| ntroduction

o Getting started with software
engineering

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 1

Objectives

e ToIntroduce software engineering and to explain
Its Importance

e T0 set out the answersto key questions about
software engineering

e Tointroduce ethical and professional issues and
to explain why they are of concern to software
engineers

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 2

Topics covered

e FAQs about software engineering
e Professional and ethical responsibility

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 3

Software engineering

e Theeconomiesof ALL developed nations are
dependent on software

e More and more systems are software controlled

e SoOftware engineering Is concerned with theories,
methods and tools for professional software
devel opment

e SOftware engineering expenditure represents a
significant fraction of GNP in all developed
countries

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 4

Software costs

o Software costs often dominate system costs. The
costs of software on a PC are often greater than
the hardware cost

o SoOftware costs more to maintain than it doesto
develop. For systems with along life,
mal ntenance costs may be several times
development costs

e SoOftware engineering is concerned with cost-
effective software devel opment

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 5

FA Qs about software engineering

e What Is software?
e What is software engineering?

e What isthe difference between software
engineering and computer science?

e What isthe difference between software
engineering and system engineering?

e What Isasoftware process?

e What Is asoftware process model ?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 6

FA Qs about software engineering

e What are the costs of software engineering?
e What are software engineering methods?

e What is CASE (Computer-Aided Software
Engineering)
e What are the attributes of good software?

e What arethe key challenges facing software
engineering?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 7

What Is software?

e Computer programs and associated
documentation

o Software products may be developed for a
particular customer or may be developed for a
general market

o Software products may be

 Generic - developed to be sold to arange of different customers

 Bespoke (custom) - developed for a single customer according
to their specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 8

What is software engineering?

e SoOftware engineering is an engineering discipline
which is concerned with all aspects of software
production

o Software engineers should adopt a systematic and
organised approach to their work and use
appropriate tools and technigques depending on the
problem to be solved, the development constraints
and the resources available

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 9

What 1s the difference between software
engineering and computer science?

e Computer science is concerned with theory and
fundamentals; software engineering is concerned
with the practicalities of developing and
delivering useful software

e Computer science theories are currently
Insufficient to act as a complete underpinning for
software engineering

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 10

What i1s the difference between software
engineering and system engineering?

e System engineering Is concerned with all aspects
of computer-based systems devel opment
Including hardware, software and process
engineering. Software engineering is part of this
Process

e System engineers are involved in system
specification, architectural design, integration and
deployment

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 11

What Is a software process?

e A set of activities whose goal is the development
or evolution of software

e Generic activitiesin all software processes are:

o Specification - what the system should do and its development
constraints

 Development - production of the software system

e Validation - checking that the software is what the customer
wants

e Evolution - changing the software in response to changing
demands

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 12

What Is a software process model ?

e A simplified representation of a software process,
presented from a specific perspective

o Examples of process perspectives are

Workflow perspective - sequence of activities
o Dataflow perspective - information flow
* Role/action perspective - who does what

e Generic process models

o« Waterfal

 Evolutionary development
 Formal transformation

e Integration from reusable components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 13

What are the costs of software engineering?

e Roughly 60% of costs are development costs,
40% are testing costs. For custom software,
evolution costs often exceed development costs

e Costsvary depending on the type of system being
developed and the requirements of system
attributes such as performance and system
reliability

e Distribution of costs depends on the development
mode! that is used

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 14

What are software engineering methods?

e Structured approaches to software devel opment
which include system models, notations, rules,
design advice and process guidance

e Model descriptions

e Descriptions of graphical models which should be produced
e Rules

o Constraints applied to system models

e Recommendations
e Advice on good design practice

e Processguidance
« What activitiesto follow

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 15

What 1s CASE (Computer-Aided
Software Engineering)

e Software systems which are intended to provide
automated support for software process activities.
CASE systems are often used for method support

o Upper-CASE

Tools to support the early process activities of reguirements and
design

o Lower-CASE

Tools to support later activities such as programming,
debugging and testing

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 16

What are the attributes of good software?

e The software should deliver the required
functionality and performance to the user and
should be maintainable, dependable and usable

e Maintainability

Software must evolve to meet changing needs

e Dependability

Software must be trustworthy

o Efficiency
Software should not make wasteful use of system resources

o Usability
Software must be usable by the users for which it was designed

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 17

What are the key challenges facing
software engineering?

e Coping with legacy systems, coping with
Increasing diversity and coping with demands for
reduced delivery times

e Legacy systems

Old, valuable systems must be maintained and updated

o Heterogeneity

Systems are distributed and include a mix of hardware and
software

o Ddivery

Thereisincreasing pressure for faster delivery of software

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 18

Professional and ethical responsibility

e SoOftware engineering involves wider
responsibilities than simply the application of
technical skills

e Software engineers must behave in an honest and

ethically responsible way if they are to be
respected as professionals

e Ethical behaviour is more than ssimply upholding
the law.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 19

|ssues of professional responsibility

o Confidentiality

 Engineers should normally respect the confidentiality of their
employers or clients irrespective of whether or not a formal
confidentiality agreement has been signed.

e Competence

 Engineers should not misrepresent their level of competence.
They should not knowingly accept work which is outwith their
competence.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 20

|ssues of professional responsibility

e Intelectual property rights

 Engineers should be aware of local laws governing the use of
Intellectual property such as patents, copyright, etc. They should
be careful to ensure that the intellectual property of employers
and clients is protected.

e Computer misuse

« Software engineers should not use their technical skills to
misuse other people’ s computers. Computer misuse ranges from
relatively trivial (game playing on an employer’s machine, say)
to extremely serious (dissemination of viruses).

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 21

ACM/IEEE Code of Ethics

e Theprofessional societiesinthe US have
cooperated to produce a code of ethical practice.

e Members of these organisations sign up to the
code of practice when they join.

e The Code contains eight Principlesrelated to the
behaviour of and decisions made by professional
software engineers, including practitioners,
educators, managers, supervisors and policy
makers, as well as trainees and students of the
profession.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 22

Code of ethics - preamble

Preamble

The short version of the code summarizes aspirations at a high
level of the abstraction; the clauses that are included in the full
version give examples and details of how these aspirations
change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and
tedious; without the details, the aspirations can become high
sounding but empty; together, the aspirations and the details
form a cohesive code.

Software engineers shall commit themselves to making the
analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession.
In accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the
following Eight Principles:

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 23

Code of ethics - principles

e 1. PUBLIC
« Software engineers shall act consistently with the public
interest.

e 2. CLIENT AND EMPLOYER

« Software engineers shall act in a manner that is in the
best interests of their client and employer consistent with
the public interest.

e 3. PRODUCT

« Software engineers shall ensure that their products and
related modifications meet the highest professional
standards possible.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 24

Code of ethics - principles

o JUDGMENT

« Software engineers shall maintain integrity and
independence in their professional judgment.

e 5. MANAGEMENT

« Software engineering managers and leaders shall
subscribe to and promote an ethical approach to the
management of software development and maintenance.

e 6. PROFESSION

« Software engineers shall advance the integrity and
reputation of the profession consistent with the public
interest.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 25

Code of ethics - principles

o /. COLLEAGUES

« Software engineers shall be fair to and supportive of their
colleagues.

o 8.SELF

« Software engineers shall participate in lifelong learning
regarding the practice of their profession and shall
promote an ethical approach to the practice of the
profession.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 26

Ethical dilemmas

e Disagreement in principle with the policies of
Senior management

e Your employer actsin an unethical way and
rel eases a safety-critical system without finishing
the testing of the system

e Participation in the development of military
weapons systems or nuclear systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 27

Key points

e Software engineering is an engineering discipline which is
concerned with all aspects of software production.

e Software products consist of developed programs and
associated documentation. Essential product attributes are
maintainability, dependability, efficiency and usabillity.

e The software process consists of activities which are involved
in developing software products. Basic activities are software
specification, development, validation and evolution.

e Maethods are organised ways of producing software. They include
suggestions for the process to be followed, the notations to be used,
rules governing the system descriptions which are produced and
design guidelines.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 28

Key points

e CASE tools are software systems which are designed to
support routine activities in the software process such as
editing design diagrams, checking diagram consistency and
keeping track of program tests which have been run.

e Software engineers have responsibilities to the engineering
profession and society. They should not simply be concerned
with technical issues.

e Professional societies publish codes of conduct which set out
the standards of behaviour expected of their members.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 29

Systems Engineering

e Designing, Implementing,
deploying and operating systems
which include hardware, software
and people

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 1

ODbjectives

e Toexplanwhy system software is affected by
broader system engineering issues

e [0 Introduce the concept of emergent system
properties such as reliability and security

e [0 explainwhy the systems environment must be
considered in the system design process

e [0 explainsystem engineering and system
procurement processes

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 2

Topics covered

e Emergent system properties

e Systemsand their environment
e System modelling

e [hesystem engineering process
e System procurement

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 3

What Is a system?

A purposeful collection of inter-related components
working together towards some common objective.

A system may include software, mechanical,
electrical and electronic hardware and be operated
by people.

System components are dependent on other
system components

The properties and behaviour of system components
are inextricably inter-mingled

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 4

Problems of systems engineering

e Largesystemsare usually designed to solve
'‘wicked' problems

e Systemsengineering requires agreat deal of
co-ordination across disciplines

 Almost infinite possibilities for design trade-offs across
components

e Mutual distrust and lack of understanding across engineering
disciplines
e Systems must be designed to last many years
IN a changing environment

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide5

Software and systems engineering

e Theproportion of software in systemsis increasing.
Software-driven general purpose electronicsis
replacing special-purpose systems

e Problems of systems engineering are similar to
problems of software engineering

o Softwareis (unfortunately) seen as a problem
IN systems engineering. Many large system projects
have been delayed because of software problems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 6

Emergent properties

e Properties of the system as awhole rather than
properties that can be derived from the properties of
components of a system

e Emergent properties are a consequence of the
relationships between system components

e They cantherefore only be assessed and measured
once the components have been integrated into a
system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 7

Examples of emergent properties

e Theoverall weight of the system

« Thisisan example of an emergent property that can be computed
from individual component properties.

e Therdliability of the system

 This depends on the reliability of system components and the
rel ationships between the components.

e Theusability of a system

« Thisisacomplex property which isnot simply dependent on the
system hardware and software but also depends on the system
operators and the environment where it is used.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 8

Types of emergent property

e Functional properties

« These appear when all the parts of a system work together to
achieve some objective. For example, a bicycle has the functional
property of being a transportation device once it has been
assembled from its components.

e Non-functional emergent properties

 Examples arereliability, performance, safety, and security. These
relate to the behaviour of the system in its operational
environment. They are often critical for computer-based systems
as fallure to achieve some minimal defined level in these
properties may make the system unusable.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 9

System reliability engineering

e Because of component inter-dependencies,
faults can be propagated through the system

e System failures often occur because of
unforeseen inter-rel ationships between
components

e Itisprobably impossibleto anticipate all
possi ble component relationships

o Softwarereliability measures may give afase
picture of the system reliability

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 10

Influences on reliability

e Hardwarerdiability

 What isthe probability of a hardware component failing and how
long does it take to repair that component?

o SOftwarerdiability

« How likely is it that a software component will produce an
Incorrect output. Software failure is usually distinct from hardware
failure in that software does not wear out.

e Operator reliability

 How likely isit that the operator of a system will make an error?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 11

Reliability relationsnips

e Hardware failure can generate spurious signals that
are outside the range of inputs expected by the
software

e SoOftware errors can cause alarmsto be activated
which cause operator stress and lead to operator

errors

e Theenvironment in which asystemisinstalled can
affect itsreliability

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 12

The ‘shall-not’ properties

e Properties such as performance and reliability can
e measured

e However, some properties are properties that the

system should not exhibit

Safety - the system should not behave in an unsafe way
Security - the system should not permit unauthorised use

e Measuring or assessing these propertiesis very hard

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 13

Systems and thelr environment

e Systems are not independent but exist in an
environment

e System’sfunction may be to change its environment

e Environment affects the functioning of the system
e.g. system may require electrical supply from its
environment

e Theorganizational aswell asthe physica
environment may be important

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 14

System hierarchies

Town
Street
Building
Heating Fower Wate
system system system
Security Lighting Waste
system system system

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 2

Slide 15

Human and organisational factors

e Processchanges

« Does the system require changes to the work processes in the
environment?

e Job changes

 Doesthe system de-skill the usersin an environment or cause them to
change the way they work?

e Organisational changes

e Does the system change the politica power structure in an
organisation?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 16

System architecture modelling

e An architectural model presents an abstract view of
the sub-systems making up a system

e May Include mgor information flows between sub-
systems

e Usually presented as ablock diagram

e May identify different types of functional
component in the model

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 17

Intruder alarm system

Movement Door
SEeNsors SeNsors
Alarm
controller
External

. control centre
Siren \Voice Telephone
synthesi zer caller

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 18

Component types in alarm system

e Sensor

« Movement sensor, door sensor
e Actuator

e Siren

e Communication
 Telephonecaller

e Co-ordination
e Alarm controller

e Interface
« Voice synthesizer

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 19

Transponder Datacomms. Aircraft
system system commes.

Position Backup Comms Backup comms.
[processor position processor [processor
processor

Flight plan ATC system

daabase

Aircraft
sinulation
system

architecture

Weather map
system
Accounting
system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 31. Slide ##

Controlle
consoles

Controller
Info. system

Activity logging
system

Functional system components

e Sensor components

e Actuator components

e Computation components

e Communication components
e Co-ordination components

e Interface components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 21

System components

e Sensor components

» Collect information from the system’ s environment e.g. radarsin
an air traffic control system

e Actuator components

o Cause some change in the system’s environment e.g. valvesin a
process control system which increase or decrease material flow in

apipe
O Computation components

« Carry out some computations on an input to produce an output e.g.
afloating point processor in a computer system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 22

System components

e Communication components

 Allow system components to communicate with each other e.g.
network linking distributed computers

e Co-ordination components

 Co-ordinate the interactions of other system components e.g.
scheduler in areal-time system

e Interface components

« Facilitate the interactions of other system components e.g.
operator interface

e All components are now usually software controlled

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 23

Component types in alarm system

o Sensor

e Movement sensor, Door sensor
e Actuator

e Siren

e Communication
 Telephonecaller

e Coordination
e Alarm controller

e Interface
« Voice synthesizer

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 24

The system engineering process

e Usualy followsa‘waterfall’ model because of the
need for parallel development of different parts of
the system

o Little scope for iteration between phases because hardware
changes are very expensive. Software may have to compensate for
hardware problems

e Inevitably involves engineers from different

disciplines who must work together

* Much scope for misunderstanding here. Different disciplines use a
different vocabulary and much negotiation is required. Engineers
may have personal agendas to fulfil

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 25

The system engineering process

System
decommissioning

Requirements
definition

System System
design evolution

Sub-system System
development Installation

System
Integration

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 26

Inter-disciplinary involvement

M echanical
engineering

Electronic
engineering

Software
engineering

User interface
design

Structural
engineering

ATC systems
engineering

Electrical
engineering

Civil

) . Architecture
engineering

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 27

System requirements definition

e Threetypesof requirement defined at this stage

o Abstract functional requirements. System functions are defined in
an abstract way

o System properties. Non-functional requirements for the system in
general are defined

» Undesirable characteristics. Unacceptable system behaviour is
specified

e Should also define overall organisational objectives
for the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 28

System objectives

e Functional objectives

« Toprovide afire and intruder alarm system for the building which
will provide internal and external warning of fire or unauthorized
Intrusion

e Organisational objectives

 Toensurethat the normal functioning of work carried out in the
building is not serioudly disrupted by events such asfire and
unauthorized intrusion

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 29

System reguirements problems

e Changing asthe system is being specified
e Must anticipate hardware/communications
developments over the lifetime of the system

e Hard to define non-functional requirements
(particularly) without an impression of
component structure of the system.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 30

The system design process

e Partition requirements
« Organise requirements into related groups

e ldentify sub-systems

o ldentify aset of sub-systems which collectively can meet the
system reguirements

e Assign requirements to sub-systems
e Causes particular problems when COTS are integrated

o Specify sub-system functionality

o Define sub-system interfaces
o Ciritical activity for parallel sub-system development

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 31

The system design process

Partition Define sub-system
requirements Intarfaces

| dentify Spedify sub-system
sub-systems functionality

Assign requirements
to sub-systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 32

System design problems

e Reguirements partitioning to hardware,
software and human components may involve alot
of negotiation

e Difficult design problems are often assumed to be
readily solved using software

e Hardware platforms may be inappropriate for
software reguirements so software must compensate

for this

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 33

Sub-system devel opment

e Typicaly paralle projects developing the
hardware, software and communications

e May involve some COTS (Commercial Off-the-
Shelf) systems procurement

e Lack of communication across implementation
teams

e Bureaucratic and slow mechanism for
proposing system changes means that the
development schedule may be extended because of
the need for rework

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 34

System integration

e Theprocessof putting hardware, software and
people together to make a system

e Should be tackled incrementally so that sub-systems
are integrated one at atime

e Interface problems between sub-systems are usually
found at this stage

e May be problemswith uncoordinated deliveries
of system components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 35

System installation

e Environmental assumptions may be incorrect

e May be human resistance to the introduction of
anew system

e System may have to coexist with alternative
systems for some time

e May be physical installation problems (e.g.
cabling problems)
e Operator training has to be identified

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 36

System operation

e Will bring unforeseen requirementsto light

e Usarsmay usethe systeminaway whichis
not anticipated by system designers

e May reveal problemsin the interaction with
other systems
e Physical problems of incompatibility
 Dataconversion problems
* Increased operator error rate because of inconsistent interfaces

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 37

System evolution

e Largesystems havealong lifetime. They must
evolve to meet changing requirements

e EVvolutionisinherently costly

« Changes must be analysed from atechnical and business
perspective

o Sub-systemsinteract so unanticipated problems can arise

« Thereisrarely arationale for original design decisions

e System structure is corrupted as changes are made to it

e EXisting systems which must be maintained are
sometimes called |legacy systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 38

System decommissioning

e Taking the system out of service after its useful
lifetime

e May requireremoval of materials (e.g. dangerous
chemicals) which pollute the environment
Should be planned for in the system design by encapsulation

e May require datato be restructured and converted to
be used in some other system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 39

System procurement

e Acquiring asystem for an organization to meet
some need

e Some system specification and architectural design
IS usually necessary before procurement

* You need a specification to let a contract for system devel opment

» The specification may allow you to buy a commercial off-the-shelf

(COTYS) system. Almost always cheaper than devel oping a system
from scratch

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 40

The system procurement process

Off-the-shelf
system avallable
3 Adapt Choose | ssue request Choose
requirements system for bids supplier
Survey market for
existing systems
| ssue request

to tender

Negotiate Let contract for
contract development
Bespoke system
required

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 41

Procurement 1ssues

e Reguirements may have to be modified to match the
capabilities of off-the-shelf components

e [herequirements specification may be part of the
contract for the development of the system

e Thereisusualy acontract negotiation period to
agree changes after the contractor to build a system

has been selected

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 42

Contractors and sub-contractors

e Theprocurement of large hardware/software
systems is usually based around some principal
contractor

e Sub-contracts are issued to other suppliersto supply
parts of the system

e Customer liases with the principal contractor and
does not deal directly with sub-contractors

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 43

Contractor/Sub-contractor model

Principal
contractor
Sub-contractor 1 Sub-contractor 2 Sub-contr actor 3

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 44

Key points

e System engineering involves input from arange of
disciplines
e Emergent properties are properties that are

characteristic of the system as awhole and not its
component parts

e System architectural models show major sub-
systems and inter-connections. They are usually
described using block diagrams

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 45

Key points

e System component types are sensor, actuator,
computation, co-ordination, communication and
Interface

e [hesystemsengineering processisusualy a
waterfall model and includes specification, design,
development and integration.

e System procurement is concerned with deciding
which system to buy and who to buy it from

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 46

Conclusion

e Systemsengineering ishard! There will never be an
easy answer to the problems of complex system
devel opment

e SoOftware engineers do not have al the answers
but may be better at taking a systems
viewpoint

e Disciplines need to recognise each others

strengths and actively rather than reluctantly
cooperate In the systems engineering process

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 47

Software Processes

e Coherent sets of activitiesfor
specifying, designing, implementing
and testing software systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide

Objectives

e ToOintroduce software process models

e [0 describe anumber of different process models
and when they may be used

e 10 describe outline process models for
reguirements engineering, software devel opment,
testing and evolution

e Tointroduce CASE technology to support
software process activities

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 2

Topics covered

e SOftware process models

e Processiteration

o Software specification

o Software design and implementation
o Software validation

o Software evolution

e Automated process support

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 3

The software process

e A structured set of activities required to develop a
software system
Specification
Design
Validation
Evolution
e A software process model is an abstract
representation of aprocess. It presents a
description of a process from some particular
perspective

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 4

Software process models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1

Slide

Generic software process models

e Thewaterfall model
o Separate and distinct phases of specification and devel opment

e Evolutionary development
o Specification and development are interleaved

e Formal systems development

A mathematical system model isformally transformed to an
Implementation

e Reuse-based development

o Thesystem is assembled from existing components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 6

Waterfall model

Requirements
definition

System and
software design

|mplementation
and unit testing

Integration and
system testing

Operation and
maintenance

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 7

Waterfall model phases

e Requirements analysis and definition
e System and software design

e Implementation and unit testing

e Integration and system testing

e Operation and maintenance

e Thedrawback of the waterfall model isthe
difficulty of accommodating change after the
process is underway

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 8

Waterfall model problems

e Inflexible partitioning of the project into distinct
stages

e Thismakesit difficult to respond to changing
customer requirements

e Therefore, thismodel isonly appropriate when
the requirements are well-understood

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 9

Evolutionary development

e EXxploratory development

 Objectiveisto work with customers and to evolve afina
system from an initial outline specification. Should start with
well-understood requirements

e Throw-away prototyping

 Objectiveisto understand the system requirements. Should start
with poorly understood requirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 10

Evolutionary development

Concurrent
activities

(Spedfication)
Ay

‘ Outline I (Dev o opment) Intermediate
description versions !I

(Vadlidation) Fi n_al
Version I

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 11

Initial
version

[

Evolutionary development

e Problems
o Lack of processvishility
 Systems are often poorly structured
o Specid skills(e.g. in languages for rapid prototyping) may be
required
o Applicability
e For small or medium-size interactive systems
 For parts of large systems (e.g. the user interface)
e For short-lifetime systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 12

Formal systems development

e Based on the transformation of a mathematical
specification through different representations to
an executable program

e [Transformations are ‘ correctness-preserving’ so it
IS straightforward to show that the program
conforms to its specification

e EmMbodied inthe ‘Cleanroom’ approach to
software devel opment

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 13

Formal systems development

Integration and
system testing

Formal Formal
specification transformationj

Requirements
definition

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 14

Formal transformations

Formal transfor mations
T1 T2 T3 T4

Pl Pyl bowl Aty

Formal R1 R R3 Executable
specification program
G 3 I T I 1

Proofs of transformation correctness

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 15

Formal systems devel opment

e Problems

 Need for specialised skills and training to apply the technigque

o Difficult to formally specify some aspects of the system such as
the user interface

e Applicability

o Critical systems especially those where a safety or security case
must be made before the system is put into operation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 16

Reuse-oriented devel opment

e Based on systematic reuse where systems are
Integrated from existing components or COTS
(Commercial-off-the-shelf) systems

e Process stages

Component analysis
Requirements modification
System design with reuse
Development and integration

e Thisapproach is becoming more important but
still limited experience with it

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 17

Reuse-oriented devel opment

System design
with reuse

Requirements Component Requ_i rements
specification anaysis modification

Y

Devel opment
and integration

System
validation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 18

Process Iteration

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 19

Process Iteration

e System requirements ALWAY Sevolveinthe
course of a project so process iteration where
earlier stages are reworked is always part of the

orocess for large systems

e Iteration can be applied to any of the generic
process models
e Two (related) approaches

Incremental development
Spiral development

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 20

Incremental development

e Rather than deliver the system asasingle
delivery, the development and delivery is broken
down into increments with each increment
delivering part of the required functionality

e User requirements are prioritised and the highest
priority requirements are included in early
Increments

e Oncethe development of an increment Is started,
the requirements are frozen though reguirements
for later increments can continue to evolve

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 21

Incremental development

architecture

Define outline Assign requirements
requirements to increments

Y

Develop system
Increment

Integrate
increment

Vaidate
increment

Design system

Validate
system

System incomplete

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1

Fina
system

Slide 22

Incremental development advantages

e Customer value can be delivered with each
Increment so system functionality is available
earlier

e Early increments act as a prototype to help dlicit
requirements for later increments

e Lower risk of overall project fallure

e Thehighest priority system servicestend to
receive the most testing

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 23

Extreme programming

e New approach to development based on the
development and delivery of very small
Increments of functionality

e Redieson constant code improvement, user
Involvement in the devel opment team and
palrwise programming

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 24

Spiral development

e Processisrepresented asaspiral rather than asa
seguence of activities with backtracking

e Eachloop inthe spiral represents a phase in the
process.

e No fixed phases such as specification or design -
loops in the spiral are chosen depending on what
IS required

e Risksareexplicitly assessed and resolved
throughout the process

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 25

Spiral model of the software process

Determine objectives
alternatives and
constraints

Evaluate alternatives
identify, resolve risks

Opera-
tional
protoype

Prototype 3

REVIEW

Requirements plan Simul ationé, models, be'nchmarks
Life-cycle plan Concept of
Operation SIW

requirements,/ Product .
mUI deggn Deta”ed

Devel opment Requirement design
plan validation Code
i Unit test
I ntegration Design _
and test plan V&V Integration
Plan next phase Acoeptance toot
Service test Develop, verify

next-level product

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 26

Spiral model sectors

e ODbjective setting
o Specific objectives for the phase are identified

e RISk assessment and reduction

 Risksare assessed and activities put in place to reduce the key
risks

e Development and validation

A development model for the system is chosen which can be
any of the generic models

e Planning
 Theproject isreviewed and the next phase of the spiral is
planned

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 27

Software specification

e Theprocessof establishing what services are
required and the constraints on the system’s
operation and devel opment

e Reguirements engineering process
 Feashility study
 Requirements dlicitation and analysis
 Requirements specification
* Requirements validation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 28

The requirements engineering process

Feasibility R_equi r_ements
elicitation and
study .
analysis

Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system

requirements
Requirements
. document

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 29

Software design and implementation

e Theprocessof converting the system
specification into an executable system

o SoOftware design
Design a software structure that realises the specification

e Implementation
Tranglate this structure into an executable program

e Theactivities of design and implementation are
closely related and may be inter-leaved

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 30

Design process activities

e Architectural design
e Abstract specification
e Interface design

e Component design

e Datastructure design
e Algorithm design

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 31

The software design process

Requirements
specification

Architectura Abstract
design f specification /.

System Software
architecture specification

©lan Sommerville 2000

Design activities

Interface Component
design f design ’

Data
structure
design

Interface Component
specification specification

Design products

Software Engineering, 6th edition. Chapter 1

Data
structure
specification

Algorithm
design

Algorithm

specification

i

Slide 32

Design methods

e Systematic approaches to developing a software
design

e Thedesignisusually documented as a set of
graphical models

e Possible models
Data-flow model
Entity-relation-attribute model
Structural model
Object models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 33

Programming and debugging

e Trandating adesign into a program and removing
errors from that program

e Programming isapersonal activity - thereisno
generic programming process
e Programmers carry out some program testing to

discover faults in the program and remove these
faults in the debugging process

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 34

The debugging process

L ocate Design Repair Re-test
error error repair error program

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 35

Software validation

e Veification and validation is intended to show
that a system conforms to its specification and
meets the requirements of the system customer

e Involves checking and review processes and
system testing

e System testing involves executing the system
with test cases that are derived from the
specification of the real datato be processed by
the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 36

The testing process

Unit
testing
Module
testing
Sub-system
testing
System
testing
Acceptance
testing
Component Integréion testing User

testing testing

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 37

Testing stages

e Unittesting

e Individual components are tested

e Moduletesting
 Related collections of dependent components are tested

e Sub-system testing

 Modules areintegrated into sub-systems and tested. The focus
here should be on interface testing

e System testing

e Testing of the system as awhole. Testing of emergent properties

e Acceptance testing
o Testing with customer data to check that it is acceptable

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 38

Testing phases

Requirements
specification

System
specification

Module and
unit code
and tess

System
integration
test plan

Sub-system
integration
test plan

Acceptance
test plan

Acceptance
test

System
integration test

Sub-system
integration test

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 39

Software evolution

o Softwareisinherently flexible and can change.

e Asrequirements change through changing
business circumstances, the software that
supports the business must also evolve and
change

e Although there has been a demarcation between
development and evolution (maintenance) thisis
Increasingly irrelevant as fewer and fewer
systems are completely new

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 40

System evolution

Y

Define system
requirements

Propose system
changes

New
system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 41

Automated process support

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 42

CASE

e Computer-aded software engineering (CASE) Is
software to support software development and
evolution processes

e Activity automation
o Graphical editorsfor system model development
« Datadictionary to manage design entities
e Graphical Ul builder for user interface construction
o Debuggersto support program fault finding
 Automated trandators to generate new versions of a program

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 43

Case technology

e Casetechnology hasled to significant
Improvements in the software process though not
the order of magnitude improvements that were
once predicted

e Software engineering requires creative thought - thisis not
readily automatable

o Software engineering is ateam activity and, for large projects,
much time is spent in team interactions. CA SE technology does
not really support these

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 44

CASE classification

e Classfication helps us understand the different
types of CASE tools and their support for process
activities

e Functional perspective

 Toolsare classified according to their specific function

e Process perspective

« Toolsareclassified according to process activities that are
supported

e Integration perspective

 Toolsare classified according to their organisation into
Integrated units

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 45

Functional tool classification

Tool type Examples

Planning tools PERT tools, estimation tools,
spreadsheets

Editing tools Text editors, diagram editors, word
processors

Change management tools

Requirements traceability tools, change
control systems

Configuration management tools

V ersion management systems, system
building tools

Prototyping tools

Very high-level languages,
user interface generators

Method-support tools

Design editors, data dictionaries, code
generators

L anguage-processing tools

Compilers, interpreters

Program analysis tools

Cross reference generators, static
analysers, dynamic analysers

Testing tools

Test data generators, file comparators

Debugging tools

I nteractive debugging systems

Documentation tools

Page layout programs, image editors

Re-engineering tools

Cross-reference systems, program re-
structuring systems

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 1

Slide 46

Reengineering tools

Testing tools ® o
Debugging tools ® o
Program analysis tools e Y
Language-processing o ®

tools

M ethod support tools ® o

Prototyping tools ® o

Configuration

management tools ® ®

Change management tools ® ®] o

Documentation tools ® ®] o

Editing tools ® L o [

Planning tools ® ® o °
Specification Design Implementation Verification

and

Activity-based classification

CASE Integration

e 100IS

e Support individual process tasks such as design consistency
checking, text editing, etc.

e Workbenches

e Support a process phase such as specification or design,
Normally include a number of integrated tools

e Environments

o Support al or asubstantial part of an entire software process.
Normally include severa integrated workbenches

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 48

Tools, workbenches, environments

CASE
technolay
‘ Tools ' ‘ Workbenches ' ‘ Environments '
‘ : I ‘ : I File I ‘ Integrated I‘ Process-centred I
Selidles sl comparators environments environments

‘ Anaysisand I ‘ : I . I
design Programming Testing
Multi-method Single-method General-purpose L anguage-specific
workbenches workbenches workbenches workbenches

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 49

Key points

o Software processes are the activitiesinvolved in
producing and evolving a software system. They
are represented in a software process model

o Genera activities are specification, design and
Implementation, validation and evolution

e Generic process models describe the organisation
of software processes

e Iterative process models describe the software
process as a cycle of activities

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 50

Key points

e Requirements engineering is the process of
developing a software specification

e Design and implementation processes transform
the specification to an executable program

e Validation involves checking that the system
meets to its specification and user needs

e EVvolution is concerned with modifying the
system after it isin use

e CASE technology supports software process
activities

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 51

Project management

e Organising, planning and
scheduling software projects

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4

Slide

Objectives

e ToOIntroduce software project management and to
describe its distinctive characteristics

e Todiscuss project planning and the planning
process

e 10 show how graphical schedule representations
are used by project management

e Todiscussthe notion of risks and the risk
management process

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 2

Topics covered

e Management activities
e Project planning

e Project scheduling

e Risk management

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 3

Software project management

e Concerned with activities involved in ensuring
that software is delivered on time and on
schedule and in accordance with the
reguirements of the organisations developing
and procuring the software

e Project management is needed because software
development is always subject to budget and
schedul e constraints that are set by the
organisation developing the software

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 4

Software management distinctions

e Theproduct isintangible
e [heproduct isuniquely flexible

o SoOftware engineering is not recognized as an
engineering discipline with the sane status as
mechanical, electrical engineering, etc.

e The software development processis not
standardised

e Many software projects are ‘one-off' projects

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 5

Management activities

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 6

Management activities

e Pro

e Pro
e Pro
o Pro

posal writing

ject planning and scheduling
|ect costing

ject monitoring and reviews

e Personndl selection and evaluation
e Report writing and presentations

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4

Slide 7

Management commonalities

e Theseactivities are not peculiar to software
management

e Many techniques of engineering project
management are equally applicable to software
project management

e Technicaly complex engineering systems tend
to suffer from the same problems as software
systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 8

Project staffing

e May not be possible to appoint the ideal people to

work on a project
e Project budget may not allow for the use of highly-paid staff
o Staff with the appropriate experience may not be available

 Anorganisation may wish to develop employee skillson a
software project

e Managers have to work within these constraints
especially when (asis currently the case) thereis
an international shortage of skilled IT staff

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 9

Project planning

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 10

Project planning

e Probably the most time-consuming project
management activity

e Continuous activity from initial concept through

to system delivery. Plans must be regularly
revised as new Information becomes available

e Variousdifferent types of plan may be developed
to support the main software project plan that is
concerned with schedule and budget

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 11

Types of project plan

Plan Description

Quality plan Describes the quality procedures and
standards that will be used in a project.

Validation plan Describes the approach, resources and
schedul e used for system validation.

Configuration Describes the configuration management

management plan procedures and structures to be used.

Maintenance plan Predicts the maintenance requirements of
the system, maintenance costs and effort
required.

Staff development plan. | Describes how the skills and experience of
the project team members will be
devel oped.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 12

Project planning process

Establish the project constraints
Make initial assessments of the project parameters
Define project milestones and deliverables
while project has not been completed or cancelled loop
Draw up project schedule
Initiate activities according to schedule
Wait (for a while)
Review project progress
Revise estimates of project parameters
Update the project schedule
Re-negotiate project constraints and deliverables
if (problems arise)then
Initiate technical review and possible revision
end if
end loop

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 13

Project plan structure

e Introduction

e Project organisation

e Riskanalysis

e Hardware and software resource requirements
e Work breakdown

e Project schedule

e Monitoring and reporting mechanisms

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 14

Activity organization

e Activitiesin aproject should be organised to
produce tangible outputs for management to
judge progress

e Milestones are the end-point of a process activity

e Deéliverablesare project results delivered to
customers

e Thewaterfall processalowsfor the
straightforward definition of progress milestones

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 15

Milestones in the RE process

ACTIVITIES

Feasibility
study

Requirements
analysis

Prototype
- development

Requirements
specification

Feasibility Requirements Evaluation Architectura Requirements
report definition report design specification
MILESTONES

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 16

Project scheduling

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 17

Project scheduling

e Split project into tasks and estimate time and
resources required to compl ete each task

e Organize tasks concurrently to make optimal
use of workforce

e Minimize task dependenciesto avoid delays
caused by one task waiting for another to
complete

e Dependent on project managers intuition and
experience

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 18

The project scheduling process

Y

| dentify | dentify activity Estimate resources Allocate people Create project
activities dependencies for activities to activities charts

Software Activity charts
reguirements and bar charts

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 19

Scheduling problems

e Estimating the difficulty of problems and hence
the cost of developing a solution is hard

e Productivity is not proportional to the number of
people working on atask

e Adding peopleto alate project makesit later
because of communication overheads

e Theunexpected always happens. Always allow
contingency in planning

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 20

Bar charts and activity networks

e Graphical notations used to illustrate the project
schedule

e Show project breakdown into tasks. Tasks should
not be too small. They should take about a week
or two

e Activity charts show task dependencies and the
the critical path

e Bar charts show schedule against calendar time

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 21

Task durations and dependencies

Task Duration (days) Dependencies
T1 8
T2 15
T3 15 T1(M1)
T4 10
15 10 T2, T4 (M2)
T6 5 T1, T2 (M3)
T7 20 T1(M1)
T8 25 T4 (M5)
T9 15 T3, T6 (M4)
T10 15 15, T7 (M7)
T11 14 T9 (M6)
T12 10 T11 (M8)

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 22

Activity network

14/7/99 15 days
15 days
8 days
4/8/99 25/8/99
e) (e
4/7/99
20 days 7 days
T11
10 days 5/7/99 10 days 11/8/99 5/9/99

18/7/99

Finish

19/9/99

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 23

Activity timeline

47 1U7 18/7 25/7 U8 818 15/8 22/8 29/8 519 12/9 19/9
‘ Start
T4
T1 I
T2 |
M1é
T7 |
T3I i
M5 4 ' '
T8
YEX
M2
T6 |
T5
¢ M4
M7
Ti0[' |
¢ Mo
T11|
P QVE:!
T12
Q Finigh

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 4

Slide 24

Staff allocation

a7 117 18/7 25/ 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9|

I I

Fred |T4
18 T11
T12
Jane | T1
T3
T9
Anne | T2
16 T10

Jm T7
Mary T5
©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 25

Risk management

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 26

Risk management

e Risk management is concerned with identifying
risks and drawing up plans to minimise their
effect on aproject.

e A riskisaprobability that some adverse

circumstance will occur.

 Project risks affect schedule or resources

* Product risks affect the quality or performance of the software
being devel oped

 Businessrisks affect the organisation developing or procuring
the software

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 27

Software risks

Risk Risk type Description

Staff turnover Project Experienced staff will leave the
project before it is finished.

Management change Project There will be a change of
organisational management with
different priorities.

Hardware unavailability Project Hardware which is essentia for the
project will not be delivered on
schedule.

Requirements change Project and There will be alarger number of

product changes to the requirements than
anticipated.

Specification delays Project and Specifications of essential interfaces

product are not available on schedule

Size underestimate Project and The size of the system has been

product underestimated.

CASE tool under- Product CASE tools which support the

performance project do not perform as anticipated

Technology change Business The underlying technology on which
the system is built is superseded by
new technology.

Product competition Business A competitive product is marketed

before the system is compl eted.

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 4

Slide 28

The risk management process

e RISk identification

o Identify project, product and business risks

e Riskanalysis
 Assessthe likelihood and consequences of these risks
e RISk planning

e Draw up plansto avoid or minimise the effects of the risk

e RISk monitoring
e Monitor the risks throughout the project

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 29

The risk management process

Y

Risk analysis

Risk
identification

Risk
monitoring

Risk planning

Risk avoidance
and contingency
plans

Risk
assessment

List of potential
risks

Prioritised risk
list

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 30

Risk identification
e Technology risks
e Peoplerisks
e Organisational risks

e Reguirementsrisks
e Estimation risks

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 31

Risks and risk types

Risk type

Possblerisks

Technology

The database used in the system cannot process as many
transactions per second as expected.

Software components which should be reused contain defects
which limit their functionality.

People

It isimpossible to recruit staff with the skills required.
Key staff areill and unavailable at critical times.
Required training for staff is not available.

Organisational

The organisation is restructured so that different management
are responsible for the project.

Organisational financial problems force reductionsin the project
budget.

Tools

The code generated by CASE toolsis inefficient.
CASE tools cannot be integrated.

Requirements

Changes to requirements which require major design rework are
proposed.

Customersfail to understand the impact of requirements
changes.

Estimation

The time required to devel op the software is underestimated.
Therate of defect repair is underestimated.
The size of the software is underestimated.

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 4

Slide 32

Risk analysis

e Assess probability and seriousness of each risk

e Probability may be very low, low, moderate, high
or very high

e Risk effects might be catastrophic, serious,
tolerable or insignificant

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 33

Risk analysis

Risk Probability Effects
Organisational financial problemsforce reductions Low Catastrophic
in the project budget.

It isimpossible to recruit staff with the skills High Catastrophic
required for the project.

Key staff areill at critical timesin the project. Moderate Serious
Software components which should be reused Moderate Serious
contain defects which limit their functionality.

Changes to requirements which require major Moderate Serious
design rework are proposed.

The organisation is restructured so that different High Serious
management are responsible for the project.

The database used in the system cannot processas Maoderate Serious
many transactions per second as expected.

The time required to develop the software is High Serious
underestimated.

CASE tools cannot be integrated. High Tolerable
Customersfail to understand the impact of Moderate Tolerable
requirements changes.

Required training for staff is not available. Moderate Tolerable
The rate of defect repair is underestimated. Moderate Tolerable
The size of the software is underestimated. High Tolerable
The code generated by CASE toolsisinefficient. Moderate Insignificant

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 4

Slide 34

Risk planning

e Consider each risk and develop a strategy to
manage that risk

e Avoidance strategies
e The probability that the risk will ariseis reduced

e Minimisation strategies
 Theimpact of the risk on the project or product will be reduced

e Contingency plans

o If therisk arises, contingency plans are plans to deal with that
risk

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 35

Risk management strategies

Risk

Strategy

Organisationa
financial problems

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business.

Recruitment Alert customer of potential difficulties and the possibility of

problems delays, investigate buying-in components.

Staff illness Reorganise team so that there is more overlap of work and
people therefore understand each other’ s jobs.

Defective Replace potentially defective components with bought-in

components components of known reliability.

Requirements Derive traceability information to assess requirements change

changes impact, maximise information hiding in the design.

Organisationa Prepare a briefing document for senior management showing

restructuring

how the project is making a very important contribution to the
goals of the business.

Database Investigate the possibility of buying a higher-performance
performance database.
Underestimated Investigate buying in components, investigate use of a program

development time

generator.

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 4

Risk monitoring

e Assesseach identified risks regularly to decide

whether or not it is becoming less or more
probable

e Also assess whether the effects of the risk have
changed

e Each key risk should be discussed at management
progress meetings

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 37

Risk factors

Risk type Potential indicators

Technology L ate delivery of hardware or support software, many
reported technology problems

People Poor staff morale, poor relationships amongst team
member, job availability

Organisational organisational gossip, lack of action by senior
management

Tools reluctance by team members to use tools, complaints
about CASE tools, demands for higher-powered
workstations

Requirements many requirements change requests, customer
complaints

Estimation failure to meet agreed schedule, failure to clear

reported defects

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 4 Slide 38

Key points

e (Good project management Is essential for project
SUCCESS

e Theintangible nature of software causes
problems for management

e Managers have diverse roles but their most
significant activities are planning, estimating and
scheduling

e Planning and estimating are iterative processes

which continue throughout the course of a
project

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 39

Key points

e A project milestone is a predictable state where
some formal report of progressis presented to
management.

e RIisksmay be project risks, product risks or
OUSINESS rsks

e Risk management is concerned with identifying
risks which may affect the project and planning to
ensure that these risks do not develop into major
threats

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 40

Software Reguirements

e Descriptions and specifications of
a system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 1

Objectives

e ToIntroduce the concepts of user and system
regquirements

e 10 describe functiona and non-functional
requirements

e T0 explaintwo techniques for describing system
requirements

e 10 explain how software requirements may be
organised in a requirements document

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 2

Topics covered

e Functiona and non-functional requirements
e User requirements

e System requirements
e [Ihe software reguirements document

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 3

Reguirements engineering

e Theprocess of establishing the services that the
customer requires from a system and the constraints
under which it operates and is devel oped

e Therequirementsthemselves are the descriptions of
the system services and constraints that are generated
during the requirements engineering process

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 4

What 1s a requirement?

e It may range from a high-level abstract statement of a
service or of asystem constraint to a detailed
mathematical functional specification

e Thisisinevitable as requirements may serve adual

function
« May bethebasisfor abid for acontract - therefore must be open to
Interpretation
 May bethe basisfor the contract itself - therefore must be defined in
detall

* Both these statements may be called requirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 5

Reguirements abstraction (Davis)

“1f a company wishesto let a contract for a large software devel opment project, it
must define its needs in a sufficiently abstract way that a solution is not pre-defined.
The requirements must be written so that several contractors can bid for the contract,
offering, perhaps, different ways of meeting the client organisation’ s needs. Once a
contract has been awarded, the contractor must write a system definition for the client
In more detail so that the client understands and can validate what the software will
do. Both of these documents may be called the reguirements document for the
system.”

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 6

Types of requirement

e User requirements

o Statementsin natural language plus diagrams of the services the
system provides and its operational constraints. Written for customers

e System requirements

e A structured document setting out detailed descriptions of the system
services. Written as a contract between client and contractor

e SoOftware specification

A detailed software description which can serve as a basis for adesign
or implementation. Written for developers

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 7

Definitions and specifications

Requirements definition

1. The software must providea means of repr esenting and
accessing external files created by other tools.

Requirements specification

.1 The user should be provided with facilities to define the type of

external files.
.2 Each externdl file type may have an associaed tool which may be

applied to thefile
.3 Each external file type may be represented as a specific icon on
the user’ s display.

4 Facilities should be provided for the icon representing an
external file type to be defined by the user.

.5 When a user selects an icon representing an external file the
effect of that selection isto apply the tool associated with the type of
the external file to the file represented by the selected icon.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 8

Requirements readers

Client managers
System end-users

User requirements Client engineers
Contractor managea's
System architects

System end-users
Client engineers
System architects
Software developers

System requirements

Client engineers (perhgs)
System architects
Software developers

Software design
specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 9

Functional and non-functional requirements

e Functional requirements

o Statements of services the system should provide, how the system
should react to particular inputs and how the system should behave in
particular situations.

e Non-functional requirements

e constraints on the services or functions offered by the system such as
timing constraints, constraints on the development process, standards,
efc.

e Domain requirements

 Requirementsthat come from the application domain of the system
and that reflect characteristics of that domain

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 10

Functional reguirements

e Describe functionality or system services

e Depend on the type of software, expected users and
the type of system where the software is used

e Functional user requirements may be high-level
statements of what the system should do but
functional system requirements should describe the
system services in detall

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 11

Examples of functional requirements

e Iheuser shall be ableto search either all of theinitial
set of databases or salect a subset from It.

e The system shall provide appropriate viewers for the
user to read documents in the document store.

e Every order shal be alocated a unique identifier
(ORDER _ID) which the user shall be able to copy to
the account’ s permanent storage area.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 12

Reguirements imprecision

e Problems arise when reguirements are not precisely
stated

e Ambiguous requirements may be interpreted in
different ways by developers and users

e Consider the term ‘appropriate viewers
e Userintention - specia purpose viewer for each different document

type
 Developer interpretation - Provide atext viewer that shows the
contents of the document

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 13

Requirements compl eteness and consistency

e In principle reguirements should be both complete and
consistent

e Complete
 They should include descriptions of all facilities required

o Consistent

 There should be no conflicts or contradictions in the descriptions of
the system facilities

e Inpractice, it isimpossible to produce a complete and
consistent reguirements document

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 14

Non-functional reguirements

e Define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are 1/O device capability, system
representations, etc.

e Process requirements may also be specified mandating
a particular CASE system, programming language or
devel opment method

e Non-functional requirements may be more critical

than functional requirements. If these are not met, the
system is useless

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 15

Non-functional classifications

e Product requirements
* Requirements which specify that the delivered product must behavein
a particular way e.g. execution speed, reliability, etc.
e Organisational requirements

 Requirements which are a consequence of organisational policies and
procedures e.g. process standards used, implementation requirements,
efc.

e External reguirements

* Requirements which arise from factors which are external to the
system and its development process e.g. interoperability requirements,
legislative requirements, etc.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 16

Non-functional requirement types

Non-functional
requirements
Product Organizationa External
requirements requirements requirements
Efficiency Reliability Portability I nteroperability Ethical
requirements requirements requirements requirements requirements
Usability Delivery I mplementation Standards Legidative
requirements requirements requirements requirements requirements
Performance Space Privacy Safety
requirements requirements requirements requirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 17

Non-functional requirements examples

e Product requirement

« 4.C.8Itshal bepossiblefor all necessary communication between the APSE
and the user to be expressed in the standard Ada character set

e Organisational requirement

 9.3.2 The system development process and deliverable documents shall
conform to the process and deliverables defined in XY ZCo-SP-STAN-95

e External reguirement

« 7.6.5 Thesystem shall not disclose any personal information about
customers apart from their name and reference number to the operators of the
system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 18

Goals and requirements

e Non-functional requirements may be very difficult to
state precisely and imprecise requirements may be
difficult to verify.

o God

A general intention of the user such as ease of use

o Veifiable non-functional requirement
A statement using some measure that can be objectively tested

e Goalsare helpful to developers as they convey the
Intentions of the system users

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 19

Examples

e A system goal

« The system should be easy to use by experienced controllers and
should be organised in such away that user errors are minimised.

e A verifiable non-functional requirement

 Experienced controllers shall be able to use al the system functions
after a total of two hours training. After this training, the average
number of errors made by experienced users shall not exceed two per

day.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 20

Regquirements measures

Property M easure
Speed Processed transactions/second
User/Event response time
Screen refresh time
Size K Bytes
Number of RAM chips
Ease of use Training time
Number of help frames
Reliability Mean timeto failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Timeto restart after fallure

Percentage of events causing failure
Probability of data corruption on failure
Portability Percentage of target dependent statements
Number of target systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 21

Regquirements interaction

e Conflicts between different non-functional
regquirements are common in complex systems

o Spacecra:ft system

To minimise weight, the number of separate chipsin the system
should be minimised

e To minimise power consumption, lower power chips should be used

 However, using low power chips may mean that more chips have to be
used. Which isthe most critical requirement?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 22

Domain requirements

e Derived from the application domain and describe
system characterisics and features that reflect the
domain

e May be new functional reguirements, constraints on
existing requirements or define specific computations

e If domain requirements are not satisfied, the system
may be unworkable

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 23

Library system domain reguirements

e Ihere shall be a standard user Interface to Al

databases which shall be based on the Z39.50
standard.

e Because of copyright restrictions, some documents
must be deleted immediately on arrival. Depending on
the user’s requirements, these documents will ether
be printed locally on the system server for manually
forwarding to the user or routed to a network printer.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 24

Train protection system

e Thedeceleration of the train shall be computed as:

Dtrain = Dcontrol + Dgradient

where Dgqjey IS 9.81ms* * compensated
gradient/alpha and where the values of 9.81ms? /alpha
are known for different types of train.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 25

Domain requirements problems

e Understandability

 Requirements are expressed in the language of the application domain

 Thisisoften not understood by software engineers developing the
system

e Implicitness

e Domain specialists understand the area so well that they do not think
of making the domain requirements explicit

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 26

User requirements

e Should describe functional and non-functional

reguirements so that they are understandable by
system users who don'’'t have detailed technical
knowledge

e User requirements are defined using natural language,
tables and diagrams

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 27

Problems with natural language

e Lack of clarity
 Precisionisdifficult without making the document difficult to read

e Reguirements confusion
Functional and non-functional requirements tend to be mixed-up

e Requirements amalgamation
Several different requirements may be expressed together

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 28

Database requirement

4.A.5 The database shall support the generation and control of
configuration objects; that Is, objects which are themselves groupings
of other objects in the database. The configuration control facilities
shall allow access to the objectsin aversion group by the use of an
Incomplete name.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 29

Editor grid requirement

2.6 Grid facilities To assist in the positioning of entities on a diagram,
the user may turn on agrid in either centimetres or inches, viaan
option on the control pandl. Initially, the grid is off. The grid may be
turned on and off at any time during an editing session and can be
toggled between inches and centimetres at any time. A grid option
will be provided on the reduce-to-fit view but the number of grid

lines shown will be reduced to avoid filling the smaller diagram

with grid lines.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 30

Requirement problems

e Database requirements includes both conceptual and
detailed information

 Describes the concept of configuration control facilities

* Includesthe detail that objects may be accessed using an incomplete
name

e Grid reguirement mixes three different kinds of
reguirement
e Conceptual functional requirement (the need for a grid)

* Non-functional requirement (grid units)
 Non-functional Ul requirement (grid switching)

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 31

Structured presentation

2.6 Grid facilities

2.6.1 The editor shall provide a grid facility where a
matrix of horizontal and vertical lines provide a
background to the editor window. T his grid shall be
ap assive grid where the alignment of entities is the
user's responsibility.
Rationalee A grid helps the user to create a tidy
diagram with well-spaced entities. Although an active
grid, where entities 'snap-to' grid lines can be useful,
the positioning is imprecise. The user is the best person
to decide where entities should be positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 32

Detailed user requirement

3.5.1 Adding nodesto a design

3511 The editor shall provide afacility for users to add nodes of a specified type to their
design.
3512 The sequence of actions to add a node should be as follows:

1. The user should select the type of node to be added.

2. The user should move the cursor to the approximate node position in the diagram and
indicate that the node symbol should be added at that point.

3. The user should then drag the node symbol to its final position.

Rationale: The user is the best person to decide where to position a node on the diagram.
This approach gives the user direct control over node type selection and positioning.

Specification: ECLIPSE/WS/Tools/DE/FS. Section 3.5.1

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 33

Guidelines for writing requirements

e Invent astandard format and use it for al
regquirements

e Uselanguagein aconsistent way. Use shall for
mandatory reguirements, should for desirable
reguirements

e Usetext highlighting to identify key parts of the
reguirement

e Avoid the use of computer jargon

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 34

System reguirements

e More detailed specifications of user reguirements
e Serveasabasisfor designing the system
e May be used as part of the system contract

e System requirements may be expressed using system
models discussed in Chapter 7

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 35

Reguirements and design

e Inprinciple, requirements should state what the
system should do and the design should describe how
It doesthis

e Inpractice, requirements and design are inseparable

« A system architecture may be designed to structure the requirements

 The system may inter-operate with other systems that generate design
requirements

 Theuseof aspecific design may be a domain reguirement

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 36

Problems with NL specification

e Ambiguity

 Thereaders and writers of the requirement must interpret the same
words in the same way. NL is naturally ambiguous so thisis very
difficult

o Over-flexibility

 Thesamething may be said in a number of different waysin the
specification

e Lack of modularisation
e NL structures are inadequate to structure system requirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 37

Alternatives to NL specification

Notation Description

Structured This approach depends on defining standard forms or

natural templates to express the requirements specification.

language

Design This approach uses alanguage like a programming language

description but with more abstract features to specify the requirements

languages by defining an operational model of the system.

Graphical A graphical language, supplemented by text annotationsis

notations used to define the functional requirements for the system.
An early example of such agraphica language was SADT
(Ross, 1977; Schoman and Ross, 1977). More recently, use-
case descriptions (Jacobsen, Christerson et al., 1993) have
been used. | discuss these in the following chapter.

Mathematical These are notations based on mathematical concepts such

gpecifications asfinite-state machines or sets. These unambiguous

specifications reduce the arguments between customer and
contractor about system functionality. However, most
customers don’t understand formal specifications and are
reluctant to accept it as a system contract. | discuss formal
specification in Chapter 9.

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 5 Slide 38

Structured language specifications

e A limited form of natural language may be used to
express requirements

e Thisremoves some of the problems resulting from
ambiguity and flexibility and imposes a degree of
uniformity on a specification

o Often bast supported using aforms-based approach

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 39

Form-based specifications

e Définition of the function or entity

e Description of inputs and where they come from
e Description of outputs and where they go to

e Indication of other entities required

e Preand post conditions (if appropriate)

e Thesdeeffects (if any)

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 40

Form-based node specification

ECLIPSE/Workstation/ToolsDE/FS/3.5.1

Function Add node

| Description Addsa node to an existing design. The user selects the type of node, and its position. |
| When added to the design, the node becomeghe current selection. The user chooses the node position by |
moving the cursor to the area where the node is added.

Inputs Node type, Node position, Design identifier.
Source Node type and Node position are input by the user, Design identifier from the database.
Outputs Design identifier.

| Destination The design database. The design is committed to the database on completion of the |
operation.

Requires Design graph rooted at input design identifier.
Pre-condition The design is open and displayed on the user's screen.
Post-condition The design is unchanged apart from theaddition of a node of the specified type

at the given position.
Side-effects None
Definition: ECLIPSE/Workstation/Tools'DE/RD/3.5.1

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 41

PDL -based requirements definition

e Requirements may be defined operationally using a
language like a programming language but with more
flexibility of expression

e Most appropriate in two situations

 Where an operation is specified as a sequence of actions and the order
IS important
 When hardware and software interfaces have to be specified

e Disadvantagesare

« ThePDL may not be sufficiently expressive to define domain
concepts

 The specification will be taken as a design rather than a specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 42

Part of an ATM specification

class ATM {

I/l declarations here
public static void main (String args[]) throws InvalidCard {

try {

thisCard.read () ; // may throw InvalidCard exception
pin = KeyPad.readPin () ; attempts = 1 ;
while ('thisCard.pin.equals (pin) & attempts < 4)
{ pin = KeyPad.readPin () ; attempts = attempts + 1 ;
}
if ('thisCard.pin.equals (pin))
throw new InvalidCard ("Bad PIN");
thisBalance = thisCard.getBalance () ;
do{ Screen.prompt (" Please select a service ") ;
service = Screen.touchKey () ;
switch (service) {
case Services.withdrawalWithReceipt:
receiptRequired = true ;

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 5

Slide 43

PDL disadvantages

e PDL may not be sufficiently expressive to express the
system functionality in an understandable way

e Notation isonly understandable to people with
programming language knowledge

e Thereqguirement may be taken asadesign
specification rather than a model to help understand

the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 44

|nterface specification

e Most systems must operate with other systems and the
operating interfaces must be specified as part of the
requirements

e Threetypesof interface may have to be defined

Procedural interfaces
Data structures that are exchanged

Data representations
e Formal notations are an effective technique for
Interface specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 45

PDL Interface description

interface PrintServer {

/I defines an abstract printer server
Il requires: interface Printer, interface PrintDoc
Il provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;

void print (Printer p, PrintDoc d) ;

void displayPrintQueue (Printer p) ;

void cancelPrintJob (Printer p, PrintDoc d) ;

void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;
} //PrintServer

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 46

The requirements document

e Therequirements document isthe official statement
of what is required of the system developers

e Should include both a definition and a specification of
requirements

e ItiIsNOT adesign document. Asfar aspossible, it

should set of WHAT the system should do rather than
HOW it should do it

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 47

System customers

Specify the requirements and
read them to check that they
meet their needs. They
specify changes to the
requirements

Managers

Use the requirements
document to plan abid for
the system and to plan the

system devel opment process

System engineers

Use the requirements to
understand what system isto
be developed

System test
engineers

bBL L

Use the requirements to
develop validation tests for
the system

System
mai ntenance
engineers

Use the requirements to help
understand the system and
the relationships between its
parts

Usarsof a
regquirements
document

Regquirements document requirements

o Specify external system behaviour

o Specify iImplementation constraints

e Easy tochange

o Searveasreference tool for maintenance

e Record forethought about the life cycle of the system
I.e. predict changes

e Characterise responses to unexpected events

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 49

| EEE requirements standard

e Introduction

e General description

o Specific requirements
e Appendices

e INdex

e Thisisageneric structure that must be instantiated for
specific systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 50

Regquirements document structure

e Introduction

o Glossary

e User requirements definition

e System architecture

e System requirements specification
e System models

e System evolution

e Appendices

e INdex

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 51

Key points

e Reguirements set out what the system should do and
define constraints on its operation and implementation

e Functional requirements set out services the system
should provide

e Non-functional requirements constrain the system
being developed or the development process

e User requirements are high-level statements of what
the system should do

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 52

Key points

e User requirements should be written in natural
language, tables and diagrams

e System reguirements are intended to communicate the
functions that the system should provide

e System requirements may be written in structured
natural language, a PDL or in aformal language

e A software requirements document is an agreed
statement of the system requirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 53

Reguirements Engineering Processes
e Processes used to discover,

analyse and validate system
reguirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide

Objectives

e Todescribethe principal requirements
engineering activities

e ToIntroduce techniquesfor requirements
elicitation and analysis

e 10 describe requirements validation

e Todiscusstherole of requirements management
IN support of other requirements engineering
Processes

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 2

Topics covered

e Feasibility studies

e Requirements€licitation and analysis
e Requirementsvalidation

e Reguirements management

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 3

Reguirements engineering processes

e Theprocessesused for RE vary widely
depending on the application domain, the people
Involved and the organisation developing the
reguirements

e However, there are anumber of generic activities

common to all processes
Requirements elicitation
Requirements analysis
Requirements validation
Requirements management

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 4

The requirements engineering process

Requirements
elicitation and

anaysis

System
models

Feasibility
study

Feasibility
report

Requirements
specification

Requirements
validation

User and system

requirements
Requirements
| document

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 5

Feasibility studies

e A feashility study decides whether or not the
proposed system is worthwhile

e A short focused study that checks

« If the system contributes to organisational objectives

« If the system can be engineered using current technology and
within budget

o If the system can be integrated with other systems that are used

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 6

Feasibility study implementation

e Based on information assessment (what Is
required), information collection and report

writing
e Questions for people in the organisation

 What if the system wasn’t implemented?

 What are current process problems?

e How will the proposed system help?

What will be the integration problems?

* Isnew technology needed? What skills?

 What facilities must be supported by the proposed system?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 7

Elicitation and analysis

e Sometimes called requirements elicitation or
reguirements discovery

e Involvestechnical staff working with customers
to find out about the application domain, the
services that the system should provide and the
system'’ s operational constraints

e May Iinvolve end-users, managers, engineers
Involved in maintenance, domain experts, trade
unions, etc. These are called stakeholders

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 8

Problems of reguirements analysis

o Stakeholders don’t know what they really want

o Stakeholders express reguirementsin their own
terms

e Different stakeholders may have conflicting
regquirements

e Organisational and political factors may influence
the system requirements

e Thereguirements change during the analysis
process. New stakeholders may emerge and the
business environment change

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 9

The requirements analysis process

/Requi rements °
definition and
specification

f Requirements
validation

Y

Domain
understanding

Prioritization

Process
entry

f Conflict
resolution

Requirements
collection

)‘ Classification .

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 10

Process activities

e Domaln understanding
e Requirements collection
e Classification

e Conflict resolution

e Prioritisation

e Reguirements checking

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 11

System models

e Different models may be produced during the
regquirements analysis activity

e Requirements analysis may involve three
structuring activities which result in these

different models

o Partitioning. Identifies the structural (part-of) relationships
between entities

 Abstraction. Identifies generalities among entities
 Projection. Identifies different ways of looking at a problem

e System models covered in Chapter 7

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 12

Viewpoint-oriented elicitation

o Stakeholders represent different ways of looking
al aproblem or problem viewpoints

e Thismulti-perspective analysisis important as
there Is no single correct way to analyse system
regquirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 13

Banking ATM system

e Theexample used hereis an auto-teller system
which provides some automated banking services

e | useavery smplified system which offers some
services to customers of the bank who own the
system and a harrower range of servicesto other
customers

e Sarvicesinclude cash withdrawal, message
passing (send a message to request a service),
ordering a statement and transferring funds

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 14

Autoteller viewpoints

e Bank customers

o Representatives of other banks

e Hardware and software maintenance engineers
e Marketing department

e Bank managers and counter staff

o Database administrators and security staff

e Communications engineers

e Personne department

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 15

Types of viewpoint

e Datasourcesor sinks

* Viewpoints are responsible for producing or consuming data.
Analysisinvolves checking that datais produced and consumed
and that assumptions about the source and sink of data are valid

e Representation frameworks

 Viewpoints represent particular types of system model. These
may be compared to discover requirements that would be

missed using a single representation. Particularly suitable for
real-time systems

e Recaversof services

* Viewpoints are external to the system and receive services from
It. Most suited to interactive systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 16

External viewpoints

e Natural to think of end-users as receivers of
system services

e Viewpointsare anatural way to structure
requirements elicitation

o ltisrelatively easy to decideif aviewpoint is
valid

e Viewpoints and services may be sued to structure
non-functional requirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 17

Method-based analysis

e Widely used approach to requirements analysis.
Depends on the application of a structured
method to understand the system

e Methods have different emphases. Some are
designed for reguirements elicitation, others are
close to design methods

e A viewpoint-oriented method (VORD) isused as
an example here. It also illustrates the use of
viewpoints

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 18

The VORD method

Viewpoint Viewpoint Viewpoint Viewpoint
identification structuring documentation system mapping

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 19

VORD process mode

e Viewpoint identification

« Discover viewpoints which receive system services and identify
the services provided to each viewpoint

e Viewpoint structuring

e Group related viewpoints into a hierarchy. Common services are
provided at higher-levelsin the hierarchy

e Viewpoint documentation
 Refine the description of the identified viewpoints and services

e Viewpoint-system mapping

 Transform the analysis to an object-oriented design

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 20

VORD standard forms

Viewpoint template Service template
Reference: Theviewpoint name. Reference: The service name.
Attributes: Attributes providing Rationale: Reason why the service is
viewpoint information. provided.
Events: A reference to aset of event Specification: Referencetoalist of service

scenarios describing how
the system reacts to
viewpoint events.

Services A reference to a set of| | Viewpoints:
service descriptions.
Sub-VPs: The names of sub- Non-functional
viewpoints. requirements:
Provider:

gpecifications. These may
be expressed in different
notations.

List of viewpoint names
receiving the service.
Reference to a set of non-
functiona requirements
which constrain the service.
Referenceto alist of system
objects which provide the
Service.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6

Slide 21

Viewpoint identification

Query Get Customer Cash Transaction
balance transactions database withdrawa log
Machine Order
supplies chequeg
Account Message Software
informatio log gze
User

Bank
_ _ teller
interface Foreign @
customer .ﬂ
Account Stolen Order Hardware Card
hol der card statemen mai ntenance retention
assin
Remote it Update 2 Card
diagnostics y account validation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 22

Invalid
user

Viewpoint service information

ACCOUNT FOREIGN BANK
HOLDER CUSTOMER TELLER

Withdraw cash Withdraw cash Run diagnostics
Query balance Query balance Add cash
Order cheques Add papea

Send message Send message
Transaction list
Order staement

Transfer funds

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 23

Viewpoint data/control

ACCOUNT ¥ .
HOL DER Control Input Data Input

Start transaction Card details
Cancdl transaction PIN

End transaction Amount required
Select service Message

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 24

Viewpoint hierarchy

All VPs

Services
\?Vlf?hc)j/rg?lvinacsi Customer ‘ Bank staff .

' Account Foreign :
Order cheques
Send message
Transaction list
Order statement
Transfer funds

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 25

Customer/cash withdrawal templates

References Customer

Attributes: Account number
PIN

Start transaction
Select service
Cancel
transaction

End transaction

Events:

Cash withdrawal
Balance enquiry

Services

Sub-VPs:

Account holder
Foreign
customer

©lan Sommerville 2000

—)I Reference:

Rationale:

Specification:

VPs.

Non-funct.
requirements:

Provider:

Software Engineering, 6th edition. Chapter 6

Cash withdrawal

To improve customer service
and reduce paperwork

Users choose this service by
pressing the cash withdrawal
button. They then enter the
amount required. Thisis
confirmed and, if funds allow,
the balance is delivered.

Customer

Deliver cash within 1 minute
of amount being confirmed

Filled in later

Slide 26

Scenarios

e Scenarios are descriptions of how asystem is
used in practice

e They arehelpful in requirements elicitation as
people can relate to these more readily than
abstract statement of what they require from a
system

e Scenariosare particularly useful for adding detail
to an outline requirements description

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 27

Scenario descriptions

e System state at the beginning of the scenario
e Normal flow of eventsin the scenario

e What can go wrong and how thisis handled
e Other concurrent activities

e System state on completion of the scenario

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 28

Event scenarios

e Event scenarios may be used to describe how a
system responds to the occurrence of some
particular event such as ‘ start transaction’

e VORD includes adiagrammatic convention for

event scenarios.
 Dataprovided and delivered
e Control information
Exception processing
 The next expected event

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 29

Event scenario - start transaction

Card present

Y

Request PIN

Timeout

Return card

Invalid card

Return card

Stolen card

Retain card

©lan Sommerville 2000

Account
number
PIN

Valid card
User OK
Validate user Account
number
Incorrect PIN
Re-enter PIN

Incorrect PIN

Return card

Software Engineering, 6th edition. Chapter 6

Slide 30

Notation for data and control analysis

e Ellipses. data provided from or delivered to a
viewpoint

e Control information enters and leaves at the top
of each box

o Dataleavesfrom theright of each box

e EXceptions are shown at the bottom of each box

e Name of next event isin box with thick edges

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 31

Exception description

e Most methods do not include facilities for
describing exceptions

e Inthisexample, exceptions are

e Timeout. Customer failsto enter a PIN within the allowed time
limit
 Invalid card. The card is not recognised and is returned

« Stolen card. The card has been registered as stolen and is
retained by the machine

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 32

Use cases

e Use-cases are a scenario based technique in the
UML which identify the actorsin an interaction
and which describe the interaction itself

e A set of use cases should describe all possible
Interactions with the system

e Seguence diagrams may be used to add detail to
use-cases by showing the sequence of event
processing in the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 33

L ending use-case

%<_>

Lending services

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 34

Library use-cases

T~—C

Lending services

CoO-—1

User administration

I— O

Supplier Catalog services

Library
Staff

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 35

Catal ogue management

ltem: Books:
Library Item Catalog
: Cataloguer:
Bookshop: \
Supplier ‘ Library Staff
= e l.-.l
I] Acquire New
I £ :[
] Catalog Item
1~
I Dispose
<€
Uncatalog Item "

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 6

Slide 36

Social and organisational factors

o S0ftware systemsare used in asocial and
organisational context. This can influence or even
dominate the system requirements

e Socia and organisational factors are not asingle
viewpoint but are influences on all viewpoints

e Good analysts must be sensitive to these factors
but currently no systematic way to tackle thear
analysis

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 37

Example

e Consider asystem which allows senior
management to access information without going

through middle managers

 Managerial status. Senior managers may feel that they are too
important to use a keyboard. This may limit the type of system
interface used

e Managerial responsibilities. Managers may have no
uninterrupted time where they can learn to use the system
e Organisational resistance. Middle managers who will be made

redundant may deliberately provide misleading or incomplete
Information so that the system will fail

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 38

Ethnography

e A socia scientists spends a considerable time
observing and analysing how people actually
work

e People do not haveto explain or articulate thair
work

e Socia and organisational factors of importance
may be observed

e Ethnographic studies have shown that work is
usually richer and more complex than suggested
by simple system models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 39

Focused ethnography

e Developed in aproject studying the air traffic
control process

e Combines ethnography with prototyping

e Prototype development results in unanswered
guestions which focus the ethnographic analysis

e Problem with ethnography isthat it studies
existing practices which may have some
historical basis which isno longer relevant

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 40

Ethnography and prototyping

Focused
ethnography

Ethnographic
analysis

Generic system
development

Debnefing
meetings

Prototype
evaluation

System
protoyping

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 41

Scope of ethnography

e Reguirementsthat are derived from the way that
neople actually work rather than the way | which
orocess definitions suggest that they ought to
work

e Reguirements that are derived from cooperation
and awareness of other people’ s activities

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 42

Requirements validation

e Concerned with demonstrating that the

reguirements define the system that the customer
really wants

e Requirements error costs are high so validation is
very important

Fixing arequirements error after delivery may cost up to 100
times the cost of fixing an implementation error

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 43

Regquirements checking

Validity. Does the system provide the functions
which best support the customer’ s needs?

Consistency. Are there any regquirements
conflicts?

Completeness. Are all functions required by the
customer included?

Realism. Can the requirements be implemented
given available budget and technol ogy

Verifiability. Can the requirements be checked?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 44

Requirements validation techniques

e Reguirementsreviews
e Systematic manual analysis of the requirements

e Prototyping

 Using an executable model of the system to check requirements.
Covered in Chapter 8

e Test-case generation
 Developing tests for requirements to check testability

e Automated consistency analysis

* Checking the consistency of a structured requirements
description

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 45

Requirements reviews

e Regular reviews should be held while the
requirements definition is being formulated

e Both client and contractor staff should be
Involved In reviews

e Reviewsmay beformal (with completed
documents) or informal. Good communications
between developers, customers and users can
resolve problems at an early stage

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 46

Review checks

o Veifiability. Isthe requirement realistically
testable?

e Comprehenshility. Isthe requirement properly
understood?

e Traceability. Isthe origin of the requirement
clearly stated?

e Adaptability. Can the requirement be changed
without alarge impact on other requirements?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 47

Automated consistency checking

Requirements
In aformal language

Reguirements
problem report

Requirements
Processor

Requirements
analyser

Requirements
database

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 48

Reguirements management

¢ Requirements management is the process of
managing changing reguirements during the
reguirements engineering process and system
devel opment

e Requirements are inevitably incomplete and

lnconsi stent

* New requirements emerge during the process as business needs
change and a better understanding of the system is devel oped

e Different viewpoints have different requirements and these are
often contradictory

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 49

Regquirements change

e Thepriority of requirements from different
viewpoints changes during the devel opment
Process

e System customers may specify requirements from
a business perspective that conflict with end-user
requirements

e Thebusnessand technical environment of the
system changes during its development

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 50

Requirements evolution

Initial
understanding
of problem of problam

Initial Changed
requirements requir ements

S —
Time

Changed
understanding

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 51

Enduring and volatile requirements

e ENnduring requirements. Stable requirements
derived from the core activity of the customer
organisation. E.g. ahospital will always have
doctors, nurses, etc. May be derived from domain
models

e Volatilerequirements. Reguirements which
change during development or when the system is
In use. In ahospital, requirements derived from
health-care policy

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 52

Classification of requirements

e Mutable requirements
 Requirementsthat change due to the system’ s environment

e Emergent requirements

 Requirementsthat emerge as understanding of the system
develops

e Conseguentia requirements

 Requirements that result from the introduction of the computer
system

e Compatibility requirements
 Requirementsthat depend on other systems or organisational
processes

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 53

Reguirements management planning

e During the requirements engineering process, you

have to plan:

 Requirements identification
» How requirements are individually identified
« A change management process
» The process followed when analysing a requirements change
e Traceability policies
» The amount of information about requirements relationshipsthat is
maintained
« CASE tool support
» The tool support required to help manage requirements change

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 54

Traceability

e [Traceability is concerned with the relationships
between requirements, their sources and the
system design

e Sourcetraceability

e Linksfrom requirements to stakeholders who proposed these
requirements

e Reguirements traceability

* Links between dependent requirements

e Designtraceability

* Linksfrom the reguirements to the design

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 55

A traceability matrix

Reg. 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2
id

1.1 U R

1.2 U R U
1.3 R R

2.1 R U U
2.2 U
2.3 R U

3.1 R
3.2 R

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 56

CASE tool support

e Requirements storage

* Requirements should be managed in a secure, managed data
store

¢ Change management

e The process of change management is aworkflow process
whose stages can be defined and information flow between
these stages partially automated

e Traceability management
o Automated retrieval of the links between reguirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 57

Reguirements change management

e Should apply to all proposed changesto the
regquirements

e Principal stages
 Problem analysis. Discuss requirements problem and propose
change

 Change analysis and costing. Assess effects of change on other
requirements

e Change implementation. Modify requirements document and
other documents to reflect change

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 58

Reguirements change management

Revised
requirements

|dentified

problem | 5ropem analysis and
change specification

Change analysis
and costing

Change
implementation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 59

Key points

e Therequirements engineering process includes a
feasibility study, requirements elicitation and
analysis, requirements specification and
reguirements management

e Requirements analysisisiterative involving
domain understanding, reguirements collection,
classification, structuring, prioritisation and
validation

o Systems have multiple stakeholders with different
regquirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 60

Key points

e Social and organisation factors influence system
regquirements

e Reguirementsvalidation is concerned with
checks for validity, consistency, completeness,
realism and verifiability

e Business changesinevitably lead to changing
reguirements

e Requirements management includes planning and
change management

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 61

System models

e Abstract descriptions of
systems whose reguirements
are being analysed

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7

Slide

Objectives

e To explainwhy the context of a system should be
modelled as part of the RE process

e T0 describe behavioural modelling, data
modelling and object modelling

e Tointroduce some of the notations used in the
Unified Modeling Language (UML)

e 10 show how CASE workbenches support
system modelling

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 2

Topics covered

e Context models

e Behavioural models
e Datamodels

e Object models

e CASE workbenches

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 3

System modelling

e System modelling helps the analyst to understand
the functionality of the system and models are
used to communicate with customers

e Different models present the system from
different perspectives

o External perspective showing the system’ s context or
environment
« Behavioural perspective showing the behaviour of the system

o Structural perspective showing the system or data architecture

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 4

Structured methods

e Structured methods incorporate system modelling
as an inherent part of the method

e Methods define a set of models, a process for
deriving these models and rules and guidelines
that should apply to the models

e CASE tools support system modelling as part of a
structured method

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 5

Method weaknesses

e They do not model non-functional system
regquirements

e They do not usually include information about
whether a method is appropriate for agiven
problem

e Themay produce too much documentation

e Thesystem models are sometimes too detailed
and difficult for users to understand

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 6

Model types

e Dataprocessing model showing how the datais
processed at different stages

e Composition model showing how entities are
composed of other entities

e Architectural model showing principal sub-
systems

e Classification model showing how entities have
common characteristics

o Stimulus/response model showing the system’s
reaction to events

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 7

Context models

e Context models are used to illustrate the
boundaries of a system

e Socia and organisational concerns may affect the
decision on where to position system boundaries

e Architectura models show the a system and its
relationship with other systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 8

The context of an ATM system

Security
system
Branch
accounting
system | |
Auto-teller
system

Branch T
counter g atasﬁgase
system

M ai ntenance
system

[

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 9

Process models

e Process models show the overall process and the
orocesses that are supported by the system

o Dataflow models may be used to show the
nrocesses and the flow of information from one
Nrocess to another

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 10

Equipment procurement process

Delivery
note
Equipment ' Checked : Delivery
- Spec. : ' Spec \ !
Sl Validte) vy of)
required S E B e equipment /'
Spec. +
A N ' S‘éftf’r'gg Order : Installation
: Equipment — e instructions
spec. Supplier list notification :
: [Supplier Find Choose . Install
: database suppliers supplier il ; equipment
: , Order __order J:
E details + : :
: Blank order ; Installation
: form \ acceptance
Ag:cept
Checked and Dot
signed order form
Equipment
details

Equipment
database

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 11

Behavioural models

e Behavioura models are used to describe the
overall behaviour of a system

e Two typesof behavioural model are shown here

o Dataprocessing models that show how datais processed as it
moves through the system

o State machine models that show the systems response to events

e Both of these models are required for a
description of the system’s behaviour

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 12

Data-processing models

e Dataflow diagrams are used to model the
system’ s data processing

e Theseshow the processing steps as data flows
through a system

e Intrinsic part of many analysis methods

e Simple and intuitive notation that customers can
understand

e Show end-to-end processing of data

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 13

Order processing DFD

Completed Signed Signed ool
signed order
order form order form order form + order
Order notification
details + Complete
blank order form

order form Adjust

available

Order

amount

+ account
details

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 14

Data flow diagrams

e DFDs model the system from afunctional
perspective
e Tracking and documenting how the data

associated with a process is helpful to develop an
overall understanding of the system

o Dataflow diagrams may also be used in showing
the data exchange between a system and other
systems in its environment

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 15

CASE toolset DFD

| nput Valid Checked Design User
design design design anaysis report
| Design Design Report
Cross checker analyser generator
and
Output

Code skeleton), code Design
generaor database

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 16

State machine models

e These model the behaviour of the system in
response to external and internal events

e They show the system’ s responses to stimuli so
are often used for modelling real-time systems

e State machine models show system states as
nodes and events as arcs between these nodes.
When an event occurs, the system moves from
one state to another

o Statecharts are an integral part of the UML

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 17

Microwave oven mode

Full

power { Full power '\

- Timer
(Waiting '\ \
R il Number _
R dng i
: do: operate
i i oven
Half
power / Cancel
Start >! Y
Door Waiting

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 18

Microwave oven state description

State Description

Waiting The oven iswaiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘ Half
power’.

Full power The oven power is set to 600 watts. The display shows ‘ Full
power’.

Set time The cooking timeis set to the user’s input value. The display
shows the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light ison.
Display shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display
shows ‘Ready to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the
timer countdown. On completion of cooking, the buzzer is
sounded for 5 seconds. Oven light is on. Display shows ‘ Cooking
complete’ while buzzer is sounding.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 19

Microwave oven stimull

Stimulus Description
Half power The user has pressed the half power button
Full power The user has pressed the full power button
Timer The user has pressed one of the timer buttons
Number The user has pressed a numeric key
Door open The oven door switch is not closed
Door closed The oven door switch is closed
Start The user has pressed the start button
Cancd The user has pressed the cancel button

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 7 Slide 20

Statecharts

e Allow the decomposition of a model into sub-
models (see following slide)

e A Drief description of the actionsis included
following the ‘do’ In each state

e Can be complemented by tables describing the
states and the stimuli

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 21

Microwave oven operation

4 Operation r _)
Time
Checkin
f g\ OK f Cook \
do: check Jo. run
Y,
Turntabl Emitter Timeout
fault fault v
(Alam) (_bore
. do: buzzer on
do: display k
 event) for 5 secs,
_ _J
' Door Cancel
open

C Disebled)4—

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 7

C Waiting

Slide 22

Semantic data models

e Usedto describethelogical structure of data
processed by the system

e Entity-relation-attribute model sets out the
entities in the system, the relationships between
these entities and the entity attributes

o Widely used in database design. Can readily be
Implemented using relational databases

e No specific notation provided in the UML but
objects and associations can be used

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 23

Software design semantic model

Design

name
description
C-date
M-date

iIs-a +1

has-nodes has-links
n n
Y I Y
Node 1 has-links n Link
name - name
type type
T 1
1 1
has-labels has-labels
Labd
name
’ text
N 1icon

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 7

Slide 24

Data dictionaries

e Datadictionaries arelists of all of the names used
In the system models. Descriptions of the entities,
relationships and attributes are also included

e Advantages

Support name management and avoid duplication

Store of organisational knowledge linking analysis, design and
Implementation

o Many CASE workbenches support data
dictionaries

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 25

Data dictionary entries

Name

Description

Type

Date

has-labels

1:N relation between entities of type
Node or Link and entities of type
L abel.

Relation

5.10.1998

L abel

Holds structured or unstructured
Information about nodes or links.

L abels are represented by anicon
(which can be atransparent box) and
associated text.

Entity

8.12.1998

Link

A 1:1 relation between design
entities represented as nodes. Links
are typed and may be named.

Relation

8.12.1998

name
(Iabel)

Each label has aname which
identifies the type of label. The name
must be unique within the set of |abel
types used in a design.

Attribute

8.12.1998

name
(node)

Each node has a name which must be
unigue within adesign. The name
may be up to 64 characters long.

Attribute

15.11.1998

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 7

Object models

e ODbject models describe the system in terms of
object classes

e Anobject classisan abstraction over a set of
objects with common attributes and the services
(operations) provided by each object

e \Various object models may be produced

| nheritance models
Aqggregation models
| nteraction models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 27

Object models

e Natural ways of reflecting the real-world entities
manipulated by the system

e More abstract entities are more difficult to model
using this approach
e ODject classidentification isrecognised as a

difficult process requiring a deep understanding
of the application domain

e ODject classes reflecting domain entities are
reusable across systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 28

|nheritance models

e Organisethe domain object classesinto a
hierarchy

e Classesat thetop of the hierarchy reflect the
common features of all classes

e ODject classes inherit their attributes and services
from one or more super-classes. these may then
be specialised as necessary

e Classhierarchy designisadifficult process if
duplication in different branches is to be avoided

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 29

The Unified Modeling Language

e Devised by the developers of widely used object-
oriented analysis and design methods

e Hasbecome an effective standard for object-
oriented modelling

e Notation

 Object classes are rectangles with the name at the top, attributes
In the middle section and operations in the bottom section

« Relationships between object classes (known as associations)
are shown as lines linking objects

 Inheritanceisreferred to as generalisation and is shown
‘upwards' rather than ‘downwards' in ahierarchy

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 30

Library item

Catalogue number
Acquisition date
Cost

Type

Status

Number of copies

Acquire ()
Catalogue ()
Dispose ()
Issue ()
Return ()

Library class hierarchy

A

Published item

Title

Publisher

A

Record¢d item

Title
Medium

Author Year Director _
Edition lssue Date of release Version
Publication date Distributor Platform
ISBN

Library user User class hierarchy

Name
Address

Phone |
Registration #

Deests ()

JAY

Reader Borrower
Affiliation [tems on loan
Max. loans
Staff Student
Department Major subject

Department phone Home address

Multiple inheritance

e Rather than inheriting the attributes and services
from asingle parent class, a system which
supports multiple inheritance allows object
classes to inherit from several super-classes

e Canlead to semantic conflicts where
attributes/services with the same name in
different super-classes have different semantics

e Makesclass hierarchy reorganisation more
complex

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 33

Multiple inheritance

Book Voice recording
Author Speaker
Edition Duration
Puldication date Recording date
|ISBN
2 P
' |
Talking book
Tapes

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 7

Slide 34

ODbject aggregation

e Aggregation model shows how classeswhich are
collections are composed of other classes

e Similar to the part-of relationship in semantic
data models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 35

ODbject aggregation

Study pack

Coursetitle
Number

Year
| nstructor

Y L

: HP g L ecture Videotape
Assignment OHP dlides e ap
Credits Slides e Tapeids.
Exercises Solutions
#Problems Text
Description Diagrams

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 36

Object behaviour modelling

e A behavioural model shows the interactions
between objects to produce some particular
system behaviour that is specified as a use-case

e Seguence diagrams (or collaboration diagrams) in
the UML are used to model interaction between
objects

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 37

| ssue of electronic items

‘Library User

T
1

Ecat: 0 Libl:
Catalog ‘Library Item NetServer
L ookup
Display
| ssue >
| ssue licence I
% I
Accept licence
ep > _
‘{) 3
ompress I
3
Deliver I T

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 7

Slide 38

CASE workbenches

e A coherent set of toolsthat is designed to support
related software process activities such as
analysis, design or testing

e Analysisand design workbenches support system
modelling during both requirements engineering
and system design

e [heseworkbenches may support a specific design

method or may provide support for a creating
several different types of system model

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 39

An analysis and design workbench

Data
dictionary

Code
generator

Forms
creation
tools

©lan Sommerville 2000

Structured
diagramming
tools

Centrd
information
repository

Design, analysis
and checking
tools

Software Engineering, 6th edition. Chapter 7

Report
generation
facilities

Query
language
facilities

| mport/export
facilities

Slide 40

Analysis workbench components

e Diagram editors

e Mode analysis and checking tools

e Repository and associated query language
o Datadictionary

e Report definition and generation tools

e Formsdefinition tools

e Import/export translators

e Code generation tools

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 41

Key points

e A mode isan abstract system view.
Complementary types of model provide different
system information

e Context models show the position of asystem in
Its environment with other systems and processes

o Dataflow models may be used to model the data
processing in a system

e State machine models model the system’s
behaviour in response to internal or external
events

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 42

Key points

Semantic data models describe the logical
structure of datawhich isimported to or exported
by the systems

Object models describe logical system entities,
their classification and aggregation

Object models describe the logical system entities
and their classification and aggregation

CA SE workbenches support the development of
system models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 43

Software Prototyping

o Rapid software development to
validate requirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8

Objectives

e To0 describethe use of prototypes in different
types of development project

e Todiscussevolutionary and throw-away
prototyping
e Tointroduce three rapid prototyping technigques -

high-level language devel opment, database
programming and component reuse

e Toexplanthe need for user interface prototyping

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 2

Topics covered

e Prototyping in the software process
e Prototyping technigues
e User interface prototyping

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 3

System prototyping

e Prototyping isthe rapid development of a system

e Inthe past, the developed system was normally
thought of as inferior in some way to the required
system so further development was required

e Now, the boundary between prototyping and
normal system development is blurred and many
systems are developed using an evolutionary
approach

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 4

Uses of system prototypes

e Theprincipa useisto help customers and
devel opers understand the requirements for the
system

 Requirements dlicitation. Users can experiment with a prototype
to see how the system supports their work

* Reguirements validation. The prototype can reveal errors and
omissions in the requirements

e Prototyping can be considered as arisk reduction
activity which reduces requirements risks

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 5

Prototyping benefits

e Misunderstandings between software users and
developers are exposed

e Missing services may be detected and confusing
services may be identified

e A working system is available early in the process

e Theprototype may serve asabasisfor deriving a
system specification

e Thesystem can support user training and system
testing

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 6

Prototyping process

Establish
prototype
objectives

Prototyping
plan

Define
prototype
functionality

Outline Executable Evaluaion
definition prototype report

Evaluate
prototype

Develop
prototype

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 7

Prototyping benefits

e Improved system usability

e Closer match to the system needed
e Improved design quality

e Improved maintainability

e Reduced overall development effort

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 8

Prototyping in the software process

e EVvolutionary prototyping

 An approach to system development where an initial prototype
Is produced and refined through a number of stages to the fina
system

e Throw-away prototyping

e A prototype which isusually a practical implementation of the
system is produced to help discover requirements problems and
then discarded. The system is then devel oped using some other
development process

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 9

Prototyping objectives

e Theobjective of evolutionary prototyping isto
deliver aworking system to end-users. The
development starts with those requirements which
are best understood.

e Theobjective of throw-away prototyping isto
validate or derive the system reguirements. The
prototyping process starts with those requirements
which are poorly understood

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 10

Approaches to prototyping

Delivered
system

Executable Prototype +
System Specification

Evolutionay °
prototyping

Outline
Requirements

Throw-away
Prototyping

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 11

Evolutionary prototyping

e Must be used for systems where the specification
cannot be developed in advance e.g. Al systems
and user interface systems

e Based on techniques which allow rapid system
Iterations

e Veificationisimpossible asthereisno
specification. Validation means demonstrating the
adequacy of the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 12

Evolutionary prototyping

Develop abstract
specification

Build prototype
system

Use prototype
system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 13

Evolutionary prototyping advantages

e Accelerated delivery of the system

 Rapid delivery and deployment are sometimes more important
than functionality or long-term software maintainability

e User engagement with the system

 Not only isthe system more likely to meet user requirements,
they are more likely to commit to the use of the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 14

Evolutionary prototyping

e Specification, design and implementation are
Inter-twined

e Thesystem isdeveloped as a series of increments
that are delivered to the customer

e Techniquesfor rapid system development are
used such as CASE toolsand 4GLs

e User interfaces are usually developed using a GUI
development toolkit

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 15

Evolutionary prototyping problems

e Management problems

o Existing management processes assume awaterfall model of
development

o Specialist skills are required which may not be available in all
development teams

e Maintenance problems

e Continual change tendsto corrupt system structure so long-term
maintenance is expensive

e Contractual problems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 16

Prototypes as specifications

e Some parts of the requirements (e.g. safety-
critical functions) may be impossible to prototype
and so don’t appear in the specification

e Animplementation has no legal standing as a
contract

e Non-functional requirements cannot be
adeguately tested in a system prototype

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 17

Incremental development

o System isdeveloped and delivered in increments
after establisning an overall architecture

e Reguirements and specifications for each
Increment may be developed

o Usersmay experiment with delivered increments
while others are being developed. therefore, these
serve as aform of prototype system

e Intended to combine some of the advantages of
prototyping but with a more manageabl e process
and better system structure

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 18

Incremental development process

Define system
~ ddiverables

Desi gn system Spedfy system : Bgild system _Validate
architecture / increment increment ' increment
NO

Deliver final System Integrate
system complete? increment
YES

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 19

Throw-away prototyping

e Used to reduce requirements risk

e Theprototypeisdeveloped from an initial
specification, delivered for experiment then

discarded

e Thethrow-away prototype should NOT be

considered as afinal system

Some system characteristics may have been left out
There is no specification for long-term maintenance
The system will be poorly structured and difficult to maintain

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 20

Throw-away prototyping

Outline
requirements

Reusable

l components

Develop Validate
software system

Evaluate
prototype

Develop
prototype

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 21

Prototype delivery

e Developers may be pressurised to deliver athrow-
away prototype as afina system

e T hisisnot recommended

* It may beimpossible to tune the prototype to meet non-
functional requirements

o The prototype isinevitably undocumented

o Thesystem structure will be degraded through changes made
during devel opment

 Normal organisational quality standards may not have been
applied

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 22

Rapid prototyping techniques

e Varioustechniques may be used for rapid
devel opment
Dynamic high-level language devel opment
Database programming
Component and application assembly
e Thesearenot exclusive techniques - they are
often used together

e Visual programming is an inherent part of most
prototype development systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 23

Dynamic high-level languages

e Languages which include powerful data
management facilities

e Need alarge run-time support system. Not
normally used for large system devel opment

e Some languages offer excellent Ul devel opment
facilities

e Some languages have an integrated support
environment whose facilities may be used in the
prototype

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 24

Prototyping languages

L anguage Type Application domain
Smalltalk Object-oriented | nteractive systems
Java Object-oriented | nteractive systems
Prolog Logic Symbolic processing
Lisp List-based Symbolic processing

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 25

Cholce of prototyping language

e What isthe application domain of the problem?

e What user interaction is required?

e What support environment comes with the
language?

e Different parts of the system may be programmed
In different languages. However, there may be
problems with language communications

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 26

Database programming languages

e Domain specific languages for business systems
based around a database management system

e Normally include a database query language, a
Screen generator, areport generator and a
Spreadshest.

e May beintegrated with a CASE tool set

e Thelanguage + environment Is sometimes known
as afourth-generation language (4GL)

o Cost-effective for small to medium sized business
systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 27

Database programming

4 Interface

Spreadsheet

DB
programming
|language

Datebase management system

Fourth-gene ation language

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 28

Component and application assembly

e Prototypes can be created quickly from a set of
reusable components plus some mechanism to
‘glue’ these component together

e Thecomposition mechanism must include control
facilities and a mechanism for component
communication

e Thesystem specification must take into account
the availability and functionality of existing
components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 29

Prototyping with reuse

e Application level development
« Entire application systems are integrated with the prototype so
that their functionality can be shared
o For example, if text preparation is required, a standard word
processor can be used

e Component level development
e Individua components are integrated within a standard
framework to implement the system

 Framework can be a scripting language or an integration
framework such as CORBA

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 30

Reusable component composition

Reusable Component
software composition E)Fgf(;tablee
components framework RO

Control and
Integration code

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 31

Compound documents

e For some applications, a prototype can be created
by developing a compound document

e Thisisadocument with active elements (such as
a spreadsheet) that allow user computations

e Each active element has an associated application
which is invoked when that element is selected

e Thedocument itself isthe integrator for the
different applications

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 32

Application linking in compound documents

Compound document

Text 1 | Table 1} Text 2 o= Text 3 —s= Sound 1

'Word processorb ' Spreadsheet ' ' Audio player'

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 33

Visual programming

e Scripting languages such as Visual Basic support
visual programming where the prototype is
developed by creating a user interface from
standard items and associating components with
these items

e A largelibrary of components exists to support
this type of development

e Thesemay betallored to suit the specific
application requirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 34

Visual programming with reuse

~ Hypertext
File Edit Views Layout Options Help
Generd
12th January 2000 Index
Range checking 3.876
O O
User prompt
component +
Draw canvas G G script
— O @
Treedisplay
component
©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 35

Problems with visual development

e Difficult to coordinate team-based development
e No explicit system architecture

e Complex dependencies between parts of the
program can cause maintainability problems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 36

User interface prototyping

e Itisimpossibleto pre-specify the look and feel of
auser interface in an effective way. prototyping is
essential

e Ul development consumes an increasing part of
overall system development costs

e User interface generators may be used to ‘draw’
the interface and simulate its functionality with
components associated with interface entities

e Waeb interfaces may be prototyped using aweb
Site editor

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 37

Key points

A prototype can be used to give end-users a
concrete impression of the system’s capabilities
Prototyping Is becoming increasingly used for
system development where rapid development Is
essential

Throw-away prototyping is used to understand
the system reguirements

In evolutionary prototyping, the system is
developed by evolving an initial version to the
final version

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 38

Key points

e Rapid development of prototypesis essential.
This may require leaving out functionality or
relaxing non-functional constraints

e Prototyping techniques include the use of very

nigh-level languages, database programming and

prototype construction from reusable components

e Prototyping isessential for parts of the system
such as the user interface which cannot be
effectively pre-specified. Users must be involved
In prototype evaluation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 39

Formal Specification

e Techniquesfor the
unambiguous specification of
software

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 1

Objectives

e Toexplanwhy formal specification techniques
help discover problems in system requirements

e To0 describethe use of algebraic techniques for
Interface specification

e To0 describe the use of model-based techniques for
behavioural specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 2

Topics covered

e Formal specification in the software process
e Interface specification
e Behavioural specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 3

Forma methods

e Formal specification is part of a more general
collection of techniques that are known as ‘formal
methods'

e Theseareall based on mathematical
representation and analysis of software

e Forma methods include
Formal specification
Specification analysis and proof
Transformational development
Program verification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 4

Acceptance of formal methods

e Formal methods have not become mainstream
software devel opment techniques as was once
predl cted

Other software engineering techniques have been successful at
Increasing system quality. Hence the need for formal methods

has been reduced

 Market changes have made time-to-market rather than software
with alow error count the key factor. Forma methods do not
reduce time to market

e The scope of formal methods is limited. They are not well-suited
to specifying and analysing user interfaces and user interaction

e Formal methods are hard to scale up to large systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 5

Use of formal methods

e Formal methods have limited practical
applicability

e Their principal benefits are in reducing the
number of errorsin systems so their mai area of
applicability iscritical systems

e Inthisarea, the use of forma methodsis most
likely to be cost-effective

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 6

Specification in the software process

o Specification and design are inextricably
Intermingled.

e Architectural design isessential to structure a
specification.

e Formal specifications are expressed in a
mathematical notation with precisely defined
vocabulary, syntax and semantics.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 7

Specification and design

I ncreasing contractor involvement

>
Decreasing client involvement
Requirements Requirements Architectural Software High-level
definition specification design specification design

Specification | !

| _ >
Design

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 8

Specification In the software process

Requirements Formal

specification v specificaion
Requirements High-level
definition design
System ‘ Ar chitectural

modelling design

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 9

Specification techniques

e Algebraic approach

« Thesystemisspecified in terms of its operations and their
relationships

e Model-based approach

« Thesystemisspecified in terms of a state model that is
constructed using mathematical constructs such as sets and
seguences. Operations are defined by modifications to the
system’s state

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 10

Formal specification languages

Sequential Concurrent
Algebraic Larch (Guttag, Horning et L otos (Bolognes and
al., 1985; Guttag, Horning | Brinksma, 1987),
et al., 1993),
OBJ (Futatsugi, Goguen et
al., 1985)
Model-based | Z (Spivey, 1992) CSP (Hoare, 1985)
VDM (Jones, 1980) Petri Nets (Peterson, 1981)
B (Wordsworth, 1996)

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 9

Slide 11

Use of formal specification

e Formal specification involves investing more
effort in the early phases of software development

e Thisreducesrequirementserrorsasit forcesa
detalled analysis of the requirements

e Incompleteness and inconsistencies can be
discovered and resolved

e Hence, savings as made as the amount of rework
due to requirements problems is reduced

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 12

Development costs with formal specification

Cost

A

Validation
Design and
Implementation Validation
Design and
I mplementation
Specification
Specification
Without formal With formal
specification specification

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 9 Slide 13

|nterface specification

e Large systems are decomposed into subsystems
with well-defined interfaces between these
subsystems

o Specification of subsystem interfaces allows
Independent development of the different
subsystems

e Interfaces may be defined as abstract data types
or object classes

e Thealgebraic approach to formal specification is
particularly well-suited to interface specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 14

Sub-system interfaces

| nterface
objects

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 15

The structure of an algebraic specification

< SPECIFICATION NAME > (Generic Parameter) \

sort < name >
Imports < LIST OF SPECIFICATION NAMES >

Informal description of the sort and its operations

Operation signatures setting out the names and the types of
the parameters to the operations defined over the sort

KAxioms defining the operations over the sort)

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 16

Specification components

e Introduction

 Definesthe sort (the type name) and declares other
specifications that are used

e Description
« Informally describes the operations on the type

e Signature
 Definesthe syntax of the operations in the interface and their
parameters
e AXIiOMS

* Definesthe operation semantics by defining axioms which
characterise behaviour

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 17

Systematic algebraic specification

e Algebraic specifications of a system may be
developed in a systematic way

e Specification structuring.

e Specification naming.

e Operation selection.
 Informal operation specification
e Syntax definition

e Axiom definition

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 18

Specification operations

e Constructor operations. Operations which create
entities of the type being specified

e Inspection operations. Operations which evaluate
entities of the type being specified

e T0 specify behaviour, define the inspector
operations for each constructor operation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 19

Operationson alist ADT

e Constructor operations which evaluate to sort List
Create, Cons and Tail
e Inspection operations which take sort list as a
parameter and return some other sort
Head and Length.
e Tall can bedefined using the ssimpler
constructors Create and Cons. No need to define
Head and Length with Tall.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 20

List specification

LIST (Elem)

sort List
imports INTEGER

Defines a list where elements are added at the end and removed

from the front. The operations are Create, which brings an empty list

into existence, Cons, which creates a new list with an added member,
Length, which evaluates the list size, Head, which evaluates the front
element of the list, and Tail, which creates a list by removing the head from its
input list. Undefined represents an undefined value of type Elem.

Create ® List

Cons (List, Elem) ® List
Head (List) ® Elem
Length (List) ® Integer
Tail (List)® List

Head (Create) = Undefined exception (empty list)
Head (Cons (L, v)) = if L = Create then v else Head (L)
Length (Create) =0

Length (Cons (L, v)) = Length (L) + 1

Tail (Create) = Create

kTaiI (Cons (L, v)) =if L = Create then Create else Cons (Tail (L), v) J

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 21

Recursion in specifications

e Operations are often specified recursively

e Tal (Cons(L,V))=if L =Createthen Create
else Cons (Taill (L), v)

Cons([5,7],9) =15, 7, 9]
Tail ([5,7,9]) = Tail (Cons([5,7],9) =
Cons (Tail ([5, 7]), 9) = Cons (Tall (Cons([5], 7)), 9) =
Cons (Cons (Tail ([9]), 7),9) =
Cons (Cons (Tail (Cons([], 5)), 7),9) =
Cons (Cons ([Create], 7), 9) = Cons ([7],9) = [7, 9]

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 22

Interface specification in critical systems

e Consider an air traffic control system where
aircraft fly through managed sectors of airspace

e Each sector may include a number of aircraft but,
for safety reasons, these must be separated

e Inthisexample, asimple vertical separation of
300m is proposed

e Thesystem should warn the controller if aircraft

are instructed to move so that the separation rule
IS breached

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 23

A sector object

e Ciritical operations on an object representing a

controlled sector are
 Enter. Add an aircraft to the controlled airspace
 Leave. Remove an aircraft from the controlled airspace
« Move. Move an aircraft from one height to another
 Lookup. Given an aircraft identifier, return its current height

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 24

Primitive operations

e It issometimes necessary to introduce additional
operations to simplify the specification

e Theother operations can then be defined using
these more primitive operations

e Primitive operations
« Create. Bring an instance of a sector into existence
e Put. Add an aircraft without safety checks
* In-gpace. Determineif agiven aircraft isin the sector

 Occupied. Given aheight, determine if thereis an aircraft within
300m of that height

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 25

Sector specification

— SECTOR

sort Sector
imports INTEGER, BOOLEAN

Enter - adds an aircraft to the sector if safety conditions are satisfed
Leave - removes an aircraft from the sector

Move - moves an aircraft from one height to another if safe to do so
Lookup - Finds the height of an aircraft in the sector

Create - creates an empty sector

Put - adds an aircraft to a sector with no constraint checks
In-space - checks if an aircraft is already in a sector
Occupied - checks if a specified height is available

Enter (Sector, Call-sign, Height) ® Sector
Leave (Sector, Call-sign) ® Sector
Move (Sector, Call-sign, Height) ® Sector
Lookup (Sector, Call-sign) ® Height

Create ® Sector

Put (Sector, Call-sign, Height) ® Sector
In-space (Sector, Call-sign) ® Boolean
Occupied (Sector, Height) ® Boolean

Enter (S, CS, H) =
if In-space (S, CS) then S exception (Aircraft already in sector)
elsif Occupied (S, H) then S exception (Height conflict)
else Put (S, CS, H)

Leave (Create, CS) = Create exception (Aircraft not in sector)
Leave (Put (S, CS1, H1), CS) =
if CS = CSlthen S else Put (Leave (S, CS), CS1, H1)

Move (S, CS, H) =
if S = Create then Create exception (No aircraft in sector)
elsif not In-space (S, CS) then S exception (Aircraft not in sector)
elsif Occupied (S, H) then S exception (Height conflict)
else Put (Leave (S, CS), CS, H)

-- NO-HEIGHT is a constant indicating that a valid height cannot be returned

Lookup (Create, CS) = NO-HEIGHT exception (Aircraft not in sector)
Lookup (Put (S, CS1, H1), CS) =
if CS = CS1 then H1 else Lookup (S, CS)

Occupied (Create, H) = false

Occupied (Put (S, CS1, H1), H) =
if (H1>HandH1-HE£300)or (H>H1land H-H1£300) then true
else Occupied (S, H)

In-space (Create, CS) = false
In-space (Put (S, CS1, H1),CS) =
if CS = CS1 then true else In-space (S, CS)

-

Specification commentary

e Usethe basic constructors Create and Put to
specify other operations

e Define Occupied and In-space using Create and
Put and use them to make checks in other
operation definitions

e All operations that result in changes to the sector
must check that the safety criterion holds

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 27

Behavioural specification

e Algebraic specification can be cumbersome when
the object operations are not independent of the
object state

e Model-based specification exposes the system
state and defines the operations in terms of
changesto that state

e [heZ notation isamature technique for model -
based specification. It combines formal and
informal description and uses graphical
highlighting when presenting specifications

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 28

The structure of aZ schema

Schemaname Schemasignaure Schema predicate

— Container
contents: M
capacity: M
contents £ capacity

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 29

An insulin pump

Insulin reservoir

Needle
assembly & Pump Clock
Sensor ——>»{Controller ————3 Alarm
B
Displayl Display?2

Power supply

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 9

Slide 30

Modelling the insulin pump

e Theschemamodelsthe insulin pump as a number
of state variables

e reading?

e dose, cumulative dose
e 10,11, r2

e capacity

e adam!

e pump!

o displayl!, display?2!
e Namesfollowed by a? are inputs, names
followed by a! are outputs

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 31

Schema invariant

e Each Z schema has an invariant part which
defines conditions that are always true

e For theinsulin pump schemait is aways true that

 Thedose must be less than or equal to the capacity of the insulin
reservoir

 Nosingle dose may be more than 5 units of insulin and the total
dose delivered in atime period must not exceed 50 units of
insulin. Thisis a safety constraint (see Chapters 16 and 17)

* displayl! showsthe status of the insulin reservair.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 32

Insulin pump schema

— Insulin_pump

reading? : N

dose, cumulative _dose: N

ro, rl, r2: ¥ // used to record the last 3 readings taken
capacity: N

alarm!: {off, on}

pump!: N

displayl!, display2!: STRING

dose £ capacity U dose £ 5 Ucumulative_dose £ 50
capacity 2 40 b displayl!=""

capacity £ 39 Ucapacity 2 10 b displayl! = "Insulin low"
capacity £ 9 b alarm! = on Udisplayl! = "Insulin very low
r2 = reading?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 33

The dosage computation

e Theinsulin pump computes the amount of insulin
required by comparing the current reading with
two previous readings

o If these suggest that blood glucose isrising then
insulin is delivered

e Information about the total dose delivered is
maintained to allow the safety check invariant to
be applied

e Notethat thisinvariant aways applies - thereis
no need to repeat It In the dosage computation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 34

DOSAGE schema

— DOSAGE

Dinsulin_Pump

(.
dose=0U

((rl3ro)U(r2=r1) U
((r1>r0) U (r2 £r1)) U
((r1 <r0) U ((r1-r2) > (r0-r1)))

dose =4 U

((rL £r0) U (r2=r1)) U
((r1 <r0) U ((r1-r2) £ (r0-rl)))

U
dose =(r2 -r1) *4 U

((rL£r0)U (r2>r1))U
(r1>r0)U ((r2-r1)2 (r1-r0)))

)

capacity' = capacity - dose
cumulative_dose' = cumulative_dose + dose
r0'=rLUrl =r2

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9

Slide 35

Output schemas

e Theoutput schemas model the system displays
and the alarm that indicates some potentially
dangerous condition

e Theoutput displays show the dose computed and
awarning message
e Theaarmisactivated if blood sugar isvery low -

this indicates that the user should eat something
to increase their blood sugar level

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 36

Output schemas

— DISPLAY
Dinsulin_Pump

display2!" = Nat_to_string (dose) U

(reading? < 3 b displayl!' = "Sugar low" U

reading? > 30 b displayl!' = "Sugar high" U
reading? 3 3 and reading? £30 b displayl!' = "OK")

— ALARM
Dinsulin_Pump

(reading? <3 Ureading? >30) b alarm!"=on U
(reading? 3 3 Ureading? £30) b alarm!" = off

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 37

Schema consistency

e Itisimportant that schemas are consistent.
Inconsistency suggests a problem with the system
requirements

e ThelNSULIN PUMP schemaand the
DISPLAY are incons stent

displayl! shows awarning message about the insulin reservoir
(INSULIN_PUMP)

displayl! Showsthe state of the blood sugar (DISPLAY)

e [hismust be resolved before implementation of
the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 38

Key points

e Formal system specification complements
informal specification techniques

e Formal specifications are precise and
unambiguous. They remove areas of doubt in a
specification

e Formal specification forces an analysis of the
system reguirements at an early stage. Correcting
errors at this stage is cheaper than modifying a
delivered system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 39

Key points

e Formal specification techniques are most
applicable in the development of critical systems
and standards.

e Algebraic techniques are suited to interface
specification where the interface isdefined asa
set of object classes

e Model-based techniques model the system using
sets and functions. This simplifies some types of
behavioural specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 40

Architectural Design

e Establishing the overdll
structure of a software system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide

1

Objectives

e ToIntroduce architectural design and to discuss
Its Importance

e To0explain why multiple models are required to
document a software architecture

e T0 describetypesof architectural model that may
be used

e To discuss how domain-specific reference models
may be used as a basis for product-lines and to
compare software architectures

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 2

Topics covered

e System structuring

e Control models

e Modular decomposition

e Domain-specific architectures

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 3

Software architecture

e Thedesign processfor identifying the sub-
systems making up a system and the framework
for sub-system control and communication is
architectural design

e Theoutput of thisdesign process is a description
of the software architecture

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 4

Architectural design

e An early stage of the system design process

e Representsthe link between specification and
design processes

o Often carried out in parallel with some
specification activities

e Itinvolvesidentifying mgor system components
and thelr communications

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide5

Advantages of explicit architecture

o Stakeholder communication

* Architecture may be used as afocus of discussion by system
stakeholders

e System analysis

« Meansthat analysis of whether the system can meet its non-
functional reguirementsis possible

e Large-scalereuse
 Thearchitecture may be reusable across a range of systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 6

Architectural design process

e System structuring

 The system is decomposed into several principa sub-systems
and communications between these sub-systems are identified

e Control modelling

A mode of the control relationships between the different parts
of the system is established

e Modular decomposition
 Theidentified sub-systems are decomposed into modules

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide7

Sub-systems and modules

e A sub-system isasystem in its own right whose
operation Is independent of the services provided
by other sub-systems.

e A moduleisasystem component that provides
services to other components but would not
normally be considered as a separate system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 8

Architectural models

e Different architectural models may be produced
during the design process

e Each model presents different perspectives on the
architecture

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide9

Architectural models

e Static structural model that shows the major
system components

e Dynamic process model that shows the process
structure of the system

o Interface model that defines sub-system
Interfaces

e Relationships model such as a data-flow model

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 10

Architectural styles

e Thearchitectural model of a system may conform
to ageneric architectural model or style

e An awareness of these styles can ssmplify the
problem of defining system architectures

e However, most large systems are heterogeneous
and do not follow a single architectural style

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 11

Architecture attributes

e Performance
e Localise operations to minimise sub-system communication

o Security

 Usealayered architecture with critical assetsin inner layers
o Safety

* Isolate safety-critical components
o Availability

e Include redundant components in the architecture
o Maintainability

o Usefine-grain, self-contained components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 12

System structuring

e Concerned with decomposing the system into
Interacting sub-systems
e Thearchitectural designisnormally expressed as

a block diagram presenting an overview of the
system structure

e More specific models showing how sub-systems
share data, are distributed and interface with each
other may also be developed

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 13

Packing robot control system

Vision
system

Y

_ O_bj_ect_ Arm Gripper
identification controller controller
system

A

Packing Conveyor
System controller

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 14

The repository model

e SUb-systems must exchange data. This may be

done in two ways.

 Shared datais held in acentral database or repository and may
be accessed by all sub-systems

« Each sub-system maintains its own database and passes data
explicitly to other sub-systems

e When large amounts of data are to be shared, the

repository model of sharing is most commonly
used

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 15

CASE toolset architecture

Design Code
editor generdor

Project
repository

Design Report
analyser generdor

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 16

Design
trandl ator

Repository model characteristics

e Advantages

Efficient way to share large amounts of data

Sub-systems need not be concerned with how datais produced
Centralised management e.g. backup, security, etc.

Sharing model is published as the repository schema

e Disadvantages

Sub-systems must agree on arepository data model. Inevitably a
compromise

Data evolution is difficult and expensive
No scope for specific management policies
Difficult to distribute efficiently

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 17

Client-server architecture

e Distributed system model which shows how data
and processing is distributed across a range of
components

e Set of stand-alone servers which provide specific
services such as printing, data management, etc.

o Set of clientswhich call on these services
e Network which allows clients to access servers

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 18

Film and picture library

Client 4

‘ Client 1 ' ‘ Client 2 ' ‘ Client 3 '

Wide-bandwidth network

Picture
server
Digitized
photographs

Catalogue
server

Hypertext
server

Film clip
files

Hypertext
web

Catalogue

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 19

Client-server characteristics

e Advantages

o Distribution of datais straightforward

 Makes effective use of networked systems. May require cheaper
hardware

 Easy to add new servers or upgrade existing servers

e Disadvantages

 No shared data model so sub-systems use different data
organisation. data interchange may be inefficient

 Redundant management in each server

 No central register of names and services - it may be hard to
find out what servers and services are available

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 20

Abstract machine model

e Used to model the interfacing of sub-systems

e Organisesthe system into a set of layers (or
abstract machines) each of which provide a set of
Services

e Supportsthe incremental development of sub-
systems in different layers. When alayer
Interface changes, only the adjacent layer is
affected

e However, often difficult to structure systemsin
this way

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 21

Version management system

V ersion management
Object management

Database system

Operating
system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 22

Control models

e Areconcerned with the control flow between
sub-systems. Distinct from the system
decomposition model

e Centralised control

e One sub-system has overall responsibility for control and starts
and stops other sub-systems

e Event-based control

 Each sub-system can respond to externally generated events
from other sub-systems or the system’ s environment

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 23

Centralised control

e A control sub-system takes responsibility for
managing the execution of other sub-systems

e Call-return mode

e Top-down subroutine model where control starts at the top of a
subroutine hierarchy and moves downwards. Applicable to
sequential systems

e Manager mode

 Applicable to concurrent systems. One system component
controls the stopping, starting and coordination of other system

processes. Can be implemented in sequential systems as a case
Statement

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 24

Call-return model

Main
program

Routine1l Routine 2

Routinel.1 Routinel.2 Routine3.1 Routine3.2

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 25

Real-time system control

Sensor Actuator
Processes processes

System
controlle
User Fault
Intaface handler

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 26

Computation
processes

Event-driven systems

e Driven by externally generated events where the
timing of the event is outwith the control of the
sub-systems which process the event

e Two principal event-driven models

e Broadcast models. An event is broadcast to all sub-systems.
Any sub-system which can handle the event may do so

e Interrupt-driven models. Used in real-time systems where
Interrupts are detected by an interrupt handler and passed to
some other component for processing

e Other event driven models include spreadsheets
and production systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 27

Broadcast model

e Effectivein integrating sub-systems on different
computers in a network

e Sub-systems register an interest in specific
events. When these occur, control istransferred
to the sub-system which can handle the event

e Control policy i1s not embedded in the event and
message handler. Sub-systems decide on events
of interest to them

e However, sub-systems don’t know if or when an
event will be handled

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 28

Selective broadcasting

Sub-system Sub-system Sub-system Sub-system
1 2 3 4
Event and message handler

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 29

|nterrupt-driven systems

e Used inreal-time systems where fast response to
an event Is essential

e Thereareknown interrupt types with a handler
defined for each type

e Each typeisassociated with a memory location
and a hardware switch causes transfer to its
handler

e Allowsfast response but complex to program and
difficult to validate

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 30

|nterrupt-driven control

| nterrupts

Y ¥V ¥ v

| nterrupt
vector

Handler Handler Handler
1 2 3
Prooess Prooess Prooess
1 2 3

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 31

Modular decomposition

e Another structural level where sub-systems are
decomposed into modules

e Two modular decomposition models covered

 Anobject model where the system is decomposed into
Interacting objects

A data-flow model where the system is decomposed into
functional modules which transform inputs to outputs. Also
known as the pipeline model

e If possible, decisions about concurrency should
be delayed until modules are implemented

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 32

Object models

e Structurethe system into a set of loosealy coupled
objects with well-defined interfaces

e ODject-oriented decomposition is concerned with
Identifying object classes, thar attributes and
operations

e When implemented, objects are created from
these classes and some control model used to

coordinate object operations

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 33

INvolce processing system

Customer

customer#
name
address
credit period

Payment

Invoicett
date
amount
customer#

©lan Sommerville 2000

Invoice

Invoicett
date
amount
customer

issue ()
sendReminder ()
acceptPayment ()
sendReceipt ()

Receipt

- - >

INVoIi ceHt
date
amount
customer#

Software Engineering, 6th edition. Chapter 10

Slide 34

Data-flow models

e Functional transformations process their inputsto
produce outputs

e May bereferred to as apipe and filter model (as
in UNIX shell)

e Variantsof this approach are very common.
When transformations are sequential, thisisa
batch sequential model which is extensively used
IN data processing systems

e Not really suitable for interactive systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 35

Involice processing system

Issue :

| ssue
payment
reminder

Read issued
Invoices

| dentify
payments

‘ Invoices I ‘ Payments I

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 36

Domain-specific architectures

e Architectural models which are specific to some
application domain

e Two typesof domain-specific model

e Generic models which are abstractions from a number of real
systems and which encapsulate the principal characteristics of
these systems

« Reference models which are more abstract, idealised model.
Provide a means of information about that class of system and
of comparing different architectures

e Generic models are usually bottom-up models;
Reference models are top-down models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 37

Generic models

e Compiler model isawell-known example
although other models exist in more specialised

application domains

Lexical analyser
Symbol table
Syntax analyser
Syntax tree
Semantic analyser
Code generator

e Generic compiler model may be organised
according to different architectural models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 38

Compiler model

Code
generaion

Syntactic
analysis

Lexical
analysis

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 39

L anguage processing system

Syntax Semantic
analyser analyser

Abstract Grammar
Syntax tree definition

: Symbol Output
(editon)‘—" table I definition

Repository

Lexical
analyser

Pretty-

pri nter Optl mizer

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 40

Reference architectures

e Reference models are derived from a study of the
application domain rather than from existing
systems

e May be used asabasisfor system
Implementation or to compare different systems.
It acts as a standard against which systems can be
evaluated

e OSl| mode isalayered model for communication
systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 41

OSl reference model

! Application
6 Presentation
5 Session

4 Transport

3 Network

2 Datalink

1 Physical

Application

Presentation

Session

Transport

Network

Network

Datalink

Datalink

Physica

Physica

‘ Communications medium \

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 10

Slide 42

Key points

e Thesoftware architect isresponsible for deriving
a structural system model, a control model and a
sub-system decomposition model

e Largesystemsrarely conformto asingle
architectural model

e System decomposition models include repository
models, client-server models and abstract
machine models

e Control modelsinclude centralised control and
event-driven models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 43

Key points

e Modular decomposition models include data-flow
and object models

e Domain specific architectural models are
abstractions over an application domain. They

may be constructed by abstracting from existing
systems or may be idealised reference models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 44

Distributed Systems Architectures

Architectural design for software
that executes on more than one
Processor

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide1

Objectives

e T0 explainthe advantages and disadvantages of
distributed systems architectures

e T0 describe different approachesto the
development of client-server systems

e 10 explainthe differences between client-server
and distributed object architectures

e T0 describe object request brokers and the
principles underlying the CORBA standards

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 2

Topics covered

e Multiprocessor architectures

o Client-server architectures

e Distributed object architectures
e CORBA

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 3

Distributed systems

o Virtually all large computer-based systems are
now distributed systems

e Information processing is distributed over several
computers rather than confined to asingle
machine

e Distributed software engineering is now very
Important

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide4

System types

e Persona systemsthat are not distributed and that
are designed to run on a personal computer or
workstation.

e Embedded systems that run on a single processor
or on an integrated group of processors.

e Distributed systems where the system software
runs on aloosely integrated group of cooperating
processors linked by a network.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide5

Distributed system characteristics

e Resource sharing
e Openness

e Concurrency

o Scaabhility

e Fault tolerance

e [lransparency

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 6

Distributed system disadvantages

o Complexity

o Security

e Manageability

e Unpredictability

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide7

Design issue Description

Resource The resources in adistributed system are spread across different

identification computers and a naming scheme has to be devised so that users can
discover and refer to the resources that they need. An example of
such a naming schemeisthe URL (Uniform Resource Locator) that
Is used to identify WWW pages. If ameaningful and universally
understood identification scheme is not used then many of these
resources will be inaccessible to system users.

Communications The universal availability of the Internet and the efficient
implementation of Internet TCP/IP communication protocols means
that, for most distributed systems, these are the most effective way
for the computers to communicate. However, where there are
specific requirements for performance, reliability etc. aternative
approaches to communications may be used.

Quality of service The quality of service offered by a system reflects its performance,
availability and reliability. It is affected by a number of factors such
as the allocation of processes to processesin the system, the
distribution of resources across the system, the network and the
system hardware and the adaptability of the system.

Software The software architecture describes how the application

architectures functionality is distributed over a number of logical components and
how these components are distributed across processors. Choosing
the right architecture for an application is essential to achieve the
desired quality of service.

|ssues in distributed system design

Distributed systems archiectures

e Client-server architectures

o Distributed services which are called on by clients. Servers that
provide services are treated differently from clients that use
Services

e Distributed object architectures

 Nodistinction between clients and servers. Any object on the
system may provide and use services from other objects

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 9

Middleware

o Software that manages and supports the different
components of a distributed system. In essence, it
sits in the middle of the system

e Middlewareisusually off-the-shelf rather than
specially written software

e Examples

Transaction processing monitors
Data convertors
Communication controllers

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 10

Multiprocessor architectures

e 3Simplest distributed system model

o System composed of multiple processes which
may (but need not) execute on different
PrOCESSOr'S

e Architectural model of many large real-time
systems

e Distribution of process to processor may be pre-
ordered or may be under the control of a
despatcher

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 11

A multiprocessor traffic control system

Sensor Traffic flow Traffic light control
processor processor processor

: Light
b Display control
control o
process P process

I'J I'J Traffic lights
Traffic flow sensors

and cameras Operator consoles

[

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 12

Client-server architectures

e Theapplicationis modelled as aset of services
that are provided by servers and a set of clients
that use these services

e Clients know of servers but servers need not
know of clients

e Clientsand serversarelogical processes

e Themapping of processors to processes is not
necessarily 1:1

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 13

A client-server system

@@ @

/ Server process

@\} : 2.

@ © 5

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 14

Computersin a C/S network

Server
computer

O

Client
computer

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 15

| ayered application architecture

e Presentation layer

e Concerned with presenting the results of a computation to
system users and with collecting user inputs

e Application processing layer

« Concerned with providing application specific functionality e.g.,
In a banking system, banking functions such as open account,
close account, etc.

e Data management layer
e Concerned with managing the system databases

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 16

Application layers

Presentation layer

Application processing
layer

Data management
layer

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 17

Thin and fat clients

e Thin-client modd

 Inathin-client model, all of the application processing and data
management is carried out on the server. The client is ssimply
responsible for running the presentation software.

e Fat-client model

e In this mode, the server is only responsible for data
management. The software on the client implements the
application logic and the interactions with the system user.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 18

Thin and fat clients

Presentation
Server
Thin-client Data management
model P Application
processing
Presentation
Application processing Server
Fat-client '
model > Data
management

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 19

Thin client model

e Used when legacy systems are migrated to client

server architectures.

 Thelegacy system actsasa server in itsown right with a
graphical interface implemented on aclient

e A magor disadvantage isthat it places a heavy
processing load on both the server and the
network

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 20

Fat client model

e More processing is delegated to the client asthe
application processing islocally executed

e Most suitable for new C/S systems where the
capabilities of the client system are known in
advance

e More complex than athin client model especially
for management. New versions of the application
have to be installed on all clients

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 21

A client-server ATM system

ATM

Tele- Customer
processing| account

monitor database

ATM

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 22

Three-tier architectures

e Inathree-tier architecture, each of the
application architecture layers may execute on a
Separate processor

e Allowsfor better performance than athin-client

approach and is ssmpler to manage than afat-
client approach

e A more scaable architecture - as demands
INCrease, extra servers can be added

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 23

A 3-tier C/S architecture

Presentation
Server Server
Application —> Data
processing management

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 24

An internet banking system

HTTP interaction

Web server Database server

SQL query Customer

account
database

Account s_nervi ce
provision

SOL

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 25

Use of C/S architectures

Architecture Applications

Two-tier C/S L egacy system applications where separating application

architecturewith processing and data management is impractical

thin clients Computationally-intensive applications such as compilers with
little or no data management
Data-intensive applications (browsing and querying) with little
or no application processing.

Two-tier C/S Applications where application processing is provided by
architecturewith COTS (e.g. Microsoft Excel) on the client
fat clients Applications where computationally-intensive processing of

data (e.g. data visualisation) is required.

Applications with relatively stable end-user functionality used

In an environment with well-established system management
Three-tier or L arge scale applications with hundreds or thousands of clients
multi-tier C/S Applications where both the data and the application are
architecture volatile.

Applications where data from multiple sources are integrated

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 26

Distributed object architectures

e Thereisnodistinction in adistributed object
architectures between clients and servers

e Each distributable entity is an object that provides
services to other objects and receives services
from other objects

e ODbject communication isthrough a middleware
system called an object request broker (software
bus)

e However, more complex to design than C/S
systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 27

Distributed object architecture

03

S (03)

o4

S (04)

Software bus

©lan Sommerville 2000

05

S (05)

06

S (06)

Software Engineering, 6th edition. Chapter 11

Slide 28

Advantages of distributed object architecture

e It alowsthe system designer to delay decisions
on where and how services should be provided

e Itisavery open system architecture that allows
new resources to be added to it as required

e Thesystemisflexible and scaleable

e Itispossibleto reconfigure the system
dynamically with objects migrating across the
network as required

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 29

Uses of distributed object architecture

e Asalogica model that allows you to structure
and organise the system. In this case, you think
about how to provide application functionality
solely in terms of services and combinations of
Services

e Asaflexible approach to the implementation of
client-server systems. The logical model of the
system is aclient-server model but both clients
and servers are realised as distributed objects
communicating through a software bus

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 30

A data mining system

Database 1 Report gen.
Integrator 1 e
= Em —
Database 2 . .
Visualiser

=: Integrator 2 =- =:

BT

Database 3

Display

|

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 31

Data mining system

e Thelogica model of the system is not one of
service provision where there are distinguished
data management services

e It alowsthe number of databasesthat are
accessed to be increased without disrupting the
system

o It alowsnew types of relationship to be mined by
adding new integrator objects

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 32

CORBA

e CORBA isaninternational standard for an Object
Request Broker - middleware to manage
communications between distributed objects

o Severa iImplementation of CORBA are available

e DCOM isan aternative approach by Microsoft to
object request brokers

e CORBA has been defined by the Object
M anagement Group

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 33

Application structure

e Application objects

e Standard objects, defined by the OMG, for a
specific domain e.g. insurance

e Fundamental CORBA services such as directories
and security management

e Horizontal (i.e. cutting across applications)
facilities such as user interface facilities

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 34

CORBA application structure

Application Domain Horizontal
objects facilities CORBA facilities
00 O O O O

| Object request broker |

CORBA services

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 35

CORBA standards

e Anobject model for application objects

A CORBA object is an encapsulation of state with awell-
defined, language-neutral interface defined in an IDL (interface
definition language)

e An object request broker that manages requests
for object services

e A set of general object services of use to many
distributed applications

e A set of common components built on top of
these services

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 36

CORBA objects

e CORBA objects are comparable, in principle, to
objects in C++ and Java

e They MUST have a separate interface definition
that Is expressed using a common language (IDL)
similar to C++

e Thereisamapping fromthisIDL to
programming languages (C++, Java, €etc.)

e Therefore, objects written in different languages
can communicate with each other

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 37

Object request broker (ORB)

e TheORB handles object communications. It
knows of all objects in the system and their
Interfaces

e Using an ORB, the calling object bindsan IDL
stub that defines the interface of the called object

e Calling thisstub resultsin callsto the ORB which
then calls the required object through a published
IDL skeleton that links the interface to the service

Implementation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 38

ORB-based object communications

Object Reguest Broker

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 39

|nter-ORB communications

e ORBsare not usually separate programs but are a
set of objectsin alibrary that are linked with an
application when it is devel oped

e ORBs handle communications between objects
executing on the sane machine

e Several ORBS may be available and each
computer in adistributed system will have its
own ORB

e Inter-ORB communications are used for
distributed object calls

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 40

|nter-ORB communications

ol 02 03 o4
S (o1) S (02) S (03) S (04)
IDL IDL IDL IDL
Object Request Broker Object Request Broker

| Network I

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 41

CORBA services

e Naming and trading services

 Thesealow objectsto discover and refer to other objects on the
network

e Notification services

 Thesealow objects to notify other objects that an event has
occurred

e Transaction services
e These support atomic transactions and rollback on failure

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 42

Key points

e Almost all new large systems are distributed
systems

e Distributed systems support resource sharing,
openness, concurrency, scalability, fault tolerance
and transparency

e Client-server architecturesinvolve services being
delivered by serversto programs operating on
clients

e User interface software always runs on the client
and data management on the server

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 43

Key points

e Inadistributed object architecture, thereisno
distinction between clients and servers

e Distributed object systems require middleware to
handle object communications

e The CORBA standards are a set of middieware
standards that support distributed object
architectures

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 44

Object-oriented Design
Designing systems using self-

contained objects and object
classes

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12

Objectives

e To0 explain how asoftware design may be
represented as a set of interacting objects that
manage their own state and operations

e To0 describethe activities in the object-oriented
design process

e ToIntroduce various modelsthat describe an
obj ect-oriented design

e 10 show how the UML may be used to represent
these models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 2

Topics covered

e ODbjects and object classes
e An object-oriented design process
e Design evolution

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 3

Characteristics of OOD

e ODbjectsare abstractions of real-world or system
entities and manage themselves

o Objects are independent and encapsul ate state and
representation information.

e System functionality is expressed in terms of
object services

e Shared data areas are eliminated. Objects
communicate by message passing

e ODbjects may be distributed and may execute
sequentially or in paralle

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide4

|nteracting objects

04: C4
State 04

Sstate ol state 03
opsi() 53 () ops4 ()

State 02
ops3 () opsl ()

ops5 ()

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide5

Advantages of OOD

e Ease maintenance. Objects may be
understood as stand-alone entities

e QODjects are appropriate reusable components

e For some systems, there may be an obvious
mapping from real world entities to system
objects

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 6

ODbj ect-oriented devel opment

e ODject-oriented analysis, design and
programming are related but distinct

e OOA isconcerned with developing an object
model of the application domain

e OOD is concerned with developing an object-
oriented system model to implement requirements

e OOP isconcerned with realising an OOD using

an OO programming language such as Java or
C++

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide7

ODbjects and object classes

e ODbjects are entities in a software system which
represent instances of real-world and system
entities

e ODject classes are templates for objects. They
may be used to create objects

e ODject classes may inherit attributes and services
from other object classes

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 8

Objects

An object is an entity which has a state and a defined set of
operations which operate on that state. The state is represented as a
set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these
services when some computation is required.

Objects are created according to some object class definition. An
object class definition serves as atemplate for objects. It includes
declarations of all the attributes and services which should be
associated with an object of that class.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 9

The Unified Modeling Language

e Several different notations for describing object-

oriented designs were proposed in the 1980s and
1990s

e TheUnified Modeling Language is an integration
of these notations

e |t describes notations for a number of different
models that may be produced during OO analysis
and design

e Itisnow ade facto standard for OO modelling

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 10

Employee object class (UML)

©lan Sommerville 2000

Employee

name: string

address: string

dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept

manager: Employee

salary: integer

status: {current, left, retired}
taxCode: integer

join ()

leave ()

retire ()
changeDetails ()

Software Engineering, 6th edition. Chapter 12

Slide 11

Object communication

e Conceptually, objects communicate by
message passing.
e Messages

e The name of the service requested by the calling object.

 Copiesof the information required to execute the service
and the name of a holder for the result of the service.

e In practice, messages are often implemented
by procedure calls

 Name = procedure name.
e Information = parameter list.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 12

Message examples

/[l Call a method associated with a buffer
/[object that returns the next value
/I In the buffer

v = circularBuffer.Get () ;

/[Call the method associated with a
/[thermostat object that sets the
/[temperature to be maintained

thermostat.setTemp (20) ;

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 13

Generalisation and inheritance

e ODbjects are members of classes which define
attribute types and operations

e Classes may be arranged in a class hierarchy
where one class (a super-class) Is a generalisation
of one or more other classes (sub-classes)

e A sub-class inheritsthe attributes and
operations from its super class and may add
new methods or attributes of 1ts own

o Generdisation inthe UML isimplemented as
Inheritance in OO programming languages

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 14

A generalisation hierarchy

Employee
Manager Programmer
budgetsControlled pr0je|f3t
dateAppointed progl-anguage
Project Dept. Strategic
Manager Manager Manager
projects dept responsibilities

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 15

Advantages of inheritance

e Itisan abstraction mechanism which may be used
to classify entities

e Itisareuse mechanism at both the design and the
programming level

e Theinheritance graph is a source of
organisational knowledge about domains and

systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 16

Problems with inheritance

e ODject classes are not self-contained. they cannot
be understood without reference to their super-
classes

e Designers have atendency to reuse the
Inheritance graph created during analysis. Can
lead to significant inefficiency

e [heinheritance graphs of analysis, design and
Implementation have different functions and
should be separately maintained

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 17

|nheritance and OOD

e Therearediffering views asto whether

Inheritance is fundamental to OOD.

 View 1. Identifying the inheritance hierarchy or network isa
fundamental part of object-oriented design. Obviously this can
only be implemented using an OOPL.

 View 2. Inheritanceis a useful implementation concept which
allows reuse of attribute and operation definitions. |dentifying
an inheritance hierarchy at the design stage places unnecessary
restrictions on the implementation

e Inheritance introduces complexity and thisis
undesirable, especially in critical systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 18

UML associations

e ODbjects and object classes participate In
relationships with other objects and object classes

e Inthe UML, ageneralised relationship is
Indicated by an association

e Associations may be annotated with information
that describes the association

e Associations are general but may indicate that an
attribute of an object is an associated object or
that a method relies on an associated object

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 19

An assoclation model

|S-member-of

IS-managed-by

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 20

Concurrent objects

e Thenature of objects as self-contained entities
make them suitable for concurrent
Implementation

e The message-passing model of object
communication can be implemented directly if
objects are running on separate processorsin a
distributed system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 21

Servers and active objects

o Searvers.

 Theobject isimplemented as a parallel process (server)
with entry points corresponding to object operations. If no
calls are made to it, the object suspends itself and waits for
further requests for service

e Active objects

e Objects are implemented as parallel processes and the
Internal object state may be changed by the object itself and
not smply by external calls

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 22

Active transponder object

e Active objects may have their attributes modified
by operations but may also update them
autonomoudly using internal operations

e Transponder object broadcasts an aircraft’s
position. The position may be updated using a
satellite positioning system. The object
periodically update the position by triangulation
from satellites

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 23

An active transponder object

class Transponder extends Thread {

Position currentPosition ;
Coords cl, c2;

Satellite satl, sat2 ;
Navigator theNavigator ;

public Position givePosition ()

{
return currentPosition ;
}
public void run ()
{
while (true)
{
cl = satl.position () ;
c2 = sat2.position () ;
currentPosition = theNavigator.compute (c1, c2) ;
}
}

} /[Transponder

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12

Slide 24

Javathreads

e Threadsin Javaare asimple construct for
Implementing concurrent objects

e Threads must include a method called run() and
thisis started up by the Java run-time system

e Active objects typically include an infinite loop
so that they are always carrying out the
computation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 25

An object-oriented design process

e Definethe context and modes of use of the
system

e Designthe system architecture

e ldentify the principal system objects
e Develop design models

o Specify object interfaces

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 26

Weather system description

A weather data collection system is required to generate weather mapson a
regular basis using data collected from remote, unattended weather stations
and other data sources such as weather observers, balloons and satellites.
Weather stations transmit their data to the area computer in response to a
request from that machine.

The area computer validates the collected data and integrates it with the data
from different sources. The integrated data is archived and, using data from
this archive and a digitised map database a set of local weather mapsis
created. Maps may be printed for distribution on a special-purpose map
printer or may be displayed in a number of different formats.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 27

Weather station description

A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, awind vane, a barometer
and arain gauge. Data is collected every five minutes.

When acommand is issued to transmit the weather data, the
weather station processes and summarises the collected data. The
summarised data is transmitted to the mapping computer when a
reguest is received.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 28

| ayered architecture

«subsystem»
Data display

«Ssubsystem»
Data archiving

«Subsystem>»
Data processing

«Subsystem>
Data collection

Al

©lan Sommerville 2000

Datadisplay layer where objects are
concerned with preparing and
presenting the data in a human-
readable form

Data archiving layer where objects
are concerned with storing the data
for future processing

Data processing layer where objects
are concerned with checking and
integrating the collected data

Data collection layer where objects
are concerned with acquiring data
from remote sources

Software Engineering, 6th edition. Chapter 12

Slide 29

System context and models of use

e Develop an understanding of the relationships
between the software being designed and its
external environment

e System context

A static model that describes other systems in the environment.
Use a subsystem model to show other systems. Following slide
shows the systems around the weather station system.

e Modd of system use

A dynamic model that describes how the system interacts with
Its environment. Use use-cases to show interactions

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 30

Subsystems in the weather mapping system

«subsystem»
Data collection «subsystem»
Data display

Zm |
Observer i
. ‘ Satellite Usor Map
comms | interface display
—
Weather] Map
station Balloon Map printer
«subsystem» «subsystem»
Data processing Data archiving
—
: — Data
Data ~ Data storage
checking integration
Map store | |Data store

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 31

Use-cases for the weather station

Report

Calibrate

>—+0

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 32

Use-case description

System Weather station

Use-case Report

Actors Weather data collection system, Weather station

Data The weather station sends a summary of the weather data that has been

collected from the instruments in the collection period to the weather data
collection system. The data sent are the maximum minimum and average
ground and air temperatures, the maximum, minimum and average air
pressures, the maximum, minimum and average wind speeds, the total
rainfall and the wind direction as sampled at 5 minute intervals.

Stimulus The weather data collection system establishes a modem link with the
weather station and requests transmission of the data.

Response The summarised datais sent to the weather data collection system

Comments Weather stations are usually asked to report once per hour but this
frequency may differ from one station to the other and may be modified in
future.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 33

Architectural design

e Once interactions between the system and its
environment have been understood, you use this
Information for designing the system architecture

e Layered architecture is appropriate for the
weather station

Interface layer for handling communications
Data collection layer for managing instruments
Instruments layer for collecting data

e I hereshould be no morethan 7 entitiesin an
architectural model

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 34

Weather station architecture

Manages all

«Subsystem» external

summarises
weather data

Package of
«Isulé)syster{\» instruments for raw
nstruments data collections

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 35

Interface communications
Collects and
«Subsystem»
Data collection

Object identification

e Identifying objects (or object classes) isthe most
difficult part of
object oriented design

e Thereisno 'magic formula for object
Identification. It relies on the skill, experience
and domain knowledge of system designers

e ODject identification Is an iterative process. Y ou
are unlikely to get it right first time

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 36

Approaches to identification

e Useagrammatical approach based on a natural
language description of the system (used in Hood
method)

e Basetheidentification on tangible thingsin the
application domain

e Useabehavioural approach and identify objects
based on what participates in what behaviour

e Useascenario-based analysis. The objects,
attributes and methods in each scenario are
Identified

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 37

Weather station object classes

e Ground thermometer, Anemometer, Barometer

 Application domain objects that are ‘hardware’ objects related
to the instruments in the system

e Weather station

e Thebasic interface of the weather station to its environment. It
therefore reflects the interactions identified in the use-case
model

e Weather data

 Encapsulates the summarised data from the instruments

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 38

Weather station object classes

WeatherStation

WeatherData

identifier

airTemperatures
groundTemperatures

reportWeather ()
calibrate (instruments)
test ()

startup (instruments)
shutdown (instruments)

windSpeeds
windDirections
pressures
rainfall

collect ()

summarise ()

©lan Sommerville 2000

h Ground Anemometer Barometer
thermometer

windSpeed pressure
JRlperatune windDirection height
test ()
"l Sl tceaslitb(r)ate 0

Software Engineering, 6th edition. Chapter 12

Slide 39

Further objects and object refinement

e Usedomain knowledge to identify more objects
and operations

Weather stations should have a unique identifier

 Weather stations are remotely situated so instrument failures
have to be reported automatically. Therefore attributes and
operations for self-checking are required

e Activeor passive objects

* Inthiscase, objects are passive and collect data on request
rather than autonomousdly. Thisintroduces flexibility at the
expense of controller processing time

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 40

Design models

e Design models show the objects and object
classes and rel ationships between these entities

e Static models describe the static structure of the
system in terms of object classes and relationships

e Dynamic models describe the dynamic
Interactions between objects.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 41

Examples of design models

e Sub-system models that show logical groupings
of objects into coherent subsystems

e Seguence models that show the sequence of
object interactions

e State machine models that show how individual
objects change their state in response to events

e Other models include use-case models,
aggregation models, generalisation models,etc.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 42

Subsystem models

e Shows how the design isorganised into logically
related groups of objects

e Inthe UML, these are shown using packages - an
encapsulation construct. Thisisalogical model.
The actual organisation of objectsin the system
may be different.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 43

Weather station subsystems

«subsystem» «subsystem»
Interface Data collection
CommsController| WeatherData
_ Instrument
WeatherStation Status
«subsystem»
Instruments
Alr RainGauge
thermometer g Anemometer
Ground -
P more Barometer WindVane

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 12

Slide 44

Sequence models

e Seguence models show the sequence of object

Interactions that take place

e Objects are arranged horizontally across the top
« Timeisrepresented vertically so models are read top to bottom

e Interactions are represented by labelled arrows, Different styles
of arrow represent different types of interaction

A thinrectanglein an object lifeline represents the time when
the object is the controlling object in the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 45

Data collection sequence

X

:CommsController

‘WeatherStation

‘WeatherData

request (report)

acknowledge ()

<

report ()

send (report)

>

summarise ()

reply (report)

acknowledge ()

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 12

— — — — —

Slide 46

Statecharts

e Show how objects respond to different service
regquests and the state transitions triggered by
these requests

If object state is Shutdown then it responds to a Startup()
message

In the waiting state the object is waiting for further messages
If reportWeather () then system moves to summarising state
If calibrate () the system moves to a calibrating state

A collecting state is entered when a clock signal is received

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 47

Weather station state diagram

!

(

Operation

.)
calibrate () »(Ca|ibrating)

Y calibration OK

(Shutdown \ startup ()
y,

A shutdown ()

Testing)

©lan Sommerville 2000

_

clock

Y

transmission done + test complete
|

(Transmi tti ng)
collection

done reportWeather ()

weather summary

(Collecting)

(Summarisi ng complete

Software Engineering, 6th edition. Chapter 12 Slide 48

Object interface specification

e ObDject interfaces have to be specified so that the
objects and other components can be designed in
paralléel

e Designers should avoid designing the interface
representation but should hide this in the object
Itself

e Objects may have several interfaces which are
viewpoints on the methods provided

e TheUML usesclassdiagramsfor interface
specification but Java may also be used

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 49

Weather station interface

interface WeatherStation {
public void WeatherStation () ;

public void startup () ;
public void startup (Instrument i) ;

public void shutdown () ;
public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;
public void test (Instrument i) ;

public void calibrate (Instrument i) ;

public int getID () ;

} I/WeatherStation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 50

Design evolution

e Hiding information inside objects means that
changes made to an object do not affect other
objects in an unpredictable way

e Assume pollution monitoring facilities are to be
added to weather stations. These sample the
air and compute the amount of different
pollutants in the atmosphere

e Pollution readings are transmitted with weather
data

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 51

Changes reguired

e Addan object classcalled ‘Air quality’ as part of
WeatherStation

e Add an operation reportAirQuality to
WeatherStation. Modify the control software to
collect pollution readings

e Add objects representing pollution monitoring
Instruments

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 52

Pollution monitoring

WeatherStation _ _
Air quality
identifier
gentine NOData
reportWeather () smokeData
reportAirQuality () benzeneData
calibrate (instruments)
test() collect ()
startup (instruments) summarise ()
shutdown (instruments)

Pollution monitoring instruments

NOmeter

SmokeMeter

BenzeneMeter

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12

Slide 53

Key points

OOD Is an approach to design so that design
components have their own private state and
operations

Objects should have constructor and inspection
operations. They provide services to other objects

Objects may be implemented sequentially or
concurrently

The Unified Modeling Language provides
different notations for defining different object
models

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 54

Key points

e A range of different models may be produced
during an object-oriented design process. These
Include static and dynamic system models

e ODject interfaces should be defined precisaly
using e.g. a programming language like Java

e ODject-oriented design ssimplifies system
evolution

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 55

Real-time Software Design

e Designing embedded software
systems whose behaviour Is
subject to timing constraints

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13

Objectives

e To0 explainthe concept of areal-time system and
why these systems are usually implemented as
concurrent processes

e Todescribe adesign processfor real-time
systems

e Toexplantherole of areal-time executive

e ToIntroduce generic architectures for monitoring
and control and data acquisition systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 2

Topics covered

e Systemsdesign

e Real-time executives

e Monitoring and control systems
e Dataacquisition systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 3

Real-time systems

e Systemswhich monitor and control their
environment

e Inevitably associated with hardware devices

e Sensors. Collect data from the system environment

« Actuators. Change (in some way) the system'’s
environment

e Timeiscritical. Real-time systems MUST
respond within specified times

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide4

Definition
e A rea-time system is a software system where the
correct functioning of the system depends on the

results produced by the system and the time at which
these results are produced

o A 'sOft’ real-time system is a system whose operation
IS degraded if results are not produced according to
the specified timing requirements

e A ‘hard’ real-time system is a system whose operation
Isincorrect If results are not produced according to
the timing specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide5

Stimulus/Response Systems

e Given astimulus, the system must produce a
response within a specified time

e Periodic stimuli. Stimuli which occur at
predictable time intervals

* For example, atemperature sensor may be polled 10 times
per second

e Aperiodic stimuli. Stimuli which occur at
unpredictable times

 For example, a system power failure may trigger an
Interrupt which must be processed by the system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 6

Architectural considerations

e Because of the need to respond to timing
demands made by different stimuli/responses, the
system architecture must allow for fast switching
between stimulus handlers

e Timing demands of different stimuli are different
so asimple sequential loop Is not usually
adequate

e Real-time systems are usually designed as
cooperating processes with a real-time executive
controlling these processes

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide7

A real-time system model

Real-time
control system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 8

System elements

e Sensors control processes

o Coallect information from sensors. May buffer information
collected in response to a sensor stimulus

e Data processor

 Carriesout processing of collected information and computes
the system response

e Actuator control
 Generates control signals for the actuator

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 9

Sensor/actuator processes

Stimulus

Sensor Data Actuator
control Processor control

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 10

System design

e Design both the hardware and the software
associated with system. Partition functions to
either hardware or software

e Design decisions should be made on the basis on
non-functional system requirements

e Hardware delivers better performance but
potentially longer development and |ess scope for
change

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 11

Hardware and software design

Establish system
requirements

Partition
requirements

Hardware
requirements

Software
requirements

Software Hardware
design design

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 12

R-T systems design process

e ldentify the stimuli to be processed and the
required responses to these stimuli

e For each stimulus and response, identify the
timing constraints

e Aggregate the stimulus and response processing
INto concurrent processes. A process may be
assoclated with each class of stimulus and

response

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 13

R-T systems design process

e Design algorithmsto process each class of
stimulus and response. These must meet the given
timing requirements

e Design ascheduling system which will ensure
that processes are started in time to meet their
deadlines

e Integrate using areal-time executive or operating
system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 14

Timing constraints

e May require extensive simulation and experiment
to ensure that these are met by the system

e May mean that certain design strategies such as
obj ect-oriented design cannot be used because of

the additional overhead involved

e May mean that low-level programming language
features have to be used for performance reasons

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 15

State machine modelling

e Theeffect of astimulusin areal-time system may
trigger atransition from one state to another.

e Finite state machines can be used for modelling
real-time systems.

e However, FSM models lack structure. Even
simple systems can have a complex model.

e TheUML includes notations for defining state
machine models

o Seealso Chapter 7.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 16

Microwave oven state machine

Full

power (Full power \

do: set power
= 600

Timer
(Waiting ¢
N Number
do: display (Operation
L time)
do: operate
oven

Half
power

do: display |-=
"Waiting'

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 17

Real-time programming

e Hard-real time systems may have to programmed
In assembly language to ensure that deadlines are
met

e Languages such as C allow efficient programs to
be written but do not have constructs to support
concurrency or shared resource management

e Adaasalanguage designed to support real-time
systems design so includes a genera purpose
concurrency mechanism

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 18

Javaas areal-time language

e Javasupports lightweight concurrency (threads
and synchonized methods) and can be used for
some soft real-time systems

e Java2.0isnot suitable for hard RT programming
or programming where precise control of timing
IS required
* Not possible to specify thread execution time
« Uncontrollable garbage collection
 Not possible to discover queue sizes for shared resources

 Variable virtual machine implementation
 Not possible to do space or timing analysis

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 19

Real -time executives

e Real-time executives are specialised operating
systems which manage the processesin the RTS

e Responsible for process management and
resource (processor and memory) allocation

e May be based on a standard RTE kernel which
IS used unchanged or modified for a particular
application

e Does not include facilities such asfile
management

14
©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 20

Executive components

Real-time clock

 Providesinformation for process scheduling.

Interrupt handler
 Manages aperiodic requests for service.

Scheduler

* Chooses the next process to be run.

Resource manager
« Allocates memory and processor resources.
Despatcher

e Starts process execution.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13

Slide 21

Non-stop system components

e Configuration manager

 Responsible for the dynamic reconfiguration of the system
software and hardware. Hardware modules may be replaced and
software upgraded without stopping the systems

o Fault manager

 Responsible for detecting software and hardware faults and
taking appropriate actions (e.g. switching to backup disks) to
ensure that the system continues in operation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 22

Scheduling
information

Real-time
clock

Scheduler

I nterrupt
handler

Process resource
requirements

Processes_ _ Available
awaiting Resource

resource
resources manager list

Processor
list

Real-time executive components

Executing
process

Process priority

e Theprocessing of some types of stimuli must
sometimes take priority

e Interrupt level priority. Highest priority whichis
allocated to processes requiring avery fast
response

e Clock level priority. Allocated to periodic
processes

e Within these, further levels of priority may be
assigned

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 24

Interrupt servicing

e Control istransferred automatically to a
pre-determined memory location

e Thislocation contains an instruction to jump to
an interrupt service routine

e Further interrupts are disabled, the interrupt
serviced and control returned to the interrupted
Process

e Interrupt service routines MUST be short,
simple and fast

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 25

Periodic process servicing

e INnmost real-time systems, there will be several
classes of periodic process, each with different
periods (the time between executions),
execution times and deadlines (the time by
which processing must be compl eted)

e Thereal-time clock ticks periodically and each
tick causes an interrupt which schedules the

process manager for periodic processes

e Theprocess manager selects aprocess which
IS ready for execution

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 26

Process management

e Concerned with managing the set of concurrent
processes

e Periodic processes are executed at pre-specified
time intervals

e Theexecutive usesthe real-time clock to
determine when to execute a process

e Process period - time between executions

e Process deadline - the time by which processing
must be complete

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 27

RTE process management

Scheduler

Choose process
for execution

Resour ce manager Despatcher

Start execution on an
availabl e processor

Allocae memory
and processor

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 28

Process switching

e Thescheduler chooses the next process to be
executed by the processor. This dependson a
scheduling strategy which may take the process
priority into account

e Theresource manager allocates memory and a
processor for the process to be executed

e [he despatcher takes the process from ready list,
loads it onto a processor and starts execution

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 29

Scheduling strategies

e Non pre-emptive scheduling

e Once aprocess has been scheduled for execution, it runsto
completion or until it is blocked for some reason (e.g. waiting
for 1/0O)
e Pre-emptive scheduling
 The execution of an executing processes may be stopped if a
higher priority process requires service

e Scheduling agorithms

e Round-robin
e Rate monotonic
e Shortest deadline first

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 30

Monitoring and control systems

e Important class of real-time systems

e Continuoudly check sensors and take actions
depending on sensor values

e Monitoring systems examine sensors and
report thelr results

e Control systems take sensor values and control
hardware actuators

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 31

Burglar alarm system

e A systemisrequired to monitor sensors on doors
and windows to detect the presence of intrudersin
a building

e When asensor indicates a break-in, the system
switches on lights around the area and calls police
automatically

e [he system should include provision for
operation without a mains power supply

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 32

Burglar alarm system

e Sensors

e Movement detectors, window sensors, door sensors.
e 50 window sensors, 30 door sensors and 200 movement

detectors
« Voltage drop sensor
e Actions
 When an intruder is detected, police are called
automatically.

e Lightsare switched on in rooms with active sensors.
« Anaudibleaarm isswitched on.

 The system switches automatically to backup power when a
voltage drop is detected.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 33

The R-T system design process

e ldentify stimuli and associated responses

e Definethe timing constraints associated with
each stimulus and response

e Allocate system functions to concurrent
pProcesses

e Design algorithms for stimulus processing and
response generation

e Design ascheduling system which ensures that
processes will always be scheduled to meet
their deadlines

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 34

Stimuli to be processed

e Power falure

o Generated aperiodically by acircuit monitor. When
received, the system must switch to backup power within 50
ms

e Intruder darm

e Stimulus generated by system sensors. Response isto call
the police, switch on building lights and the audible alarm

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 35

Timing requirements

Stimulus/Response

Timing requirements

Power fail interrupt

The switch to backup power must be completed
within a deadline of 50 ms.

Door alarm

Each door alarm should be polled twice per
second.

Window alarm

Each window alarm should be polled twice per
second.

Movement detector

Each movement detector should be polled twice
per second.

Audiblealarm The audible alarm should be switched on within
1/2 second of an alarm being raised by a sensor.
Lights switch The lights should be switched on within 1/2

second of an alarm being raised by a sensor.

Communications

The cdll to the police should be started within 2
seconds of an alarm being raised by a sensor.

V oi ce synthesi ser

A synthesised message should be available
within 4 seconds of an alarm being raised by a
Sensor.

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 13 Slide 36

400Hz 60Hz

Y

100Hz

Y

Movement
detector process

Power failure

interrupt Building monito

Door sensor
process

Detector status Sensor status

Window sensor

Communication
process

Room number

Room num

Power switch
process
Alarm

Alarm system

Audible alarm
process

\oice synthesizer
process

Process architecture

/I See http://'www.software-engin.com/ for links to the complete Java code for this
Il example

class BuildingMonitor extends Thread {
BuildingSensor win, door, move ;

Siren siren = new Siren () ;

Lights lights = new Lights () ;

Synthesizer synthesizer = new Synthesizer () ;

DoorSensors doors = new DoorSensors (30) ;

WindowSensors windows = new WindowSensors (50) ;
MovementSensors movements = new MovementSensors (200) ;
PowerMonitor pm = new PowerMonitor () ;

BuildingMonitor()
{
/ initialise all the sensors and start the processes
siren.start () ; lights.start () ;
synthesizer.start () ; windows.start () ;
doors.start () ; movements.start () ; pm.start () ;

Building_monitor process 1

public void run ()
{
introom =0,
while (true)
{
I/ poll the movement sensors at least twice per second (400 Hz)
move = movements.getVal () ;
/Il poll the window sensors at least twice/second (100 Hz)
win = windows.getVal () ;
I/ poll the door sensors at least twice per second (60 Hz)
door = doors.getVal () ;
if (move.sensorVal == 1 | door.sensorVal == 1 | win.sensorVal == 1)
{
Il a sensor has indicated an intruder
if (move.sensorVal == 1) room = move.room ;
If (door.sensorVal ==1) room = door.room ;
if (win.sensorVal ==1) room = win.room ;

lights.on (room) ; siren.on () ; synthesizer.on (room) ;
break ;

}
}
lights.shutdown () ; siren.shutdown () ; synthesizer.shutdown () ;
windows.shutdown () ; doors.shutdown () ; movements.shutdown () ;

} !/ run
} //BuildingMonitor

Building_monitor process 2

Control systems

e A burglar darm system is primarily a monitoring
system. It collects data from sensors but no real-
time actuator control

e Control systems are similar but, in response to
sensor values, the system sends control signalsto
actuators

e An example of amonitoring and control systemis
a system which monitors temperature and
switches heaters on and off

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 40

A temperature control system

500Hz

Y

500Hz

Y

Thermostat
process

Switch command
500Hz Room number Thermostat process

Furnace
control process

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 41

Heater control
process

Data acquisition systems

e Collect datafrom sensors for subsequent
processing and analysis.
e Data collection processes and processing

processes may have different periods and
deadlines.

e Datacollection may be faster than processing
e.g. collecting information about an explosion.

e Circular or ring buffers are a mechanism for
smoothing speed differences.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 42

Reactor data collection

e A system collects datafrom a set of sensors
monitoring the neutron flux from a nuclear
reactor.

e Flux dataisplaced inaring buffer for later
processing.
e Thering buffer isitsalf implemented as a

concurrent process so that the collection and
processing processes may be synchronized.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 43

Reactor flux monitoring

Sensors (each dataflow is a sensor value)

Sensor
identifier and

Processed
flux level

value

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 44

A ring buffer

Consumer
pProcess

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 45

Mutual exclusion

e Producer processes collect dataand add it to
the buffer. Consumer processes take data from the
buffer and make elements available

e Producer and consumer processes must be
mutually excluded from accessing the same
element.

e [hebuffer must stop producer processes
adding information to afull buffer and consumer
processes trying to take information from an
empty buffer.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 46

class CircularBuffer

{
int bufsize ;
SensorRecord [] store ;
int numberOfEntries =0 ;
int front = 0, back =0 ;

CircularBuffer (int n) {

bufsize =n ;

store = new SensorRecord [bufsize] ;
} I/ CircularBuffer

synchronized void put (SensorRecord rec) throws InterruptedException
{
if (numberOfEntries == bufsize)
wait () ;
store [back] = new SensorRecord (rec.sensorld, rec.sensorVal) ;
back = back + 1 ;
if (back == bufsize)

back =0 ;
numberOfEntries = numberOfEntries + 1 ;
notify () ;

} /] put

Javaimplementation of aring buffer 1

synchronized SensorRecord get () throws InterruptedException
{
SensorRecord result = new SensorRecord (-1, -1) ;
if (numberOfEntries == 0)
wait () ;
result = store [front] ;
front =front + 1 ;
if (front == bufsize)
front=0;
numberOfEntries = numberOfEntries - 1 ;
notify () ;
return result ;
} I/ get
} I/ CircularBuffer

Javaimplementation of aring buffer 2

Key points

e Real-time system correctness depends not just
on what the system does but also on how fast it
reacts

e A general RT system model involves associating
processes with sensors and actuators

e Real-time systems architectures are usually
designed as a number of concurrent processes

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 49

Key points

e Real-time executives are responsible for
process and resource management.

e Monitoring and control systems poll sensors and
send control signal to actuators

e Dataacquisition systems are usually organised
according to a producer consumer model

e Javahasfacilitiesfor supporting concurrency but
IS not suitable for the development of time-critical
systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 50

Design with Reuse

e Building software from
reusable components.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14

Slide

1

Objectives

e To0 explan the benefits of software reuse and
some reuse problems

e To0describedifferent types of reusable
component and processes for reuse

e Tointroduce application families as a route to
reuse

e T0 describe design patterns as high-level
abstractions that promote reuse

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 2

Topics covered

e Component-based devel opment
o Application families
e Design patterns

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 3

Software reuse

e In most engineering disciplines, systems are
designed by composing existing components that
have been used in other systems

e SoOftware engineering has been more focused on
original development but it is now recognised
that to achieve better software, more quickly and
at lower cost, we need to adopt a design process
that is based on systematic reuse

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide4

Reuse-based software engineering

e Application system reuse

 Thewhole of an application system may be reused either by
Incorporating it without change into other systems (COTS reuse) or
by developing application families
e Component reuse

e Components of an application from sub-systems to single objects
may be reused

e Function reuse

o Software components that implement a single well-defined function
may be reused

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide5

Reuse practice

e Application system reuse

 Widely practised as software systems are implemented as
application families. COTS reuse is becoming increasingly
common

e Component reuse

 Now seen asthe key to effective and widespread reuse through
component-based software engineering. However, it is still
relatively immature

e Function reuse

e Common in some application domains (e.g. engineering) where
domain-specific libraries of reusable functions have been
established

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 6

Benefits of reuse

e Increased reliability

« Components exercised in working systems

e Reduced process risk

e Lessuncertainty in development costs

o Effective use of specialists
 Reuse componentsinstead of people

e Standards compliance
 Embed standards in reusable components

e Accelerated development
 Avoid origina development and hence speed-up production

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide7

Requirements for design with reuse

e It must be possibleto find appropriate reusable
components

e Thereuser of the component must be confident
that the components will be reliable and will
behave as specified

e Thecomponents must be documented so that they
can be understood and, where appropriate,
modified

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 8

Reuse problems

e Increased maintenance costs

e Lack of tool support

e Not-invented-here syndrome

e Maintaining a component library

e Finding and adapting reusable components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide9

Generator-based reuse

e Program generators involve the reuse of
standard patterns and algorithms

e Theseare embedded in the generator and
parameterised by user commands. A program is
then automatically generated

e Generator-based reuse is possible when domain
abstractions and their mapping to executable code
can be identified

e A domain specific language is used to compose
and control these abstractions

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 10

Types of program generator

e Typesof program generator

Application generators for business data processing
Parser and lexical analyser generators for language processing
Code generators in CASE tools

e Generator-based reuse is very cost-effective but
Its applicability islimited to arelatively small
number of application domains

e Itiseasier for end-usersto develop programs

using generators compared to other component-
based approaches to reuse

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 11

Reuse through program generation

Applicaion
‘ i I—» Program generator Generataed program
‘ Application domain I ‘ '
knowledge Datebase

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 12

Component-based devel opment

e Component-based software engineering (CBSE)
IS an approach to software development that
relies on reuse

e It emerged from the failure of object-oriented
development to support effective reuse. Single
object classes are too detailed and specific

e Components are more abstract than object classes
and can be considered to be stand-alone service
providers

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 13

Components

e Components provide a service without regard to
where the component is executing or its
programming language

A component is an independent executable entity that can be
made up of one or more executabl e objects

The component interface is published and all interactions are
through the published interface

e Components can range in size from simple
functions to entire application systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 14

Component interfaces

Requires interface Component Provides interface
C) E_ N
(\ L
E_
€C> E=

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 15

Component Interfaces

e Providesinterface

 Definesthe servicesthat are provided by the component to other
components

e Reqguiresinterface

 Definesthe services that specifies what services must be made
available for the component to execute as specified

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 16

Printing services component

Requiresinterface | _PrintService Provides interface

(GetPfile) L_Print
| GetQueue

(Printerlnt) | Rlemove
| Transfer

| R'egister

]
|Unregister

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 17

Component abstractions

e Functional abstraction
e The component implements a single function such as a mathematical function
e Casual groupings

Thecomponent is acollection of loosely related entities that might be data
declarations, functions, etc.

e Data abstractions

The component represents a data abstraction or class in an object-oriented
language

e Cluster abstractions

Thecomponent isagroup of related classes that work together

e System abstraction

Thecomponent is an entire self-contained system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 18

CBSE processes

e Component-based development can be integrated
Into a standard software process by incorporating
areuse activity in the process

e However, in reuse-driven development, the
system requirements are modified to reflect the
components that are available

e CBSE usually involves a prototyping or an
Incremental development process with
components being ‘ glued together’ using a
scripting language

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 19

An opportunistic reuse pProcess

Design
system

: Search for | ncorporate
S peciipy reusable discovered

aachitecture ERMPONeLs components components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 20

Development with reuse

Modify requirement

Outline Search for according to
system reusable discovered
requirements components components

V Seorch f Speafy system °
Architectural scablor components

design S based on reusable
JeponeiiE components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 21

CBSE problems

e Component incompatibilities may mean that cost
and schedule savings are less then expected

e Finding and understanding components

e Managing evolution as requirements change in
situations where it may be impossible to change
the system components

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 22

Application frameworks

e Frameworks are a sub-system design made up of
a collection of abstract and concrete classes and
the interfaces between them

e Thesub-system isimplemented by adding
components to fill in parts of the design and by
Instantiating the abstract classes in the framework

e Frameworks are moderately large entities that can
be reused

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 23

Framework classes

e System infrastructure frameworks

o Support the development of system infrastructures such as
communications, user interfaces and compilers

e Middleware integration frameworks

e Standards and classes that support component communication
and information exchange

o Enterprise application frameworks

o Support the development of specific types of application such as
telecommunications or financial systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 24

Extending frameworks

e Frameworks are generic and are extended to
create a more specific application or sub-system

e Extending the framework involves

» Adding concrete classes that inherit operations from abstract
classes in the framework

e Adding methods that are called in response to eventsthat are
recognised by the framework

e Problem with frameworks is their complexity and
the time it takes to use them effectively

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 25

Model-view controller

e System infrastructure framework for GUI design

o Allowsfor multiple presentations of an object
and separate i nteractions with these presentations

e MVC framework involves the instantiation of a
number of patterns (discussed |later)

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 26

Model-view controller

Controller state

View state view modification
messages
)
View methods
Model queries
and updates
Model state
[

©lan Sommerville 2000

Model methods

Controller methods

Model edits

Software Engineering, 6th edition. Chapter 14

User inputs

Slide 27

COTS product reuse

e COTS- Commercial Off-The-Shelf systems

e COTSsystems are usually complete application
systems that offer an APl (Application
Programming I nterface)

e Building large systems by integrating COTS
systems is now aviable development strategy for
some types of system such as E-commerce
systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 28

COTS system integration problems

e Lack of control over functionality and
performance
« COTSsystems may be less effective than they appear

e Problemswith COTS system inter-operability

o Different COTS systems may make different assumptions that
means integration is difficult

e No control over system evolution
 COTS vendors not system users control evolution

e Support from COTS vendors

« COTS vendors may not offer support over the lifetime of the
product

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 29

Component development for reuse

e Components for reuse may be specially
constructed by generalising existing components

e Component reusability

o Should reflect stable domain abstractions

e Should hide state representation

« Should be as independent as possible

« Should publish exceptions through the component interface

e Thereisatrade-off between reusability and
usability.

« Themore general the interface, the greater the reusability but it
IS then more complex and hence less usable

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 30

Reusable components

e Thedevelopment cost of reusable componentsis
higher than the cost of specific equivalents. This
extrareusability enhancement cost should be an
organization rather than a project cost

e (Generic components may be less
space-efficient and may have longer execution
times than their specific equivalents

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 31

Reusability enhancement

e Namegeneralisation

 Namesin acomponent may be modified so that they are not a
direct reflection of a specific application entity

e Operation generalisation
Operations may be added to provide extra functionality and
application specific operations may be removed

e EXception generalisation

« Application specific exceptions are removed and exception
management added to increase the robustness of the component

e Component certification
« Component is certified as reusable

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 32

Reusability enhancement process

Reusable
component

Initial
component

Name ’ Operation Exception Component

generalizaion generalizaion generalizaion certification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 33

Application families

e An application family or product lineisarelated
set of applications that has a common, domain-
specific architecture

e Thecommon core of the application family is
reused each time a new application is reguired

e Each specific application is specialised in some
way

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 34

Application family specialisation

e Platform specialisation

« Different versions of the application are developed for different
platforms

e Configuration specialisation

« Different versions of the application are created to handle
different peripheral devices

e Functional specialisation

« Different versions of the application are created for customers
with different requirements

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 35

A resource management system

Program access

Resource desc.

Screen spec.

©lan Sommerville 2000

Resource database

Software Engineering, 6th edition. Chapter 14

Slide 36

|nventory management systems

e Resource database
 Maintainsdetails of the things that are being managed

e |/O descriptions

o Describes the structures in the resource database and input and
output formats that are used

o Quey leve
* Provides functions implementing queries over the resources

e Accessinterfaces
A user interface and an application programming interface

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 37

Application family architectures

e Architectures must be structured in such away to
separate different sub-systems and to allow them
to be modified

e Thearchitecture should also separate entities and
their descriptions and the higher levelsin the
system access entities through descriptions rather
than directly

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 38

A library system

Delete] |Query| |Browse| |Admin| |Report| | Issue | | Return

Resource desc. Screen spec. Report spec.

Library holdings database

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 39

Library system

e Theresources being managed are the booksin the
library

e Additional domain-specific functionality (issue,
borrow, etc.) must be added for this application

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 40

Family member development

Re-negotiate
> requirements
Elicit Choose closest-
stakehol der fit family
requirements member Adapt existing Deliver new
system family member

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 41

Family member development

e Elicit stakeholder requirements

o Useexisting family member as a prototype

e Choose closest-fit family member
e Findthe family member that best meets the requirements

e Re-negotiate requirements
o Adapt requirements as necessary to capabilities of the software

e Adapt existing system

 Develop new modules and make changes for family member

e Dédliver new family member
e Document key features for further member devel opment

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 42

Design patterns

A design pattern isaway of reusing abstract
knowledge about a problem and its solution

A pattern is a description of the problem and the
essence of its solution

It should be sufficiently abstract to be reused in
different settings

Patterns often rely on object characteristics such
as Inheritance and polymorphism

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 43

Pattern elements

e Name
A meaningful pattern identifier

e Problem description

e Solution description

 Not aconcrete design but atemplate for a design solution that
can be instantiated in different ways

e Conseguences
 Theresults and trade-offs of applying the pattern

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 44

Multiple displays

b ey

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 45

The Observer pattern

e Name
e Observer

e Description
o Separatesthe display of object state from the object itself

e Problem description
o Used when multiple displays of state are needed

e Solution description
o Seedidewith UML description

e Consequences
« Optimisations to enhance display performance are impractical

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 46

The Observer pattern

AN

Subject <> Observer

Attach (Observer) Update ()
Re{ach (Obseiil for al o in observ

BUY 0 -) 0 -> Update () JAN

JAN
ConcreteSubject ConcreteObserver
..... - Update ----I----| observerState =
GetState () return subjectState i 0 subject -> GetState ()
subjectState observerState

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 14

Slide 47

Key points

Design with reuse involves designing software
around good design and existing components

Advantages are |lower costs, faster software
development and lower risks

Component-based software engineering relies on
black-box components with defined requires and
provides interfaces

COTS product reuse is concerned with the reuse
of large, off-the-shelf systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 48

Key points

o Software components for reuse should be
Independent, should reflect stable domain
abstractions and should provide access to state
through interface operations

e Application families are related applications
developed around a common core

e Design patterns are high-level abstractions that
document successful design solutions

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 49

User interface design

e Designing effective interfaces
for software systems

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide

1

Objectives

e 10 suggest some general design principlesfor
user interface design

e Toexplan different interaction styles
e Tointroduce styles of information presentation

e 10 describe the user support which should be
built-in to user interfaces

e Tointroduce usability attributes and system
approaches to system evaluation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 2

Topics covered

e User interface design principles
e User interaction

e Information presentation

o Usar support

e Interface evaluation

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 3

The user Interface

e System users often judge a system by its
Interface rather than its functionality

e A poorly designed interface can cause a user to
make catastrophic errors

e Poor user interface design is the reason why so
many software systems are never used

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide4

Graphical user interfaces

e Most users of business systems interact with these
systems through graphical interfaces although, in
some cases, legacy text-based interfaces are still

used

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide5

GUI characteristics

Characteristic Description

Windows Multiple windows allow different information to be
displayed simultaneously on the user’ s screen.

lcons |cons different types of information. On some systems,
icons represent files; on others, icons represent
PrOCESSES.

Menus Commands are selected from a menu rather than typed
In a command |language.

Pointing A pointing device such asamouseis used for selecting
choices from a menu or indicating items of interest in a
window.

Graphics Graphical elements can be mixed with text on the same
display.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 6

GUI advantages

e They areeasy tolearn and use.

o Userswithout experience can learn to use the system
quickly.

e Theuser may switch quickly from one task to
another and can interact with several different
applications.

e |nformation remainsvisiblein its own window when
attention is switched.

e Fast, full-screen interaction is possible with
Immediate access to anywhere on the screen

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide7

User-centred design

e Theam of this chapter isto sensitise software
engineersto key issues underlying the design
rather than the implementation of user interfaces

e User-centred design is an approach to Ul design

W
W

o U

nere the needs of the user are paramount and
nere the user isinvolved in the design process

design always involves the devel opment of

prototype interfaces

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 8

User Interface design process

Y

Produce paper-
based design
prototype

Analyse and
understand user
activities

Evaluate design
with end-users

y

Produce
dynamic design
prototype

Design
prototype

Evaluate design
with end-users

Executable ';T‘p;eme“t
inal user
Rroto/ps Interface

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 9

Ul design principles

e Ul design must take account of the needs,
experience and capabilities of the system users

e Designers should be aware of people' s physical
and mental limitations (e.g. limited short-term
memory) and should recognise that people make
mistakes

e Ul design principles underlie interface designs
although not all principles are applicable to all
designs

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 10

User interface design principles

Principle Description

User familiarity The interface should use terms and concepts which are
drawn from the experience of the people who will
make most use of the system.

Consistency The interface should be consistent in that, wherever
possible, comparable operations should be activated in
the same way.

Minimal surprise Users should never be surprised by the behaviour of a
system.

Recoverability The interface should include mechanisms to allow
users to recover from errors.

User guidance The interface should provide meaningful feedback
when errors occur and provide context-sensitive user
help facilities.

User diversity The interface should provide appropriate interaction

facilities for different types of system user.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 11

Design principles

o User familiarity

 Theinterface should be based on user-oriented
terms and concepts rather than computer concepts. For example,
an office system should use concepts such as letters, documents,
folders etc. rather than directories, file identifiers, etc.

e Consistency

 Thesystem should display an appropriate level
of consistency. Commands and menus should have the same
format, command punctuation should be similar, etc.

e Minimal surprise

« If acommand operatesin aknown way, the user should be
able to predict the operation of comparable commands

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 12

Design principles

e Recoverability

e The system should provide some resilience to
user errors and allow the user to recover from errors. This might
Include an undo facility, confirmation of destructive actions,
'soft’ deletes, etc.

e User guidance

e Some user guidance such as help systems, on-line manuals, etc.
should be supplied

o Userdiversty

« Interaction facilities for different types of user should be
supported. For example, some users have seeing difficulties and
so larger text should be available

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 13

User-system interaction

e Two problems must be addressed in interactive
systems design

How should information from the user be provided to the
computer system?

 How should information from the computer system be presented
to the user?

e User interaction and information presentation
may be integrated through a coherent framework
such as a user interface metaphor

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 14

Interaction styles

e Direct manipulation
e Menu selection

o Formfill-in

e Command language
e Natural language

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 15

Interaction Main Main Application
style advantages disadvantages examples
Direct Fast and intuitive May be hard to Video games
manipulatio interaction implement CAD systems
n Easy to learn Only suitable where
thereisavisual
metaphor for tasks
and objects
Menu Avoids user Slow for Most general-
selection error experienced users purpose systems
Little typing Can become
required complex if many
menu options
Formfill-in ~ Simple data Takes up alot of Stock control,
entry Sscreen space Personal |oan
Easy to learn processing
Command Powerful and Hard to learn Operating systems,
language flexible Poor error Library
management information
retrieval systems
Natural Accessible to Requires more Timetable systems
language casual users typing WWW
Easly extended Natural language information
understanding retrieval systems
systems are

unreliable

Advantages and
disadvantages

Direct manipulation advantages

e Usersfed in control of the computer and are less
likely to be intimidated by it
e Userlearning timeisrelatively short

e Usersget immediate feedback on their actions
so mistakes can be quickly detected and
corrected

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 17

Direct manipulation problems

e Thederivation of an appropriate information
space model can be very difficult

e Given that users have alarge information

space, what facilities for navigating around that
space should be provided?

e Direct manipulation interfaces can be complex to
program and make heavy demands on the
computer system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 18

Control panel interface

Title IJSD example U Grid -
M ethod JSD

Type Network Units m

Selection IProcess i Reduce m

1

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 19

Menu systems

e Usars make asdection from alist of
possibilities presented to them by the system

e Theseection may be made by pointing and
clicking with a mouse, using cursor keys or by
typing the name of the selection

e May make use of ssimple-to-use terminals such as
touchscreens

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 20

Advantages of menu systems

e Usars need not remember command names as
they are always presented with alist of valid
commands

e Typing effort isminimal
e User erorsare trapped by the interface

o Context-dependent help can be provided. The
user’s context isindicated by the current menu
selection

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 21

Problems with menu systems

e Actionswhich involvelogical conjunction (and)
or digunction (or) are awkward to represent

e Menu systems are best suited to presenting a
small number of choices. If there are many

choices, some menu structuring facility must be
used

e EXperienced usersfind menus slower than
command language

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 22

Form-based interface

NEW BOOK
Title ISBN
Author Price
. Publication
Publisher e
. Number of
Edition copies
Classification L oan
status
Dl?rt(?hcgse Ofies
P status

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 23

Command interfaces

e User types commands to give instructions to the
system e.g. UNIX

e May beimplemented using cheap terminals.
e Easy to process using compiler techniques

e Commands of arbitrary complexity can be
created by command combination

e Concise interfaces requiring minimal typing can
be created

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 24

Problems with command interfaces

e Usearshaveto learn and remember a command
language. Command interfaces are therefore
unsuitable for occasional users

e Usars make errorsin command. An error
detection and recovery system isrequired

e System interaction isthrough akeyboard so
typing ability isrequired

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 25

Command languages

o Often preferred by experienced users because
they allow for faster interaction with the system

e Not suitable for casual or inexperienced users

e May be provided as an alternative to menu
commands (keyboard shortcuts). |n some cases, a
command language interface and a menu-based
Interface are supported at the same time

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 26

Natural language interfaces

e Theuser typesacommand in anatural language.
Generally, the vocabulary 1slimited and these
systems are confined to specific application
domains (e.g. timetable engquiries)

e NL processing technology is now good enough to
make these interfaces effective for casual users

but experienced users find that they require too
much typing

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 27

Multiple user interfaces
i Command
Eo

Command
|language
Interpreter

Operating system

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 28

Information presentation

e Information presentation is concerned with
presenting system information to system users

e Theinformation may be presented directly (e.g.
text iIn aword processor) or may be transformed
INn some way for presentation (e.g. in some
graphical form)

e [he Model-View-Controller approach isaway of
supporting multiple presentations of data

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 29

Information presentation

Information to
be displayed

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 30

M odédl-view-controller

Controller state

Controller methods

Model edits

View state view modification
messages
-
View methods
Model queries
and updates
Modd state
—

©lan Sommerville 2000

Model methods

Software Engineering, 6th edition. Chapter 15

User inputs

Slide 31

Information presentation

o Static iInformation

e Initialised at the beginning of a session. It does not change
during the session

e May be either numeric or textual

e Dynamic information

« Changes during a session and the changes must be
communicated to the system user

 May beeither numeric or textual

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 32

Information display factors

e Istheuser interested in precise information or
data relationships?

e How quickly do information values change?
Must the change be indicated immediately?

e Must the user take some action in response to
a change?
e Isthereadirect manipulation interface?

e Istheinformation textual or numeric? Are
relative values important?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 33

Alternative information presentations

Jan Feb Ma Apil May June
2842 2851 3164 2789 1273 2835

4000 =

3000 =

2000-

1000-

0=

Jan Feb Ma Apinl May June
©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 34

Analogue vs. digital presentation

e Digital presentation
o Compact - takes up little screen space
* Precise values can be communicated

e Anaogue presentation
 Easertoget an'at aglance impression of avalue
 Possible to show relative values
 Easier to see exceptional data values

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 35

Dynamic information display

ﬁ
0 10 20
——1 I
Dia with needle Pie chart Thermometer Horizontal bar

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 36

Displaying relative values

Pressure Temper ature

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 37

Textual highlighting

Thefllenameyou have chosen has been
used Please choose another name

Ch 16 User interface des gn

=

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 38

Data visualisation

e Concerned with techniques for displaying large
amounts of information

e Visualisation can reveal relationships between
entities and trends in the data

e Possible data visualisations are:

Weather information collected from a number of sources
 The state of atelegphone network as alinked set of nodes

 Chemical plant visualised by showing pressures and
temperaturesin alinked set of tanks and pipes

« A moded of amolecule displayed in 3 dimensions
 Web pagesdisplayed as a hyperbolic tree

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 39

Colour displays

e Colour adds an extra dimension to an interface
and can help the user understand complex
Information structures

e Can be used to highlight exceptional events

e Common mistakesin the use of colour In

Interface design include:

 Theuseof colour to communicate meaning
Over-use of colour in the display

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 40

Colour use guidelines

e Don't usetoo many colours

e Use colour coding to support use tasks

e Allow usersto control colour coding

e Design for monochrome then add colour
e Use colour coding consistently

e Avoid colour pairings which clash

e Use colour change to show status change

e Beawarethat colour displays are usually lower
resolution

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 41

User support

e User guidance coversall system facilitiesto
support users including on-line help, error
messages, manuals etc.

e Theuser guidance system should be integrated
with the user interface to help users when they
need information about the system or when they
make some kind of error

e Thehelp and message system should, if possible,
be integrated

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 42

Help and message system

Application

Help
interface

Error message
system

Message
presentation
system

Error message
texts

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 43

Error messages

e Error message design is critically important.
Poor error messages can mean that a user
rgjects rather than accepts a system

e Messages should be polite, concise, consistent
and constructive

e Thebackground and experience of users
should be the determining factor in message
design

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 44

Design factors in message wording

Context

The user guidance system should be aware of what the user is
doing and should adjust the output message to the current
context.

Experience

As users become familiar with a system they becomeirritated
by long, ‘meaningful’ messages. However, beginners find it
difficult to understand short terse statements of the problem.

The user guidance system should provide bothtypes of message
and allow the user to control message conciSeness.

Skill level

Messages should be tailored tothe user’s skills as well as their
experience. Messages for the different classes of user may be
expressed in different ways depending on the terminology which
isfamiliar to the reader.

Style

Messages should be positive rather than negative. They should
use the active rather than the passive mode of address. They
should never be insulting or try to be funny.

Culture

Wherever possible, the designer of messages should be familiar

with the culture of the country where the system is sold. There
are distinct cultural differences between Europe, Asia and
America. A suitable message for one culture might be
unacceptable in another.

©lan Sommerville 2000

Software Engineering, 6th edition. Chapter 15

Slide 45

Nurse Input of a patient’s name

| Please type the patient name in the box then click on OK |

‘ Bates, J. ‘

(Coc) (cancel)

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 46

System and user-oriented error messages

_ User-oriented error message
System-oriented error message

? Error #27 Patient J. Bates is not registered
Invalid patient id entered Click on Patients for a list of registered patients
" Click on Retry to re-input a patient name

Click on Help for more information

Gatients) (Help) (Retry) (Cancel)

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 47

Help system design

e Help? means‘help | want information”
e Help! means “HELP. I'm in trouble”

e Both of these requirements have to be taken
Into account in help system design

o Different facilitiesin the help system may be
required

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 48

Help information

e Should not smply be an on-line manual

e Screensor windows don't map well onto paper
pages.

e Thedynamic characteristics of the display can
Improve information presentation.

e People are not so good at reading screen as
they are text.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 49

Help system use

e Multiple entry points should be provided so that
the user can get into the help system from
different places.

e Someindication of where the user Is positioned
In the help system is valuable.

e Facilities should be provided to allow the user
to navigate and traverse the help system.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 50

Entry pointsto a help system

Top-level >
entry

Entry from
application

Entry from error =
message system

Help frame network

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 51

Help system windows

Help frame map Mail redirection

Mail may be redirected to another
network user by pressing the
redirect button in the control
panel. The system asks for the
name of the user or usersto

[whom the mail has been sent
\ L
You are here ' more ' next ' topics '
Help history
1. Mail
2. Send malil
3. Read mail
4. Redirection

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 52

User documentation

e Aswell ason-line information, paper
documentation should be supplied with a system

e Documentation should be designed for arange of
users from inexperienced to experienced

e Aswell as manuals, other easy-to-use

documentation such as a quick reference card
may be provided

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 53

User document types

System System Novice Experienced System
evaluators administrators users users administrators
Functional Installation Introductory Reference Administrator’s
description document manual manual guide

Description of How to install Getting Facility Operation and
Services the system started description mai ntenance

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 54

Document types

Functional description
e Brief description of what the system can do

Introductory manual
e Presentsan informal introduction to the system

System reference manual
 Describesall system facilities in detail

System installation manual
e Describes how to install the system

System administrator’ s manual
e Describes how to manage the system when it isin use

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15

Slide 55

User interface evaluation

e Some evaluation of auser interface design
should be carried out to assess its suitability

e Full scale evaluation isvery expensive and
Impractical for most systems

e l|dedlly, aninterface should be evaluated against a
usability specification. However, it israre for
such specifications to be produced

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 56

Usability attributes

[Attribute _ Description |

‘Learnability How long does it take a new user to‘

| | become productive with the system?
‘ Speed of operation ‘ How well does the system response match

the user’ s work practice?

iRobustnLl How tolerant is the system of user error? |
‘ Recoverability ‘ How good is the system at recovering from
user errors?

‘ Adaptability m‘
|_ model of work?

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 57

Simple evaluation techniques

e Questionnaires for user feedback

e Video recording of system use and subsequent
tape evaluation.

e Instrumentation of code to collect information
about facility use and user errors.

e Theprovision of agrip button for on-line user
feedback.

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 58

Key points

e Interface design should be user-centred. An
Interface should be logical and consistent and
help users recover from errors

e Interaction stylesinclude direct manipulation,
menu systems form fill-in, command languages
and natural language

e Graphical displays should be used to present
trends and approximate values. Digital displays
when precision Is required

e Colour should be used sparingly and consistently

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 59

Key points

Systems should provide on-line help. This should
include “help, I'mintrouble” and “help, | want
Information”

Error messages should be positive rather than
negative.

A range of different types of user documents
should be provided

|deally, a user interface should be evaluated
against a usability specification

©lan Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 60

Dependability

e The extent to which acritical
system Is trusted by its users

©lan Sommerville 2000 Dependability Slide 1

The concept of dependability

o [or critical systems, it is usually the case that the
most important system property is the dependability
of the system

* The dependability of a system reflectsthe user’s
degree of trust in that system. It reflects the extent of
the user’s confidence that it will operate as users
expect and that it will not ‘fall’ in normal use

e Usefulness and trustworthiness are not the same
thing. A system does not have to be trusted to be
useful

©lan Sommerville 2000 Dependability Slide 2

Dimensions of dependability

Dependability

Availability

v

The ability of the
system to deliver
services when
requested

©lan Sommerville 2000

Reliability

Y

The ability of the
system to deliver
services as specified?

Safety

Dependability

Y

fallure

The ability of the
system to operate
without catastrophic

Slide 3

Security

Y

The ability of the
system to protect itelf
against accidental or
deliverate intrusion

Maintainability

e A system attribute which is concerned with the ease
of repairing the system after afailure has been
discovered or changing the system to include new
features

 Very important for critical systems as faults are often
Introduced into a system because of maintenance
problems

e Maintainability isdistinct from other dimensions of
dependability because it Is a static and not a dynamic
system attribute. | do not cover it in this course.

©lan Sommerville 2000 Dependability Slide 4

Survivability

 The ability of asystem to continue to deliver its
services to users in the face of deliberate or
accidental attack

 Thisisanincreasingly important attribute for
distributed systems whose security can be
compromised

o Survivability subsumes the notion of resilience - the
ability of a system to continue in operation in spite
of component fallures

©lan Sommerville 2000 Dependability Slide 5

Costs of increasing dependability
CostA

Dependability
>
Low Medium High Very Ultra-
high high

©lan Sommerville 2000 Dependability Slide 6

Dependability costs

* Dependability costs tend to increase exponentially as
Increasing levels of dependability are required
 Therearetwo reasonsfor this

 The use of more expensive development techniques and hardware
that are required to achieve the higher levels of dependability

e Theincreased testing and system validation that is required to

convince the system client that the required levels of dependability
have been achieved

©lan Sommerville 2000 Dependability Slide 7

Dependability vs performance

o Untrustworthy systems may be rejected by their
users

o System failure costs may be very high

e [tisvery difficult to tune systems to make them
more dependable

e |t may be possible to compensate for poor
performance

e Untrustworthy systems may cause loss of valuable
Information

©lan Sommerville 2000 Dependability Slide 8

Dependability economics

* Because of very high costs of dependability
achievement, it may be more cost effective to accept
untrustworthy systems and pay for failure costs

 However, this depends on social and political
factors. A reputation for products that can’t be
trusted may lose future business

* Depends on system type - for business systemsin
particular, modest levels of dependability may be
adeguate

©lan Sommerville 2000 Dependability Slide 9

Avallability and reliability

. Rdiability
 The probability of failure-free system operation over a specified time
In agiven environment for a given purpose

. Availability

 The probability that a system, at apoint in time, will be operational
and able to deliver the requested services

* Both of these attributes can be expressed
guantitatively

©lan Sommerville 2000 Dependability Slide 10

Avallability and reliability

e |tissometimes possible to subsume system
availability under system reliability
Obvioudly if asystem isunavailableit is not delivering the specified
system services

 However, It Is possible to have systems with low
reliability that must be available. So long as system
failures can be repaired quickly and do not damage
data, low reliability may not be a problem

o Avallability takes repair time into account

©lan Sommerville 2000 Dependability Slide 11

Reliability terminology

Term

Description

System failure

An event that occurs at some point in time when
the system does not deliver a service as expected
by itsusers

System error Erroneous system behaviour where the behaviour
of the system does not conform to its
specification.

System fault An incorrect system state i.e. a system state that

IS unexpected by the designers of the system.

Human error or
mistake

Human behaviour that results in the introduction
of faultsinto a system.

©lan Sommerville 2000

Dependability Slide 12

Faults and failures

o Falluresareausually aresult of system errors that
are derived from faults in the system

 However, faults do not necessarily result in system

errors

 Thefaulty system state may be transient and ‘ corrected’ before an
error arises

e Errorsdo not necessarily lead to system faillures

 Theerror can be corrected by built-in error detection and recovery

 Thefallure can be protected against by built-in protection facilities.
These may, for example, protect system resources from system

errors

©lan Sommerville 2000 Dependability Slide 13

Perceptions of reliability

 Theformal definition of reliability does not always
reflect the user’ s perception of asystem’sreliability

e The assumptions that are made about the environment where a
system will be used may be incorrect

» Usage of asystem in an office environment is likely to be quite different
from usage of the same system in a university environment

* The consequences of system failures affects the perception of
reliability
» Unreliable windscreen wipersin acar may beirrelevant in adry climate

 Failuresthat have serious consequences (such as an engine breakdown
In acar) are given greater weight by usersthan failuresthat are
inconvenient

©lan Sommerville 2000 Dependability Slide 14

Reliability achievement

e Fault avoidance

 Development technique are used that either minimise the possibility
of mistakes or trap mistakes before they result in the introduction of
system faults

e [ault detection and removal

« Vaeification and validation techniques that increase the probability
of detecting and correcting errors before the system goes into service
are used

e Fault tolerance

* Run-time techniques are used to ensure that system faults do not
result in system errors and/or that system errors do not lead to
system failures

©lan Sommerville 2000 Dependability Slide 15

Reliability modelling

e You can model asystem as an input-output mapping
where some inputs will result in erroneous outputs

e Therdlability of the system isthe probability that a
particular input will lie in the set of inputs that cause
erroneous outputs

e Different people will use the system in different
ways so this probability is not a static system
attribute but depends on the system’s environment

©lan Sommerville 2000 Dependability Slide 16

~ Input/output mapping

| nputs causing
erroneous
| nput set outputs

Program

Erroneous

outputs
Output set

©lan Sommerville 2000 Dependability Slide 17

Reliability perception

Possible
Inputs

Erroneous
Inputs

©lan Sommerville 2000 Dependability Slide 18

Reliability improvement

e Removing X% of the faults in a system will not
necessarily improve the reliability by X%. A study
al IBM showed that removing 60% of product
defects resulted in a 3% improvement in reliability

* Program defects may be in rarely executed sections
of the code so may never be encountered by users.
Removing these does not affect the perceived
reliability

e A program with known faults may therefore still be
seen asreliable by its users

©lan Sommerville 2000 Dependability Slide 19

Safety

o Safety isaproperty of asystem that reflects the
system’ s ability to operate, normally or abnormally,
without danger of causing human injury or death and
without damage to the system’ s environment

e [tisincreasingly important to consider software
saf ety as more and more devices incorporate
software-based control systems

o Safety requirements are exclusive requirementsi.e.
they exclude undesirable situations rather than
specify required system services

©lan Sommerville 2000 Dependability Slide 20

Safety criticality

Primary safety-critical systems

 Embedded software systems whose failure can cause the associated
hardware to fail and directly threaten people.

Secondary safety-critical systems

o Systemswhose faillure resultsin faults in other systems which can
threaten people

Discussion here focuses on primary safety-critical
systems

o Secondary safety-critical systems can only be considered on a one-
off basis

©lan Sommerville 2000 Dependability Slide 21

Safety and reliability

o Safety and reliability are related but distinct

In general, reliability and availability are necessary but not sufficient
conditions for system safety

« Redliability Is concerned with conformance to agiven
specification and delivery of service

o Safety Is concerned with ensuring system cannot
cause damage irrespective of whether
or not it conforms to its specification

©lan Sommerville 2000 Dependability Slide 22

Unsafe reliable systems

o Specification errors

e |f the system specification isincorrect then the system can behave as
specified but still cause an accident

o Hardware failures generating spurious inputs
« Hard to anticipate in the specification

o Context-sensitive commandsi.e. issuing the right

command at the wrong time
o Often theresult of operator error

©lan Sommerville 2000 Dependability Slide 23

Safety terminology

Term Definition

Accident (or An unplanned event or sequence of events which results in human death

mishap) or injury, damage to property or to the environment. A computer-
controlled machine injuring its operator is an example of an accident.

Hazard A condition with the potential for causing or contributing to an
accident. A failure of the sensor which detects an obstacle in front of a
machine is an example of a hazard.

Damage A measure of the loss resulting from a mishap. Damage can range from
many people killed as aresult of an accident to minor injury or property
damage.

Hazard An assessment of the worst possible damage which could result from a

severity particular hazard. Hazard severity can range from catastrophic where
many people are killed to minor where only minor damage results

Hazard The probability of the events occurring which create a hazard.

probability Probability values tend to be arbitrary but range from probable (say
1/100 chance of a hazard occurring) to implausible (no conceivable
situations are likely where the hazard could occur).

Risk Thisis ameasure of the probability that the system will cause an

accident. Therisk is assessed by considering the hazard probability, the
hazard severity and the probability that a hazard will result in an
accident.

©lan Sommerville 2000

Dependability Slide 24

Safety achievement

e Hazard avoidance

« Thesystem isdesigned so that some classes of hazard ssmply cannot
arise.

 Hazard detection and removal

« Thesystemisdesigned so that hazards are detected and removed
before they result in an accident

e Damage limitation

e The system includes protection features that minimise the damage
that may result from an accident

©lan Sommerville 2000 Dependability Slide 25

Normal accidents

e Accidentsin complex systemsrarely have asingle
cause as these systems are designed to be resilient to

asingle point of failure

Designing systems so that a single point of failure does not cause an
accident is afundamental principle of safe systems design

e Almost al accidents are aresult of combinations of
malfunctions

o |tisprobably the case that anticipating all problem
combinations, especially, in software controlled
systems Is iImpossible so achieving complete safety
IS impossible

©lan Sommerville 2000 Dependability Slide 26

Security

 The security of asystem is a system property that
reflects the system'’ s ability to protect itself from
accidental or deliberate external attack

e Security is becoming increasingly important as
systems are networked so that external accessto the
system through the Internet is possible

o Security Isan essential pre-requisite for availability,
reliability and safety

©lan Sommerville 2000 Dependability Slide 27

Fundamental security

o |f asystem isanetworked system and isinsecure
then statements about its reliability and its safety are
unreliable

* These statements depend on the executing system
and the devel oped system being the same. However,
Intrusion can change the executing system and/or its
data

 Therefore, thereiability and safety assurance is no
longer valid

©lan Sommerville 2000 Dependability Slide 28

Security terminology

Term Definition

Exposure Possibleloss or harm in a computing system

Vulnerability A weakness in a computer-based system that may
be exploited to cause loss or harm

Attack An exploitation of a system vulnerability

Threats Circumstances that have potential to cause loss or
harm

Control A protective measure that reduces asystem

vulnerability

©lan Sommerville 2000

Dependability Slide 29

Damage from insecurity

e Denia of service

« Thesystemisforced into a state where normal services are
unavailable or where service provision is significantly degraded

e Corruption of programs or data

e Theprograms or datain the system may be modified in an
unauthorised way

 Disclosure of confidential information

 Information that is managed by the system may be exposed to people
who are not authorised to read or use that information

©lan Sommerville 2000 Dependability Slide 30

Security assurance

* Vulnerability avoidance

« Thesystem isdesigned so that vulnerabilities do not occur. For
example, if there is no external network connection then external
attack isimpossible

e Attack detection and eimination

« Thesystemisdesigned so that attacks on vulnerabilities are detected
and neutralised before they result in an exposure. For example, virus
checkers find and remove viruses before they infect a system

e EXposure limitation

 Thesystem is designed so that the adverse consequences of a
successful attack are minimised. For example, a backup policy
allows damaged information to be restored

©lan Sommerville 2000 Dependability Slide 31

Key points

* The dependability in a system reflects the user’ s trust
In that system

 Theavallability of asystem isthe probability that it
will be avallable to deliver services when requested

o Thereliability of asystem isthe probability that
system services will be delivered as specified

o Reliahility and availability are generally seen as
necessary but not sufficient conditions for safety and
security

©lan Sommerville 2000 Dependability Slide 32

Key points

 Reliahility isrelated to the probability of an error
occurring in operational use. A system with known
faults may be reliable

o Safety Isasystem attribute that reflects the system’s
ability to operate without threatening people or the
environment

e Security Isasystem attribute that reflects the
system’ s ability to protect itself from external attack

©lan Sommerville 2000 Dependability Slide 33

Dependability

e The extent to which acritical
system Is trusted by its users

©lan Sommerville 2000 Dependability Slide 1

The concept of dependability

o [or critical systems, it is usually the case that the
most important system property is the dependability
of the system

* The dependability of a system reflectsthe user’s
degree of trust in that system. It reflects the extent of
the user’s confidence that it will operate as users
expect and that it will not ‘fall’ in normal use

e Usefulness and trustworthiness are not the same
thing. A system does not have to be trusted to be
useful

©lan Sommerville 2000 Dependability Slide 2

Dimensions of dependability

Dependability

Availability

v

The ability of the
system to deliver
services when
requested

©lan Sommerville 2000

Reliability

Y

The ability of the
system to deliver
services as specified?

Safety

Dependability

Y

fallure

The ability of the
system to operate
without catastrophic

Slide 3

Security

Y

The ability of the
system to protect itelf
against accidental or
deliverate intrusion

Maintainability

e A system attribute which is concerned with the ease
of repairing the system after afailure has been
discovered or changing the system to include new
features

 Very important for critical systems as faults are often
Introduced into a system because of maintenance
problems

e Maintainability isdistinct from other dimensions of
dependability because it Is a static and not a dynamic
system attribute. | do not cover it in this course.

©lan Sommerville 2000 Dependability Slide 4

Survivability

 The ability of asystem to continue to deliver its
services to users in the face of deliberate or
accidental attack

 Thisisanincreasingly important attribute for
distributed systems whose security can be
compromised

o Survivability subsumes the notion of resilience - the
ability of a system to continue in operation in spite
of component fallures

©lan Sommerville 2000 Dependability Slide 5

Costs of increasing dependability
CostA

Dependability
>
Low Medium High Very Ultra-
high high

©lan Sommerville 2000 Dependability Slide 6

Dependability costs

* Dependability costs tend to increase exponentially as
Increasing levels of dependability are required
 Therearetwo reasonsfor this

 The use of more expensive development techniques and hardware
that are required to achieve the higher levels of dependability

e Theincreased testing and system validation that is required to

convince the system client that the required levels of dependability
have been achieved

©lan Sommerville 2000 Dependability Slide 7

Dependability vs performance

o Untrustworthy systems may be rejected by their
users

o System failure costs may be very high

e [tisvery difficult to tune systems to make them
more dependable

e |t may be possible to compensate for poor
performance

e Untrustworthy systems may cause loss of valuable
Information

©lan Sommerville 2000 Dependability Slide 8

Dependability economics

* Because of very high costs of dependability
achievement, it may be more cost effective to accept
untrustworthy systems and pay for failure costs

 However, this depends on social and political
factors. A reputation for products that can’t be
trusted may lose future business

* Depends on system type - for business systemsin
particular, modest levels of dependability may be
adeguate

©lan Sommerville 2000 Dependability Slide 9

Avallability and reliability

. Rdiability
 The probability of failure-free system operation over a specified time
In agiven environment for a given purpose

. Availability

 The probability that a system, at apoint in time, will be operational
and able to deliver the requested services

* Both of these attributes can be expressed
guantitatively

©lan Sommerville 2000 Dependability Slide 10

Avallability and reliability

e |tissometimes possible to subsume system
availability under system reliability
Obvioudly if asystem isunavailableit is not delivering the specified
system services

 However, It Is possible to have systems with low
reliability that must be available. So long as system
failures can be repaired quickly and do not damage
data, low reliability may not be a problem

o Avallability takes repair time into account

©lan Sommerville 2000 Dependability Slide 11

Reliability terminology

Term

Description

System failure

An event that occurs at some point in time when
the system does not deliver a service as expected
by itsusers

System error Erroneous system behaviour where the behaviour
of the system does not conform to its
specification.

System fault An incorrect system state i.e. a system state that

IS unexpected by the designers of the system.

Human error or
mistake

Human behaviour that results in the introduction
of faultsinto a system.

©lan Sommerville 2000

Dependability Slide 12

Faults and failures

o Falluresareausually aresult of system errors that
are derived from faults in the system

 However, faults do not necessarily result in system

errors

 Thefaulty system state may be transient and ‘ corrected’ before an
error arises

e Errorsdo not necessarily lead to system faillures

 Theerror can be corrected by built-in error detection and recovery

 Thefallure can be protected against by built-in protection facilities.
These may, for example, protect system resources from system

errors

©lan Sommerville 2000 Dependability Slide 13

Perceptions of reliability

 Theformal definition of reliability does not always
reflect the user’ s perception of asystem’sreliability

e The assumptions that are made about the environment where a
system will be used may be incorrect

» Usage of asystem in an office environment is likely to be quite different
from usage of the same system in a university environment

* The consequences of system failures affects the perception of
reliability
» Unreliable windscreen wipersin acar may beirrelevant in adry climate

 Failuresthat have serious consequences (such as an engine breakdown
In acar) are given greater weight by usersthan failuresthat are
inconvenient

©lan Sommerville 2000 Dependability Slide 14

Reliability achievement

e Fault avoidance

 Development technique are used that either minimise the possibility
of mistakes or trap mistakes before they result in the introduction of
system faults

e [ault detection and removal

« Vaeification and validation techniques that increase the probability
of detecting and correcting errors before the system goes into service
are used

e Fault tolerance

* Run-time techniques are used to ensure that system faults do not
result in system errors and/or that system errors do not lead to
system failures

©lan Sommerville 2000 Dependability Slide 15

Reliability modelling

e You can model asystem as an input-output mapping
where some inputs will result in erroneous outputs

e Therdlability of the system isthe probability that a
particular input will lie in the set of inputs that cause
erroneous outputs

e Different people will use the system in different
ways so this probability is not a static system
attribute but depends on the system’s environment

©lan Sommerville 2000 Dependability Slide 16

~ Input/output mapping

| nputs causing
erroneous
| nput set outputs

Program

Erroneous

outputs
Output set

©lan Sommerville 2000 Dependability Slide 17

Reliability perception

Possible
Inputs

Erroneous
Inputs

©lan Sommerville 2000 Dependability Slide 18

Reliability improvement

e Removing X% of the faults in a system will not
necessarily improve the reliability by X%. A study
al IBM showed that removing 60% of product
defects resulted in a 3% improvement in reliability

* Program defects may be in rarely executed sections
of the code so may never be encountered by users.
Removing these does not affect the perceived
reliability

e A program with known faults may therefore still be
seen asreliable by its users

©lan Sommerville 2000 Dependability Slide 19

Safety

o Safety isaproperty of asystem that reflects the
system’ s ability to operate, normally or abnormally,
without danger of causing human injury or death and
without damage to the system’ s environment

e [tisincreasingly important to consider software
saf ety as more and more devices incorporate
software-based control systems

o Safety requirements are exclusive requirementsi.e.
they exclude undesirable situations rather than
specify required system services

©lan Sommerville 2000 Dependability Slide 20

Safety criticality

Primary safety-critical systems

 Embedded software systems whose failure can cause the associated
hardware to fail and directly threaten people.

Secondary safety-critical systems

o Systemswhose faillure resultsin faults in other systems which can
threaten people

Discussion here focuses on primary safety-critical
systems

o Secondary safety-critical systems can only be considered on a one-
off basis

©lan Sommerville 2000 Dependability Slide 21

Safety and reliability

o Safety and reliability are related but distinct

In general, reliability and availability are necessary but not sufficient
conditions for system safety

« Redliability Is concerned with conformance to agiven
specification and delivery of service

o Safety Is concerned with ensuring system cannot
cause damage irrespective of whether
or not it conforms to its specification

©lan Sommerville 2000 Dependability Slide 22

Unsafe reliable systems

o Specification errors

e |f the system specification isincorrect then the system can behave as
specified but still cause an accident

o Hardware failures generating spurious inputs
« Hard to anticipate in the specification

o Context-sensitive commandsi.e. issuing the right

command at the wrong time
o Often theresult of operator error

©lan Sommerville 2000 Dependability Slide 23

Safety terminology

Term Definition

Accident (or An unplanned event or sequence of events which results in human death

mishap) or injury, damage to property or to the environment. A computer-
controlled machine injuring its operator is an example of an accident.

Hazard A condition with the potential for causing or contributing to an
accident. A failure of the sensor which detects an obstacle in front of a
machine is an example of a hazard.

Damage A measure of the loss resulting from a mishap. Damage can range from
many people killed as aresult of an accident to minor injury or property
damage.

Hazard An assessment of the worst possible damage which could result from a

severity particular hazard. Hazard severity can range from catastrophic where
many people are killed to minor where only minor damage results

Hazard The probability of the events occurring which create a hazard.

probability Probability values tend to be arbitrary but range from probable (say
1/100 chance of a hazard occurring) to implausible (no conceivable
situations are likely where the hazard could occur).

Risk Thisis ameasure of the probability that the system will cause an

accident. Therisk is assessed by considering the hazard probability, the
hazard severity and the probability that a hazard will result in an
accident.

©lan Sommerville 2000

Dependability Slide 24

Safety achievement

e Hazard avoidance

« Thesystem isdesigned so that some classes of hazard ssmply cannot
arise.

 Hazard detection and removal

« Thesystemisdesigned so that hazards are detected and removed
before they result in an accident

e Damage limitation

e The system includes protection features that minimise the damage
that may result from an accident

©lan Sommerville 2000 Dependability Slide 25

Normal accidents

e Accidentsin complex systemsrarely have asingle
cause as these systems are designed to be resilient to

asingle point of failure

Designing systems so that a single point of failure does not cause an
accident is afundamental principle of safe systems design

e Almost al accidents are aresult of combinations of
malfunctions

o |tisprobably the case that anticipating all problem
combinations, especially, in software controlled
systems Is iImpossible so achieving complete safety
IS impossible

©lan Sommerville 2000 Dependability Slide 26

Security

 The security of asystem is a system property that
reflects the system'’ s ability to protect itself from
accidental or deliberate external attack

e Security is becoming increasingly important as
systems are networked so that external accessto the
system through the Internet is possible

o Security Isan essential pre-requisite for availability,
reliability and safety

©lan Sommerville 2000 Dependability Slide 27

Fundamental security

o |f asystem isanetworked system and isinsecure
then statements about its reliability and its safety are
unreliable

* These statements depend on the executing system
and the devel oped system being the same. However,
Intrusion can change the executing system and/or its
data

 Therefore, thereiability and safety assurance is no
longer valid

©lan Sommerville 2000 Dependability Slide 28

Security terminology

Term Definition

Exposure Possibleloss or harm in a computing system

Vulnerability A weakness in a computer-based system that may
be exploited to cause loss or harm

Attack An exploitation of a system vulnerability

Threats Circumstances that have potential to cause loss or
harm

Control A protective measure that reduces asystem

vulnerability

©lan Sommerville 2000

Dependability Slide 29

Damage from insecurity

e Denia of service

« Thesystemisforced into a state where normal services are
unavailable or where service provision is significantly degraded

e Corruption of programs or data

e Theprograms or datain the system may be modified in an
unauthorised way

 Disclosure of confidential information

 Information that is managed by the system may be exposed to people
who are not authorised to read or use that information

©lan Sommerville 2000 Dependability Slide 30

Security assurance

* Vulnerability avoidance

« Thesystem isdesigned so that vulnerabilities do not occur. For
example, if there is no external network connection then external
attack isimpossible

e Attack detection and eimination

« Thesystemisdesigned so that attacks on vulnerabilities are detected
and neutralised before they result in an exposure. For example, virus
checkers find and remove viruses before they infect a system

e EXposure limitation

 Thesystem is designed so that the adverse consequences of a
successful attack are minimised. For example, a backup policy
allows damaged information to be restored

©lan Sommerville 2000 Dependability Slide 31

Key points

* The dependability in a system reflects the user’ s trust
In that system

 Theavallability of asystem isthe probability that it
will be avallable to deliver services when requested

o Thereliability of asystem isthe probability that
system services will be delivered as specified

o Reliahility and availability are generally seen as
necessary but not sufficient conditions for safety and
security

©lan Sommerville 2000 Dependability Slide 32

Key points

 Reliahility isrelated to the probability of an error
occurring in operational use. A system with known
faults may be reliable

o Safety Isasystem attribute that reflects the system’s
ability to operate without threatening people or the
environment

e Security Isasystem attribute that reflects the
system’ s ability to protect itself from external attack

©lan Sommerville 2000 Dependability Slide 33

Dependable Systems Specification

. Processes and techniques for
developing a specification for
system avallability, reliability,
safety and security

©lan Sommerville 2000 Dependable systems specification

Functional and non-functional requirements

System functional requirements may be generated
to define error checking and recovery facilities
and features that provide protection against
system failures.

Non-functional requirements may be generated to
specify the required reliability and availability of
the system.

©lan Sommerville 2000 Dependable systems specification Slide 2

System reliability specification

- Hardwarerdiability

« What is the probability of a hardware component failing and how
long does it take to repair that component?

- Softwarerdiability

 How likely isit that a software component will produce an incorrect
output. Software failures are different from hardware failluresin that
software does not wear out. It can continue in operation even after an
Incorrect result has been produced.

- Operator reliability

« How likely isit that the operator of a system will make an error?

©lan Sommerville 2000 Dependable systems specification Slide 3

System reliability engineering

- Sub-discipline of systems engineering that is
concerned with making judgements on system
reliability

- It takes into account the probabilities of failure of

different components in the system and their

combinations

Consider a system with 2 components A and B where the
probability of failure of A isP (A) and the probability of failure
of B isP (B).

©lan Sommerville 2000 Dependable systems specification Slide 4

Failure probabilities

If there are 2 components and the operation of the
system depends on both of them then the
probability of system failureis

P =P(A)+P(B)
Therefore, as the number of components increase
then the probability of system failure increases

If components are replicated then the probability

of faillureis
P(S)=P(A) " (all components must fail)

©lan Sommerville 2000 Dependable systems specification Slide5

Functional reliability requirements

A predefined range for all values that are input by
the operator shall be defined and the system shall
check that all operator inputs fall within this
predefined range.

The system shall check all disks for bad blocks
when it isinitialised.

The system must use N-version programming to
Implement the braking control system.

The system must be implemented in a safe subset
of Adaand checked using static analysis

©lan Sommerville 2000 Dependable systems specification Slide 6

Non-functional reliability specification

Therequired level of system reliability required
should be expressed in quantitatively

Reliability is adynamic system attribute-
reliability specifications related to the source
code are meaningless.

No more than N faults/1000 lines.

Thisisonly useful for a post-delivery process analysis where

you are trying to assess how good your development techniques
are.

An appropriate reliability metric should be chosen
to specify the overall system reliability

©lan Sommerville 2000 Dependable systems specification Slide7

Reliability metrics

Reliability metrics are units of measurement of
system reliability

System reliability is measured by counting the
number of operational failures and, where
appropriate, relating these to the demands made
on the system and the time that the system has
been operational

A long-term measurement programme is required
to assess the reliability of critical systems

©lan Sommerville 2000 Dependable systems specification Slide 8

Reliability metrics

Metric Explanation
POFOD The likelihood that the system will fail when a service request
Probability of failure is made. For example, a POFOD of 0.001 means that 1 out of
on demand athousand service requests may result in failure.
ROCOF The frequency of occurrence with which unexpected
Rate of failure behaviour is likely to occur. For example, a ROCOF of 2/100
occurrence means that 2 failures are likely to occur in each 100

operational time units. This metric is sometimes called the
failure intensity.

MTTF
Mean time to failure

The average time between observed system failures. For
example, an MTTF of 500 means that 1 failure can be
expected every 500 time units.

MTTR The average time between a system failure and the return of
Mean time to repair that system to service.

AVAIL The probability that the system is available for use at agiven
Availability time. For example, an availability of 0.998 meansthat in

every 1000 time units, the system is likdly to be available for
998 of these.

©lan Sommerville 2000

Dependable systems specification Slide 9

Availability

. Measure of the fraction of the time that the
system is avallable for use

- Takesrepar and restart time into account

- Avallability of 0.998 means software is available
for 998 out of 1000 time units

- Relevant for non-stop, continuously running

Sy stems
telephone switching systems, railway signalling systems

©lan Sommerville 2000 Dependable systems specification Slide 10

Probability of failure on demand

Thisisthe probability that the system will fail
when a service request is made. Useful when
demands for service are intermittent and
relatively infrequent

Appropriate for protection systems where services
are demanded occasionally and where there are
serious consequence if the service is not delivered

Relevant for many safety-critical systems with

exception management components
Emergency shutdown system in a chemical plant

©lan Sommerville 2000 Dependable systems specification Slide 11

Rate of fault occurrence (ROCOF)

Reflects the rate of occurrence of faillure in the
system
ROCOF of 0.002 means 2 fallures are likely in

each 1000 operational time unitse.qg. 2 fallures
per 1000 hours of operation

Relevant for operating systems, transaction
orocessing systems where the system hasto
process alarge number of similar requests that are

relatively frequesnt

Credit card processing system, airline booking system

©lan Sommerville 2000 Dependable systems specification Slide 12

Mean time to fallure

- Measure of the time between observed failures of
the system. Isthe reciprocal of ROCOF for stable

systems

- MTTF of 500 means that the mean time between
falluresis 500 time units

- Relevant for systems with long transactionsi.e.

where system processing takes along time.
MTTF should be longer than transaction length

Computer-aided design systems where a designer will work on a
design for several hours, word processor systems

©lan Sommerville 2000 Dependable systems specification Slide 13

Failure consequences

Reliability measurements do NOT take the
conseguences of failure into account

Transient faults may have no real consequences
but other faults may cause data loss or corruption
and loss of system service

May be necessary to identify different failure
classes and use different metrics for each of these.
The reliability specification must be structured.

©lan Sommerville 2000 Dependable systems specification Slide 14

Failure consequences

When specifying reliability, it is not just the
number of system failures that matter but the
conseguences of these failures

Failures that have serious conseguences are

clearly more damaging than those where repair
and recovery Is straightforward

In some cases, therefore, different reliability

specifications for different types of failure may be
defined

©lan Sommerville 2000 Dependable systems specification Slide 15

Failure classification

Failure class Description
Transient Occurs only with certain inputs
Permanent Occurswith all inputs

Recoverable System can recover without operator intervention

Unrecoverable | Operator intervention needed to recover from failure

Non-corrupting | Failure does not corrupt system state or data

Corruptin Fallure corrupts system state or data
9 Sy

©lan Sommerville 2000 Dependable systems specification Slide 16

Stepsto areliability specification

For each sub-system, analyse the
conseguences of possible system failures.

From the system failure analysis, partition
fallures into appropriate classes.

For each failure class identified, set out the
reliability using an appropriate metric. Different
metrics may be used for different reliability
requirements

|dentify functional reliability requirements to
reduce the chances of critical fallures

©lan Sommerville 2000 Dependable systems specification Slide 17

Bank auto-teller system

Each machine in a network 1s used 300 times a
day

Bank has 1000 machines
Lifetime of softwarereleaseis 2 years

Each machine handles about 200, 000
transactions

About 300, 000 database transactions in total per
day

©lan Sommerville 2000 Dependable systems specification Slide 18

Examples of areliability spec.

Failure class

Example

Reliability metric

Permanent,

The system fails to operate with

ROCOF

non-corrupting. | any card which is input. Software | 1 occurrence/1000 days
must be restarted to correct failure.

Transient, non-| The magnetic stripe data cannot be| POFOD

corrupting read on an undamaged card which | 1 in 1000 transactions
IS INPUt.

Transient, A pattern of transactions acrossthe| Unquantifiable! Should

corrupting network causes database | never happen in the
corruption. lifetime of the system

©lan Sommerville 2000

Dependable systems specification

Slide 19

Specification validation

It Isimpossible to empirically validate very high
reliability specifications

No database corruptions means POFOD of less
than 1 in 200 million

If atransaction takes 1 second, then simulating
one day’ s transactions takes 3.5 days

It would take longer than the system’ s lifetime to
test it for reliability

©lan Sommerville 2000 Dependable systems specification Slide 20

Key points

There are both functional and non-functional
dependability requirements

Non-functional availability and reliability
requirements should be specified quantitatively

Metrics that may be used are AVAIL, POFOD,
ROCOF and MTTF

When deriving areliability specification, the
consequences of different types of fault should be
taken into account

©lan Sommerville 2000 Dependable systems specification Slide 21

Safety specification

The safety requirements of a system should be
separately specified

These requirements should be based on an
analysis of the possible hazards and risks

Safety requirements usually apply to the system
as awhole rather than to individual sub-systems.
In systems engineering terms, the safety of a
system is an emergent property

©lan Sommerville 2000 Dependable systems specification Slide 22

Concept and
scope definition

Y

Hazard and risk
analysis
Safety req. Safety req.
derivation alocation
Planning and development ¢
Plannin Safety-related | | External risk
— 2 , systems reduction
Validation O& M Installation development facilities
Safety Installation and
validation commissioning
Operation and
maintenance
Y The safety life-
System
decommissioning CyCI e

©lan Sommerville 2000 Dependable systems specification Slide 23

Safety processes

Hazard and risk analysis

o Assessthe hazards and the risks of damage associated with the
system

Safety requirements specification
o Specify aset of safety requirements which apply to the system
Designation of safety-critical systems

o Ildentify the sub-systems whose incorrect operation may
compromise system safety. Ideally, these should be as small a
part as possible of the whole system.

Safety validation
e Check the overall system safety

©lan Sommerville 2000 Dependable systems specification Slide 24

Hazard and risk analysis

Hazard Risk analysis and Hazard Rlsk reduction
|dent|f| cation hazard classification decomposmo assessment

Hazard Risk Fault tree Preliminary safety
description assessment analysis requirements

©lan Sommerville 2000 Dependable systems specification Slide 25

Hazard and risk analysis

|dentification of hazards which can arise which
compromise the safety of the system and
assessing the risks associated with these hazards

Structured into various classes of hazard analysis
and carried out throughout software
process from specification to Implementation

A risk analysis should be carried out and
documented for each identified hazard and actions
taken to ensure the most serious/likely hazards do
not result in accidents

©lan Sommerville 2000 Dependable systems specification Slide 26

Hazard analysis stages

- Hazard identification
e Identify potential hazards which may arise

- Risk analysis and hazard classification
 Assessthe risk associated with each hazard

- Hazard decomposition
 Decompose hazards to discover their potential root causes

- RISk reduction assessment

 Define how each hazard must be taken into account when the
system is designed

©lan Sommerville 2000 Dependable systems specification Slide 27

Fault-tree analysis

Method of hazard analysis which starts with an
Identified fault and works backward to the causes

of the fault.
Can be used at all stages of hazard analysis from

preliminary analysis through to detailed
software checking

Top-down hazard analysis method. May be
combined with bottom-up methods which start
with system failures and |ead to hazards

©lan Sommerville 2000 Dependable systems specification Slide 28

Fault- tree analysis

|dentify hazard

|dentify potential causes of the hazard. Usually
there will be a number of alternative causes. Link
these on the fault-tree with ‘or’ or ‘and’ symbols

Continue process until root causes are identif