a triangle can be different for interpo-
lated shading when the triangle is supposed to approximate a part of a curved
surface. If the triangles are not derived from a freeform surface, but where
specified manually, different normal vectors in the vertices of the triangle can
still be computed. In each vertex, the standard normal vectors to the triangles
that share the vertex are interpolated. This technique has been described in
section 6.7.1.

When a curved surface is approximated by triangles and suitable normal
vectors are specified in the vertices of the triangles, Gouraud shading [21] com-
putes the colour in each of the three vertices based on the corresponding normal
vectors. The shading of the other points in the triangle is based on colour inter-
polation derived from the three vertices. This leads to a linear colour gradient
over the triangle. Figure 8.11 illustrates the colour intensity as a function over
the triangle.

Figure 8.11 The colour intensity as a function over a triangle for Gouraud
shading



220 8. Illumination and shading

I

I

I

I II

y

y

y

y

y 1

3

2

1

3

2

s

a bp scan line

Figure 8.12 Scan line technique for the computation of Gouraud shading

An efficient scheme for the computation of the intensities in the triangle
uses a scan line technique. For a scan line ys the intensities Ia and Ib on the
edges of the triangles are calculated where the scan line intersects the triangle.
These values are obtained by weighted interpolation between the vertices of the
corresponding edges of the triangle. The intensity changes in a linear way along
the scan line with initial value Ia and final value Ib. Figure 8.12 illustrates this
principle. The intensities are computed based on the following equations.

Ia = I1 − (I1 − I2)
y1 − ys

y1 − y2
,

Ib = I1 − (I1 − I3)
y1 − ys

y1 − y3
,

Ip = Ib − (Ib − Ia)
xb − xp

xb − xa
.

The colour intensities to be calculated are integer values between 0 and 255.
Usually, the intensities on a single triangle will not differ strongly so that the
absolute slope of the linear intensity curve along the scan line will be small. In
this case, the midpoint algorithm could be applied to determine the discrete
intensity values.

The undesired effect of visible faces and edges is already amended by
Gouraud shading. Nevertheless, because of the linear interpolation scheme for
Gouraud shading, the minimum and maximum intensity on a triangle will al-
ways be in one of the vertices. This might still lead to the effect of visible
protruding edges or vertices. Phong shading [34] is also based on interpolation
as Gouraud shading. However, instead of interpolating the computed colour



8.5 Shading 221

intensities in the vertices for shading the triangle, the normal vectors in the
vertices are interpolated for the calculation of the colour intensities of the other
points. In this way, it is also possible that the minimum and maximum colour
intensity can occur inside the triangle depending on the configuration of the
normal vectors in the vertices and on the direction from which the light comes.
Figure 8.13 shows a curved surface and a triangle which approximates a part
of the surface. The normal vectors in the vertices of the triangle are the normal
vectors to the surface in these points. Inside the triangle, the normal vectors
are convex combinations of these normal vectors.

Figure 8.13 Interpolated normal vectors for Phong shading

From the computational point of view, Phong shading requires much more
time than Gouraud shading. For the latter technique, the complex computa-
tions for illumination involving light sources and reflections need to be carried
out only for the three vertices of a triangle. The remaining triangle is shaded
by a simple scan line technique with simple calculations. For Phong shading,
after interpolating the normal vectors, the full computations for illumination
have to be carried out still for each pixel.

Gouraud and Phong shading provide good approximations for shading of
the curved surface. From the theoretical point of view, it would even be bet-
ter to derive the normal vector for a point in the triangle directly from the
corresponding point on the curved surface in order to determine the colour of
the corresponding pixel. This would mean that it is not sufficient to store only
predefined normal vectors of selected points—the vertices—but that the infor-
mation about the original curved surface is still necessary for shading. This
would be unacceptable from the computational point of view.



222 8. Illumination and shading

8.5.1 Constant and Gouraud shading in Java 3D

Gouraud shading is the default shading technique in Java 3D. One can also
switch to constant shading for an object by changing its Appearance. First an
instance of the class ColoringAttributes has to be generated and then the
shading mode can be set with the method setShadeModel.

ColoringAttributes ca = new ColoringAttributes();

ca.setShadeModel(ColoringAttributes.SHADE_FLAT);

app.setColoringAttributes(ca);

app is an instance of the class Appearance. The method

ca.setShadeModel(ColoringAttributes.SHADE_GOURAUD);

switches back to the default shading in Java 3D. Figure 8.10 on page 218 was
generated by the program ShadingExample.java using constant shading.

8.6 Shadows

An important aspect, which has been neglected for shading so far, is shadows.
“Casting a shadow” is not an active matter, but simply the lack of light from
a light source that does not reach the object’s surface with the shadow on it.
The illumination equation including shadows becomes

I = Iself emission + Iambient light · ka (8.7)

+
∑

j

Sj · Ij · fatt · gcone ·
(
kd · (n� · lj) + ksr · (r�j · v)n

)
.

This is the same illumination equation as (8.6) except for the additional factors

Sj =
{

1 if the light from light source j reaches the surface
0 otherwise (shadow).

When does the light of a light source reach a surface and when is it blocked
by another object leading to a shadow? Chapter 7 has introduced methods
for visibility determination, i.e., to decide whether an object in the scene is
visible for the viewer or blocked from view by other objects. The problem of
determining shadow is the same, only the light source instead of the viewer
has to be considered. When a surface is visible for a light source, then Sj = 1
and there is no shadow for this light source on the surface. When the surface
is not visible from the light source, then Sj = 0 and a shadow is cast on the
object. Figure 8.14 shows a shadow on a cube caused by a tetrahedron which



8.6 Shadows 223

blocks the light from a light source from above. Shadow does not mean that
the surface will be black. Ambient light will still be reflected. And if there is
more than one light source in the scene, a surface might be blocked from one
light source, but not from the others.

Figure 8.14 Shadow on an object

The connection between shadows and visibility determination is exploited
by the two-pass z- or two-pass depth buffer algorithm. In the first pass of this
algorithm, the standard z-buffer algorithm is carried out with the following
modifications. The viewer is replaced by a light source. For a directional light
source, a parallel projection in the opposite direction of the direction of the light
is applied. For a point light source and a spotlight, a perspective projection is
applied with its centre of projection at the position of the light source. In
all cases the projection is reduced to a parallel projection to the x/y-plane
by a suitable transformation TL. In this first pass of the two-pass z-buffer
algorithm only the values for the z-buffer ZL are entered. The frame buffer and
its calculations are not needed. The second pass of the algorithm is identical to
the standard z-buffer algorithm for the viewer with the following modification.

A transformation TV turning the perspective projection with the viewer as
the centre of projection into a parallel projection to the x/y-plane is needed
as usual. The viewer z-buffer ZV is also treated as usual in the second pass of
the algorithm. But before a projection is entered into the frame buffer FV for
the viewer, an illumination test is carried out to check whether the surface is
illuminated by the considered light source. If the coordinates of a point on the



224 8. Illumination and shading

surface to be projected are (xV , yV , zV ), the transformation
⎛
⎝

xL

yL

zL

⎞
⎠ = TL · T−1

V ·

⎛
⎝

xV

yV

zV

⎞
⎠

yields the coordinates of the same point from the viewpoint of the light source.
T−1

V is the inverse transformation, i.e., the inverse matrix to TV . The value
zL is compared to the entry in the z-buffer ZL for the light source at the
position (xL, yL). If a smaller value than zL is entered in the z-buffer ZL at
this position, then there must be an object between the light source and the
considered surface so that this surface does not receive any light from this light
source. The surface is in the shadow of this light source, and the corresponding
factor Sj in equation (8.7) must be set to zero. When there is more than one
light source in the scene, the first pass of the algorithm is carried out for each
light source. In the second pass it is determined for each light source whether
a surface receives light from the corresponding light source and the factors Sj

are chosen correspondingly.

8.7 Transparency

Transparent surfaces reflect a part of the light, but objects behind them can also
be seen. A typical transparent object is a coloured glass pane. Transparency
means that only a fraction of the light of the objects behind the transparent sur-
face can pass through the transparent surface, but no distortion as with frosted
glass happens. Such objects like milk glass are called translucent. Translucent
surfaces will not be considered here. Refraction will also not be taken into
account.

In order to explain how transparency is modelled, a surface F2 is considered
that is positioned behind a transparent surface F1. For interpolated or filtered

transparency a transmission coefficient ktransp ∈ [0, 1] is needed. ktransp specifies
the fraction of light that can pass through the transparent surface F1. The
surface is completely transparent, i.e., invisible, for ktransp = 1. For ktransp = 0,
the surface is not transparent at all and can be handled in the same way as
surfaces have been treated so far. The colour intensity IP of a point P on the
transparent surface F1 is determined by

IP = (1 − ktransp) · I1 + ktransp · I2 (8.8)

where I1 is the intensity of the point that would result if the surface F1 would
be treated like a normal nontransparent surface. I2 is the intensity of the cor-
responding point on the surface F2 when the surface F1 would be completely



8.7 Transparency 225

invisible or completely removed from the scene. The values I1 for red, green
and blue result from the colour assigned to the transparent surface. In this way
it is also possible to model coloured glass panes, although this model is not
correct from the theoretical point of view. A colour filter would be the correct
model.

Transparent surfaces complicate the visible surface determination. Espe-
cially when the z-buffer algorithm is used, the following problems can occur.

– Which z-value should be stored in the z-buffer when a transparent surface
is projected? If the z-value of an object O behind the transparent surface is
kept, an object between O and the transparent surface could overwrite the
frame buffer later on completely, although it is located behind the transparent
surface. If instead the z-value of the transparent surface is used, then the
object O would not be entered into the frame buffer although it should be
visible behind the transparent surface.

– Which value should be entered in the frame buffer? If interpolated trans-
parency is computed according to equation (8.8), the information about the
value I1 is lost for other objects that might be located directly behind the
transparent surface. Even the value I1 would not be sufficient. It is possible
to apply alpha-blending. Since the coding of RGB-values requires three bytes
and blocks of four bytes are handled more efficiently in the computer, it is
common to use the fourth byte for an alpha-value. This alpha-value corre-
sponds to the transmission coefficient ktransp for transparency. But even with
this alpha-value it is not clear to which object behind the transparent surface
alpha-blending should be applied, i.e., how to apply equation (8.8), since the
choice of the object for alpha-blending depends on the z-value.

Opaque objects should be entered first for the z-buffer algorithm and af-
terwards the transparent surfaces. When the transparent surfaces are entered,
alpha-blending should be applied for the frame buffer. There will still be prob-
lems when transparent surfaces cover other transparent surfaces from sight. In
this case, the order in which they are entered must be correct, i.e., from back
to front. For this purpose, it is common to sort the transparent surfaces with
respect to their z-coordinates.

Figure 8.15 50% (left) and 25% (right) screen-door transparency



226 8. Illumination and shading

Screen-door transparency is an alternative solution based on a similar prin-
ciple as halftone techniques from section 4.5. The mixing or interpolation of the
colours of a transparent surface with an object behind it as defined in equation
(8.8) is not carried out per pixel but per pixel group. A transmission coefficient
of ktransp = 0.25 would mean that every fourth pixel obtained its colour from
the object behind the transparent surface and the other pixels obtain the colour
from the transparent surface. Figure 8.15 illustrates this principle for magnified
pixels. The darker colour comes from the transparent surface, the lighter colour
from an object behind it. For the left-hand side of the figure ktransp = 0.5 was
used, for the right-hand side ktransp = 0.25.

Screen-door transparency is well suited for the z-buffer algorithm. The z-
values are chosen according to the surface they come from. Either the trans-
parent one or a surface behind it. For ktransp = 0.25, 75% of the pixels would
have the z-value of the surface and the other 25% the z-value of the object
behind it. An object that is projected later on in the z-buffer algorithm will
be treated correctly. If it is in front of the transparent surface, it will overwrite
everything. If it is behind another object to which screen-door transparency
has been applied already, it will not be entered at all. If the object is behind
the transparent surface and closer than all other objects that were entered
there before, the corresponding fraction of the pixels will automatically get the
colour from this object.

Although screen-door transparency works well together with the z-buffer
algorithm, the same problems as for halftone techniques occur. The results are
only acceptable when the resolution is high enough. For a transmission coeffi-
cient of about 50% the results for screen-door and interpolated transparency
are almost indistinguishable. But for transmission coefficients close to one or
zero, screen-door transparency tends to show dot patterns instead of a realistic
transparency effect.

8.7.1 Transparency in Java 3D

Java 3D provides the class TransparencyAttributes to model transparency.
The method setTransparencyMode defines the chosen type of transparency,
i.e., interpolated or screen-door transparency. The transmission coefficient is
specified with the method setTransparency as a float-value between zero
and one. The instance of the class TransparencyAttributes must then be
assigned to an Appearance app by the method setTransparencyAttributes.

TransparencyAttributes ta = new TransparencyAttributes();

ta.setTransparencyMode(TransparencyAttributes.BLENDED);

ta.setTransparency(transpCoeff);



8.8 Textures 227

app.setTransparencyAttributes(ta);

The second line chooses interpolated transparency by specifying BLENDED. For
screen-door transparency, BLENDED has to be replaced by SCREEN DOOR. The
program TransparencyExample.java demonstrates the use of these two types
of transparency.

8.8 Textures

Textures are images on surfaces of objects. A simple texture might use a colour
gradient or a pattern instead of the same colour on the surface everywhere.
Modelling a wallpaper with a pattern on it, needs a texture to be assigned to
the walls. In this case, multiple copies of the same texture are attached to the
surface. A picture hanging on a wall could also be modelled by a texture which
would be applied only once.

Textures are also used to model fine structures like ingrain wallpaper, wood
grain, roughcast or even brick patterns. In contrast to a normal smooth wall-
paper, an ingrain wallpaper has a fine three-dimensional structure that can be
felt and seen. The same applies to a bark of a tree, a wall of bricks or pleats
on clothes. The correct way to model such small three-dimensional structures
would be an approximation by extremely small polygons. However, the effort
for modelling as well as the computational effort for rendering are unacceptable.

** �2

� � � � ! � � � % � � � % �, ! � . � ) �

/ � � � �

� � � � �

Figure 8.16 Using a texture

A texture is an image that is mapped to a surface as is sketched in figure
8.16. A texture map TI is defined that maps the surface or its vertices to
the pixel raster of the image for the texture. When a pixel of the screen or
projection plane is interpreted as a small square, then this square corresponds
to a small area on the surface. This small area is mapped by the texture map



228 8. Illumination and shading

to the image for the texture. In this way, the corresponding texels—the pixels
of the texture image—can be determined to calculate the colour for the pixel.
This colour value has to be combined with the information from illumination
taking into account whether the surface with the texture is shiny or not.

Textures are useful for a variety of problems in computer graphics. A back-
ground texture like a clouded sky can be defined. This texture is not assigned
to any surface but simply used as a constant background. More complex illu-
mination techniques like the radiosity model introduced in section 8.10 lead to
more realistic images but are too slow for interactive real-time graphics. Un-
der certain conditions, textures can be used to calculate diffuse reflection with
these techniques in advance and apply the results as textures to the surfaces in
the form of so-called light maps so that only specular reflection is needed for
the real-time graphics.

Environment or reflection mapping is a technique to model mirrors or re-
flecting surfaces like the surface of calm water. For this purpose, the viewer
is first reflected at the corresponding surface. Then the image is computed
which the reflected viewer would see. This image is then used as a texture for
the reflecting surface when the image for the original position of the viewer is
computed. Figure 8.17 illustrates this idea.

� � � � % �

 � � � � �

� � . � � ) � � ' �  � � � � �

Figure 8.17 Modelling a mirror by a reflection mapping

When textures are used to model small three-dimensional patterns like re-
liefs, viewing them from a shorter distance might give the impression of a flat
image, especially when there is a strong light source. No information about
the three-dimensional structure is contained in the image for the texture it-
self. In order to provide a more realistic view without representing the three-
dimensional structure with extremely small polygons, bump mappings [3] are



8.9 Textures in Java 3D 229

introduced. The surface to which the texture is applied still remains flat. But
in addition to the colour information coming from the image of the texture, a
bump map is used to modify the normal vectors of the surface. A bump map
assigns to each texture point a perturbation value B(i, j) specifying how much
the point on the surfaces should be moved along the normal vector for the
relief. If the surface is given in parametric form and the point to be modified is
P = P (x(s, t), y(s, t), z(s, t)), then the nonnormalised modified normal vector
at P is obtained from the cross product of the partial derivatives with respect
to s and t.

n =
∂P

∂s
× ∂P

∂t
.

If B(T (P )) = B(i, j) is the corresponding bump value, one obtains

P ′ = P + B(T (P )) · n
‖ n ‖

as the lifted or perturbed point on the surface with the relief structure. A good
approximation for the new normal vector in this point is then given by

n′ =
n + d

‖ n + d ‖ where d =
∂B
∂u ·

(
n × ∂P

∂t

)
− ∂B

∂v ·
(
n × ∂P

∂s

)
‖ n ‖ .

In this way, bump mapping can induce varying normal vectors on a flat
plane. Figure 8.18 shows how normal vectors modelling a small dent can be
applied to a flat surface.

Figure 8.18 Bump mapping

8.9 Textures in Java 3D

Java 3D provides a variety of methods to apply textures to surfaces. It is
possible to specify in detail how the texture should be attached to the vertices



230 8. Illumination and shading

of a surface that is modelled by polygons. The details of these methods will not
be included in this introductory book. It should be sufficient here to explain
how a texture can be applied to a surface without worrying about how to
position it exactly.

First of all, an image is needed for the texture. The image can be loaded from
a file and is then transformed into an instance of the class ImageComponent2D
with the method getScaledImage. A scaling to a specified width w and height
h is carried out. The values of w and h must be powers of two, i.e., they must
be chosen from the set {1, 2, 4, 8, 16, 32, 64, . . .}.

TextureLoader textureLoad =

new TextureLoader("image.jpg",null);

ImageComponent2D textureIm =

textureLoad.getScaledImage(w,h);

Then an instance of the class Texture2D is generated which is then assigned
to an instance of the class Appearance.

Texture2D myTexture =

new Texture2D(Texture2D.BASE_LEVEL,Texture2D.RGB,

textureIm.getWidth(),

textureIm.getHeight());

myTexture.setImage(0,textureIm);

Appearance textureApp = new Appearance();

The following lines of code assign the texture to the Appearance textureApp.

textureApp.setTexture(myTexture);

TextureAttributes textureAttr = new TextureAttributes();

textureAttr.setTextureMode(TextureAttributes.REPLACE);

textureApp.setTextureAttributes(textureAttr);

Material mat = new Material();

mat.setShininess(shininess);

textureApp.setMaterial(mat);

TexCoordGeneration tcg =

new TexCoordGeneration(TexCoordGeneration.OBJECT_LINEAR,

TexCoordGeneration.TEXTURE_COORDINATE_2);

textureApp.setTexCoordGeneration(tcg);

The Appearance textureApp can then be assigned to an elementary geomet-
ric object or a Shape as usual. Depending on the size of the surface, the tex-
ture is applied more than once to cover the surface completely. The program
TextureExample.java loads a texture from an image file and applies it to a
sphere.



8.10 The radiosity model 231

In Java 3D textures can also be used as background images easily. The
colour of the background has already been changed in some of the exam-
ple programs for better illustration purposes, for example in the program
StaticSceneExample.java. Changing the colour of the background requires
an instance of the class Background. The desired colour is assigned to the
Background as an argument in the constructor. When a Background has been
created in this way it also needs a bounding region where it should be valid.
The bounding region is specified with the method setApplicationBounds, as
usual in the form of a BoundingSphere bounds or a bounding box. Then the
background can be added to the scene with the method addChild.

Background bg = new Background(new Color3f(r,g,b));

bg.setApplicationBounds(bounds);

theScene.addChild(bg);

If an image from a file image.jpg should be used as a background instead of
a fixed colour, the image must be loaded first using a TextureLoader. Then
the constructor of Background is called with the image instead of the colour in
the above example. The image is obtained from the TextureLoader with the
method getImage.

TextureLoader textureLoad =

new TextureLoader("image.jpg",null);

Background bgImage = new Background(textureLoad.getImage());

The definition of a bounding region and the assignment of the background to
the scene is required in the same way as for a fixed colour as background. In
the program BackgroundExample.java, an image is loaded from a file and the
image is then used as the background of a scene.

8.10 The radiosity model

It was already mentioned for the illumination model introduced in section 8.3
that an object emitting light is not considered as a light source in the scene
and does not contribute to the illumination of other objects, except a light
source is added to the scene where the object is located. But, in principle, all
objects in the scene emit light, namely, the light they reflect. Ambient light is
introduced to model this effect in a very simplified way. Unrealistic sharp edges
and contrasts are the consequence of this simplification. For example, if a dark
and bright wall meet in a corner of a room, the bright wall will reflect some light
to the darker wall. This effect is especially visible where the bright wall meets
the dark wall, i.e., at the edge between the two walls. The illumination model



232 8. Illumination and shading

from section 8.1 and the reflection and shading models in section 8.3 ignore the
interaction of the light between the objects. This results in a representation of
the two walls as can be seen in figure 8.19 on the left-hand side. A very sharp
edge is visible between the two walls. In the right part of the figure the effect
was taken into account that the bright wall will reflect light to the dark wall.
Therefore, the dark wall becomes slightly less dark close to the corner and the
edge is less sharp.

Figure 8.19 Illumination among objects

Environment mappings from section 8.8 are a simple approach to take this
effect into account. Environment mappings are not used as textures but for
modelling the light that is cast by other objects onto a surface. For this purpose,
shading is first computed as described in section 8.3, neglecting the interaction
of light between objects. Then an environment map is determined for each
object considering the other objects as light sources. The shading resulting
from the environment maps is then added to the intensities that were computed
before for the object’s surface. Of course, in the ideal case, this process should be
repeated again and again until more or less no changes occur in the intensities
anymore. But this is not acceptable from the computational point of view.

The radiosity model [20, 32] avoids these recursive computations. The ra-
diosity Bi is the rate of energy emitted by a surface Oi in the form of light. This
rate of emitted energy is a superposition of the following components when only
diffuse reflection is considered.

– Ei is the rate at which light is emitted from surface Oi as an active light
source. Ei will be zero for all objects in the scene except for the light sources.

– The light coming from light sources and other objects that is reflected by
surface Oi. If the surface Oi is the part of the dark wall in figure 8.19 close
to the corner and Oj is the corresponding part of the bright wall, the light
reflected by Oj that comes from Oi is computed as follows.

�i · Bj · Fji.



8.10 The radiosity model 233

�i is the reflection coefficient of the surface Oi, Bj is the rate of energy
coming from Oj . Bj has still to be determined. Fji is a dimensionless form
or configuration factor specifying how much of the energy coming from Oj

reaches Oi. In Fji, the shape, the size and the relative orientation of the
surfaces Oi and Oj are taken into account. For example, when the surfaces
are perpendicular, less light will be exchanged among them compared to the
case that they face each other directly. The calculation of the form factors

will be explained later on.

– For transparent surfaces, the light coming from behind the surface must also
be taken into account. Since this will make the matter more complicated,
transparent surfaces will not be considered here for the radiosity model.

The total rate of energy coming from the surface Oi is the sum over these single
rates. For n surfaces including the light sources, this leads to the equations

Bi = Ei + �i ·
n∑

j=1

Bj · Fji. (8.9)

Taking these equations for the surfaces together leads to a system of linear
equations with unknown variables Bi.
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − �1F1,1 −�1F1,2 . . . −�1F1,n

−�2F2,1 1 − �2F2,2 . . . −�2F2,n

...
...

...
...

−�nFn,1 −�nFn,2 . . . 1 − �nFn,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1

B2

...

Bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1

E2

...

En

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8.10)
This system of linear equations must be solved for the primary colours red,

green and blue. The number of equations is equal to the number of surfaces
or surface patches—usually triangles—plus the number of light sources. The
latter will be very small compared to the number of triangles. The system can
have hundreds or thousands of equations and variables. In most cases it will be
a sparse system of equations, in which most of the entries are zero since most
of the surfaces do not exchange any light so that most of the form factors will
be zero.

For the computation of the form factor from the surface Ai to the surface
Aj , both surfaces are partitioned into small area patches dAi and dAj . The
influence between the patches is computed and added. Since the patches should
be arbitrarily small, the sum will become an integral. If the patch dAj is visible
from dAi, then the differential form factor with the notation from figure 8.20



234 8. Illumination and shading

�

�

' �

' �

�

�

�

�

�

6

6

6

Figure 8.20 Determination of the form factors

is

dFdi,dj
=

cos(θi) · cos(θj)
π · r2

· dAj .

dFdi,dj
decreases quadratically with increasing distance according to attenua-

tion. The angle at which the patches face each other is also important. If the
patches face each other directly, the form factor has the largest value. In this
case, the normal vectors to the patches are parallel and point in opposite di-
rections. The form factor decreases with increasing angle and becomes zero at
90◦. For angles larger than 90◦ when the patches face in opposite directions,
the cosine would lead to negative values. For this reason, the factor

Hij =
{

1 if dAj is visible from dAi

0 otherwise

is introduced so that the differential form factor becomes

dFdi,dj
=

cos(θi) · cos(θj)
π · r2

· Hij · dAj .

By integration the differential form factor for the patch dAi to the surface Aj

is obtained.

dFdi,j =
∫

Aj

cos(θi) · cos(θj)
π · r2

· Hij dAj .

Another integration finally yields the form factor from the surface Ai to the
surface Aj .

Fi,j =
1
Ai

∫

Ai

∫

Aj

cos(θi) · cos(θj)
π · r2

· Hij dAj dAi.



8.10 The radiosity model 235

For small surfaces, i.e., for small polygons, an approximate value for the form
factor is calculated in the following way. A hemisphere is constructed over the
surface Ai with the centre of gravity of Ai as the midpoint of the hemisphere.
The surface Aj is projected onto the hemisphere and then this projection is
projected to the circle which the hemisphere defines. The proportion of the cir-
cle that is covered by this projection determines the form factor. This principle
is illustrated in figure 8.21. The quotient of the dark grey area and the circle is
the form factor. A simpler, but less accurate approximation for the form factor
was proposed by Cohen and Greenberg [13]. In this approach, the hemisphere
is replaced by a half-cube.

� �

Figure 8.21 Determination of the form factors according to Nusselt

There are also algorithms to find approximate solutions of the system of
linear equations (8.10) to estimate the radiosity value Bi. The progressive re-

finement approach [12] determines the values Bi in equation (8.9) by stepwise
improved approximate solutions of the system of linear equations (8.10). In the
first step, only the light sources are taken into account and Bi = Ei is defined
for all object i. In the first step, all objects remain completely dark. Only the
light sources emit light. In addition to estimations for the values Bi, the algo-
rithm also uses values ∆Bi that are updated in each step. ∆Bi specifies the
change of the radiosity of object i since it has last been considered as a light
source to illuminate the other objects. In the beginning ∆Bi = Ei is defined.
Then the light source or object Oi0 with the greatest change, i.e., with the
greatest value for ∆Bi0 , is chosen. In the first step, this would be the light
source with the highest intensity. Then all Bi-values are updated by

B
(new)
i = B

(old)
i + �i · Fi0i · ∆Bi0 . (8.11)



236 8. Illumination and shading

The changes ∆Bi are updated by

∆B
(new)
i =

{
∆B

(old)
i + �i · Fi0i · ∆Bi0 if i �= i0,

0 if i = i0.
(8.12)

The light emitted from the object Oi0 so far is distributed over the objects
in this way. Then the next object with the largest value ∆Bi0 is chosen and
the update schemes (8.11) and (8.12) are applied again. This procedure is
repeated until convergence is reached, i.e., until all ∆Bi are almost zero. But the
procedure can be stopped earlier as well yielding a reasonable approximation.
If the computation time is strictly limited as in the case of interactive graphics,
a good approximation of the radiosity values is obtained in this way, under the
restrictions for the computation time.

Radiosity models produce more realistic images than the simplified illu-
mination models neglecting the reflections of light between objects. But the
required computations are too complex to be used for real-time interactive
graphics. A radiosity model can nevertheless be applied in static scenes and
animations where the computations can be carried out in advance like in the
case of an animated movie. The fast and ever-improving graphics cards might
allow the application of approximation techniques like progressive refinement
in the near future even for interactive real-time graphics. Radiosity models can
be used to calculate diffuse reflection in advance when the light sources are
fixed and there are not too many moving objects in a scene. The results from
the radiosity model are stored as light maps and are applied as textures to the
objects in the real-time graphics. The real-time computations only have to take
care of specular reflection.

8.11 Ray tracing

The ray casting technique presented in section 7.3.3 in the context of visibility
considerations is a simple ray tracing model whose principle can also be used
for shading. Rays are cast from the viewer or for parallel projection parallel
through the pixels on the projection plane. Each ray is traced until it hits the
first object. There the usual calculations for shading are carried out. In figure
8.22, the ray hits the pyramid first. In this point the light from the light sources
is taken into account for diffuse reflection. The ray is then further traced as
in the case of specular reflection, only in the opposite direction, not starting
from a light source but from the viewer. When the ray hits another object, this
backwards specular reflection is traced again until a maximum depth for the
recursion is reached, until no object is hit or until the ray meets a light source.



8.11 Ray tracing 237

At the end of this procedure, the shading of the first object has to be corrected
by the possible contribution of light from specular reflection at other objects
along the reflected ray.

Figure 8.22 Recursive ray tracing

This technique is called ray tracing or recursive ray tracing. The computa-
tional demands are quite high for this technique.



238 8. Illumination and shading

8.12 Exercises

Exercise 8.1

Define spotlights in Java 3D in the colours red, green and blue. Point the
spotlights to the front face of a white cube such that the centre of the face will
be shaded white and the border areas with the different colours of the spotlight.

Exercise 8.2

A viewer is in the point (2, 1, 4) and looks at the (y, z)-plane which is illumi-
nated by a directional light source. The light source lies in infinite distance in
the direction of the vector (1, 2, 3). At which point on the plane can the viewer
see specular reflection?

Exercise 8.3

Define a Shape in Java 3D that looks like a lamp and assign a light source to the
same transformation group in the BranchGroup theScene to which the Shape

belongs. Move the lamp with the attached light source through the scene.

Exercise 8.4

Use a JPEG image of your choice as a texture for cylinders in various sizes and
for the ship in the program Load3DExample.java.

Exercise 8.5

A background image remains unchanged, even when the viewer moves around
in the scene. Apply a background image as a texture to a large box in the far
distance so that the viewer can see changes in the background image when he
moves.

Exercise 8.6

Should back-face culling be applied in the context of radiosity models, before
equation (8.10) is established?



9
Special effects and virtual reality

This last chapter presents a selection of special topics as well as basic techniques
that are required for virtual reality applications. Virtual reality comprises more
than just displaying a scene or a sequence of scenes on a computer screen.
Stereoscopic viewing which is necessary for real 3D effects belongs to virtual
reality. In addition to seeing a virtual world, virtual reality can also involve
sound. Even tactile information might be incorporated with wire gloves. An
important feature of virtual reality applications is also that the user can move
around in the virtual world and interact with the virtual world. Moving through
the virtual world means here that the person is moving, not just controlling the
navigation through the scene by mouse commands. For this purpose, sensors to
locate the position of the viewer are required. Interaction means that objects
in the scene can be manipulated, for example shifted to other positions in the
scene. Even if the necessary technical equipment for virtual reality applications
is not available for most computer users, the principles of virtual reality can
also be understood when a normal computer screen is used. From the computer
graphics point of view, moving around in a virtual world is nothing else than
a viewer who navigates through the scene, i.e., by changing the position of the
viewer which is nothing else than translating the centre of projection. This topic
was treated in detail in section 5.8 and all example programs allow a navigation
through the scene. Of course, the mouse must be used for navigation in these
programs. But the computations for the projections are identical as long as
reliable data are available about the position of a viewer in a virtual world.
The same applies to interaction. A wire glove might be the better choice in
a virtual reality environment. But the computational and programming part



240 9. Special effects and virtual reality

remain the same when the stimuli for interaction come from the mouse instead
of a wire glove. Acoustic effects do not cause any problems. They can even be
created with a normal PC.

9.1 Fog and particle systems

Fog has a similar, but not the same effect as atmospheric attenuation. In the
case of atmospheric attenuation, light is absorbed by dust particles in the air.
Fog does not consist of dust particles but of extremely small drops of water that
do not absorb the light, but disperse it in all directions. Because of this disper-
sion or diffuse reflection of the light, fog tends to have an almost white colour.
As in the case of atmospheric attenuation, the visibility of objects decreases
with increasing distance in the presence of fog. In contrast to atmospheric at-
tenuation, fog also causes a white or grey background colour. The colour of an
object is blended with the colour of the fog. Attenuation corresponds to black
fog.

Fog is based on an increasing blending function b : R
+
0 → [0, 1] where

b(0) = 0 and lim
d→∞

b(d) = 1. Given the distance d of an object to the viewer, the

colour intensity Iobject of the object and the colour intensity Ifog of the fog, the
intensity of the object in the fog is computed in a similar way as in the case of
interpolated transparency.

b(d) · Ifog + (1 − b(d)) · Iobject.

Since b(d) approaches the value one with increasing distance d, the colour of
the fog dominates the colour of the object in larger distances.

The blending function has usually either a linear or an exponential slope.
Linear fog does not reduce the sight up to the distance d = d0, i.e., no blending
with the fog takes place. For distances larger than d = d1, the fog dominates
completely so that objects farther away than distance d1 become invisible. The
effect of the fog increases in a linear fashion between d0 and d1. The blending
function for linear fog is given by

b(d) =

⎧⎪⎨
⎪⎩

0 if d ≤ d0,
d−d0
d1−d0

if d0 < d < d1,

1 if d1 ≤ d.

(9.1)

The more realistic exponential fog is based on an exponential increase of the
effect of fog controlled by the factor α > 0. The blending function is given by

b(d) = 1 − e−α·d. (9.2)



9.1 Fog and particle systems 241

The larger the value α, the more dense is the fog.
Figure 9.1 shows an example of linear fog on the left and an example of

exponential fog on the right. It is recommended to adjust the background colour
to the colour of the fog.

Figure 9.1 Linear and exponential fog

Linear and exponential fog model fog of continuous density. Single wafts of
fog hovering in the air are not included in these models. Wafts of fog and related
effects like smoke are modelled by particle systems [37, 38]. A particle system is
composed of many small particles that are not controlled individually, but by a
few parameters and random mechanisms. All particles have the same underlying
basic behaviour pattern. Individual variations in the behaviour pattern are
caused by the random mechanism. A particle usually has a random life span, it
moves in a certain direction which can also be changed by a random mechanism
and sometimes it can also split and generate new particles. For example, a fire
could be modelled by a particle system. The particles would be generated on the
ground where the fire is burning. All particles carry out an upwards movement
with a constant speed. The direction and the speed are modified by random
values. The life span of the particles is also determined on a random basis. The
mean life span should be chosen in such a way that the particles reach half
the height of the fire on average. The particles can also split with a certain
probability while they fly upwards.

An explosion would be modelled in a similar way with the differences that
the speed of the particles would be much higher and that the particles start off
in a random direction from the centre of the explosion, not mainly upwards as
in for the fire.

Swarm behaviour [40] for modelling, e.g., flocks of birds or shoals, is related
to particle systems. A swarm can be considered as a particle system plus a
control for the coordination of the particles. The particles or individuals in a
swarm move approximately with the same speed and in the same direction, but
not exactly. An important aspect for swarm behaviour in contrast to simple
particle systems is avoidance of collisions. Rule-based methods from artificial



242 9. Special effects and virtual reality

intelligence are very often used for modelling swarm behaviour.
For clouds a quite realistic animation model has been proposed in [15].

The sky is partitioned into voxels and the voxels function as cells of a cellular
automaton. Depending on the definition of the state transitions for the au-
tomaton, different kinds of clouds can be modelled. Each cell of the automaton
determines a sphere as well as a colour for its associated voxel and a cloud
pattern is created in this way.

9.2 Fog in Java 3D

Java 3D provides classes for linear and exponential fog. An instance of the
corresponding class must be generated and a bounding region must be specified.
Then the object has to be assigned to the scene with the method addChild.
The class LinearFog is for creating linear fog.

LinearFog fog = new LinearFog(colour,d_0,d_1);

fog.setInfluencingBounds(bounds);

theScene.addChild(fog);

colour is an instance of the class Color3f and determines the colour of the fog.
d 0 and d 1 are the parameters d0 and d1, respectively, of the blending function
(9.1). The bounding region of the fog is defined by an instance bounds of the
class BoundingSphere or BoundingBox. Exponential fog is created analogously
with the class ExponentialFog.

ExponentialFog fog = new ExponentialFog(colour,alpha);

The parameter alpha is the exponent α in the exponential blending function
(9.2).

The two images in figure 9.1 were generated with the programs
LinFogExample.java and ExpFogExample.java, respectively. The programs
show identical spheres which were positioned on a grid. The class Link was
used in the programs to use the same sphere multiple times in the scenegraph.
A sphere is a very simple object. Especially for more complex objects it is very
convenient when the object can be defined only once and then copies of it can
be used directly in different places in the scenegraph. For example, the doors
in a house or the wheels of a car would be modelled only once, but occur in
the scenegraph in more than one node. This also makes changes easier. When
the object is modified, there is only one place where the changes have to be
made and not in every copy of the object. When an object is used more than
once in a scenegraph, it should be assigned to a transformation group tgMult

which should then be assigned to an instance of the class SharedGroup. In each



9.3 Dynamic surfaces 243

node of the scenegraph where tgMult should occur, the instance of the class
SharedGroup should be assigned as a Link to the transformation group of the
node.

SharedGroup sgMult = new SharedGroup();

sgMult.addChild(tgMult);

After the SharedGroup sgMult has been defined, it can be used in the scene-
graph as a Link in the transformation groups tg1, tg2,. . ..

tg1.addChild(new Link(sgMult));

tg2.addChild(new Link(sgMult));

...

The classes Link and SharedGroup were used in the programs
LinFogExample.java and ExpFogExample.java to have multiple copies of the
same sphere in the scene.

9.3 Dynamic surfaces

Movements of objects are modelled by applying suitable transformations to
the objects, usually based on an interpolator. The transformations describe
the movement of the whole object and are not responsible for any kind of
deformation of the object. This model is sufficient for rigid objects like a car or
a crane. But when persons or animals move, the skin and the muscles should
also move in a suitable way, otherwise the movements will give a robot-like
impression. For surfaces which should follow a movement in a flexible way,
other models are applied. It would be too inefficient and complex to model
the movement of the surface by individual descriptions for the movements of
its surface polygons. For instance, the movement of a human arm is mainly
restricted by the bones and the joints. The bone in the upper arm can be
turned more or less arbitrarily in the shoulder joint. The bones in the lower
arm can only be bent but not turned in the elbow joint. These few facts are
almost sufficient to characterise arm movements. When only the movements of
the bones are considered, a simplified model with only one bone for the upper
and one for the lower arm is sufficient. When the hand of the arm carries out a
movement, the bones simply follow the hand’s movement under the restrictions
that are imposed by the joints. A swaying movement must automatically be
carried out in the shoulder joint of the upper arm since the elbow joint cannot
conduct such a rotational movement. The bones themselves are not visible so
that their movements have to be carried over to the surface, i.e., to the skin.



244 9. Special effects and virtual reality

The position of the bones of the arm is determined by three skeleton points:
the shoulder, the elbow and the wrist.

When the surface of the arm has been modelled by freeform surfaces or
triangles, the control points or vertices are assigned to these skeleton points
in a weighted manner. The weights indicate how much a point on the surface
is influenced by the skeleton points. The closer a point on the surface is to a
skeleton point, the larger will be the weight of the skeleton point. Points that
are approximately in the middle between two skeleton points will be assigned
a weight of 50% to each of the neighbouring skeleton points. Figure 9.2 shows
such a skeleton as it might be used to model the arm.

Figure 9.2 Skeleton and skinning

The skeleton is drawn with dashed lines. The three squares indicate the
skeleton points. The grey-scale of the vertices of the rough tesselation of the
skin indicates the assignment of the vertices to the skeleton points. The vertex
in the lower right is assigned to the right skeleton point with a weight of one.
The vertices next to it have already positive weights for the right and the
middle skeleton point.

When different transformations T1, T2, T3 are applied to the three skeleton
points s1, s2 and s3, respectively, a vertex point p on the surface with the
weights w

(p)
1 , w

(p)
2 , w

(p)
3 to the skeleton points would be transformed according

to the transformation

Tp = w
(p)
1 · T1 + w

(p)
2 · T2 + w

(p)
3 · T3.

It is assumed that the weights form a convex combination, i.e., w
(p)
1 , w

(p)
2 , w

(p)
3 ∈

[0, 1] and w
(p)
1 + w

(p)
2 + w

(p)
3 = 1.

This approach assumes that the surface follows the skeleton like a flexi-
ble hull. When noticeable movements of the muscles should be modelled, the
tensing and relaxing of muscles will initiate an additional movement of the
surface. In this case it is better to describe the surface of the arm in different
elementary positions—for example straight and bent—and then apply convex
combinations of elementary positions for the movement of the skin.



9.5 Interaction in Java 3D 245

Instead of such heuristic techniques, mathematical models for the surface
movements can also be specified. An example of cloth modelling for virtual
try-on based on finite element methods can be found in [17].

9.4 Interaction

The simplest form of interaction of a user with a three-dimensional world mod-
elled in the computer is the navigation through the virtual world. A suitable
projection must be computed based on the position of the viewer. The position
of the viewer might be modified by mouse movements, keyboard commands
or—in the case of virtual reality—by tracking the position of the viewer. This
topic has been treated in detail in section 5.8.

When the viewer should be able to interact with objects in the scene, suit-
able techniques are required to choose and pick objects for the interaction. It
should be indicated in the scenegraph which objects can be picked at which
level and what should happen when an object is picked. In the simplest case,
the three-dimensional model serves only as a training tool in which the user
can click on parts of a complex technical object like the cockpit of an aero-
plane and information like the object’s name and function is provided when
it is picked. When the viewer should initiate dynamic changes in the scene
by picking objects, for instance by pressing a button in the scene, the desired
changes or movements have to be implemented and must be started when the
user initiates them by picking the corresponding object.

When object picking is carried out with the mouse, the problem of finding
out which object has been picked must be solved. The mouse can only indicate
a point on the projection plane so that the object in the scene must be found
to which the projected point belongs. A ray casting technique as was described
in section 7.3.3 is suitable for this problem.

9.5 Interaction in Java 3D

The class Behavior and its subclasses offer a variety of possibilities for inter-
action with a scene in Java 3D. The subclass OrbitBehavior has already been
used in all example programs to allow navigation through the scene with mouth
movements.

The class PickMouseBehavior is designed to enable picking objects by click-
ing on them with the mouse. The following modifications have to be included



246 9. Special effects and virtual reality

in the scene for this purpose. The pickable objects should either be elemen-
tary geometrical objects of the class Primitive, i.e., Box, Sphere, Cylinder
or Cone, or of the class Shape3D. It is also possible to define a region which
can be picked by using a completely transparent pickable elementary geometric
object.

The method setUserData assigns additional information to an object which
can be used to identify the object when it is picked. Any Java object can
function as a parameter of the method. In the example program only instances
of the class String will be used to be able to identify objects by their names.
If a green sphere greenSphere of the class Sphere has been included in the
scene, one could assign the string “green sphere” to it by

greenSphere.setUserData("green sphere");

When there are objects in the scene which should not be pickable, for example
a red sphere redSphere, this can be achieved by

redSphere.setPickable(false);

In order to define which actions should be initiated when a certain object has
been picked, a class MyPickingBehaviour must be written that extends the
class PickMouseBehavior. This class must be instantiated in the scene and the
created instance must be assigned to the scene with the method addChild.

MyPickingBehaviour mpb =

new MyPickingBehaviour(myCanvas3D,theScene,bs,...);

theScene.addChild(mpb);

When the class is instantiated, i.e., when the constructor of
MyPickingBehaviour is called, at least the following parameters should be
used: Canvas3D, the canvas on which the scene is drawn, the scene object
theScene and a bounding region bs, e.g., in the form of a BoundingSphere.
Further parameters can serve to control certain events in the scene. An exam-
ple with further arguments in the constructor will be given at the end of this
section.

The definition of the class MyPickingBehaviour with its constructor has
the following structure.

public class MyPickingBehaviour extends PickMouseBehavior

{

...

public MyPickingBehaviour(Canvas3D myCanvas,

BranchGroup theScene,

Bounds bs,...)



9.5 Interaction in Java 3D 247

{

super(myCanvas,theScene,bs);

setSchedulingBounds(bs);

...

}

...

}

Depending on what should happen after an object has been picked, more at-
tributes can be defined and initialised with values within the constructor. Fur-
ther parameters in the constructor method can be used to hand over values for
the initialisation.

The method updateScene must be overwritten in the class
MyPickingBehaviour. Within this method it is defined what should happen
when an object is picked. The first step is usually to identify the picked object.
One way to identify an object is to check its user data. If an instance of the
class String with a suitable name for the object has been assigned to it with
the method setUserData, then the identification could look as follows.

public void updateScene(int xpos, int ypos)

{

Primitive pickedShape = null;

pickCanvas.setShapeLocation(xpos,ypos);

PickResult pResult = pickCanvas.pickClosest();

if (pResult != null)

{

pickedShape =

(Primitive) pResult.getNode(PickResult.PRIMITIVE);

}

if (pickedShape != null)

{

System.out.println("The object "

+pickedShape.getUserData()

+" has been picked.");

}

else

{

System.out.println("No object has been picked.");

}

}



248 9. Special effects and virtual reality

The method pickClosest, which is applied to the attribute pickCanvas

of the superclass PickMouseBehavior, yields the object which has been picked
in terms of ray casting. The closest object, i.e., the first object that the ray
starting from the mouse position hits, is the picked object. Other methods
for this purpose are pickAll and pickAllSorted which return an array of all
objects which are hit by the ray starting at the mouse position. The method
pickAny returns the object which was found first on the ray, not necessarily
the one closest to the viewer.

The program InteractionTest.java demonstrates this simple application
of picking objects with the mouse. It uses a modified version of the class
MyPickingBehaviour described above in the form of the program
PickingTest.java.

When picking an object should not only lead to print out the object’s name,
but to some reaction within the scene, for example a movement, this can be im-
plemented in the following way. For each pickable object the desired movement
is defined in the scene. In the scene itself the waiting time until the movement
should begin is set to the latest possible time. This is achieved by applying the
method setStartTime to the Alpha object delayedAlpha associated with the
movement and using the value Long.MAX VALUE as argument.

delayedAlpha.setStartTime(Long.MAX_VALUE);

All instances of the class Alpha that control a movement which is initiated
by picking are collected in an array and are handed over to the constructor
of the class MyPickingBehaviour. Therefore, this class should also have an
array alphas of Alpha objects as an attribute which is initialised with the
array coming from the scene. In the method updateScene the line where the
command System.out.println stands must be replaced by the following line
when the object is picked whose Alpha is at the i-th position in the array.

alphas[i].setStartTime(

System.currentTimeMillis()-alphas[i].getTriggerTime());

This method changes the starting time of the movement for the correspond-
ing Alpha object. alphas[i] is the Alpha object associated with the object
whose movement should be initiated. The starting time was initially set to
Long.MAX VALUE. The starting time is the waiting time after the animation has
started. Since the movement should start now, the starting time should be set
to the length of time the animation has been running. This is exactly the value
computed in setStartTime. triggerTime is the time when the animation has
been started.

The program InteractionExample.java demonstrates this principle with
a simple example. The scene contains a cube and a sphere. When the cube is
picked, i.e., clicked with the mouse, then it rotates. The sphere shrinks and



9.6 Collision detection 249

extends alternatingly when it is clicked. Since the sphere must carry out two
different movements, two Alpha objects are needed for the sphere so that the
array alphas contains three elements including the Alpha object for the cube
rotation. A Boolean variable is also used for switching between shrinking and
extending for the sphere. The class MyPickingBehaviour is implemented here
in the form of the program PickingExample.java.

9.6 Collision detection

Collision detection refers to the problem of determining whether moving objects
collide, in other words, whether the corresponding shapes intersect. Without
collision detection objects can penetrate each other. A car in a virtual would
pass through a virtual wall without problems or accident. Collision detection
for objects with a complicated geometric shape is a computationally complex
task when it is carried out on the level of the polygons that model the surfaces
of the objects. Even if there are only two objects in a scene, each one composed
of 100 triangles, then, without further information about the configuration of
the triangles, 100 · 100 = 10, 000 intersection tests need to be carried out for
collision detection.

For this reason, bounding volumes are introduced that are used to en-
close objects with complex geometries. Bounding volumes are simple geometric
shapes like spheres or boxes for which collision detection is much easier.

When an object is defined by a finite set of control points and assuming
that the object lies within the convex hull of the control points, an enclosing
cube can be defined by determining the smallest and largest values for the x-, y-
and z-coordinate of all control points. In this way, two points (xmin, ymin, zmin)
and (xmax, ymax, zmax) are obtained. These two points define a box that can
be used as a bounding volume. The computation of the bounding volume is
quite simple in this case. But the decision whether two boxes overlap for the
purpose of collision detection is not as simple, especially when the objects have
been moved and the bounding boxes are no longer axes-parallel.

A small bounding sphere enclosing a geometric object is more difficult to
find, but the test for collision is simple for spheres. Figure 9.3 shows an object
composed of a cylinder and a cone. An enclosing box is easy to find, whereas
determining the smallest enclosing sphere needs some computation. Collision
detection for two spheres is extremely simple. Two spheres collide or overlap
if and only if the distance between their midpoints is smaller than the sum of
their radii.



250 9. Special effects and virtual reality

Figure 9.3 Bounding volume in the form of a cube and a sphere

It is very often sufficient to compute collision detection only on the basis
of bounding volumes and not exactly on the level of polygons. This strategy
cannot be applied in the context of dynamic surfaces as they were described
in section 9.3. It can happen that the dynamic surface pervades itself when
no collision detection is carried out for the polygons. In [17] a method for
simulating cloth is proposed where complex computations are carried out to
avoid that the fabric pervades itself.

9.7 Collision detection in Java 3D

The use of collision detection in Java 3D will be explained by an example that
is implemented in the program CollisionExample.java. The program creates
a scene in which a cube can be moved around in the scene by clicking on it
with the right mouse button and moving the mouse. The scene also contains a
sphere and a cylinder. When the cube collides with the sphere, the sphere will
change its colour from green to red. A collision of the cube with the cylinder
causes the cylinder to move to the left and right alternatingly.

First of all, the class PickTranslateBehavior is needed for moving the
cube with the mouse. So far, this has nothing to do with collision detection.
The following settings are required for the transformation group tgBox of the
cube.

tgBox.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

tgBox.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

tgBox.setCapability(TransformGroup.ENABLE_PICK_REPORTING);



9.7 Collision detection in Java 3D 251

If there are also other objects that should be movable with the mouse, these
settings are also needed for the corresponding transformation groups. The im-
plementation of this mouse control is done in the class PickTranslateBehavior
from which an instance is needed which must also be assigned to the scene.

PickTranslateBehavior pickTrans =

new PickTranslateBehavior(theScene,

myCanvas3D,

bounds);

theScene.addChild(pickTrans);

The constructor of PickTranslateBehavior requires the specification of the
scene, the Canvas3D for the scene and a bounding region, for example a
BoundingSphere.

For the objects for which collision detection should be carried out a bound-
ing volume colVol in the form of a BoundingSphere or a BoundingBox must
be specified with the method setCollisionBounds. Then the object should be
marked as relevant for collision with the method setCollidable.

colObject.setCollisionBounds(colVol);

colObject.setCollidable(true);

colObject can be an elementary geometric object, a Shape3D or also a transfor-
mation group. Since bounding volumes can only be defined as bounding boxes
or bounding spheres, complex objects can only be approximated for collision.

The actions to be carried out when a collision occurs are implemented in
a separate class in a similar way as was done for interaction with the class
PickMouseBehavior in section 9.5.

The cylinder is considered first. The cylinder shall move from left to right or
from right to left each time a collision with the cube happens. Its behaviour is
controlled in the class CollisionBehaviour2.java. As already for interaction,
the desired movements are defined directly in the scene with the starting time
of the Alpha objects set to the maximum possible value. An instance of the class
CollisionBehaviour2 needs to be generated in the scene. The parameters for
the constructor are the object for which collision detection should be carried
out, i.e., the cylinder, an array of Alpha objects with the movements initiated
by collisions and a bounding region. After the instance has been created with
the constructor, it is assigned to the scene.

CollisionBehaviour2 scb2 =

new CollisionBehaviour2(cyli,cylAlphas,bounds);

theScene.addChild(scb2);



252 9. Special effects and virtual reality

The class CollisionBehaviour2 has to extend the class Behavior. Some ad-
ditional attributes are also needed. It must be specified when during a collision
the movement should be initiated. The following criteria are available.

– WakeupOnCollisionEntry: At the beginning of the collision.

– WakeupOnCollisionExit: At the end, when the collision is resolved.

– WakeupOnCollisionMovement: During the collision, when the object causing
the collision is moving.

– WakeupOr: When more than one of the above criteria should be combined.

For the movement of the cylinder only the first criterion is needed. For the
change of the colour of the sphere the second criterion WakeupOnCollisionExit

will also be used later on. One of the attributes of the class
CollisionBehaviour2 is therefore a WakeupOnCollisionEntry object. An ar-
ray with the Alpha objects is also needed to initiate the movements of the
cylinder. And two attributes to control which of the two movements should
be carried out next are also introduced. The definition of the class with the
constructor is therefore

public class CollisionBehaviour2 extends Behavior

{

public WakeupOnCollisionEntry hit;

public Primitive collidingShape;

public Alpha[] movement;

public boolean toRight;

int whichAlpha;

public CollisionBehaviour2(Primitive theShape,

Alpha[] theAlphas,

Bounds theBounds)

{

collidingShape = theShape;

movement = theAlphas;

setSchedulingBounds(theBounds);

whichAlpha = 0;

toRight = true;

}

...

}

Then the method initialize of the superclass Behavior must be overwrit-
ten. Within this method it is defined which criteria with which objects or



9.7 Collision detection in Java 3D 253

transformation groups or nodes of the scene graph lead to calling the method
processStimulus which will be defined later on.

public void initialize()

{

hit = new WakeupOnCollisionEntry(collidingShape);

wakeupOn(hit);

}

The action to be carried when a collision occurs is specified in the method
processStimulus. This method contains an enumeration of all relevant col-
lisions which have happened to the considered object. This enumeration is
scanned for a WakeupOnCollisionEntry entry. When it is found in the enu-
meration, the starting time of the corresponding Alpha object is set to the
current time in order to initiate the associated movement.

public void processStimulus(Enumeration criteria)

{

while (criteria.hasMoreElements())

{

WakeupCriterion theCriterion =

(WakeupCriterion) criteria.nextElement();

if (theCriterion instanceof WakeupOnCollisionEntry)

{

...

movement[whichAlpha].setStartTime(

System.currentTimeMillis()

-movement[whichAlpha].getTriggerTime());

...

}

wakeupOn(hit);

}

}

In addition to the activation of the Alpha object, it must be remembered which
movement comes next, the movement to the right or to the left. These lines of
code are not shown here to keep the printed source code short.

The change of the colour of the sphere after a collision with the cube is
implemented in the class CollisionBehaviour1.java. The class has a similar
structure as CollisionBehaviour2. The change of the colour is not a move-
ment, but a sudden change of the state which can be modelled by an instance
of the class Switch. A Switch is a node in the scenegraph which has a number
of child nodes from which only a subset is visible. In the case of the sphere, the



254 9. Special effects and virtual reality

Switch has two child nodes, one for the green and one for the red sphere. To
use a Switch in the scenegraph, the constructor of the switch must be called
and the Switch must be activated. Then an arbitrary number of children, i.e.,
transformation groups, can be assigned to the switch.

Switch sw = new Switch();

sw.setCapability(Switch.ALLOW_SWITCH_WRITE);

sw.addChild(transformgroup0);

sw.addChild(transformgroup1);

...

Then the Switch can either be assigned directly to the scene or to another
transformation group within the scene. The method

sw.setWhichChild(nodeNumber);

is used to determine which of the child nodes of the switch should be vis-
ible in the scene. The child node is identified by its number. If more than
one child node should be visible, the class BitSet (in java.util) can be
used to define a bitmask bm. Calling the methods bm.set(childNumber) or
bm.clear(childNumber) determines whether the child node childNumber is
visible or invisible, respectively. The bitmask is assigned to the Switch with
the method sw.setChildMask(bm).

In the class CollisionBehaviour1 the Alpha objects from the class
CollisionBehaviour2 are replaced by the Switch as attribute. It is also nec-
essary to distinguish in this class between collision entry and collision exit. The
colour should jump back to green after the collision is over. A change of the
colour should happen when a collision entry or exit happens. The definition of
the attributes and the constructor are as follows.

public class CollisionBehaviour1 extends Behavior

{

public WakeupCriterion[] theCriteria;

public WakeupOr oredCriteria;

public Switch collidingShape;

public CollisionBehaviour1(Switch theShape,

Bounds theBounds)

{

collidingShape = theShape;

setSchedulingBounds(theBounds);

}

...

}



9.7 Collision detection in Java 3D 255

In the initialisation method, the logical disjunction of the criteria should be
defined as the wake-up criterion for this class.

public void initialize()

{

theCriteria = new WakeupCriterion[2];

theCriteria[0] =

new WakeupOnCollisionEntry(collidingShape);

theCriteria[1] =

new WakeupOnCollisionExit(collidingShape);

oredCriteria = new WakeupOr(theCriteria);

wakeupOn(oredCriteria);

}

The method processStimulus has to handle the collision entry as in the class
CollisionBehaviour1, but also the end of the collision. The actions to be carried
out were initiated by setting the start values of Alpha objects. Here, instead,
the Switch with the red and green sphere must be changed from one sphere to
the other with the method setWhichChild.

The program CollisionExample.java does not use the class
OrbitBehavior to allow navigation through the scene with the mouse. Since
the movement of the cube is already controlled by the mouse, the mouse move-
ments for placing the cube in the scene would also be interpreted as navigation
through the scene so that a simultaneous navigation would take place with
every movement of the cube. Instead of the class OrbitBehavior, the class
KeyNavigatorBehavior is used to allow navigation through the scene by key-
board commands. The scene as a BranchGroup cannot be assigned to this
extension of the class Behavior. A new transformation group tgAll is there-
fore introduced. All objects in the scene are assigned to this transformation
group and not to theScene. This transformation group is then assigned to
the scene. For navigation with the keyboard, tracking and controlling trans-
formations must be allowed for tgAll. After this, an instance of the class
KeyNavigatorBehavior is created and a bounding region is assigned to it.
The instance of the class KeyNavigatorBehavior is finally assigned to tgAll

with the method addChild.

TransformGroup tgAll = new TransformGroup();

tgAll.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

tgAll.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

...

theScene.addChild(tgAll);

KeyNavigatorBehavior knb = new KeyNavigatorBehavior(tgAll);

knb.setSchedulingBounds(bounds);



256 9. Special effects and virtual reality

tgAll.addChild(knb);

tgAll.addChild(...);

In connection with collision detection it is very often necessary to stop the
movements of objects when they collide. This can be achieved by the method
pause() applied to the corresponding Alpha objects.

9.8 Sound effects

Sound effects do not belong to the core part of computer graphics. They are
nevertheless needed for many realistic animations and are part of virtual reality
applications. There are different categories of sound effects. A sound can be
background music or background noise like wind or rain. Background noise
does not seem to come from a source with a well-defined position. It is present
everywhere in the scene or a part of the scene. Background is similar to ambient
light which also does not have a specific source and location or direction. It is
simply present everywhere in the scene.

Most sound effects have a concrete source located in the scene, e.g., the
voice of a person or an animal, the knocking at a door or the humming of
a motor. Background noise differs in that the sources of these sounds have a
specific position in the scene. For stereo effects it must be taken into account
whether the source of the sound is more to the left or to the right of the viewer.
The volume of the sound also depends on the distance between the viewer and
the source of the sound.

The ability to locate a sound is mainly based on the use of two ears for
hearing. The two ears will hear the sound with a slightly different volume and
also with a short time delay. The volume of a sound depends also on the distance
from its source. This means that realistic sound effects must at least take into
account the level of the volume depending on the distance and a separation of
the channels when more than one loudspeaker is available. The volume and the
distribution of the sound to the channels can only be derived from the geometric
context in the scene and the position of the viewer. Dynamic changes happen
when moving objects produce sound or when the viewer navigates through the
scene.

For more realistic sound effects even the Doppler frequency shift would have
to be taken into account. When an object producing a sound approaches the
viewer, the pitch of the sound is higher than for a static object. When the
same object has passed the viewer and moves away from him, the pitch is
lowered. This effect can be experienced when police and ambulance cars pass
by with their sirens switched on. The implementation of Doppler’s effect is



9.9 Sound effects in Java 3D 257

quite complicated and usually not integrated into virtual scenes.
The sounds are usually stored as sound files in Wave or MP3 format. They

can then be triggered by events. The volume of the sound must be adapted
depending on the distance to the viewer, and also the distribution of sound to
the channels depends on the position of the viewer.

9.9 Sound effects in Java 3D

Sound effects can be easily integrated into scenes with Java 3D. There are three
different types of sounds. The class BackgroundSound is for background noise.
A BackgroundSound has the same volume everywhere in its bounding region
and the sound is equally distributed to the channels. Background sounds are
handled in a similar way as ambient light.

The class PointSound is the soundequivalent of a point light source. A
PointSound has a specific location in the scene and its volume decreases with
increasing distance. When more than one channel is available, the PointSound

can also be distributed to the channels depending on the direction it comes
from.

The class ConeSound is the spotlight among the sounds. Like a PointSound

it has a location, but it spreads only in one direction within a cone of sound. A
pure ConeSound is not realistic, since noise cannot be directed in the same way
as light. A ConeSound in connection with a PointSound at the same position
leads to more realistic effects.

In order to integrate sound effects in Java3D, an instance of the desired
Sound class is created, for instance

PointSound theSound = new PointSound();

Then a sound file in Wave format (wav) or Audio format (au) is loaded with
the class MediaContainer and assigned to the instance of theSound with the
method setSoundData.

MediaContainer medCon;

try

{

FileInputStream is = new FileInputStream("mysound.wav");

medCon = new MediaContainer(is);

theSound.setSoundData(medCon);

}

catch(Exception e){...}



258 9. Special effects and virtual reality

The method setEnable allows the use of this sound. Otherwise it will not be
played. How often the sound should be repeated can be defined with the method
setLoop. The method setInitialGain is needed to set the initial volume of
the sound. A bounding region is also required for a sound.

theSound.setEnable(true);

theSound.setLoop(Sound.INFINITE_LOOPS);

theSound.setInitialGain(0.9f);

theSound.setSchedulingBounds(bs);

In this example the sound is repeated without stopping by choosing
Sound.INFINITE LOOPS. When the sound should be played only once or a spe-
cific number of times, the desired number should be entered instead. The sound
can then be assigned to a transformation group or directly to the scene. The
sound can be positioned and move around in the scene when it is assigned to a
suitable transformation group. When the sound is produced by a specific object
in the scene, the sound should be assigned to the same transformation group
as this object.

The program SoundExample.java demonstrates the use of sound effects in
Java 3D.

9.10 Stereoscopic viewing

Stereoscopic viewing, the ability to extract 3D information from what the two
eyes see, is based on a variety and combination of factors. Even seeing with one
eye only, will still provide some 3D information based on monocular factors.
Binocular factors exploit the richer information combining the images coming
from both eyes. Monocular factors are

– The focus (accommodation): When the eye views an object, the lens has
to be adjusted by muscle contractions in the eye so that the object is in
focus. Objects in the far background get out of focus. This provides a certain
information about distances.

– Parallax of movements: Parallax of movements can be observed when objects
move relative to each other. The position and the size of the objects are
crucial for this information. Moving objects change their distance to the
viewer.

– Masking: When one object is hidden partly from sight by another object it
can be concluded that the completely visible object must be closer to the
viewer than the other object.



9.10 Stereoscopic viewing 259

– Light and shadows: From the location, the direction, the shape and the size
of the shadow cast by an object, conclusions can be drawn about the lo-
cation of the object itself and about the shape of the object on which the
shadow is cast. Figure 8.14 on page 223 is an example where a shadow from
a tetrahedron is deformed since it is cast on two faces of a cube.

– Size: From the size of an object in an image compared to the size of other
objects and the known size of the object, the distance of the object to the
viewer can be estimated. Closer objects are larger. This means if an object
that is known to be large occurs small, it must be far away from the viewer.

– Attenuation: The effects of atmospheric attenuation increase with the dis-
tance. Objects in the far distance appear less contrasted than closer ones.

– Head movements: Seeing with two eyes has the advantage that two images
from slightly different positions are available at the same time. From the
differences in the two images, the three-dimensional information can be re-
trieved. But even with one eye it is possible to have images from different
positions by moving the head or the whole body. The different images do not
come in parallel as with two eyes. But the small difference in time can be
compensated, at least with some effort.

The binocular factors combine and aggregate the information coming from both
eyes for stereoscopic viewing.

– Difference of the images: Since the two eyes view the same scene from two
slightly different positions1, three-dimensional information can be retrieved
from a comparison of the two images.

– Convergence: The eyes have the ability to modify the direction of view by
turning the eyeballs slightly. The closer an object is to the eyes, the more
the eyeballs are turned inside. Based on this slight turn of the eyeballs, the
distance of an object in focus can also be roughly estimated.

– Pulfrich effect: This effect was discovered in 1922 by the German physicist
Carl Pulfrich. A bright stimulus is noticed or processed faster by the brain
than a dark one. Wearing glasses with one darkened side, this effect can be
used to generate 3D impressions for special image sequences.

In order to enable stereoscopic viewing with both eyes in computer graphics,
it is necessary to provide different images for the left and right eye. The gen-
eration of the two images does not cause any problems from the viewpoint of
computer graphics. Two perspective projections of the same scene with slightly
different centres of projection are needed. Of course, the computational effort
1 Roughly 6.5 cm difference.



260 9. Special effects and virtual reality

is increased, in the worst case it is doubled. But coherence considerations can
simplify the rendering tasks. Clipping, back-face culling and the computation
of shadows are identical or almost identical for the two images. To present the
two computed images to the eyes separately is the greater problem.

Anaglyph images are a very old approach to stereoscopic viewing. The two
images are drawn with different colours, in most cases one in red and the other
one in green. To view the two overlaid images special glasses must be worn with
different colour filters for the two eyes. A disadvantage of anaglyph images is
the loss of colour information.

Polarised light is a better alternative. Light waves oscillate around the axis
of the direction in which they spread. Polarised light oscillates only in one
plane. The images for the two eyes are projected to a screen with different po-
larisations. The viewer must wear glasses with the corresponding polarisations
for the two eyes.

Polarisation is well suited for projectors, but not for computer monitors.
Liquid crystal shutter glasses are more common for computer monitors. The
images for the two eyes are presented alternatingly on the computer screen. The
user must wear liquid crystal shutter glasses which are synchronised with the
monitor. The liquid crystals can be switched from transparent to dark by an
electric voltage. The shutter glasses darken the eye whose image is not shown
at that moment on the computer screen. Since the image frequency for each
eye is reduced by half in this way, it is recommended to use a special monitor
with a higher frequency of at least 100 Hz. The frequency is also limited by the
phosphorescence effect of monitors.

A head-mounted display is usually a small helmet with two LCD displays
with magnifying lenses, one for each eye. Head tracking is required when the
viewer can move around in the scene wearing the helmet. Headphones can
also be integrated into the helmet for sound effects. The disadvantage is that
wearing a helmet is not as comfortable as wearing glasses.

In recent years progress has been made in constructing specific displays that
do not need specific glasses for the separation of the images for the two eyes
[2, 19, 44]. Some techniques use a specific mask of lenses or prisms in front of
the display so that each eye can only see one half of the pixels. The images for
the two eyes must then be distributed accordingly to the pixels. There are also
advanced techniques based on holographic methods.

A principal problem for these stereoscopic viewing techniques is the contra-
diction of constant focussing for varying distances. The focus of the eyes should
always be kept fixed on the computer monitor, even if objects in the virtual
world are viewed that seem to be far away behind the computer monitor or that
appear to be in front of the monitor. This contradiction can cause headaches
for some people when they use such techniques for stereoscopic viewing. The



9.10 Stereoscopic viewing 261

� ) ) % � � % ' � � � % � ) % �  � � � � � ) � � ) ) % � � % ' � � � % � ) % �  � � � � � ) �

� % � � � % � � % � � � % �

� � � � � � � � � �  &  �  � �

Figure 9.4 Parallax and accommodation for natural and artificial stereoscopic
viewing

contradiction is illustrated in figure 9.4. Accommodation refers to the point
where the lens of the eye should be focussed, convergence to the turning of the
eyeballs.

� % � � � % �

� % � / � � � � � � �

+

&
/ % , � � �  � � / � � � � � � �� � � � � �  � � / � � � � � � �

Figure 9.5 Parallax for stereoscopic viewing

Stereoscopic techniques are based on the correct choice of the parallax.
Parallax refers to the difference of the images for the two eyes, when the same
object is projected. Figure 9.5 illustrates the principle of parallaxes. A virtual
object which is exactly in the distance of the projection plane, i.e., the computer
monitor, has no parallax. Its projections are identical for the two eyes. The
projection of an object behind the projection plane is shifted farther to the



262 9. Special effects and virtual reality

right for the right eye and farther to the left for the left eye. This is called a
positive parallax. For objects in front of the projection plane or monitor, the
situation is reversed. They have a negative parallax.

A computer can also create a divergent parallax by showing an object left
of the left eye and right of the right eye which is impossible in reality.

A general problem of computer monitors for stereoscopic viewing is the
frame or boundary of the monitor. For objects with positive parallax, the mon-
itor is like a window through which the objects are seen. Objects with negative
parallax are simply cut off at the edge of the monitor.



9.11 Exercises 263

9.11 Exercises

Exercise 9.1

Create a scene with fog and let an object move away from the viewer until it
vanishes in the fog.

Exercise 9.2

Create a simple light switch in a scene. Clicking the light switch with the mouse
should switch on and off a light source. The light source should be assigned to
the BranchGroup the Scene and not the BranchGroup bgLight.

Exercise 9.3

Specify bounding volumes in the form of a box and a sphere for the object in
figure 9.3. The cylinder has a radius of one unit and a height of three units.
The cone is two units high.

Exercise 9.4

Modify the program CollisionExample.java in such a way that the sphere
becomes transparent when it collides with the cube.

Exercise 9.5

Create a simple model of a megaphone in the form of a cone and assign a
ConeSound to it. Change the viewer’s position interactively.



Appendix: Useful links

Online service of the book: The online service with the source code of all ex-
ample programs, additional programs, supplementary files, exercises with
solution and slides for teaching is available under

http://public.rz.fh-wolfenbuettel.de/∼klawonn/computergraphics

Java 2D: Further information concerning Java 2D can be found in the Java
tutorial at

http://java.sun.com/docs/books/tutorial/2d/

Java 3D: The homepage of Java 3D has the URL

http://www.java3d.org

Numerous links in connection with Java 3D can be found there like links
to the Java 3D tutorial, the Java 3D API, to books, example programs,
additional information for loading different file formats as well as a scene-
graph editor. Of course, the link for downloading Java 3D

http://java.sun.com/products/java-media/3D/

can be found there, too.

3D modelling: Apart from CAD tools, the commercial program Maya is very
popular for developing models for games, animations and movies. Maya
resides under the URL



266 Appendix: Useful links

http://www.alias.com

Blender3D is a free Open Source Product for 3D-modelling that can also
export Wavefront Object files. Blender3D can be downloaded at

http://www.blender3d.com

Wavefront Object files: At

http://www.3droad.com/3d models OBJ.htm

various examples of files in Wavefront Object Format can be found for free
download for noncommercial use.

OpenGL: The OpenGL homepage has the address

http://www.opengl.org



Appendix: Example programs

All programs mentioned in the book and additional ones can be downloaded at
the online service to this book. The following tables refer to the pages where
the programs are mentioned in the book. There is one table for Java 2D and
one for Java 3D programs. The programs are listed in alphabetical order.

Java 2D
Java class Topic Page

ArcExample Ellipse arc and segment 22
AreaExample Union, intersection, difference and

symmetric difference for areas
23

BufferedImageDrawer Generic class for the use of
double buffering for drawing a
BufferedImage

93

ConvexCombTransforms Animation based on convex com-
binations of transformations with
an example of transforming two el-
lipses

44

CurveDemo Drawing of lines, quadratic and
cubic curves

18

DoubleBufferingClockExample Animation with moving objects
using double buffering with a mov-
ing clock as an example

93



268 Appendix: Example programs

Java 2D
Java class Topic Page

DToCMorphing Transformation of one object into
another. The objects are mod-
elled by curves defined over con-
trol points. The letter D is trans-
formed into the letter C.

45

GeneralPathCar Example of a GeneralPath for the
silhouette of a car

20

GradientPaintExample Use of colour gradients 110
ImageLoadingExample Loading a JPEG image 94
ImageSavingExample Saving a JPEG image 95
LineEndings Line endings and joints for thick

lines
85

MorphingCandS Uses the class
TriangulatedImage for trans-
forming two triangulated images
into each other

111

MyFinishWindow Class for closing a window 12
NonSynchronizedClock Movements of a simple clock 39
RectangleEllipseExample Rectangle and ellipse 21
RotationExample Rotation 36
ScalingExample Scaling 36
ShearingExample Shear transformation 36
SimpleJava2DExample First Java 2D example program 11
SimpleLetterC Representation of the letter C

with quadratic curves
45

SimpleLetterD Representation of the letter D

with quadratic curves
45

StrokingExample Various dash patterns 67
TextExample Drawing and modifying text 99
Texture2DExample Drawing of textures 95
TransformationOrderExample Importance of the order for trans-

formations
36



Appendix: Example programs 269

Java 2D
Java class Topic Page

TransformationOrderExampleR Importance of the order for
transformations

36

TransformationOrderExampleRT Importance of the order for
transformations

36

TransformationOrderExampleT Importance of the order for
transformations

36

TransformationOrderExampleTR Importance of the order for
transformations

36

TranslationExample Translation 36
TriangulatedImage Class for triangulated images

which can be transformed into
each other by pixel and colour
interpolation

111

Java 3D
Java class Topic Page

BackgroundExample An image from file as background. This pro-
gram requires the file sunset.jpg. A back-
ground with a homogeneous colour can be
found in the program StaticSceneExample.

231

ClippingPlanes Modification of the clipping volume by the
angle for the field of view and the front and
the back clipping plane

182

CollisionBehaviour1 A class that is used in CollisionExample in
order to change the colour of an object when
a collision occurs. A Switch is used here.

253

CollisionBehaviour2 A class that is used in CollisionExample

in order to move an object when a collision
occurs

251

CollisionExample Example for the application of colli-
sion detection. Uses also a Switch and
navigation via keyboard commands.
The classes CollisionBehaviour1 and
CollisionBehaviour2 are needed.

250



270 Appendix: Example programs

Java 3D
Java class Topic Page

ExpFogExample Exponential fog and the multiple use of
transformation group in a scene as a
Link

242

Extract3DExample Loading an object from a file in Wave-
front Object Format. Only a selected
part of the whole object is included in
the scene. The file schiff.obj is re-
quired.

163

GeomArrayExample Definition of an object (tetrahedron)
with triangles

161

InteractionExample Picking objects with the mouse
and initiating movements. The class
PickingExample is needed.

248

InteractionTest Picking objects with the mouse. Using
the class PickingTest the name of the
picked object is printed.

248

LightingExample Use of different light sources and differ-
ent reflection properties of surfaces

217

LightingExample2 A rotating light source causing unrealis-
tic colour effects for objects with badly
modelled reflection properties

217

LinFogExample Linear fog and the multiple use of trans-
formation group in a scene as a Link

242

Load3DExample Loading and displaying an object from a
file in Wavefront Object Format. Print-
ing out the names of all subobjects. As-
signing a new colour to one of the sub-
objects. The file schiff.obj is needed.

163

MovingLight A moving light source 207
MovingSpotLight A spotlight rotation around the scene.

The intensity in the cone of light is con-
stant and drops abruptly to zero at the
edge.

217

NormalsForGeomArrays Definition of an object (tetrahedron)
with triangles. Normal vectors are inter-
polated.

177



Appendix: Example programs 271

Java 3D
Java class Topic Page

PickingExample A class needed for InteractionExample
for initiating movements and scalings for
picked objects

249

PickingTest A class needed for InteractionTest in
order to print out the names of picked
objects

248

ShadingExample Use of constant instead of Gouraud shad-
ing

222

SimpleAnimation3d A simple animation with a starting and
landing helicopter

139

SoundExample Incorporating sound effects into a scene
in the form of a BackgroundSound and
a PointSound. The files bgsound.wav,
psound.wav and darkclouds.jpg are
needed.

258

StaticSceneExample A static scene with a helicopter and a
tree

127

TesselationBWExample Wire frame model of a static scene with
a helicopter and a tree

159

TesselationExample Part of a static scene with a helicopter
and a tree shown as a wire frame model

159

TesselationResolution Approximation of the surface of a sphere
with different numbers of triangles

160

TextureExample Loading a texture from a file and map-
ping it to an object’s surface. The file
myTexture.jpg is needed.

230

TransparencyExample Example for interpolated and screen-
door transparency

227

ViewParallelProjection Parallel projection for displaying a static
scene with a helicopter and a tree

146



Appendix: References to Java 2D classes
and methods

add, 22
AffineTransform, 33
Arc2D, 21
Area, 22
BasicStroke, 66,84
BufferedImage, 91
Color, 106
concatenate, 35
createGlyphVector, 98
createGraphics, 91
createTransformedArea, 35
createTransformedShape, 35
CubicCurve2D, 18
curveTo, 18
deriveFont, 98
draw, 17
drawImage, 92
drawString, 97
Ellipse2D, 21
exclusiveOr, 23
fill, 17
Font, 97
GeneralPath, 18
getClip, 95

getGlyphOutline, 98
getGlyphPosition, 98
getMatrix, 44
getRGB, 111
GlyphVector, 98
GradientPaint, 110
Graphics, 11
Graphics2D, 11
Image, 91
intersect, 22
Line2D, 18
lineTo, 18
moveTo, 19
paint, 11
Point2D, 17
Point2D.Double, 17
Point2D.Float, 17
preConcatenate, 35
QuadCurve2D, 18
quadTo, 18
Rectangle2D, 20
rotation, 34
scale, 34
setClip, 95



274 Appendix: References to Java 2D classes and methods

setFont, 98
setPaint, 106
setRenderingHint, 82
setRGB, 111
setStroke, 66
setToRotation, 34
setToScale, 34
setToShear, 35

setToTranslation, 35
Shape, 17
shear, 35
subtract, 23
TexturePaint, 95
transform, 35
translate, 35
update, 92



Appendix: References to Java 3D classes
and methods

addBranchGraph, 129
addChild, 127,129
Alpha, 133
AmbientLight, 206
Appearance, 123,216
AxisAngle4d, 119
Background, 231
BackgroundSound, 257
Behavior, 245
BitSet, 254
BoundingBox, 138
BoundingSphere, 137
Box, 123
BranchGroup, 129,206
Color3f, 123
ColoringAttributes, 222
compile, 129
Cone, 124,160
ConeSound, 257
Cylinder, 124,160
DirectionalLight, 206
ExponentialFog, 242
GeometryArray, 160,176
getImage, 231

getNamedObjects, 163
getScaledImage, 230
getSceneGroup, 162
ImageComponent2D, 230
initialize, 252
Interpolator, 133
KeyNavigatorBehavior, 255
LinearFog, 242
Link, 243
Material, 216
MediaContainer, 257
mul, 120
NormalGenerator, 176
ObjectFile, 162
OrbitBehavior, 126,245
pause, 256
pickAll, 248
pickAllSorted, 248
pickAny, 248
pickCanvas, 248
pickClosest, 248
PickMouseBehavior, 245
PickTranslateBehavior, 250
Point3f, 207



276 Appendix: References to Java 3D classes and methods

PointSound, 257
PolygonAttributes, 159
PositionInterpolator, 136
Primitive, 246
processStimulus, 253
RotationInterpolator, 138
rotX, 119
rotY, 119
rotZ, 119
ScaleInterpolator, 139
Scene, 162
setAppearance, 163
setApplicationBounds, 231
setBackClipDistance, 182
setCapability, 138,250
setChildMask, 254
setCollidable, 251
setCollisionBounds, 251
setCreaseAngle, 176
setEnable, 258
setFieldOfView, 182
setFrontClipDistance, 182
setInitialGain, 258
setLoop, 258
setMaterial, 217
set(matrix), 119,120
setPickable, 246
setPolygonAttributes, 159

setScale, 118
setSchedulingBounds, 138
setShadeModel, 222
setSoundData, 257
setStartTime, 248
setTranslation, 119
setTransparency, 226
setTransparencyAttributes, 226
setTransparencyMode, 226
setUserData, 246
setWhichChild, 254
Shape3D, 161
SharedGroup, 242,243
SimpleUniverse, 123
Sphere, 124,160
SpotLight, 207
Switch, 253
Texture2D, 230
TextureLoader, 231
Transform3D, 119
TransformGroup, 127
TransparencyAttributes, 226
updateScene, 247
Vector3f, 206
View, 182
WakeupOnCollisionEntry, 252
WakeupOnCollisionExit, 252
WakeupOnCollisionMovement, 252
WakeupOr, 252



Bibliography

[1] J. Barrilleaux: 3D User Interfaces with Java 3D. Manning Publications,
Greenwich, CT (2002)

[2] A. Beuthner: Displays erobern die dritte Dimension (in German). Com-
puter Zeitung 30/2004, 14-14

[3] J.F. Blinn: Simulation of Wrinkled Surfaces. In: Proc. SIGGRAPH’78,
Computer Graphics 12 (1978), 286-292

[4] A. Bogomjakov, C. Gotsman, M. Magnor: Free-Viewpoint Video from
Depth Cameras. Proc. Vision, Modeling, and Visualization (VMV’06),
Aachen (2006), 89-96

[5] J.E. Bresenham: Algorithm for Computer Control of a Digital Plotter.
IBM Systems Journal 4 (1965), 25-30

[6] J.E. Bresenham: A Linear Algorithm for Incremental Digital Display of
Circular Arcs. Communications of the ACM 20 (1977), 100-106

[7] R. Brons: Linguistic Methods for the Description of a Straight Line on a
Grid. Computer Graphics and Image Processing 3 (1974), 48-62

[8] R. Brons: Theoretical and Linguistic Methods for Describing Straight
Lines. In: [16], 19-57

[9] K. Brown, D. Petersen: Ready-to-Run Java 3D. Wiley, Chichester (1999)

[10] H.-J. Bungartz, M. Griebel, C. Zenger: Einführung in die Computer-
graphik (2. Aufl.) (in German). Vieweg, Wiesbaden (2002)

[11] H. Chen, S.S. Fuller, C. Friedman, W. Hersh (eds.): Medical Informatics.
Springer, Berlin (2005)



278 Bibliography

[12] M.F. Cohen, S.E. Chen, J.R. Wallace, D.P. Greenberg: A Progressive Re-
finement Approach to Fast Radiosity Image Generation. In: Proc. SIG-
GRAPH’88, Computer Graphics 22 (1988), 75-84

[13] M.F. Cohen, D.P. Greenberg: The Hemi-Cube: A Radiosity Solution for
Complex Environments. In: Proc. SIGGRAPH’85, Computer Graphics 19
(1985), 31-40

[14] M. Cyrus, J. Beck: Generalized Two- and Three-Dimensional Clipping.
Computers and Graphics 3 (1978), 23-28

[15] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, T. Nishita: A Sim-
ple, Efficient Method for Realistic Animation of Clouds. In Proc. SIG-
GRAPH’2000, Computer Graphics 34 (2000), 19-28

[16] R.A. Earnshaw (ed.): Fundamental Algorithms for Computer Graphics.
Springer, Berlin (1985)

[17] O. Etzmuß, M. Keckeisen, W. Straßer: A Fast Finite Element Solution
for Cloth Modelling. In: 11th Pacific Conf. on Computer Graphics and
Applications, IEEE, Piscataway (2003), 244-251

[18] J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes: Computer Graphics:
Principles and Practice. Second Edition in C. Addison-Wesley, Boston
(1996)

[19] C. Geiger: Helft mir, Obi-Wan Kenobi (in German). iX 5/2004, 97-102

[20] C.M. Goral, K.E. Torrance, D.P. Greenberg, B. Battaile: Modeling the
Interaction of Light Between Surfaces. In: Proc. SIGGRAPH’84, Computer
Graphics 18 (1984), 213-222

[21] H. Gouraud: Continuous Shading of Curved Surfaces. IEEE Transactions
on Computers C-20 (1971), 623-629

[22] S. Gupta, R.E. Sproull: Filtering Edges for Gray-Scale Displays. Computer
Graphics 15 (1981), 1-5

[23] R.R. Hainich: The End of Hardware: A Novel Approach to Augmented
Reality (2nd Edition). BookSurge Publishing, Charleston, SC (2006)

[24] V.J. Hardy: Java 2D API Graphics. Prentice Hall, Upper Saddle River,
NJ (2000)

[25] D. Hearn, M.P. Baker: Computer Graphics with OpenGL (3rd Edition).
Pearson Prentice Hall, Upper Saddle River, NJ (2004)

[26] M.R. Kappel: An Ellipse-Drawing Algorithm for Raster Displays. In: [16],
257-280



Bibliography 279

[27] G. Kim: Designing Virtual Reality Systems: The Structured Approach.
Springer, Berlin (2005)

[28] F. Klawonn, V. Chekhtman, E. Janz: Visual Inspection of Fuzzy Clus-
tering Results. In: J. Benitez, O. Cordon, F. Hoffmann, R. Roy (eds.):
Advances in Soft Computing: Engineering Design and Manufacturing.
Springer, London (2003), 65-76

[29] J. Knudsen: Java 2D Graphics. O’Reilly, Beijing (1999)

[30] H. Kopka, P.W. Daly: A Guide to LATEX: Document Preparation for Begin-
ners and Advanced Users (3rd ed.) Addison-Wesley, Reading, MA (1999)

[31] K. Larson: The Technology of Text. IEEE Spectrum (INT) 5/2007, 20-25

[32] T. Nishita, E. Nakamae: Continuous Tone Representation of Three-
Dimensional Objects Taking Account of Shadows and Interreflection. In:
Proc. SIGGRAPH’85, Computer Graphics 19 (1985), 124-246

[33] I. Palmer: Essential Java 3D Fast. Springer, London (2001)

[34] B.-T. Phong: Illumination for Computer Generated Pictures. Communi-
cations of the ACM 18 (1975), 311-317

[35] M.L.V. Pitteway: Algorithms for Drawing Ellipses or Hyperbolae with a
Digital Plotter. Computer Journal 10 (1967), 282-289

[36] M.L.V. Pitteway, D.J. Watkinson: Bresenham’s Algorithm with Gray
Scale. Communications of the ACM 23 (1980), 625-626

[37] W.T. Reeves: Particle Systems – A Technique for Modelling a Class of
Fuzzy Objects. In: Proc. SIGGRAPH’83, Computer Graphics 17 (1983),
359-376

[38] W.T. Reeves, R. Blau: Approximate and Probabilistic Algorithms for
Shading and Rendering Structured Particle Systems. In: Proc. SIG-
GRAPH’85, Computer Graphics 19 (1985), 313-322

[39] F. Rehm, F. Klawonn, R. Kruse: POLARMAP – Efficient Visualisation
of High Dimensional Data. In: E. Banissi, R.A. Burkhard, A. Ursyn, J.J.
Zhang, M. Bannatyne, C. Maple, A.J. Cowell, G.Y. Tian, M. Hou: Infor-
mation Visualization. IEEE, London (2006), 731-740

[40] C.W. Reynolds: Flocks, Herds, and Schools: A Distributed Behavior
Model. In: Proc. SIGGRAPH’87, Computer Graphics 21 (1987), 25-34

[41] D. Selman: Java 3D Programming. Manning Publications, Greenwich, CT
(2002)



280 Bibliography

[42] H. Sowizral, K. Rushforth, M. Deering: The Java 3D API Specification.
Addison-Wesley, Boston (2000)

[43] T. Soukup, I. Davidson: Visual Data Mining. Wiley, New York (2002)

[44] A. Sullivan: 3-Deep. IEEE Spectrum (INT) 4/2005, 22-27

[45] N. Thibieroz: Deferred Shading with Multiple Render Targets. In: W.F.
Engel (ed.): Shader X2, Shader Programming, Tips & Tricks with DirectX
9. Plano, USA (2004), 251-251

[46] S.E. Umbaugh: Computer Imaging: Digital Image Analysis and Processing.
CRC Press, Boca Raton (2005)

[47] J.R. Van Aken: An Efficient Ellipse-Drawing Algorithm. IEEE Computer
Graphics and Applications 4 (1984), 24-35

[48] A.E. Walsh, D. Gehringer: Java 3D API Jump-Start. Prentice Hall, Upper
Saddle River, NJ (2002)

[49] D.R. Warn: Lighting Controls for Synthetic Images. In: Proc. SIG-
GRAPH’83, Computer Graphics 17 (1983), 13-21

[50] G. Wyszecki, W. Stiles: Color Science: Concepts and Methods, Quantita-
tive Data and Formulae (2nd ed.). Wiley, New York (1982)



Index

aliasing effect, 8
alpha-blending, 225
ambient light, 202
anaglyph image, 260
anchor, 90
Animation, 130
antialiasing, 80
API, 10
Application Programming Interface, 10
approximation, 165
area, 14
area subdivision algorithm, 187
attenuation, 203

atmospheric, 203
Audio format, 257
augmented reality, 3

B-spline, 167
back-face culling, 184
Bernstein polynomial, 166
Bezier curve, 166
Bezier point, 166

inner, 167
Bezier surface, 172
binocular, 258
bitmask, 64
boundary, 153
boundary point, 153
Bresenham algorithm

for circles, 75
for lines, 59

Brons’ algorithm, 62
bump mapping, 228

CAD, 2
CAM, 2
centre of projection, 139
CIEXYZ model, 103
clipping, 4, 67

2D-, 4
3D-, 4
three-dimensional, 179

clipping area, 67
clipping plane

back, 181
front, 181

clipping region, 67
clipping volume, 179, 180
closure, 153
CMY model, 103
CMYK model, 103
CNS model, 106
Cohen-Sutherland line clipping, 70
coherence, 194
collision detection, 249
colour model

additive, 102
perception-oriented, 106
subtractive, 102

constructive solid geometry, 156
control point, 15, 164
controllability, 164
convex, 14
convex combination, 41
coordinate system

right-handed, 115
CSG, 156
curve, 14



282 Index

Cyrus-Beck line clipping, 72

deferred shading, 216
depth-buffer algorithm, 187
difference, 16
directional light source, 203
dither matrix, 101
dot product, 23
double buffering, 37, 92

environment mapping, 228, 232

fog, 240
exponential, 240
linear, 240

font, 96
form factor, 233
form parameter, 170
freeform surface, 164, 171

geometric transformation (2D), 23
Gouraud shading, 219
graphics output primitive, 14

halftoning, 99
head-mounted display, 260
hidden line algorithm, 4
hidden line elimination, 183
hidden surface algorithm, 4
hidden surface elimination, 183
HLS model, 104
homogeneous coordinates, 28, 116
HSV model, 104
hue, 102

image-precision algorithm, 183
intensity, 102
interior, 153
interpolation, 165
interpolator 2D, 41
intersection, 16

jaggies, 9
Java 2D, 10

kernel, 153
kerning, 96
knot, 167

level of detail, 159
ligature, 96
light

ambient, 202
light map, 228, 236

light source
directional, 203
point, 203

lightness, 102
line, 14
line clipping, 68
line style, 64
Linienbreite, 83
liquid crystal shutter glasses, 260
locality principle, 164
LOD, 159

midpoint algorithm
for circles, 75
for lines, 59

monocular, 258
moving pen, 83

neighbourhood, 153
NURBS, 169

object-precision algorithm, 183
octree, 154
octree algorithm, 187
odd parity rule, 87

parallax
divergent, 262
negative, 262
positive, 262

particle system, 241
perspective projection

one-point, 145
three-point, 145
two-point, 145

Phong illumination model, 214
Phong shading, 220
pixel graphics, 8
pixel replication, 83
pixel-oriented graphics, 8
point, 14, 23

inner, 153
point light source, 203
polarisation, 260
polygon, 14
polyline, 14
primitive, 14
priority algorithm, 195
progressive refinement approach, 235
projection, 139

parallel, 140
perspective, 139

projection plane, 139
projector, 139



Index 283

proportional font, 96

quadtree, 155

radiosity model, 232
raster graphics, 8
raster-oriented graphics, 8
ray casting, 192
ray tracing, 237
recursive ray tracing, 237
recursive subdivision algorithm, 187
reflection

diffuse, 210
specular, 211

reflection mapping, 228
regularisation, 152, 153
rendering, 4
rendering pipeline, 4
RGB model, 102
right-hand rule, 115
rotation, 25, 117
roundoff error, 45

saturation, 102
scaling, 24, 116
scan conversion, 8
scan line technique, 88, 190
scenegraph, 121
screen-door transparency, 226
set

closed, 153
open, 153
regular, 153

Shading, 202
shading, 210

constant, 218
flat, 218
interpolated, 219

shadow, 222
shear transformation, 25
shrinking, 24
skeleton, 244
smoothing operator, 107
smoothnessGlattheit, 165
spatial partitioning, 186
specular reflection coefficient, 214
specular reflection exponent, 214
spotlight, 204
staircasing, 9
stereoscopic viewing, 259

stretching, 24
structural algorithm, 60
supersampling, 194
swarm behaviour, 241
sweep representation, 156
symmetric difference, 16

tesselation, 150
texel, 228
texture, 90, 227
texture map, 227
transformation group, 121, 122
transformation matrix, 29
translation, 26, 116
translucent, 224
transmission coefficient, 224
transparency, 224

filtered, 224
interpolated, 224

triangulation, 108
two-pass z-buffer algorithm, 223
two-pass depth buffer algorithm, 223

union, 16
unweighted area sampling, 80

vanishing point, 144
vector, 23
vector graphics, 7
vector-oriented graphics, 7
view platform, 124
viewport, 31
virtual reality, 3, 239
visible line determination, 183
visible surface determination, 183
volume

bounding, 249
voxel, 154

Warn model, 204
Wave format, 257
Wavefront Object, 162
weighted area sampling, 81
wire frame model, 159
world coordinates, 31

YIQ model, 104

z-buffer algorithm, 187


	cover-image-large
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11



