
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 1

Introduction

l Getting started with software
engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 2

Objectives

l To introduce software engineering and to explain
its importance

l To set out the answers to key questions about
software engineering

l To introduce ethical and professional issues and
to explain why they are of concern to software
engineers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 3

Topics covered

l FAQs about software engineering

l Professional and ethical responsibility

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 4

l The economies of ALL developed nations are
dependent on software

l More and more systems are software controlled

l Software engineering is concerned with theories,
methods and tools for professional software
development

l Software engineering expenditure represents a
significant fraction of GNP in all developed
countries

Software engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 5

l Software costs often dominate system costs. The
costs of software on a PC are often greater than
the hardware cost

l Software costs more to maintain than it does to
develop. For systems with a long life,
maintenance costs may be several times
development costs

l Software engineering is concerned with cost-
effective software development

Software costs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 6

FAQs about software engineering

l What is software?

l What is software engineering?

l What is the difference between software
engineering and computer science?

l What is the difference between software
engineering and system engineering?

l What is a software process?

l What is a software process model?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 7

FAQs about software engineering

l What are the costs of software engineering?

l What are software engineering methods?

l What is CASE (Computer-Aided Software
Engineering)

l What are the attributes of good software?

l What are the key challenges facing software
engineering?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 8

What is software?

l Computer programs and associated
documentation

l Software products may be developed for a
particular customer or may be developed for a
general market

l Software products may be
• Generic - developed to be sold to a range of different customers

• Bespoke (custom) - developed for a single customer according
to their specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 9

What is software engineering?

l Software engineering is an engineering discipline
which is concerned with all aspects of software
production

l Software engineers should adopt a systematic and
organised approach to their work and use
appropriate tools and techniques depending on the
problem to be solved, the development constraints
and the resources available

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 10

What is the difference between software
engineering and computer science?

l Computer science is concerned with theory and
fundamentals; software engineering is concerned
with the practicalities of developing and
delivering useful software

l Computer science theories are currently
insufficient to act as a complete underpinning for
software engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 11

What is the difference between software
engineering and system engineering?

l System engineering is concerned with all aspects
of computer-based systems development
including hardware, software and process
engineering. Software engineering is part of this
process

l System engineers are involved in system
specification, architectural design, integration and
deployment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 12

What is a software process?

l A set of activities whose goal is the development
or evolution of software

l Generic activities in all software processes are:
• Specification - what the system should do and its development

constraints

• Development - production of the software system

• Validation - checking that the software is what the customer
wants

• Evolution - changing the software in response to changing
demands

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 13

What is a software process model?

l A simplified representation of a software process,
presented from a specific perspective

l Examples of process perspectives are
• Workflow perspective - sequence of activities

• Data-flow perspective - information flow

• Role/action perspective - who does what

l Generic process models
• Waterfall

• Evolutionary development

• Formal transformation

• Integration from reusable components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 14

What are the costs of software engineering?

l Roughly 60% of costs are development costs,
40% are testing costs. For custom software,
evolution costs often exceed development costs

l Costs vary depending on the type of system being
developed and the requirements of system
attributes such as performance and system
reliability

l Distribution of costs depends on the development
model that is used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 15

What are software engineering methods?

l Structured approaches to software development
which include system models, notations, rules,
design advice and process guidance

l Model descriptions
• Descriptions of graphical models which should be produced

l Rules
• Constraints applied to system models

l Recommendations
• Advice on good design practice

l Process guidance
• What activities to follow

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 16

What is CASE (Computer-Aided
Software Engineering)

l Software systems which are intended to provide
automated support for software process activities.
CASE systems are often used for method support

l Upper-CASE
• Tools to support the early process activities of requirements and

design

l Lower-CASE
• Tools to support later activities such as programming,

debugging and testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 17

What are the attributes of good software?

l The software should deliver the required
functionality and performance to the user and
should be maintainable, dependable and usable

l Maintainability
• Software must evolve to meet changing needs

l Dependability
• Software must be trustworthy

l Efficiency
• Software should not make wasteful use of system resources

l Usability
• Software must be usable by the users for which it was designed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 18

What are the key challenges facing
software engineering?

l Coping with legacy systems, coping with
increasing diversity and coping with demands for
reduced delivery times

l Legacy systems
• Old, valuable systems must be maintained and updated

l Heterogeneity
• Systems are distributed and include a mix of hardware and

software

l Delivery
• There is increasing pressure for faster delivery of software

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 19

Professional and ethical responsibility

l Software engineering involves wider
responsibilities than simply the application of
technical skills

l Software engineers must behave in an honest and
ethically responsible way if they are to be
respected as professionals

l Ethical behaviour is more than simply upholding
the law.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 20

Issues of professional responsibility

l Confidentiality
• Engineers should normally respect the confidentiality of their

employers or clients irrespective of whether or not a formal
confidentiality agreement has been signed.

l Competence
• Engineers should not misrepresent their level of competence.

They should not knowingly accept work which is outwith their
competence.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 21

Issues of professional responsibility

l Intellectual property rights
• Engineers should be aware of local laws governing the use of

intellectual property such as patents, copyright, etc. They should
be careful to ensure that the intellectual property of employers
and clients is protected.

l Computer misuse
• Software engineers should not use their technical skills to

misuse other people’s computers. Computer misuse ranges from
relatively trivial (game playing on an employer’s machine, say)
to extremely serious (dissemination of viruses).

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 22

ACM/IEEE Code of Ethics

l The professional societies in the US have
cooperated to produce a code of ethical practice.

l Members of these organisations sign up to the
code of practice when they join.

l The Code contains eight Principles related to the
behaviour of and decisions made by professional
software engineers, including practitioners,
educators, managers, supervisors and policy
makers, as well as trainees and students of the
profession.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 23

Code of ethics - preamble

l Preamble
• The short version of the code summarizes aspirations at a high

level of the abstraction; the clauses that are included in the full
version give examples and details of how these aspirations
change the way we act as software engineering professionals.
Without the aspirations, the details can become legalistic and
tedious; without the details, the aspirations can become high
sounding but empty; together, the aspirations and the details
form a cohesive code.

• Software engineers shall commit themselves to making the
analysis, specification, design, development, testing and
maintenance of software a beneficial and respected profession.
In accordance with their commitment to the health, safety and
welfare of the public, software engineers shall adhere to the
following Eight Principles:

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 24

Code of ethics - principles

l 1. PUBLIC
• Software engineers shall act consistently with the public

interest.

l 2. CLIENT AND EMPLOYER
• Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with
the public interest.

l 3. PRODUCT
• Software engineers shall ensure that their products and

related modifications meet the highest professional
standards possible.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 25

Code of ethics - principles

l JUDGMENT
• Software engineers shall maintain integrity and

independence in their professional judgment.

l 5. MANAGEMENT
• Software engineering managers and leaders shall

subscribe to and promote an ethical approach to the
management of software development and maintenance.

l 6. PROFESSION
• Software engineers shall advance the integrity and

reputation of the profession consistent with the public
interest.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 26

Code of ethics - principles

l 7. COLLEAGUES
• Software engineers shall be fair to and supportive of their

colleagues.

l 8. SELF
• Software engineers shall participate in lifelong learning

regarding the practice of their profession and shall
promote an ethical approach to the practice of the
profession.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 27

Ethical dilemmas

l Disagreement in principle with the policies of
senior management

l Your employer acts in an unethical way and
releases a safety-critical system without finishing
the testing of the system

l Participation in the development of military
weapons systems or nuclear systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 28

Key points

l Software engineering is an engineering discipline which is
concerned with all aspects of software production.

l Software products consist of developed programs and
associated documentation. Essential product attributes are
maintainability, dependability, efficiency and usability.

l The software process consists of activities which are involved
in developing software products. Basic activities are software
specification, development, validation and evolution.

l Methods are organised ways of producing software. They include
suggestions for the process to be followed, the notations to be used,
rules governing the system descriptions which are produced and
design guidelines.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 29

Key points

l CASE tools are software systems which are designed to
support routine activities in the software process such as
editing design diagrams, checking diagram consistency and
keeping track of program tests which have been run.

l Software engineers have responsibilities to the engineering
profession and society. They should not simply be concerned
with technical issues.

l Professional societies publish codes of conduct which set out
the standards of behaviour expected of their members.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 1

Systems Engineering

l Designing, implementing,
deploying and operating systems
which include hardware, software
and people

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 2

Objectives

l To explain why system software is affected by
broader system engineering issues

l To introduce the concept of emergent system
properties such as reliability and security

l To explain why the systems environment must be
considered in the system design process

l To explain system engineering and system
procurement processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 3

Topics covered

l Emergent system properties

l Systems and their environment

l System modelling

l The system engineering process

l System procurement

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 4

What is a system?

l A purposeful collection of inter-related components
working together towards some common objective.

l A system may include software, mechanical,
electrical and electronic hardware and be operated
by people.

l System components are dependent on other
system components

l The properties and behaviour of system components
are inextricably inter-mingled

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 5

Problems of systems engineering

l Large systems are usually designed to solve
'wicked' problems

l Systems engineering requires a great deal of
co-ordination across disciplines
• Almost infinite possibilities for design trade-offs across

components

• Mutual distrust and lack of understanding across engineering
disciplines

l Systems must be designed to last many years
in a changing environment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 6

Software and systems engineering

l The proportion of software in systems is increasing.
Software-driven general purpose electronics is
replacing special-purpose systems

l Problems of systems engineering are similar to
problems of software engineering

l Software is (unfortunately) seen as a problem
in systems engineering. Many large system projects
have been delayed because of software problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 7

Emergent properties

l Properties of the system as a whole rather than
properties that can be derived from the properties of
components of a system

l Emergent properties are a consequence of the
relationships between system components

l They can therefore only be assessed and measured
once the components have been integrated into a
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 8

Examples of emergent properties

l The overall weight of the system

• This is an example of an emergent property that can be computed
from individual component properties.

l The reliability of the system
• This depends on the reliability of system components and the

relationships between the components.

l The usability of a system
• This is a complex property which is not simply dependent on the

system hardware and software but also depends on the system
operators and the environment where it is used.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 9

Types of emergent property

l Functional properties
• These appear when all the parts of a system work together to

achieve some objective. For example, a bicycle has the functional
property of being a transportation device once it has been
assembled from its components.

l Non-functional emergent properties
• Examples are reliability, performance, safety, and security. These

relate to the behaviour of the system in its operational
environment. They are often critical for computer-based systems
as failure to achieve some minimal defined level in these
properties may make the system unusable.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 10

l Because of component inter-dependencies,
faults can be propagated through the system

l System failures often occur because of
unforeseen inter-relationships between
components

l It is probably impossible to anticipate all
possible component relationships

l Software reliability measures may give a false
picture of the system reliability

System reliability engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 11

l Hardware reliability

• What is the probability of a hardware component failing and how
long does it take to repair that component?

l Software reliability
• How likely is it that a software component will produce an

incorrect output. Software failure is usually distinct from hardware
failure in that software does not wear out.

l Operator reliability
• How likely is it that the operator of a system will make an error?

Influences on reliability

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 12

Reliability relationships

l Hardware failure can generate spurious signals that
are outside the range of inputs expected by the
software

l Software errors can cause alarms to be activated
which cause operator stress and lead to operator
errors

l The environment in which a system is installed can
affect its reliability

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 13

The ‘shall-not’ properties

l Properties such as performance and reliability can
be measured

l However, some properties are properties that the
system should not exhibit
• Safety - the system should not behave in an unsafe way

• Security - the system should not permit unauthorised use

l Measuring or assessing these properties is very hard

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 14

Systems and their environment

l Systems are not independent but exist in an
environment

l System’s function may be to change its environment

l Environment affects the functioning of the system
e.g. system may require electrical supply from its
environment

l The organizational as well as the physical
environment may be important

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 15

System hierarchies

Security
system

Heating
system

Lighting
system

Power
system

Waste
system

Water
system

Town

Street

Building

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 16

Human and organisational factors

l Process changes

• Does the system require changes to the work processes in the
environment?

l Job changes
• Does the system de-skill the users in an environment or cause them to

change the way they work?

l Organisational changes
• Does the system change the political power structure in an

organisation?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 17

System architecture modelling

l An architectural model presents an abstract view of
the sub-systems making up a system

l May include major information flows between sub-
systems

l Usually presented as a block diagram

l May identify different types of functional
component in the model

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 18

Intruder alarm system

Alarm
controller

Voice
synthesizer

Movement
sensors

Siren

Door
sensors

Telephone
caller

External
control centre

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 19

Component types in alarm system

l Sensor
• Movement sensor, door sensor

l Actuator
• Siren

l Communication
• Telephone caller

l Co-ordination
• Alarm controller

l Interface
• Voice synthesizer

Data comms.
system

Transponder
system

Radar
system

Aircraft
comms.

Telephone
system

Flight plan
database

Backup
position

processor

Position
processor

Comms.
processor

Backup comms.
processor

Aircraft
simulation

system

Weather map
system

Accounting
system

Controller
info. system

Controller
consoles

Activity logging
system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31. Slide ##

ATC system
architecture

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 21

Functional system components

l Sensor components

l Actuator components

l Computation components

l Communication components

l Co-ordination components

l Interface components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 22

System components

l Sensor components
• Collect information from the system’s environment e.g. radars in

an air traffic control system

l Actuator components
• Cause some change in the system’s environment e.g. valves in a

process control system which increase or decrease material flow in
a pipe

l Computation components
• Carry out some computations on an input to produce an output e.g.

a floating point processor in a computer system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 23

System components

l Communication components
• Allow system components to communicate with each other e.g.

network linking distributed computers

l Co-ordination components
• Co-ordinate the interactions of other system components e.g.

scheduler in a real-time system

l Interface components
• Facilitate the interactions of other system components e.g.

operator interface

l All components are now usually software controlled

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 24

Component types in alarm system

l Sensor
• Movement sensor, Door sensor

l Actuator
• Siren

l Communication
• Telephone caller

l Coordination
• Alarm controller

l Interface
• Voice synthesizer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 25

The system engineering process

l Usually follows a ‘waterfall’ model because of the
need for parallel development of different parts of
the system
• Little scope for iteration between phases because hardware

changes are very expensive. Software may have to compensate for
hardware problems

l Inevitably involves engineers from different
disciplines who must work together
• Much scope for misunderstanding here. Different disciplines use a

different vocabulary and much negotiation is required. Engineers
may have personal agendas to fulfil

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 26

The system engineering process

System
integration

Sub-system
development

System
design

Requirements
definition

System
installation

System
evolution

System
decommissioning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 27

Inter-disciplinary involvement

ATC systems
engineering

Electronic
engineering

Electrical
engineering

User interface
design

Mechanical
engineering

Architecture

Structural
engineering

Software
engineering

Civil
engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 28

System requirements definition

l Three types of requirement defined at this stage
• Abstract functional requirements. System functions are defined in

an abstract way

• System properties. Non-functional requirements for the system in
general are defined

• Undesirable characteristics. Unacceptable system behaviour is
specified

l Should also define overall organisational objectives
for the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 29

System objectives

l Functional objectives
• To provide a fire and intruder alarm system for the building which

will provide internal and external warning of fire or unauthorized
intrusion

l Organisational objectives
• To ensure that the normal functioning of work carried out in the

building is not seriously disrupted by events such as fire and
unauthorized intrusion

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 30

System requirements problems

l Changing as the system is being specified

l Must anticipate hardware/communications
developments over the lifetime of the system

l Hard to define non-functional requirements
(particularly) without an impression of
component structure of the system.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 31

The system design process

l Partition requirements
• Organise requirements into related groups

l Identify sub-systems
• Identify a set of sub-systems which collectively can meet the

system requirements

l Assign requirements to sub-systems
• Causes particular problems when COTS are integrated

l Specify sub-system functionality

l Define sub-system interfaces
• Critical activity for parallel sub-system development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 32

The system design process

Partition
requirements

Identify
sub-systems

Assign requirements
to sub-systems

Specify sub-system
functionality

Define sub-system
interfaces

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 33

System design problems

l Requirements partitioning to hardware,
software and human components may involve a lot
of negotiation

l Difficult design problems are often assumed to be
readily solved using software

l Hardware platforms may be inappropriate for
software requirements so software must compensate
for this

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 34

Sub-system development

l Typically parallel projects developing the
hardware, software and communications

l May involve some COTS (Commercial Off-the-
Shelf) systems procurement

l Lack of communication across implementation
teams

l Bureaucratic and slow mechanism for
proposing system changes means that the
development schedule may be extended because of
the need for rework

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 35

l The process of putting hardware, software and
people together to make a system

l Should be tackled incrementally so that sub-systems
are integrated one at a time

l Interface problems between sub-systems are usually
found at this stage

l May be problems with uncoordinated deliveries
of system components

System integration

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 36

l Environmental assumptions may be incorrect

l May be human resistance to the introduction of
a new system

l System may have to coexist with alternative
systems for some time

l May be physical installation problems (e.g.
cabling problems)

l Operator training has to be identified

System installation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 37

l Will bring unforeseen requirements to light

l Users may use the system in a way which is
not anticipated by system designers

l May reveal problems in the interaction with
other systems
• Physical problems of incompatibility

• Data conversion problems

• Increased operator error rate because of inconsistent interfaces

System operation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 38

System evolution

l Large systems have a long lifetime. They must
evolve to meet changing requirements

l Evolution is inherently costly
• Changes must be analysed from a technical and business

perspective

• Sub-systems interact so unanticipated problems can arise

• There is rarely a rationale for original design decisions

• System structure is corrupted as changes are made to it

l Existing systems which must be maintained are
sometimes called legacy systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 39

System decommissioning

l Taking the system out of service after its useful
lifetime

l May require removal of materials (e.g. dangerous
chemicals) which pollute the environment
• Should be planned for in the system design by encapsulation

l May require data to be restructured and converted to
be used in some other system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 40

System procurement

l Acquiring a system for an organization to meet
some need

l Some system specification and architectural design
is usually necessary before procurement
• You need a specification to let a contract for system development

• The specification may allow you to buy a commercial off-the-shelf
(COTS) system. Almost always cheaper than developing a system
from scratch

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 41

The system procurement process

Choose
supplier

Issue request
for bids

Choose
system

Adapt
requirements

Survey market for
existing systems

Let contract for
development

Negotiate
contract

Select
tender

Issue request
to tender

Off-the-shelf
system available

Bespoke system
required

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 42

Procurement issues

l Requirements may have to be modified to match the
capabilities of off-the-shelf components

l The requirements specification may be part of the
contract for the development of the system

l There is usually a contract negotiation period to
agree changes after the contractor to build a system
has been selected

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 43

Contractors and sub-contractors

l The procurement of large hardware/software
systems is usually based around some principal
contractor

l Sub-contracts are issued to other suppliers to supply
parts of the system

l Customer liases with the principal contractor and
does not deal directly with sub-contractors

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 44

Contractor/Sub-contractor model

Sub-contractor 2Sub-contractor 1 Sub-contractor 3

Principal
contractor

System
customer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 45

Key points

l System engineering involves input from a range of
disciplines

l Emergent properties are properties that are
characteristic of the system as a whole and not its
component parts

l System architectural models show major sub-
systems and inter-connections. They are usually
described using block diagrams

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 46

Key points

l System component types are sensor, actuator,
computation, co-ordination, communication and
interface

l The systems engineering process is usually a
waterfall model and includes specification, design,
development and integration.

l System procurement is concerned with deciding
which system to buy and who to buy it from

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 47

l Systems engineering is hard! There will never be an
easy answer to the problems of complex system
development

l Software engineers do not have all the answers
but may be better at taking a systems
viewpoint

l Disciplines need to recognise each others
strengths and actively rather than reluctantly
cooperate in the systems engineering process

Conclusion

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 1

Software Processes

l Coherent sets of activities for
specifying, designing, implementing
and testing software systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 2

Objectives

l To introduce software process models

l To describe a number of different process models
and when they may be used

l To describe outline process models for
requirements engineering, software development,
testing and evolution

l To introduce CASE technology to support
software process activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 3

Topics covered

l Software process models

l Process iteration

l Software specification

l Software design and implementation

l Software validation

l Software evolution

l Automated process support

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 4

The software process

l A structured set of activities required to develop a
software system
• Specification

• Design

• Validation

• Evolution

l A software process model is an abstract
representation of a process. It presents a
description of a process from some particular
perspective

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 5

Software process models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 6

Generic software process models

l The waterfall model
• Separate and distinct phases of specification and development

l Evolutionary development
• Specification and development are interleaved

l Formal systems development
• A mathematical system model is formally transformed to an

implementation

l Reuse-based development
• The system is assembled from existing components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 7

Waterfall model
Requirements

definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 8

Waterfall model phases

l Requirements analysis and definition

l System and software design

l Implementation and unit testing

l Integration and system testing

l Operation and maintenance

l The drawback of the waterfall model is the
difficulty of accommodating change after the
process is underway

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 9

Waterfall model problems

l Inflexible partitioning of the project into distinct
stages

l This makes it difficult to respond to changing
customer requirements

l Therefore, this model is only appropriate when
the requirements are well-understood

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 10

Evolutionary development

l Exploratory development
• Objective is to work with customers and to evolve a final

system from an initial outline specification. Should start with
well-understood requirements

l Throw-away prototyping
• Objective is to understand the system requirements. Should start

with poorly understood requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 11

Evolutionary development

Validation Final
version

Development Intermediate
versions

Specification Initial
version

Outline
description

Concurrent
activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 12

Evolutionary development

l Problems
• Lack of process visibility

• Systems are often poorly structured

• Special skills (e.g. in languages for rapid prototyping) may be
required

l Applicability
• For small or medium-size interactive systems

• For parts of large systems (e.g. the user interface)

• For short-lifetime systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 13

Formal systems development

l Based on the transformation of a mathematical
specification through different representations to
an executable program

l Transformations are ‘correctness-preserving’ so it
is straightforward to show that the program
conforms to its specification

l Embodied in the ‘Cleanroom’ approach to
software development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 14

Formal systems development

Requirements
definition

Formal
specification

Formal
transformation

Integration and
system testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 15

Formal transformations

R2Formal
specification R3 Executable

program

P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

R1

P1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 16

Formal systems development

l Problems
• Need for specialised skills and training to apply the technique

• Difficult to formally specify some aspects of the system such as
the user interface

l Applicability
• Critical systems especially those where a safety or security case

must be made before the system is put into operation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 17

Reuse-oriented development

l Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems

l Process stages
• Component analysis

• Requirements modification

• System design with reuse

• Development and integration

l This approach is becoming more important but
still limited experience with it

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 18

Reuse-oriented development

Requirements
specification

Component
analysis

Development
and integration

System design
with reuse

Requirements
modification

System
validation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 19

Process iteration

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 20

Process iteration

l System requirements ALWAYS evolve in the
course of a project so process iteration where
earlier stages are reworked is always part of the
process for large systems

l Iteration can be applied to any of the generic
process models

l Two (related) approaches
• Incremental development

• Spiral development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 21

Incremental development

l Rather than deliver the system as a single
delivery, the development and delivery is broken
down into increments with each increment
delivering part of the required functionality

l User requirements are prioritised and the highest
priority requirements are included in early
increments

l Once the development of an increment is started,
the requirements are frozen though requirements
for later increments can continue to evolve

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 22

Incremental development

Validate
increment

Develop system
increment

Design system
architecture

Integrate
increment

Validate
system

Define outline
 requirements

Assign requirements
 to increments

System incomplete

Final
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 23

Incremental development advantages

l Customer value can be delivered with each
increment so system functionality is available
earlier

l Early increments act as a prototype to help elicit
requirements for later increments

l Lower risk of overall project failure

l The highest priority system services tend to
receive the most testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 24

Extreme programming

l New approach to development based on the
development and delivery of very small
increments of functionality

l Relies on constant code improvement, user
involvement in the development team and
pairwise programming

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 25

Spiral development

l Process is represented as a spiral rather than as a
sequence of activities with backtracking

l Each loop in the spiral represents a phase in the
process.

l No fixed phases such as specification or design -
loops in the spiral are chosen depending on what
is required

l Risks are explicitly assessed and resolved
throughout the process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 26

Spiral model of the software process

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code

Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 27

Spiral model sectors

l Objective setting
• Specific objectives for the phase are identified

l Risk assessment and reduction
• Risks are assessed and activities put in place to reduce the key

risks

l Development and validation
• A development model for the system is chosen which can be

any of the generic models

l Planning
• The project is reviewed and the next phase of the spiral is

planned

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 28

Software specification

l The process of establishing what services are
required and the constraints on the system’s
operation and development

l Requirements engineering process
• Feasibility study

• Requirements elicitation and analysis

• Requirements specification

• Requirements validation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 29

The requirements engineering process

Feasibility
study

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system
requirements

Requirements
document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 30

Software design and implementation

l The process of converting the system
specification into an executable system

l Software design
• Design a software structure that realises the specification

l Implementation
• Translate this structure into an executable program

l The activities of design and implementation are
closely related and may be inter-leaved

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 31

Design process activities

l Architectural design

l Abstract specification

l Interface design

l Component design

l Data structure design

l Algorithm design

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 32

The software design process

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

System
architecture

Software
specification

Interface
specification

Component
specification

Data
structure

specification

Algorithm
specification

Requirements
specification

Design activities

Design products

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 33

Design methods

l Systematic approaches to developing a software
design

l The design is usually documented as a set of
graphical models

l Possible models
• Data-flow model

• Entity-relation-attribute model

• Structural model

• Object models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 34

Programming and debugging

l Translating a design into a program and removing
errors from that program

l Programming is a personal activity - there is no
generic programming process

l Programmers carry out some program testing to
discover faults in the program and remove these
faults in the debugging process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 35

The debugging process

Locate
error

Design
error repair

Repair
error

Re-test
program

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 36

Software validation

l Verification and validation is intended to show
that a system conforms to its specification and
meets the requirements of the system customer

l Involves checking and review processes and
system testing

l System testing involves executing the system
with test cases that are derived from the
specification of the real data to be processed by
the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 37

The testing process

Sub-system
testing

Module
testing

Unit
testing

System
testing

Acceptance
testing

Component
testing

Integration testing User
testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 38

Testing stages
l Unit testing

• Individual components are tested

l Module testing
• Related collections of dependent components are tested

l Sub-system testing
• Modules are integrated into sub-systems and tested. The focus

here should be on interface testing

l System testing
• Testing of the system as a whole. Testing of emergent properties

l Acceptance testing
• Testing with customer data to check that it is acceptable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 39

Testing phases

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service Acceptance
test

System
integration test

Sub-system
integration test

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 40

Software evolution

l Software is inherently flexible and can change.

l As requirements change through changing
business circumstances, the software that
supports the business must also evolve and
change

l Although there has been a demarcation between
development and evolution (maintenance) this is
increasingly irrelevant as fewer and fewer
systems are completely new

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 41

System evolution

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 42

Automated process support

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 43

CASE

l Computer-aided software engineering (CASE) is
software to support software development and
evolution processes

l Activity automation
• Graphical editors for system model development

• Data dictionary to manage design entities

• Graphical UI builder for user interface construction

• Debuggers to support program fault finding

• Automated translators to generate new versions of a program

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 44

Case technology

l Case technology has led to significant
improvements in the software process though not
the order of magnitude improvements that were
once predicted
• Software engineering requires creative thought - this is not

readily automatable

• Software engineering is a team activity and, for large projects,
much time is spent in team interactions. CASE technology does
not really support these

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 45

CASE classification

l Classification helps us understand the different
types of CASE tools and their support for process
activities

l Functional perspective
• Tools are classified according to their specific function

l Process perspective
• Tools are classified according to process activities that are

supported

l Integration perspective
• Tools are classified according to their organisation into

integrated units

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 46

Functional tool classification
Tool type Examples
Planning tools PERT tools, estimation tools,

spreadsheets
Editing tools Text editors, diagram editors, word

processors
Change management tools Requirements traceability tools, change

control systems
Configuration management tools Version management systems, system

building tools
Prototyping tools Very high-level languages,

user interface generators
Method-support tools Design editors, data dictionaries, code

generators
Language-processing tools Compilers, interpreters
Program analysis tools Cross reference generators, static

analysers, dynamic analysers
Testing tools Test data generators, file comparators
Debugging tools Interactive debugging systems
Documentation tools Page layout programs, image editors
Re-engineering tools Cross-reference systems, program re-

structuring systems

Activity-based classification

Reengineering tools

Testing tools

Debugging tools

Program analysis tools

Language-processing
tools

Method support tools

Prototyping tools

Configuration
management tools

Change management tools

Documentation tools

Editing tools

Planning tools

Specification Design Implementation Verification
and

Validation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 48

CASE integration

l Tools
• Support individual process tasks such as design consistency

checking, text editing, etc.

l Workbenches
• Support a process phase such as specification or design,

Normally include a number of integrated tools

l Environments
• Support all or a substantial part of an entire software process.

Normally include several integrated workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 49

Tools, workbenches, environments

Single-method
workbenches

General-purpose
workbenches

Multi-method
workbenches

Language-specific
workbenches

Programming TestingAnalysis and
design

Integrated
environments

Process-centred
environments

File
comparatorsCompilersEditors

EnvironmentsWorkbenchesTools

CASE
technology

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 50

Key points

l Software processes are the activities involved in
producing and evolving a software system. They
are represented in a software process model

l General activities are specification, design and
implementation, validation and evolution

l Generic process models describe the organisation
of software processes

l Iterative process models describe the software
process as a cycle of activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 51

Key points

l Requirements engineering is the process of
developing a software specification

l Design and implementation processes transform
the specification to an executable program

l Validation involves checking that the system
meets to its specification and user needs

l Evolution is concerned with modifying the
system after it is in use

l CASE technology supports software process
activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 1

Project management

l Organising, planning and
scheduling software projects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 2

Objectives

l To introduce software project management and to
describe its distinctive characteristics

l To discuss project planning and the planning
process

l To show how graphical schedule representations
are used by project management

l To discuss the notion of risks and the risk
management process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 3

Topics covered

l Management activities

l Project planning

l Project scheduling

l Risk management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 4

l Concerned with activities involved in ensuring
that software is delivered on time and on
schedule and in accordance with the
requirements of the organisations developing
and procuring the software

l Project management is needed because software
development is always subject to budget and
schedule constraints that are set by the
organisation developing the software

Software project management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 5

l The product is intangible

l The product is uniquely flexible

l Software engineering is not recognized as an
engineering discipline with the sane status as
mechanical, electrical engineering, etc.

l The software development process is not
standardised

l Many software projects are 'one-off' projects

Software management distinctions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 6

Management activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 7

l Proposal writing

l Project planning and scheduling

l Project costing

l Project monitoring and reviews

l Personnel selection and evaluation

l Report writing and presentations

Management activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 8

l These activities are not peculiar to software
management

l Many techniques of engineering project
management are equally applicable to software
project management

l Technically complex engineering systems tend
to suffer from the same problems as software
systems

Management commonalities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 9

Project staffing

l May not be possible to appoint the ideal people to
work on a project
• Project budget may not allow for the use of highly-paid staff

• Staff with the appropriate experience may not be available

• An organisation may wish to develop employee skills on a
software project

l Managers have to work within these constraints
especially when (as is currently the case) there is
an international shortage of skilled IT staff

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 10

Project planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 11

Project planning

l Probably the most time-consuming project
management activity

l Continuous activity from initial concept through
to system delivery. Plans must be regularly
revised as new information becomes available

l Various different types of plan may be developed
to support the main software project plan that is
concerned with schedule and budget

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 12

Types of project plan

Plan Description
Quality plan Describes the quality procedures and

standards that will be used in a project.
Validation plan Describes the approach, resources and

schedule used for system validation.
Configuration
management plan

Describes the configuration management
procedures and structures to be used.

Maintenance plan Predicts the maintenance requirements of
the system, maintenance costs and effort
required.

Staff development plan. Describes how the skills and experience of
the project team members will be
developed.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 13

Project planning process

Establish the project constraints
Make initial assessments of the project parameters
Define project milestones and deliverables
while project has not been completed or cancelled loop

Draw up project schedule
Initiate activities according to schedule

 Wait (for a while)
 Review project progress
 Revise estimates of project parameters
 Update the project schedule
 Re-negotiate project constraints and deliverables
 if (problems arise) then
 Initiate technical review and possible revision
 end if
end loop

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 14

Project plan structure

l Introduction

l Project organisation

l Risk analysis

l Hardware and software resource requirements

l Work breakdown

l Project schedule

l Monitoring and reporting mechanisms

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 15

Activity organization

l Activities in a project should be organised to
produce tangible outputs for management to
judge progress

l Milestones are the end-point of a process activity

l Deliverables are project results delivered to
customers

l The waterfall process allows for the
straightforward definition of progress milestones

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 16

Milestones in the RE process

Evaluation
report

Prototype
development

Requirements
definition

Requirements
analysis

Feasibility
report

Feasibility
study

Architectural
design

Design
study

Requirements
specification

Requirements
specification

ACTIVITIES

MILESTONES

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 17

Project scheduling

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 18

Project scheduling

l Split project into tasks and estimate time and
resources required to complete each task

l Organize tasks concurrently to make optimal
use of workforce

l Minimize task dependencies to avoid delays
caused by one task waiting for another to
complete

l Dependent on project managers intuition and
experience

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 19

The project scheduling process

Estimate resources
for activities

Identify activity
dependencies

Identify
activities

Allocate people
to activities

Create project
charts

Software
requirements

Activity charts
and bar charts

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 20

Scheduling problems

l Estimating the difficulty of problems and hence
the cost of developing a solution is hard

l Productivity is not proportional to the number of
people working on a task

l Adding people to a late project makes it later
because of communication overheads

l The unexpected always happens. Always allow
contingency in planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 21

Bar charts and activity networks

l Graphical notations used to illustrate the project
schedule

l Show project breakdown into tasks. Tasks should
not be too small. They should take about a week
or two

l Activity charts show task dependencies and the
the critical path

l Bar charts show schedule against calendar time

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 22

Task durations and dependencies
Task Duration (days) Dependencies
T1 8
T2 15
T3 15 T1 (M1)
T4 10
T5 10 T2, T4 (M2)
T6 5 T1, T2 (M3)
T7 20 T1 (M1)
T8 25 T4 (M5)
T9 15 T3, T6 (M4)
T10 15 T5, T7 (M7)
T11 7 T9 (M6)
T12 10 T11 (M8)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 23

Activity network

start

T2

M3
T6

Finish

T10

M7
T5

T7

M2
T4

M5

T8

4/7/99

8 days

14/7/99 15 days

4/8/99

15 days

25/8/99

7 days

5/9/99

10 days

19/9/99

15 days

11/8/99

25 days

10 days

20 days

5 days
25/7/99

15 days

25/7/99

18/7/99

10 days

T1

M1 T3
T9

M6

T11

M8

T12

M4

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 24

Activity timeline
4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9

T4

T1
T2

M1

T7
T3

M5
T8

M3

M2
T6

T5
M4

T9

M7
T10

M6

T11
M8

T12

Start

Finish

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 25

Staff allocation
4/7 11/7 18/7 25/ 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9

T4

T8 T11

T12

T1

T3

T9

T2

T6 T10

T7

T5

Fred

Jane

Anne

Mary

Jim

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 26

Risk management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 27

Risk management

l Risk management is concerned with identifying
risks and drawing up plans to minimise their
effect on a project.

l A risk is a probability that some adverse
circumstance will occur.
• Project risks affect schedule or resources

• Product risks affect the quality or performance of the software
being developed

• Business risks affect the organisation developing or procuring
the software

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 28

Software risks
Risk Risk type Description
Staff turnover Project Experienced staff will leave the

project before it is finished.
Management change Project There will be a change of

organisational management with
different priorities.

Hardware unavailability Project Hardware which is essential for the
project will not be delivered on
schedule.

Requirements change Project and
product

There will be a larger number of
changes to the requirements than
anticipated.

Specification delays Project and
product

Specifications of essential interfaces
are not available on schedule

Size underestimate Project and
product

The size of the system has been
underestimated.

CASE tool under-
performance

Product CASE tools which support the
project do not perform as anticipated

Technology change Business The underlying technology on which
the system is built is superseded by
new technology.

Product competition Business A competitive product is marketed
before the system is completed.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 29

The risk management process

l Risk identification
• Identify project, product and business risks

l Risk analysis
• Assess the likelihood and consequences of these risks

l Risk planning
• Draw up plans to avoid or minimise the effects of the risk

l Risk monitoring
• Monitor the risks throughout the project

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 30

The risk management process

Risk avoidance
and contingency

plans

Risk planning

Prioritised risk
list

Risk analysis

List of potential
risks

Risk
identification

Risk
assessment

Risk
monitoring

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 31

Risk identification

l Technology risks

l People risks

l Organisational risks

l Requirements risks

l Estimation risks

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 32

Risks and risk types
Risk type Possible risks
Technology The database used in the system cannot process as many

transactions per second as expected.
Software components which should be reused contain defects
which limit their functionality.

People It is impossible to recruit staff with the skills required.
Key staff are ill and unavailable at critical times.
Required training for staff is not available.

Organisational The organisation is restructured so that different management
are responsible for the project.
Organisational financial problems force reductions in the project
budget.

Tools The code generated by CASE tools is inefficient.
CASE tools cannot be integrated.

Requirements Changes to requirements which require major design rework are
proposed.
Customers fail to understand the impact of requirements
changes.

Estimation The time required to develop the software is underestimated.
The rate of defect repair is underestimated.
The size of the software is underestimated.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 33

Risk analysis

l Assess probability and seriousness of each risk

l Probability may be very low, low, moderate, high
or very high

l Risk effects might be catastrophic, serious,
tolerable or insignificant

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 34

Risk analysis
Risk Probability Effects
Organisational financial problems force reductions
in the project budget.

Low Catastrophic

It is impossible to recruit staff with the skills
required for the project.

High Catastrophic

Key staff are ill at critical times in the project. Moderate Serious
Software components which should be reused
contain defects which limit their functionality.

Moderate Serious

Changes to requirements which require major
design rework are proposed.

Moderate Serious

The organisation is restructured so that different
management are responsible for the project.

High Serious

The database used in the system cannot process as
many transactions per second as expected.

Moderate Serious

The time required to develop the software is
underestimated.

High Serious

CASE tools cannot be integrated. High Tolerable
Customers fail to understand the impact of
requirements changes.

Moderate Tolerable

Required training for staff is not available. Moderate Tolerable
The rate of defect repair is underestimated. Moderate Tolerable
The size of the software is underestimated. High Tolerable
The code generated by CASE tools is inefficient. Moderate Insignificant

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 35

Risk planning

l Consider each risk and develop a strategy to
manage that risk

l Avoidance strategies
• The probability that the risk will arise is reduced

l Minimisation strategies
• The impact of the risk on the project or product will be reduced

l Contingency plans
• If the risk arises, contingency plans are plans to deal with that

risk

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 36

Risk management strategies
Risk Strategy
Organisational
financial problems

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business.

Recruitment
problems

Alert customer of potential difficulties and the possibility of
delays, investigate buying-in components.

Staff illness Reorganise team so that there is more overlap of work and
people therefore understand each other’s jobs.

Defective
components

Replace potentially defective components with bought-in
components of known reliability.

Requirements
changes

Derive traceability information to assess requirements change
impact, maximise information hiding in the design.

Organisational
restructuring

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business.

Database
performance

Investigate the possibility of buying a higher-performance
database.

Underestimated
development time

Investigate buying in components, investigate use of a program
generator.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 37

Risk monitoring

l Assess each identified risks regularly to decide
whether or not it is becoming less or more
probable

l Also assess whether the effects of the risk have
changed

l Each key risk should be discussed at management
progress meetings

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 38

Risk factors
Risk type Potential indicators
Technology Late delivery of hardware or support software, many

reported technology problems
People Poor staff morale, poor relationships amongst team

member, job availability
Organisational organisational gossip, lack of action by senior

management
Tools reluctance by team members to use tools, complaints

about CASE tools, demands for higher-powered
workstations

Requirements many requirements change requests, customer
complaints

Estimation failure to meet agreed schedule, failure to clear
reported defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 39

Key points

l Good project management is essential for project
success

l The intangible nature of software causes
problems for management

l Managers have diverse roles but their most
significant activities are planning, estimating and
scheduling

l Planning and estimating are iterative processes
which continue throughout the course of a
project

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 4 Slide 40

l A project milestone is a predictable state where
some formal report of progress is presented to
management.

l Risks may be project risks, product risks or
business risks

l Risk management is concerned with identifying
risks which may affect the project and planning to
ensure that these risks do not develop into major
threats

Key points

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 1

Software Requirements

l Descriptions and specifications of
a system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 2

Objectives

l To introduce the concepts of user and system
requirements

l To describe functional and non-functional
requirements

l To explain two techniques for describing system
requirements

l To explain how software requirements may be
organised in a requirements document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 3

Topics covered

l Functional and non-functional requirements

l User requirements

l System requirements

l The software requirements document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 4

Requirements engineering

l The process of establishing the services that the
customer requires from a system and the constraints
under which it operates and is developed

l The requirements themselves are the descriptions of
the system services and constraints that are generated
during the requirements engineering process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 5

What is a requirement?

l It may range from a high-level abstract statement of a
service or of a system constraint to a detailed
mathematical functional specification

l This is inevitable as requirements may serve a dual
function
• May be the basis for a bid for a contract - therefore must be open to

interpretation

• May be the basis for the contract itself - therefore must be defined in
detail

• Both these statements may be called requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 6

Requirements abstraction (Davis)

“If a company wishes to let a contract for a large software development project, it
must define its needs in a sufficiently abstract way that a solution is not pre-defined.
The requirements must be written so that several contractors can bid for the contract,
offering, perhaps, different ways of meeting the client organisation’s needs. Once a
contract has been awarded, the contractor must write a system definition for the client
in more detail so that the client understands and can validate what the software will
do. Both of these documents may be called the requirements document for the
system.”

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 7

Types of requirement

l User requirements
• Statements in natural language plus diagrams of the services the

system provides and its operational constraints. Written for customers

l System requirements
• A structured document setting out detailed descriptions of the system

services. Written as a contract between client and contractor

l Software specification
• A detailed software description which can serve as a basis for a design

or implementation. Written for developers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 8

Definitions and specifications

1. The software must provide a means of representing and
1. accessing external files created by other tools.

1.1 The user should be provided with facilities to define the type of
1.2 external files.
1.2 Each external file type may have an associated tool which may be
1.2 applied to the file.
1.3 Each external file type may be represented as a specific icon on
1.2 the user’s display.
1.4 Facilities should be provided for the icon representing an
1.2 external file type to be defined by the user.
1.5 When a user selects an icon representing an external file, the
1.2 effect of that selection is to apply the tool associated with the type of
1.2 the external file to the file represented by the selected icon.

Requirements definition

Requirements specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 9

Requirements readers
Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Client engineers (perhaps)
System architects
Software developers

User requirements

System requirements

Software design
specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 10

Functional and non-functional requirements

l Functional requirements
• Statements of services the system should provide, how the system

should react to particular inputs and how the system should behave in
particular situations.

l Non-functional requirements
• constraints on the services or functions offered by the system such as

timing constraints, constraints on the development process, standards,
etc.

l Domain requirements
• Requirements that come from the application domain of the system

and that reflect characteristics of that domain

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 11

Functional requirements

l Describe functionality or system services

l Depend on the type of software, expected users and
the type of system where the software is used

l Functional user requirements may be high-level
statements of what the system should do but
functional system requirements should describe the
system services in detail

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 12

Examples of functional requirements

l The user shall be able to search either all of the initial
set of databases or select a subset from it.

l The system shall provide appropriate viewers for the
user to read documents in the document store.

l Every order shall be allocated a unique identifier
(ORDER_ID) which the user shall be able to copy to
the account’s permanent storage area.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 13

Requirements imprecision

l Problems arise when requirements are not precisely
stated

l Ambiguous requirements may be interpreted in
different ways by developers and users

l Consider the term ‘appropriate viewers’
• User intention - special purpose viewer for each different document

type

• Developer interpretation - Provide a text viewer that shows the
contents of the document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 14

Requirements completeness and consistency

l In principle requirements should be both complete and
consistent

l Complete
• They should include descriptions of all facilities required

l Consistent
• There should be no conflicts or contradictions in the descriptions of

the system facilities

l In practice, it is impossible to produce a complete and
consistent requirements document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 15

Non-functional requirements

l Define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are I/O device capability, system
representations, etc.

l Process requirements may also be specified mandating
a particular CASE system, programming language or
development method

l Non-functional requirements may be more critical
than functional requirements. If these are not met, the
system is useless

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 16

Non-functional classifications

l Product requirements
• Requirements which specify that the delivered product must behave in

a particular way e.g. execution speed, reliability, etc.

l Organisational requirements
• Requirements which are a consequence of organisational policies and

procedures e.g. process standards used, implementation requirements,
etc.

l External requirements
• Requirements which arise from factors which are external to the

system and its development process e.g. interoperability requirements,
legislative requirements, etc.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 17

Non-functional requirement types

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 18

Non-functional requirements examples

l Product requirement
• 4.C.8 It shall be possible for all necessary communication between the APSE

and the user to be expressed in the standard Ada character set

l Organisational requirement
• 9.3.2 The system development process and deliverable documents shall

conform to the process and deliverables defined in XYZCo-SP-STAN-95

l External requirement
• 7.6.5 The system shall not disclose any personal information about

customers apart from their name and reference number to the operators of the
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 19

Goals and requirements

l Non-functional requirements may be very difficult to
state precisely and imprecise requirements may be
difficult to verify.

l Goal
• A general intention of the user such as ease of use

l Verifiable non-functional requirement
• A statement using some measure that can be objectively tested

l Goals are helpful to developers as they convey the
intentions of the system users

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 20

Examples

l A system goal
• The system should be easy to use by experienced controllers and

should be organised in such a way that user errors are minimised.

l A verifiable non-functional requirement
• Experienced controllers shall be able to use all the system functions

after a total of two hours training. After this training, the average
number of errors made by experienced users shall not exceed two per
day.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 21

Requirements measures
Property Measure
Speed Processed transactions/second

User/Event response time
Screen refresh time

Size K Bytes
Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 22

Requirements interaction

l Conflicts between different non-functional
requirements are common in complex systems

l Spacecraft system
• To minimise weight, the number of separate chips in the system

should be minimised

• To minimise power consumption, lower power chips should be used

• However, using low power chips may mean that more chips have to be
used. Which is the most critical requirement?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 23

Domain requirements

l Derived from the application domain and describe
system characterisics and features that reflect the
domain

l May be new functional requirements, constraints on
existing requirements or define specific computations

l If domain requirements are not satisfied, the system
may be unworkable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 24

Library system domain requirements

l There shall be a standard user interface to all
databases which shall be based on the Z39.50
standard.

l Because of copyright restrictions, some documents
must be deleted immediately on arrival. Depending on
the user’s requirements, these documents will either
be printed locally on the system server for manually
forwarding to the user or routed to a network printer.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 25

Train protection system

l The deceleration of the train shall be computed as:
• Dtrain = Dcontrol + Dgradient

where Dgradient is 9.81ms2 * compensated
gradient/alpha and where the values of 9.81ms2 /alpha
are known for different types of train.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 26

Domain requirements problems

l Understandability
• Requirements are expressed in the language of the application domain

• This is often not understood by software engineers developing the
system

l Implicitness
• Domain specialists understand the area so well that they do not think

of making the domain requirements explicit

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 27

User requirements

l Should describe functional and non-functional
requirements so that they are understandable by
system users who don’t have detailed technical
knowledge

l User requirements are defined using natural language,
tables and diagrams

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 28

Problems with natural language

l Lack of clarity
• Precision is difficult without making the document difficult to read

l Requirements confusion
• Functional and non-functional requirements tend to be mixed-up

l Requirements amalgamation
• Several different requirements may be expressed together

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 29

Database requirement

4.A.5 The database shall support the generation and control of
configuration objects; that is, objects which are themselves groupings
of other objects in the database. The configuration control facilities
shall allow access to the objects in a version group by the use of an
incomplete name.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 30

Editor grid requirement

2.6 Grid facilities To assist in the positioning of entities on a diagram,
the user may turn on a grid in either centimetres or inches, via an
option on the control panel. Initially, the grid is off. The grid may be
 turned on and off at any time during an editing session and can be
toggled between inches and centimetres at any time. A grid option
will be provided on the reduce-to-fit view but the number of grid
 lines shown will be reduced to avoid filling the smaller diagram
with grid lines.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 31

Requirement problems

l Database requirements includes both conceptual and
detailed information
• Describes the concept of configuration control facilities

• Includes the detail that objects may be accessed using an incomplete
name

l Grid requirement mixes three different kinds of
requirement
• Conceptual functional requirement (the need for a grid)

• Non-functional requirement (grid units)

• Non-functional UI requirement (grid switching)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 32

Structured presentation

2.6 Grid facilities
2.6.1 The editor shall provide a grid facility where a

matrix of horizontal and vertical lines provide a
background to the editor window. This grid shall be
a p assive grid where the alignment of entities is the
user's responsibility.
Rationale: A grid helps the user to create a tidy
diagram with well-spaced entities. Although an active
grid, where entities 'snap-to' grid lines can be useful,
the positioning is imprecise. The user is the best person
to decide where entities should be positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 33

Detailed user requirement

3.5.1 Adding nodes to a design
3.5.1.1 The editor shall provide a f acility for users to add nodes of a specified type to their

design.

3.5.1.2 The sequence of actions to add a node should be as follows:

1. The user should select the type of node to be added.

2. The user should move the cursor to the approximate node position in the diagram and
indicate that the node symbol should be added at that point.

3. The user should then drag the node symbol to its final position.

Rationale: The user is the best person to decide where to position a node on the diagram.
This approach gives the user direct control over node type selection and positioning.

Specification: ECLIPSE/WS/Tools/DE/FS. Section 3.5.1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 34

Guidelines for writing requirements

l Invent a standard format and use it for all
requirements

l Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements

l Use text highlighting to identify key parts of the
requirement

l Avoid the use of computer jargon

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 35

System requirements

l More detailed specifications of user requirements

l Serve as a basis for designing the system

l May be used as part of the system contract

l System requirements may be expressed using system
models discussed in Chapter 7

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 36

Requirements and design

l In principle, requirements should state what the
system should do and the design should describe how
it does this

l In practice, requirements and design are inseparable
• A system architecture may be designed to structure the requirements

• The system may inter-operate with other systems that generate design
requirements

• The use of a specific design may be a domain requirement

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 37

Problems with NL specification

l Ambiguity
• The readers and writers of the requirement must interpret the same

words in the same way. NL is naturally ambiguous so this is very
difficult

l Over-flexibility
• The same thing may be said in a number of different ways in the

specification

l Lack of modularisation
• NL structures are inadequate to structure system requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 38

Alternatives to NL specification
Notation Description
Structured
natural
language

This approach depends on defining standard forms or
templates to express the requirements specification.

Design
description
languages

This approach uses a language like a programming language
but with more abstract features to specify the requirements
by defining an operational model of the system.

Graphical
notations

A graphical language, supplemented by text annotations is
used to define the functional requirements for the system.
An early example of such a graphical language was SADT
(Ross, 1977; Schoman and Ross, 1977). More recently, use-
case descriptions (Jacobsen, Christerson et al., 1993) have
been used. I discuss these in the following chapter.

Mathematical
specifications

 These are notations based on mathematical concepts such
as finite-state machines or sets. These unambiguous
specifications reduce the arguments between customer and
contractor about system functionality. However, most
customers don’t understand formal specifications and are
reluctant to accept it as a system contract. I discuss formal
specification in Chapter 9.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 39

Structured language specifications

l A limited form of natural language may be used to
express requirements

l This removes some of the problems resulting from
ambiguity and flexibility and imposes a degree of
uniformity on a specification

l Often bast supported using a forms-based approach

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 40

Form-based specifications

l Definition of the function or entity

l Description of inputs and where they come from

l Description of outputs and where they go to

l Indication of other entities required

l Pre and post conditions (if appropriate)

l The side effects (if any)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 41

Form-based node specification
ECLIPSE/Workstation/Tools/DE/FS/3.5.1

Function Add node

Description Adds a node to an existing design. The user selects the type of node, and its position.
When added to the design, the node becomes the current selection. The user chooses the node position by
moving the cursor to the area where the node is added.

Inputs Node type, Node position, Design identifier.

Source Node type and Node position are input by the user, Design identifier from the database.

Outputs Design identifier.

Destination The design database. The design is committed to the database on completion of the
operation.

Requires Design graph rooted at input design identifier.

Pre-condition The design is open and displayed on the user's screen.

Post-condition The design is unchanged apart from the addition of a node of the specified type
at the given position.

Side-effects None

Definition: ECLIPSE/Workstation/Tools/DE/RD/3.5.1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 42

PDL-based requirements definition

l Requirements may be defined operationally using a
language like a programming language but with more
flexibility of expression

l Most appropriate in two situations
• Where an operation is specified as a sequence of actions and the order

is important

• When hardware and software interfaces have to be specified

l Disadvantages are
• The PDL may not be sufficiently expressive to define domain

concepts

• The specification will be taken as a design rather than a specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 43

Part of an ATM specification

class ATM {
// declarations here
public static void main (String args[]) throws InvalidCard {

try {
thisCard.read () ; // may throw InvalidCard exception
pin = KeyPad.readPin () ; attempts = 1 ;
while (!thisCard.pin.equals (pin) & attempts < 4)

{ pin = KeyPad.readPin () ; attempts = attempts + 1 ;
}
if (!thisCard.pin.equals (pin))

throw new InvalidCard ("Bad PIN");
thisBalance = thisCard.getBalance () ;
do { Screen.prompt (" Please select a service ") ;

service = Screen.touchKey () ;
switch (service) {

case Services.withdrawalWithReceipt:
receiptRequired = true ;

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 44

PDL disadvantages

l PDL may not be sufficiently expressive to express the
system functionality in an understandable way

l Notation is only understandable to people with
programming language knowledge

l The requirement may be taken as a design
specification rather than a model to help understand
the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 45

Interface specification

l Most systems must operate with other systems and the
operating interfaces must be specified as part of the
requirements

l Three types of interface may have to be defined
• Procedural interfaces

• Data structures that are exchanged

• Data representations

l Formal notations are an effective technique for
interface specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 46

PDL interface description

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;
void print (Printer p, PrintDoc d) ;
void displayPrintQueue (Printer p) ;
void cancelPrintJob (Printer p, PrintDoc d) ;
void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;

} //PrintServer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 47

The requirements document

l The requirements document is the official statement
of what is required of the system developers

l Should include both a definition and a specification of
requirements

l It is NOT a design document. As far as possible, it
should set of WHAT the system should do rather than
HOW it should do it

Users of a
requirements
document

Use the requirements to
develop validation tests for
the system

Use the requirements
document to plan a bid for
the system and to plan the
system development process

Use the requirements to
understand what system is to
be developed

System test
engineers

Managers

System engineers

Specify the requirements and
read them to check that they
meet their needs. They
specify changes to the
requirements

System customers

Use the requirements to help
understand the system and
the relationships between its
parts

System
maintenance

engineers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 49

Requirements document requirements

l Specify external system behaviour

l Specify implementation constraints

l Easy to change

l Serve as reference tool for maintenance

l Record forethought about the life cycle of the system
i.e. predict changes

l Characterise responses to unexpected events

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 50

IEEE requirements standard

l Introduction

l General description

l Specific requirements

l Appendices

l Index

l This is a generic structure that must be instantiated for
specific systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 51

Requirements document structure

l Introduction

l Glossary

l User requirements definition

l System architecture

l System requirements specification

l System models

l System evolution

l Appendices

l Index

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 52

Key points

l Requirements set out what the system should do and
define constraints on its operation and implementation

l Functional requirements set out services the system
should provide

l Non-functional requirements constrain the system
being developed or the development process

l User requirements are high-level statements of what
the system should do

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 53

Key points

l User requirements should be written in natural
language, tables and diagrams

l System requirements are intended to communicate the
functions that the system should provide

l System requirements may be written in structured
natural language, a PDL or in a formal language

l A software requirements document is an agreed
statement of the system requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 1

Requirements Engineering Processes

l Processes used to discover,
analyse and validate system
requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 2

Objectives

l To describe the principal requirements
engineering activities

l To introduce techniques for requirements
elicitation and analysis

l To describe requirements validation

l To discuss the role of requirements management
in support of other requirements engineering
processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 3

Topics covered

l Feasibility studies

l Requirements elicitation and analysis

l Requirements validation

l Requirements management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 4

Requirements engineering processes

l The processes used for RE vary widely
depending on the application domain, the people
involved and the organisation developing the
requirements

l However, there are a number of generic activities
common to all processes
• Requirements elicitation

• Requirements analysis

• Requirements validation

• Requirements management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 5

The requirements engineering process

Feasibility
study

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system
requirements

Requirements
document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 6

Feasibility studies

l A feasibility study decides whether or not the
proposed system is worthwhile

l A short focused study that checks
• If the system contributes to organisational objectives

• If the system can be engineered using current technology and
within budget

• If the system can be integrated with other systems that are used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 7

Feasibility study implementation

l Based on information assessment (what is
required), information collection and report
writing

l Questions for people in the organisation
• What if the system wasn’t implemented?

• What are current process problems?

• How will the proposed system help?

• What will be the integration problems?

• Is new technology needed? What skills?

• What facilities must be supported by the proposed system?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 8

Elicitation and analysis

l Sometimes called requirements elicitation or
requirements discovery

l Involves technical staff working with customers
to find out about the application domain, the
services that the system should provide and the
system’s operational constraints

l May involve end-users, managers, engineers
involved in maintenance, domain experts, trade
unions, etc. These are called stakeholders

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 9

Problems of requirements analysis

l Stakeholders don’t know what they really want

l Stakeholders express requirements in their own
terms

l Different stakeholders may have conflicting
requirements

l Organisational and political factors may influence
the system requirements

l The requirements change during the analysis
process. New stakeholders may emerge and the
business environment change

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 10

The requirements analysis process

Requirements
validation

Domain
understanding

Prioritization

Requirements
collection

Conflict
resolution

Classification

Requirements
definition and
specification

Process
entry

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 11

Process activities

l Domain understanding

l Requirements collection

l Classification

l Conflict resolution

l Prioritisation

l Requirements checking

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 12

System models

l Different models may be produced during the
requirements analysis activity

l Requirements analysis may involve three
structuring activities which result in these
different models
• Partitioning. Identifies the structural (part-of) relationships

between entities

• Abstraction. Identifies generalities among entities

• Projection. Identifies different ways of looking at a problem

l System models covered in Chapter 7

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 13

Viewpoint-oriented elicitation

l Stakeholders represent different ways of looking
at a problem or problem viewpoints

l This multi-perspective analysis is important as
there is no single correct way to analyse system
requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 14

Banking ATM system

l The example used here is an auto-teller system
which provides some automated banking services

l I use a very simplified system which offers some
services to customers of the bank who own the
system and a narrower range of services to other
customers

l Services include cash withdrawal, message
passing (send a message to request a service),
ordering a statement and transferring funds

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 15

Autoteller viewpoints

l Bank customers

l Representatives of other banks

l Hardware and software maintenance engineers

l Marketing department

l Bank managers and counter staff

l Database administrators and security staff

l Communications engineers

l Personnel department

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 16

Types of viewpoint

l Data sources or sinks
• Viewpoints are responsible for producing or consuming data.

Analysis involves checking that data is produced and consumed
and that assumptions about the source and sink of data are valid

l Representation frameworks
• Viewpoints represent particular types of system model. These

may be compared to discover requirements that would be
missed using a single representation. Particularly suitable for
real-time systems

l Receivers of services
• Viewpoints are external to the system and receive services from

it. Most suited to interactive systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 17

External viewpoints

l Natural to think of end-users as receivers of
system services

l Viewpoints are a natural way to structure
requirements elicitation

l It is relatively easy to decide if a viewpoint is
valid

l Viewpoints and services may be sued to structure
non-functional requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 18

Method-based analysis

l Widely used approach to requirements analysis.
Depends on the application of a structured
method to understand the system

l Methods have different emphases. Some are
designed for requirements elicitation, others are
close to design methods

l A viewpoint-oriented method (VORD) is used as
an example here. It also illustrates the use of
viewpoints

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 19

The VORD method

Viewpoint
identification

Viewpoint
structuring

Viewpoint
documentation

Viewpoint
system mapping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 20

VORD process model

l Viewpoint identification
• Discover viewpoints which receive system services and identify

the services provided to each viewpoint

l Viewpoint structuring
• Group related viewpoints into a hierarchy. Common services are

provided at higher-levels in the hierarchy

l Viewpoint documentation
• Refine the description of the identified viewpoints and services

l Viewpoint-system mapping
• Transform the analysis to an object-oriented design

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 21

VORD standard forms

Viewpoint template Service template
Reference: The viewpoint name. Reference: The service name.
Attributes: Attributes providing

viewpoint information.
Rationale: Reason why the service is

provided.
Events: A reference to a set of event

scenarios describing how
the system reacts to
viewpoint events.

Spec i f i ca t ion : Reference to a list of service
specifications. These may
be expressed in different
notations.

Serv ices A reference to a set of
service descriptions.

Viewpoint s : List of viewpoint names
receiving the service.

Sub-VPs: The names of sub-
viewpoints.

Non-funct ional
requirements:

Reference to a set of non-
functional requirements
which constrain the service.

Provider: Reference to a list of system
objects which provide the
service.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 22

Viewpoint identification

Query
balance

Get
transactions

Cash
withdrawal

Transaction
log

Machine
supplies

Card
returning

Remote
software
upgrade

Order
cheques

User
interface

Account
information

Message
log

Software
size Invalid

user
System cost Printe

r Security

Card
retention

Stolen
card

Order
statement

Remote
diagnostics Reliability

Update
account

Funds
transfer

Message
passing

Card
validation

Customer
database

Manager

Account
holder

Foreign
customer

Hardware
maintenance

Bank
teller

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 23

Viewpoint service information

FOREIGN
CUSTOMER

Withdraw cash
Query balance

Service list

Withdraw cash
Query balance
Order cheques
Send message
Transaction list
Order statement
Transfer funds

Service list

Run diagnostics
Add cash
Add paper
Send message

Service list

ACCOUNT
HOLDER

BANK
TELLER

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 24

Viewpoint data/control

Start transaction
Cancel transaction
End transaction
Select service

Card details
PIN
Amount required
Message

Control input Data input
ACCOUNT
HOLDER

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 25

Viewpoint hierarchy

EngineerManagerTellerForeign
customer

Account
holder

Services

Order cheques
Send message
Transaction list
Order statement
Transfer funds

Customer Bank staff

All VPs

Services

Query balance
Withdraw cash

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 26

Customer/cash withdrawal templates
Customer

Account number
PIN
Start transaction
Select service
Cancel
transaction
End transaction

Cash withdrawal
Balance enquiry

Account holder
Foreign
customer

Reference:

Attributes:

Events:

Services:

Sub-VPs:

Cash withdrawal

To improve customer service
and reduce paperwork

Users choose this service by
pressing the cash withdrawal
button. They then enter the
amount required. This is
confirmed and, if funds allow,
the balance is delivered.

Customer

Deliver cash within 1 minute
of amount being confirmed

Filled in later

Reference:

Rationale:

Specification:

VPs:

Non-funct.
requirements:

Provider:

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 27

Scenarios

l Scenarios are descriptions of how a system is
used in practice

l They are helpful in requirements elicitation as
people can relate to these more readily than
abstract statement of what they require from a
system

l Scenarios are particularly useful for adding detail
to an outline requirements description

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 28

Scenario descriptions

l System state at the beginning of the scenario

l Normal flow of events in the scenario

l What can go wrong and how this is handled

l Other concurrent activities

l System state on completion of the scenario

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 29

Event scenarios

l Event scenarios may be used to describe how a
system responds to the occurrence of some
particular event such as ‘start transaction’

l VORD includes a diagrammatic convention for
event scenarios.
• Data provided and delivered

• Control information

• Exception processing

• The next expected event

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 30

Event scenario - start transaction

Validate user

Request PIN

Select
service

Timeout

Return card

Invalid card

Return card

Stolen card

Retain card

Incorrect PIN

Re-enter PIN

Incorrect PIN

Return card

Card

PIN

Card present

Account
number

PIN

Account
number

Valid card

User OK

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 31

Notation for data and control analysis

l Ellipses. data provided from or delivered to a
viewpoint

l Control information enters and leaves at the top
of each box

l Data leaves from the right of each box

l Exceptions are shown at the bottom of each box

l Name of next event is in box with thick edges

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 32

Exception description

l Most methods do not include facilities for
describing exceptions

l In this example, exceptions are
• Timeout. Customer fails to enter a PIN within the allowed time

limit

• Invalid card. The card is not recognised and is returned

• Stolen card. The card has been registered as stolen and is
retained by the machine

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 33

Use cases

l Use-cases are a scenario based technique in the
UML which identify the actors in an interaction
and which describe the interaction itself

l A set of use cases should describe all possible
interactions with the system

l Sequence diagrams may be used to add detail to
use-cases by showing the sequence of event
processing in the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 34

Lending use-case

Lending services

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 35

Library use-cases

Lending services

User administration

Supplier Catalog services

Library
User

Library
Staff

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 36

Catalogue management

Bookshop:
Supplier

Cataloguer:
Library Staff

Item:
Library Item

Books:
Catalog

Acquire New

Catalog Item

Uncatalog Item

Dispose

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 37

Social and organisational factors

l Software systems are used in a social and
organisational context. This can influence or even
dominate the system requirements

l Social and organisational factors are not a single
viewpoint but are influences on all viewpoints

l Good analysts must be sensitive to these factors
but currently no systematic way to tackle their
analysis

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 38

Example

l Consider a system which allows senior
management to access information without going
through middle managers
• Managerial status. Senior managers may feel that they are too

important to use a keyboard. This may limit the type of system
interface used

• Managerial responsibilities. Managers may have no
uninterrupted time where they can learn to use the system

• Organisational resistance. Middle managers who will be made
redundant may deliberately provide misleading or incomplete
information so that the system will fail

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 39

Ethnography

l A social scientists spends a considerable time
observing and analysing how people actually
work

l People do not have to explain or articulate their
work

l Social and organisational factors of importance
may be observed

l Ethnographic studies have shown that work is
usually richer and more complex than suggested
by simple system models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 40

Focused ethnography

l Developed in a project studying the air traffic
control process

l Combines ethnography with prototyping

l Prototype development results in unanswered
questions which focus the ethnographic analysis

l Problem with ethnography is that it studies
existing practices which may have some
historical basis which is no longer relevant

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 41

Ethnography and prototyping

Ethnographic
analysis

Debriefing
meetings

Focused
ethnography

Prototype
evaluation

Generic system
development

System
protoyping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 42

Scope of ethnography

l Requirements that are derived from the way that
people actually work rather than the way I which
process definitions suggest that they ought to
work

l Requirements that are derived from cooperation
and awareness of other people’s activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 43

Requirements validation

l Concerned with demonstrating that the
requirements define the system that the customer
really wants

l Requirements error costs are high so validation is
very important
• Fixing a requirements error after delivery may cost up to 100

times the cost of fixing an implementation error

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 44

Requirements checking

l Validity. Does the system provide the functions
which best support the customer’s needs?

l Consistency. Are there any requirements
conflicts?

l Completeness. Are all functions required by the
customer included?

l Realism. Can the requirements be implemented
given available budget and technology

l Verifiability. Can the requirements be checked?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 45

Requirements validation techniques

l Requirements reviews
• Systematic manual analysis of the requirements

l Prototyping
• Using an executable model of the system to check requirements.

Covered in Chapter 8

l Test-case generation
• Developing tests for requirements to check testability

l Automated consistency analysis
• Checking the consistency of a structured requirements

description

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 46

Requirements reviews

l Regular reviews should be held while the
requirements definition is being formulated

l Both client and contractor staff should be
involved in reviews

l Reviews may be formal (with completed
documents) or informal. Good communications
between developers, customers and users can
resolve problems at an early stage

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 47

Review checks

l Verifiability. Is the requirement realistically
testable?

l Comprehensibility. Is the requirement properly
understood?

l Traceability. Is the origin of the requirement
clearly stated?

l Adaptability. Can the requirement be changed
without a large impact on other requirements?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 48

Automated consistency checking

Requirements
database

Requirements
analyser

Requirements
problem report

Requirements
processor

Requirements
in a formal language

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 49

Requirements management

l Requirements management is the process of
managing changing requirements during the
requirements engineering process and system
development

l Requirements are inevitably incomplete and
inconsistent
• New requirements emerge during the process as business needs

change and a better understanding of the system is developed

• Different viewpoints have different requirements and these are
often contradictory

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 50

Requirements change

l The priority of requirements from different
viewpoints changes during the development
process

l System customers may specify requirements from
a business perspective that conflict with end-user
requirements

l The business and technical environment of the
system changes during its development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 51

Requirements evolution

Changed
understanding

of problem

Initial
understanding

of problem

Changed
requirements

Initial
requirements

Time

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 52

Enduring and volatile requirements

l Enduring requirements. Stable requirements
derived from the core activity of the customer
organisation. E.g. a hospital will always have
doctors, nurses, etc. May be derived from domain
models

l Volatile requirements. Requirements which
change during development or when the system is
in use. In a hospital, requirements derived from
health-care policy

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 53

Classification of requirements

l Mutable requirements
• Requirements that change due to the system’s environment

l Emergent requirements
• Requirements that emerge as understanding of the system

develops

l Consequential requirements
• Requirements that result from the introduction of the computer

system

l Compatibility requirements
• Requirements that depend on other systems or organisational

processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 54

Requirements management planning

l During the requirements engineering process, you
have to plan:
• Requirements identification

» How requirements are individually identified

• A change management process
» The process followed when analysing a requirements change

• Traceability policies
» The amount of information about requirements relationships that is

maintained

• CASE tool support
» The tool support required to help manage requirements change

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 55

Traceability

l Traceability is concerned with the relationships
between requirements, their sources and the
system design

l Source traceability
• Links from requirements to stakeholders who proposed these

requirements

l Requirements traceability
• Links between dependent requirements

l Design traceability
• Links from the requirements to the design

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 56

A traceability matrix

Req.
id

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 U R
1.2 U R U
1.3 R R
2.1 R U U
2.2 U
2.3 R U
3.1 R
3.2 R

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 57

CASE tool support

l Requirements storage
• Requirements should be managed in a secure, managed data

store

l Change management
• The process of change management is a workflow process

whose stages can be defined and information flow between
these stages partially automated

l Traceability management
• Automated retrieval of the links between requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 58

Requirements change management

l Should apply to all proposed changes to the
requirements

l Principal stages
• Problem analysis. Discuss requirements problem and propose

change

• Change analysis and costing. Assess effects of change on other
requirements

• Change implementation. Modify requirements document and
other documents to reflect change

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 59

Requirements change management

Change
implementation

Change analysis
and costing

Problem analysis and
change specification

Identified
problem

Revised
requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 60

Key points

l The requirements engineering process includes a
feasibility study, requirements elicitation and
analysis, requirements specification and
requirements management

l Requirements analysis is iterative involving
domain understanding, requirements collection,
classification, structuring, prioritisation and
validation

l Systems have multiple stakeholders with different
requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 6 Slide 61

Key points

l Social and organisation factors influence system
requirements

l Requirements validation is concerned with
checks for validity, consistency, completeness,
realism and verifiability

l Business changes inevitably lead to changing
requirements

l Requirements management includes planning and
change management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 1

System models

l Abstract descriptions of
systems whose requirements
are being analysed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 2

Objectives

l To explain why the context of a system should be
modelled as part of the RE process

l To describe behavioural modelling, data
modelling and object modelling

l To introduce some of the notations used in the
Unified Modeling Language (UML)

l To show how CASE workbenches support
system modelling

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 3

Topics covered

l Context models

l Behavioural models

l Data models

l Object models

l CASE workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 4

System modelling

l System modelling helps the analyst to understand
the functionality of the system and models are
used to communicate with customers

l Different models present the system from
different perspectives
• External perspective showing the system’s context or

environment

• Behavioural perspective showing the behaviour of the system

• Structural perspective showing the system or data architecture

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 5

Structured methods

l Structured methods incorporate system modelling
as an inherent part of the method

l Methods define a set of models, a process for
deriving these models and rules and guidelines
that should apply to the models

l CASE tools support system modelling as part of a
structured method

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 6

Method weaknesses

l They do not model non-functional system
requirements

l They do not usually include information about
whether a method is appropriate for a given
problem

l The may produce too much documentation

l The system models are sometimes too detailed
and difficult for users to understand

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 7

Model types
l Data processing model showing how the data is

processed at different stages

l Composition model showing how entities are
composed of other entities

l Architectural model showing principal sub-
systems

l Classification model showing how entities have
common characteristics

l Stimulus/response model showing the system’s
reaction to events

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 8

Context models

l Context models are used to illustrate the
boundaries of a system

l Social and organisational concerns may affect the
decision on where to position system boundaries

l Architectural models show the a system and its
relationship with other systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 9

The context of an ATM system

Auto-teller
system

Security
system

Maintenance
system

Account
database

Usage
database

Branch
accounting

system

Branch
counter
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 10

Process models

l Process models show the overall process and the
processes that are supported by the system

l Data flow models may be used to show the
processes and the flow of information from one
process to another

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 11

Equipment procurement process

Get cost
estimates

Accept
delivery of
equipment

Check
delivered

items

Validate
specification

Specify
equipment
required

Choose
supplier

Place
equipment

order

Install
equipment

Find
suppliers

Supplier
database

Accept
delivered

equipment

Equipment
database

Equipment
spec.

Checked
spec.

Delivery
note

Delivery
note

Order
notification

Installation
instructions

Installation
acceptance

Equipment
details

Checked and
signed order form

Order
details +

Blank order
form

Spec. +
supplier +
estimate

Supplier list
Equipment

spec.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 12

Behavioural models

l Behavioural models are used to describe the
overall behaviour of a system

l Two types of behavioural model are shown here
• Data processing models that show how data is processed as it

moves through the system

• State machine models that show the systems response to events

l Both of these models are required for a
description of the system’s behaviour

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 13

Data-processing models

l Data flow diagrams are used to model the
system’s data processing

l These show the processing steps as data flows
through a system

l Intrinsic part of many analysis methods

l Simple and intuitive notation that customers can
understand

l Show end-to-end processing of data

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 14

Order processing DFD

Complete
order form

Order
details +

blank
order form

Validate
order

Record
order

Send to
supplier

Adjust
available
budget

Budget
file

Orders
file

Completed
order form

Signed
order form

Signed
order form

Checked and
signed order

+ order
notification

Order
amount

+ account
details

Signed
order form

Order
details

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 15

Data flow diagrams

l DFDs model the system from a functional
perspective

l Tracking and documenting how the data
associated with a process is helpful to develop an
overall understanding of the system

l Data flow diagrams may also be used in showing
the data exchange between a system and other
systems in its environment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 16

CASE toolset DFD

Design
editor

Design
cross checker

Design
analyser

Report
generator

Design
database

Code skeleton
generator

Design
database

Input
design

Valid
design

Checked
design

Design
analysis

User
report

and
Referenced

designs
Checked
design Output

code

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 17

State machine models

l These model the behaviour of the system in
response to external and internal events

l They show the system’s responses to stimuli so
are often used for modelling real-time systems

l State machine models show system states as
nodes and events as arcs between these nodes.
When an event occurs, the system moves from
one state to another

l Statecharts are an integral part of the UML

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 18

Microwave oven model
Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Timer
Door
open

Door
closed

Door
closed

Door
open

Start

do: set power
 = 600

Half power
do: set power
 = 300

Set time

do: get number
exit: set time

Disabled

Operation

Timer

Cancel

Waiting

do: display
 time

Waiting

do: display
 time

do: display
 'Ready'

do: display
 'Waiting'

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 19

Microwave oven state description
State Description

Waiting The oven is waiting for input. The display shows the current time.
Half power The oven power is set to 300 watts. The display shows ‘Half

power’.
Full power The oven power is set to 600 watts. The display shows ‘Full

power’.
Set time The cooking time is set to the user’s input value. The display

shows the cooking time selected and is updated as the time is set.
Disabled Oven operation is disabled for safety. Interior oven light is on.

Display shows ‘Not ready’.
Enabled Oven operation is enabled. Interior oven light is off. Display

shows ‘Ready to cook’.
Operation Oven in operation. Interior oven light is on. Display shows the

timer countdown. On completion of cooking, the buzzer is
sounded for 5 seconds. Oven light is on. Display shows ‘Cooking
complete’ while buzzer is sounding.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 20

Microwave oven stimuli

Stimulus Description
Half power The user has pressed the half power button
Full power The user has pressed the full power button
Timer The user has pressed one of the timer buttons
Number The user has pressed a numeric key
Door open The oven door switch is not closed
Door closed The oven door switch is closed
Start The user has pressed the start button
Cancel The user has pressed the cancel button

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 21

Statecharts

l Allow the decomposition of a model into sub-
models (see following slide)

l A brief description of the actions is included
following the ‘do’ in each state

l Can be complemented by tables describing the
states and the stimuli

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 22

Microwave oven operation

Cook
do: run
 generator

Done

do: buzzer on
 for 5 secs.

Waiting

Alarm

do: display
 event

do: check
status

Checking

Turntable
fault

Emitter
fault

Disabled

OK

Timeout

Time
Operation

Door
open Cancel

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 23

Semantic data models

l Used to describe the logical structure of data
processed by the system

l Entity-relation-attribute model sets out the
entities in the system, the relationships between
these entities and the entity attributes

l Widely used in database design. Can readily be
implemented using relational databases

l No specific notation provided in the UML but
objects and associations can be used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 24

Software design semantic model
Design

name
description
C-date
M-date

Link

name
type

Node

name
type

links

has-links

12

1 n

Label

name
text
icon

has-labelshas-labels

1

n

1

n

has-linkshas-nodes is-a

1

n

1

n
1

1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 25

Data dictionaries

l Data dictionaries are lists of all of the names used
in the system models. Descriptions of the entities,
relationships and attributes are also included

l Advantages
• Support name management and avoid duplication

• Store of organisational knowledge linking analysis, design and
implementation

l Many CASE workbenches support data
dictionaries

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 26

Data dictionary entries

Name Description Type Date

has-labels
1:N relation between entities of type
Node or Link and entities of type
Label.

Relation 5.10.1998

Label
Holds structured or unstructured
information about nodes or links.
Labels are represented by an icon
(which can be a transparent box) and
associated text.

Entity 8.12.1998

Link
A 1:1 relation between design
entities represented as nodes. Links
are typed and may be named.

Relation 8.12.1998

name
(label)

Each label has a name which
identifies the type of label. The name
must be unique within the set of label
types used in a design.

Attribute 8.12.1998

name
(node)

Each node has a name which must be
unique within a design. The name
may be up to 64 characters long.

Attribute 15.11.1998

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 27

Object models

l Object models describe the system in terms of
object classes

l An object class is an abstraction over a set of
objects with common attributes and the services
(operations) provided by each object

l Various object models may be produced
• Inheritance models

• Aggregation models

• Interaction models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 28

Object models

l Natural ways of reflecting the real-world entities
manipulated by the system

l More abstract entities are more difficult to model
using this approach

l Object class identification is recognised as a
difficult process requiring a deep understanding
of the application domain

l Object classes reflecting domain entities are
reusable across systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 29

Inheritance models

l Organise the domain object classes into a
hierarchy

l Classes at the top of the hierarchy reflect the
common features of all classes

l Object classes inherit their attributes and services
from one or more super-classes. these may then
be specialised as necessary

l Class hierarchy design is a difficult process if
duplication in different branches is to be avoided

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 30

The Unified Modeling Language

l Devised by the developers of widely used object-
oriented analysis and design methods

l Has become an effective standard for object-
oriented modelling

l Notation
• Object classes are rectangles with the name at the top, attributes

in the middle section and operations in the bottom section

• Relationships between object classes (known as associations)
are shown as lines linking objects

• Inheritance is referred to as generalisation and is shown
‘upwards’ rather than ‘downwards’ in a hierarchy

Library class hierarchy
Catalogue number
Acquisition date
Cost
Type
Status
Number of copies

Library item

Acquire ()
Catalogue ()
Dispose ()
Issue ()
Return ()

Author
Edition
Publication date
ISBN

Book

Year
Issue

Magazine
Director
Date of release
Distributor

Film

Version
Platform

Computer
program

Title
Publisher

Published item

Title
Medium

Recorded item

User class hierarchy
Name
Address
Phone
Registration #

Library user

Register ()
De-register ()

Affiliation

Reader

Items on loan
Max. loans

Borrower

Department
Department phone

Staff

Major subject
Home address

Student

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 33

Multiple inheritance

l Rather than inheriting the attributes and services
from a single parent class, a system which
supports multiple inheritance allows object
classes to inherit from several super-classes

l Can lead to semantic conflicts where
attributes/services with the same name in
different super-classes have different semantics

l Makes class hierarchy reorganisation more
complex

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 34

Multiple inheritance

Tapes

Talking book

Author
Edition
Publication date
ISBN

Book

Speaker
Duration
Recording date

Voice recording

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 35

Object aggregation

l Aggregation model shows how classes which are
collections are composed of other classes

l Similar to the part-of relationship in semantic
data models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 36

Object aggregation

Videotape

Tape ids.

Lecture
notes

Text

OHP slides

Slides

Assignment

Credits

Solutions

Text
Diagrams

Exercises

#Problems
 Description

Course title
Number
Year
Instructor

Study pack

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 37

Object behaviour modelling

l A behavioural model shows the interactions
between objects to produce some particular
system behaviour that is specified as a use-case

l Sequence diagrams (or collaboration diagrams) in
the UML are used to model interaction between
objects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 38

Issue of electronic items

:Library User

Ecat:
Catalog

Lookup

Issue

Display

:Library Item Lib1:
NetServer

Issue licence

Accept licence

Compress

Deliver

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 39

CASE workbenches

l A coherent set of tools that is designed to support
related software process activities such as
analysis, design or testing

l Analysis and design workbenches support system
modelling during both requirements engineering
and system design

l These workbenches may support a specific design
method or may provide support for a creating
several different types of system model

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 40

An analysis and design workbench

Central
information
repository

Code
generator

Query
language
facilities

Structured
diagramming

tools

Data
dictionary

Report
generation
facilities

Design, analysis
and checking

tools

Forms
creation

tools

Import/export
facilities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 41

Analysis workbench components

l Diagram editors

l Model analysis and checking tools

l Repository and associated query language

l Data dictionary

l Report definition and generation tools

l Forms definition tools

l Import/export translators

l Code generation tools

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 42

Key points

l A model is an abstract system view.
Complementary types of model provide different
system information

l Context models show the position of a system in
its environment with other systems and processes

l Data flow models may be used to model the data
processing in a system

l State machine models model the system’s
behaviour in response to internal or external
events

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 7 Slide 43

Key points

l Semantic data models describe the logical
structure of data which is imported to or exported
by the systems

l Object models describe logical system entities,
their classification and aggregation

l Object models describe the logical system entities
and their classification and aggregation

l CASE workbenches support the development of
system models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 1

Software Prototyping

l Rapid software development to
validate requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 2

Objectives

l To describe the use of prototypes in different
types of development project

l To discuss evolutionary and throw-away
prototyping

l To introduce three rapid prototyping techniques -
high-level language development, database
programming and component reuse

l To explain the need for user interface prototyping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 3

Topics covered

l Prototyping in the software process

l Prototyping techniques

l User interface prototyping

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 4

System prototyping

l Prototyping is the rapid development of a system

l In the past, the developed system was normally
thought of as inferior in some way to the required
system so further development was required

l Now, the boundary between prototyping and
normal system development is blurred and many
systems are developed using an evolutionary
approach

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 5

Uses of system prototypes

l The principal use is to help customers and
developers understand the requirements for the
system
• Requirements elicitation. Users can experiment with a prototype

to see how the system supports their work

• Requirements validation. The prototype can reveal errors and
omissions in the requirements

l Prototyping can be considered as a risk reduction
activity which reduces requirements risks

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 6

Prototyping benefits

l Misunderstandings between software users and
developers are exposed

l Missing services may be detected and confusing
services may be identified

l A working system is available early in the process

l The prototype may serve as a basis for deriving a
system specification

l The system can support user training and system
testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 7

Prototyping process

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
report

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 8

Prototyping benefits

l Improved system usability

l Closer match to the system needed

l Improved design quality

l Improved maintainability

l Reduced overall development effort

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 9

Prototyping in the software process

l Evolutionary prototyping
• An approach to system development where an initial prototype

is produced and refined through a number of stages to the final
system

l Throw-away prototyping
• A prototype which is usually a practical implementation of the

system is produced to help discover requirements problems and
then discarded. The system is then developed using some other
development process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 10

Prototyping objectives

l The objective of evolutionary prototyping is to
deliver a working system to end-users. The
development starts with those requirements which
are best understood.

l The objective of throw-away prototyping is to
validate or derive the system requirements. The
prototyping process starts with those requirements
which are poorly understood

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 11

Approaches to prototyping

Evolutionary
prototyping

Throw-away
Prototyping

Delivered
system

Executable Prototype +
System Specification

Outline
Requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 12

Evolutionary prototyping

l Must be used for systems where the specification
cannot be developed in advance e.g. AI systems
and user interface systems

l Based on techniques which allow rapid system
iterations

l Verification is impossible as there is no
specification. Validation means demonstrating the
adequacy of the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 13

Evolutionary prototyping

Build prototype
system

Develop abstract
specification

Use prototype
system

Deliver
system

System
adequate?

YES

N

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 14

Evolutionary prototyping advantages

l Accelerated delivery of the system
• Rapid delivery and deployment are sometimes more important

than functionality or long-term software maintainability

l User engagement with the system
• Not only is the system more likely to meet user requirements,

they are more likely to commit to the use of the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 15

Evolutionary prototyping

l Specification, design and implementation are
inter-twined

l The system is developed as a series of increments
that are delivered to the customer

l Techniques for rapid system development are
used such as CASE tools and 4GLs

l User interfaces are usually developed using a GUI
development toolkit

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 16

Evolutionary prototyping problems

l Management problems
• Existing management processes assume a waterfall model of

development

• Specialist skills are required which may not be available in all
development teams

l Maintenance problems
• Continual change tends to corrupt system structure so long-term

maintenance is expensive

l Contractual problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 17

Prototypes as specifications

l Some parts of the requirements (e.g. safety-
critical functions) may be impossible to prototype
and so don’t appear in the specification

l An implementation has no legal standing as a
contract

l Non-functional requirements cannot be
adequately tested in a system prototype

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 18

Incremental development

l System is developed and delivered in increments
after establishing an overall architecture

l Requirements and specifications for each
increment may be developed

l Users may experiment with delivered increments
while others are being developed. therefore, these
serve as a form of prototype system

l Intended to combine some of the advantages of
prototyping but with a more manageable process
and better system structure

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 19

Incremental development process

Validate
increment

Build system
increment

Specify system
increment

Design system
architecture

Define system
deliverables

System
complete?

Integrate
increment

Validate
system

Deliver final
system

YES

NO

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 20

Throw-away prototyping

l Used to reduce requirements risk

l The prototype is developed from an initial
specification, delivered for experiment then
discarded

l The throw-away prototype should NOT be
considered as a final system
• Some system characteristics may have been left out

• There is no specification for long-term maintenance

• The system will be poorly structured and difficult to maintain

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 21

Throw-away prototyping

Outline
requirements

Develop
prototype

Evaluate
prototype

Specify
system

Develop
software

Validate
system

Delivered
software
system

Reusable
components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 22

Prototype delivery

l Developers may be pressurised to deliver a throw-
away prototype as a final system

l This is not recommended
• It may be impossible to tune the prototype to meet non-

functional requirements

• The prototype is inevitably undocumented

• The system structure will be degraded through changes made
during development

• Normal organisational quality standards may not have been
applied

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 23

Rapid prototyping techniques

l Various techniques may be used for rapid
development
• Dynamic high-level language development

• Database programming

• Component and application assembly

l These are not exclusive techniques - they are
often used together

l Visual programming is an inherent part of most
prototype development systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 24

Dynamic high-level languages

l Languages which include powerful data
management facilities

l Need a large run-time support system. Not
normally used for large system development

l Some languages offer excellent UI development
facilities

l Some languages have an integrated support
environment whose facilities may be used in the
prototype

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 25

Prototyping languages

Language Type Application domain
Smalltalk Object-oriented Interactive systems
Java Object-oriented Interactive systems
Prolog Logic Symbolic processing
Lisp List-based Symbolic processing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 26

Choice of prototyping language

l What is the application domain of the problem?

l What user interaction is required?

l What support environment comes with the
language?

l Different parts of the system may be programmed
in different languages. However, there may be
problems with language communications

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 27

Database programming languages

l Domain specific languages for business systems
based around a database management system

l Normally include a database query language, a
screen generator, a report generator and a
spreadsheet.

l May be integrated with a CASE toolset

l The language + environment is sometimes known
as a fourth-generation language (4GL)

l Cost-effective for small to medium sized business
systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 28

Database programming

DB
programming

language

Interface
generator Spreadsheet

Report
generator

Database management system

Fourth-generation language

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 29

Component and application assembly

l Prototypes can be created quickly from a set of
reusable components plus some mechanism to
‘glue’ these component together

l The composition mechanism must include control
facilities and a mechanism for component
communication

l The system specification must take into account
the availability and functionality of existing
components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 30

Prototyping with reuse

l Application level development
• Entire application systems are integrated with the prototype so

that their functionality can be shared

• For example, if text preparation is required, a standard word
processor can be used

l Component level development
• Individual components are integrated within a standard

framework to implement the system

• Frame work can be a scripting language or an integration
framework such as CORBA

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 31

Reusable component composition

Component
composition
framework

Executable
prototype

Reusable
software

components

Control and
integration code

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 32

Compound documents

l For some applications, a prototype can be created
by developing a compound document

l This is a document with active elements (such as
a spreadsheet) that allow user computations

l Each active element has an associated application
which is invoked when that element is selected

l The document itself is the integrator for the
different applications

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 33

Application linking in compound documents

Compound document

Word processor Spreadsheet Audio player

Text 1 Text 2 Text 3

Text 4 Text 5

Table 1

Table 2

Sound 1

Sound 2

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 34

Visual programming

l Scripting languages such as Visual Basic support
visual programming where the prototype is
developed by creating a user interface from
standard items and associating components with
these items

l A large library of components exists to support
this type of development

l These may be tailored to suit the specific
application requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 35

Visual programming with reuse

File Edit Views Layout Options Help

General
Index

Hypertext
display componentDate component

Range checking
script

Tree display
component

12th January 2000

3.876

Draw canvas
component

User prompt
component +

script

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 36

Problems with visual development

l Difficult to coordinate team-based development

l No explicit system architecture

l Complex dependencies between parts of the
program can cause maintainability problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 37

User interface prototyping

l It is impossible to pre-specify the look and feel of
a user interface in an effective way. prototyping is
essential

l UI development consumes an increasing part of
overall system development costs

l User interface generators may be used to ‘draw’
the interface and simulate its functionality with
components associated with interface entities

l Web interfaces may be prototyped using a web
site editor

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 38

Key points

l A prototype can be used to give end-users a
concrete impression of the system’s capabilities

l Prototyping is becoming increasingly used for
system development where rapid development is
essential

l Throw-away prototyping is used to understand
the system requirements

l In evolutionary prototyping, the system is
developed by evolving an initial version to the
final version

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 8 Slide 39

Key points

l Rapid development of prototypes is essential.
This may require leaving out functionality or
relaxing non-functional constraints

l Prototyping techniques include the use of very
high-level languages, database programming and
prototype construction from reusable components

l Prototyping is essential for parts of the system
such as the user interface which cannot be
effectively pre-specified. Users must be involved
in prototype evaluation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 1

Formal Specification

l Techniques for the
unambiguous specification of
software

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 2

Objectives

l To explain why formal specification techniques
help discover problems in system requirements

l To describe the use of algebraic techniques for
interface specification

l To describe the use of model-based techniques for
behavioural specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 3

Topics covered

l Formal specification in the software process

l Interface specification

l Behavioural specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 4

Formal methods

l Formal specification is part of a more general
collection of techniques that are known as ‘formal
methods’

l These are all based on mathematical
representation and analysis of software

l Formal methods include
• Formal specification

• Specification analysis and proof

• Transformational development

• Program verification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 5

Acceptance of formal methods

l Formal methods have not become mainstream
software development techniques as was once
predicted
• Other software engineering techniques have been successful at

increasing system quality. Hence the need for formal methods
has been reduced

• Market changes have made time-to-market rather than software
with a low error count the key factor. Formal methods do not
reduce time to market

• The scope of formal methods is limited. They are not well-suited
to specifying and analysing user interfaces and user interaction

• Formal methods are hard to scale up to large systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 6

Use of formal methods

l Formal methods have limited practical
applicability

l Their principal benefits are in reducing the
number of errors in systems so their mai area of
applicability is critical systems

l In this area, the use of formal methods is most
likely to be cost-effective

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 7

Specification in the software process

l Specification and design are inextricably
intermingled.

l Architectural design is essential to structure a
specification.

l Formal specifications are expressed in a
mathematical notation with precisely defined
vocabulary, syntax and semantics.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 8

Specification and design

Architectural
design

Requirements
specification

Requirements
definition

Software
specification

High-level
design

Increasing contractor involvement

Decreasing client involvement

Specification

Design

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 9

Specification in the software process

Requirements
specification

Formal
specification

System
modelling

Architectural
design

Requirements
definition

High-level
design

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 10

Specification techniques

l Algebraic approach
• The system is specified in terms of its operations and their

relationships

l Model-based approach
• The system is specified in terms of a state model that is

constructed using mathematical constructs such as sets and
sequences. Operations are defined by modifications to the
system’s state

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 11

Formal specification languages

Sequential Concurrent
Algebraic Larch (Guttag, Horning et

al., 1985; Guttag, Horning
et al., 1993),
OBJ (Futatsugi, Goguen et
al., 1985)

Lotos (Bolognesi and
Brinksma, 1987),

Model-based Z (Spivey, 1992)
VDM (Jones, 1980)
B (Wordsworth, 1996)

CSP (Hoare, 1985)
Petri Nets (Peterson, 1981)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 12

Use of formal specification

l Formal specification involves investing more
effort in the early phases of software development

l This reduces requirements errors as it forces a
detailed analysis of the requirements

l Incompleteness and inconsistencies can be
discovered and resolved

l Hence, savings as made as the amount of rework
due to requirements problems is reduced

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 13

Development costs with formal specification

Specification

Design and
Implementation

Validation

Specification

Design and
Implementation

Validation

Cost

Without formal
specification

With formal
specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 14

Interface specification

l Large systems are decomposed into subsystems
with well-defined interfaces between these
subsystems

l Specification of subsystem interfaces allows
independent development of the different
subsystems

l Interfaces may be defined as abstract data types
or object classes

l The algebraic approach to formal specification is
particularly well-suited to interface specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 15

Sub-system interfaces

Sub-system
A

Sub-system
B

Interface
objects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 16

The structure of an algebraic specification

sort < name >
imports < LIST OF SPECIFICATION NAMES >

Informal description of the sort and its operations

Operation signatures setting out the names and the types of
the parameters to the operations defined over the sort

Axioms defining the operations over the sort

< SPECIFICATION NAME > (Generic Parameter)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 17

Specification components

l Introduction
• Defines the sort (the type name) and declares other

specifications that are used

l Description
• Informally describes the operations on the type

l Signature
• Defines the syntax of the operations in the interface and their

parameters

l Axioms
• Defines the operation semantics by defining axioms which

characterise behaviour

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 18

Systematic algebraic specification

l Algebraic specifications of a system may be
developed in a systematic way
• Specification structuring.

• Specification naming.

• Operation selection.

• Informal operation specification

• Syntax definition

• Axiom definition

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 19

Specification operations

l Constructor operations. Operations which create
entities of the type being specified

l Inspection operations. Operations which evaluate
entities of the type being specified

l To specify behaviour, define the inspector
operations for each constructor operation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 20

Operations on a list ADT

l Constructor operations which evaluate to sort List
• Create, Cons and Tail

l Inspection operations which take sort list as a
parameter and return some other sort
• Head and Length.

l Tail can be defined using the simpler
constructors Create and Cons. No need to define
Head and Length with Tail.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 21

List specification

Head (Create) = Undefined exception (empty list)
Head (Cons (L, v)) = if L = Create then v else Head (L)
Length (Create) = 0
Length (Cons (L, v)) = Length (L) + 1
Tail (Create) = Create
Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v)

sort List
imports INTEGER

Defines a list where elements are added at the end and removed
from the front. The operations are Create, which brings an empty list
into existence, Cons, which creates a new list with an added member,
Length, which evaluates the list size, Head, which evaluates the front
element of the list, and Tail, which creates a list by removing the head from its
input list. Undefined represents an undefined value of type Elem.

Create → List
Cons (List, Elem) → List
Head (List) → Elem
Length (List) → Integer
Tail (List) → List

LIST (Elem)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 22

Recursion in specifications

l Operations are often specified recursively

l Tail (Cons (L, v)) = if L = Create then Create
else Cons (Tail (L), v)

• Cons ([5, 7], 9) = [5, 7, 9]

• Tail ([5, 7, 9]) = Tail (Cons ([5, 7], 9)) =

• Cons (Tail ([5, 7]), 9) = Cons (Tail (Cons ([5], 7)), 9) =

• Cons (Cons (Tail ([5]), 7), 9) =

• Cons (Cons (Tail (Cons ([], 5)), 7), 9) =

• Cons (Cons ([Create], 7), 9) = Cons ([7], 9) = [7, 9]

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 23

Interface specification in critical systems

l Consider an air traffic control system where
aircraft fly through managed sectors of airspace

l Each sector may include a number of aircraft but,
for safety reasons, these must be separated

l In this example, a simple vertical separation of
300m is proposed

l The system should warn the controller if aircraft
are instructed to move so that the separation rule
is breached

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 24

A sector object

l Critical operations on an object representing a
controlled sector are
• Enter. Add an aircraft to the controlled airspace

• Leave. Remove an aircraft from the controlled airspace

• Move. Move an aircraft from one height to another

• Lookup. Given an aircraft identifier, return its current height

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 25

Primitive operations

l It is sometimes necessary to introduce additional
operations to simplify the specification

l The other operations can then be defined using
these more primitive operations

l Primitive operations
• Create. Bring an instance of a sector into existence

• Put. Add an aircraft without safety checks

• In-space. Determine if a given aircraft is in the sector

• Occupied. Given a height, determine if there is an aircraft within
300m of that height

Sector specification

Enter (S, CS, H) =
 if In-space (S, CS) then S exception (Aircraft already in sector)
 elsif Occupied (S, H) then S exception (Height conflict)
 else Put (S, CS, H)

Leave (Create, CS) = Create exception (Aircraft not in sector)
Leave (Put (S, CS1, H1), CS) =
 if CS = CS1 then S else Put (Leave (S, CS), CS1, H1)

Move (S, CS, H) =
 if S = Create then Create exception (No aircraft in sector)
 elsif not In-space (S, CS) then S exception (Aircraft not in sector)
 elsif Occupied (S, H) then S exception (Height conflict)
 else Put (Leave (S, CS), CS, H)

-- NO-HEIGHT is a constant indicating that a valid height cannot be returned

Lookup (Create, CS) = NO-HEIGHT exception (Aircraft not in sector)
Lookup (Put (S, CS1, H1), CS) =
 if CS = CS1 then H1 else Lookup (S, CS)

Occupied (Create, H) = false
Occupied (Put (S, CS1, H1), H) =
 if (H1 > H and H1 - H ≤ 300) or (H > H1 and H - H1 ≤ 300) then true
 else Occupied (S, H)

In-space (Create, CS) = false
In-space (Put (S, CS1, H1), CS) =
 if CS = CS1 then true else In-space (S, CS)

sort Sector
imports INTEGER, BOOLEAN

Enter - adds an aircraft to the sector if safety conditions are satisfed
Leave - removes an aircraft from the sector
Move - moves an aircraft from one height to another if safe to do so
Lookup - Finds the height of an aircraft in the sector

Create - creates an empty sector
Put - adds an aircraft to a sector with no constraint checks
In-space - checks if an aircraft is already in a sector
Occupied - checks if a specified height is available

Enter (Sector, Call-sign, Height) → Sector
Leave (Sector, Call-sign) → Sector
Move (Sector, Call-sign, Height) → Sector
Lookup (Sector, Call-sign) → Height

Create → Sector
Put (Sector, Call-sign, Height) → Sector
In-space (Sector, Call-sign) → Boolean
Occupied (Sector, Height) → Boolean

SECTOR

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 27

Specification commentary

l Use the basic constructors Create and Put to
specify other operations

l Define Occupied and In-space using Create and
Put and use them to make checks in other
operation definitions

l All operations that result in changes to the sector
must check that the safety criterion holds

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 28

Behavioural specification

l Algebraic specification can be cumbersome when
the object operations are not independent of the
object state

l Model-based specification exposes the system
state and defines the operations in terms of
changes to that state

l The Z notation is a mature technique for model-
based specification. It combines formal and
informal description and uses graphical
highlighting when presenting specifications

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 29

The structure of a Z schema

contents ≤ capacity

Container
contents:
capacity:

Schema name Schema signature Schema predicate

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 30

An insulin pump

Needle
assembly

Sensor

Display1 Display2

Alarm

Pump Clock

Power supply

Insulin reservoir

Controller

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 31

Modelling the insulin pump

l The schema models the insulin pump as a number
of state variables
• reading?

• dose, cumulative_dose

• r0, r1, r2

• capacity

• alarm!

• pump!

• display1!, display2!

l Names followed by a ? are inputs, names
followed by a ! are outputs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 32

Schema invariant

l Each Z schema has an invariant part which
defines conditions that are always true

l For the insulin pump schema it is always true that
• The dose must be less than or equal to the capacity of the insulin

reservoir

• No single dose may be more than 5 units of insulin and the total
dose delivered in a time period must not exceed 50 units of
insulin. This is a safety constraint (see Chapters 16 and 17)

• display1! shows the status of the insulin reservoir.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 33

Insulin pump schema

Insulin_pump
reading? :
dose, cumulative_dose:
r0, r1, r2: // used to record the last 3 readings taken
capacity:
alarm!: {off, on}
pump!:
display1!, display2!: STRING

dose ≤ capacity ∧ dose ≤ 5 ∧ cumulative_dose ≤ 50
capacity ≥ 40 ⇒ display1! = " "
capacity ≤ 39 ∧ capacity ≥ 10 ⇒ display1! = "Insulin low"
capacity ≤ 9 ⇒ alarm! = on ∧ display1! = "Insulin very low"
r2 = reading?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 34

The dosage computation

l The insulin pump computes the amount of insulin
required by comparing the current reading with
two previous readings

l If these suggest that blood glucose is rising then
insulin is delivered

l Information about the total dose delivered is
maintained to allow the safety check invariant to
be applied

l Note that this invariant always applies - there is
no need to repeat it in the dosage computation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 35

DOSAGE schema
DOSAGE
∆Insulin_Pump

(
dose = 0 ∧
 (

((r1 ≥ r0) ∧ (r2 = r1)) ∨
((r1 > r0) ∧ (r2 ≤ r1)) ∨
((r1 < r0) ∧ ((r1-r2) > (r0-r1)))

) ∨
 dose = 4 ∧
 (
 ((r1 ≤ r0) ∧ (r2=r1)) ∨
 ((r1 < r0) ∧ ((r1-r2) ≤ (r0-r1)))
) ∨
dose =(r2 -r1) * 4 ∧
 (

((r1 ≤ r0) ∧ (r2 > r1)) ∨
((r1 > r0) ∧ ((r2 - r1) ≥ (r1 - r0)))

)
)
capacity' = capacity - dose
cumulative_dose' = cumulative_dose + dose
r0' = r1 ∧ r1' = r2

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 36

Output schemas

l The output schemas model the system displays
and the alarm that indicates some potentially
dangerous condition

l The output displays show the dose computed and
a warning message

l The alarm is activated if blood sugar is very low -
this indicates that the user should eat something
to increase their blood sugar level

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 37

Output schemas

DISPLAY
∆Insulin_Pump

display2!' = Nat_to_string (dose) ∧
(reading? < 3 ⇒ display1!' = "Sugar low" ∨
reading? > 30 ⇒ display1!' = "Sugar high" ∨
reading? ≥ 3 and reading? ≤ 30 ⇒ display1!' = "OK")

ALARM
∆Insulin_Pump

(reading? < 3 ∨ reading? > 30) ⇒ alarm!' = on ∨
 (reading? ≥ 3 ∧ reading? ≤ 30) ⇒ alarm!' = off

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 38

Schema consistency

l It is important that schemas are consistent.
Inconsistency suggests a problem with the system
requirements

l The INSULIN_PUMP schema and the
DISPLAYare inconsistent
• display1! shows a warning message about the insulin reservoir

(INSULIN_PUMP)

• display1! Shows the state of the blood sugar (DISPLAY)

l This must be resolved before implementation of
the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 39

Key points

l Formal system specification complements
informal specification techniques

l Formal specifications are precise and
unambiguous. They remove areas of doubt in a
specification

l Formal specification forces an analysis of the
system requirements at an early stage. Correcting
errors at this stage is cheaper than modifying a
delivered system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 9 Slide 40

Key points

l Formal specification techniques are most
applicable in the development of critical systems
and standards.

l Algebraic techniques are suited to interface
specification where the interface is defined as a
set of object classes

l Model-based techniques model the system using
sets and functions. This simplifies some types of
behavioural specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 1

Architectural Design

l Establishing the overall
structure of a software system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 2

Objectives

l To introduce architectural design and to discuss
its importance

l To explain why multiple models are required to
document a software architecture

l To describe types of architectural model that may
be used

l To discuss how domain-specific reference models
may be used as a basis for product-lines and to
compare software architectures

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 3

Topics covered

l System structuring

l Control models

l Modular decomposition

l Domain-specific architectures

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 4

Software architecture

l The design process for identifying the sub-
systems making up a system and the framework
for sub-system control and communication is
architectural design

l The output of this design process is a description
of the software architecture

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 5

Architectural design

l An early stage of the system design process

l Represents the link between specification and
design processes

l Often carried out in parallel with some
specification activities

l It involves identifying major system components
and their communications

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 6

Advantages of explicit architecture

l Stakeholder communication
• Architecture may be used as a focus of discussion by system

stakeholders

l System analysis
• Means that analysis of whether the system can meet its non-

functional requirements is possible

l Large-scale reuse
• The architecture may be reusable across a range of systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 7

Architectural design process

l System structuring
• The system is decomposed into several principal sub-systems

and communications between these sub-systems are identified

l Control modelling
• A model of the control relationships between the different parts

of the system is established

l Modular decomposition
• The identified sub-systems are decomposed into modules

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 8

Sub-systems and modules

l A sub-system is a system in its own right whose
operation is independent of the services provided
by other sub-systems.

l A module is a system component that provides
services to other components but would not
normally be considered as a separate system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 9

Architectural models

l Different architectural models may be produced
during the design process

l Each model presents different perspectives on the
architecture

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 10

Architectural models

l Static structural model that shows the major
system components

l Dynamic process model that shows the process
structure of the system

l Interface model that defines sub-system
interfaces

l Relationships model such as a data-flow model

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 11

Architectural styles

l The architectural model of a system may conform
to a generic architectural model or style

l An awareness of these styles can simplify the
problem of defining system architectures

l However, most large systems are heterogeneous
and do not follow a single architectural style

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 12

Architecture attributes

l Performance
• Localise operations to minimise sub-system communication

l Security
• Use a layered architecture with critical assets in inner layers

l Safety
• Isolate safety-critical components

l Availability
• Include redundant components in the architecture

l Maintainability
• Use fine-grain, self-contained components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 13

System structuring

l Concerned with decomposing the system into
interacting sub-systems

l The architectural design is normally expressed as
a block diagram presenting an overview of the
system structure

l More specific models showing how sub-systems
share data, are distributed and interface with each
other may also be developed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 14

Packing robot control system
Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controller

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 15

The repository model

l Sub-systems must exchange data. This may be
done in two ways:
• Shared data is held in a central database or repository and may

be accessed by all sub-systems

• Each sub-system maintains its own database and passes data
explicitly to other sub-systems

l When large amounts of data are to be shared, the
repository model of sharing is most commonly
used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 16

CASE toolset architecture

Project
repository

Design
translator

Program
editor

Design
editor

Code
generator

Design
analyser

Report
generator

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 17

Repository model characteristics

l Advantages
• Efficient way to share large amounts of data

• Sub-systems need not be concerned with how data is produced
Centralised management e.g. backup, security, etc.

• Sharing model is published as the repository schema

l Disadvantages
• Sub-systems must agree on a repository data model. Inevitably a

compromise

• Data evolution is difficult and expensive

• No scope for specific management policies

• Difficult to distribute efficiently

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 18

Client-server architecture

l Distributed system model which shows how data
and processing is distributed across a range of
components

l Set of stand-alone servers which provide specific
services such as printing, data management, etc.

l Set of clients which call on these services

l Network which allows clients to access servers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 19

Film and picture library

Catalogue
server

Catalogue

Video
server

Film clip
files

Picture
server

Digitized
photographs

Hypertext
server

Hypertext
web

Client 1 Client 2 Client 3 Client 4

Wide-bandwidth network

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 20

Client-server characteristics

l Advantages
• Distribution of data is straightforward

• Makes effective use of networked systems. May require cheaper
hardware

• Easy to add new servers or upgrade existing servers

l Disadvantages
• No shared data model so sub-systems use different data

organisation. data interchange may be inefficient

• Redundant management in each server

• No central register of names and services - it may be hard to
find out what servers and services are available

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 21

Abstract machine model

l Used to model the interfacing of sub-systems

l Organises the system into a set of layers (or
abstract machines) each of which provide a set of
services

l Supports the incremental development of sub-
systems in different layers. When a layer
interface changes, only the adjacent layer is
affected

l However, often difficult to structure systems in
this way

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 22

Version management system

Operating
system

Database system

Object management

Version management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 23

Control models

l Are concerned with the control flow between
sub-systems. Distinct from the system
decomposition model

l Centralised control
• One sub-system has overall responsibility for control and starts

and stops other sub-systems

l Event-based control
• Each sub-system can respond to externally generated events

from other sub-systems or the system’s environment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 24

Centralised control

l A control sub-system takes responsibility for
managing the execution of other sub-systems

l Call-return model
• Top-down subroutine model where control starts at the top of a

subroutine hierarchy and moves downwards. Applicable to
sequential systems

l Manager model
• Applicable to concurrent systems. One system component

controls the stopping, starting and coordination of other system
processes. Can be implemented in sequential systems as a case
statement

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 25

Call-return model

Routine 1.2Routine 1.1 Routine 3.2Routine 3.1

Routine 2 Routine 3Routine 1

Main
program

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 26

Real-time system control

System
controller

User
interface

Fault
handler

Computation
processes

Actuator
processes

Sensor
processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 27

Event-driven systems

l Driven by externally generated events where the
timing of the event is outwith the control of the
sub-systems which process the event

l Two principal event-driven models
• Broadcast models. An event is broadcast to all sub-systems.

Any sub-system which can handle the event may do so

• Interrupt-driven models. Used in real-time systems where
interrupts are detected by an interrupt handler and passed to
some other component for processing

l Other event driven models include spreadsheets
and production systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 28

Broadcast model

l Effective in integrating sub-systems on different
computers in a network

l Sub-systems register an interest in specific
events. When these occur, control is transferred
to the sub-system which can handle the event

l Control policy is not embedded in the event and
message handler. Sub-systems decide on events
of interest to them

l However, sub-systems don’t know if or when an
event will be handled

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 29

Selective broadcasting

Sub-system
1

Event and message handler

Sub-system
2

Sub-system
3

Sub-system
4

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 30

Interrupt-driven systems

l Used in real-time systems where fast response to
an event is essential

l There are known interrupt types with a handler
defined for each type

l Each type is associated with a memory location
and a hardware switch causes transfer to its
handler

l Allows fast response but complex to program and
difficult to validate

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 31

Interrupt-driven control

Handler
1

Handler
2

Handler
3

Handler
4

Process
1

Process
2

Process
3

Process
4

Interrupts

Interrupt
vector

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 32

Modular decomposition

l Another structural level where sub-systems are
decomposed into modules

l Two modular decomposition models covered
• An object model where the system is decomposed into

interacting objects

• A data-flow model where the system is decomposed into
functional modules which transform inputs to outputs. Also
known as the pipeline model

l If possible, decisions about concurrency should
be delayed until modules are implemented

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 33

Object models

l Structure the system into a set of loosely coupled
objects with well-defined interfaces

l Object-oriented decomposition is concerned with
identifying object classes, their attributes and
operations

l When implemented, objects are created from
these classes and some control model used to
coordinate object operations

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 34

Invoice processing system

issue ()
sendReminder ()
acceptPayment ()
sendReceipt ()

invoice#
date
amount
customer

Invoice

invoice#
date
amount
customer#

Receipt

invoice#
date
amount
customer#

Payment

customer#
name
address
credit period

Customer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 35

Data-flow models

l Functional transformations process their inputs to
produce outputs

l May be referred to as a pipe and filter model (as
in UNIX shell)

l Variants of this approach are very common.
When transformations are sequential, this is a
batch sequential model which is extensively used
in data processing systems

l Not really suitable for interactive systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 36

Invoice processing system

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 37

Domain-specific architectures

l Architectural models which are specific to some
application domain

l Two types of domain-specific model
• Generic models which are abstractions from a number of real

systems and which encapsulate the principal characteristics of
these systems

• Reference models which are more abstract, idealised model.
Provide a means of information about that class of system and
of comparing different architectures

l Generic models are usually bottom-up models;
Reference models are top-down models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 38

Generic models

l Compiler model is a well-known example
although other models exist in more specialised
application domains
• Lexical analyser

• Symbol table

• Syntax analyser

• Syntax tree

• Semantic analyser

• Code generator

l Generic compiler model may be organised
according to different architectural models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 39

Compiler model

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol
table

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 40

Language processing system

Syntax
analyser

Lexical
analyser

Semantic
analyser

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Pretty-
printer

Editor

Optimizer

Code
generator

Repository

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 41

Reference architectures

l Reference models are derived from a study of the
application domain rather than from existing
systems

l May be used as a basis for system
implementation or to compare different systems.
It acts as a standard against which systems can be
evaluated

l OSI model is a layered model for communication
systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 42

OSI reference model

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

Communica tions medium

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 43

Key points

l The software architect is responsible for deriving
a structural system model, a control model and a
sub-system decomposition model

l Large systems rarely conform to a single
architectural model

l System decomposition models include repository
models, client-server models and abstract
machine models

l Control models include centralised control and
event-driven models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 10 Slide 44

Key points

l Modular decomposition models include data-flow
and object models

l Domain specific architectural models are
abstractions over an application domain. They
may be constructed by abstracting from existing
systems or may be idealised reference models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 1

Distributed Systems Architectures

Architectural design for software
that executes on more than one
processor

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 2

Objectives

l To explain the advantages and disadvantages of
distributed systems architectures

l To describe different approaches to the
development of client-server systems

l To explain the differences between client-server
and distributed object architectures

l To describe object request brokers and the
principles underlying the CORBA standards

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 3

Topics covered

l Multiprocessor architectures

l Client-server architectures

l Distributed object architectures

l CORBA

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 4

Distributed systems

l Virtually all large computer-based systems are
now distributed systems

l Information processing is distributed over several
computers rather than confined to a single
machine

l Distributed software engineering is now very
important

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 5

System types

l Personal systems that are not distributed and that
are designed to run on a personal computer or
workstation.

l Embedded systems that run on a single processor
or on an integrated group of processors.

l Distributed systems where the system software
runs on a loosely integrated group of cooperating
processors linked by a network.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 6

Distributed system characteristics

l Resource sharing

l Openness

l Concurrency

l Scalability

l Fault tolerance

l Transparency

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 7

Distributed system disadvantages

l Complexity

l Security

l Manageability

l Unpredictability

Issues in distributed system design

Design issue Description
Resource
identification

The resources in a distributed system are spread across different
computers and a naming scheme has to be devised so that users can
discover and refer to the resources that they need. An example of
such a naming scheme is the URL (Uniform Resource Locator) that
is used to identify WWW pages. If a meaningful and universally
understood identification scheme is not used then many of these
resources will be inaccessible to system users.

Communications The universal availability of the Internet and the efficient
implementation of Internet TCP/IP communication protocols means
that, for most distributed systems, these are the most effective way
for the computers to communicate. However, where there are
specific requirements for performance, reliability etc. alternative
approaches to communications may be used.

Quality of service The quality of service offered by a system reflects its performance,
availability and reliability. It is affected by a number of factors such
as the allocation of processes to processes in the system, the
distribution of resources across the system, the network and the
system hardware and the adaptability of the system.

Software
architectures

The software architecture describes how the application
functionality is distributed over a number of logical components and
how these components are distributed across processors. Choosing
the right architecture for an application is essential to achieve the
desired quality of service.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 9

Distributed systems archiectures

l Client-server architectures
• Distributed services which are called on by clients. Servers that

provide services are treated differently from clients that use
services

l Distributed object architectures
• No distinction between clients and servers. Any object on the

system may provide and use services from other objects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 10

Middleware

l Software that manages and supports the different
components of a distributed system. In essence, it
sits in the middle of the system

l Middleware is usually off-the-shelf rather than
specially written software

l Examples
• Transaction processing monitors

• Data convertors

• Communication controllers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 11

Multiprocessor architectures

l Simplest distributed system model

l System composed of multiple processes which
may (but need not) execute on different
processors

l Architectural model of many large real-time
systems

l Distribution of process to processor may be pre-
ordered or may be under the control of a
despatcher

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 12

A multiprocessor traffic control system

Traffic lights

Light
control
process

Traffic light control
processor

Traffic flow
processor

Operator consoles
Traffic flow sensors

and cameras

Sensor
processor

Sensor
control
process

Display
process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 13

Client-server architectures

l The application is modelled as a set of services
that are provided by servers and a set of clients
that use these services

l Clients know of servers but servers need not
know of clients

l Clients and servers are logical processes

l The mapping of processors to processes is not
necessarily 1 : 1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 14

A client-server system

s1

s2 s3

s4
c1

c2 c3 c4

c5

c6
c7 c8

c9

c10

c11

c12

Client process

Server process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 15

Computers in a C/S network

Network

SC1SC2

CC1 CC2 CC3

CC5 CC6CC4

Server
computer

Client
computer

s1, s2 s3, s4

c5, c6, c7

c1 c2 c3, c4

c8, c9 c10, c11, c12

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 16

Layered application architecture

l Presentation layer
• Concerned with presenting the results of a computation to

system users and with collecting user inputs

l Application processing layer
• Concerned with providing application specific functionality e.g.,

in a banking system, banking functions such as open account,
close account, etc.

l Data management layer
• Concerned with managing the system databases

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 17

Application layers

Presentation layer

Application processing
layer

Data management
layer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 18

Thin and fat clients

l Thin-client model
• In a thin-client model, all of the application processing and data

management is carried out on the server. The client is simply
responsible for running the presentation software.

l Fat-client model
• In this model, the server is only responsible for data

management. The software on the client implements the
application logic and the interactions with the system user.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 19

Thin and fat clients

Thin-client
model

Fat-client
model Client

Client

Server

Data management
Application
processing

Presentation

Server

Data
management

Presentation
Application processing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 20

Thin client model

l Used when legacy systems are migrated to client
server architectures.
• The legacy system acts as a server in its own right with a

graphical interface implemented on a client

l A major disadvantage is that it places a heavy
processing load on both the server and the
network

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 21

Fat client model

l More processing is delegated to the client as the
application processing is locally executed

l Most suitable for new C/S systems where the
capabilities of the client system are known in
advance

l More complex than a thin client model especially
for management. New versions of the application
have to be installed on all clients

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 22

A client-server ATM system

Account server

Customer
account
database

Tele-
processing

monitor

ATM

ATM

ATM

ATM

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 23

Three-tier architectures

l In a three-tier architecture, each of the
application architecture layers may execute on a
separate processor

l Allows for better performance than a thin-client
approach and is simpler to manage than a fat-
client approach

l A more scalable architecture - as demands
increase, extra servers can be added

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 24

A 3-tier C/S architecture

Client

Server

Data
management

Presentation
Server

Application
processing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 25

An internet banking system

Database server

Customer
account
database

Web server

Client

Client

Client

Client

Account service
provision

SQL
SQL query

HTTP interaction

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 26

Use of C/S architectures
Architecture Applications
Two-tier C/S
architecture with
thin clients

Legacy system applications where separating application
processing and data management is impractical
Computationally-intensive applications such as compilers with
little or no data management
Data-intensive applications (browsing and querying) with little
or no application processing.

Two-tier C/S
architecture with
fat clients

Applications where application processing is provided by
COTS (e.g. Microsoft Excel) on the client
Applications where computationally-intensive processing of
data (e.g. data visualisation) is required.
Applications with relatively stable end-user functionality used
in an environment with well-established system management

Three-tier or
multi-tier C/S
architecture

Large scale applications with hundreds or thousands of clients
Applications where both the data and the application are
volatile.
Applications where data from multiple sources are integrated

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 27

Distributed object architectures

l There is no distinction in a distributed object
architectures between clients and servers

l Each distributable entity is an object that provides
services to other objects and receives services
from other objects

l Object communication is through a middleware
system called an object request broker (software
bus)

l However, more complex to design than C/S
systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 28

Distributed object architecture

Software bus

o1 o2 o3 o4

o5 o6

S (o1) S (o2) S (o3) S (o4)

S (o5) S (o6)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 29

Advantages of distributed object architecture

l It allows the system designer to delay decisions
on where and how services should be provided

l It is a very open system architecture that allows
new resources to be added to it as required

l The system is flexible and scaleable

l It is possible to reconfigure the system
dynamically with objects migrating across the
network as required

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 30

Uses of distributed object architecture

l As a logical model that allows you to structure
and organise the system. In this case, you think
about how to provide application functionality
solely in terms of services and combinations of
services

l As a flexible approach to the implementation of
client-server systems. The logical model of the
system is a client-server model but both clients
and servers are realised as distributed objects
communicating through a software bus

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 31

A data mining system

Database 1

Database 2

Database 3

Integrator 1

Integrator 2

Visualiser

Display

Report gen.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 32

Data mining system

l The logical model of the system is not one of
service provision where there are distinguished
data management services

l It allows the number of databases that are
accessed to be increased without disrupting the
system

l It allows new types of relationship to be mined by
adding new integrator objects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 33

CORBA

l CORBA is an international standard for an Object
Request Broker - middleware to manage
communications between distributed objects

l Several implementation of CORBA are available

l DCOM is an alternative approach by Microsoft to
object request brokers

l CORBA has been defined by the Object
Management Group

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 34

Application structure

l Application objects

l Standard objects, defined by the OMG, for a
specific domain e.g. insurance

l Fundamental CORBA services such as directories
and security management

l Horizontal (i.e. cutting across applications)
facilities such as user interface facilities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 35

CORBA application structure

CORBA services

Object request broker

Domain
facilities

Horizontal
CORBA facilities

Application
objects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 36

CORBA standards

l An object model for application objects
• A CORBA object is an encapsulation of state with a well-

defined, language-neutral interface defined in an IDL (interface
definition language)

l An object request broker that manages requests
for object services

l A set of general object services of use to many
distributed applications

l A set of common components built on top of
these services

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 37

CORBA objects

l CORBA objects are comparable, in principle, to
objects in C++ and Java

l They MUST have a separate interface definition
that is expressed using a common language (IDL)
similar to C++

l There is a mapping from this IDL to
programming languages (C++, Java, etc.)

l Therefore, objects written in different languages
can communicate with each other

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 38

Object request broker (ORB)

l The ORB handles object communications. It
knows of all objects in the system and their
interfaces

l Using an ORB, the calling object binds an IDL
stub that defines the interface of the called object

l Calling this stub results in calls to the ORB which
then calls the required object through a published
IDL skeleton that links the interface to the service
implementation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 39

ORB-based object communications

o1 o2

S (o1) S (o2)

IDL
stub

IDL
skeleton

Object Request Broker

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 40

Inter-ORB communications

l ORBs are not usually separate programs but are a
set of objects in a library that are linked with an
application when it is developed

l ORBs handle communications between objects
executing on the sane machine

l Several ORBS may be available and each
computer in a distributed system will have its
own ORB

l Inter-ORB communications are used for
distributed object calls

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 41

Inter-ORB communications

o1 o2

S (o1) S (o2)

IDL IDL

Object Request Broker

o3 o4

S (o3) S (o4)

IDL IDL

Object Request Broker

Network

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 42

CORBA services

l Naming and trading services
• These allow objects to discover and refer to other objects on the

network

l Notification services
• These allow objects to notify other objects that an event has

occurred

l Transaction services
• These support atomic transactions and rollback on failure

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 43

l Almost all new large systems are distributed
systems

l Distributed systems support resource sharing,
openness, concurrency, scalability, fault tolerance
and transparency

l Client-server architectures involve services being
delivered by servers to programs operating on
clients

l User interface software always runs on the client
and data management on the server

Key points

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 11 Slide 44

Key points

l In a distributed object architecture, there is no
distinction between clients and servers

l Distributed object systems require middleware to
handle object communications

l The CORBA standards are a set of middleware
standards that support distributed object
architectures

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 1

Object-oriented Design

Designing systems using self-
contained objects and object
classes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 2

Objectives

l To explain how a software design may be
represented as a set of interacting objects that
manage their own state and operations

l To describe the activities in the object-oriented
design process

l To introduce various models that describe an
object-oriented design

l To show how the UML may be used to represent
these models

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 3

Topics covered

l Objects and object classes

l An object-oriented design process

l Design evolution

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 4

Characteristics of OOD

l Objects are abstractions of real-world or system
entities and manage themselves

l Objects are independent and encapsulate state and
representation information.

l System functionality is expressed in terms of
object services

l Shared data areas are eliminated. Objects
communicate by message passing

l Objects may be distributed and may execute
sequentially or in parallel

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 5

Interacting objects

state o3

o3:C3

state o4

o4: C4

state o1

o1: C1

state o6

o6: C1

state o5

o5:C5

state o2

o2: C3

ops1() ops3 () ops4 ()

ops3 () ops1 () ops5 ()

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 6

Advantages of OOD

l Easier maintenance. Objects may be
understood as stand-alone entities

l Objects are appropriate reusable components

l For some systems, there may be an obvious
mapping from real world entities to system
objects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 7

Object-oriented development

l Object-oriented analysis, design and
programming are related but distinct

l OOA is concerned with developing an object
model of the application domain

l OOD is concerned with developing an object-
oriented system model to implement requirements

l OOP is concerned with realising an OOD using
an OO programming language such as Java or
C++

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 8

Objects and object classes

l Objects are entities in a software system which
represent instances of real-world and system
entities

l Object classes are templates for objects. They
may be used to create objects

l Object classes may inherit attributes and services
from other object classes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 9

Objects

An object is an entity which has a state and a defined set of
operations which operate on that state. The state is represented as a
set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these
services when some computation is required.

Objects are created according to some object class definition. An
object class definition serves as a template for objects. It includes
declarations of all the attributes and services which should be
associated with an object of that class.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 10

The Unified Modeling Language

l Several different notations for describing object-
oriented designs were proposed in the 1980s and
1990s

l The Unified Modeling Language is an integration
of these notations

l It describes notations for a number of different
models that may be produced during OO analysis
and design

l It is now a de facto standard for OO modelling

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 11

Employee object class (UML)
Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept
manager: Employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 12

Object communication

l Conceptually, objects communicate by
message passing.

l Messages
• The name of the service requested by the calling object.

• Copies of the information required to execute the service
and the name of a holder for the result of the service.

l In practice, messages are often implemented
by procedure calls
• Name = procedure name.

• Information = parameter list.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 13

Message examples

// Call a method associated with a buffer
// object that returns the next value
// in the buffer

v = circularBuffer.Get () ;

// Call the method associated with a
// thermostat object that sets the
// temperature to be maintained

thermostat.setTemp (20) ;

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 14

Generalisation and inheritance

l Objects are members of classes which define
attribute types and operations

l Classes may be arranged in a class hierarchy
where one class (a super-class) is a generalisation
of one or more other classes (sub-classes)

l A sub-class inherits the attributes and
operations from its super class and may add
new methods or attributes of its own

l Generalisation in the UML is implemented as
inheritance in OO programming languages

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 15

A generalisation hierarchy
Employee

Programmer

project
progLanguage

Manager

Project
Manager

budgetsControlled
dateAppointed

projects

Dept.
Manager

Strategic
Manager

dept responsibilities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 16

Advantages of inheritance

l It is an abstraction mechanism which may be used
to classify entities

l It is a reuse mechanism at both the design and the
programming level

l The inheritance graph is a source of
organisational knowledge about domains and
systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 17

Problems with inheritance

l Object classes are not self-contained. they cannot
be understood without reference to their super-
classes

l Designers have a tendency to reuse the
inheritance graph created during analysis. Can
lead to significant inefficiency

l The inheritance graphs of analysis, design and
implementation have different functions and
should be separately maintained

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 18

Inheritance and OOD

l There are differing views as to whether
inheritance is fundamental to OOD.
• View 1. Identifying the inheritance hierarchy or network is a

fundamental part of object-oriented design. Obviously this can
only be implemented using an OOPL.

• View 2. Inheritance is a useful implementation concept which
allows reuse of attribute and operation definitions. Identifying
an inheritance hierarchy at the design stage places unnecessary
restrictions on the implementation

l Inheritance introduces complexity and this is
undesirable, especially in critical systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 19

UML associations

l Objects and object classes participate in
relationships with other objects and object classes

l In the UML, a generalised relationship is
indicated by an association

l Associations may be annotated with information
that describes the association

l Associations are general but may indicate that an
attribute of an object is an associated object or
that a method relies on an associated object

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 20

An association model

Employee Department

Manager

is-member-of

is-managed-by

manages

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 21

Concurrent objects

l The nature of objects as self-contained entities
make them suitable for concurrent
implementation

l The message-passing model of object
communication can be implemented directly if
objects are running on separate processors in a
distributed system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 22

Servers and active objects

l Servers.
• The object is implemented as a parallel process (server)

with entry points corresponding to object operations. If no
calls are made to it, the object suspends itself and waits for
further requests for service

l Active objects
• Objects are implemented as parallel processes and the

internal object state may be changed by the object itself and
not simply by external calls

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 23

Active transponder object

l Active objects may have their attributes modified
by operations but may also update them
autonomously using internal operations

l Transponder object broadcasts an aircraft’s
position. The position may be updated using a
satellite positioning system. The object
periodically update the position by triangulation
from satellites

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 24

An active transponder object
class Transponder extends Thread {

Position currentPosition ;
Coords c1, c2 ;
Satellite sat1, sat2 ;
Navigator theNavigator ;

public Position givePosition ()
{

return currentPosition ;
}

public void run ()
{

while (true)
{

c1 = sat1.position () ;
c2 = sat2.position () ;
currentPosition = theNavigator.compute (c1, c2) ;

}

}

} //Transponder

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 25

Java threads

l Threads in Java are a simple construct for
implementing concurrent objects

l Threads must include a method called run() and
this is started up by the Java run-time system

l Active objects typically include an infinite loop
so that they are always carrying out the
computation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 26

An object-oriented design process

l Define the context and modes of use of the
system

l Design the system architecture

l Identify the principal system objects

l Develop design models

l Specify object interfaces

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 27

Weather system description

A weather data collection system is required to generate weather maps on a
regular basis using data collected from remote, unattended weather stations
and other data sources such as weather observers, balloons and satellites.
Weather stations transmit their data to the area computer in response to a
request from that machine.

The area computer validates the collected data and integrates it with the data
from different sources. The integrated data is archived and, using data from
this archive and a digitised map database a set of local weather maps is
created. Maps may be printed for distribution on a special-purpose map
printer or may be displayed in a number of different formats.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 28

Weather station description

A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a barometer
and a rain gauge. Data is collected every five minutes.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data. The
summarised data is transmitted to the mapping computer when a
request is received.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 29

Layered architecture

«subsystem»
Data collection

«subsystem»
Data processing

«subsystem»
Data archiving

«subsystem»
Data display

Data collection layer where objects
are concerned with acquiring data
from remote sources

Data processing layer where objects
are concerned with checking and
integrating the collected data

Data archiving layer where objects
are concerned with storing the data
 for future processing

Data display layer where objects are
concerned with preparing and
presenting the data in a human-
readable form

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 30

System context and models of use

l Develop an understanding of the relationships
between the software being designed and its
external environment

l System context
• A static model that describes other systems in the environment.

Use a subsystem model to show other systems. Following slide
shows the systems around the weather station system.

l Model of system use
• A dynamic model that describes how the system interacts with

its environment. Use use-cases to show interactions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 31

Subsystems in the weather mapping system

«subsystem»
Data collection

«subsystem»
Data processing

«subsystem»
Data archiving

«subsystem»
Data display

Weather
station

Satellite

Comms

Balloon

Observer

Data
checking

Data
integration

Map store Data store

Data
storage

Map

User
interface

Map
display

Map
printer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 32

Use-cases for the weather station

Startup

Shutdown

Report

Calibrate

Test

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 33

Use-case description
System Weather station
Use-case Report
Actors Weather data collection system, Weather station
Data The weather station sends a summary of the weather data that has been

collected from the instruments in the collection period to the weather data
collection system. The data sent are the maximum minimum and average
ground and air temperatures, the maximum, minimum and average air
pressures, the maximum, minimum and average wind speeds, the total
rainfall and the wind direction as sampled at 5 minute intervals.

Stimulus The weather data collection system establishes a modem link with the
weather station and requests transmission of the data.

Response The summarised data is sent to the weather data collection system
Comments Weather stations are usually asked to report once per hour but this

frequency may differ from one station to the other and may be modified in
future.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 34

Architectural design

l Once interactions between the system and its
environment have been understood, you use this
information for designing the system architecture

l Layered architecture is appropriate for the
weather station
• Interface layer for handling communications

• Data collection layer for managing instruments

• Instruments layer for collecting data

l There should be no more than 7 entities in an
architectural model

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 35

Weather station architecture

«subsystem»
Data collection

«subsystem»
Instruments

«subsystem»
Interface

Weather station

Manages all
external

communications

Collects and
summarises
weather data

Package of
instruments for raw

data collections

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 36

Object identification

l Identifying objects (or object classes) is the most
difficult part of
object oriented design

l There is no 'magic formula' for object
identification. It relies on the skill, experience
and domain knowledge of system designers

l Object identification is an iterative process. You
are unlikely to get it right first time

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 37

Approaches to identification

l Use a grammatical approach based on a natural
language description of the system (used in Hood
method)

l Base the identification on tangible things in the
application domain

l Use a behavioural approach and identify objects
based on what participates in what behaviour

l Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
identified

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 38

Weather station object classes

l Ground thermometer, Anemometer, Barometer
• Application domain objects that are ‘hardware’ objects related

to the instruments in the system

l Weather station
• The basic interface of the weather station to its environment. It

therefore reflects the interactions identified in the use-case
model

l Weather data
• Encapsulates the summarised data from the instruments

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 39

Weather station object classes

identifier

reportWeather ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation

test ()
calibrate ()

Ground
thermometer

temperature

Anemometer

windSpeed
windDirection

test ()

Barometer

pressure
height

test ()
calibrate ()

WeatherData

airTemperatures
groundTemperatures
windSpeeds
windDirections
pressures
rainfall

collect ()
summarise ()

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 40

Further objects and object refinement

l Use domain knowledge to identify more objects
and operations
• Weather stations should have a unique identifier

• Weather stations are remotely situated so instrument failures
have to be reported automatically. Therefore attributes and
operations for self-checking are required

l Active or passive objects
• In this case, objects are passive and collect data on request

rather than autonomously. This introduces flexibility at the
expense of controller processing time

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 41

Design models

l Design models show the objects and object
classes and relationships between these entities

l Static models describe the static structure of the
system in terms of object classes and relationships

l Dynamic models describe the dynamic
interactions between objects.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 42

Examples of design models

l Sub-system models that show logical groupings
of objects into coherent subsystems

l Sequence models that show the sequence of
object interactions

l State machine models that show how individual
objects change their state in response to events

l Other models include use-case models,
aggregation models, generalisation models,etc.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 43

Subsystem models

l Shows how the design is organised into logically
related groups of objects

l In the UML, these are shown using packages - an
encapsulation construct. This is a logical model.
The actual organisation of objects in the system
may be different.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 44

Weather station subsystems
«subsystem»

Interface

CommsController

WeatherStation

«subsystem»
Data collection

«subsystem»
Instruments

Air
 thermometer

WeatherData

Ground
 thermometer

Anemometer

WindVane

RainGauge

Instrument
Status

Barometer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 45

Sequence models

l Sequence models show the sequence of object
interactions that take place
• Objects are arranged horizontally across the top

• Time is represented vertically so models are read top to bottom

• Interactions are represented by labelled arrows, Different styles
of arrow represent different types of interaction

• A thin rectangle in an object lifeline represents the time when
the object is the controlling object in the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 46

Data collection sequence
:CommsController

request (report)

acknowledge ()
report ()

summarise ()

reply (report)

acknowledge ()

send (report)

:WeatherStation :WeatherData

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 47

Statecharts

l Show how objects respond to different service
requests and the state transitions triggered by
these requests
• If object state is Shutdown then it responds to a Startup()

message

• In the waiting state the object is waiting for further messages

• If reportWeather () then system moves to summarising state

• If calibrate () the system moves to a calibrating state

• A collecting state is entered when a clock signal is received

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 48

Weather station state diagram

Shutdown Waiting Testing

Transmitting

Collecting

Summarising

Calibrating

transmission done

calibrate ()

test ()startup ()

shutdown ()

calibration OK

test complete

weather summary
complete

clock collection
done

Operation

reportWeather ()

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 49

Object interface specification

l Object interfaces have to be specified so that the
objects and other components can be designed in
parallel

l Designers should avoid designing the interface
representation but should hide this in the object
itself

l Objects may have several interfaces which are
viewpoints on the methods provided

l The UML uses class diagrams for interface
specification but Java may also be used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 50

Weather station interface
interface WeatherStation {

public void WeatherStation () ;

public void startup () ;
public void startup (Instrument i) ;

public void shutdown () ;
public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;
public void test (Instrument i) ;

public void calibrate (Instrument i) ;

public int getID () ;

} //WeatherStation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 51

Design evolution

l Hiding information inside objects means that
changes made to an object do not affect other
objects in an unpredictable way

l Assume pollution monitoring facilities are to be
added to weather stations. These sample the
air and compute the amount of different
pollutants in the atmosphere

l Pollution readings are transmitted with weather
data

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 52

Changes required

l Add an object class called ‘Air quality’ as part of
WeatherStation

l Add an operation reportAirQuality to
WeatherStation. Modify the control software to
collect pollution readings

l Add objects representing pollution monitoring
instruments

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 53

Pollution monitoring

NOData
smokeData
benzeneData

collect ()
summarise ()

Air quality
identifier

reportWeather ()
reportAirQuality ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation

Pollution monitoring instruments

NOmeter SmokeMeter

BenzeneMeter

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 54

l OOD is an approach to design so that design
components have their own private state and
operations

l Objects should have constructor and inspection
operations. They provide services to other objects

l Objects may be implemented sequentially or
concurrently

l The Unified Modeling Language provides
different notations for defining different object
models

Key points

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 55

Key points

l A range of different models may be produced
during an object-oriented design process. These
include static and dynamic system models

l Object interfaces should be defined precisely
using e.g. a programming language like Java

l Object-oriented design simplifies system
evolution

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 1

Real-time Software Design

l Designing embedded software
systems whose behaviour is
subject to timing constraints

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 2

Objectives

l To explain the concept of a real-time system and
why these systems are usually implemented as
concurrent processes

l To describe a design process for real-time
systems

l To explain the role of a real-time executive

l To introduce generic architectures for monitoring
and control and data acquisition systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 3

Topics covered

l Systems design

l Real-time executives

l Monitoring and control systems

l Data acquisition systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 4

Real-time systems

l Systems which monitor and control their
environment

l Inevitably associated with hardware devices
• Sensors: Collect data from the system environment

• Actuators: Change (in some way) the system's
environment

l Time is critical. Real-time systems MUST
respond within specified times

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 5

Definition

l A real-time system is a software system where the
correct functioning of the system depends on the
results produced by the system and the time at which
these results are produced

l A ‘soft’ real-time system is a system whose operation
is degraded if results are not produced according to
the specified timing requirements

l A ‘hard’ real-time system is a system whose operation
is incorrect if results are not produced according to
the timing specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 6

Stimulus/Response Systems

l Given a stimulus, the system must produce a
response within a specified time

l Periodic stimuli. Stimuli which occur at
predictable time intervals
• For example, a temperature sensor may be polled 10 times

per second

l Aperiodic stimuli. Stimuli which occur at
unpredictable times
• For example, a system power failure may trigger an

interrupt which must be processed by the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 7

Architectural considerations

l Because of the need to respond to timing
demands made by different stimuli/responses, the
system architecture must allow for fast switching
between stimulus handlers

l Timing demands of different stimuli are different
so a simple sequential loop is not usually
adequate

l Real-time systems are usually designed as
cooperating processes with a real-time executive
controlling these processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 8

A real-time system model

Real-time
control system

ActuatorActuator ActuatorActuator

SensorSensorSensor SensorSensorSensor

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 9

System elements

l Sensors control processes
• Collect information from sensors. May buffer information

collected in response to a sensor stimulus

l Data processor
• Carries out processing of collected information and computes

the system response

l Actuator control
• Generates control signals for the actuator

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 10

Sensor/actuator processes

Data
processor

Actuator
control

Actuator

Sensor
control

Sensor

Stimulus Response

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 11

System design

l Design both the hardware and the software
associated with system. Partition functions to
either hardware or software

l Design decisions should be made on the basis on
non-functional system requirements

l Hardware delivers better performance but
potentially longer development and less scope for
change

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 12

Hardware and software design
Establish system

requirements

Partition
requirements

Hardware
requirements

Hardware
design

Software
requirements

Software
design

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 13

R-T systems design process

l Identify the stimuli to be processed and the
required responses to these stimuli

l For each stimulus and response, identify the
timing constraints

l Aggregate the stimulus and response processing
into concurrent processes. A process may be
associated with each class of stimulus and
response

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 14

R-T systems design process

l Design algorithms to process each class of
stimulus and response. These must meet the given
timing requirements

l Design a scheduling system which will ensure
that processes are started in time to meet their
deadlines

l Integrate using a real-time executive or operating
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 15

Timing constraints

l May require extensive simulation and experiment
to ensure that these are met by the system

l May mean that certain design strategies such as
object-oriented design cannot be used because of
the additional overhead involved

l May mean that low-level programming language
features have to be used for performance reasons

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 16

State machine modelling

l The effect of a stimulus in a real-time system may
trigger a transition from one state to another.

l Finite state machines can be used for modelling
real-time systems.

l However, FSM models lack structure. Even
simple systems can have a complex model.

l The UML includes notations for defining state
machine models

l See also Chapter 7.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 17

Microwave oven state machine
Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Timer
Door
open

Door
closed

Door
closed

System
fault

Start

do: set power
 = 600

Half power
do: set power
 = 300

Set time

do: get number
exit: set time

Disabled

Operation

Timer

Cancel

Waiting

do: display
 time

Waiting

do: display
 time

do: display
 'Ready'

do: display
 'Waiting'

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 18

Real-time programming

l Hard-real time systems may have to programmed
in assembly language to ensure that deadlines are
met

l Languages such as C allow efficient programs to
be written but do not have constructs to support
concurrency or shared resource management

l Ada as a language designed to support real-time
systems design so includes a general purpose
concurrency mechanism

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 19

Java as a real-time language

l Java supports lightweight concurrency (threads
and synchonized methods) and can be used for
some soft real-time systems

l Java 2.0 is not suitable for hard RT programming
or programming where precise control of timing
is required
• Not possible to specify thread execution time

• Uncontrollable garbage collection

• Not possible to discover queue sizes for shared resources

• Variable virtual machine implementation

• Not possible to do space or timing analysis

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 20

Real-time executives

l Real-time executives are specialised operating
systems which manage the processes in the RTS

l Responsible for process management and
resource (processor and memory) allocation

l May be based on a standard RTE kernel which
is used unchanged or modified for a particular
application

l Does not include facilities such as file
management

14

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 21

Executive components

l Real-time clock
• Provides information for process scheduling.

l Interrupt handler
• Manages aperiodic requests for service.

l Scheduler
• Chooses the next process to be run.

l Resource manager
• Allocates memory and processor resources.

l Despatcher
• Starts process execution.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 22

Non-stop system components

l Configuration manager
• Responsible for the dynamic reconfiguration of the system

software and hardware. Hardware modules may be replaced and
software upgraded without stopping the systems

l Fault manager
• Responsible for detecting software and hardware faults and

taking appropriate actions (e.g. switching to backup disks) to
ensure that the system continues in operation

Real-time executive components

Process resource
requirements

Scheduler

Scheduling
information

Resource
manager

Despatcher

Real-time
clock

Processes
awaiting
resources

Ready
list

Interrupt
handler

Available
resource

list

Processor
list

Executing
process

Ready
processes

Released
resources

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 24

Process priority

l The processing of some types of stimuli must
sometimes take priority

l Interrupt level priority. Highest priority which is
allocated to processes requiring a very fast
response

l Clock level priority. Allocated to periodic
processes

l Within these, further levels of priority may be
assigned

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 25

Interrupt servicing

l Control is transferred automatically to a
pre-determined memory location

l This location contains an instruction to jump to
an interrupt service routine

l Further interrupts are disabled, the interrupt
serviced and control returned to the interrupted
process

l Interrupt service routines MUST be short,
simple and fast

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 26

Periodic process servicing

l In most real-time systems, there will be several
classes of periodic process, each with different
periods (the time between executions),
execution times and deadlines (the time by
which processing must be completed)

l The real-time clock ticks periodically and each
tick causes an interrupt which schedules the
process manager for periodic processes

l The process manager selects a process which
is ready for execution

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 27

Process management

l Concerned with managing the set of concurrent
processes

l Periodic processes are executed at pre-specified
time intervals

l The executive uses the real-time clock to
determine when to execute a process

l Process period - time between executions

l Process deadline - the time by which processing
must be complete

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 28

RTE process management

Resource manager

Allocate memory
and processor

Scheduler

Choose process
for execution

Despatcher

Start execution on an
available processor

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 29

Process switching

l The scheduler chooses the next process to be
executed by the processor. This depends on a
scheduling strategy which may take the process
priority into account

l The resource manager allocates memory and a
processor for the process to be executed

l The despatcher takes the process from ready list,
loads it onto a processor and starts execution

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 30

Scheduling strategies

l Non pre-emptive scheduling
• Once a process has been scheduled for execution, it runs to

completion or until it is blocked for some reason (e.g. waiting
for I/O)

l Pre-emptive scheduling
• The execution of an executing processes may be stopped if a

higher priority process requires service

l Scheduling algorithms
• Round-robin

• Rate monotonic

• Shortest deadline first

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 31

Monitoring and control systems

l Important class of real-time systems

l Continuously check sensors and take actions
depending on sensor values

l Monitoring systems examine sensors and
report their results

l Control systems take sensor values and control
hardware actuators

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 32

Burglar alarm system

l A system is required to monitor sensors on doors
and windows to detect the presence of intruders in
a building

l When a sensor indicates a break-in, the system
switches on lights around the area and calls police
automatically

l The system should include provision for
operation without a mains power supply

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 33

Burglar alarm system

l Sensors
• Movement detectors, window sensors, door sensors.

• 50 window sensors, 30 door sensors and 200 movement
detectors

• Voltage drop sensor

l Actions
• When an intruder is detected, police are called

automatically.

• Lights are switched on in rooms with active sensors.

• An audible alarm is switched on.

• The system switches automatically to backup power when a
voltage drop is detected.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 34

The R-T system design process

l Identify stimuli and associated responses

l Define the timing constraints associated with
each stimulus and response

l Allocate system functions to concurrent
processes

l Design algorithms for stimulus processing and
response generation

l Design a scheduling system which ensures that
processes will always be scheduled to meet
their deadlines

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 35

Stimuli to be processed

l Power failure
• Generated aperiodically by a circuit monitor. When

received, the system must switch to backup power within 50
ms

l Intruder alarm
• Stimulus generated by system sensors. Response is to call

the police, switch on building lights and the audible alarm

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 36

Timing requirements

Stimulus/Response Timing requirements
Power fail interrupt The switch to backup power must be completed

within a deadline of 50 ms.
Door alarm Each door alarm should be polled twice per

second.
Window alarm Each window alarm should be polled twice per

second.
Movement detector Each movement detector should be polled twice

per second.
Audible alarm The audible alarm should be switched on within

1/2 second of an alarm being raised by a sensor.
Lights switch The lights should be switched on within 1/2

second of an alarm being raised by a sensor.
Communications The call to the police should be started within 2

seconds of an alarm being raised by a sensor.
Voice synthesiser A synthesised message should be available

within 4 seconds of an alarm being raised by a
sensor.

Process architecture

Lighting control
process

Audible alarm
process

Voice synthesizer
process

Alarm system
process

Power switch
process

Building monitor
process

Communication
process

Door sensor
process

Movement
detector process

Window sensor
process

560Hz

60Hz400Hz 100Hz

Power failure
interrupt

Alarm
system

Building monitor

Alarm
system

Alarm system

Alarm system

Detector status Sensor status Sensor status

Room number

Alert message

Room number

Room number

Building_monitor process 1

}

// See http://www.software-engin.com/ for links to the complete Java code for this
// example

class BuildingMonitor extends Thread {

BuildingSensor win, door, move ;

Siren siren = new Siren () ;
Lights lights = new Lights () ;
Synthesizer synthesizer = new Synthesizer () ;
DoorSensors doors = new DoorSensors (30) ;
WindowSensors windows = new WindowSensors (50) ;
MovementSensors movements = new MovementSensors (200) ;
PowerMonitor pm = new PowerMonitor () ;

BuildingMonitor()
{

// initialise all the sensors and start the processes
siren.start () ; lights.start () ;
synthesizer.start () ; windows.start () ;
doors.start () ; movements.start () ; pm.start () ;

Building_monitor process 2

public void run ()
{

int room = 0 ;
while (true)
{

// poll the movement sensors at least twice per second (400 Hz)
move = movements.getVal () ;
// poll the window sensors at least twice/second (100 Hz)
win = windows.getVal () ;
// poll the door sensors at least twice per second (60 Hz)
door = doors.getVal () ;
if (move.sensorVal == 1 | door.sensorVal == 1 | win.sensorVal == 1)

{
// a sensor has indicated an intruder
if (move.sensorVal == 1) room = move.room ;
if (door.sensorVal == 1) room = door.room ;
if (win.sensorVal == 1) room = win.room ;

lights.on (room) ; siren.on () ; synthesizer.on (room) ;
break ;

}
}
lights.shutdown () ; siren.shutdown () ; synthesizer.shutdown () ;
windows.shutdown () ; doors.shutdown () ; movements.shutdown () ;

} // run
} //BuildingMonitor

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 40

Control systems

l A burglar alarm system is primarily a monitoring
system. It collects data from sensors but no real-
time actuator control

l Control systems are similar but, in response to
sensor values, the system sends control signals to
actuators

l An example of a monitoring and control system is
a system which monitors temperature and
switches heaters on and off

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 41

A temperature control system

Thermostat
process

Sensor
process

Furnace
control process

Heater control
process

500Hz

500Hz

Thermostat process500Hz

Sensor
values

Switch command
Room number

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 42

Data acquisition systems

l Collect data from sensors for subsequent
processing and analysis.

l Data collection processes and processing
processes may have different periods and
deadlines.

l Data collection may be faster than processing
e.g. collecting information about an explosion.

l Circular or ring buffers are a mechanism for
smoothing speed differences.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 43

Reactor data collection

l A system collects data from a set of sensors
monitoring the neutron flux from a nuclear
reactor.

l Flux data is placed in a ring buffer for later
processing.

l The ring buffer is itself implemented as a
concurrent process so that the collection and
processing processes may be synchronized.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 44

Reactor flux monitoring

Display
Process

data
Sensor data

buffer
Sensor
process

Sensor
identifier and

value

Processed
flux level

Sensors (each data flow is a sensor value)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 45

A ring buffer

Consumer
process

Producer
process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 46

Mutual exclusion

l Producer processes collect data and add it to
the buffer. Consumer processes take data from the
buffer and make elements available

l Producer and consumer processes must be
mutually excluded from accessing the same
element.

l The buffer must stop producer processes
adding information to a full buffer and consumer
processes trying to take information from an
empty buffer.

Java implementation of a ring buffer 1

class CircularBuffer
{

int bufsize ;
SensorRecord [] store ;
int numberOfEntries = 0 ;
int front = 0, back = 0 ;

CircularBuffer (int n) {
bufsize = n ;
store = new SensorRecord [bufsize] ;

} // CircularBuffer

synchronized void put (SensorRecord rec) throws InterruptedException
{

if (numberOfEntries == bufsize)
wait () ;

store [back] = new SensorRecord (rec.sensorId, rec.sensorVal) ;
back = back + 1 ;
if (back == bufsize)

back = 0 ;
numberOfEntries = numberOfEntries + 1 ;
notify () ;

} // put

Java implementation of a ring buffer 2

 synchronized SensorRecord get () throws InterruptedException
{

SensorRecord result = new SensorRecord (-1, -1) ;
if (numberOfEntries == 0)

wait () ;
result = store [front] ;
front = front + 1 ;
if (front == bufsize)

front = 0 ;
numberOfEntries = numberOfEntries - 1 ;
notify () ;
return result ;

} // get
} // CircularBuffer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 49

Key points

l Real-time system correctness depends not just
on what the system does but also on how fast it
reacts

l A general RT system model involves associating
processes with sensors and actuators

l Real-time systems architectures are usually
designed as a number of concurrent processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 13 Slide 50

Key points

l Real-time executives are responsible for
process and resource management.

l Monitoring and control systems poll sensors and
send control signal to actuators

l Data acquisition systems are usually organised
according to a producer consumer model

l Java has facilities for supporting concurrency but
is not suitable for the development of time-critical
systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 1

Design with Reuse

l Building software from
reusable components.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 2

Objectives

l To explain the benefits of software reuse and
some reuse problems

l To describe different types of reusable
component and processes for reuse

l To introduce application families as a route to
reuse

l To describe design patterns as high-level
abstractions that promote reuse

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 3

Topics covered

l Component-based development

l Application families

l Design patterns

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 4

Software reuse

l In most engineering disciplines, systems are
designed by composing existing components that
have been used in other systems

l Software engineering has been more focused on
original development but it is now recognised
that to achieve better software, more quickly and
at lower cost, we need to adopt a design process
that is based on systematic reuse

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 5

Reuse-based software engineering

l Application system reuse
• The whole of an application system may be reused either by

incorporating it without change into other systems (COTS reuse) or
by developing application families

l Component reuse
• Components of an application from sub-systems to single objects

may be reused

l Function reuse
• Software components that implement a single well-defined function

may be reused

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 6

Reuse practice

l Application system reuse
• Widely practised as software systems are implemented as

application families. COTS reuse is becoming increasingly
common

l Component reuse
• Now seen as the key to effective and widespread reuse through

component-based software engineering. However, it is still
relatively immature

l Function reuse
• Common in some application domains (e.g. engineering) where

domain-specific libraries of reusable functions have been
established

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 7

Benefits of reuse

l Increased reliability
• Components exercised in working systems

l Reduced process risk
• Less uncertainty in development costs

l Effective use of specialists
• Reuse components instead of people

l Standards compliance
• Embed standards in reusable components

l Accelerated development
• Avoid original development and hence speed-up production

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 8

Requirements for design with reuse

l It must be possible to find appropriate reusable
components

l The reuser of the component must be confident
that the components will be reliable and will
behave as specified

l The components must be documented so that they
can be understood and, where appropriate,
modified

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 9

Reuse problems

l Increased maintenance costs

l Lack of tool support

l Not-invented-here syndrome

l Maintaining a component library

l Finding and adapting reusable components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 10

Generator-based reuse

l Program generators involve the reuse of
standard patterns and algorithms

l These are embedded in the generator and
parameterised by user commands. A program is
then automatically generated

l Generator-based reuse is possible when domain
abstractions and their mapping to executable code
can be identified

l A domain specific language is used to compose
and control these abstractions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 11

Types of program generator

l Types of program generator
• Application generators for business data processing

• Parser and lexical analyser generators for language processing

• Code generators in CASE tools

l Generator-based reuse is very cost-effective but
its applicability is limited to a relatively small
number of application domains

l It is easier for end-users to develop programs
using generators compared to other component-
based approaches to reuse

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 12

Reuse through program generation

Program generator Generated programApplication
description

Application domain
knowledge Database

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 13

Component-based development

l Component-based software engineering (CBSE)
is an approach to software development that
relies on reuse

l It emerged from the failure of object-oriented
development to support effective reuse. Single
object classes are too detailed and specific

l Components are more abstract than object classes
and can be considered to be stand-alone service
providers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 14

Components

l Components provide a service without regard to
where the component is executing or its
programming language
• A component is an independent executable entity that can be

made up of one or more executable objects

• The component interface is published and all interactions are
through the published interface

l Components can range in size from simple
functions to entire application systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 15

Component interfaces

Component Provides interfaceRequires interface

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 16

Component interfaces

l Provides interface
• Defines the services that are provided by the component to other

components

l Requires interface
• Defines the services that specifies what services must be made

available for the component to execute as specified

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 17

Printing services component

Provides interfaceRequires interface

Print

PrintService

GetQueue

Remove

Transfer

Register

Unregister

GetPDfile

PrinterInt

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 18

Component abstractions
l Functional abstraction

• The component implements a single function such as a mathematical function

l Casual groupings
• The component is a collection of loosely related entities that might be data

declarations, functions, etc.

l Data abstractions
• The component represents a data abstraction or class in an object-oriented

language

l Cluster abstractions
• The component is a group of related classes that work together

l System abstraction
• The component is an entire self-contained system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 19

CBSE processes

l Component-based development can be integrated
into a standard software process by incorporating
a reuse activity in the process

l However, in reuse-driven development, the
system requirements are modified to reflect the
components that are available

l CBSE usually involves a prototyping or an
incremental development process with
components being ‘glued together’ using a
scripting language

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 20

An opportunistic reuse process

Design
system

aachitecture

Specify
components

Search for
reusable

components

Incorporate
discovered
components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 21

Development with reuse

Search for
reusable

components

Outline
system

requirements

Modify requirements
according to
discovered
components

Search for
reusable

components

Architectural
design

Specify system
components

based on reusable
components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 22

CBSE problems

l Component incompatibilities may mean that cost
and schedule savings are less then expected

l Finding and understanding components

l Managing evolution as requirements change in
situations where it may be impossible to change
the system components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 23

Application frameworks

l Frameworks are a sub-system design made up of
a collection of abstract and concrete classes and
the interfaces between them

l The sub-system is implemented by adding
components to fill in parts of the design and by
instantiating the abstract classes in the framework

l Frameworks are moderately large entities that can
be reused

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 24

Framework classes

l System infrastructure frameworks
• Support the development of system infrastructures such as

communications, user interfaces and compilers

l Middleware integration frameworks
• Standards and classes that support component communication

and information exchange

l Enterprise application frameworks
• Support the development of specific types of application such as

telecommunications or financial systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 25

Extending frameworks

l Frameworks are generic and are extended to
create a more specific application or sub-system

l Extending the framework involves
• Adding concrete classes that inherit operations from abstract

classes in the framework

• Adding methods that are called in response to events that are
recognised by the framework

l Problem with frameworks is their complexity and
the time it takes to use them effectively

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 26

Model-view controller

l System infrastructure framework for GUI design

l Allows for multiple presentations of an object
and separate interactions with these presentations

l MVC framework involves the instantiation of a
number of patterns (discussed later)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 27

Model-view controller

Model state

Model methods

Controller state

Controller methods

View state

View methods

User inputs
view modification

messages

Model edits
Model queries

and updates

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 28

COTS product reuse

l COTS - Commercial Off-The-Shelf systems

l COTS systems are usually complete application
systems that offer an API (Application
Programming Interface)

l Building large systems by integrating COTS
systems is now a viable development strategy for
some types of system such as E-commerce
systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 29

COTS system integration problems

l Lack of control over functionality and
performance
• COTS systems may be less effective than they appear

l Problems with COTS system inter-operability
• Different COTS systems may make different assumptions that

means integration is difficult

l No control over system evolution
• COTS vendors not system users control evolution

l Support from COTS vendors
• COTS vendors may not offer support over the lifetime of the

product

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 30

Component development for reuse

l Components for reuse may be specially
constructed by generalising existing components

l Component reusability
• Should reflect stable domain abstractions

• Should hide state representation

• Should be as independent as possible

• Should publish exceptions through the component interface

l There is a trade-off between reusability and
usability.
• The more general the interface, the greater the reusability but it

is then more complex and hence less usable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 31

Reusable components

l The development cost of reusable components is
higher than the cost of specific equivalents. This
extra reusability enhancement cost should be an
organization rather than a project cost

l Generic components may be less
space-efficient and may have longer execution
times than their specific equivalents

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 32

Reusability enhancement

l Name generalisation
• Names in a component may be modified so that they are not a

direct reflection of a specific application entity

l Operation generalisation
• Operations may be added to provide extra functionality and

application specific operations may be removed

l Exception generalisation
• Application specific exceptions are removed and exception

management added to increase the robustness of the component

l Component certification
• Component is certified as reusable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 33

Reusability enhancement process

Name
generalization

Operation
generalization

Exception
generalization

Component
certification

Reusable
component

Initial
component

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 34

Application families

l An application family or product line is a related
set of applications that has a common, domain-
specific architecture

l The common core of the application family is
reused each time a new application is required

l Each specific application is specialised in some
way

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 35

Application family specialisation

l Platform specialisation
• Different versions of the application are developed for different

platforms

l Configuration specialisation
• Different versions of the application are created to handle

different peripheral devices

l Functional specialisation
• Different versions of the application are created for customers

with different requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 36

A resource management system

Resource database

Resource desc. Screen spec. Report spec.

Add Delete Query Browse Admin Report

User access Program access

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 37

Inventory management systems

l Resource database
• Maintains details of the things that are being managed

l I/O descriptions
• Describes the structures in the resource database and input and

output formats that are used

l Query level
• Provides functions implementing queries over the resources

l Access interfaces
• A user interface and an application programming interface

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 38

Application family architectures

l Architectures must be structured in such a way to
separate different sub-systems and to allow them
to be modified

l The architecture should also separate entities and
their descriptions and the higher levels in the
system access entities through descriptions rather
than directly

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 39

A library system

Library holdings database

Resource desc. Screen spec. Report spec.

Add Delete Query Browse Admin Report

Library user access

Issue Return Users

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 40

Library system

l The resources being managed are the books in the
library

l Additional domain-specific functionality (issue,
borrow, etc.) must be added for this application

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 41

Family member development

Elicit
stakeholder
requirements

Choose closest-
fit family
member Deliver new

family member

Re-negotiate
requirements

Adapt existing
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 42

Family member development

l Elicit stakeholder requirements
• Use existing family member as a prototype

l Choose closest-fit family member
• Find the family member that best meets the requirements

l Re-negotiate requirements
• Adapt requirements as necessary to capabilities of the software

l Adapt existing system
• Develop new modules and make changes for family member

l Deliver new family member
• Document key features for further member development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 43

Design patterns

l A design pattern is a way of reusing abstract
knowledge about a problem and its solution

l A pattern is a description of the problem and the
essence of its solution

l It should be sufficiently abstract to be reused in
different settings

l Patterns often rely on object characteristics such
as inheritance and polymorphism

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 44

Pattern elements

l Name
• A meaningful pattern identifier

l Problem description

l Solution description
• Not a concrete design but a template for a design solution that

can be instantiated in different ways

l Consequences
• The results and trade-offs of applying the pattern

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 45

Multiple displays

Subject

A: 40
B: 25
C: 15
D: 20

Observer 1 Observer 2

0

50

25

A B C D

A

B

C

D

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 46

The Observer pattern

l Name
• Observer

l Description
• Separates the display of object state from the object itself

l Problem description
• Used when multiple displays of state are needed

l Solution description
• See slide with UML description

l Consequences
• Optimisations to enhance display performance are impractical

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 47

The Observer pattern

Subject Observer

Attach (Observer)
Detach (Observer)
Notify ()

Update ()

ConcreteSubject

GetState ()

subjectState

ConcreteObserver

Update ()

observerState

return subjectState

for all o in observers
 o -> Update ()

observerState =
 subject -> GetState ()

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 48

l Design with reuse involves designing software
around good design and existing components

l Advantages are lower costs, faster software
development and lower risks

l Component-based software engineering relies on
black-box components with defined requires and
provides interfaces

l COTS product reuse is concerned with the reuse
of large, off-the-shelf systems

Key points

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 49

Key points

l Software components for reuse should be
independent, should reflect stable domain
abstractions and should provide access to state
through interface operations

l Application families are related applications
developed around a common core

l Design patterns are high-level abstractions that
document successful design solutions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 1

User interface design

l Designing effective interfaces
for software systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 2

Objectives

l To suggest some general design principles for
user interface design

l To explain different interaction styles

l To introduce styles of information presentation

l To describe the user support which should be
built-in to user interfaces

l To introduce usability attributes and system
approaches to system evaluation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 3

Topics covered

l User interface design principles

l User interaction

l Information presentation

l User support

l Interface evaluation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 4

The user interface

l System users often judge a system by its
interface rather than its functionality

l A poorly designed interface can cause a user to
make catastrophic errors

l Poor user interface design is the reason why so
many software systems are never used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 5

Graphical user interfaces

l Most users of business systems interact with these
systems through graphical interfaces although, in
some cases, legacy text-based interfaces are still
used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 6

GUI characteristics

Characteristic Description
Windows Multiple windows allow different information to be

displayed simultaneously on the user’s screen.
Icons Icons different types of information. On some systems,

icons represent files; on others, icons represent
processes.

Menus Commands are selected from a menu rather than typed
in a command language.

Pointing A pointing device such as a mouse is used for selecting
choices from a menu or indicating items of interest in a
window.

Graphics Graphical elements can be mixed with text on the same
display.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 7

GUI advantages

l They are easy to learn and use.
• Users without experience can learn to use the system

quickly.

l The user may switch quickly from one task to
another and can interact with several different
applications.
• Information remains visible in its own window when

attention is switched.

l Fast, full-screen interaction is possible with
immediate access to anywhere on the screen

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 8

User-centred design

l The aim of this chapter is to sensitise software
engineers to key issues underlying the design
rather than the implementation of user interfaces

l User-centred design is an approach to UI design
where the needs of the user are paramount and
where the user is involved in the design process

l UI design always involves the development of
prototype interfaces

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 9

User interface design process

Executable
prototype

Design
prototype

Produce paper-
based design

prototype

Produce
dynamic design

prototype

Evaluate design
with end-users

Implement
final user
interface

Evaluate design
with end-users

Analyse and
understand user

activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 10

UI design principles

l UI design must take account of the needs,
experience and capabilities of the system users

l Designers should be aware of people’s physical
and mental limitations (e.g. limited short-term
memory) and should recognise that people make
mistakes

l UI design principles underlie interface designs
although not all principles are applicable to all
designs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 11

User interface design principles

Principle Description
User familiarity The interface should use terms and concepts which are

drawn from the experience of the people who will
make most use of the system.

Consistency The interface should be consistent in that, wherever
possible, comparable operations should be activated in
the same way.

Minimal surprise Users should never be surprised by the behaviour of a
system.

Recoverability The interface should include mechanisms to allow
users to recover from errors.

User guidance The interface should provide meaningful feedback
when errors occur and provide context-sensitive user
help facilities.

User diversity The interface should provide appropriate interaction
facilities for different types of system user.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 12

Design principles

l User familiarity
• The interface should be based on user-oriented

terms and concepts rather than computer concepts. For example,
an office system should use concepts such as letters, documents,
folders etc. rather than directories, file identifiers, etc.

l Consistency
• The system should display an appropriate level

of consistency. Commands and menus should have the same
format, command punctuation should be similar, etc.

l Minimal surprise
• If a command operates in a known way, the user should be

able to predict the operation of comparable commands

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 13

Design principles

l Recoverability
• The system should provide some resilience to

user errors and allow the user to recover from errors. This might
include an undo facility, confirmation of destructive actions,
'soft' deletes, etc.

l User guidance
• Some user guidance such as help systems, on-line manuals, etc.

should be supplied

l User diversity
• Interaction facilities for different types of user should be

supported. For example, some users have seeing difficulties and
so larger text should be available

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 14

User-system interaction

l Two problems must be addressed in interactive
systems design
• How should information from the user be provided to the

computer system?

• How should information from the computer system be presented
to the user?

l User interaction and information presentation
may be integrated through a coherent framework
such as a user interface metaphor

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 15

Interaction styles

l Direct manipulation

l Menu selection

l Form fill-in

l Command language

l Natural language

Advantages and
disadvantages

Interaction
style

Main
advantages

Main
disadvantages

Application
examples

Direct
manipulatio
n

Fast and intuitive
interaction
Easy to learn

May be hard to
implement
Only suitable where
there is a visual
metaphor for tasks
and objects

Video games
CAD systems

Menu
selection

Avoids user
error
Little typing
required

Slow for
experienced users
Can become
complex if many
menu options

Most general-
purpose systems

Form fill-in Simple data
entry
Easy to learn

Takes up a lot of
screen space

Stock control,
Personal loan
processing

Command
language

Powerful and
flexible

Hard to learn
Poor error
management

Operating systems,
Library
information
retrieval systems

Natural
language

Accessible to
casual users
Easily extended

Requires more
typing
Natural language
understanding
systems are
unreliable

Timetable systems
WWW
information
retrieval systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 17

Direct manipulation advantages

l Users feel in control of the computer and are less
likely to be intimidated by it

l User learning time is relatively short

l Users get immediate feedback on their actions
so mistakes can be quickly detected and
corrected

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 18

Direct manipulation problems

l The derivation of an appropriate information
space model can be very difficult

l Given that users have a large information
space, what facilities for navigating around that
space should be provided?

l Direct manipulation interfaces can be complex to
program and make heavy demands on the
computer system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 19

Control panel interface

Title

Method

Type

Selection

NODE LINKS FONT LABEL EDIT

JSD. example

JSD

Network

Process

Units

Reduce

cm

Full

OUIT

PRINT

Grid Busy

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 20

Menu systems

l Users make a selection from a list of
possibilities presented to them by the system

l The selection may be made by pointing and
clicking with a mouse, using cursor keys or by
typing the name of the selection

l May make use of simple-to-use terminals such as
touchscreens

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 21

Advantages of menu systems

l Users need not remember command names as
they are always presented with a list of valid
commands

l Typing effort is minimal

l User errors are trapped by the interface

l Context-dependent help can be provided. The
user’s context is indicated by the current menu
selection

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 22

Problems with menu systems

l Actions which involve logical conjunction (and)
or disjunction (or) are awkward to represent

l Menu systems are best suited to presenting a
small number of choices. If there are many
choices, some menu structuring facility must be
used

l Experienced users find menus slower than
command language

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 23

Form-based interface

Title

Author

Publisher

Edition

Classification

Date of
purchase

ISBN

Price

Publication
date

Number of
copies

Loan
status

Order
status

NEW BOOK

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 24

Command interfaces

l User types commands to give instructions to the
system e.g. UNIX

l May be implemented using cheap terminals.

l Easy to process using compiler techniques

l Commands of arbitrary complexity can be
created by command combination

l Concise interfaces requiring minimal typing can
be created

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 25

Problems with command interfaces

l Users have to learn and remember a command
language. Command interfaces are therefore
unsuitable for occasional users

l Users make errors in command. An error
detection and recovery system is required

l System interaction is through a keyboard so
typing ability is required

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 26

Command languages

l Often preferred by experienced users because
they allow for faster interaction with the system

l Not suitable for casual or inexperienced users

l May be provided as an alternative to menu
commands (keyboard shortcuts). In some cases, a
command language interface and a menu-based
interface are supported at the same time

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 27

Natural language interfaces

l The user types a command in a natural language.
Generally, the vocabulary is limited and these
systems are confined to specific application
domains (e.g. timetable enquiries)

l NL processing technology is now good enough to
make these interfaces effective for casual users
but experienced users find that they require too
much typing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 28

Multiple user interfaces

Operating system

GUI
manager

Graphical user
interface

Command
language

interpreter

Command
language
interface

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 29

Information presentation

l Information presentation is concerned with
presenting system information to system users

l The information may be presented directly (e.g.
text in a word processor) or may be transformed
in some way for presentation (e.g. in some
graphical form)

l The Model-View-Controller approach is a way of
supporting multiple presentations of data

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 30

Information presentation

Information to
be displayed

Presentation
software

Display

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 31

Model-view-controller

Model state

Model methods

Controller state

Controller methods

View state

View methods

User inputs
view modification

messages

Model editsModel queries
and updates

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 32

Information presentation

l Static information
• Initialised at the beginning of a session. It does not change

during the session

• May be either numeric or textual

l Dynamic information
• Changes during a session and the changes must be

communicated to the system user

• May be either numeric or textual

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 33

Information display factors

l Is the user interested in precise information or
data relationships?

l How quickly do information values change?
Must the change be indicated immediately?

l Must the user take some action in response to
a change?

l Is there a direct manipulation interface?

l Is the information textual or numeric? Are
relative values important?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 34

Alternative information presentations

0

1000

2000

3000

4000

Jan Feb Mar April May June

Jan
2842

Feb
2851

Mar
3164

April
2789

May
1273

June
2835

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 35

Analogue vs. digital presentation

l Digital presentation
• Compact - takes up little screen space

• Precise values can be communicated

l Analogue presentation
• Easier to get an 'at a glance' impression of a value

• Possible to show relative values

• Easier to see exceptional data values

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 36

Dynamic information display

1

3

4 2
0 10 20

Dial with needle Pie chart Thermometer Horizontal bar

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 37

Displaying relative values

0 100 200 300 400 0 25 50 75 100

Pressure Temperature

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 38

Textual highlighting

The filename you have chosen has been
used. Please choose another name

Ch. 16 User interface design
!

OK Cancel

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 39

Data visualisation

l Concerned with techniques for displaying large
amounts of information

l Visualisation can reveal relationships between
entities and trends in the data

l Possible data visualisations are:
• Weather information collected from a number of sources

• The state of a telephone network as a linked set of nodes

• Chemical plant visualised by showing pressures and
temperatures in a linked set of tanks and pipes

• A model of a molecule displayed in 3 dimensions

• Web pages displayed as a hyperbolic tree

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 40

Colour displays

l Colour adds an extra dimension to an interface
and can help the user understand complex
information structures

l Can be used to highlight exceptional events

l Common mistakes in the use of colour in
interface design include:
• The use of colour to communicate meaning

• Over-use of colour in the display

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 41

Colour use guidelines

l Don't use too many colours

l Use colour coding to support use tasks

l Allow users to control colour coding

l Design for monochrome then add colour

l Use colour coding consistently

l Avoid colour pairings which clash

l Use colour change to show status change

l Be aware that colour displays are usually lower
resolution

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 42

User support

l User guidance covers all system facilities to
support users including on-line help, error
messages, manuals etc.

l The user guidance system should be integrated
with the user interface to help users when they
need information about the system or when they
make some kind of error

l The help and message system should, if possible,
be integrated

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 43

Help and message system

Message
presentation

system

Error message
texts

Help
frames

Error message
system

Help
interface

Application

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 44

Error messages

l Error message design is critically important.
Poor error messages can mean that a user
rejects rather than accepts a system

l Messages should be polite, concise, consistent
and constructive

l The background and experience of users
should be the determining factor in message
design

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 45

Design factors in message wording
Context The user guidance system should be aware of what the user is

doing and should adjust the output message to the current
context.

Experience As users become familiar with a system they become irritated
by long, ‘meaningful’ messages. However, beginners find it
difficult to understand short terse statements of the problem.
The user guidance system should provide both types of message
and allow the user to control message conciseness.

Skill level Messages should be tailored to the user’s skills as well as their
experience. Messages for the different classes of user may be
expressed in different ways depending on the terminology which
is familiar to the reader.

Style Messages should be positive rather than negative. They should
use the active rather than the passive mode of address. They
should never be insulting or try to be funny.

Culture Wherever possible, the designer of messages should be familiar
with the culture of the country where the system is sold. There
are distinct cultural differences between Europe, Asia and
America. A suitable message for one culture might be
unacceptable in another.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 46

Nurse input of a patient’s name

Please type the patient name in the box then click on OK

Bates, J.

OK Cancel

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 47

System and user-oriented error messages

Error #27

Invalid patient id entered?
OK Cancel

Patient J. Bates is not registered

Click on Patients for a list of registered patients
Click on Retry to re-input a patient name
Click on Help for more information

Patients Help Retry Cancel

System-oriented error message
User-oriented error message

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 48

Help system design

l Help? means ‘help I want information”

l Help! means “HELP. I'm in trouble”

l Both of these requirements have to be taken
into account in help system design

l Different facilities in the help system may be
required

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 49

Help information

l Should not simply be an on-line manual

l Screens or windows don't map well onto paper
pages.

l The dynamic characteristics of the display can
improve information presentation.

l People are not so good at reading screen as
they are text.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 50

Help system use

l Multiple entry points should be provided so that
the user can get into the help system from
different places.

l Some indication of where the user is positioned
in the help system is valuable.

l Facilities should be provided to allow the user
to navigate and traverse the help system.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 51

Entry points to a help system

Help frame network

Top-level
entry

Entry from error
message system

Entry from
application

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 52

Help system windows

Mail redirection

Mail may be redirected to another
network user by pressing the
redirect button in the control
panel. The system asks for the
name of the user or users to
whom the mail has been sent

next topicsmore

Mail redirection

Mail may be redirected to another
network user by pressing the
redirect button in the control
panel. The system asks for the
name of the user or users to
whom the mail has been sent

Help frame map

You are here

Help history

1. Mail
2. Send mail
3. Read mail
4. Redirection

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 53

User documentation

l As well as on-line information, paper
documentation should be supplied with a system

l Documentation should be designed for a range of
users from inexperienced to experienced

l As well as manuals, other easy-to-use
documentation such as a quick reference card
may be provided

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 54

User document types

Description of
services

Functional
description

System
evaluators

How to install
the system

Installation
document

System
administrators

Getting
started

Introductory
manual

Novice
users

Facility
description

Reference
manual

Experienced
users

Operation and
maintenance

Administrator’s
guide

System
administrators

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 55

Document types

l Functional description
• Brief description of what the system can do

l Introductory manual
• Presents an informal introduction to the system

l System reference manual
• Describes all system facilities in detail

l System installation manual
• Describes how to install the system

l System administrator’s manual
• Describes how to manage the system when it is in use

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 56

User interface evaluation

l Some evaluation of a user interface design
should be carried out to assess its suitability

l Full scale evaluation is very expensive and
impractical for most systems

l Ideally, an interface should be evaluated against a
usability specification. However, it is rare for
such specifications to be produced

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 57

Usability attributes

Attribute Description
Learnability How long does it take a new user to

become productive with the system?
Speed of operation How well does the system response match

the user’s work practice?
Robustness How tolerant is the system of user error?
Recoverability How good is the system at recovering from

user errors?
Adaptability How closely is the system tied to a single

model of work?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 58

Simple evaluation techniques

l Questionnaires for user feedback

l Video recording of system use and subsequent
tape evaluation.

l Instrumentation of code to collect information
about facility use and user errors.

l The provision of a grip button for on-line user
feedback.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 59

Key points

l Interface design should be user-centred. An
interface should be logical and consistent and
help users recover from errors

l Interaction styles include direct manipulation,
menu systems form fill-in, command languages
and natural language

l Graphical displays should be used to present
trends and approximate values. Digital displays
when precision is required

l Colour should be used sparingly and consistently

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 15 Slide 60

Key points

l Systems should provide on-line help. This should
include “help, I’m in trouble” and “help, I want
information”

l Error messages should be positive rather than
negative.

l A range of different types of user documents
should be provided

l Ideally, a user interface should be evaluated
against a usability specification

©Ian Sommerville 2000 Dependability Slide 1

Dependability

• The extent to which a critical
system is trusted by its users

©Ian Sommerville 2000 Dependability Slide 2

The concept of dependability

• For critical systems, it is usually the case that the
most important system property is the dependability
of the system

• The dependability of a system reflects the user’s
degree of trust in that system. It reflects the extent of
the user’s confidence that it will operate as users
expect and that it will not ‘fail’ in normal use

• Usefulness and trustworthiness are not the same
thing. A system does not have to be trusted to be
useful

©Ian Sommerville 2000 Dependability Slide 3

Dimensions of dependability

Dependability

Availability Reliability Security

The ability of the
system to deliver

services when
requested

The ability of the
system to deliver

services as specified?

The ability of the
system to operate

without catastrophic
failure

The ability of the
system to protect itelf
against accidental or
deliverate intrusion

Safety

©Ian Sommerville 2000 Dependability Slide 4

Maintainability

• A system attribute which is concerned with the ease
of repairing the system after a failure has been
discovered or changing the system to include new
features

• Very important for critical systems as faults are often
introduced into a system because of maintenance
problems

• Maintainability is distinct from other dimensions of
dependability because it is a static and not a dynamic
system attribute. I do not cover it in this course.

©Ian Sommerville 2000 Dependability Slide 5

Survivability

• The ability of a system to continue to deliver its
services to users in the face of deliberate or
accidental attack

• This is an increasingly important attribute for
distributed systems whose security can be
compromised

• Survivability subsumes the notion of resilience - the
ability of a system to continue in operation in spite
of component failures

©Ian Sommerville 2000 Dependability Slide 6

Costs of increasing dependability

Cost

Low Medium High Very
high

Ultra-
high

Dependability

©Ian Sommerville 2000 Dependability Slide 7

Dependability costs

• Dependability costs tend to increase exponentially as
increasing levels of dependability are required

• There are two reasons for this
• The use of more expensive development techniques and hardware

that are required to achieve the higher levels of dependability

• The increased testing and system validation that is required to
convince the system client that the required levels of dependability
have been achieved

©Ian Sommerville 2000 Dependability Slide 8

Dependability vs performance

• Untrustworthy systems may be rejected by their
users

• System failure costs may be very high

• It is very difficult to tune systems to make them
more dependable

• It may be possible to compensate for poor
performance

• Untrustworthy systems may cause loss of valuable
information

©Ian Sommerville 2000 Dependability Slide 9

Dependability economics

• Because of very high costs of dependability
achievement, it may be more cost effective to accept
untrustworthy systems and pay for failure costs

• However, this depends on social and political
factors. A reputation for products that can’t be
trusted may lose future business

• Depends on system type - for business systems in
particular, modest levels of dependability may be
adequate

©Ian Sommerville 2000 Dependability Slide 10

Availability and reliability

• Reliability
• The probability of failure-free system operation over a specified time

in a given environment for a given purpose

• Availability
• The probability that a system, at a point in time, will be operational

and able to deliver the requested services

• Both of these attributes can be expressed
quantitatively

©Ian Sommerville 2000 Dependability Slide 11

Availability and reliability

• It is sometimes possible to subsume system
availability under system reliability
• Obviously if a system is unavailable it is not delivering the specified

system services

• However, it is possible to have systems with low
reliability that must be available. So long as system
failures can be repaired quickly and do not damage
data, low reliability may not be a problem

• Availability takes repair time into account

©Ian Sommerville 2000 Dependability Slide 12

Term Description
System failure An event that occurs at some point in time when

the system does not deliver a service as expected
by its users

System error Erroneous system behaviour where the behaviour
of the system does not conform to its
specification.

System fault An incorrect system state i.e. a system state that
is unexpected by the designers of the system.

Human error or
mistake

Human behaviour that results in the introduction
of faults into a system.

Reliability terminology

©Ian Sommerville 2000 Dependability Slide 13

Faults and failures

• Failures are a usually a result of system errors that
are derived from faults in the system

• However, faults do not necessarily result in system
errors
• The faulty system state may be transient and ‘corrected’ before an

error arises

• Errors do not necessarily lead to system failures
• The error can be corrected by built-in error detection and recovery

• The failure can be protected against by built-in protection facilities.
These may, for example, protect system resources from system
errors

©Ian Sommerville 2000 Dependability Slide 14

Perceptions of reliability

• The formal definition of reliability does not always
reflect the user’s perception of a system’s reliability
• The assumptions that are made about the environment where a

system will be used may be incorrect
• Usage of a system in an office environment is likely to be quite different

from usage of the same system in a university environment

• The consequences of system failures affects the perception of
reliability
• Unreliable windscreen wipers in a car may be irrelevant in a dry climate

• Failures that have serious consequences (such as an engine breakdown
in a car) are given greater weight by users than failures that are
inconvenient

©Ian Sommerville 2000 Dependability Slide 15

Reliability achievement

• Fault avoidance
• Development technique are used that either minimise the possibility

of mistakes or trap mistakes before they result in the introduction of
system faults

• Fault detection and removal
• Verification and validation techniques that increase the probability

of detecting and correcting errors before the system goes into service
are used

• Fault tolerance
• Run-time techniques are used to ensure that system faults do not

result in system errors and/or that system errors do not lead to
system failures

©Ian Sommerville 2000 Dependability Slide 16

Reliability modelling

• You can model a system as an input-output mapping
where some inputs will result in erroneous outputs

• The reliability of the system is the probability that a
particular input will lie in the set of inputs that cause
erroneous outputs

• Different people will use the system in different
ways so this probability is not a static system
attribute but depends on the system’s environment

©Ian Sommerville 2000 Dependability Slide 17

Input/output mapping

I
e

Input set

OeOutput set

Program

Inputs causing
erroneous
outputs

Erroneous
outputs

©Ian Sommerville 2000 Dependability Slide 18

Reliability perception

Possible
inputs

User 1

User 3
User 2

Erroneous
inputs

©Ian Sommerville 2000 Dependability Slide 19

Reliability improvement

• Removing X% of the faults in a system will not
necessarily improve the reliability by X%. A study
at IBM showed that removing 60% of product
defects resulted in a 3% improvement in reliability

• Program defects may be in rarely executed sections
of the code so may never be encountered by users.
Removing these does not affect the perceived
reliability

• A program with known faults may therefore still be
seen as reliable by its users

©Ian Sommerville 2000 Dependability Slide 20

Safety

• Safety is a property of a system that reflects the
system’s ability to operate, normally or abnormally,
without danger of causing human injury or death and
without damage to the system’s environment

• It is increasingly important to consider software
safety as more and more devices incorporate
software-based control systems

• Safety requirements are exclusive requirements i.e.
they exclude undesirable situations rather than
specify required system services

©Ian Sommerville 2000 Dependability Slide 21

• Primary safety-critical systems
• Embedded software systems whose failure can cause the associated

hardware to fail and directly threaten people.

• Secondary safety-critical systems
• Systems whose failure results in faults in other systems which can

threaten people

• Discussion here focuses on primary safety-critical
systems
• Secondary safety-critical systems can only be considered on a one-

off basis

Safety criticality

©Ian Sommerville 2000 Dependability Slide 22

• Safety and reliability are related but distinct
• In general, reliability and availability are necessary but not sufficient

conditions for system safety

• Reliability is concerned with conformance to a given
specification and delivery of service

• Safety is concerned with ensuring system cannot
cause damage irrespective of whether
or not it conforms to its specification

Safety and reliability

©Ian Sommerville 2000 Dependability Slide 23

• Specification errors
• If the system specification is incorrect then the system can behave as

specified but still cause an accident

• Hardware failures generating spurious inputs
• Hard to anticipate in the specification

• Context-sensitive commands i.e. issuing the right
command at the wrong time
• Often the result of operator error

Unsafe reliable systems

©Ian Sommerville 2000 Dependability Slide 24

Term Definition
Accident (or
mishap)

An unplanned event or sequence of events which results in human death
or injury, damage to property or to the environment. A computer-
controlled machine injuring its operator is an example of an accident.

Hazard A condition with the potential for causing or contributing to an
accident. A failure of the sensor which detects an obstacle in front of a
machine is an example of a hazard.

Damage A measure of the loss resulting from a mishap. Damage can range from
many people killed as a result of an accident to minor injury or property
damage.

Hazard
severity

An assessment of the worst possible damage which could result from a
particular hazard. Hazard severity can range from catastrophic where
many people are killed to minor where only minor damage results

Hazard
probability

The probability of the events occurring which create a hazard.
Probability values tend to be arbitrary but range from probable (say
1/100 chance of a hazard occurring) to implausible (no conceivable
situations are likely where the hazard could occur).

Risk This is a measure of the probability that the system will cause an
accident. The risk is assessed by considering the hazard probability, the
hazard severity and the probability that a hazard will result in an
accident.

Safety terminology

©Ian Sommerville 2000 Dependability Slide 25

Safety achievement

• Hazard avoidance
• The system is designed so that some classes of hazard simply cannot

arise.

• Hazard detection and removal
• The system is designed so that hazards are detected and removed

before they result in an accident

• Damage limitation
• The system includes protection features that minimise the damage

that may result from an accident

©Ian Sommerville 2000 Dependability Slide 26

Normal accidents

• Accidents in complex systems rarely have a single
cause as these systems are designed to be resilient to
a single point of failure
• Designing systems so that a single point of failure does not cause an

accident is a fundamental principle of safe systems design

• Almost all accidents are a result of combinations of
malfunctions

• It is probably the case that anticipating all problem
combinations, especially, in software controlled
systems is impossible so achieving complete safety
is impossible

©Ian Sommerville 2000 Dependability Slide 27

Security

• The security of a system is a system property that
reflects the system’s ability to protect itself from
accidental or deliberate external attack

• Security is becoming increasingly important as
systems are networked so that external access to the
system through the Internet is possible

• Security is an essential pre-requisite for availability,
reliability and safety

©Ian Sommerville 2000 Dependability Slide 28

Fundamental security

• If a system is a networked system and is insecure
then statements about its reliability and its safety are
unreliable

• These statements depend on the executing system
and the developed system being the same. However,
intrusion can change the executing system and/or its
data

• Therefore, the reliability and safety assurance is no
longer valid

©Ian Sommerville 2000 Dependability Slide 29

Security terminology

Term Definition
Exposure Possible loss or harm in a computing system
Vulnerability A weakness in a computer-based system that may

be exploited to cause loss or harm
Attack An exploitation of a system vulnerability
Threats Circumstances that have potential to cause loss or

harm
Control A protective measure that reduces a system

vulnerability

©Ian Sommerville 2000 Dependability Slide 30

Damage from insecurity

• Denial of service
• The system is forced into a state where normal services are

unavailable or where service provision is significantly degraded

• Corruption of programs or data
• The programs or data in the system may be modified in an

unauthorised way

• Disclosure of confidential information
• Information that is managed by the system may be exposed to people

who are not authorised to read or use that information

©Ian Sommerville 2000 Dependability Slide 31

Security assurance

• Vulnerability avoidance
• The system is designed so that vulnerabilities do not occur. For

example, if there is no external network connection then external
attack is impossible

• Attack detection and elimination
• The system is designed so that attacks on vulnerabilities are detected

and neutralised before they result in an exposure. For example, virus
checkers find and remove viruses before they infect a system

• Exposure limitation
• The system is designed so that the adverse consequences of a

successful attack are minimised. For example, a backup policy
allows damaged information to be restored

©Ian Sommerville 2000 Dependability Slide 32

Key points

• The dependability in a system reflects the user’s trust
in that system

• The availability of a system is the probability that it
will be available to deliver services when requested

• The reliability of a system is the probability that
system services will be delivered as specified

• Reliability and availability are generally seen as
necessary but not sufficient conditions for safety and
security

©Ian Sommerville 2000 Dependability Slide 33

Key points

• Reliability is related to the probability of an error
occurring in operational use. A system with known
faults may be reliable

• Safety is a system attribute that reflects the system’s
ability to operate without threatening people or the
environment

• Security is a system attribute that reflects the
system’s ability to protect itself from external attack

©Ian Sommerville 2000 Dependability Slide 1

Dependability

• The extent to which a critical
system is trusted by its users

©Ian Sommerville 2000 Dependability Slide 2

The concept of dependability

• For critical systems, it is usually the case that the
most important system property is the dependability
of the system

• The dependability of a system reflects the user’s
degree of trust in that system. It reflects the extent of
the user’s confidence that it will operate as users
expect and that it will not ‘fail’ in normal use

• Usefulness and trustworthiness are not the same
thing. A system does not have to be trusted to be
useful

©Ian Sommerville 2000 Dependability Slide 3

Dimensions of dependability

Dependability

Availability Reliability Security

The ability of the
system to deliver

services when
requested

The ability of the
system to deliver

services as specified?

The ability of the
system to operate

without catastrophic
failure

The ability of the
system to protect itelf
against accidental or
deliverate intrusion

Safety

©Ian Sommerville 2000 Dependability Slide 4

Maintainability

• A system attribute which is concerned with the ease
of repairing the system after a failure has been
discovered or changing the system to include new
features

• Very important for critical systems as faults are often
introduced into a system because of maintenance
problems

• Maintainability is distinct from other dimensions of
dependability because it is a static and not a dynamic
system attribute. I do not cover it in this course.

©Ian Sommerville 2000 Dependability Slide 5

Survivability

• The ability of a system to continue to deliver its
services to users in the face of deliberate or
accidental attack

• This is an increasingly important attribute for
distributed systems whose security can be
compromised

• Survivability subsumes the notion of resilience - the
ability of a system to continue in operation in spite
of component failures

©Ian Sommerville 2000 Dependability Slide 6

Costs of increasing dependability

Cost

Low Medium High Very
high

Ultra-
high

Dependability

©Ian Sommerville 2000 Dependability Slide 7

Dependability costs

• Dependability costs tend to increase exponentially as
increasing levels of dependability are required

• There are two reasons for this
• The use of more expensive development techniques and hardware

that are required to achieve the higher levels of dependability

• The increased testing and system validation that is required to
convince the system client that the required levels of dependability
have been achieved

©Ian Sommerville 2000 Dependability Slide 8

Dependability vs performance

• Untrustworthy systems may be rejected by their
users

• System failure costs may be very high

• It is very difficult to tune systems to make them
more dependable

• It may be possible to compensate for poor
performance

• Untrustworthy systems may cause loss of valuable
information

©Ian Sommerville 2000 Dependability Slide 9

Dependability economics

• Because of very high costs of dependability
achievement, it may be more cost effective to accept
untrustworthy systems and pay for failure costs

• However, this depends on social and political
factors. A reputation for products that can’t be
trusted may lose future business

• Depends on system type - for business systems in
particular, modest levels of dependability may be
adequate

©Ian Sommerville 2000 Dependability Slide 10

Availability and reliability

• Reliability
• The probability of failure-free system operation over a specified time

in a given environment for a given purpose

• Availability
• The probability that a system, at a point in time, will be operational

and able to deliver the requested services

• Both of these attributes can be expressed
quantitatively

©Ian Sommerville 2000 Dependability Slide 11

Availability and reliability

• It is sometimes possible to subsume system
availability under system reliability
• Obviously if a system is unavailable it is not delivering the specified

system services

• However, it is possible to have systems with low
reliability that must be available. So long as system
failures can be repaired quickly and do not damage
data, low reliability may not be a problem

• Availability takes repair time into account

©Ian Sommerville 2000 Dependability Slide 12

Term Description
System failure An event that occurs at some point in time when

the system does not deliver a service as expected
by its users

System error Erroneous system behaviour where the behaviour
of the system does not conform to its
specification.

System fault An incorrect system state i.e. a system state that
is unexpected by the designers of the system.

Human error or
mistake

Human behaviour that results in the introduction
of faults into a system.

Reliability terminology

©Ian Sommerville 2000 Dependability Slide 13

Faults and failures

• Failures are a usually a result of system errors that
are derived from faults in the system

• However, faults do not necessarily result in system
errors
• The faulty system state may be transient and ‘corrected’ before an

error arises

• Errors do not necessarily lead to system failures
• The error can be corrected by built-in error detection and recovery

• The failure can be protected against by built-in protection facilities.
These may, for example, protect system resources from system
errors

©Ian Sommerville 2000 Dependability Slide 14

Perceptions of reliability

• The formal definition of reliability does not always
reflect the user’s perception of a system’s reliability
• The assumptions that are made about the environment where a

system will be used may be incorrect
• Usage of a system in an office environment is likely to be quite different

from usage of the same system in a university environment

• The consequences of system failures affects the perception of
reliability
• Unreliable windscreen wipers in a car may be irrelevant in a dry climate

• Failures that have serious consequences (such as an engine breakdown
in a car) are given greater weight by users than failures that are
inconvenient

©Ian Sommerville 2000 Dependability Slide 15

Reliability achievement

• Fault avoidance
• Development technique are used that either minimise the possibility

of mistakes or trap mistakes before they result in the introduction of
system faults

• Fault detection and removal
• Verification and validation techniques that increase the probability

of detecting and correcting errors before the system goes into service
are used

• Fault tolerance
• Run-time techniques are used to ensure that system faults do not

result in system errors and/or that system errors do not lead to
system failures

©Ian Sommerville 2000 Dependability Slide 16

Reliability modelling

• You can model a system as an input-output mapping
where some inputs will result in erroneous outputs

• The reliability of the system is the probability that a
particular input will lie in the set of inputs that cause
erroneous outputs

• Different people will use the system in different
ways so this probability is not a static system
attribute but depends on the system’s environment

©Ian Sommerville 2000 Dependability Slide 17

Input/output mapping

I
e

Input set

OeOutput set

Program

Inputs causing
erroneous
outputs

Erroneous
outputs

©Ian Sommerville 2000 Dependability Slide 18

Reliability perception

Possible
inputs

User 1

User 3
User 2

Erroneous
inputs

©Ian Sommerville 2000 Dependability Slide 19

Reliability improvement

• Removing X% of the faults in a system will not
necessarily improve the reliability by X%. A study
at IBM showed that removing 60% of product
defects resulted in a 3% improvement in reliability

• Program defects may be in rarely executed sections
of the code so may never be encountered by users.
Removing these does not affect the perceived
reliability

• A program with known faults may therefore still be
seen as reliable by its users

©Ian Sommerville 2000 Dependability Slide 20

Safety

• Safety is a property of a system that reflects the
system’s ability to operate, normally or abnormally,
without danger of causing human injury or death and
without damage to the system’s environment

• It is increasingly important to consider software
safety as more and more devices incorporate
software-based control systems

• Safety requirements are exclusive requirements i.e.
they exclude undesirable situations rather than
specify required system services

©Ian Sommerville 2000 Dependability Slide 21

• Primary safety-critical systems
• Embedded software systems whose failure can cause the associated

hardware to fail and directly threaten people.

• Secondary safety-critical systems
• Systems whose failure results in faults in other systems which can

threaten people

• Discussion here focuses on primary safety-critical
systems
• Secondary safety-critical systems can only be considered on a one-

off basis

Safety criticality

©Ian Sommerville 2000 Dependability Slide 22

• Safety and reliability are related but distinct
• In general, reliability and availability are necessary but not sufficient

conditions for system safety

• Reliability is concerned with conformance to a given
specification and delivery of service

• Safety is concerned with ensuring system cannot
cause damage irrespective of whether
or not it conforms to its specification

Safety and reliability

©Ian Sommerville 2000 Dependability Slide 23

• Specification errors
• If the system specification is incorrect then the system can behave as

specified but still cause an accident

• Hardware failures generating spurious inputs
• Hard to anticipate in the specification

• Context-sensitive commands i.e. issuing the right
command at the wrong time
• Often the result of operator error

Unsafe reliable systems

©Ian Sommerville 2000 Dependability Slide 24

Term Definition
Accident (or
mishap)

An unplanned event or sequence of events which results in human death
or injury, damage to property or to the environment. A computer-
controlled machine injuring its operator is an example of an accident.

Hazard A condition with the potential for causing or contributing to an
accident. A failure of the sensor which detects an obstacle in front of a
machine is an example of a hazard.

Damage A measure of the loss resulting from a mishap. Damage can range from
many people killed as a result of an accident to minor injury or property
damage.

Hazard
severity

An assessment of the worst possible damage which could result from a
particular hazard. Hazard severity can range from catastrophic where
many people are killed to minor where only minor damage results

Hazard
probability

The probability of the events occurring which create a hazard.
Probability values tend to be arbitrary but range from probable (say
1/100 chance of a hazard occurring) to implausible (no conceivable
situations are likely where the hazard could occur).

Risk This is a measure of the probability that the system will cause an
accident. The risk is assessed by considering the hazard probability, the
hazard severity and the probability that a hazard will result in an
accident.

Safety terminology

©Ian Sommerville 2000 Dependability Slide 25

Safety achievement

• Hazard avoidance
• The system is designed so that some classes of hazard simply cannot

arise.

• Hazard detection and removal
• The system is designed so that hazards are detected and removed

before they result in an accident

• Damage limitation
• The system includes protection features that minimise the damage

that may result from an accident

©Ian Sommerville 2000 Dependability Slide 26

Normal accidents

• Accidents in complex systems rarely have a single
cause as these systems are designed to be resilient to
a single point of failure
• Designing systems so that a single point of failure does not cause an

accident is a fundamental principle of safe systems design

• Almost all accidents are a result of combinations of
malfunctions

• It is probably the case that anticipating all problem
combinations, especially, in software controlled
systems is impossible so achieving complete safety
is impossible

©Ian Sommerville 2000 Dependability Slide 27

Security

• The security of a system is a system property that
reflects the system’s ability to protect itself from
accidental or deliberate external attack

• Security is becoming increasingly important as
systems are networked so that external access to the
system through the Internet is possible

• Security is an essential pre-requisite for availability,
reliability and safety

©Ian Sommerville 2000 Dependability Slide 28

Fundamental security

• If a system is a networked system and is insecure
then statements about its reliability and its safety are
unreliable

• These statements depend on the executing system
and the developed system being the same. However,
intrusion can change the executing system and/or its
data

• Therefore, the reliability and safety assurance is no
longer valid

©Ian Sommerville 2000 Dependability Slide 29

Security terminology

Term Definition
Exposure Possible loss or harm in a computing system
Vulnerability A weakness in a computer-based system that may

be exploited to cause loss or harm
Attack An exploitation of a system vulnerability
Threats Circumstances that have potential to cause loss or

harm
Control A protective measure that reduces a system

vulnerability

©Ian Sommerville 2000 Dependability Slide 30

Damage from insecurity

• Denial of service
• The system is forced into a state where normal services are

unavailable or where service provision is significantly degraded

• Corruption of programs or data
• The programs or data in the system may be modified in an

unauthorised way

• Disclosure of confidential information
• Information that is managed by the system may be exposed to people

who are not authorised to read or use that information

©Ian Sommerville 2000 Dependability Slide 31

Security assurance

• Vulnerability avoidance
• The system is designed so that vulnerabilities do not occur. For

example, if there is no external network connection then external
attack is impossible

• Attack detection and elimination
• The system is designed so that attacks on vulnerabilities are detected

and neutralised before they result in an exposure. For example, virus
checkers find and remove viruses before they infect a system

• Exposure limitation
• The system is designed so that the adverse consequences of a

successful attack are minimised. For example, a backup policy
allows damaged information to be restored

©Ian Sommerville 2000 Dependability Slide 32

Key points

• The dependability in a system reflects the user’s trust
in that system

• The availability of a system is the probability that it
will be available to deliver services when requested

• The reliability of a system is the probability that
system services will be delivered as specified

• Reliability and availability are generally seen as
necessary but not sufficient conditions for safety and
security

©Ian Sommerville 2000 Dependability Slide 33

Key points

• Reliability is related to the probability of an error
occurring in operational use. A system with known
faults may be reliable

• Safety is a system attribute that reflects the system’s
ability to operate without threatening people or the
environment

• Security is a system attribute that reflects the
system’s ability to protect itself from external attack

©Ian Sommerville 2000 Dependable systems specification Slide 1

Dependable Systems Specification

• Processes and techniques for
developing a specification for
system availability, reliability,
safety and security

©Ian Sommerville 2000 Dependable systems specification Slide 2

Functional and non-functional requirements

• System functional requirements may be generated
to define error checking and recovery facilities
and features that provide protection against
system failures.

• Non-functional requirements may be generated to
specify the required reliability and availability of
the system.

©Ian Sommerville 2000 Dependable systems specification Slide 3

System reliability specification

• Hardware reliability
• What is the probability of a hardware component failing and how

long does it take to repair that component?

• Software reliability
• How likely is it that a software component will produce an incorrect

output. Software failures are different from hardware failures in that
software does not wear out. It can continue in operation even after an
incorrect result has been produced.

• Operator reliability
• How likely is it that the operator of a system will make an error?

©Ian Sommerville 2000 Dependable systems specification Slide 4

System reliability engineering

• Sub-discipline of systems engineering that is
concerned with making judgements on system
reliability

• It takes into account the probabilities of failure of
different components in the system and their
combinations
• Consider a system with 2 components A and B where the

probability of failure of A is P (A) and the probability of failure
of B is P (B).

©Ian Sommerville 2000 Dependable systems specification Slide 5

Failure probabilities

• If there are 2 components and the operation of the
system depends on both of them then the
probability of system failure is
• P (S) = P (A) + P (B)

• Therefore, as the number of components increase
then the probability of system failure increases

• If components are replicated then the probability
of failure is
• P (S) = P (A) n (all components must fail)

©Ian Sommerville 2000 Dependable systems specification Slide 6

Functional reliability requirements

• A predefined range for all values that are input by
the operator shall be defined and the system shall
check that all operator inputs fall within this
predefined range.

• The system shall check all disks for bad blocks
when it is initialised.

• The system must use N-version programming to
implement the braking control system.

• The system must be implemented in a safe subset
of Ada and checked using static analysis

©Ian Sommerville 2000 Dependable systems specification Slide 7

• The required level of system reliability required
should be expressed in quantitatively

• Reliability is a dynamic system attribute-
reliability specifications related to the source
code are meaningless.
• No more than N faults/1000 lines.

• This is only useful for a post-delivery process analysis where
you are trying to assess how good your development techniques
are.

• An appropriate reliability metric should be chosen
to specify the overall system reliability

Non-functional reliability specification

©Ian Sommerville 2000 Dependable systems specification Slide 8

• Reliability metrics are units of measurement of
system reliability

• System reliability is measured by counting the
number of operational failures and, where
appropriate, relating these to the demands made
on the system and the time that the system has
been operational

• A long-term measurement programme is required
to assess the reliability of critical systems

Reliability metrics

©Ian Sommerville 2000 Dependable systems specification Slide 9

Reliability metrics

Metric Explanation
POFOD
Probability of failure
on demand

The likelihood that the system will fail when a service request
is made. For example, a POFOD of 0.001 means that 1 out of
a thousand service requests may result in failure.

ROCOF
Rate of failure
occurrence

The frequency of occurrence with which unexpected
behaviour is likely to occur. For example, a ROCOF of 2/100
means that 2 failures are likely to occur in each 100
operational time units. This metric is sometimes called the
failure intensity.

MTTF
Mean time to failure

The average time between observed system failures. For
example, an MTTF of 500 means that 1 failure can be
expected every 500 time units.

MTTR
Mean time to repair

The average time between a system failure and the return of
that system to service.

AVAIL
Availability

The probability that the system is available for use at a given
time. For example, an availability of 0.998 means that in
every 1000 time units, the system is likely to be available for
998 of these.

©Ian Sommerville 2000 Dependable systems specification Slide 10

Availability

• Measure of the fraction of the time that the
system is available for use

• Takes repair and restart time into account

• Availability of 0.998 means software is available
for 998 out of 1000 time units

• Relevant for non-stop, continuously running
systems
• telephone switching systems, railway signalling systems

©Ian Sommerville 2000 Dependable systems specification Slide 11

Probability of failure on demand

• This is the probability that the system will fail
when a service request is made. Useful when
demands for service are intermittent and
relatively infrequent

• Appropriate for protection systems where services
are demanded occasionally and where there are
serious consequence if the service is not delivered

• Relevant for many safety-critical systems with
exception management components
• Emergency shutdown system in a chemical plant

©Ian Sommerville 2000 Dependable systems specification Slide 12

Rate of fault occurrence (ROCOF)

• Reflects the rate of occurrence of failure in the
system

• ROCOF of 0.002 means 2 failures are likely in
each 1000 operational time units e.g. 2 failures
per 1000 hours of operation

• Relevant for operating systems, transaction
processing systems where the system has to
process a large number of similar requests that are
relatively frequesnt
• Credit card processing system, airline booking system

©Ian Sommerville 2000 Dependable systems specification Slide 13

Mean time to failure

• Measure of the time between observed failures of
the system. Is the reciprocal of ROCOF for stable
systems

• MTTF of 500 means that the mean time between
failures is 500 time units

• Relevant for systems with long transactions i.e.
where system processing takes a long time.
MTTF should be longer than transaction length
• Computer-aided design systems where a designer will work on a

design for several hours, word processor systems

©Ian Sommerville 2000 Dependable systems specification Slide 14

Failure consequences

• Reliability measurements do NOT take the
consequences of failure into account

• Transient faults may have no real consequences
but other faults may cause data loss or corruption
and loss of system service

• May be necessary to identify different failure
classes and use different metrics for each of these.
The reliability specification must be structured.

©Ian Sommerville 2000 Dependable systems specification Slide 15

Failure consequences

• When specifying reliability, it is not just the
number of system failures that matter but the
consequences of these failures

• Failures that have serious consequences are
clearly more damaging than those where repair
and recovery is straightforward

• In some cases, therefore, different reliability
specifications for different types of failure may be
defined

©Ian Sommerville 2000 Dependable systems specification Slide 16

Failure classification

Failure class Description
Transient Occurs only with certain inputs
Permanent Occurs with all inputs
Recoverable System can recover without operator intervention
Unrecoverable Operator intervention needed to recover from failure
Non-corrupting Failure does not corrupt system state or data
Corrupting Failure corrupts system state or data

©Ian Sommerville 2000 Dependable systems specification Slide 17

• For each sub-system, analyse the
consequences of possible system failures.

• From the system failure analysis, partition
failures into appropriate classes.

• For each failure class identified, set out the
reliability using an appropriate metric. Different
metrics may be used for different reliability
requirements

• Identify functional reliability requirements to
reduce the chances of critical failures

Steps to a reliability specification

©Ian Sommerville 2000 Dependable systems specification Slide 18

Bank auto-teller system

• Each machine in a network is used 300 times a
day

• Bank has 1000 machines

• Lifetime of software release is 2 years

• Each machine handles about 200, 000
transactions

• About 300, 000 database transactions in total per
day

©Ian Sommerville 2000 Dependable systems specification Slide 19

Examples of a reliability spec.

Failure class Example Reliability metric
Permanent,
non-corrupting.

The system fails to operate with
any card which is input. Software
must be restarted to correct failure.

ROCOF
1 occurrence/1000 days

Transient, non-
corrupting

The magnetic stripe data cannot be
read on an undamaged card which
is input.

POFOD
1 in 1000 transactions

Transient,
corrupting

A pattern of transactions across the
network causes database
corruption.

Unquantifiable! Should
never happen in the
lifetime of the system

©Ian Sommerville 2000 Dependable systems specification Slide 20

Specification validation

• It is impossible to empirically validate very high
reliability specifications

• No database corruptions means POFOD of less
than 1 in 200 million

• If a transaction takes 1 second, then simulating
one day’s transactions takes 3.5 days

• It would take longer than the system’s lifetime to
test it for reliability

©Ian Sommerville 2000 Dependable systems specification Slide 21

Key points

• There are both functional and non-functional
dependability requirements

• Non-functional availability and reliability
requirements should be specified quantitatively

• Metrics that may be used are AVAIL, POFOD,
ROCOF and MTTF

• When deriving a reliability specification, the
consequences of different types of fault should be
taken into account

©Ian Sommerville 2000 Dependable systems specification Slide 22

Safety specification

• The safety requirements of a system should be
separately specified

• These requirements should be based on an
analysis of the possible hazards and risks

• Safety requirements usually apply to the system
as a whole rather than to individual sub-systems.
In systems engineering terms, the safety of a
system is an emergent property

The safety life-
cycle

©Ian Sommerville 2000 Dependable systems specification Slide 23

Hazard and risk
analysis

Safety req.
allocation

Safety req.
derivation

Concept and
scope definition

Validation O & M Installation

Planning Safety-related
systems

development

External risk
reduction
facilities

Operation and
maintenance

Planning and development

System
decommissioning

Installation and
commissioning

Safety
validation

©Ian Sommerville 2000 Dependable systems specification Slide 24

Safety processes

• Hazard and risk analysis
• Assess the hazards and the risks of damage associated with the

system

• Safety requirements specification
• Specify a set of safety requirements which apply to the system

• Designation of safety-critical systems
• Identify the sub-systems whose incorrect operation may

compromise system safety. Ideally, these should be as small a
part as possible of the whole system.

• Safety validation
• Check the overall system safety

©Ian Sommerville 2000 Dependable systems specification Slide 25

Hazard and risk analysis

Hazard
description

Hazard
identification

Risk analysis and
hazard classification

Hazard
decomposition

Risk reduction
assessment

Risk
assessment

Fault tree
analysis

Preliminary safety
requirements

©Ian Sommerville 2000 Dependable systems specification Slide 26

• Identification of hazards which can arise which
compromise the safety of the system and
assessing the risks associated with these hazards

• Structured into various classes of hazard analysis
and carried out throughout software
process from specification to implementation

• A risk analysis should be carried out and
documented for each identified hazard and actions
taken to ensure the most serious/likely hazards do
not result in accidents

Hazard and risk analysis

©Ian Sommerville 2000 Dependable systems specification Slide 27

Hazard analysis stages

• Hazard identification
• Identify potential hazards which may arise

• Risk analysis and hazard classification
• Assess the risk associated with each hazard

• Hazard decomposition
• Decompose hazards to discover their potential root causes

• Risk reduction assessment
• Define how each hazard must be taken into account when the

system is designed

©Ian Sommerville 2000 Dependable systems specification Slide 28

• Method of hazard analysis which starts with an
identified fault and works backward to the causes
of the fault.

• Can be used at all stages of hazard analysis from
preliminary analysis through to detailed
software checking

• Top-down hazard analysis method. May be
combined with bottom-up methods which start
with system failures and lead to hazards

Fault-tree analysis

©Ian Sommerville 2000 Dependable systems specification Slide 29

Fault- tree analysis

• Identify hazard

• Identify potential causes of the hazard. Usually
there will be a number of alternative causes. Link
these on the fault-tree with ‘or’ or ‘and’ symbols

• Continue process until root causes are identified

• Consider the following example which considers
how data might be lost in some system where a
backup process is running

©Ian Sommerville 2000 Dependable systems specification Slide 30

Fault tree
Data deleted

H/W failure S/W failureExternal attack Operator failure

Operating system failureBackup system failure

Incorrect configurationIncorrect operator input Execution failure

Timing fault Algorithm fault Data faultUI design fault Training fault Human error

or or or or

or or

or or or

or
or

or

or
or or

©Ian Sommerville 2000 Dependable systems specification Slide 31

Risk assessment

• Assesses hazard severity, hazard probability and
accident probability

• Outcome of risk assessment is a statement of
acceptability
• Intolerable. Must never arise or result in an accident

• As low as reasonably practical(ALARP) Must minimise
possibility of hazard given cost and schedule constraints

• Acceptable. Consequences of hazard are acceptable and no extra
costs should be incurred to reduce hazard probability

©Ian Sommerville 2000 Dependable systems specification Slide 32

Levels of risk

Unacceptable region
risk cannot be tolerated

Risk tolerated only if
risk reduction is impractical

or grossly expensive

Acceptable
region

Negligible risk

ALARP
region

©Ian Sommerville 2000 Dependable systems specification Slide 33

Risk acceptability

• The acceptability of a risk is determined by
human, social and political considerations

• In most societies, the boundaries between the
regions are pushed upwards with time i.e. society
is less willing to accept risk
• For example, the costs of cleaning up pollution may be less than

the costs of preventing it but this may not be socially acceptable

• Risk assessment is subjective
• Risks are identified as probable, unlikely, etc. This depends on

who is making the assessment

©Ian Sommerville 2000 Dependable systems specification Slide 34

Risk reduction

• System should be specified so that hazards do not
arise or result in an accident

• Hazard avoidance
• The system should be designed so that the hazard can never

arise during correct system operation

• Hazard detection and removal
• The system should be designed so that hazards are detected and

neutralised before they result in an accident

• Damage limitation
• The system is designed in such a way that the consequences of

an accident are minimised

©Ian Sommerville 2000 Dependable systems specification Slide 35

Specifying forbidden behaviour

• The system shall not allow users to modify access
permissions on any files that they have not
created (security)

• The system shall not allow reverse thrust mode to
be selected when the aircraft is in flight (safety)

• The system shall not allow the simultaneous
activation of more than three alarm signals
(safety)

©Ian Sommerville 2000 Dependable systems specification Slide 36

Security specification

• Has some similarities to safety specification
• Not possible to specify security requirements quantitatively

• The requirements are often ‘shall not’ rather than ‘shall’
requirements

• Differences
• No well-defined notion of a security life cycle for security

management

• Generic threats rather than system specific hazards

• Mature security technology (encryption, etc.). However, there
are problems in transferring this into general use

©Ian Sommerville 2000 Dependable systems specification Slide 37

The security specification process

System asset
list

Asset
identification

Threat analysis and
risk assessment

Threat
assignment

Security req.
specification

Threat and
risk matrix

Asset and
threat

description

Security
requirements

Technology
analysis

Security
technology

analysis

©Ian Sommerville 2000 Dependable systems specification Slide 38

Stages in security specification

• Asset identification and evaluation
• The assets (data and programs) and their required degree of

protection are identified. The degree of required protection
depends on the asset value so that a password file (say) is more
valuable than a set of public web pages.

• Threat analysis and risk assessment
• Possible security threats are identified and the risks associated

with each of these threats is estimated.

• Threat assignment
• Identified threats are related to the assets so that, for each

identified asset, there is a list of associated threats.

©Ian Sommerville 2000 Dependable systems specification Slide 39

Stages in security specification

• Technology analysis
• Available security technologies and their applicability against

the identified threats are assessed.

• Security requirements specification
• The security requirements are specified. Where appropriate,

these will explicitly identified the security technologies that may
be used to protect against different threats to the system.

©Ian Sommerville 2000 Dependable systems specification Slide 40

Key points
• Hazard analysis is a key activity in the safety

specification process.

• Fault-tree analysis is a technique which can be used in
the hazard analysis process.

• Risk analysis is the process of assessing the likelihood
that a hazard will result in an accident. Risk analysis
identifies critical hazards and classifies risks according
to their seriousness.

• To specify security requirements, you should identify the
assets that are to be protected and define how security
techniques should be used to protect them.

©Ian Sommerville 2000 Dependable Software Development Slide 1

Dependable software development

• Programming techniques for
building dependable software
systems.

©Ian Sommerville 2000 Dependable Software Development Slide 2

Software dependability

• In general, software customers expect all software
to be dependable. However, for non-critical
applications, they may be willing to accept some
system failures

• Some applications, however, have very high
dependability requirements and special
programming techniques must be used to achieve
this

©Ian Sommerville 2000 Dependable Software Development Slide 3

Dependability achievement

• Fault avoidance
• The software is developed in such a way that human error is

avoided and thus system faults are minimised

• The development process is organised so that faults in the
software are detected and repaired before delivery to the
customer

• Fault tolerance
• The software is designed so that faults in the delivered software

do not result in system failure

©Ian Sommerville 2000 Dependable Software Development Slide 4

Fault minimisation

• Current methods of software engineering now
allow for the production of fault-free software.

• Fault-free software means software which
conforms to its specification. It does NOT mean
software which will always perform correctly as
there may be specification errors.

• The cost of producing fault free software is very
high. It is only cost-effective in exceptional
situations. May be cheaper to accept software
faults

©Ian Sommerville 2000 Dependable Software Development Slide 5

Fault removal costs

Cost
per error
deleted

Few
Number of residual errors

Many Very
few

©Ian Sommerville 2000 Dependable Software Development Slide 6

Fault-free software development

• Needs a precise (preferably formal) specification.

• Requires an organizational committment to
quality.

• Information hiding and encapsulation in software
design is essential

• A programming language with strict typing and
run-time checking should be used

• Error-prone constructs should be avoided

• Dependable and repeatable development process

©Ian Sommerville 2000 Dependable Software Development Slide 7

Structured programming

• First discussed in the 1970's

• Programming without gotos

• While loops and if statements as the only
control statements.

• Top-down design.

• Important because it promoted thought and
discussion about programming

• Leads to programs that are easier to read and
understand

©Ian Sommerville 2000 Dependable Software Development Slide 8

Error-prone constructs

• Floating-point numbers
• Inherently imprecise. The imprecision may lead to invalid

comparisons

• Pointers
• Pointers referring to the wrong memory areas can corrupt

data. Aliasing can make programs difficult to understand
and change

• Dynamic memory allocation
• Run-time allocation can cause memory overflow

• Parallelism
• Can result in subtle timing errors because of unforseen

interaction between parallel processes

©Ian Sommerville 2000 Dependable Software Development Slide 9

Error-prone constructs

• Recursion
• Errors in recursion can cause memory overflow

• Interrupts
• Interrupts can cause a critical operation to be terminated

and make a program difficult to understand. they are
comparable to goto statements.

• Inheritance
• Code is not localised. This can result in unexpected behaviour

when changes are made and problems of understanding

• These constructs don’t have to be avoided but
they must be used with great care.

©Ian Sommerville 2000 Dependable Software Development Slide 10

Information hiding

• Information should only be exposed to those parts
of the program which need to access it. This
involves the creation of objects or abstract data
types which maintain state and operations on that
state

• This avoids faults for three reasons:
• the probability of accidental corruption of information

• the information is surrounded by ‘firewalls’ so that problems are
less likely to spread to other parts of the program

• as all information is localised, the programmer is less likely to
make errors and reviewers are more likely to find errors

©Ian Sommerville 2000 Dependable Software Development Slide 11

A queue specification in Java

interface Queue {

public void put (Object o) ;
public void remove (Object o) ;
public int size () ;

} //Queue

©Ian Sommerville 2000 Dependable Software Development Slide 12

Signal declaration in Java

class Signal {

public final int red = 1 ;
public final int amber = 2 ;
public final int green = 3 ;

... other declarations here ...
}

©Ian Sommerville 2000 Dependable Software Development Slide 13

Reliable software processes

• To ensure a minimal number of software faults, it
is important to have a well-defined, repeatable
software process

• A well-defined repeatable process is one that does
not depend entirely on individual skills; rather can
be enacted by different people

• For fault minimisation, it is clear that the proces
activities should include significant verification
and validation

©Ian Sommerville 2000 Dependable Software Development Slide 14

Process validation activities

• Requirements inspections

• Requirements management

• Model checking

• Design and code inspection

• Static analysis

• Test planning and management

• Configuration management is also essential

©Ian Sommerville 2000 Dependable Software Development Slide 15

Fault tolerance

• In critical situations, software systems must be
fault tolerant. Fault tolerance is required where
there are high availability requirements or where
system failure costs are very high..

• Fault tolerance means that the system can
continue in operation in spite of software failure

• Even if the system seems to be fault-free, it must
also be fault tolerant as there may be
specification errors or the validation may be
incorrect

©Ian Sommerville 2000 Dependable Software Development Slide 16

Fault tolerance actions

• Fault detection
• The system must detect that a fault (an incorrect system state)

has occurred.

• Damage assessment
• The parts of the system state affected by the fault must be

detected.

• Fault recovery
• The system must restore its state to a known safe state.

• Fault repair
• The system may be modified to prevent recurrence of the

fault. As many software faults are transitory, this is often
unnecessary.

©Ian Sommerville 2000 Dependable Software Development Slide 17

Approaches to fault tolerance

• Defensive programming
• Programmers assume that there may be faults in the code of the

system and incorporate redundant code to check the state after
modifications to ensure that it is consistent.

• Fault-tolerant architectures

• Hardware and software system architectures that support
hardware and software redundancy and a fault tolerance
controller that detects problems and supports fault recovery

• These are complementary rather than opposing techniques

©Ian Sommerville 2000 Dependable Software Development Slide 18

Exception management

• A program exception is an error or some
unexpected event such as a power failure.

• Exception handling constructs allow for such
events to be handled without the need for
continual status checking to detect exceptions.

• Using normal control constructs to detect
exceptions in a sequence of nested procedure
calls needs many additional statements to be
added to the program and adds a significant
timing overhead.

©Ian Sommerville 2000 Dependable Software Development Slide 19

Exceptions in Java
class SensorFailureException extends Exception {

SensorFailureException (String msg) {
super (msg) ;
Alarm.activate (msg) ;

}
} // SensorFailureException

class Sensor {
int readVal () throws SensorFailureException {
try {

int theValue = DeviceIO.readInteger () ;
if (theValue < 0)

throw new SensorFailureException ("Sensor failure") ;
return theValue ;

}
catch (deviceIOException e)

{ throw new SensorFailureException (“ Sensor read error ”) ; }
} // readVal

} // Sensor

©Ian Sommerville 2000 Dependable Software Development Slide 20

Programming with exceptions

• Exceptions can be used as a normal programming
technique and not just as a way of recovering
from faults

• Consider the example of a temperature control
system for a refrigeration unit

©Ian Sommerville 2000 Dependable Software Development Slide 21

A temperature controller

• Controls a freezer and keeps temperature
within a specified range

• Switches a refrigerant pump on and off

• Sets of an alarm is the maximum allowed
temperature is exceeded

• Uses exceptions as a normal programming
technique

Freezer controller (Java)

©Ian Sommerville 2000 Dependable Software Development Slide 22

class FreezerController {
Sensor tempSensor = new Sensor () ;
Dial tempDial = new Dial () ;
float freezerTemp = tempSensor.readVal () ;
final float dangerTemp = (float) -18.0 ;
final long coolingTime = (long) 200000.0 ;
public void run () throws InterrupedException {
try {

Pump.switchIt (Pump.on) ;
do { if (freezerTemp > tempDial.setting ())

if (Pump.status == Pump.off)
{ Pump.switchIt (Pump.on) ;

Thread.sleep (coolingTime) ;
} else
if (Pump.status == Pump.on)

Pump.switchIt (Pump.off) ;
if (freezerTemp > dangerTemp)

throw new FreezerTooHotException () ;
freezerTemp = tempSensor.readVal () ;

} while (true) ;
} // try block
catch (FreezerTooHotException f)
{ Alarm.activate () ; }
catch (InterruptedException e)
{ System.out.println (“Thread exception”) ;

throw new InterruptedException () ;
}
} //run

} // FreezerController

©Ian Sommerville 2000 Dependable Software Development Slide 23

Fault detection

• Languages such as Java and Ada have a strict
type system that allows many errors to be trapped
at compile-time

• However, some classes of error can only be
discovered at run-time

• Fault detection involves detecting an erroneous
system state and throwing an exception to manage
the detected fault

©Ian Sommerville 2000 Dependable Software Development Slide 24

Fault detection

• Preventative fault detection
• The fault detetcion mechanism is initiated before the state

change is committed. If an erroneous state is detected, the
change is not made

• Retrospective fault detection
• The fault detection mechanism is initiated after the system state

has been changed. Used when a incorrect sequence of correct
actions leads to an erroneous state ot when preventative fault
detection involves too much overhead

©Ian Sommerville 2000 Dependable Software Development Slide 25

• Preventative fault detection really involves
extending the type system by including additional
constraints as part of the type definition

• These constraints are implemented by defining
basic operations within a class definition

Type system extension

PositiveEvenInteger

©Ian Sommerville 2000 Dependable Software Development Slide 26

class PositiveEvenInteger {
int val = 0 ;

PositiveEvenInteger (int n) throws NumericException
{

if (n < 0 | n%2 == 1)
throw new NumericException () ;

else
val = n ;

} // PositiveEvenInteger

public void assign (int n) throws NumericException
{

if (n < 0 | n%2 == 1)
throw new NumericException ();

else
val = n ;

} // assign
int toInteger ()
{

return val ;
} //to Integer

boolean equals (PositiveEvenInteger n)
{

return (val == n.val) ;
} // equals

} //PositiveEven

©Ian Sommerville 2000 Dependable Software Development Slide 27

Damage assessment

• Analyse system state to judge the extent of
corruption caused by a system failure

• Must assess what parts of the state space have
been affected by the failure

• Generally based on ‘validity functions’ which can
be applied to the state elements to assess if their
value is within an allowed range

©Ian Sommerville 2000 Dependable Software Development Slide 28

• Checksums are used for damage assessment
in data transmission

• Redundant pointers can be used to check the
integrity of data structures

• Watch dog timers can check for non-terminating
processes. If no response after a certain time, a
problem is assumed

Damage assessment techniques

Java class with damage
assessment

class RobustArray {
// Checks that all the objects in an array of objects
// conform to some defined constraint
boolean [] checkState ;
CheckableObject [] theRobustArray ;

RobustArray (CheckableObject [] theArray)
{

checkState = new boolean [theArray.length] ;
theRobustArray = theArray ;

} //RobustArray
public void assessDamage () throws ArrayDamagedException
{

boolean hasBeenDamaged = false ;

for (int i= 0; i <this.theRobustArray.length ; i ++)
{

if (! theRobustArray [i].check ())
{

checkState [i] = true ;
hasBeenDamaged = true ;

}
else

checkState [i] = false ;
}
if (hasBeenDamaged)

throw new ArrayDamagedException () ;
} //assessDamage

} // RobustArray

©Ian Sommerville 2000 Dependable Software Development Slide 29

©Ian Sommerville 2000 Dependable Software Development Slide 30

• Forward recovery
• Apply repairs to a corrupted system state

• Backward recovery
• Restore the system state to a known safe state

• Forward recovery is usually application specific
- domain knowledge is required to compute
possible state corrections

• Backward error recovery is simpler. Details of a
safe state are maintained and this replaces the
corrupted system state

Fault recovery

©Ian Sommerville 2000 Dependable Software Development Slide 31

• Corruption of data coding
• Error coding techniques which add redundancy to coded

data can be used for repairing data corrupted during
transmission

• Redundant pointers
• When redundant pointers are included in data structures

(e.g. two-way lists), a corrupted list or filestore may be
rebuilt if a sufficient number of pointers are uncorrupted

• Often used for database and filesystem repair

Forward recovery

©Ian Sommerville 2000 Dependable Software Development Slide 32

• Transactions are a frequently used method of
backward recovery. Changes are not applied
until computation is complete. If an error
occurs, the system is left in the state preceding
the transaction

• Periodic checkpoints allow system to 'roll-back'
to a correct state

Backward recovery

©Ian Sommerville 2000 Dependable Software Development Slide 33

Safe sort procedure

• Sort operation monitors its own execution and
assesses if the sort has been correctly executed

• Maintains a copy of its input so that if an error
occurs, the input is not corrupted

• Based on identifying and handling exceptions

• Possible in this case as ‘valid’ sort is known.
However, in many cases it is difficult to write
validity checks

Safe sort procedure (Java)

class SafeSort {
static void sort (int [] intarray, int order) throws SortError
{

int [] copy = new int [intarray.length];

// copy the input array

for (int i = 0; i < intarray.length ; i++)
copy [i] = intarray [i] ;

try {
Sort.bubblesort (intarray, intarray.length, order) ;
if (order == Sort.ascending)

for (int i = 0; i <= intarray.length-2 ; i++)
if (intarray [i] > intarray [i+1])

throw new SortError () ;
else

for (int i = 0; i <= intarray.length-2 ; i++)
if (intarray [i+1] > intarray [i])

throw new SortError () ;
} // try block
catch (SortError e)
{

for (int i = 0; i < intarray.length ; i++)
intarray [i] = copy [i] ;

throw new SortError ("Array not sorted") ;
} //catch

} // sort
} // SafeSort

©Ian Sommerville 2000 Dependable Software Development Slide 34

©Ian Sommerville 2000 Dependable Software Development Slide 35

Key points

• Fault tolerant software can continue in execution
in the presence of software faults

• Fault tolerance requires failure detection, damage
assessment, recovery and repair

• Defensive programming is an approach to fault
tolerance that relies on the inclusion of redundant
checks in a program

• Exception handling facilities simplify the process
of defensive programming

©Ian Sommerville 2000 Dependable Software Development Slide 36

Fault tolerant architecture

• Defensive programming cannot cope with faults
that involve interactions between the hardware
and the software

• Misunderstandings of the requirements may mean
that checks and the associated code are incorrect

• Where systems have high availability
requirements, a specific architecture designed to
support fault tolerance may be required.

• This must tolerate both hardware and software
failure

©Ian Sommerville 2000 Dependable Software Development Slide 37

Hardware fault tolerance

• Depends on triple-modular redundancy (TMR)

• There are three replicated identical components
which receive the same input and whose outputs
are compared

• If one output is different, it is ignored and
component failure is assumed

• Based on most faults resulting from component
failures rather than design faults and a low
probability of simultaneous component failure

©Ian Sommerville 2000 Dependable Software Development Slide 38

Hardware reliability with TMR

A2

A1

A3

Output
comparator

Fault
manager

©Ian Sommerville 2000 Dependable Software Development Slide 39

Output selection

• The output comparator is a (relatively) simple
hardware unit.

• It compares its input signals and, if one is
different from the others, it rejects it. Essentially,
selection of the actual output depends on the
majority vote.

• The output comparator is connected to a fault
management unit that can either try to repair the
faulty unit or take it out of service.

©Ian Sommerville 2000 Dependable Software Development Slide 40

Fault tolerant software architectures

• The success of TMR at providing fault tolerance
is based on two fundamental assumptions
• The hardware components do not include common design faults

• Components fail randomly and there is a low probability of
simultaneous component failure

• Neither of these assumptions are true for software
• It isn’t possible simply to replicate the same component as they

would have common design faults

• Simultaneous component failure is therefore virtually inevitable

• Software systems must therefore be diverse

©Ian Sommerville 2000 Dependable Software Development Slide 41

Design diversity

• Different versions of the system are designed and
implemented in different ways. They therefore
ought to have different failure modes.

• Different approaches to design (e.g object-
oriented and function oriented)
• Implementation in different programming languages

• Use of different tools and development environments

• Use of different algorithms in the implementation

©Ian Sommerville 2000 Dependable Software Development Slide 42

Software analogies to TMR

• N-version programming
• The same specification is implemented in a number of

different versions by different teams. All versions compute
simultaneously and the majority output is selected using a voting
system..

• This is the most commonly used approach e.g. in Airbus
320.

• Recovery blocks
• A number of explicitly different versions of the same

specification are written and executed in sequence

• An acceptance test is used to select the output to be transmitted.

©Ian Sommerville 2000 Dependable Software Development Slide 43

N-version programming

Version 2

Version 1

Version 3

Output
comparator

N-versions

Agreed
result

©Ian Sommerville 2000 Dependable Software Development Slide 44

Output comparison

• As in hardware systems, the output comparator is
a simple piece of software that uses a voting
mechanism to select the output.

• In real-time systems, there may be a requirement
that the results from the different versions are all
produced within a certain time frame.

©Ian Sommerville 2000 Dependable Software Development Slide 45

N-version programming

• The different system versions are designed and
implemented by different teams. It is assumed
that there is a low probability that they will make
the same mistakes. The algorithms used should
but may not be different.

• There is some empirical evidence that teams
commonly misinterpret specifications in the same
way and chose the same algorithms in their
systems.

©Ian Sommerville 2000 Dependable Software Development Slide 46

Recovery blocks

Acceptance
test

Algorithm 2

Algorithm 1

Algorithm 3

Recovery
blocks

Test for
success

Retest

Retry

Retest

Try algorithm
1

Continue execution if
acceptance test succeeds
Signal exception if all
algorithms fail

Acceptance test
fails – re-try

©Ian Sommerville 2000 Dependable Software Development Slide 47

Recovery blocks

• Force a different algorithm to be used for each
version so they reduce the probability of common
errors

• However, the design of the acceptance test is
difficult as it must be independent of the
computation used

• There are problems with this approach for real-
time systems because of the sequential operation
of the redundant versions

©Ian Sommerville 2000 Dependable Software Development Slide 48

Problems with design diversity

• Teams are not culturally diverse so they tend to
tackle problems in the same way

• Characteristic errors
• Different teams make the same mistakes. Some parts of an

implementation are more difficult than others so all teams tend
to make mistakes in the same place.

• Specification errors

• If there is an error in the specification then this is reflected in all
implementations

• This can be addressed to some extent by using multiple
specification representations

©Ian Sommerville 2000 Dependable Software Development Slide 49

Specification dependency

• Both approaches to software redundancy are
susceptible to specification errors. If the
specification is incorrect, the system could fail

• This is also a problem with hardware but software
specifications are usually more complex than
hardware specifications and harder to validate

• This has been addressed in some cases by
developing separate software specifications from
the same user specification

©Ian Sommerville 2000 Dependable Software Development Slide 50

Is software redundancy needed?

• Unlike hardware, software faults are not an
inevitable consequence of the physical world

• Some people therefore believe that a higher level
of reliability and availability can be attained by
investing effort in reducing software complexity.

• Redundant software is much more complex so
there is scope for a range of additional errors that
affect the system reliability but are caused by the
existence of the fault-tolerance controllers.

©Ian Sommerville 2000 Dependable Software Development Slide 51

• Dependability in a system can be achieved
through fault avoidance and fault tolerance

• Some programming language constructs such
as gotos, recursion and pointers are inherently
error-prone

• Data typing allows many potential faults to be
trapped at compile time.

Key points

©Ian Sommerville 2000 Dependable Software Development Slide 52

Key points

• Fault tolerant architectures rely on replicated
hardware and software components

• The include mechanisms to detect a faulty
component and to switch it out of the system

• N-version programming and recovery blocks are
two different approaches to designing fault-
tolerant software architectures

• Design diversity is essential for software
redundancy

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 1

Verification and Validation

l Assuring that a software system
meets a user's needs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 2

Objectives

l To introduce software verification and validation
and to discuss the distinction between them

l To describe the program inspection process and
its role in V & V

l To explain static analysis as a verification
technique

l To describe the Cleanroom software development
process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 3

Topics covered

l Verification and validation planning

l Software inspections

l Automated static analysis

l Cleanroom software development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 4

l Verification:
"Are we building the product right"

l The software should conform to its specification

l Validation:
 "Are we building the right product"

l The software should do what the user really
requires

Verification vs validation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 5

l Is a whole life-cycle process - V & V must be
applied at each stage in the software process.

l Has two principal objectives
• The discovery of defects in a system

• The assessment of whether or not the system is usable in
an operational situation.

The V & V process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 6

l Software inspections Concerned with analysis of
the static system representation to discover
problems (static verification)
• May be supplement by tool-based document and code analysis

l Software testing Concerned with exercising and
observing product behaviour (dynamic
verification)
• The system is executed with test data and its operational

behaviour is observed

Static and dynamic verification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 7

Static and dynamic V&V

Formal
specification

High-level
design

Requirements
specification

Detailed
design

Program

Prototype Dynamic
validation

Static
verification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 8

l Can reveal the presence of errors NOT their
absence

l A successful test is a test which discovers one
or more errors

l The only validation technique for non-functional
requirements

l Should be used in conjunction with static
verification to provide full V&V coverage

Program testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 9

l Defect testing
• Tests designed to discover system defects.

• A successful defect test is one which reveals the presence
of defects in a system.

• Covered in Chapter 20

l Statistical testing
• tests designed to reflect the frequence of user inputs. Used

for reliability estimation.

• Covered in Chapter 21

Types of testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 10

V& V goals

l Verification and validation should establish
confidence that the software is fit for purpose

l This does NOT mean completely free of defects

l Rather, it must be good enough for its intended
use and the type of use will determine the degree
of confidence that is needed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 11

V & V confidence

l Depends on system’s purpose, user expectations
and marketing environment
• Software function

» The level of confidence depends on how critical the software is to
an organisation

• User expectations
» Users may have low expectations of certain kinds of software

• Marketing environment
» Getting a product to market early may be more important than

finding defects in the program

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 12

l Defect testing and debugging are distinct
processes

l Verification and validation is concerned with
establishing the existence of defects in a program

l Debugging is concerned with locating and
repairing these errors

l Debugging involves formulating a hypothesis
about program behaviour then testing these
hypotheses to find the system error

Testing and debugging

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 13

The debugging process

Locate
error

Design
error repair

Repair
error

Re-test
program

Test
results Specification Test

cases

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 14

l Careful planning is required to get the most out of
testing and inspection processes

l Planning should start early in the development
process

l The plan should identify the balance between
static verification and testing

l Test planning is about defining standards for the
testing process rather than describing product
tests

V & V planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 15

The V-model of development

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service
Acceptance

test
System

integration test
Sub-system

integration test

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 16

The structure of a software test plan

l The testing process

l Requirements traceability

l Tested items

l Testing schedule

l Test recording procedures

l Hardware and software requirements

l Constraints

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 17

Software inspections

l Involve people examining the source
representation with the aim of discovering
anomalies and defects

l Do not require execution of a system so may be
used before implementation

l May be applied to any representation of the
system (requirements, design, test data, etc.)

l Very effective technique for discovering errors

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 18

Inspection success

l Many diffreent defects may be discovered in a
single inspection. In testing, one defect ,may
mask another so several executions are required

l The reuse domain and programming knowledge
so reviewers are likely to have seen the types of
error that commonly arise

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 19

Inspections and testing

l Inspections and testing are complementary and
not opposing verification techniques

l Both should be used during the V & V process

l Inspections can check conformance with a
specification but not conformance with the
customer’s real requirements

l Inspections cannot check non-functional
characteristics such as performance, usability, etc.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 20

Program inspections

l Formalised approach to document reviews

l Intended explicitly for defect DETECTION (not
correction)

l Defects may be logical errors, anomalies in the
code that might indicate an erroneous condition
(e.g. an uninitialised variable) or non-compliance
with standards

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 21

Inspection pre-conditions

l A precise specification must be available

l Team members must be familiar with the
organisation standards

l Syntactically correct code must be available

l An error checklist should be prepared

l Management must accept that inspection will
increase costs early in the software process

l Management must not use inspections for staff
appraisal

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 22

The inspection process

Inspection
meeting

Individual
preparation

Overview

Planning

Rework

Follow-up

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 23

Inspection procedure

l System overview presented to inspection team

l Code and associated documents are
distributed to inspection team in advance

l Inspection takes place and discovered errors
are noted

l Modifications are made to repair discovered
errors

l Re-inspection may or may not be required

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 24

Inspection teams

l Made up of at least 4 members

l Author of the code being inspected

l Inspector who finds errors, omissions and
inconsistencies

l Reader who reads the code to the team

l Moderator who chairs the meeting and notes
discovered errors

l Other roles are Scribe and Chief moderator

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 25

Inspection checklists

l Checklist of common errors should be used to
drive the inspection

l Error checklist is programming language
dependent

l The 'weaker' the type checking, the larger the
checklist

l Examples: Initialisation, Constant naming, loop
termination, array bounds, etc.

Inspection checks

Fault class Inspection check
Data faults Are all program variables initialised before their values

are used?
Have all constants been named?
Should the lower bound of arrays be 0, 1, or something
else?
Should the upper bound of arrays be equal to the size of
the array or Size -1?
If character strings are used, is a delimiter explicitly
assigned?

Control faults For each conditional statement, is the condition correct?
Is each loop certain to terminate?
Are compound statements correctly bracketed?
In case statements, are all possible cases accounted for?

Input/output faults Are all input variables used?
Are all output variables assigned a value before they are
output?

Interface faults Do all function and procedure calls have the correct
number of parameters?
Do formal and actual parameter types match?
Are the parameters in the right order?
If components access shared memory, do they have the
same model of the shared memory structure?

Storage management
faults

If a linked structure is modified, have all links been
correctly reassigned?
If dynamic storage is used, has space been allocated
correctly?
Is space explicitly de-allocated after it is no longer
required?

Exception
management faults

Have all possible error conditions been taken into
account?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 27

Inspection rate

l 500 statements/hour during overview

l 125 source statement/hour during individual
preparation

l 90-125 statements/hour can be inspected

l Inspection is therefore an expensive process

l Inspecting 500 lines costs about 40 man/hours
effort = £2800

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 28

Automated static analysis

l Static analysers are software tools for source text
processing

l They parse the program text and try to discover
potentially erroneous conditions and bring these
to the attention of the V & V team

l Very effective as an aid to inspections. A
supplement to but not a replacement for
inspections

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 29

Static analysis checks
Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used
between assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 30

Stages of static analysis

l Control flow analysis. Checks for loops with
multiple exit or entry points, finds unreachable
code, etc.

l Data use analysis. Detects uninitialised
variables, variables written twice without an
intervening assignment, variables which are
declared but never used, etc.

l Interface analysis. Checks the consistency of
routine and procedure declarations and their
use

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 31

Stages of static analysis

l Information flow analysis. Identifies the
dependencies of output variables. Does not
detect anomalies itself but highlights
information for code inspection or review

l Path analysis. Identifies paths through the
program and sets out the statements executed in
that path. Again, potentially useful in the review
process

l Both these stages generate vast amounts of
information. Must be used with care.

LINT static analysis

138% more lint_ex.c

#include <stdio.h>
printarray (Anarray)
 int Anarray;
{
 printf(“%d”,Anarray);
}
main ()
{
 int Anarray[5]; int i; char c;
 printarray (Anarray, i, c);
 printarray (Anarray) ;
}

139% cc lint_ex.c
140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set
lint_ex.c(10): warning: i may be used before set
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) ::
lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) ::
lint_ex.c(11)
printf returns value which is always ignored

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 33

Use of static analysis

l Particularly valuable when a language such as C
is used which has weak typing and hence many
errors are undetected by the compiler

l Less cost-effective for languages like Java that
have strong type checking and can therefore
detect many errors during compilation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 34

l The name is derived from the 'Cleanroom'
process in semiconductor fabrication. The
philosophy is defect avoidance rather than
defect removal

l Software development process based on:
• Incremental development

• Formal specification.

• Static verification using correctness arguments

• Statistical testing to determine program reliability.

Cleanroom software development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 35

The Cleanroom process

Construct
structured
program

Define
software

increments

Formally
verify
code

Integrate
increment

Formally
specify
system

Develop
operational

profile
Design

statistical
tests

Test
integrated

system

Error rework

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 36

Cleanroom process characteristics

l Formal specification using a state transition
model

l Incremental development

l Structured programming - limited control and
abstraction constructs are used

l Static verification using rigorous inspections

l Statistical testing of the system (covered in Ch.
21).

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 37

Incremental development

Formal
specification

Develop s/w
increment

Establish
rerquirements

Deliver
software

Frozen
specification

Requirements change request

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 38

Formal specification and inspections

l The state based model is a system specification
and the inspection process checks the program
against this model

l Programming approach is defined so that the
correspondence between the model and the
system is clear

l Mathematical arguments (not proofs) are used to
increase confidence in the inspection process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 39

l Specification team. Responsible for developing
and maintaining the system specification

l Development team. Responsible for
developing and verifying the software. The
software is NOT executed or even compiled
during this process

l Certification team. Responsible for developing
a set of statistical tests to exercise the software
after development. Reliability growth models
used to determine when reliability is acceptable

Cleanroom process teams

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 40

l Results in IBM have been very impressive with
few discovered faults in delivered systems

l Independent assessment shows that the
process is no more expensive than other
approaches

l Fewer errors than in a 'traditional' development
process

l Not clear how this approach can be transferred
to an environment with less skilled or less
highly motivated engineers

Cleanroom process evaluation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 41

Key points

l Verification and validation are not the same thing.
Verification shows conformance with
specification; validation shows that the program
meets the customer’s needs

l Test plans should be drawn up to guide the testing
process.

l Static verification techniques involve examination
and analysis of the program for error detection

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 19 Slide 42

Key points

l Program inspections are very effective in
discovering errors

l Program code in inspections is checked by a
small team to locate software faults

l Static analysis tools can discover program
anomalies which may be an indication of faults in
the code

l The Cleanroom development process depends on
incremental development, static verification and
statistical testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 1

Defect testing

l Testing programs to establish
the presence of system defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 2

Objectives

l To understand testing techniques that are geared
to discover program faults

l To introduce guidelines for interface testing

l To understand specific approaches to object-
oriented testing

l To understand the principles of CASE tool
support for testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 3

Topics covered

l Defect testing

l Integration testing

l Object-oriented testing

l Testing workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 4

The testing process

l Component testing
• Testing of individual program components

• Usually the responsibility of the component developer (except
sometimes for critical systems)

• Tests are derived from the developer’s experience

l Integration testing
• Testing of groups of components integrated to create a system or

sub-system

• The responsibility of an independent testing team

• Tests are based on a system specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 5

Testing phases

Component
testing

Integration
testing

Software developer Independent testing team

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 6

Defect testing

l The goal of defect testing is to discover defects in
programs

l A successful defect test is a test which causes a
program to behave in an anomalous way

l Tests show the presence not the absence of
defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 7

l Only exhaustive testing can show a program is
free from defects. However, exhaustive testing
is impossible

l Tests should exercise a system's capabilities
rather than its components

l Testing old capabilities is more important than
testing new capabilities

l Testing typical situations is more important than
boundary value cases

Testing priorities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 8

l Test data Inputs which have been devised to
test the system

l Test cases Inputs to test the system and the
predicted outputs from these inputs if the
system operates according to its specification

Test data and test cases

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 9

The defect testing process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 10

Black-box testing

l An approach to testing where the program is
considered as a ‘black-box’

l The program test cases are based on the system
specification

l Test planning can begin early in the software
process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 11

Black-box testing

I
e

Input test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 12

Equivalence partitioning

l Input data and output results often fall into
different classes where all members of a class are
related

l Each of these classes is an equivalence partition
where the program behaves in an equivalent way
for each class member

l Test cases should be chosen from each partition

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 13

Equivalence partitioning

System

Outputs

Invalid inputs Valid inputs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 14

l Partition system inputs and outputs into
‘equivalence sets’
• If input is a 5-digit integer between 10,000 and 99,999,

equivalence partitions are <10,000, 10,000-99, 999 and >
10, 000

l Choose test cases at the boundary of these
sets
• 00000, 09999, 10000, 99999, 10001

Equivalence partitioning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 15

Equivalence partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 16

Search routine specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;
 Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the array has at least one element
T’FIRST <= T’LAST

Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)

or
-- the element is not in the array
(not Found and

 not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 17

l Inputs which conform to the pre-conditions

l Inputs where a pre-condition does not hold

l Inputs where the key element is a member of
the array

l Inputs where the key element is not a member
of the array

Search routine - input partitions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 18

Testing guidelines (sequences)

l Test software with sequences which have only a
single value

l Use sequences of different sizes in different tests

l Derive tests so that the first, middle and last
elements of the sequence are accessed

l Test with sequences of zero length

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 19

Search routine - input partitions
Array Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 20

l Sometime called white-box testing

l Derivation of test cases according to program
structure. Knowledge of the program is used to
identify additional test cases

l Objective is to exercise all program statements
(not all path combinations)

Structural testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 21

White-box testing

Component
code

Test
outputs

Test data

DerivesTests

Binary search (Java)

class BinSearch {

// This is an encapsulation of a binary search function that takes an array of
// ordered objects and a key and returns an object with 2 attributes namely
// index - the value of the array index
// found - a boolean indicating whether or not the key is in the array
// An object is returned because it is not possible in Java to pass basic types by
// reference to a function and so return two values
// the key is -1 if the element is not found

public static void search (int key, int [] elemArray, Result r)
{

int bottom = 0 ;
int top = elemArray.length - 1 ;
int mid ;
r.found = false ; r.index = -1 ;
while (bottom <= top)
{

mid = (top + bottom) / 2 ;
if (elemArray [mid] == key)
{

r.index = mid ;
r.found = true ;
return ;

} // if part
else
{

if (elemArray [mid] < key)
bottom = mid + 1 ;

else
top = mid - 1 ;

}
} //while loop

} // search
} //BinSearch

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 23

l Pre-conditions satisfied, key element in array

l Pre-conditions satisfied, key element not in
array

l Pre-conditions unsatisfied, key element in array

l Pre-conditions unsatisfied, key element not in
array

l Input array has a single value

l Input array has an even number of values

l Input array has an odd number of values

Binary search - equiv. partitions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 24

Binary search equiv. partitions

Mid-point

Elements < Mid Elements > Mid

Equivalence class boundaries

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 25

Binary search - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 26

Path testing

l The objective of path testing is to ensure that the
set of test cases is such that each path through the
program is executed at least once

l The starting point for path testing is a program
flow graph that shows nodes representing
program decisions and arcs representing the flow
of control

l Statements with conditions are therefore nodes in
the flow graph

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 27

l Describes the program control flow. Each branch
is shown as a separate path and loops are shown
by arrows looping back to the loop condition
node

l Used as a basis for computing the cyclomatic
complexity

l Cyclomatic complexity = Number of edges -
Number of nodes +2

Program flow graphs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 28

l The number of tests to test all control
statements equals the cyclomatic complexity

l Cyclomatic complexity equals number of
conditions in a program

l Useful if used with care. Does not imply
adequacy of testing.

l Although all paths are executed, all combinations
of paths are not executed

Cyclomatic complexity

Binary search flow graph

1

2

3

4

65

7

while bottom <= top

if (elemArray [mid] == key

(if (elemArray [mid]< key8

9

bottom > top

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 30

l 1, 2, 3, 8, 9

l 1, 2, 3, 4, 6, 7, 2

l 1, 2, 3, 4, 5, 7, 2

l 1, 2, 3, 4, 6, 7, 2, 8, 9

l Test cases should be derived so that all of these
paths are executed

l A dynamic program analyser may be used to
check that paths have been executed

Independent paths

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 31

Integration testing

l Tests complete systems or subsystems composed
of integrated components

l Integration testing should be black-box testing
with tests derived from the specification

l Main difficulty is localising errors

l Incremental integration testing reduces this
problem

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 32

Incremental integration testing

T3

T2

T1

T4

T5

A

B

C

D

T2

T1

T3

T4

A

B

C

T1

T2

T3

A

B

Test sequence
1

Test sequence
2

Test sequence
3

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 33

Approaches to integration testing

l Top-down testing
• Start with high-level system and integrate from the top-down

replacing individual components by stubs where appropriate

l Bottom-up testing
• Integrate individual components in levels until the complete

system is created

l In practice, most integration involves a
combination of these strategies

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 34

Top-down testing

Level 2Level 2Level 2Level 2

Level 1 Level 1Testing
sequence

Level 2
stubs

Level 3
stubs

. . .

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 35

Bottom-up testing

Level NLevel NLevel NLevel NLevel N

Level N–1 Level N–1Level N–1

Testing
sequence

Test
drivers

Test
drivers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 36

Tetsing approaches

l Architectural validation
• Top-down integration testing is better at discovering errors in

the system architecture

l System demonstration
• Top-down integration testing allows a limited demonstration at

an early stage in the development

l Test implementation
• Often easier with bottom-up integration testing

l Test observation
• Problems with both approaches. Extra code may be required to

observe tests

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 37

l Takes place when modules or sub-systems are
integrated to create larger systems

l Objectives are to detect faults due to interface
errors or invalid assumptions about interfaces

l Particularly important for object-oriented
development as objects are defined by their
interfaces

Interface testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 38

Interface testing
Test
cases

BA

C

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 39

Interfaces types

l Parameter interfaces
• Data passed from one procedure to another

l Shared memory interfaces
• Block of memory is shared between procedures

l Procedural interfaces
• Sub-system encapsulates a set of procedures to be called by

other sub-systems

l Message passing interfaces
• Sub-systems request services from other sub-systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 40

Interface errors

l Interface misuse
• A calling component calls another component and makes an

error in its use of its interface e.g. parameters in the wrong order

l Interface misunderstanding
• A calling component embeds assumptions about the behaviour

of the called component which are incorrect

l Timing errors
• The called and the calling component operate at different speeds

and out-of-date information is accessed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 41

Interface testing guidelines

l Design tests so that parameters to a called
procedure are at the extreme ends of their ranges

l Always test pointer parameters with null pointers

l Design tests which cause the component to fail

l Use stress testing in message passing systems

l In shared memory systems, vary the order in
which components are activated

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 42

Stress testing

l Exercises the system beyond its maximum design
load. Stressing the system often causes defects to
come to light

l Stressing the system test failure behaviour..
Systems should not fail catastrophically. Stress
testing checks for unacceptable loss of service or
data

l Particularly relevant to distributed systems
which can exhibit severe degradation as a
network becomes overloaded

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 43

l The components to be tested are object classes
that are instantiated as objects

l Larger grain than individual functions so
approaches to white-box testing have to be
extended

l No obvious ‘top’ to the system for top-down
integration and testing

Object-oriented testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 44

Testing levels

l Testing operations associated with objects

l Testing object classes

l Testing clusters of cooperating objects

l Testing the complete OO system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 45

Object class testing

l Complete test coverage of a class involves
• Testing all operations associated with an object

• Setting and interrogating all object attributes

• Exercising the object in all possible states

l Inheritance makes it more difficult to design
object class tests as the information to be tested is
not localised

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 46

Weather station object interface

l Test cases are needed for all
operations

l Use a state model to identify
state transitions for testing

l Examples of testing
sequences

• Shutdown ♦ Waiting ♦ Shutdown

• Waiting ♦ Calibrating ♦ Testing ♦
Transmitting ♦ Waiting

• Waiting ♦ Collecting ♦ Waiting ♦
Summarising ♦ Transmitting ♦ Waiting

identifier

reportWeather ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 47

Object integration

l Levels of integration are less distinct in object-
oriented systems

l Cluster testing is concerned with integrating and
testing clusters of cooperating objects

l Identify clusters using knowledge of the operation
of objects and the system features that are
implemented by these clusters

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 48

Approaches to cluster testing

l Use-case or scenario testing
• Testing is based on a user interactions with the system

• Has the advantage that it tests system features as experienced by
users

l Thread testing
• Tests the systems response to events as processing threads

through the system

l Object interaction testing
• Tests sequences of object interactions that stop when an object

operation does not call on services from another object

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 49

Scenario-based testing

l Identify scenarios from use-cases and supplement
these with interaction diagrams that show the
objects involved in the scenario

l Consider the scenario in the weather station
system where a report is generated

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 50

Collect weather data
:CommsController

request (report)

acknowledge ()
report ()

summarise ()

reply (report)

acknowledge ()

send (report)

:WeatherStation :WeatherData

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 51

Weather station testing

l Thread of methods executed
• CommsController:request ♦ WeatherStation:report ♦

WeatherData:summarise

l Inputs and outputs
• Input of report request with associated acknowledge and a final

output of a report

• Can be tested by creating raw data and ensuring that it is
summarised properly

• Use the same raw data to test the WeatherData object

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 52

Testing workbenches

l Testing is an expensive process phase. Testing
workbenches provide a range of tools to reduce
the time required and total testing costs

l Most testing workbenches are open systems
because testing needs are organisation-specific

l Difficult to integrate with closed design and
analysis workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 53

A testing workbench

Dynamic
analyser

Program
being tested

Test
results

Test
predictions

File
comparator

Execution
report

Simulator

Source
code

Test
manager Test data Oracle

Test data
generator Specification

Report
generator

Test results
report

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 54

Tetsing workbench adaptation

l Scripts may be developed for user interface
simulators and patterns for test data generators

l Test outputs may have to be prepared manually
for comparison

l Special-purpose file comparators may be
developed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 55

Key points

l Test parts of a system which are commonly used
rather than those which are rarely executed

l Equivalence partitions are sets of test cases where
the program should behave in an equivalent way

l Black-box testing is based on the system
specification

l Structural testing identifies test cases which cause
all paths through the program to be executed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 20 Slide 56

Key points

l Test coverage measures ensure that all statements
have been executed at least once.

l Interface defects arise because of specification
misreading, misunderstanding, errors or invalid
timing assumptions

l To test object classes, test all operations,
attributes and states

l Integrate object-oriented systems around clusters
of objects

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 1

Critical Systems Validation

Validating the reliability, safety
and security of computer-based

systems

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 2

Validation perspectives

• Reliability validation
• Does the measured reliability of the system meet its

specification?

• Is the reliability of the system good enough to satisfy users?

• Safety validation
• Does the system always operate in such a way that accidents do

not occur or that accident consequences are minimised?

• Security validation
• Is the system and its data secure against external attack?

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 3

Validation techniques

• Static techniques
• Design reviews and program inspections

• Mathematical arguments and proof

• Dynamic techniques
• Statistical testing

• Scenario-based testing

• Run-time checking

• Process validation
• Design development processes that minimise the chances of

process errors that might compromise the dependability of the
system

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 4

Static validation techniques

• Static validation is concerned with analyses of
the system documentation (requirements, design,
code, test data).

• It is concerned with finding errors in the system
and identifying potential problems that may arise
during system execution.

• Documents may be prepared (structured
arguments, mathematical proofs, etc.) to support
the static validation

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 5

Static techniques for safety validation

• Demonstrating safety by testing is difficult
because testing is intended to demonstrate what
the system does in a particular situation. Testing
all possible operational situations is impossible

• Normal reviews for correctness may be
supplemented by specific techniques that are
intended to focus on checking that unsafe
situations never arise

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 6

Safety reviews

• Review for correct intended function

• Review for maintainable, understandable
structure

• Review to verify algorithm and data structure
design against specification

• Review to check code consistency with algorithm
and data structure design

• Review adequacy of system testing

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 7

• Make software as simple as possible

• Use simple techniques for software development
avoiding error-prone constructs such as pointers
and recursion

• Use information hiding to localise the effect of
any data corruption

• Make appropriate use of fault-tolerant techniques
but do not be seduced into thinking that fault-
tolerant software is necessarily safe

Review guidance

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 8

Hazard-driven analysis

• Effective safety assurance relies on hazard
identification (covered in previous lectures)

• Safety can be assured by
• Hazard avoidance

• Accident avoidance

• Protection systems

• Safety reviews should demonstrate that one or
more of these techniques have been applied to all
identified hazards

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 9

The system safety case

• It is now normal practice for a formal safety case to be
required for all safety-critical computer-based systems
e.g. railway signalling, air traffic control, etc.

• A safety case presents a list of arguments, based on
identified hazards, why there is an acceptably low
probability that these hazards will not result in an
accident

• Arguments can be based on formal proof, design
rationale, safety proofs, etc. Process factors may also be
included

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 10

Formal methods and critical systems

• The development of critical systems is one of the
‘success’ stories for formal methods

• Formal methods are mandated in Britain for the
development of some types of safety-critical software
for defence applications

• There is not currently general agreement on the value
of formal methods in critical systems development

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 11

Formal methods and validation

• Specification validation
• Developing a formal model of a system requirements

specification forces a detailed analysis of that specification and
this usually reveals errors and omissions

• Mathematical analysis of the formal specification is possible
and this also discovers specification problems

• Formal verification
• Mathematical arguments (at varying degrees of rigour) are used

to demonstrate that a program or a design is consistent with its
formal specification

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 12

Problems with formal validation

• The formal model of the specification is not
understandable by domain experts
• It is difficult or impossible to check if the formal model is an

accurate representation of the specification for most systems

• A consistently wrong specification is not useful!

• Verification does not scale-up
• Verification is complex, error-prone and requires the use of

systems such as theorem provers. The cost of verification
increases exponentially as the system size increases.

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 13

Formal methods conclusion

• Formal specification and checking of critical
system components is, in my view, useful
• While formality does not provide any guarantees, it helps to

increase confidence in the system by demonstrating that some
classes of error are not present

• Formal verification is only likely to be used for
very small, critical, system components
• About 5-6000 lines of code seems to be the upper limit for

practical verification

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 14

Safety proofs

• Safety proofs are intended to show that the
system cannot reach in unsafe state

• Weaker than correctness proofs which must show
that the system code conforms to its specification

• Generally based on proof by contradiction
• Assume that an unsafe state can be reached

• Show that this is contradicted by the program code

• May be displayed graphically

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 15

Construction of a safety proof

• Establish the safe exit conditions for a component
or a program

• Starting from the END of the code, work
backwards until you have identified all paths that
lead to the exit of the code

• Assume that the exit condition is false

• Show that, for each path leading to the exit that
the assignments made in that path contradict the
assumption of an unsafe exit from the component

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 16

Gas warning system

• System to warn of poisonous gas. Consists of a
sensor, a controller and an alarm

• Two levels of gas are hazardous
• Warning level - no immediate danger but take action to reduce

level

• Evacuate level - immediate danger. Evacuate the area

• The controller takes air samples, computes the
gas level and then decides whether or not the
alarm should be activated

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 17

Gas sensor control

Gas_level: GL_TYPE ;
loop

-- Take 100 samples of air
Gas_level := 0.000 ;
for i in 1..100 loop

Gas_level := Gas_level + Gas_sensor.Read ;
end loop ;
Gas_level := Gas_level / 100 ;
if Gas_level > Warning and Gas_level < Danger then

Alarm := Warning ; Wait_for_reset ;
elsif Gas_level > Danger then

Alarm := Evacuate ; Wait_for_reset ;
else

Alarm := off ;
end if ;

end loop ;

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 18

Graphical argument

Gas_level > Warning and Alarm = off Unsafe state

Gas_level > Warning and
Gas_level < Danger

Gas_level > Danger

Alarm = Warning
Alarm = Evacuate Alarm = off

or or or

contradiction contradiction

Path 1 Path 2 Path 3

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 19

Condition checking

Gas_level < Warning Path 3 Alarm = off (Contradiction)
Gas_level = Warning Path 3 Alarm = off (Contradiction)
Gas_level > Warning and
Gas_level < Danger

Path 1 Alarm = Warning
(Contradiction)

Gas_level = Danger Path 3 Alarm = off
Gas_level > Danger Path 2 Alarm = Evacuate

(Contradiction)

Code is incorrect.
Gas_level = Danger does not cause the alarm to be on

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 20

Key points

• Safety-related systems should be developed to be as
simple as possible using ‘safe’ development techniques

• Safety assurance may depend on ‘trusted’ development
processes and specific development techniques such as
the use of formal methods and safety proofs

• Safety proofs are easier than proofs of consistency or
correctness. They must demonstrate that the system
cannot reach an unsafe state. Usually proofs by
contradiction

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 21

Dynamic validation techniques

• These are techniques that are concerned with
validating the system in execution
• Testing techniques - analysing the system outside of its

operational environment

• Run-time checking - checking during execution that the system
is operating within a dependability ‘envelope’

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 22

Reliability validation

• Reliability validation involves exercising the
program to assess whether or not it has reached
the required level of reliability

• Cannot be included as part of a normal defect
testing process because data for defect testing is
(usually) atypical of actual usage data

• Statistical testing must be used where a
statistically significant data sample based on
simulated usage is used to assess the reliability

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 23

• Testing software for reliability rather than fault detection

• Measuring the number of errors allows the reliability of
the software to be predicted. Note that, for statistical
reasons, more errors than are allowed for in the
reliability specification must be induced

• An acceptable level of reliability should be
specified and the software tested and amended
until that level of reliability is reached

Statistical testing

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 24

Reliability validation process

• Establish the operational profile for the system

• Construct test data reflecting the operational
profile

• Test the system and observe the number of
failures and the times of these failures

• Compute the reliability after a statistically
significant number of failures have been
observed

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 25

Operational profiles

• An operational profile is a set of test data whose
frequency matches the actual frequency of these inputs
from ‘normal’ usage of the system. A close match with
actual usage is necessary otherwise the measured
reliability will not be reflected in the actual usage of the
system

• Can be generated from real data collected from an
existing system or (more often) depends on assumptions
made about the pattern of usage of a system

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 26

An operational profile

Number
of inputs

Input
classes

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 27

Operational profile generation

• Should be generated automatically whenever
possible

• Automatic profile generation is difficult for
interactive systems

• May be straightforward for ‘normal’ inputs but it
is difficult to predict ‘unlikely’ inputs and to
create test data for them

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 28

• A reliability growth model is a mathematical model
of the system reliability change as it is tested and
faults are removed

• Used as a means of reliability prediction by
extrapolating from current data
• Simplifies test planning and customer negotiations

• Depends on the use of statistical testing to measure
the reliability of a system version

Reliability modelling

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 29

Equal-step reliability growth

t1 t2 t3 t4 t5

Reliability
(ROCOF)

Time

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 30

Observed reliability growth

• Simple equal-step model but does not reflect
reality

• Reliability does not necessarily increase with
change as the change can introduce new faults

• The rate of reliability growth tends to slow down
with time as frequently occurring faults are
discovered and removed from the software

• A random-growth model may be more accurate

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 31

Random-step reliability growth

t1 t2 t3 t4 t5

Time

Note different
reliability
improvements Fault repair adds new fault

and decreases reliability
(increases ROCOF)

Reliability
(ROCOF)

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 32

Growth model selection

• Many different reliability growth models have
been proposed

• No universally applicable growth model

• Reliability should be measured and observed data
should be fitted to several models

• Best-fit model should be used for reliability
prediction

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 33

Reliability prediction

Reliability

Required
reliability

Fitted reliability
model curve

Estimated
time of reliability

achievement

Time

= Measured reliability

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 34

• Operational profile uncertainty
• Is the operational profile an accurate reflection of the real use of

the system

• High costs of test data generation
• Very expensive to generate and check the large number of test

cases that are required

• Statistical uncertainty for high-reliability systems
• It may be impossible to generate enough failures to draw

statistically valid conclusions

Reliability validation problems

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 35

Security validation

• Security validation has something in common
with safety validation

• It is intended to demonstrate that the system
cannot enter some state (an unsafe or an insecure
state) rather than to demonstrate that the system
can do something

• However, there are differences
• Safety problems are accidental; security problems are deliberate

• Security problems are more generic; Safety problems are
related to the application domain

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 36

Security validation

• Experience-based validation
• The system is reviewed and analysed against the types of attack

that are known to the validation team

• Tool-based validation
• Various security tools such as password checkers are used to

analyse the system in operation

• Tiger teams
• A team is established whose goal is to breach the security of the

system by simulating attacks on the system.

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 37

Key points

• Statistical testing supplements the defect testing
process and is intended to measure the reliability of a
system

• Reliability validation relies on exercising the system
using an operational profile - a simulated input set
which matches the actual usage of the system

• Reliability growth modelling is concerned with
modelling how the reliability of a software system
improves as it is tested and faults are removed

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 38

The portable insulin pump

Validating the safety of the
insulin pump system

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 39

Safety validation

• Design validation
• Checking the design to ensure that hazards do not arise or that

they can be handled without causing an accident.

• Code validation
• Testing the system to check the conformance of the code to its

specification and to check that the code is a true implementation
of the design.

• Run-time validation
• Designing safety checks while the system is in operation to

ensure that it does not reach an unsafe state.

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 40

• insulin overdose or underdose (biological)

• power failure (electrical)

• machine interferes electrically with other medical
equipment such as a heart pacemaker (electrical)

• parts of machine break off in patient’s
body(physical)

• infection caused by introduction of machine
(biol.)

• allergic reaction to the materials or insulin used
in the machine (biol).

Insulin system hazards

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 41

Fault tree for software hazards

Incorrect
sugar level
measured

Incorrect
insulin dose
administered

or

Correct dose
delivered at
wrong time

Sensor
failure

or

Sugar
computation

error

Timer
failure

Pump signals
incorrect

or

Insulin
computation

incorrect

Delivery
system
failure

Arithmetic
error

or

Algorithm
error

Arithmetic
error

or

Algorithm
error

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 42

Safety proofs

• Safety proofs are intended to show that the
system cannot reach in unsafe state

• Weaker than correctness proofs which must show
that the system code conforms to its specification

• Generally based on proof by contradiction
• Assume that an unsafe state can be reached

• Show that this is contradicted by the program code

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 43

Insulin delivery system

• Safe state is a shutdown state where no insulin is
delivered
• If hazard arises,shutting down the system will prevent an

accident

• Software may be included to detect and prevent
hazards such as power failure

• Consider only hazards arising from software
failure
• Arithmetic error The insulin dose is computed incorrectly

because of some failure of the computer arithmetic

• Algorithmic error The dose computation algorithm is incorrect

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 44

• Use language exception handling mechanisms to
trap errors as they arise

• Use explicit error checks for all errors which are
identified

• Avoid error-prone arithmetic operations
(multiply and divide). Replace with add and
subtract

• Never use floating-point numbers

• Shut down system if exception detected (safe
state)

Arithmetic errors

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 45

• Harder to detect than arithmetic errors. System
should always err on the side of safety

• Use reasonableness checks for the dose delivered
based on previous dose and rate of dose change

• Set maximum delivery level in any specified time
period

• If computed dose is very high, medical
intervention may be necessary anyway because
the patient may be ill

Algorithmic errors

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 46

Insulin delivery code
// The insulin dose to be delivered is a function of blood sugar level, the previous dose
// delivered and the time of delivery of the previous dose

currentDose = computeInsulin () ;

// Safety check - adjust currentDose if necessary
if (previousDose == 0) // if statement 1

{
if (currentDose > 16)

currentDose = 16 ;
}

else
if (currentDose > (previousDose * 2))

currentDose = previousDose * 2 ;
if (currentDose < minimumDose) // if statement 2

currentDose = 0 ; // then branch
else if (currentDose > maxDose) // else branch

currentDose = maxDose ;
administerInsulin (currentDose) ;

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 47

Informal safety proof

Insulin_dose = 0

Insulin_dose := 0

if statement 2
then part
executed

Insulin_dose =
Maximum_dose

Insulin_dose :=
Maximum_dose

if statement 2
elsif part
executed

if statement 2
not executed

Insulin_dose >= Minimum_dose and
Insulin_dose <= Maximum_dose

or

Insulin_dose >
Maximum_dose

Administer
insulin

Contradiction

Contradiction Contradiction

Pre-condition
for unsafe state

Overdose
administered

See Portrait slide

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 48

System testing

• System testing of the software has to rely on
simulators for the sensor and the insulin delivery
components.

• Test for normal operation using an operational
profile. Can be constructed using data gathered
from existing diabetics

• Testing has to include situations where rate of
change of glucose is very fast and very slow

• Test for exceptions using the simulator

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 49

Safety assertions

• Predicates included in the program indicating
conditions which should hold at that point

• May be based on pre-computed limits e.g.
number of insulin pump increments in maximum
dose

• Used in formal program inspections or may be
pre-processed into safety checks that are executed
when the system is in operation

©Ian Sommerville 2000 CS 365 Critical Systems Validation Slide 50

Safety assertions

static void administerInsulin () throws SafetyException
{

int maxIncrements = InsulinPump.maxDose / 8 ;
int increments = InsulinPump.currentDose / 8 ;

// assert currentDose <= InsulinPump.maxDose
if (InsulinPump.currentDose > InsulinPump.maxDose)

throw new SafetyException (Pump.doseHigh);
else

for (int i=1; i<= increments; i++)
{

generateSignal () ;
if (i > maxIncrements)

throw new SafetyException (Pump.incorrectIncrements);
} // for loop

} //administerInsulin

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 1

Managing people

• Managing people working as
individuals and in groups

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 2

Objectives

• To describe simple models of human cognition
and their relevance for software managers

• To explain the key issues that determine the
success or otherwise of team working

• To discuss the problems of selecting and retaining
technical staff

• To introduce the people capability maturity model
(P-CMM)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 3

Topics covered

• Limits to thinking

• Group working

• Choosing and keeping people

• The people capability maturity model

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 4

People in the process

• People are an organisation’s most important
assets

• The tasks of a manager are essentially people
oriented. Unless there is some understanding
of people, management will be unsuccessful

• Software engineering is primarily a cognitive
activity. Cognitive limitations effectively limit the
software process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 5

Management activities

• Problem solving (using available people)

• Motivating (people who work on a project)

• Planning (what people are going to do)

• Estimating (how fast people will work)

• Controlling (people's activities)

• Organising (the way in which people work)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 6

Limits to thinking

• People don’t all think the same way but everyone
is subject to some basic constraints on their
thinking due to
• Memory organisation

• Knowledge representation

• Motivation influences

• If we understand these constraints, we can
understand how they affect people participating in
the software process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 7

Memory organisation

Working memory

Long-term memory
(Large capacity, slow access)

Short-term
memory

From
senses

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 8

Short-term memory

• Fast access, limited capacity

• 5-7 locations

• Holds 'chunks' of information where the size of
a chunk may vary depending on its familiarity

• Fast decay time

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 9

Working memory

• Larger capacity, longer access time

• Memory area used to integrate information from
short-term memory and long-term memory.

• Relatively fast decay time.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 10

Long-term memory

• Slow access, very large capacity

• Unreliable retrieval mechanism

• Slow but finite decay time - information needs
reinforced

• Relatively high threshold - work has to be done
to get information into long-term memory.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 11

Information transfer

• Problem solving usually requires transfer
between short-term memory and working
memory

• Information may be lost or corrupted during this
transfer

• Information processing occurs in the transfer
from short-term to long-term memory

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 12

Cognitive chunking

Swap if necessary so that smaller comes first

Compare adjacent elements

Loop (process unsorted part of array)

Loop (process entir e array)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 13

Knowledge modelling

• Semantic knowledge knowledge of concepts
such as the operation of assignment, concept
of parameter passing etc.

• Syntactic knowledge knowledge of details of
a representation e.g. an Ada while loop.

• Semantic knowledge seems to be stored in a
structured, representation independent way.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 14

Syntactic/semantic knowledge

Task knowledge Computer knowledge

Semantic knowledge Syntactic knowledge

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 15

Knowledge acquisition

• Semantic knowledge through experience and
active learning - the 'ah' factor

• Syntactic knowledge acquired by memorisation.

• New syntactic knowledge can interfere with
existing syntactic knowledge.
• Problems arise for experienced programmers in mixing up

syntax of different programming languages

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 16

Semantic knowledge

• Computing concepts - notion of a writable
store, iteration, concept of an object, etc.

• Task concepts - principally algorithmic - how to
tackle a particular task

• Software development ability is the ability to
integrate new knowledge with existing computer
and task knowledge and hence derive creative
problem solutions

• Thus, problem solving is language independent

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 17

Problem solving

• Requires the integration of different types of
knowledge (computer, task, domain, organisation)

• Development of a semantic model of the solution
and testing of this model against the problem

• Representation of this model in an appropriate
notation or programming language

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 18

Problem solving

New knowledge

Existing knowledge

Long-term memory

Partial
solutions SolutionProblem

Working
memory

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 19

Motivation

• An important role of a manager is to motivate the
people working on a project

• Motivation is a complex issue but it appears that
their are different types of motivation based on
• Basic needs (e.g. food, sleep, etc.)

• Personal needs (e.g. respect, self-esteem)

• Social needs (e.g. to be accepted as part of a group)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 20

Human needs hierarchy

Physiological needs

Safety needs

Social needs

Esteem needs

Self-
realization needs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 21

Motivating people

• Motivations depend on satisfying needs

• It can be assumed that physiological and safety
needs are satisfied

• Social, esteem and self-realization needs are
most significant from a managerial viewpoint

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 22

Need satisfaction

• Social
• Provide communal facilities

• Allow informal communications

• Esteem
• Recognition of achievements

• Appropriate rewards

• Self-realization
• Training - people want to learn more

• Responsibility

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 23

Personality types

• The needs hierarchy is almost certainly an over-
simplification

• Motivation should also take into account different
personality types:
• Task-oriented

• Self-oriented

• Interaction-oriented

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 24

Personality types

• Task-oriented.
• The motivation for doing the work is the work itself

• Self-oriented.
• The work is a means to an end which is the achievement of

individual goals - e.g. to get rich, to play tennis, to travel etc.

• Interaction-oriented
• The principal motivation is the presence and actions of

co-workers. People go to work because they like to go to
work

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 25

Motivation balance

• Individual motivations are made up of elements
of each class

• Balance can change depending on personal
circumstances and external events

• However, people are not just motivated by
personal factors but also by being part of a group
and culture.

• People go to work because they are motivated by
the people that they work with

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 26

Group working

• Most software engineering is a group activity
• The development schedule for most non-trivial software projects

is such that they cannot be completed by one person working
alone

• Group interaction is a key determinant of group
performance

• Flexibility in group composition is limited
• Managers must do the best they can with available people

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 27

Time distribution

50%
Interaction with

other people

20%
Non-productive

activities

30%
Working alone

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 28

Group composition

• Group composed of members who share the
same motivation can be problematic
• Task-oriented - everyone wants to do their own thing

• Self-oriented - everyone wants to be the boss

• Interaction-oriented - too much chatting, not enough work

• An effective group has a balance of all types

• Can be difficult to achieve because most
engineers are task-oriented

• Need for all members to be involved in decisions
which affect the group

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 29

• Leadership depends on respect not titular
status

• There may be both a technical and an
administrative leader

• Democratic leadership is more effective that
autocratic leadership

• A career path based on technical competence
should be supported

Group leadership

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 30

Group cohesiveness

• In a cohesive group, members consider the group
to be more important than any individual in it

• Advantages of a cohesive group are:
• Group quality standards can be developed

• Group members work closely together so inhibitions caused by
ignorance are reduced

• Team members learn from each other and get to know each
other’s work

• Egoless programming where members strive to improve each
other’s programs can be practised

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 31

Developing cohesiveness

• Cohesiveness is influenced by factors such as the
organisational culture and the personalities in the
group

• Cohesiveness can be encouraged through
• Social events

• Developing a group identity and territory

• Explicit team-building activities

• Openness with information is a simple way of
ensuring all group members feel part of the group

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 32

• Group members tend to be loyal to cohesive
groups

• 'Groupthink' is preservation of group
irrespective of technical or organizational
considerations

• Management should act positively to avoid
groupthink by forcing external involvement with
each group

Group loyalties

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 33

Group communications

• Good communications are essential for effective
group working

• Information must be exchanged on the status of
work, design decisions and changes to previous
decisions

• Good communications also strengthens group
cohesion as it promotes understanding

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 34

• Status of group members
• Higher status members tend to dominate conversations

• Personalities in groups
• Too many people of the same personality type can be a problem

• Sexual composition of group
• Mixed-sex groups tend to communicate better

• Communication channels
• Communications channelled though a central coordinator tend to

be ineffective

Group communications

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 35

Group organisation

• Software engineering group sizes should be
relatively small (< 8 members)

• Break big projects down into multiple smaller
projects

• Small teams may be organised in an informal,
democratic way

• Chief programmer teams try to make the most
effective use of skills and experience

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 36

Democratic team organisation

• The group acts as a whole and comes to a
consensus on decisions affecting the system

• The group leader serves as the external interface
of the group but does not allocate specific work
items

• Rather, work is discussed by the group as a whole
and tasks are allocated according to ability and
experience

• This approach is successful for groups where all
members are experienced and competent

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 37

Extreme programming groups

• Extreme programming groups are variants of
democratic organisation

• In extreme programming groups, some
‘management’ decisions are devolved to group
members

• Programmers work in pairs and take a collective
responsibility for code that is developed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 38

Chief programmer teams

Test specialist

Tech. author

OS specialist

Toolsmith

Administrator

Backup
programmer

Chief
programmer

Librarian

Specialist pool
Nucleus of chief programmer team

Outside
Communication

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 39

Chief programmer teams

• Consist of a kernel of specialists helped by others
added to the project as required

• The motivation behind their development is the
wide difference in ability in different
programmers

• Chief programmer teams provide a supporting
environment for very able programmers to be
responsible for most of the system development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 40

Problems

• This chief programmer approach, in different
forms, has undoubtedly been successful

• However, it suffers from a number of problems
• Talented designers and programmers are hard to find. Without

exception people in these roles, the approach will fail

• Other group members may resent the chief programmer taking
the credit for success so may deliberately undermine his/her role

• High project risk as the project will fail if both the chief and
deputy programmer are unavailable

• Organisational structures and grades may be unable to
accommodate this type of group

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 41

Choosing and keeping people

• Choosing people to work on a project is a major
managerial responsibility

• Appointment decisions are usually based on
• information provided by the candidate (their resumé or CV)

• information gained at an interview

• recommendations from other people who know the candidate

• Some companies use psychological or aptitude
tests
• There is no agreement on whether or not these tests are actually

useful

Staff selection
factors

Factor Explanation
Application domain
experience

For a project to develop a successful system, the
developers must understand the application domain.

Platform experience May be significant if low-level programming is
involved. Otherwise, not usually a critical attribute.

Programming language
experience

Normally only significant for short duration projects
where there is insufficient time to learn a new
language.

Educational background May provide an indicator of the basic fundamentals
which the candidate should know and of their ability
to learn. This factor becomes increasingly irrelevant
as engineers gain experience across a range of
projects.

Communication ability Very important because of the need for project staff to
communicate orally and in writing with other
engineers, managers and customers.

Adaptability Adaptability may be judged by looking at the different
types of experience which candidates have had. This is
an important attribute as it indicates an ability to
learn.

Attitude Project staff should have a positive attitude to their
work and should be willing to learn new skills. This
is an important attribute but often very difficult to
assess.

Personality Again, an important attribute but difficult to assess.
Candidates must be reasonably compatible with other
team members. No particular type of personality is
more or less suited to software engineering.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 43

• Physical workplace provision has an important
effect on individual productivity and satisfaction
• Comfort

• Privacy

• Facilities

• Health and safety considerations must be taken
into account
• Lighting

• Heating

• Furniture

Working environments

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 44

• Privacy - each engineer requires an area for
uninterrupted work

• Outside awareness - people prefer to work in
natural light

• Personalization - individuals adopt different
working practices and like to organize their
environment in different ways

Environmental factors

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 45

Workspace organisation

• Workspaces should provide private spaces where
people can work without interruption
• Providing individual offices for staff has been shown to increase

productivity

• However, teams working together also require
spaces where formal and informal meetings can
be held

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 46

Office layout

Office

Office

Office

Office

Office

Office

Office

OfficeCommunal
area

Meeting
room

Window

Shared
documentation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 47

The People Capability Maturity Model

• Intended as a framework for managing the
development of people involved in software
development

• Five stage model
• Initial. Ad-hoc people management

• Repeatable. Policies developed for capability improvement

• Defined. Standardised people management across the
organisation

• Managed. Quantitative goals for people management in place

• Optimizing. Continuous focus on improving individual
competence and workforce motivation

The People Capability Maturity Model

Continuous workforce innovation
Coaching
Personal Competency Development

Organisational Performance Alignment
Organisational Competency Management
Team-based Practices
Team Building
Mentoring

Managed

Optimizing

Participatory Culture
Competency-based Practices
Career Development
Competency Development
Workforce Planning
Knowledge and Skills Analysis

Compensation
Training
Performance Management
Staffing
Communication
Work environment

Initial

Repeatable

Defined

Continuously improve methods
for developing personal and
organisational competence

Quantitatively manage
organisational growth in
workforce capabilities and
establish competency-based
teams

Identify primary
competencies and
align workforce
activities with them

Instill basic
discipline into
workforce
activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 49

P-CMM Objectives

• To improve organisational capability by
improving workforce capability

• To ensure that software development capability is
not reliant on a small number of individuals

• To align the motivation of individuals with that of
the organisation

• To help retain people with critical knowledge and
skills

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 50

Key points

• Managers must have some understanding of
human factors to avoid making unrealistic
demands on people

• Problem solving involves integrating information
from long-term memory with new information
from short-term memory

• Staff selection factors include education, domain
experience, adaptability and personality

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 22 Slide 51

Key points

• Software development groups should be small
and cohesive

• Group communications are affected by status,
group size, group organisation and the sexual
composition of the group

• The working environment has a significant effect
on productivity

• The People Capability Maturity Model is a
framework for improving the capabilities of staff
in an organisation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 1

Software cost estimation

l Predicting the resources
required for a software
development process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 2

Objectives

l To introduce the fundamentals of software
costing and pricing

l To describe three metrics for software
productivity assessment

l To explain why different techniques should be
used for software estimation

l To describe the COCOMO 2 algorithmic cost
estimation model

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 3

Topics covered

l Productivity

l Estimation techniques

l Algorithmic cost modelling

l Project duration and staffing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 4

Fundamental estimation questions

l How much effort is required to complete an
activity?

l How much calendar time is needed to complete
an activity?

l What is the total cost of an activity?

l Project estimation and scheduling and interleaved
management activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 5

Software cost components

l Hardware and software costs

l Travel and training costs

l Effort costs (the dominant factor in most
projects)
• salaries of engineers involved in the project

• Social and insurance costs

l Effort costs must take overheads into account
• costs of building, heating, lighting

• costs of networking and communications

• costs of shared facilities (e.g library, staff restaurant, etc.)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 6

Costing and pricing

l Estimates are made to discover the cost, to the
developer, of producing a software system

l There is not a simple relationship between the
development cost and the price charged to the
customer

l Broader organisational, economic, political and
business considerations influence the price
charged

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 7

Software pricing factors
Factor Description
Market opportunity A development organisation may quote a low price

because it wishes to move into a new segment of the
software market. Accepting a low profit on one
project may give the opportunity of more profit later.
The experience gained may allow new products to be
developed.

Cost estimate uncertainty If an organisation is unsure of its cost estimate, it
may increase its price by some contingency over and
above its normal profit.

Contractual terms A customer may be willing to allow the developer to
retain ownership of the source code and reuse it in
other projects. The price charged may then be less
than if the software source code is handed over to the
customer.

Requirements volatility If the requirements are likely to change, an
organisation may lower its price to win a contract.
After the contract is awarded, high prices may be
charged for changes to the requirements.

Financial health Developers in financial difficulty may lower their
price to gain a contract. It is better to make a small
profit or break even than to go out of business.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 8

l A measure of the rate at which individual
engineers involved in software development
produce software and associated
documentation

l Not quality-oriented although quality assurance
is a factor in productivity assessment

l Essentially, we want to measure useful
functionality produced per time unit

Programmer productivity

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 9

l Size related measures based on some output from
the software process. This may be lines of
delivered source code, object code instructions,
etc.

l Function-related measures based on an estimate
of the functionality of the delivered software.
Function-points are the best known of this type of
measure

Productivity measures

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 10

l Estimating the size of the measure

l Estimating the total number of programmer
months which have elapsed

l Estimating contractor productivity (e.g.
documentation team) and incorporating this
estimate in overall estimate

Measurement problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 11

l What's a line of code?
• The measure was first proposed when programs were typed on

cards with one line per card

• How does this correspond to statements as in Java which can
span several lines or where there can be several statements on
one line

l What programs should be counted as part of the
system?

l Assumes linear relationship between system
size and volume of documentation

Lines of code

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 12

l The lower level the language, the more
productive the programmer
• The same functionality takes more code to implement in a

lower-level language than in a high-level language

l The more verbose the programmer, the higher
the productivity
• Measures of productivity based on lines of code suggest that

programmers who write verbose code are more productive than
programmers who write compact code

Productivity comparisons

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 13

High and low level languages

Analysis Design Coding Validation

Low-level language

Analysis Design Coding Validation

High-level language

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 14

System development times

Analysis Design Coding Testing Documentation
Assembly code
High-level language

3 weeks
3 weeks

5 weeks
5 weeks

8 weeks
8 weeks

10 weeks
6 weeks

2 weeks
2 weeks

Size Effort Productivity
Assembly code
High-level language

5000 lines
1500 lines

28 weeks
20 weeks

714 lines/month
300 lines/month

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 15

Function points

l Based on a combination of program
characteristics
• external inputs and outputs

• user interactions

• external interfaces

• files used by the system

l A weight is associated with each of these

l The function point count is computed by
multiplying each raw count by the weight and
summing all values

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 16

Function points

l Function point count modified by complexity of
the project

l FPs can be used to estimate LOC depending on
the average number of LOC per FP for a given
language
• LOC = AVC * number of function points

• AVC is a language-dependent factor varying from 200-300 for
assemble language to 2-40 for a 4GL

l FPs are very subjective. They depend on the
estimator.
• Automatic function-point counting is impossible

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 17

Object points

l Object points are an alternative function-related
measure to function points when 4Gls or similar
languages are used for development

l Object points are NOT the same as object classes

l The number of object points in a program is a
weighted estimate of
• The number of separate screens that are displayed

• The number of reports that are produced by the system

• The number of 3GL modules that must be developed to
supplement the 4GL code

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 18

Object point estimation

l Object points are easier to estimate from a
specification than function points as they are
simply concerned with screens, reports and 3GL
modules

l They can therefore be estimated at an early point
in the development process. At this stage, it is
very difficult to estimate the number of lines of
code in a system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 19

l Real-time embedded systems, 40-160
LOC/P-month

l Systems programs , 150-400 LOC/P-month

l Commercial applications, 200-800
LOC/P-month

l In object points, productivity has been measured
between 4 and 50 object points/month depending
on tool support and developer capability

Productivity estimates

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 20

Factors affecting productivity
Factor Description
Application domain
experience

Knowledge of the application domain is essential for
effective software development. Engineers who already
understand a domain are likely to be the most
productive.

Process quality The development process used can have a significant
effect on productivity. This is covered in Chapter 31.

Project size The larger a project, the more time required for team
communications. Less time is available for
development so individual productivity is reduced.

Technology support Good support technology such as CASE tools,
supportive configuration management systems, etc.
can improve productivity.

Working environment As discussed in Chapter 28, a quiet working
environment with private work areas contributes to
improved productivity.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 21

l All metrics based on volume/unit time are
flawed because they do not take quality into
account

l Productivity may generally be increased at the
cost of quality

l It is not clear how productivity/quality metrics
are related

l If change is constant then an approach based on
counting lines of code is not meaningful

Quality and productivity

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 22

Estimation techniques

l There is no simple way to make an accurate
estimate of the effort required to develop a
software system
• Initial estimates are based on inadequate information in a user

requirements definition

• The software may run on unfamiliar computers or use new
technology

• The people in the project may be unknown

l Project cost estimates may be self-fulfilling
• The estimate defines the budget and the product is adjusted to

meet the budget

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 23

Estimation techniques

l Algorithmic cost modelling

l Expert judgement

l Estimation by analogy

l Parkinson's Law

l Pricing to win

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 24

Algorithmic code modelling

l A formulaic approach based on historical cost
information and which is generally based on the
size of the software

l Discussed later in this chapter

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 25

Expert judgement

l One or more experts in both software
development and the application domain use
their experience to predict software costs.
Process iterates until some consensus is
reached.

l Advantages: Relatively cheap estimation
method. Can be accurate if experts have direct
experience of similar systems

l Disadvantages: Very inaccurate if there are no
experts!

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 26

Estimation by analogy

l The cost of a project is computed by comparing
the project to a similar project in the same
application domain

l Advantages: Accurate if project data available

l Disadvantages: Impossible if no comparable
project has been tackled. Needs systematically
maintained cost database

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 27

Parkinson's Law

l The project costs whatever resources are
available

l Advantages: No overspend

l Disadvantages: System is usually unfinished

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 28

Pricing to win

l The project costs whatever the customer has to
spend on it

l Advantages: You get the contract

l Disadvantages: The probability that the
customer gets the system he or she wants is
small. Costs do not accurately reflect the work
required

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 29

Top-down and bottom-up estimation

l Any of these approaches may be used top-down
or bottom-up

l Top-down
• Start at the system level and assess the overall system

functionality and how this is delivered through sub-systems

l Bottom-up
• Start at the component level and estimate the effort required for

each component. Add these efforts to reach a final estimate

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 30

Top-down estimation

l Usable without knowledge of the system
architecture and the components that might be
part of the system

l Takes into account costs such as integration,
configuration management and documentation

l Can underestimate the cost of solving difficult
low-level technical problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 31

Bottom-up estimation

l Usable when the architecture of the system is
known and components identified

l Accurate method if the system has been designed
in detail

l May underestimate costs of system level activities
such as integration and documentation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 32

Estimation methods

l Each method has strengths and weaknesses

l Estimation should be based on several methods

l If these do not return approximately the same
result, there is insufficient information available

l Some action should be taken to find out more in
order to make more accurate estimates

l Pricing to win is sometimes the only applicable
method

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 33

Experience-based estimates

l Estimating is primarily experience-based

l However, new methods and technologies may
make estimating based on experience inaccurate
• Object oriented rather than function-oriented development

• Client-server systems rather than mainframe systems

• Off the shelf components

• Component-based software engineering

• CASE tools and program generators

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 34

Pricing to win

l This approach may seem unethical and
unbusinesslike

l However, when detailed information is lacking it
may be the only appropriate strategy

l The project cost is agreed on the basis of an
outline proposal and the development is
constrained by that cost

l A detailed specification may be negotiated or an
evolutionary approach used for system
development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 35

Algorithmic cost modelling

l Cost is estimated as a mathematical function of
product, project and process attributes whose
values are estimated by project managers
• Effort = A × SizeB × M

• A is an organisation-dependent constant, B reflects the
disproportionate effort for large projects and M is a multiplier
reflecting product, process and people attributes

l Most commonly used product attribute for cost
estimation is code size

l Most models are basically similar but with
different values for A, B and M

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 36

Estimation accuracy

l The size of a software system can only be known
accurately when it is finished

l Several factors influence the final size
• Use of COTS and components

• Programming language

• Distribution of system

l As the development process progresses then the
size estimate becomes more accurate

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 37

Estimate uncertainty

x

2x

4x

0.5x

0.25x

Feasibility Requirements Design Code Delivery

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 38

The COCOMO model

l An empirical model based on project experience

l Well-documented, ‘independent’ model which is
not tied to a specific software vendor

l Long history from initial version published in
1981 (COCOMO-81) through various
instantiations to COCOMO 2

l COCOMO 2 takes into account different
approaches to software development, reuse, etc.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 39

COCOMO 81

Project
complexity

Formula Description

Simple PM = 2.4 (KDSI)1.05 × M Well-understood applications
developed by small teams.

Moderate PM = 3.0 (KDSI)1.12 × M More complex projects where
team members may have limited
experience of related systems.

Embedded PM = 3.6 (KDSI)1.20 × M Complex projects where the
software is part of a strongly
coupled complex of hardware,
software, regulations and
operational procedures.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 40

COCOMO 2 levels
l COCOMO 2 is a 3 level model that allows

increasingly detailed estimates to be prepared as
development progresses

l Early prototyping level
• Estimates based on object points and a simple formula is used for

effort estimation

l Early design level
• Estimates based on function points that are then translated to LOC

l Post-architecture level
• Estimates based on lines of source code

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 41

Early prototyping level

l Supports prototyping projects and projects where
there is extensive reuse

l Based on standard estimates of developer
productivity in object points/month

l Takes CASE tool use into account

l Formula is
• PM = (NOP × (1 - %reuse/100)) / PROD

• PM is the effort in person-months, NOP is the number of object
points and PROD is the productivity

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 42

Object point productivity

Developer’s
experience and
capability

Very low Low Nominal High Very high

ICASE maturity and
capability

Very low Low Nominal High Very high

PROD (NOP/month) 4 7 13 25 50

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 43

Early design level

l Estimates can be made after the requirements
have been agreed

l Based on standard formula for algorithmic
models
• PM = A × SizeB × M + PMm where

• M = PERS × RCPX × RUSE × PDIF × PREX × FCIL ×
SCED

• PMm = (ASLOC × (AT/100)) / ATPROD

• A = 2.5 in initial calibration, Size in KLOC, B varies from 1.1 to
1.24 depending on novelty of the project, development
flexibility, risk management approaches and the process
maturity

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 44

Multipliers

l Multipliers reflect the capability of the
developers, the non-functional requirements, the
familiarity with the development platform, etc.
• RCPX - product reliability and complexity

• RUSE - the reuse required

• PDIF - platform difficulty

• PREX - personnel experience

• PERS - personnel capability

• SCED - required schedule

• FCIL - the team support facilities

l PM reflects the amount of automatically
generated code

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 45

Post-architecture level
l Uses same formula as early design estimates

l Estimate of size is adjusted to take into account
• Requirements volatility. Rework required to support change

• Extent of possible reuse. Reuse is non-linear and has associated
costs so this is not a simple reduction in LOC

• ESLOC = ASLOC × (AA + SU +0.4DM + 0.3CM +0.3IM)/100

» ESLOC is equivalent number of lines of new code. ASLOC is the
number of lines of reusable code which must be modified, DM is the
percentage of design modified, CM is the percentage of the code that is
modified , IM is the percentage of the original integration effort
required for integrating the reused software.

» SU is a factor based on the cost of software understanding, AA is a
factor which reflects the initial assessment costs of deciding if software
may be reused.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 46

l This depends on 5 scale factors (see next slide).
Their sum/100 is added to 1.01

l Example
• Precedenteness - new project - 4

• Development flexibility - no client involvement - Very high - 1

• Architecture/risk resolution - No risk analysis - V. Low - 5

• Team cohesion - new team - nominal - 3

• Process maturity - some control - nominal - 3

l Scale factor is therefore 1.17

The exponent term

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 47

Exponent scale factors
Scale factor Explanation
Precedentedness Reflects the previous experience of the organisation

with this type of project. Very low means no previous
experience, Extra high means that the organisation is
completely familiar with this application domain.

Development
flexibility

Reflects the degree of flexibility in the development
process. Very low means a prescribed process is used;
Extra high means that the client only sets general goals.

Architecture/risk
resolution

Reflects the extent of risk analysis carried out. Very low
means little analysis, Extra high means a complete a
thorough risk analysis.

Team cohesion Reflects how well the development team know each
other and work together. Very low means very difficult
interactions, Extra high means an integrated and
effective team with no communication problems.

Process maturity Reflects the process maturity of the organisation. The
computation of this value depends on the CMM
Maturity Questionnaire but an estimate can be achieved
by subtracting the CMM process maturity level from 5.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 48

l Product attributes
• concerned with required characteristics of the software product

being developed

l Computer attributes
• constraints imposed on the software by the hardware platform

l Personnel attributes
• multipliers that take the experience and capabilities of the

people working on the project into account.

l Project attributes
• concerned with the particular characteristics of the software

development project

Multipliers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 49

Project cost drivers
Product attributes
RELY Required system

reliability
DATA Size of database used

CPLX Complexity of system
modules

RUSE Required percentage of
reusable components

DOCU Extent of documentation
required

Computer attributes
TIME Execution time

constraints
STOR Memory constraints

PVOL Volatility of
development platform

Personnel attributes
ACAP Capability of project

analysts
PCAP Programmer capability

PCON Personnel continuity AEXP Analyst experience in project
domain

PEXP Programmer experience
in project domain

LTEX Language and tool experience

Project attributes
TOOL Use of software tools SITE Extent of multi-site working

and quality of site
communications

SCED Development schedule
compression

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 50

Effects of cost drivers

Exponent value 1.17
System size (including factors for reuse
and requirements volatility)

128, 000 DSI

Initial COCOMO estimate without
cost drivers

730 person-months

Reliability Very high, multiplier = 1.39
Complexity Very high, multiplier = 1.3
Memory constraint High, multiplier = 1.21
Tool use Low, multiplier = 1.12
Schedule Accelerated, multiplier = 1.29
Adjusted COCOMO estimate 2306 person-months
Reliability Very low, multiplier = 0.75
Complexity Very low, multiplier = 0.75
Memory constraint None, multiplier = 1
Tool use Very high, multiplier = 0.72
Schedule Normal, multiplier = 1
Adjusted COCOMO estimate 295 person-months

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 51

l Algorithmic cost models provide a basis for
project planning as they allow alternative
strategies to be compared

l Embedded spacecraft system
• Must be reliable

• Must minimise weight (number of chips)

• Multipliers on reliability and computer constraints > 1

l Cost components
• Target hardware

• Development platform

• Effort required

Project planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 52

Management options
A. Use existing hardware,
development system and

development team

C. Memory
upgrade only

Hardware cost
increase

B. Processor and
memory upgrade

Hardware cost increase
Experience decrease

D. More
experienced staff

F. Staff with
hardware experience

E. New development
system

Hardware cost increase
Experience decrease

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 53

Management options costs

Option RELY STOR TIME TOOLS LTEX Total effort Software cost Hardware
cost

Total cost

A 1.39 1.06 1.11 0.86 1 63 949393 100000 1049393

B 1.39 1 1 1.12 1.22 88 1313550 120000 1402025

C 1.39 1 1.11 0.86 1 60 895653 105000 1000653

D 1.39 1.06 1.11 0.86 0.84 51 769008 100000 897490

E 1.39 1 1 0.72 1.22 56 844425 220000 1044159

F 1.39 1 1 1.12 0.84 57 851180 120000 1002706

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 54

Option choice

l Option D (use more experienced staff) appears to
be the best alternative
• However, it has a high associated risk as expreienced staff may

be difficult to find

l Option C (upgrade memory) has a lower cost
saving but very low risk

l Overall, the model reveals the importance of staff
experience in software development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 55

Project duration and staffing

l As well as effort estimation, managers must
estimate the calendar time required to complete a
project and when staff will be required

l Calendar time can be estimated using a
COCOMO 2 formula
• TDEV = 3 × (PM)(0.33+0.2*(B-1.01))

• PM is the effort computation and B is the exponent computed as
discussed above (B is 1 for the early prototyping model). This
computation predicts the nominal schedule for the project

l The time required is independent of the number
of people working on the project

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 56

Staffing requirements

l Staff required can’t be computed by diving the
development time by the required schedule

l The number of people working on a project varies
depending on the phase of the project

l The more people who work on the project, the
more total effort is usually required

l A very rapid build-up of people often correlates
with schedule slippage

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 57

Key points

l Factors affecting productivity include individual
aptitude, domain experience, the development
project, the project size, tool support and the
working environment

l Different techniques of cost estimation should be
used when estimating costs

l Software may be priced to gain a contract and the
functionality adjusted to the price

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 23 Slide 58

Key points

l Algorithmic cost estimation is difficult because of
the need to estimate attributes of the finished
product

l The COCOMO model takes project, product,
personnel and hardware attributes into account when
predicting effort required

l Algorithmic cost models support quantitative option
analysis

l The time to complete a project is not proportional to
the number of people working on the project

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 1

Quality Management

l Managing the quality of the
software process and products

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 2

Objectives

l To introduce the quality management process and
key quality management activities

l To explain the role of standards in quality
management

l To explain the concept of a software metric,
predictor metrics and control metrics

l To explain how measurement may be used in
assessing software quality

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 3

Topics covered

l Quality assurance and standards

l Quality planning

l Quality control

l Software measurement and metrics

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 4

Software quality management

l Concerned with ensuring that the required level of
quality is achieved in a software product

l Involves defining appropriate quality standards
and procedures and ensuring that these are
followed

l Should aim to develop a ‘quality culture’ where
quality is seen as everyone’s responsibility

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 5

What is quality?

l Quality, simplistically, means that a product
should meet its specification

l This is problematical for software systems
• Tension between customer quality requirements (efficiency,

reliability, etc.) and developer quality requirements
(maintainability, reusability, etc.)

• Some quality requirements are difficult to specify in an
unambiguous way

• Software specifications are usually incomplete and often
inconsistent

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 6

The quality compromise

l We cannot wait for specifications to improve
before paying attention to quality management

l Must put procedures into place to improve quality
in spite of imperfect specification

l Quality management is therefore not just
concerned with reducing defects but also with
other product qualities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 7

Quality management activities

l Quality assurance
• Establish organisational procedures and standards for quality

l Quality planning
• Select applicable procedures and standards for a particular

project and modify these as required

l Quality control
• Ensure that procedures and standards are followed by the

software development team

l Quality management should be separate from
project management to ensure independence

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 8

Quality management and software development

Software development
process

Quality management
process

D1 D2 D3 D4 D5

Standards and
procedures

Quality
plan

Quality review reports

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 9

ISO 9000

l International set ofstandards for quality
management

l Applicable to a range of organisations from
manufacturing to service industries

l ISO 9001 applicable to organisations which
design, develop and maintain products

l ISO 9001 is a generic model of the quality
process Must be instantiated for each organisation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 10

ISO 9001

Management responsibility Quality system
Control of non-conforming products Design control
Handling, storage, packaging and
delivery

Purchasing

Purchaser-supplied products Product identification and traceability
Process control Inspection and testing
Inspection and test equipment Inspection and test status
Contract review Corrective action
Document control Quality records
Internal quality audits Training
Servicing Statistical techniques

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 11

ISO 9000 certification

l Quality standards and procedures should be
documented in an organisational quality manual

l External body may certify that an organisation’s
quality manual conforms to ISO 9000 standards

l Customers are, increasingly, demanding that
suppliers are ISO 9000 certified

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 12

ISO 9000 and quality management

Project 1
quality plan

Project 2
quality plan

Project 3
quality plan

Project quality
management

Organization
quality manual

ISO 9000
quality models

Organization
quality process

is used to develop instantiated as

instantiated as

documents

Supports

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 13

l Standards are the key to effective quality
management

l They may be international, national,
organizational or project standards

l Product standards define characteristics that all
components should exhibit e.g. a common
programming style

l Process standards define how the software
process should be enacted

Quality assurance and standards

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 14

l Encapsulation of best practice- avoids
repetition of past mistakes

l Framework for quality assurance process - it
involves checking standard compliance

l Provide continuity - new staff can understand
the organisation by understand the standards
applied

Importance of standards

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 15

Product and process standards

Product standards Process standards
Design review form Design review conduct
Document naming standards Submission of documents to CM
Procedure header format Version release process
Ada programming style standard Project plan approval process
Project plan format Change control process
Change request form Test recording process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 16

Problems with standards

l Not seen as relevant and up-to-date by software
engineers

l Involve too much bureaucratic form filling

l Unsupported by software tools so tedious manual
work is involved to maintain standards

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 17

l Involve practitioners in development. Engineers
should understand the rationale underlying a
standard

l Review standards and their usage regularly.
Standards can quickly become outdated and this
reduces their credibility amongst practitioners

l Detailed standards should have associated tool
support. Excessive clerical work is the most
significant complaint against standards

Standards development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 18

Documentation standards

l Particularly important - documents are the
tangible manifestation of the software

l Documentation process standards
• How documents should be developed, validated and maintained

l Document standards
• Concerned with document contents, structure, and appearance

l Document interchange standards
• How documents are stored and interchanged between different

documentation systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 19

Documentation process

Create
initial draft

Review
draft

Incorporate
review

comments

Re-draft
document

Proofread
text

Produce
final draft

Check
final draft

Layout
text

Review
layout

Produce
print masters

Print
copies

Stage 1:
Creation

Stage 2:
Polishing

Stage 3:
Production

Approved document

Approved document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 20

Document standards

l Document identification standards
• How documents are uniquely identified

l Document structure standards
• Standard structure for project documents

l Document presentation standards
• Define fonts and styles, use of logos, etc.

l Document update standards
• Define how changes from previous versions are reflected in a

document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 21

Document interchange standards

l Documents are produced using different systems
and on different computers

l Interchange standards allow electronic documents
to be exchanged, mailed, etc.

l Need for archiving. The lifetime of word
processing systems may be much less than the
lifetime of the software being documented

l XML is an emerging standard for document
interchange which will be widely supported in
future

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 22

l The quality of a developed product is influenced
by the quality of the production process

l Particularly important in software development as
some product quality attributes are hard to assess

l However, there is a very complex and poorly
understood between software processes and
product quality

Process and product quality

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 23

Process-based quality

l Straightforward link between process and product
in manufactured goods

l More complex for software because:
• The application of individual skills and experience is

particularly imporant in software development

• External factors such as the novelty of an application or the need
for an accelerated development schedule may impair product
quality

l Care must be taken not to impose inappropriate
process standards

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 24

Process-based quality

Define process Develop
product

Assess product
quality

Standardize
process

Improve
process

Quality
OK

No Yes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 25

l Define process standards such as how reviews
should be conducted, configuration
management, etc.

l Monitor the development process to ensure
that standards are being followed

l Report on the process to project management
and software procurer

Practical process quality

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 26

Quality planning

l A quality plan sets out the desired product
qualities and how these are assessed ande define
the most significant quality attributes

l It should define the quality assessment process

l It should set out which organisational standards
should be applied and, if necessary, define new
standards

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 27

Quality plan structure

l Product introduction

l Product plans

l Process descriptions

l Quality goals

l Risks and risk management

l Quality plans should be short, succinct documents
• If they are too long, no-one will read them

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 28

Software quality attributes

Safety Understandability Portability
Security Testability Usability
Reliability Adaptability Reusability
Resilience Modularity Efficiency
Robustness Complexity Learnability

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 29

Quality control

l Checking the software development process to
ensure that procedures and standards are being
followed

l Two approaches to quality control
• Quality reviews

• Automated software assessment and software measurement

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 30

Quality reviews

l The principal method of validating the quality of
a process or of a product

l Group examined part or all of a process or system
and its documentation to find potential problems

l There are different types of review with different
objectives
• Inspections for defect removal (product)

• Reviews for progress assessment(product and process)

• Quality reviews (product and standards)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 31

Types of review
Review type Principal purpose
Design or program
inspections

To detect detailed errors in the design or
code and to check whether standards have
been followed. The review should be driven
by a checklist of possible errors.

Progress reviews To provide information for management
about the overall progress of the project.
This is both a process and a product review
and is concerned with costs, plans and
schedules.

Quality reviews To carry out a technical analysis of product
components or documentation to find faults
or mismatches between the specification
and the design, code or documentation. It
may also be concerned with broader quality
issues such as adherence to standards and
other quality attributes.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 32

l A group of people carefully examine part or all
of a software system and its associated
documentation.

l Code, designs, specifications, test plans,
standards, etc. can all be reviewed.

l Software or documents may be 'signed off' at a
review which signifies that progress to the next
development stage has been approved by
management.

Quality reviews

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 33

The review process

Select
review team

Arrange place
and time

Distribute
documents

Hold review

Complete
review forms

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 34

Review functions

l Quality function - they are part of the general
quality management process

l Project management function - they provide
information for project managers

l Training and communication function - product
knowledge is passed between development team
members

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 35

Quality reviews

l Objective is the discovery of system defects and
inconsistencies

l Any documents produced in the process may be
reviewed

l Review teams should be relatively small and
reviews should be fairly short

l Review should be recorded and records
maintained

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 36

l Comments made during the review should be
classified.
• No action. No change to the software or documentation is

required.

• Refer for repair. Designer or programmer should correct an
identified fault.

• Reconsider overall design. The problem identified in the
review impacts other parts of the design. Some overall
judgement must be made about the most cost-effective way
of solving the problem.

l Requirements and specification errors may
have to be referred to the client.

Review results

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 37

Software measurement and metrics

l Software measurement is concerned with deriving
a numeric value for an attribute of a software
product or process

l This allows for objective comparisons between
techniques and processes

l Although some companies have introduced
measurment programmes, the systematic use of
measurement is still uncommon

l There are few standards in this area

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 38

l Any type of measurement which relates to a
software system, process or related
documentation
• Lines of code in a program, the Fog index, number of person-

days required to develop a component

l Allow the software and the software process to
be quantified

l Measures of the software process or product

l May be used to predict product attributes or to
control the software process

Software metric

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 39

Predictor and control metrics

Management
decisions

Control
measurements

Software
process

Predictor
measurements

Software
product

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 40

l A software property can be measured

l The relationship exists between what we can
measure and what we want to know

l This relationship has been formalized and
validated

l It may be difficult to relate what can be measured
to desirable quality attributes

Metrics assumptions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 41

Internal and external attributes

Reliability

Number of procedure
parameters

Cyclomatic complexity

Program size in lines
of code

Number of error
messages

Length of user manual

Maintainability

Usability

Portability

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 42

The measurement process

l A software measurement process may be part of a
quality control process

l Data collected during this process should be
maintained as an organisational resource

l Once a measurement database has been
established, comparisons across projects become
possible

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 43

Product measurement process

Measure
component

characteristics

Identify
anomalous

measurements

Analyse
anomalous
components

Select
components to

be assessed

Choose
measurements

to be made

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 44

Data collection

l A metrics programme should be based on a set of
product and process data

l Data should be collected immediately (not in
retrospect) and, if possible, automatically

l Three types of automatic data collection
• Static product analysis

• Dynamic product analysis

• Process data collation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 45

Automated data collection

Instrumented
software system

Fault
data

Usage
data

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 46

Data accuracy

l Don’t collect unnecessary data
• The questions to be answered should be decided in advance and

the required data identified

l Tell people why the data is being collected
• It should not be part of personnel evaluation

l Don’t rely on memory
• Collect data when it is generated not after a project has finished

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 47

l A quality metric should be a predictor of
product quality

l Classes of product metric
• Dynamic metrics which are collected by measurements made of

a program in execution

• Static metrics which are collected by measurements made of the
system representations

• Dynamic metrics help assess efficiency and reliability; static
metrics help assess complexity, understandability and
maintainability

Product metrics

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 48

Dynamic and static metrics

l Dynamic metrics are closely related to software
quality attributes
• It is relatively easy to measure the response time of a system

(performance attribute) or the number of failures (reliability
attribute)

l Static metrics have an indirect relationship with
quality attributes
• You need to try and derive a relationship between these metrics

and properties such as complexity, understandability and
maintainability

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 49

Software product metrics
Software metric Description

Fan in/Fan-out Fan-in is a measure of the number of functions that call some other
function (say X). Fan-out is the number of functions which are called
by function X. A high value for fan-in means that X is tightly
coupled to the rest of the design and changes to X will have
extensive knock-on effects. A high value for fan-out suggests that the
overall complexity of X may be high because of the complexity of
the control logic needed to coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the larger the
size of the code of a program’s components, the more complex and
error-prone that component is likely to be.

Cyclomatic
complexity

This is a measure of the control complexity of a program. This
control complexity may be related to program understandability. The
computation of cyclomatic complexity is covered in Chapter 20.

Length of
identifiers

This is a measure of the average length of distinct identifiers in a
program. The longer the identifiers, the more likely they are to be
meaningful and hence the more understandable the program.

Depth of
conditional nesting

This is a measure of the depth of nesting of if-statements in a
program. Deeply nested if statements are hard to understand and are
potentially error-prone.

Fog index This is a measure of the average length of words and sentences in
documents. The higher the value for the Fog index, the more difficult
the document may be to understand.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 50

Object-oriented metrics
Object-
oriented
metric

Description

Depth of
inheritance
tree

This represents the number of discrete levels in the inheritance tree where
sub-classes inherit attributes and operations (methods) from super-classes.
The deeper the inheritance tree, the more complex the design as,
potentially, many different object classes have to be understood to
understand the object classes at the leaves of the tree.

Method fan-
in/fan-out

This is directly related to fan-in and fan-out as described above and means
essentially the same thing. However, it may be appropriate to make a
distinction between calls from other methods within the object and calls
from external methods.

Weighted
methods per
class

This is the number of methods included in a class weighted by the
complexity of each method. Therefore, a simple method may have a
complexity of 1 and a large and complex method a much higher value. The
larger the value for this metric, the more complex the object class.
Complex objects are more likely to be more difficult to understand. They
may not be logically cohesive so cannot be reused effectively as super-
classes in an inheritance tree.

Number of
overriding
operations

These are the number of operations in a super-class which are over-ridden
in a sub-class. A high value for this metric indicates that the super-class
used may not be an appropriate parent for the sub-class.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 51

Measurement analysis

l It is not always obvious what data means
• Analysing collected data is very difficult

l Professional statisticians should be consulted if
available

l Data analysis must take local circumstances into
account

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 52

Measurement surprises

l Reducing the number of faults in a program leads
to an increased number of help desk calls
• The program is now thought of as more reliable and so has a

wider more diverse market. The percentage of users who call the
help desk may have decreased but the total may increase

• A more reliable system is used in a different way from a system
where users work around the faults. This leads to more help
desk calls

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 53

Key points

l Software quality management is concerned with
ensuring that software meets its required
standards

l Quality assurance procedures should be
documented in an organisational quality manual

l Software standards are an encapsulation of best
practice

l Reviews are the most widely used approach for
assessing software quality

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 24 Slide 54

Key points

l Software measurement gathers information about
both the software process and the software
product

l Product quality metrics should be used to identify
potentially problematical components

l There are no standardised and universally
applicable software metrics

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 1

Process Improvement

l Understanding, Modelling and
Improving the Software Process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 2

l To explain the principles of software process
improvement

l To explain how software process factors
influence software quality and productivity

l To introduce the SEI Capability Maturity Model
and to explain why it is influential. To discuss
the applicability of that model

l To explain why CMM-based improvement is not
universally applicable

Objectives

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 3

l Process and product quality

l Process analysis and modelling

l Process measurement

l The SEI process maturity model

l Process classification

Topics covered

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 4

l Understanding existing processes

l Introducing process changes to achieve
organisational objectives which are usually
focused on quality improvement, cost reduction
and schedule acceleration

l Most process improvement work so far has
focused on defect reduction. This reflects the
increasing attention paid by industry to quality

l However, other process attributes can be the
focus of improvement

Process improvement

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 5

Process attributes

Process characteristic Description
Understandability To what extent is the process explicitly defined and how easy is it to

understand the process definition?
Visibility Do the process activities culminate in clear results so that the progress

of the process is externally visible?
Supportability To what extent can the process activities be supported by CASE tools?
Acceptability Is the defined process acceptable to and usable by the engineers

responsible for producing the software product?
Reliability Is the process designed in such a way that process errors are avoided or

trapped before they result in product errors?
Robustness Can the process continue in spite of unexpected problems?
Maintainability Can the process evolve to reflect changing organisational requirements

or identified process improvements?
Rapidity How fast can the process of delivering a system from a given

specification be completed?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 6

l Process analysis
• Model and analyse (quantitatively if possible) existing processes

l Improvement identification
• Identify quality, cost or schedule bottlenecks

l Process change introduction
• Modify the process to remove identified bottlenecks

l Process change training
• Train staff involved in new process proposals

l Change tuning
• Evolve and improve process improvements

Process improvement stages

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 7

The process improvement process

Process
model

Process change
plan

Training
plan

Feedback on
improvements

Revised process
model

Analyse
process

Identify
improvements

Tune
process changes

Introduce
process change

Train
engineers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 8

l Process quality and product quality are closely
related

l A good process is usually required to produce a
good product

l For manufactured goods, process is the
principal quality determinant

l For design-based activity, other factors are also
involved especially the capabilities of the
designers

Process and product quality

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 9

Principal product quality factors

Product
quality

Development
technology

Cost, time and
schedule

Process
quality

People
quality

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 10

Quality factors

l For large projects with ‘average’ capabilities, the
development process determines product quality

l For small projects, the capabilities of the
developers is the main determinant

l The development technology is particularly
significant for small projects

l In all cases, if an unrealistic schedule is imposed
then product quality will suffer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 11

Process analysis and modelling

l Process analysis
• The study of existing processes to understand the relationships

between parts of the process and to compare them with other
processes

l Process modelling
• The documentation of a process which records the tasks, the

roles and the entities used

• Process models may be presented from different perspectives

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 12

l Study an existing process to understand its
activities

l Produce an abstract model of the process. You
should normally represent this graphically.
Several different views (e.g. activities,
deliverables, etc.) may be required

l Analyse the model to discover process
problems. Involves discussing activities with
stakeholders

Process analysis and modelling

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 13

l Published process models and process
standards
• It is always best to start process analysis with an existing model.

People then may extend and change this.

l Questionnaires and interviews
• Must be carefully designed. Participants may tell you what they

think you want to hear

l Ethnographic analysis
• Involves assimilating process knowledge by observation

Process analysis techniques

Elements of a
process model

Process model element Description
Activity
(represented by a round-
edged rectangle with no
drop shadow)

An activity has a clearly defined objective, entry and exit
conditions. Examples of activities are preparing a set of test
data to test a module, coding a function or a module, proof-
reading a document, etc. Generally, an activity is atomic i.e.
it is the responsibility of one person or group. It is not
decomposed into sub-activities.

Process
(represented by a round-
edged rectangle with drop
shadow)

A process is a set of activities which have some coherence
and whose objective is generally agreed within an
organisation. Examples of processes are requirements
analysis, architectural design, test planning, etc.

Deliverable
(represented by a rectangle
with drop shadow)

A deliverable is a tangible output of an activity which is
predicted in a project plan.

Condition
(represented by a
parallelogram)

A condition is either a pre-condition which must hold before
a process or activity can start or a post-condition which holds
after a process or activity has finished.

Role
(represented by a circle
with drop shadow)

A role is a bounded area of responsibility. Examples of roles
might be configuration manager, test engineer, software
designer, etc. One person may have several different roles
and a single role may be associated with several different
people.

Exception
(not shown in examples
here but may be represented
as a double edged box)

An exception is a description of how to modify the process if
some anticipated or unanticipated event occurs. Exceptions
are often undefined and it is left to the ingenuity of the
project managers and engineers to handle the exception.

Communication
(represented by an arrow)

An interchange of information between people or between
people and supporting computer systems. Communications
may be informal or formal. Formal communications might be
the approval of a deliverable by a project manager; informal
communications might be the interchange of electronic mail
to resolve ambiguities in a document.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 15

The module testing activity

Test
module

Signed-off test
record

Module test
data

Module
specification

Module compiles
without syntax

errors

All defined tests
run on module

Test
engineer

Pre-condition

Input
Process

Rôle
Post-condition

Outputs
Responsible

for

Activities in module testing

Prepare test data
according to
specification

Read module
specification

Submit test data
for review Review test data

TEST DATA PREPARATION

Read and understand
module interface

Checkout module
from configuration

management system

Prepare test harness
for module

Compile test
harness

MODULE TEST HARNESS PREPARATION

Incorporate module
with test harness

Run approved tests
on module

Record test results
for regression tests

TEST EXECUTION

Write report on module
testing including details
of discovered problems

Submit report
for approval

Submit test
results to CM

TEST REPORTING

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31. Slide ##

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 17

Process exceptions

l Software processes are complex and process
models cannot effectively represent how to
handle exceptions
• Several key people becoming ill just before a critical review

• A complete failure of a communication processor so that no e-
mail is available for several days

• Organisational reorganisation

• A need to respond to an unanticipated request for new proposals

l Under these circumstances, the model is
suspended and managers use their initiative to
deal with the exception

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 18

l Wherever possible, quantitative process data
should be collected
• However, where organisations do not have clearly defined

process standards this is very difficult as you don’t know what
to measure. A process may have to be defined before any
measurement is possible

l Process measurements should be used to
assess process improvements
• But this does not mean that measurements should drive the

improvements. The improvement driver should be the
organizational objectives

Process measurement

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 19

l Time taken for process activities to be
completed
• E.g. Calendar time or effort to complete an activity or

process

l Resources required for processes or activities
• E.g. Total effort in person-days

l Number of occurrences of a particular event
• E.g. Number of defects discovered

Classes of process measurement

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 20

l Goals
• What is the organisation trying to achieve? The objective of

process improvement is to satisfy these goals

l Questions
• Questions about areas of uncertainty related to the goals. You

need process knowledge to derive these

l Metrics
• Measurements to be collected to answer the questions

Goal-Question-Metric Paradigm

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 21

l US Defense Dept. funded institute associated
with Carnegie Mellon

l Mission is to promote software technology
transfer particularly to defense contractors

l Maturity model proposed in mid-1980s, refined
in early 1990s.

l Work has been very influential in process
improvement

The Software Engineering Institute

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 22

The SEI process maturity model

Level 3
Defined

Level 2
Repeatable

Level 1
Initial

Level 4
Managed

Level 5
Optimizing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 23

l Initial
• Essentially uncontrolled

l Repeatable
• Product management procedures defined and used

l Defined
• Process management procedures and strategies defined

and used

l Managed
• Quality management strategies defined and used

l Optimising
• Process improvement strategies defined and used

Maturity model levels

Key process areas Process change management
Technology change management
Defect prevention

Software quality management
Quantitative process management

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training programme
Organization process definition
Organization process focus

Software configuration management
Software quality assurance
Software subcontract management
Software project tracking and oversight
Software project planning
Requirements management

Initial

Repeatable

Defined

Managed

Optimizing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 25

l It focuses on project management rather than
product development.

l It ignores the use of technologies such as rapid
prototyping.

l It does not incorporate risk analysis as a key
process area

l It does not define its domain of applicability

SEI model problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 26

The CMM and ISO 9000

l There is a clear correlation between the key
processes in the CMM and the quality
management processes in ISO 9000

l The CMM is more detailed and prescriptive and
includes a framework for improvement

l Organisations rated as level 2 in the CMM are
likely to be ISO 9000 compliant

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 27

Capability assessment

l An important role of the SEI is to use the CMM
to assess the capabilities of contractors bidding
for US government defence contracts

l The model is intended to represent organisational
capability not the practices used in particular
projects

l Within the same organisation, there are often
wide variations in processes used

l Capability assessment is questionnaire-based

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 28

The capability assessment process

Select projects
for assessment

Distribute
questionnaires

Analyse
responses

Clarify
responses

Identify issues
for discussion

Interview
project managers

Interview
engineers

Interview
managers

Brief managers
and engineers

Present
assessment

Write report

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 29

l Informal
• No detailed process model. Development team chose their

own way of working

l Managed
• Defined process model which drives the development

process

l Methodical
• Processes supported by some development method such

as HOOD

l Supported
• Processes supported by automated CASE tools

Process classification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 30

Process applicability

Prototypes
Short-lifetime products
4GL business systems

Informal
process

Large systems
Long-lifetime products

Managed
process

Well-understood
application domains

Re-engineered systems

Methodical
process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 31

l Process used should depend on type of
product which is being developed
• For large systems, management is usually the principal problem

so you need a strictly managed process. For smaller systems,
more informality is possible.

l There is no uniformly applicable process which
should be standardised within an organisation
• High costs may be incurred if you force an inappropriate

process on a development team

Process choice

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 32

Process tool support

Informal
process

Managed
process

Methodical
process

Improving
process

Specialized
tools

Analysis and
design

workbenches

Project
management

tools

Configuration
management

tools

Generic
tools

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 33

l Process improvement involves process analysis,
standardisation, measurement and change

l Process models include descriptions of tasks,
activities, roles, exceptions, communications,
deliverables and other processes

l Measurement should be used to answer specific
questions about the software process used

l The three types of process metrics which can be
collected are time metrics, resource utilisation metrics
and event metrics

Key points

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 25 Slide 34

l The SEI model classifies software processes as initial,
repeatable, defined, managed and optimising. It identifies
key processes which should be used at each of these
levels

l The SEI model is appropriate for large systems
developed by large teams of engineers. It cannot be
applied without modification in other situations

l Processes can be classified as informal, managed,
methodical and improving. This classification can be
used to identify process tool support

Key points

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 1

Legacy Systems

● Older software systems that
remain vital to an organisation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 2

Objectives

● To explain what is meant by a legacy system and
why these systems are important

● To introduce common legacy system structures

● To briefly describe function-oriented design

● To explain how the value of legacy systems can
be assessed

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 3

Topics covered

● Legacy system structures

● Legacy system design

● Legacy system assessment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 4

Legacy systems

● Software systems that are developed specially for
an organisation have a long lifetime

● Many software systems that are still in use were
developed many years ago using technologies that
are now obsolete

● These systems are still business critical that is,
they are essential for the normal functioning of
the business

● They have been given the name legacy systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 5

Legacy system replacement

● There is a significant business risk in simply
scrapping a legacy system and replacing it with a
system that has been developed using modern
technology

● Legacy systems rarely have a complete specification. During
their lifetime they have undergone major changes which may
not have been documented

● Business processes are reliant on the legacy system

● The system may embed business rules that are not formally
documented elsewhere

● New software development is risky and may not be successful

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 6

Legacy system change

● Systems must change in order to remain useful

● However, changing legacy systems is often
expensive

● Different parts implemented by different teams so no consistent
programming style

● The system may use an obsolete programming language

● The system documentation is often out-of-date

● The system structure may be corrupted by many years of
maintenance

● Techniques to save space or increase speed at the expense of
understandability may have been used

● File structures used may be incompatible

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 7

The legacy dilemma

● It is expensive and risky to replace the legacy
system

● It is expensive to maintain the legacy system

● Businesses must weigh up the costs and risks and
may choose to extend the system lifetime using
techniques such as re-engineering.

● This is covered in Chapters 27 and 28

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 8

Legacy system structures

● Legacy systems can be considered to be socio-
technical systems and not simply software
systems

● System hardware - may be mainframe hardware

● Support software - operating systems and utilities

● Application software - several different programs

● Application data - data used by these programs that is often
critical business information

● Business processes - the processes that support a business
objective and which rely on the legacy software and hardware

● Business policies and rules - constraints on business operations

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 9

Legacy system components

System
hardware

Business
processes

Application
software

Business policies
and rules

Support
software

Application
 data

ConstrainsUsesUsesRuns-onRuns-on

Embeds
knowledge of

Uses

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 10

Layered model

Socio-technical system

Hardware

Support software

Application software

Business processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 11

System change

● In principle, it should be possible to replace a
layer in the system leaving the other layers
unchanged

● In practice, this is usually impossible
● Changing one layer introduces new facilities and higher level

layers must then change to make use of these

● Changing the software may slow it down so hardware changes
are then required

● It is often impossible to maintain hardware interfaces because of
the wide gap between mainframes and client-server systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 12

Legacy application system

File 1 File 2 File 3 File 4 File 5 File 6

Program 2Program 1 Program 3

Program 4 Program 5 Program 6 Program 7

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 13

Database-centred system

Program
1

Program
2

Program
3

Program
4

Database
management

system

Logical and
physical

data models

describes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 14

Transaction processing

Serialised
transactions

Teleprocessing
monitor

Accounts
database

ATMs and terminals

Account queries
and updates

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 15

Legacy data

● The system may be file-based with incompatible
files. The change required may be to move to a
database-management system

● In legacy systems nthat use a DBMS the database
management system may be obsolete and
incompatible with other DBMSs used by the
business

● The teleprocessing monitor may be designed for a
particular DB and mainframe. Changing to a new
DB may require a new TP monitor

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 16

Legacy system design

● Most legacy systems were designed before
object-oriented development was used

● Rather than being organised as a set of interacting
objects, these systems have been designed using a
function-oriented design strategy

● Several methods and CASE tools are available to
support function-oriented design and the approach
is still used for many business applications

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 17

A function-oriented view of design

F2F1 F3

F4 F5

Shared memory

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 18

Functional design process

● Data-flow design
● Model the data processing in the system using data-flow

diagrams

● Structural decomposition
● Model how functions are decomposed to sub-functions using

graphical structure charts

● Detailed design
● The entities in the design and their interfaces are described in

detail. These may be recorded in a data dictionary and the
design expressed using a PDL

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 19

Input-process-output model

System

Input Process Output

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 20

Input-process-output

● Input components read and validate data from a
terminal or file

● Processing components carry out some
transformations on that data

● Output components format and print the results of
the computation

● Input, process and output can all be represented as
functions with data ‘flowing’ between them

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 21

Functional design process

l Data-flow design
● Model the data processing in the system using data-flow

diagrams

l Structural decomposition
● Model how functions are decomposed to sub-functions using

graphical structure charts that reflect the input/process/output
structure

l Detailed design
● The functions in the design and their interfaces are described in

detail.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 22

Data flow diagrams

l Show how an input data item is functionally
transformed by a system into an output data
item

l Are an integral part of many design methods
and are supported by many CASE systems

l May be translated into either a sequential or
parallel design. In a sequential design,
processing elements are functions or
procedures; in a parallel design, processing
elements are tasks or processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 23

Payroll system DFD

Read employee
record

Read monthly
pay data

Compute
salary

Write tax
transaction

Monthly pay
data

Tax
tables

Tax
transactions

Pension data

Validate
employee data

Write pension
data

Write bank
transaction

Write social
security data

Employee
records

Monthly pay
rates

Bank
transactions

Social
security data

Print payslip
PRINTER

Decoded
employee

record

Pay information

Valid
employee record

Tax deduction +SS
number +tax office

Pension
deduction +
SS number

Empoyee data +
deductions

Net payment + bank
account info.

Social security
deduction + SS number

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 24

Payroll batch processing

● The functions on the left of the DFD are input
functions

● Read employee record, Read monthly pay data, Validate
employee data

● The central function - Compute salary - carries
out the processing

● The functions to the right are output functions
● Write tax transaction, Write pension data, Print payslip, Write

bank transaction, Write social security data

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 25

Transaction processing

● A ban ATM system is an example of a transaction
processing system

● Transactions are stateless in that they do not rely
on the result of previous transactions. Therefore, a
functional approach is a natural way to implement
transaction processing

Design
description of an
ATM

INPUT

loop
repeat

Print_input_message (” Welcome - Please enter your card”) ;
 until Card_input ;

 Account_number := Read_card ;
 Get_account_details (PIN, Account_balance, Cash_available) ;

PROCESS

 if Invalid_card (PIN) then
Retain_card ;
Print ("Card retained - please contact your bank") ;

else
 repeat
 Print_operation_select_message ;

Button := Get_button ;
 case Get_button is
 when Cash_only =>
 Dispense_cash (Cash_available, Amount_dispensed) ;
 when Print_balance =>
 Print_customer_balance (Account_balance) ;
 when Statement =>
 Order_statement (Account_number) ;
 when Check_book =>

 Order_checkbook (Account_number) ;
 end case ;

Print ("Press CONTINUE for more services or STOP to finish");
Button := Get_button ;

until Button = STOP ;

OUTPUT

Eject_card ;
 Print (“Please take your card) ;

Update_account_information (Account_number, Amount_dispensed) ;

end loop ;

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 27

Using function-oriented design

● For some classes of system, such as some
transaction processing systems, a function-
oriented approach may be a better approach to
design than an object-oriented approach

● Companies may have invested in CASE tools and
methods for function-oriented design and may not
wish to incur the costs and risks of moving to an
object-oriented approach

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 28

Legacy system assessment

● Organisations that rely on legacy systems must
choose a strategy for evolving these systems

● Scrap the system completely and modify business processes so
that it is no longer required

● Continue maintaining the system

● Transform the system by re-engineering to improve its
maintainability

● Replace the system with a new system

● The strategy chosen should depend on the system
quality and its business value

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 29

System quality and business value

1
2

3 4 5

6
7

8
9

10

System quality

Business value
High business value
Low quality High business value

High quality

Low business value
Low quality

Low business value
High quality

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 30

Legacy system categories

● Low quality, low business value
● These systems should be scrapped

● Low-quality, high-business value
● These make an important business contribution but are

expensive to maintain. Should be re-engineered or replaced if a
suitable system is available

● High-quality, low-business value
● Replace with COTS, scrap completely or maintain

● High-quality, high business value
● Continue in operation using normal system maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 31

Business value assessment

● Assessment should take different viewpoints into
account

● System end-users

● Business customers

● Line managers

● IT managers

● Senior managers

● Interview different stakeholders and collate
results

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 32

System quality assessment

● Business process assessment
● How well does the business process support the current goals of

the business?

● Environment assessment
● How effective is the system’s environment and how expensive

is it to maintain

● Application assessment
● What is the quality of the application software system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 33

Business process assessment

● Use a viewpoint-oriented approach and seek
answers from system stakeholders

● Is there a defined process model and is it followed?

● Do different parts of the organisation use different processes for
the same function?

● How has the process been adapted?

● What are the relationships with other business processes and are
these necessary?

● Is the process effectively supported by the legacy application
software?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 34

Environment assessment
Factor Questions
Supplier
stability

Is the supplier is still in existence? Is the supplier financially stable and
likely to continue in existence? If the supplier is no longer in business,
are the systems maintained by someone else?

Failure rate Does the hardware have a high rate of reported failures? Does the
support software crash and force system restarts?

Age How old is the hardware and software? The older the hardware and
support software, the more obsolete it will be. It may still function
correctly but there could be significant economic and business benefits
to moving to more modern systems.

Performance Is the performance of the system adequate? Do performance problems
have a significant effect on system users?

Support
requirements

What local support is required by the hardware and software? If there
are high costs associated with this support, it may be worth considering
system replacement.

Maintenance
costs

What are the costs of hardware maintenance and support software
licences? Older hardware may have higher maintenance costs than
modern systems. Support software may have high annual licensing
costs.

Interoperability Are there problems interfacing the system to other systems? Can
compilers etc. be used with current versions of the operating system? Is
hardware emulation required?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 35

Application assessment
Factor Questions
Understandability How difficult is it to understand the source code of the current system?

How complex are the control structures which are used? Do variables
have meaningful names that reflect their function?

Documentation What system documentation is available? Is the documentation
complete, consistent and up-to-date?

Data Is there an explicit data model for the system? To what extent is data
duplicated in different files? Is the data used by the system up-to-date
and consistent?

Performance Is the performance of the application adequate? Do performance
problems have a significant effect on system users?

Programming
language

Are modern compilers available for the programming language used to
develop the system? Is the programming language still used for new
system development?

Configuration
management

Are all versions of all parts of the system managed by a configuration
management system? Is there an explicit description of the versions of
components that are used in the current system?

Test data Does test data for the system exist? Is there a record of regression tests
carried out when new features have been added to the system?

Personnel skills Are there people available who have the skills to maintain the
application? Are there only a limited number of people who understand
the system?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 36

System measurement

● You may collect quantitative data to make an
assessment of the quality of the application
system

● The number of system change requests

● The number of different user interfaces used by the system

● The volume of data used by the system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 37

Key points

● A legacy system is an old system that still
provides essential business services

● Legacy systems are not just application software
but also include business processes, support
software and hardware

● Most legacy systems are made up of several
different programs and shared data

● A function-oriented approach has been used in the
design of most legacy systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 38

Key points

● The structure of legacy business systems
normally follows an input-process-output model

● The business value of a system and its quality
should be used to choose an evolution strategy

● The business value reflects the system’s
effectiveness in supporting business goals

● System quality depends on business processes,
the system’s environment and the application
software

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 1

Software change

l Managing the processes of
software system change

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 2

Objectives

l To explain different strategies for changing
software systems
• Software maintenance

• Architectural evolution

• Software re-engineering

l To explain the principles of software maintenance

l To describe the transformation of legacy systems
from centralised to distributed architectures

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 3

Topics covered

l Program evolution dynamics

l Software maintenance

l Architectural evolution

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 4

Software change

l Software change is inevitable
• New requirements emerge when the software is used

• The business environment changes

• Errors must be repaired

• New equipment must be accommodated

• The performance or reliability may have to be improved

l A key problem for organisations is implementing
and managing change to their legacy systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 5

Software change strategies

l Software maintenance
• Changes are made in response to changed requirements but the

fundamental software structure is stable

l Architectural transformation
• The architecture of the system is modified generally from a

centralised architecture to a distributed architecture

l Software re-engineering
• No new functionality is added to the system but it is restructured

and reorganised to facilitate future changes

l These strategies may be applied separately or
together

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 6

l Program evolution dynamics is the study of the
processes of system change

l After major empirical study, Lehman and Belady
proposed that there were a number of ‘laws’
which applied to all systems as they evolved

l There are sensible observations rather than laws.
They are applicable to large systems developed
by large organisations. Perhaps less applicable in
other cases

Program evolution dynamics

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 7

Lehman’s laws
Law Description
Continuing change A program that is used in a real-world environment

necessarily must change or become progressively less
useful in that environment.

Increasing complexity As an evolving program changes, its structure tends
to become more complex. Extra resources must be
devoted to preserving and simplifying the structure.

Large program evolution Program evolution is a self-regulating process.
System attributes such as size, time between releases
and the number of reported errors are approximately
invariant for each system release.

Organisational stability Over a program’s lifetime, its rate of development is
approximately constant and independent of the
resources devoted to system development.

Conservation of
familiarity

Over the lifetime of a system, the incremental change
in each release is approximately constant.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 8

Applicability of Lehman’s laws

l This has not yet been established

l They are generally applicable to large, tailored
systems developed by large organisations

l It is not clear how they should be modified for
• Shrink-wrapped software products

• Systems that incorporate a significant number of COTS
components

• Small organisations

• Medium sized systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 9

l Modifying a program after it has been put into
use

l Maintenance does not normally involve major
changes to the system’s architecture

l Changes are implemented by modifying existing
components and adding new components to the
system

Software maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 10

l The system requirements are likely to change
while the system is being developed because
the environment is changing. Therefore a
delivered system won't meet its requirements!

l Systems are tightly coupled with their
environment. When a system is installed in an
environment it changes that environment and
therefore changes the system requirements.

l Systems MUST be maintained therefore if they
are to remain useful in an environment

Maintenance is inevitable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 11

l Maintenance to repair software faults
• Changing a system to correct deficiencies in the way meets

its requirements

l Maintenance to adapt software to a different
operating environment
• Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation

l Maintenance to add to or modify the system’s
functionality
• Modifying the system to satisfy new requirements

Types of maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 12

Distribution of maintenance effort

Functionality
addition or

modification
(65%)

Fault repair
(17%)

Software
adaptation

(18%)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 13

Spiral maintenance model

Specification Implemention

ValidationOperation

Start

Release 1

Release 2

Release 3

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 14

l Usually greater than development costs (2* to
100* depending on the application)

l Affected by both technical and non-technical
factors

l Increases as software is maintained.
Maintenance corrupts the software structure so
makes further maintenance more difficult.

l Ageing software can have high support costs
(e.g. old languages, compilers etc.)

Maintenance costs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 15

Development/maintenance costs

0 50 100 150 200 250 300 350 400 450 500

System 1

System 2

Development costs Maintenance costs

$

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 16

l Team stability
• Maintenance costs are reduced if the same staff are involved with

them for some time

l Contractual responsibility
• The developers of a system may have no contractual responsibility

for maintenance so there is no incentive to design for future change

l Staff skills
• Maintenance staff are often inexperienced and have limited domain

knowledge

l Program age and structure
• As programs age, their structure is degraded and they become

harder to understand and change

Maintenance cost factors

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 17

Evolutionary software

l Rather than think of separate development and
maintenance phases, evolutionary software is
software that is designed so that it can
continuously evolve throughout its lifetime

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 18

The maintenance process

System release
planning

Change
implementation

System
release

Impact
analysis

Change
requests

Adaptive
maintenance

Corrective
maintenance

Perfective
maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 19

Change requests

l Change requests are requests for system changes
from users, customers or management

l In principle, all change requests should be
carefully analysed as part of the maintenance
process and then implemented

l In practice, some change requests must be
implemented urgently
• Fault repair

• Changes to the system’s environment

• Urgently required business changes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 20

Change implementation

Requirements
updating

Software
development

Requirements
analysis

Proposed
changes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 21

Emergency repair

Modify
source code

Deliver modified
system

Analyze
source code

Change
requests

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 22

Maintenance prediction

l Maintenance prediction is concerned with
assessing which parts of the system may cause
problems and have high maintenance costs
• Change acceptance depends on the maintainability of the

components affected by the change

• Implementing changes degrades the system and reduces its
maintainability

• Maintenance costs depend on the number of changes and costs
of change depend on maintainability

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 23

Maintenance prediction

Predicting
maintainability

Predicting system
changes

Predicting
maintenance

costs

What will be the lifetime
maintenance costs of this

system?

What will be the costs of
maintaining this system

over the next year?

What parts of the system
will be the most expensive

to maintain?

How many change
requests can be

expected?

What parts of the system are
most likely to be affected by

change requests?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 24

Change prediction

l Predicting the number of changes requires and
understanding of the relationships between a
system and its environment

l Tightly coupled systems require changes
whenever the environment is changed

l Factors influencing this relationship are
• Number and complexity of system interfaces

• Number of inherently volatile system requirements

• The business processes where the system is used

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 25

Complexity metrics

l Predictions of maintainability can be made by
assessing the complexity of system components

l Studies have shown that most maintenance effort
is spent on a relatively small number of system
components

l Complexity depends on
• Complexity of control structures

• Complexity of data structures

• Procedure and module size

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 26

Process metrics

l Process measurements may be used to assess
maintainability
• Number of requests for corrective maintenance

• Average time required for impact analysis

• Average time taken to implement a change request

• Number of outstanding change requests

l If any or all of these is increasing, this may
indicate a decline in maintainability

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 27

Architectural evolution

l There is a need to convert many legacy systems
from a centralised architecture to a client-server
architecture

l Change drivers
• Hardware costs. Servers are cheaper than mainframes

• User interface expectations. Users expect graphical user
interfaces

• Distributed access to systems. Users wish to access the system
from different, geographically separated, computers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 28

Distribution factors
Factor Description
Business
importance

Returns on the investment of distributing a legacy system
depend on its importance to the business and how long it
will remain important. If distribution provides more efficient
support for stable business processes then it is more likely to
be a cost-effective evolution strategy.

System age The older the system the more difficult it will be to modify
its architecture because previous changes will have degraded
the structure of the system.

System structure The more modular the system, the easier it will be to change
the architecture. If the application logic, the data
management and the user interface of the system are closely
intertwined, it will be difficult to separate functions for
migration.

Hardware
procurement
policies

Application distribution may be necessary if there is
company policy to replace expensive mainframe computers
with cheaper servers. .

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 29

Legacy system structure

l Ideally, for distribution, there should be a clear
separation between the user interface, the system
services and the system data management

l In practice, these are usually intermingled in older
legacy systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 30

Legacy system structures

Database

User interface

Services

Ideal model for distribution Real legacy systems

Database

User interface

Services

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 31

Layered distribution model

Database

Application services

Interaction control

Data validation

Presentation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 32

Legacy system distribution

User interface

Application
services

Database

Character terminals

Legacy system

Desktop PC clients running application

Middleware layer (wrapper)

Legacy system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 33

Distribution options

l The more that is distributed from the server to the
client, the higher the costs of architectural
evolution

l The simplest distribution model is UI distribution
where only the user interface is implemented on
the server

l The most complex option is where the server
simply provides data management and application
services are implemented on the client

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 34

Distribution option spectrum

Increasing cost
and effort

Server: Interaction control
Data validation
Services
Database

Client: Presentation

Server:Database
Server: Services

Database

Client: Presentation
Interaction control
Data validation

Client: Presentation
Interaction control
Data validation
Services

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 35

User interface distribution

l UI distribution takes advantage of the local
processing power on PCs to implement a
graphical user interface

l Where there is a clear separation between the UI
and the application then the legacy system can be
modified to distribute the UI

l Otherwise, screen management middleware can
translate text interfaces to graphical interfaces

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 36

User interface distribution

User interface

Application
services

Database

Desktop PC clients with
GUI interface

Screen management
middleware

Legacy system

Screen descriptions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 37

UI migration strategies

Strategy Advantages Disadvantages
Implementation
using the window
management
system

Access to all UI functions so no
real restrictions on UI design
Better UI performance

Platform dependent
May be more difficult to achieve
interface consistency

Implementation
using a web
browser

Platform independent
Lower training costs due to user
familiarity with the WWW
Easier to achieve interface
consistency

Potentially poorer UI
performance
Interface design is constrained
by the facilities provided by web
browsers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 38

Key points

l Software change strategies include software
maintenance, architectural evolution and software
re-engineering

l Lehman’s Laws are invariant relationships that
affect the evolution of a software system

l Maintenance types are
• Maintenance for repair

• Maintenance for a new operating environment

• Maintenance to implement new requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 39

Key points

l The costs of software change usually exceed the
costs of software development

l Factors influencing maintenance costs include staff
stability, the nature of the development contract,
skill shortages and degraded system structure

l Architectural evolution is concerned with evolving
centralised to distributed architectures

l A distributed user interface can be supported using
screen management middleware

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 1

Software re-engineering

● Reorganising and modifying
existing software systems to
make them more maintainable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 2

Objectives

● To explain why software re-engineering is a cost-
effective option for system evolution

● To describe the activities involved in the software
re-engineering process

● To distinguish between software and data re-
engineering and to explain the problems of data
re-engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 3

Topics covered

● Source code translation

● Reverse engineering

● Program structure improvement

● Program modularisation

● Data re-engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 4

● Re-structuring or re-writing part or all of a
legacy system without changing its
functionality

● Applicable where some but not all sub-systems
of a larger system require frequent
maintenance

● Re-engineering involves adding effort to make
them easier to maintain. The system may be re-
structured and re-documented

System re-engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 5

● When system changes are mostly confined to
part of the system then re-engineer that part

● When hardware or software support becomes
obsolete

● When tools to support re-structuring are
available

When to re-engineer

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 6

Re-engineering advantages

● Reduced risk
• There is a high risk in new software development. There may be

development problems, staffing problems and specification
problems

● Reduced cost
• The cost of re-engineering is often significantly less than the

costs of developing new software

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 7

Business process re-engineering

● Concerned with re-designing business processes
to make them more responsive and more efficient

● Often reliant on the introduction of new computer
systems to support the revised processes

● May force software re-engineering as the legacy
systems are designed to support existing
processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 8

Forward engineering and re-engineering

Understanding and
transformation

Existing
software system

Re-engineered
system

Design and
implementation

System
specification

New
system

Software re-engineering

Forward engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 9

The re-engineering process

Reverse
engineering

Program
documentation

Data
reengineering

Original data

Program
structure

improvement

Program
modularisation

Structured
program

Reengineered
data

Modularised
program

Original
program

Source code
translation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 10

Re-engineering cost factors

● The quality of the software to be re-engineered

● The tool support available for re-engineering

● The extent of the data conversion which is
required

● The availability of expert staff for re-engineering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 11

Re-engineering approaches

Automated r estructuring
with manual changes

Automated source
code conversion

Restructuring plus
architectural changes

Automated program
restructuring

Program and data
restructuring

Increased cost

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 12

Source code translation

● Involves converting the code from one language
(or language version) to another e.g. FORTRAN
to C

● May be necessary because of:
• Hardware platform update

• Staff skill shortages

• Organisational policy changes

● Only realistic if an automatic translator is
available

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 13

The program translation process

Automatically
translate code

Design translator
instructions

Identify source
code differences

Manually
translate code

System to be
re-engineered

System to be
re-engineered

Re-engineered
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 14

Reverse engineering

● Analysing software with a view to understanding
its design and specification

● May be part of a re-engineering process but may
also be used to re-specify a system for re-
implementation

● Builds a program data base and generates
information from this

● Program understanding tools (browsers, cross-
reference generators, etc.) may be used in this
process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 15

The reverse engineering process

Data stucture
diagrams

Program stucture
diagrams

Traceability
matrices

Document
generation

System
information

store

Automated
analysis

Manual
annotation

System to be
re-engineered

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 16

Reverse engineering

● Reverse engineering often precedes re-
engineering but is sometimes worthwhile in its
own right
• The design and specification of a system may be reverse

engineered so that they can be an input to the requirements
specification process for the system’s replacement

• The design and specification may be reverse engineered to
support program maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 17

Program structure improvement

● Maintenance tends to corrupt the structure of a
program. It becomes harder and harder to
understand

● The program may be automatically restructured to
remove unconditional branches

● Conditions may be simplified to make them more
readable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 18

Spaghetti logic
Start: Get (Time-on, Time-off, Time, Setting, Temp, Switch)

if Switch = off goto off
if Switch = on goto on
goto Cntrld

off: if Heating-status = on goto Sw-off
goto loop

on: if Heating-status = off goto Sw-on
goto loop

Cntrld: if Time = Time-on goto on
if Time = Time-off goto off
if Time < Time-on goto Start
if Time > Time-off goto Start
if Temp > Setting then goto off
if Temp < Setting then goto on

Sw-off: Heating-status := off
goto Switch

Sw-on: Heating-status := on
Switch: Switch-heating
loop: goto Start

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 19

Structured control logic
loop

-- The Get statement finds values for the given variables from the system’s
-- environment.

Get (Time-on, Time-off, Time, Setting, Temp, Switch) ;
case Switch of

when On => if Heating-status = off then
Switch-heating ; Heating-status := on ;

end if ;
when Off => if Heating-status = on then

Switch-heating ; Heating-status := off ;
end if;

when Controlled =>
if Time >= Time-on and Time < = Time-off then

if Temp > Setting and Heating-status = on then
Switch-heating; Heating-status = off;

elsif Temp < Setting and Heating-status = off then
Switch-heating; Heating-status := on ;

end if;
end if ;

end case ;
end loop ;

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 20

Condition simplification

-- Complex condition
if not (A > B and (C < D or not (E > F)))...

-- Simplified condition
if (A <= B and (C>= D or E > F)...

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 21

Automatic program restructuring

Graph
representation

Program
generator

Restructured
program

Analyser and
graph builder

Program to be
restructured

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 22

Restructuring problems

● Problems with re-structuring are:
• Loss of comments

• Loss of documentation

• Heavy computational demands

● Restructuring doesn’t help with poor
modularisation where related components are
dispersed throughout the code

● The understandability of data-driven programs
may not be improved by re-structuring

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 23

Program modularisation

● The process of re-organising a program so that
related program parts are collected together in a
single module

● Usually a manual process that is carried out by
program inspection and re-organisation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 24

Module types

● Data abstractions
• Abstract data types where datastructures and associated

operations are grouped

● Hardware modules
• All functions required to interface with a hardware unit

● Functional modules
• Modules containing functions that carry out closely related tasks

● Process support modules
• Modules where the functions support a business process or

process fragment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 25

Recovering data abstractions

● Many legacy systems use shared tables and global
data to save memory space

● Causes problems because changes have a wide
impact in the system

● Shared global data may be converted to objects or
ADTs
• Analyse common data areas to identify logical abstractions

• Create an ADT or object for these abstractions

• Use a browser to find all data references and replace with
reference to the data abstraction

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 26

Data abstraction recovery

● Analyse common data areas to identify logical
abstractions

● Create an abstract data type or object class for
each of these abstractions

● Provide functions to access and update each field
of the data abstraction

● Use a program browser to find calls to these data
abstractions and replace these with the new
defined functions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 27

Data re-engineering

● Involves analysing and reorganising the data
structures (and sometimes the data values) in a
program

● May be part of the process of migrating from a
file-based system to a DBMS-based system or
changing from one DBMS to another

● Objective is to create a managed data
environment

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 28

Approaches to data re-engineering

Approach Description
Data cleanup The data records and values are analysed to improve their quality.

Duplicates are removed, redundant information is deleted and a consistent
format applied to all records. This should not normally require any
associated program changes.

Data extension In this case, the data and associated programs are re-engineered to remove
limits on the data processing. This may require changes to programs to
increase field lengths, modify upper limits on the tables, etc. The data itself
may then have to be rewritten and cleaned up to reflect the program
changes.

Data migration In this case, data is moved into the control of a modern database
management system. The data may be stored in separate files or may be
managed by an older type of DBMS.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 29

Data problems

● End-users want data on their desktop machines
rather than in a file system. They need to be able
to download this data from a DBMS

● Systems may have to process much more data
than was originally intended by their designers

● Redundant data may be stored in different formats
in different places in the system

Data
migration

Database
management

system

Logical and
physical

data models

describes

File 1 File 2 File 3 File 4 File 5 File 6

Program 2 Program 3

Program 4 Program 5 Program 6 Program 7

Program 1

Program 3 Program 4 Program 5 Program 6

Program 2
Program 7

Program 1

Becomes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 31

Data problems

● Data naming problems
• Names may be hard to understand. The same data may have

different names in different programs

● Field length problems
• The same item may be assigned different lengths in different

programs

● Record organisation problems
• Records representing the same entity may be organised

differently in different programs

● Hard-coded literals

● No data dictionary

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 32

Data value inconsistencies
Data inconsistency Description
Inconsistent default
values

Different programs assign different default values to the same logical data
items. This causes problems for programs other than those that created the
data. The problem is compounded when missing values are assigned a
default value that is valid. The missing data cannot then be discovered.

Inconsistent units The same information is represented in different units in different
programs. For example, in the US or the UK, weight data may be
represented in pounds in older programs but in kilograms in more recent
systems. A major problem of this type has arisen in Europe with the
introduction of a single European currency. Legacy systems have been
written to deal with national currency units and data has to be converted to
euros.

Inconsistent validation
rules

Different programs apply different data validation rules. Data written by
one program may be rejected by another. This is a particular problem for
archival data which may not have been updated in line with changes to
data validation rules.

Inconsistent
representation
semantics

Programs assume some meaning in the way items are represented. For
example, some programs may assume that upper-case text means an
address. Programs may use different conventions and may therefore reject
data which is semantically valid.

Inconsistent handling
of negative values

Some programs reject negative values for entities which must always be
positive. Others, however, may accept these as negative values or fail to
recognise them as negative and convert them to a positive value.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 33

Data conversion

● Data re-engineering may involve changing the
data structure organisation without changing the
data values

● Data value conversion is very expensive. Special-
purpose programs have to be written to carry out
the conversion

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 34

The data re-engineering process

Entity name
modification

Literal
replacement

Data definition
re-ordering

Data
re-formatting
Default value

conversion

Validation rule
modification

Data
analysis

Data
conversion

Data
analysis

Modified
data

Program to be re-engineered

Change summary tables

Stage 1 Stage 2 Stage 3

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 35

Key points

● The objective of re-engineering is to improve the
system structure to make it easier to understand
and maintain

● The re-engineering process involves source code
translation, reverse engineering, program
structure improvement, program modularisation
and data re-engineering

● Source code translation is the automatic
conversion of of program in one language to
another

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 28 Slide 36

Key points

● Reverse engineering is the process of deriving the
system design and specification from its source
code

● Program structure improvement replaces
unstructured control constructs with while loops
and simple conditionals

● Program modularisation involves reorganisation
to group related items

● Data re-engineering may be necessary because of
inconsistent data management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 1

Configuration management

● Managing the products of
system change

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 2

Objectives

● To explain the importance of software
configuration management (CM)

● To describe key CM activities namely CM
planning, change management, version
management and system building

● To discuss the use of CASE tools to support
configuration management processes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 3

Topics covered

● Configuration management planning

● Change management

● Version and release management

● System building

● CASE tools for configuration management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 4

● New versions of software systems are created as
they change
• For different machines/OS

• Offering different functionality

• Tailored for particular user requirements

● Configuration management is concerned with
managing evolving software systems
• System change is a team activity

• CM aims to control the costs and effort involved in making
changes to a system

Configuration management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 5

Configuration management

● Involves the development and application of
procedures and standards to manage an evolving
software product

● May be seen as part of a more general quality
management process

● When released to CM, software systems are
sometimes called baselines as they are a starting
point for further development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 6

System families

Workstation
version

Unix
version

DEC
version

Initial
system

Mainframe
version

VMS
version

PC
version

Sun
version

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 7

CM standards

● CM should always be based on a set of standards
which are applied within an organisation

● Standards should define how items are identified,
how changes are controlled and how new versions
are managed

● Standards may be based on external CM
standards (e.g. IEEE standard for CM)

● Existing standards are based on a waterfall
process model - new standards are needed for
evolutionary development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 8

Concurrent development and testing

● A time for delivery of system components is
agreed

● A new version of a system is built from these
components by compiling and linking them

● This new version is delivered for testing using
pre-defined tests

● Faults that are discovered during testing are
documented and returned to the system
developers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 9

Daily system building

● It is easier to find problems that stem from
component interactions early in the process

● This encourages thorough unit testing -
developers are under pressure not to ‘break the
build’

● A stringent change management process is
required to keep track of problems that have been
discovered and repaired

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 10

● All products of the software process may have
to be managed
• Specifications

• Designs

• Programs

• Test data

• User manuals

● Thousands of separate documents are
generated for a large software system

Configuration management planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 11

● Starts during the early phases of the project

● Must define the documents or document
classes which are to be managed (Formal
documents)

● Documents which might be required for future
system maintenance should be identified and
specified as managed documents

CM planning

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 12

● Defines the types of documents to be managed
and a document naming scheme

● Defines who takes responsibility for the CM
procedures and creation of baselines

● Defines policies for change control and version
management

● Defines the CM records which must be
maintained

The CM plan

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 13

The CM plan

● Describes the tools which should be used to assist
the CM process and any limitations on their use

● Defines the process of tool use

● Defines the CM database used to record
configuration information

● May include information such as the CM of
external software, process auditing, etc.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 14

● Large projects typically produce thousands of
documents which must be uniquely identified

● Some of these documents must be maintained for
the lifetime of the software

● Document naming scheme should be defined
so that related documents have related names.

● A hierarchical scheme with multi-level names is
probably the most flexible approach

Configuration item identification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 15

Configuration hierarchy
PCL-TOOLS

EDIT

STRUCTURES

BIND

FORM

COMPILE MAKE-GEN

HELP

DISPLAY QUERY

AST-INTERFACEFORM-SPECS FORM-IO

CODEOBJECTS TESTS

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 16

● All CM information should be maintained in a
configuration database

● This should allow queries about configurations to
be
answered
• Who has a particular system version?

• What platform is required for a particular version?

• What versions are affected by a change to component X?

• How many reported faults in version T?

● The CM database should preferably be linked to
the software being managed

 The configuration database

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 17

CM database implementation

● May be part of an integrated environment to
support software development. The CM database
and the managed documents are all maintained on
the same system

● CASE tools may be integrated with this so that
there is a close relationship between the CASE
tools and the CM tools

● More commonly, the CM database is maintained
separately as this is cheaper and more flexible

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 18

● Software systems are subject to continual
change requests
• From users

• From developers

• From market forces

● Change management is concerned with keeping
managing of these changes and ensuring that
they are implemented in the most cost-effective
way

Change management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 19

Request change by completing a change request form
Analyze change request
if change is valid then
 Assess how change might be implemented
 Assess change cost
 Submit request to change control board
 if change is accepted then
 repeat
 make changes to software
 submit changed software for quality approval
 until software quality is adequate
 create new system version
else
 reject change request
else
 reject change request

The change management process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 20

● Definition of change request form is part of the
CM planning process

● Records change required, suggestor of change,
reason why change was suggested and
urgency of change(from requestor of the
change)

● Records change evaluation, impact analysis,
change cost and recommendations (System
maintenance staff)

Change request form

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 21

Change request form
Change Request Form

Project: Proteus/PCL-Tools Number: 23/94
Change requester: I. Sommerville Date: 1/12/98
Requested change: When a component is selected from the structure,
display the name of the file where it is stored.

Change analyser: G. Dean Analysis date: 10/12/98
Components affected: Display-Icon.Select, Display-Icon.Display

Associated components: FileTable

Change assessment: Relatively simple to implement as a file name table
is available. Requires the design and implementation of a display field. No
changes to associated components are required.

Change priority: Low
Change implementation:
Estimated effort: 0.5 days
Date to CCB: 15/12/98 CCB decision date: 1/2/99
CCB decision: Accept change. Change to be implemented in Release 2.1.
Change implementor: Date of change:
Date submitted to QA: QA decision:
Date submitted to CM:
Comments

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 22

● A major problem in change management is
tracking change status

● Change tracking tools keep track the status of
each change request and automatically ensure
that change requests are sent to the right
people at the right time.

● Integrated with E-mail systems allowing
electronic change request distribution

Change tracking tools

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 23

● Changes should be reviewed by an external group
who decide whether or not they are cost-effective
from a strategic and organizational viewpoint
rather than a technical viewpoint

● Should be independent of project responsible
for system. The group is sometimes called a
change control board

● May include representatives from client and
contractor staff

Change control board

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 24

● Record of changes applied to a document or
code component

● Should record, in outline, the change made, the
rationale for the change, who made the change
and when it was implemented

● May be included as a comment in code. If a
standard prologue style is used for the derivation
history, tools can process this automatically

Derivation history

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 25

Component header information

// PROTEUS project (ESPRIT 6087)
//
// PCL-TOOLS/EDIT/FORMS/DISPLAY/AST-INTERFACE
//
// Object: PCL-Tool-Desc
// Author: G. Dean
// Creation date: 10th November 1998
//
// © Lancaster University 1998
//
// Modification history
// Version Modifier Date Change Reason
// 1.0 J. Jones 1/12/1998 Add header Submitted to CM
// 1.1 G. Dean 9/4/1999 New field Change req. R07/99

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 26

● Invent identification scheme for system
versions

● Plan when new system version is to be
produced

● Ensure that version management procedures and
tools are properly applied

● Plan and distribute new system releases

Version and release management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 27

● Version An instance of a system which is
functionally distinct in some way from other
system instances

● Variant An instance of a system which is
functionally identical but non-functionally
distinct from other instances of a system

● Release An instance of a system which is
distributed to users outside of the development
team

Versions/variants/releases

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 28

Version identification

● Procedures for version identification should
define an unambiguous way of identifying
component versions

● Three basic techniques for component
identification
• Version numbering

• Attribute-based identification

• Change-oriented identification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 29

● Simple naming scheme uses a linear derivation
e.g. V1, V1.1, V1.2, V2.1, V2.2 etc.

● Actual derivation structure is a tree or a
network rather than a sequence

● Names are not meaningful.

● Hierarchical naming scheme may be better

Version numbering

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 30

Version derivation structure

V1.0 V1.1 V1.2 V2.0 V2.1 V2.2

V1.1b V1.1.1

V1.1a

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 31

● Attributes can be associated with a version with
the combination of attributes identifying that
version

● Examples of attributes are Date, Creator,
Programming Language, Customer, Status etc.

● More flexible than an explicit naming scheme
for version retrieval; Can cause problems with
uniqueness

● Needs an associated name for easy reference

Attribute-based identification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 32

Attribute-based queries

● An important advantage of attribute-based
identification is that it can support queries so that
you can find ‘the most recent version in Java’ etc.

● Example
• AC3D (language =Java, platform = NT4, date = Jan 1999)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 33

Change-oriented identification

● Integrates versions and the changes made to
create these versions

● Used for systems rather than components

● Each proposed change has a change set that
describes changes made to implement that change

● Change sets are applied in sequence so that, in
principle, a version of the system that
incorporates an arbitrary set of changes may be
created

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 34

● Releases must incorporate changes forced on
the system by errors discovered by users and
by hardware changes

● They must also incorporate new system
functionality

● Release planning is concerned with when to
issue a system version as a release

Release management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 35

System releases

● Not just a set of executable programs

● May also include
• Configuration files defining how the release is configured for a

particular installation

• Data files needed for system operation

• An installation program or shell script to install the system on
target hardware

• Electronic and paper documentation

• Packaging and associated publicity

● Systems are now normally released on CD-ROM
or as downloadable installation files from the web

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 36

● Customer may not want a new release of the
system
• They may be happy with their current system as the new version

may provide unwanted functionality

● Release management must not assume that all
previous releases have been accepted. All files
required for a release should be re-created when a
new release is installed

Release problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 37

Release decision making

● Preparing and distributing a system release is an
expensive process

● Factors such as the technical quality of the
system, competition, marketing requirements and
customer change requests should all influence the
decision of when to issue a new system release

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 38

System release strategy

Factor Description
Technical quality of
the system

If serious system faults are reported which affect the way in which
many customers use the system, it may be necessary to issue a
fault repair release. However, minor system faults may be repaired
by issuing patches (often distributed over the Internet) that can be
applied to the current release of the system.

Lehman’s fifth law
(see Chapter 27)

This suggests that the increment of functionality which is included
in each release is approximately constant. Therefore, if there has
been a system release with significant new functionality, then it
may have to be followed by a repair release.

Competition A new system release may be necessary because a competing
product is available.

Marketing
requirements

The marketing department of an organisation may have made a
commitment for releases to be available at a particular date.

Customer change
proposals

For customised systems, customers may have made and paid for a
specific set of system change proposals and they expect a system
release as soon as these have been implemented.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 39

Release creation

● Release creation involves collecting all files and
documentation required to create a system release

● Configuration descriptions have to be written for
different hardware and installation scripts have to
be written

● The specific release must be documented to
record exactly what files were used to create it.
This allows it to be re-created if necessary

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 40

● The process of compiling and linking software
components into an executable system

● Different systems are built from different
combinations of components

● Invariably supported by automated tools that are
driven by ‘build scripts’

System building

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 41

● Do the build instructions include all required
components?
• When there are many hundreds of components making up

a system, it is easy to miss one out. This should normally
be detected by the linker

● Is the appropriate component version
specified?
• A more significant problem. A system built with the wrong

version may work initially but fail after delivery

● Are all data files available?
• The build should not rely on 'standard' data files. Standards

vary from place to place

System building problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 42

● Are data file references within components
correct?
• Embedding absolute names in code almost always causes

problems as naming conventions differ from place to place

● Is the system being built for the right platform
• Sometimes must build for a specific OS version or hardware

configuration

● Is the right version of the compiler and other
software tools specified?
• Different compiler versions may actually generate different code and

the compiled component will exhibit different behaviour

System building problems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 43

System building

Build
script

Source code
component

versions

Object code
components

Executable
system

System
builder

Compilers
Version

management
system

Linker

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 44

System representation

● Systems are normally represented for building by
specifying the file name to be processed by
building tools. Dependencies between these are
described to the building tools

● Mistakes can be made as users lose track of which
objects are stored in which files

● A system modelling language addresses this
problem by using a logical rather than a physical
system representation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 45

CASE tools for configuration management

● CM processes are standardised and involve
applying pre-defined procedures

● Large amounts of data must be managed

● CASE tool support for CM is therefore essential

● Mature CASE tools to support configuration
management are available ranging from stand-
alone tools to integrated CM workbenches

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 46

Change management tools

● Change management is a procedural process so it
can be modelled and integrated with a version
management system

● Change management tools
• Form editor to support processing the change request forms

• Workflow system to define who does what and to automate
information transfer

• Change database that manages change proposals and is linked to
a VM system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 47

Version management tools

● Version and release identification
• Systems assign identifiers automatically when a new version is

submitted to the system

● Storage management.
• System stores the differences between versions rather than all

the version code

● Change history recording
• Record reasons for version creation

● Independent development
• Only one version at a time may be checked out for change.

Parallel working on different versions

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 48

Delta-based versioning

Version
1.0

Version
1.1

Version
1.2

Version
1.3

D1 D2 D3

Creation date

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 49

System building

● Building a large system is computationally
expensive and may take several hours

● Hundreds of files may be involved

● System building tools may provide
• A dependency specification language and interpreter

• Tool selection and instantiation support

• Distributed compilation

• Derived object management

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 50

Component dependencies

comp

scan.o

scan.c

defs.h

syn.o

syn.c

sem.o

sem.c

cgen.o

cgen.c

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 51

● Configuration management is the management of
system change to software products

● A formal document naming scheme should be
established and documents should be managed in
a database

● The configuration data base should record
information about changes and change requests

● A consistent scheme of version identification
should be established using version numbers,
attributes or change sets

Key points

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 29 Slide 52

Key points

● System releases include executable code, data,
configuration files and documentation

● System building involves assembling components
into a system

● CASE tools are available to support all CM
activities

● CASE tools may be stand-alone tools or may be
integrated systems which integrate support for
version management, system building and change
management

