
W
EEK

EN
D

C
R

A
S
H

C
O

U
R
S
E

W
EEK

EN
D

C
R

A
S
H

C
O

U
R
S
E

™

DISBROW

JAVASCRIPT

STEVEN W.
DISBROW
JavaScript columnist,
Java Report magazine

CD-ROM with all
sample code plus
assessment tools

30 Sessions That
Will Have You
Scripting in Only
15 Hours

JA
V
A

SC
R
IP

T

HOUR

15

15he big day is Monday. The day you get to show off what you know about
JavaScript. The problem is, you’re not really up to speed. Maybe it’s been

a while since you worked with JavaScript. Or maybe you just like a
challenge. In any event, we’ve got a solution for you — JavaScript Weekend
Crash Course. Open the book Friday evening and on Sunday afternoon, after
completing 30 fast, focused sessions, you’ll be able to jump right in and
start scripting interactive Web pages. It’s as simple as that.

The Curriculum

Get Up to Speed on
JavaScript — in a
Weekend!

Get Up to Speed on
JavaScript — in a
Weekend!

CD-ROM INCLUDES:

• All sample code from
the book

• Assessment software

• BBEdit demo

System Requirements:

• PC running Windows 95 or
later, Windows NT 4 or later;
Power Macintosh running
System 7.6 or later. See the
CD Appendix for details and
complete system requirements.

Category:

• Web Development/JavaScript

WEEKEND CRASH COURSEWEEKEND CRASH COURSE
T

™

ISBN 0-7645-4804-2

,!7IA7G4-feiaei!:P;m;o;t;T

FRIDAY
Evening: 4 Lessons, 2 Hours
• Getting to Know

JavaScript
• Statements and Operators
• Flow of Control Statements
• How to Write JavaScript

Functions

SATURDAY
Morning: 6 Lessons, 3 Hours
• Working with JavaScript

Strings
• Working with JavaScript

Arrays
• Understanding the Browser

Object Model
• Working with the window

Object
• Working with the

document Object
• Reacting to Events

SATURDAY, continued
Afternoon: 6 Lessons, 3 Hours
• Dynamically Creating an

HTML Page
• Working with HTML Forms
• Working with HTML

Controls
• Working with Images
• Validating Form Data
• Cooking up Cookies with

JavaScript

Evening: 4 Lessons, 2 Hours
• Understanding JavaScript

Objects
• Creating and Using

Methods
• Enhancing HTML with

JavaScript Objects
• Dynamically Creating and

Executing JavaScript

SUNDAY
Morning: 6 Lessons, 3 Hours
• Working with Cascading

Style Sheets
• Creating Dynamic HTML

with JavaScript
• Working with Frames
• Working with Windows
• Improving the User

Interface
• Working with Different

Browsers

Afternoon: 4 Lessons, 2 Hours
• Working with Dates,

Numbers, and Web
Addresses

• Communicating with
Server-Side Processes

• Supporting Multimedia
• Working with Java Applets

WEEKEND
CRASH
COURSE

HOURS

*85555-AGHCEa
For more information on
Hungry Minds, go to
www.hungryminds.com

$24.99 US
$37.99 CAN
£19.99 UK incl. VAT

®

®

4804-2 Cover 3/26/01 10:57 AM Page 1

JavaScript®

Weekend Crash Course™

4804-2 FM.F 4/9/01 8:13 AM Page i

JavaScript®

Weekend Crash Course™

Steven W. Disbrow

Hungry Minds, Inc.
New York, NY • Cleveland, OH • Indianapolis, IN

4804-2 FM.F 4/9/01 8:13 AM Page iii

JavaScript® Weekend Crash Course™
Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (elec-
tronic, photocopying, recording, or otherwise) with-
out the prior written permission of the publisher.
Library of Congress Control Number: 2001016760
ISBN: 0-7645-4804-2
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/SV/QU/QR/IN
Distributed in the United States by Hungry Minds,
Inc.
Distributed by CDG Books Canada Inc. for Canada;
by Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa;
by Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland;
by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile;
by Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc., for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia Media
Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department within the U.S. at 800-762-2974, out-
side the U.S. at 317-572-3993 or fax 317-572-4002.
For sales inquiries and reseller information, includ-
ing discounts, premium and bulk quantity sales,
and foreign-language translations, please contact
our Customer Care department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care Department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.
For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
department at 212-884-5000.
For information on using Hungry Minds’ products
and services in the classroom or for ordering exam-
ination copies, please contact our Educational Sales
department at 800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 317-572-3168 or fax
317-572-4168.
For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTA-
TIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE
DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED
BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS
OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARAN-
TEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER
NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES,
INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Netscape Communications Corporation has not authorized, sponsored, endorsed, or approved this publica-
tion and is not responsible for its content. Netscape and the Netscape Communications Corporate Logos
are trademarks and trade names of Netscape Communications Corporation.
Trademarks: Weekend Crash Course is a trademark or registered trademark of Hungry Minds, Inc.
JavaScript is a registered trademark or trademark of Sun Microsystems, Inc. All other trademarks are the
property of their respective owners. Hungry Minds, Inc., is not associated with any product or vendor
mentioned in this book.

is a trademark of Hungry Minds, Inc.

4804-2 FM.F 4/9/01 8:13 AM Page iv

About the Author
Steven W. Disbrow (a.k.a. “Diz”) is a freelance writer, technical instructor, and
programmer. He was the publisher of GS+ Magazine from 1989 to 1995. Since then,
he’s been writing articles for various technical publications and is the current
“JavaScripting” columnist for Java Report magazine. He also creates and delivers
courseware for most Web-based technologies including JavaScript, HTML, and XML.
This is his first book.

4804-2 FM.F 4/9/01 8:13 AM Page v

Acquisitions Editor
Debra Williams Cauley

Project Editors
Barbra Guerra
Neil Romanosky

Technical Editor
Galen Mayfield

Copy Editor
Maarten Reilingh

Project Coordinator
Dale White

Graphics and Production Specialists
Joe Bucki
Sean Decker

Quality Control Technicians
Laura Albert
Andy Hollandbeck

Permissions Editor
Laura Moss

Media Development Specialist
Travis Silvers

Media Development Coordinator
Marisa Pearman

Proofreading and Indexing
York Production Services, Inc.

Credits

4804-2 FM.F 4/9/01 8:13 AM Page vi

This book is dedicated to everyone
who supported GS+ Magazine,

my parents, and Robin and Maia.

4804-2 FM.F 4/9/01 8:13 AM Page vii

This book is for anyone who needs to learn how to create a JavaScript-based
Web site. If you have no programming experience, you’ll find a complete
introduction to the JavaScript language along with examples of how to carry

out common Web-programming tasks. If you already know about “JavaScript the
language,” you’ll find a ton of tips and techniques that you can use to enhance
your existing Web sites.

Who Should Read this Book

If you need to put together a Web site that does something more than just sit
there, this book is for you. Over the course of one weekend, you’ll learn about the
JavaScript language and how it fits into the scheme of Web page creation. Along
the way, you’ll learn about lots of other Web-based technologies and how
JavaScript can work with them to create interactive and interesting Web sites.

It’s important to note that this is not a JavaScript reference book! If you are
looking for table after table of JavaScript language minutiae, you won’t find it
here. Instead, you’ll find examples of how JavaScript can be used to solve real
Web-programming challenges.

What’s in this Book

This book is divided into 30 sessions, each addressing one aspect of the JavaScript
language or some technique for which JavaScript can be used. Each of these ses-
sions should take you about 30 minutes to get through, although you can expect

Preface

4804-2 FM.F 4/9/01 8:13 AM Page ix

to spend more time with each session if you examine the source code on the
accompanying CD-ROM. Because the goal of this book is to teach you the basics of
JavaScript in a weekend, it’s been broken into six parts:

� Part I contains four lessons (which should take about two hours to com-
plete) that will teach you the basics of the JavaScript language and how
JavaScript fits into a Web page.

� Part II is six sessions long (and should take about three hours to com-
plete). It will introduce you to some of JavaScript’s built-in objects, the
Browser Object Model, and the concept of browser events.

� Part III is also six sessions in length. The focus of this part of the book is
on how JavaScript can be used to dynamically create HTML and manipulate
the various controls that are found in an HTML form.

� Part IV is just four sessions long, but that’s just enough time to give you
an understanding of how you can create your own objects with JavaScript
and use them to enhance your Web pages. The last session in this part also
tells you how you can dynamically build and execute JavaScript state-
ments after your Web page has been loaded.

� Part V is six sessions long. The sessions in this part focus on identifying
different browsers, using Dynamic HTML and Cascading Style Sheets, and
working with windows and frames.

� Part VI is four sessions long and focuses on how JavaScript can be used to
communicate with other processes. These include server-side CGI processes,
browser plug-ins, and Java applets.

At the end of each session, you’ll find a short summary and a set of questions,
both designed to remind you of what you’ve learned in that session. At the end of
each part, you’ll find twenty questions that will test how much you actually
remember from the previous sessions. Some of these will be simple short-answer
questions, but many are actual programming puzzles. You are encouraged to try
and solve these on your own, but, if you need the answers right away, you’ll find
them on your CD-ROM. Once you’ve finished the entire book, you’ll probably want
to try the self-assessment test on the CD-ROM. This is a simple multiple-choice test
that will give you a good idea of how much you’ve actually learned.

In keeping with the title Weekend Crash Course, you’ll find that this book is
about learning how to get things done with JavaScript. Because of that, this book
is a bit different from most of the other JavaScript books out there. Whereas most
books start off by telling you how fragmented the JavaScript “standard” is (each
version of each browser has its own flavor of JavaScript) and then spend a tremen-
dous amount of time teaching you how to work around all the differences, you’ll

Prefacex

4804-2 FM.F 4/9/01 8:13 AM Page x

be learning techniques that should work in all of the various browsers. Of course,
you will learn how to work around browser differences, but you’ll find that it isn’t
that hard or even all that necessary when using the latest browsers.

The text itself is adorned with icons designed to catch your attention.

The “minutes to go” icons mark your progress in the session.

The Tip icon offers information that can save you time and
effort.

The Note icons highlight incidental or technical information that
clarifies and expands the discussion.

The CD-ROM icon refers to material furnished on the book’s CD.
Use it to find electronic versions of programs and software
elements mentioned in the text.

CD-ROM

Note

Tip

Preface xi

4804-2 FM.F 4/9/01 8:13 AM Page xi

O f course, I have to thank Neil Romanosky, Barbra Guerra, Galen Mayfield,
Maarten Reilingh, Dale White, Debra Williams Cauley, and all the other great
folks at Hungry Minds. I had always feared that writing a book would be

hard, but these guys made it seem like a piece of cake.
I’d also like to thank Lisa Swayne and everyone at the Swayne Agency for

taking a chance on me and looking out for me.
Finally, I need to thank Zack Czengöldi, Jami Lowery, and Jeff Berger for donat-

ing their time and effort to “reality check” the book as I wrote it. Thanks, guys!

Acknowledgments

4804-2 FM.F 4/9/01 8:13 AM Page xiii

Preface ..ix
Acknowledgments ..xiii

FRIDAY...2
Part I—Friday Evening ...4
Session 1–Getting to Know JavaScript ...5
Session 2–Statements and Operators ..13
Session 3–Flow of Control Statements ..23
Session 4–How to Write JavaScript Functions ..37

SATURDAY ...48

Part II—Saturday Morning ..50
Session 5–Working with JavaScript Strings ...51
Session 6–Working with JavaScript Arrays ..61
Session 7–Understanding the Browser Object Model ...75
Session 8–Working with the window Object ..85
Session 9–Working with the document Object ...97
Session 10–Reacting to Events ...109

Part III—Saturday Afternoon ...124
Session 11–Dynamically Creating an HTML Page ..125
Session 12–Working with HTML Forms ..135
Session 13–Working with HTML Controls ...145
Session 14–Working with Images ...163
Session 15–Validating Form Data ...175
Session 16–Cooking up Cookies with JavaScript ..187

Part IV—Saturday Evening ..204
Session 17–Understanding JavaScript Objects ..205
Session 18–Creating and Using Methods ...217
Session 19–Enhancing HTML with JavaScript Objects227
Session 20–Dynamically Creating and Executing JavaScript237

Contents at a Glance

4804-2 FM.F 4/9/01 8:13 AM Page xiv

SUNDAY...250

Part V—Sunday Morning ...252
Session 21–Working with Cascading Style Sheets ...253
Session 22–Creating Dynamic HTML with JavaScript267
Session 23–Working with Frames ...281
Session 24–Working with Windows ...293
Session 25–Improving the User Interface ..303
Session 26–Working with Different Browsers ...315

Part VI—Sunday Afternoon ..332
Session 27–Working with Dates, Numbers, and Web Addresses333
Session 28–Communicating with Server-Side Processes347
Session 29–Supporting Multimedia ...359
Session 30–Working with Java Applets ...373

Appendix A–Answers to Part Reviews ...381
Appendix B–What’s on the CD-ROM ..393
Index ...397
End User License Agreement...423
CD-ROM Installation Instructions..427

Contents xv

4804-2 FM.F 4/9/01 8:13 AM Page xv

Preface ..ix
Acknowledgments ..xiii

FRIDAY...2

Part I—Friday Evening ...4
Session 1–Getting to Know JavaScript ..5

So, What Can JavaScript Do? ..7
What JavaScript Can’t Do ...8
How JavaScript Fits into a Web Page ..8
Creating Your First JavaScript Program ...11

Session 2–Statements and Operators ...13
Assignment Statements ...14
JavaScript Variables ..14

Data types ...15
Variable names ...16

Assignment Operators ...17
The += operator ..17
Other assignment operators ..18

Mathematical Operators ...18
The increment and decrement operators ...19
Modulus operator ..20
Bit flag operators ..20

Comments: The Statements That Aren’t ..21
Session 3–Flow of Control Statements ..23

Understanding Boolean Values and Expressions ...23
Comparison operators ..24

The equality operator ..25
The inequality operator ..26

Logical operators ..26
The logical AND operation ..26
The logical OR and exclusive OR operations ...26
The logical negation operation ..27

Understanding Flow of Control Statements ...27
The code block ...28
The if and if . . . else statements ..28

Contents

4804-2 FM.F 4/9/01 8:13 AM Page xvii

The assignment error ...30
The switch and break statements ..31
The while and do . . . while statements ...32
The for statement ...33

The continue statement ..34
The ?: operator ...35

Session 4–How to Write JavaScript Functions ...37
Creating a Function ..38

Calling a function ...39
Using a function to reduce code size ...40
Understanding the finer points of functions ...40

Understanding JavaScript Scope Rules ...41
Using External Source Code Files ...43

SATURDAY ...48

Part II—Saturday Morning ..50
Session 5–Working with JavaScript Strings ...51

String Mechanics ..51
Concatenation ..52
Simple numeric conversion ...53

String Methods and Properties ..53
Using String methods and properties ...54
String methods you can use ...55

The charAt() method ...55
The indexOf() method ..56
The lastIndexOf() method ...57
The split() method ..58
The substring() method ...58
The toLowerCase() and toUpperCase() methods ...58

Session 6–Working with JavaScript Arrays ..61
What Is an Array? ..62

How to use an array ..62
Using numbered array elements ..63
Using named array elements ...63

What kind of data can you put into an array? ..65
What’s a Multidimensional Array? ...65

How to access data in a multidimensional array ..66
Array Methods ...67

The Array() constructor method ..67
The concat() method ...67

Contentsxviiixviii

4804-2 FM.F 4/9/01 8:13 AM Page xviii

The join() method ...68
The pop() method ...68
The push() method ...68
The reverse() method ..69
The shift() method ..69
The slice() method ..69
The sort() method ...69
The splice() method ..70
The toString() method ...71
The unShift() method ..71
The String.split() method ..71

Putting It All Together ..72
Session 7–Understanding the Browser Object Model75

What’s in the Browser Object Model? ..76
The window object ..76
The document object ...79

JavaScript and the Browser Object Model ..80
A simple example ..80

Session 8–Working with the window Object ..85
Properties of the window Object ...86

The closed property ...86
The defaultStatus property ...86
The document property ...86
The frames array ...86
The history property ...86
The location property ..87
The name property ..87
The navigator property ..87
The opener property ..87
The parent property ..88
The screen property ..88
The status property ...88
The top property ...89

Methods of the window Object ..89
The alert() method ..90
The blur() method ...90
The clearInterval() and clearTimeout() methods ..90
The close() method ...90
The confirm() method ...91
The focus() method ...91
The moveBy() method ...91
The moveTo() method ..91

Contents xix

4804-2 FM.F 4/9/01 8:13 AM Page xix

Contentsxx

The open() method ...92
The prompt() method ..92
The resizeTo() method ...93
The scroll() and scrollTo() methods ...93
The scrollBy() method ...93
The setInterval() and clearInterval() methods ..94
The setTimeout() and clearTimeout() methods ..94

Session 9–Working with the document Object ..97
Properties of the document Object ..98

The alinkColor property ...98
The anchors array ...99
The applets array ..99
The bgColor property ...100
The cookie property ..100
The domain property ...100
The embeds array ..101
The fgColor property ..101
The forms array ...101
The images array ...101
The lastModified property ..101
The linkColor property ...102
The links array ..102

The Link object ...102
The location property ..104
The plugins array ..104
The referrer property ...104
The title property ..104
The URL property ..105
The vlinkColor property ...105

Methods of the document Object ...105
The clear() method ..105
The open() and close() methods ..105
The write() method ...107
The writeln() method ..107

Session 10–Reacting to Events ..109
What Are “Events?” ..109
Creating Event Handlers ..110
Events You Can Handle ..112

The onabort event ...112
The onblur event ...112
The onchange event ..113

4804-2 FM.F 4/9/01 8:13 AM Page xx

The onclick and ondblclick events ...113
The onerror event ..114

Trapping image errors ..114
Trapping JavaScript errors ..114

The onfocus event ...115
The onkeydown, onkeypress, and onkeyup events ...115
The onload event ..115

Trapping HTML document loads ...115
Trapping image loads ...116

The onmousedown event ..116
The onmousemove event ..116
The onmouseout event ...116
The onmouseover event ..116
The onmouseup event ..117
The onreset event ...117
The onresize event ..117
The onsubmit event ...118
The onunload event ...118

The Anchor Tag’s Nonevent ...118

Part III—Saturday Afternoon ...124
Session 11–Dynamically Creating an HTML Page ..125

Dynamically Creating HTML ..126
HTML == JavaScript string ..127

Storing HTML tags in string variables ...127
Creating customized controls ...129
Debugging your dynamically created HTML ...130

A complete example ..131
Dynamically Creating JavaScript ..132

Session 12–Working with HTML Forms ..135
How the form Object Relates to the <form> Tag135

Give it a name ..136
What’s in a name? ...137

How Controls Relate to the form Object ..137
Inside the form Object ...139

Properties of the form object ..139
The action property ...139
The elements array ..139
The encoding property ..141
The length property ...141
The method property ..141
The name property ..141
The target property ..141

Contents xxi

4804-2 FM.F 4/9/01 8:13 AM Page xxi

Methods of the form object ..142
The reset() method ..142
The submit() method ...142

Session 13–Working with HTML Controls ..145
Working with Buttons ...145
Working with Check Boxes ...146
Working with the File Upload Control ..148
Working with Radio Buttons ...149
Working with Select Lists ...152

The select object ...152
The length property ...152
The name property ..152
The options array ..153
The selectedIndex property ...153
The blur() and focus() methods ..153
The click() method ..153
The onchange event ...153

Understanding the Options array ...153
The defaultSelected property ...154
The selected property ...154
The text property ...154
The value property ...154

A simple select list example ..154
Selecting an item in the list ...155
Multiple-select lists ...157

The selectedIndex property and multiple-select lists157
Adding or removing options in a select list ...158

Working with Text-Based Controls ...160
Text-based control tips ..160
Text-based control events ...161

Session 14–Working with Images ...163
Understanding the Image Object ...164

Properties of the Image object ..164
The border property ...164
The complete property ..164
The height and width properties ..165
The hspace and vspace properties ..165
The name property ..165
The src and lowsrc properties ...165

Image object events ...165
The onabort event ...166

Contentsxxii

4804-2 FM.F 4/9/01 8:13 AM Page xxii

The onerror event ..166
The onload event ...166

Images without the tag ..166
Creating Rollovers with JavaScript ...167
Creating an Animation with JavaScript ...168

Store your animation frames in an array ..168
Preloading images ...169
An example of creating and loading animation frames169
Timing your animation ..170

Loading Images Based on Screen Size ...172
Session 15–Validating Form Data ...175

Program Defensively ...176
Setting up default values ...176
Protecting fields with an onfocus handler ..178
Controlling user input ..178

Validating Text Fields ..181
Checking for blank text fields ...181
Checking for numeric values ...182
Using data validation in a program ..183

Validating Other Types of Controls ...184
Validating Data When a Form Is Submitted ...184

Session 16–Cooking up Cookies with JavaScript ...187
What Is a Cookie? ...187

Ingredients of a cookie ..188
Cookie attributes ...188

Cookie values ..190
Cookie Usage Guidelines ..191
Building and Saving Cookies ...192

Adding an expiration date ..193
Using the Date object with a cookie ..194

Loading and Decoding Cookies ..196
Deleting a Cookie ...198
Telling if Cookies Are Turned Off ...198

Part IV— Saturday Evening ...204
Session 17–Understanding JavaScript Objects ...205

What Is an Object? ..205
Why Bother Creating Your Own Objects? ...206
How to Define and Create JavaScript Objects ...207

What the heck is this? ...209
How is an object constructed? ..209

Using the Objects You Create ..212

Contents xxiii

4804-2 FM.F 4/9/01 8:13 AM Page xxiii

Session 18–Creating and Using Methods ...217
What Is a Method? ..217

Defining a method ...218
Specifying a method in a constructor function ...219
Writing a function to implement a method ..220
Using a custom method in your program ..221

No parameters required ..222
Implementing the Inventory as an Object ...222

Session 19–Enhancing HTML with JavaScript Objects227
Enhancing HTML Controls ..227

Creating an object wrapper ...228
Tying your objects to your HTML ...230

Extending Preexisting JavaScript Objects ..230
Enhancing the String class ...231
Adding properties via the prototype ..232

Adding Data Validation to HTML Controls ..233
Session 20–Dynamically Creating and Executing JavaScript237

Using the eval() Function ...237
Variables and the eval() function ..238
What kinds of statements can you eval()? ..239

The setTimeout() and setInterval() Methods ...240
Using objects with setTimeOut() and setInterval() ...240
Using setTimeout() creating an animation object ..242

Creating the Shopping Cart Object ...243

SUNDAY...250

Part V—Sunday Morning ...252
Session 21–Working with Cascading Style Sheets ..253

The Basics of CSS ..254
What are style sheets? ...254
The <style> tag ...254
Anatomy of a style rule ..255
Using CSS classes ..255
Using CSS IDs ..258
The tag ...259
Using external style sheets ...260

Using the <link> tag ..260
The @import rule ..260

Using JavaScript with CSS ..261
Deciding Which Style Sheet to Use ...263

Contentsxxiv

4804-2 FM.F 4/9/01 8:13 AM Page xxiv

Session 22–Creating Dynamic HTML with JavaScript267
Dynamically Changing Styles ..268

Obtaining an element object ...269
Examining the style object ...269
Changing a style property ..270

The backgroundColor property ...271
The backgroundImage property ..271
The backgroundRepeat property ...271
The borderColor property ..271
The borderStyle property ...272
The borderWidth property ...272
The color property ...272
The display property ..272
The fontFamily property ...273
The fontSize property ...273
The fontStyle property ..274
The fontWeight property ...274
The height property ...274
The margin property ..275
The padding property ...275
The textAlign property ...275
The visibility property ..276
The width property ..276

Moving Elements Around ...276
The position property ..276

Changing Text in the Browser Window ...278
The innerHTML property ..278

Session 23–Working with Frames ...281
How JavaScript Views Frames ...281

Communicating between frames ..282
Working with nested frames ...283
The timing problem ...284

Dynamically Creating Frame Content ..287
Using the frameset document as a control center ..288
Protecting your JavaScript source code ..288

Dealing with Improperly Loaded Frames ...289
Modifying Frame Sizes ...290

Session 24–Working with Windows ..293
Opening a New Browser Window ..293

Giving your window a name ..294
Using the window features list ..295

Contents xxv

4804-2 FM.F 4/9/01 8:13 AM Page xxv

Creating Content in a New Window ..296
Communicating between Windows ...297

Solving the timing problem for windows ..298
Using the document.domain property ..300

Closing Your Windows ...301
Session 25–Improving the User Interface ...303

Using Visual Cues ...303
Highlighting your links ..304
Emulating :hover with JavaScript ..304
Visual cues for text boxes ...306

Highlighting the active text box ...306
Eliminating visual cues from read-only text boxes308

Using the status bar ..309
Correcting the Display of Floating-Point Numbers310

Session 26–Working with Different Browsers ..315
Properties of the navigator Object ...315

The appCodeName property ..316
The appName property ...316
The appVersion property ..317
The cookieEnabled property ..317
The language and userLanguage properties ...317
The mimeTypes array ...318
The platform property ..318
The plugins array ..318
The userAgent property ...318

Determining the Browser Version ..319
Extracting Netscape version information ..319
Extracting Internet Explorer version information ..320

Requiring a Certain Browser Version ..321
Creating Code for Specific Browsers ...323
Requiring JavaScript ...324
Hiding JavaScript from Older Browsers ...325
Requiring a Particular JavaScript Version ..326

Part VI—Sunday Afternoon ..332
Session 27–Working with Dates, Numbers, and Web Addresses333

The Date Class ..333
Methods of the Date class ...335

The getDate() and setDate() methods ..335
The getDay() method ...335
The getFullYear() and setFullYear() methods ...336

Contentsxxvi

4804-2 FM.F 4/9/01 8:13 AM Page xxvi

The getHours() and setHours() methods ...336
The getMinutes() and setMinutes() methods ...336
The getMonth() and setMonth() methods ..336
The getTime() and setTime() methods ..337
The getTimeZoneOffset() method ...337
The toGMTString() method ..337
The toLocaleString() method ...338
The UTC Date methods ..338

Using the Date object on your Web site ..338
The Math Object ...339

Constant properties of the Math object ..339
The Math.E property ..340
The Math.PI property ...340
The Math.SQRT2 property ..340

Methods of the Math object ..340
The Math.abs() method ..340
The Math.max() and Math.min() methods ..340
The Math.pow() method ...340
The Math.random() method ..340
The Math.round() method ..341
The Math.sqrt() method ...341

The location Object ...341
Properties of the location object ...341

The hash property ...341
The host property ..342
The hostname property ...342
The href property ..342
The pathname property ..342
The port property ..342
The protocol property ...343
The search property ...343

Methods of the location object ..343
The reload() method ..343
The replace() method ...343

The history Object ..344
The length property ..344
Methods of the history object ...344

The back() method ..344
The forward() method ..344
The go() method ...344

The history object, frames, and windows ..345

Contents xxvii

4804-2 FM.F 4/9/01 8:13 AM Page xxvii

Session 28–Communicating with Server-Side Processes347
The Common Gateway Interface ..347

Understanding the CGI data format ...348
The CGI methods ...349

The get method ...349
The post method ...350

How CGI Works with HTML and JavaScript ..350
Using get and post with HTML ..351
Using the get method with JavaScript ...351

Building and using a search/query string ...351
Escaping the values in a search string ..353
Escaping the + character ..354
Retrieving data from a get method request ..355

Using the post method with JavaScript ..357
Session 29–Supporting Multimedia ..359

Understanding Plug-ins and Helpers ..359
Using the mimeTypes Array ..360

What’s a MIME (type) good for? ..361
What’s in the mimeTypes array? ..361
Getting a list of MIME types ...362

Understanding the plugins Array ..363
Accessing a plug-in’s array of MIME types ..364

Detecting Plug-Ins and Supported MIME Types ...365
Checking for a plug-in by name ..365
Checking for a plug-in by MIME type ...367
Detecting a helper application ..368

Using Multimedia Files ..368
Session 30–Working with Java Applets ...373

Adding a Java Applet to Your HTML Document ...374
The <applet> tag ...374

Communicating with a Java Applet ..375
Working with a banner applet ...375
Using a public Java method ..376
The nervousBaby.htm file ...377

Appendix A–Answers to Part Reviews ...381
Appendix B–What’s on the CD-ROM ..393
Index ...397
End User License Agreement...423
CD-ROM Installation Instructions..427

Contentsxxviii

4804-2 FM.F 4/9/01 8:13 AM Page xxviii

4804-2 DayPartOpener1.F 4/9/01 8:13 AM Page 2

Part I — Friday Evening
Session 1
Getting to Know JavaScript

Session 2
Statements and Operators

Session 3
Flow of Control Statements

Session 4
How to Write JavaScript Functions

4804-2 DayPartOpener1.F 4/9/01 8:13 AM Page 3

P A R T

Friday
Evening

I

Session 1
Getting to Know JavaScript

Session 2
Statements and Operators

Session 3
Flow of Control Statements

Session 4
How to Write JavaScript Functions

4804-2 Pt01.F 4/9/01 8:13 AM Page 4

Session Checklist

✔ Learning a bit of JavaScript’s history
✔ Understanding what JavaScript can and can’t do
✔ Understanding how JavaScript fits into a Web page
✔ Creating your first JavaScript-based Web page

In the beginning, the Web was void and without form... Well, OK. It wasn’t
really “void,” but boy was it dull! Oh sure, you could find lots of technical
papers and Web sites with information about various hobbies and such, but it

was all very static and very, very dull. Then the folks at Netscape (makers of the
Netscape Navigator Web browser) decided that the Web would be much more inter-
esting if users could actually interact with the contents of Web pages. So, they cre-
ated a scripting language called “LiveScript.”

The idea was that Web page authors would place small blocks of LiveScript code
into their Web pages. These “scripts,” as they were called, could interact directly
with the elements of the Web page (for example, by inserting a string into a text
box or popping up an alert window to give the user a message of some sort), creat-
ing a more interesting experience for the end user.

S E S S I O N

Getting to Know JavaScript

1

4804-2 Ch01.F 4/9/01 8:13 AM Page 5

What’s that? You’ve never heard of LiveScript? That’s not too surprising, actu-
ally, since LiveScript never made it out of the lab... at least not under that name.
You see, at about the same time that Netscape was set to release LiveScript, Sun
Microsystems announced the imminent release of a new programming language
called Java.

Java appeared to have a lot going for it: Sun claimed that it was small (so you
could use it in a lot of different places, including the Web), familiar (it was based
on the C programming language, with which millions of programmers were familiar)
and it would, eventually, run everywhere. For these reasons, and many more, Java
became the hottest buzzword in the computing industry. Java’s sudden popularity
got the attention of the folks at Netscape, so they looked at it and noticed some-
thing very interesting: LiveScript and Java looked a lot like each other. The reason
for this was that LiveScript, like Java, was based on the C programming language.
In fact, the two were so similar in appearance, that if you simply glanced at a
block of LiveScript or Java code, you might not be able to tell them apart!

With all the “buzz” surrounding Java, Netscape decided to change the name of
LiveScript to JavaScript. This was an excellent move on Netscape’s part. The name
change got people to notice and try JavaScript, and the fact that it was actually a
powerful language that could do amazing things got them to create Web pages that
relied on it. So it wasn’t long before JavaScript-enhanced Web pages began pop-
ping up all over the Web.

Eventually, JavaScript found its way into millions of Web pages. In fact,
JavaScript became so popular that Microsoft decided to create its own version
(cleverly named JScript) for use in their Internet Explorer Web browser.
Unfortunately, JScript was just different enough that lots of programs written for
it wouldn’t work in Netscape Navigator (and vice versa). This cost a lot of program-
mers a lot of time as they struggled to create programs that worked in both
browsers.

After a few years of this, everyone involved decided that a standardized version
of JavaScript would be a good idea, so they called upon the European Computer
Manufacturer’s Association (an independent standards organization) to help create
one. The result was called ECMAScript, though most folks still just call it
“JavaScript.” ECMAScript is the version of JavaScript that you’ll find in the most
modern browsers, and it’s the one that I’ll be focusing on in this book.

Throughout the book, I’ll be using the terms “program” and
“script” to refer to blocks of JavaScript code. While JavaScript is
technically “just a scripting language,” it has all the computa-
tional power of a “real” programming language. Besides, saying
“JavaScript script” sounds silly when compared to “JavaScript
program.”

Note

Friday Evening6

4804-2 Ch01.F 4/9/01 8:13 AM Page 6

So, What Can JavaScript Do?

In today’s world, everything is hyped to the point that no matter how good some-
thing actually is, once you get your hands on it, you can’t help but be disap-
pointed. Fortunately, like this book, JavaScript is one of the rare exceptions that
probably won’t leave you feeling let down! Among other things, JavaScript can:

� Generate custom Web pages and dynamically alter the appearance of a
Web page

� Validate the contents of a form on a Web page
� Communicate with Java “applets” in a Web page
� Create custom animations on a Web page
� Perform traditional programming language tasks

You might have noticed that most of the entries in this list involve Web pages.
However, JavaScript isn’t just restricted to Web browsers. Netscape has a server-
side version of JavaScript (called LiveWire or simply Server-Side JavaScript), and
Microsoft has included server-side JScript support in their Web server as well. Both
of these allow you to write server-side JavaScript programs that can perform all
kinds of cool and useful tasks. For example, you could pull data out of a database
and present it on your Web pages, if you had the urge! Microsoft has even inte-
grated JScript support into the Window’s Scripting Host (WSH). This means that
you can write JavaScript programs to automate tasks in Windows 95 and later. In
this book, however, we’ll be concentrating on JavaScript as it is used inside your
favorite Web browser. The main reason for this is that once you learn JavaScript for
the Web, you can easily take that knowledge and apply it to any of these other
environments.

So, in order to complete the exercises in this book, you must use a JavaScript-
capable Web browser. Fortunately, both of the “big-name” Web browsers (Netscape
Navigator and Internet Explorer) support JavaScript. If you don’t have one of these
browsers, you’ll find them, along with all of the source code from the book, on the
enclosed CD-ROM. Unless otherwise noted, all of the code in this book is “browser-
agnostic” and should work with the latest version of either browser. (At the time
of publication, that’s version 6 of Netscape Navigator and version 5.5 of Internet
Explorer.) If you want to write browser-specific code, we’ll be covering that in
Session 26 on Sunday.

Session 1—Getting to Know JavaScript 7

Part I—
Friday Evening

Session 1

4804-2 Ch01.F 4/9/01 8:13 AM Page 7

What JavaScript Can’t Do

Of course, JavaScript isn’t perfect. While JavaScript is very powerful, it’s also had
some pretty severe restrictions placed upon it. (Note that these restrictions are
mostly found in the JavaScript that runs inside your Web browser. Other JavaScript
environments are a bit less restrictive.)

� JavaScript can’t read, write, create, or delete disk files. This is strictly a
security issue. After all, you wouldn’t want to open a Web page that trashed
all the files on your hard disk, would you? (JavaScript can create and
manipulate cookies (which we will discuss tomorrow afternoon in Session
16), but this ability is tightly controlled by the Web browser itself.)

� JavaScript can’t perform operations over the network. (An exception to
this rule is that JavaScript can force the Web browser to open a different
Web page, which can be anywhere on the Web.)

� JavaScript can’t create stand-alone software. Remember, JavaScript began
life as a way to add interactivity to otherwise static Web pages. So,
JavaScript always has been (and probably always will be) a scripting lan-
guage. All that means is that it’s intended to control (or “script”) the oper-
ation of another program — in this case, a Web browser. If you want to
write a stand-alone piece of software, you’ll need to use a more traditional
language like Java, C, or C++.

� While JavaScript looks like Java, the two aren’t the same. Due to the simi-
lar names and appearance, a lot of people are under the impression that
JavaScript is just a “slimmed-down” version of Java. This simply isn’t true.
Java and JavaScript are two separate technologies that happen to have
similar names and a similar heritage. The biggest difference between the
two is that Java can create stand-alone software. While JavaScript is a
powerful language in it’s own right, this is something that it just can’t do.

How JavaScript Fits into a Web Page

As mentioned earlier, JavaScript’s main purpose is to make Web pages more inter-
esting and/or useful. To achieve this goal, the folks that invented it decided that
JavaScript programs should be embedded directly inside the Web page itself, so
they invented a new HyperText Markup Language (HTML) tag that could be used to
enclose JavaScript code inside a Web page. This tag is called simply the “script” tag
and it looks like this:

Friday Evening8

4804-2 Ch01.F 4/9/01 8:13 AM Page 8

<script language=”javascript”>
...your JavaScript code would go here...
</script>

As you can see, the script tag looks pretty much like every other HTML tag.
There are a few differences to note though:

� It has a “language” attribute that lets you specify which programming lan-
guage is used in this script block. Depending on which browser you are
using, you could also specify either VBScript or PerlScript. All the major
browsers, however, support JavaScript, and, since it came first, it’s the
default language. If you are only working with JavaScript, you don’t have
to specify a language, but you should, just so someone looking at your
code will know for sure which language you are using.

� Unlike some HTML tags, you can’t put other HTML inside a set of script
tags. JavaScript code is the only thing you should put inside a set of script
tags!

� Like most other HTML tags, a Web page can contain as many sets of script
tags as you like, and you can place them just about anywhere you like
inside the HTML document. However, a convention has emerged where
most, if not all, of your JavaScript will probably be contained at the top of
your Web page, between the <head> and </head> tags. There are, of
course, exceptions to this rule, as we’ll see over the next few days.

� In addition to the script tag, you can also embed JavaScript statements
inside other HTML tags. These embedded JavaScript statements usually
take the form of tag attributes and they are usually executed when a par-
ticular condition arises in the Web browser. (These “conditions” are called
“events” and we’ll be discussing them throughout the remainder of the
book.)

� By this point, you are probably wondering what this looks like in a real
Web page. So, here’s a simple HTML file with a simple block of JavaScript
code in it:

<html>
<body>
<script language=”javascript”>
document.write(“Hello World!”)
</script>
</body>
</html>

Session 1—Getting to Know JavaScript 9

Part I—
Friday Evening

Session 1

4804-2 Ch01.F 4/9/01 8:13 AM Page 9

If you load this into your Web browser, you should see a page with the simple
message “Hello World!” on it. Here’s how the script works: First, you should notice
that this is just a simple HTML file. As with every other simple HTML file you’ve
seen, every bit of it is pure, human-readable, ASCII text. There aren’t any “bina-
ries” or “plug-ins” or anything else to worry about. This is a very important point:
Like every other part of your HTML file, your JavaScript code is just plain-old
ASCII text!

Since this is just a simple HTML file, it is processed like every other HTML file:
from the top to the bottom. So, first the <html> tag is processed (which tells the
Web browser to turn on its HTML parser), then the <body> tag and then the
<script> tag. When the browser reaches the <script> tag however, it does some-
thing a little different: It turns over processing to the JavaScript interpreter that
is built into the browser. The JavaScript interpreter looks at each line of JavaScript
and runs it immediately. In this case, the single line of JavaScript tells the inter-
preter to document.write(“Hello World!”). Without getting into too much
detail, “document” is an object that represents the HTML document that’s cur-
rently loaded into the Web browser. The “write” part of the statement tells the
document object that you want to display a string in that HTML document. Finally,
“Hello World!” is the string that you want to display. (We’ll be looking at the doc-
ument object in Session 9, tomorrow morning.) When the interpreter reaches the
end of the script block (signified by the </script> tag), it turns control back over
to the HTML parser. The HTML parser then finishes up by parsing the ending
</body> and </html> tags and displaying the page in the browser.

The fact that JavaScript code is just simple ASCII text means that
you can create your JavaScript-based HTML files using any editor
that can save text files. For example, on the Macintosh, you can
use SimpleText. If you are using Windows, you can use WordPad
or even Notepad. If you are using Linux, you can use vi or any
other editor that came with your distribution! Of course, you can
also use a specialized editor that’s intended for creating Web
pages. The point however, is that you don’t have to! I’ve built
complex Web sites that were full of JavaScript using nothing
more than Notepad. For this book, I’ll assume that you are using
HTML Kit (on Windows) or BBEdit Lite (for the Macintosh). These
are freeware editors with extensions to make creating Web pages
much easier.

Tip

Friday Evening10

4804-2 Ch01.F 4/9/01 8:13 AM Page 10

Creating Your First JavaScript Program

I’ve always been of the opinion that the best way to learn a new programming lan-
guage is to define a small project and then use that language to complete it. So,
over the course of this weekend, that’s exactly what we’ll be doing. In particular,
what we are going to do is create a JavaScript-based shopping cart application.
Shopping carts are fairly simple, but building one will allow us to exercise almost
every aspect of the JavaScript language. All we have to decide now is what we’ll be
putting into our shopping cart. Since everyone loves babies, our shopping cart will
be for the fictional baby supply store, baby-palooza.com. Since we’ve already seen
how to output a string in our obligatory “Hello World!” script, let’s rework it a bit
to create an initial welcome page for our storefront.

<html>
<head><title>Welcome to Baby-Palooza!</title></head>
<body bgcolor=”white”>
<center><h1>
<script language=”javascript”>
document.write(“Welcome to Baby-Palooza!”)
</script>
</h1></center>
</body>
</html>

This is almost exactly the same as the example we looked at earlier. The main
difference is that we’ve placed our JavaScript code smack in the middle of some
HTML markup tags. The end result is, when you load this page, you get a centered
heading welcoming you to the baby-palooza.com site, as shown in Figure 1-1.

Figure 1-1
The output of the code

Session 1—Getting to Know JavaScript 11

Part I—
Friday Evening

Session 1

4804-2 Ch01.F 4/9/01 8:13 AM Page 11

If you are wondering why it works this way, remember that HTML files are
processed top to bottom. When the HTML parser reaches the opening <script> tag,
it’s already processed the opening <center> and <h1> tags and put them into the
stream of output that will eventually end up going to the browser window. So, when
the document.write() statement executes, its output (which is the string “Welcome
to Baby-Palooza!”) is sent to this output stream as well. In fact, as far as the browser
is concerned, the code you just saw might as well have looked exactly like this:

<html>
<head><title>Welcome to Baby-Palooza!</title></head>
<body bgcolor=”white”>
<center><h1>Welcome to Baby-Palooza!</h1></center>
</body>
</html>

Being able to mix HTML tags with the output of JavaScript statements is one of
the most powerful features of a JavaScript-capable browser. In fact, this ability is the
heart and soul of the dynamic, interactive Web that we’ve come to know and love!

REVIEW

In this session, you learned about the history of JavaScript. More importantly, you
learned how JavaScript fits into a Web page. We also briefly touched on how HTML
pages are parsed and the fact that you can mix the output of JavaScript with
HTML tags. Everything else that we discuss this weekend is built on these con-
cepts, so be sure you’ve got a good handle on them before proceeding!

QUIZ YOURSELF

1. Is JavaScript just a “slimmed-down” version of Java? (See “What
JavaScript Can’t Do.”)

2. What are some of the things JavaScript can do? (See “So, What Can
JavaScript Do?”)

3. What are some things JavaScript can’t do? (See “What JavaScript Can’t Do.”)

4. What is the purpose of the <script></script> tags? (See “How
JavaScript Fits into a Web Page.”)

5. What kind of editor must you use to create Web pages with JavaScript in
them? (See “How JavaScript Fits into a Web Page.”)

Friday Evening12

4804-2 Ch01.F 4/9/01 8:13 AM Page 12

Session Checklist

✔ Writing assignment statements

✔ Creating and using variables

✔ Understanding JavaScript data types and variable naming
conventions

✔ Becoming familiar with all assignment and mathematical operators

✔ Putting comments in your JavaScript

B eing a descendant of the C language, JavaScript comes with a wide variety
of statement types and operators. These can seem baffling at first, but
you’ll find that for the most common programming tasks (like assigning a

value to something or comparing things), you only need to be familiar with a
handful of them.

S E S S I O N

Statements and Operators

2

4804-2 Ch02.F 4/9/01 8:13 AM Page 13

Assignment Statements

The most basic of JavaScript statements is the assignment statement. As the name
implies, the purpose of an assignment statement is to assign a value to a variable.
Here are some examples:

fName = “Maia”;
lName = ‘Disbrow’;
count = 10
pi = 3.14159;

As with most other languages, the structure of these statements is quite simple:
A variable on the left-hand side of the equal sign takes on the value that is on the
right-hand side of the equal sign. Even though these are simple statements, they
actually demonstrate a couple of important rules of JavaScript programming:

� You can enclose strings in either single-quotes (‘ ‘) or double-quotes (“ “).
The quotes you use are really just a matter of your preference. Also, a string
enclosed in one type of quote can contain the other type of quote. However,
if you are going to nest quotes, you can only do so up to one level deep. For
example, the string “Brian O’Toole” is enclosed in double-quotes and con-
tains a single-quote. This is perfectly legal. However, the string “Brian
O’Toole says, “Top ‘o the morning!”” would be illegal, because you can’t have
double-quotes inside double-quotes. (There is a way around this limitation,
which we’ll discuss in Session 5.)

� JavaScript statements must end with a semicolon... or not! In JavaScript, a
semicolon marks the end of a statement. However, the end of a line also
marks the end of a statement. So, if you place only one statement on each
line, you do not have to use semicolons at all. However, if you want (or
need) to place more than one statement on a single line, you can do so
simply by placing a semicolon at the end of each one. For example, our
example statements could have been written on a single line, like so:

fName = “Maia”; lName = “Disbrow”; count = 10;

JavaScript Variables

In some other programming languages, you have to declare your variables before
you use them. Not only that, when you declare a variable, you have to specify what

Friday Evening14

4804-2 Ch02.F 4/9/01 8:13 AM Page 14

kind of data it will hold (an integer, a string, and so on). JavaScript does things a
bit differently: In JavaScript, you create a variable simply by assigning a value to
it. At that point, your variable is ready to use. If you are used to declaring your
variables before using them, this shortened process can take a bit of getting used
to. But once you’ve worked with it a while, you’ll find it to be quite a bit easier.

Data types

Something that’s a bit harder to deal with is the fact that JavaScript variables are
loosely typed. This means that when you create a variable, the value you assign to it
determines its type. So, if you assign a string to a variable, it’s a string variable. To
complicate matters further, you can actually assign any type of value to any vari-
able; regardless of what type of value it currently holds! Consider the following code:

myVar = “Hello”;
document.write(myVar);
myVar = 100;
document.write(myVar);
myVar = “Goodbye!”;
document.write(myVar);

Here, we create the variable myVar and assign a string to it. After displaying
this string, we assign it an integer and display that. Then, to bring things full cir-
cle, we assign another string to myVar and display it. As you might imagine, loose
data typing is a very powerful feature of JavaScript that allows you to write some
very flexible code. However, if you abuse this feature, it can lead to problems that
are difficult to track down and fix. My advice is to assign only one type of data to
any given variable and use this feature only when absolutely necessary.

At this point, you might be wondering what basic data types are actually avail-
able to JavaScript programs. At the lowest level, there are really only four JavaScript
data types: integers, floating point numbers, characters, and Booleans (true or false).
All of the other types you’ll encounter in JavaScript are objects that combine these
basic data types in some way. Strings, for example, are objects that represent collec-
tions of characters. We’ll discuss these other data types as we encounter them and
we’ll discuss the topic of objects in great detail on Saturday evening.

Session 2—Statements and Operators 15

Part I—
Friday Evening

Session 2

4804-2 Ch02.F 4/9/01 8:13 AM Page 15

JavaScript actually allows you to specify your numbers in four
different formats: floating point, integers, octal, and hexadeci-
mal. You are probably already familiar with floating point and
integer numbers, but octal and hexadecimal might be new to you.
Basically, octal and hexadecimal numbers are integers that are
expressed in a different numerical base. Normal integers are base
10 (also known as decimal) while octal numbers are base 8 and
hexadecimal numbers are base 16. In JavaScript, you can specify
that a number is octal by starting it with a zero (0). For example,
the statement x = 077; would assign the octal value 77 (which
is 63 in decimal) to x. Similarly, hexadecimal numbers are pre-
ceded by the characters “0x”. So, the statement x = 0x3F; would
assign the hexadecimal value 3F (which is also 63 in decimal) to
x. If this is a bit confusing, don’t worry! There are only a few
instances in JavaScript programming where you have to know
anything about octal or hexadecimal numbers. The point of this
note is just to let you know what they are so that you’ll recog-
nize them when they pop-up.

Variable names

When you create and name a variable, there are a few rules that you have to follow:

� Variable names are case sensitive. That means that myVar and myvar are
two completely different variables. (Actually, every aspect of JavaScript is
case-sensitive, not just variable names. This means that if you want to
write an “if” statement, you must use lowercase “if”; “IF” won’t work.)

� Variable names must start with an alphabetic character, a dollar sign, or an
underscore and can contain letters (a to z or A to Z), digits (0 to 9), the
dollar sign ($), or the underscore character (_). No spaces or other special
characters are allowed.

� For all practical purposes, variable names can be as many characters long
as you want. However, to keep things manageable, you should probably
keep them under 50 characters long.

To help put all of this into perspective, Table 2-1 contains examples of several
valid, and invalid, JavaScript variable names.

Note

Friday Evening16

4804-2 Ch02.F 4/9/01 8:13 AM Page 16

Table 2-1
Examples of Variable Names

Valid Names Invalid Names Why It’s Invalid

numBottles 99bottles_of_beer Starts with a digit

_systemName name of system Includes spaces

$charVar char-var Hyphen not allowed

_99FlagVal o’toole’sbar&grill Apostrophe not allowed

Assignment Operators

At the beginning of this lesson, I said that the equal sign represents a “simple”
assignment statement. JavaScript features a host of other assignment operators
that, while not really complex, certainly aren’t simple, either. These operators
allow you to perform operations in a single JavaScript statement that would take
two or more statements in some other languages.

The += operator

Perhaps the most useful of these other operators is the “addition with assignment”
operator (+=). What does this operator do? Well, consider the following code:

x = 10; y = 5;
x = x + y;

It turns out that the operation shown here (adding two variables together and
putting the result back in one of them) is so common that folks could save a lot of
time if there were a shorthand operator for it. That’s exactly what the += operator
is. So, assuming that x and y are defined as shown in the preceding code, the fol-
lowing lines of code have exactly the same effect:

x = x + y;
x += y;

So, that saves us about four keystrokes, right? That might not sound like a lot,
but if you multiply that over a lifetime’s programming, you’ve seriously reduced
your chances for a repetitive stress injury!

Session 2—Statements and Operators 17

Part I—
Friday Evening

Session 2

4804-2 Ch02.F 4/9/01 8:13 AM Page 17

Other assignment operators

So, what are the other assignment operators? Table 2-2 has the answers.

Table 2-2
JavaScript Assignment Operators

Operator Operation Sample Code Equivalent To

= Simple assignment x = y; N/A

+= Assignment with addition x += y; x = x + y;

-= Assignment with subtraction x -= y; x = x - y;

*= Assignment with multiplication x *= y; x = x * y;

/= Assignment with division x /= y; x = x / y;

%= Assignment with modulo x %= y; x = x % y;

&= Assignment with bitwise AND x &= y; x = x & y;

|= Assignment with bitwise OR x |= y; x = x | y;

^= Assignment with bitwise XOR x ^= y; x = x ^ y;

Hopefully, most of the operators in this table will seem straightforward to you.
The last four however, involve mathematical operations that you might not be
familiar with. So, let’s talk about mathematical operators.

Mathematical Operators

Thus far, all we’ve looked at are simple assignments: copying one variable to
another or setting a variable to some simple value. In the real world, most assign-
ment statements involve some sort of calculation. So, JavaScript is equipped with
several different mathematical operators to make those operations as easy as possi-
ble. These are shown in Table 2-3.

Friday Evening18

4804-2 Ch02.F 4/9/01 8:13 AM Page 18

Table 2-3
JavaScript Mathematical Operators1

Operator Operation Sample Code Result Equivalent To

++ Increment by 1 x++ 11 x = x + 1;

-- Decrement by 1 x-- 9 x = x - 1;

+ Addition z = x + y 13 N/A

- Subtraction z = x – y 7 N/A

* Multiplication z = x * y 30 N/A

/ Division z = x / y 3 N/A

% Modulus z = x % y 1 N/A

& Bitwise AND z = x & y 2 N/A

| Bitwise OR z = x | y 11 N/A

^ Bitwise XOR z = x ^ y 9 N/A

1 For all examples, assume x is 10, y is 3, and z is 0.

Since you are almost certainly aware of the four basic math operations of addi-
tion, subtraction, multiplication, and division, let’s look at the other operators.

The increment and decrement operators

When programming, it’s often necessary to increment the value of a variable by
one. For example, the following code might look very familiar: x = x + 1

The increment operator allows us to replace this code with the following: x++
This is exactly the same as the statement x = x + 1. More importantly, by

having this functionality in an operator we can perform increment operations
inside other statements! (We’ll see this in Session 3, when we discuss flow of con-
trol statements.)

Another important aspect of the increment operator is that it can be used in
either prefix or postfix form. In other words, you can put the operator before or
after the variable you want to increment. Like so:

++x
x++

Session 2—Statements and Operators 19

Part I—
Friday Evening

Session 2

4804-2 Ch02.F 4/9/01 8:13 AM Page 19

In these simple statements, the position of the increment operator doesn’t
really matter. However, in a more complex statement, the position of the incre-
ment operator is important. In prefix form (++x), the increment operation takes
place before the value of x is used in the surrounding statement. In postfix form
(x++), the increment operation takes place after the value of x is used in the sur-
rounding statement. Consider this code:

x = 10; y = 0; z = 5;
y = z * x++;
y = z * ++x;

After we execute the statement, y = z * x++, the variable y will contain the
value 50 and the variable x will contain the value 11. Because we used the postfix
form of the increment operator, the initial value of x, 10, is used for the multipli-
cation and the incrementing of x does not take place until after the multiplication
is complete.

When we execute the next statement, y = z * ++x, the variable y will contain
the value 60 and the variable x will contain the value 12. This is because, by using
the prefix form of the increment operator, the value of x was increased from 11 to
12 before the multiplication occurred.

If there’s an increment operator, there should be a decrement operator, right?
Right! The decrement operator is represented by two minus signs, and it works just
like the increment operator, except it subtracts one instead of adding one. For
example, these two lines are equivalent:

x = x – 1
x--

Modulus operator

The increment and decrement operators are actually pretty simple once you know
what they do. The modulus operator (%) however, can take some explaining. You
can think of the modulus operation as a cousin of division. The difference is that a
modulus operation divides its two operands and then returns the remainder of that
division. So, going back to the example in Table 2-3, we divide 10 by 3. Three goes
into 10 three times, with one (1) left over. This remainder, one, is what is returned.

Bit flag operators

The final types of mathematical operators are the bit flag operators. These opera-
tors work only with integer values and treat them as if they were a series of flags,

Friday Evening20

4804-2 Ch02.F 4/9/01 8:13 AM Page 20

each specifying a true or false value, instead of whole numbers. By using the bit
flag operators you can find out (or change) the state of a single bit (or a set of
bits) inside a value. The use of these operators is a bit complex (no pun intended)
so we’ll be discussing them in detail later.

Comments: The Statements That Aren’t

The last type of JavaScript “statement” we need to discuss is the comment.
Comments aren’t really statements, they are lines or blocks of text that you put
into your JavaScript code to explain what is going on. Comments can be very help-
ful to anyone who might have found your JavaScript code on the Internet and is
trying to adapt it for their own use. Comments can also be very helpful to you.
Just imagine writing a very clever piece of code and then not looking at it again
for a month or longer. Without comments, there’s a good chance that your own
code would have you scratching your head in bewilderment.

If you want to designate a single line as a comment, you simply place two
slashes (//) at the start of your comment text. For example:

// Now we square x
x = x * x

These comment markers can actually come anywhere on the line. For example:

x = x * x // now we square x

The trick is that everything that comes after the comment marker is treated as a
comment, even JavaScript code!

// Both of these lines are comments and will be ignored!
// x = x * x

As you can see from the previous example, you can mark multiple lines as com-
ment lines. However, if you need to mark a lot of lines as comment text, it can be
tedious to mark each one individually. So, JavaScript allows you to mark a block of
text as one big comment by enclosing it between /* and */ characters. For example:

/* Now we square x to achieve the desired
result */
x = x * x

Session 2—Statements and Operators 21

Part I—
Friday Evening

Session 2

4804-2 Ch02.F 4/9/01 8:13 AM Page 21

As with single-line comments, multiple-line comments can also start anywhere
on the line. Anything (even JavaScript code) between the start and ending com-
ment markers is treated as a comment and ignored by the JavaScript interpreter.

The important thing about comments is to use them. Don’t be afraid to sprinkle
comments liberally throughout your JavaScript code. Be descriptive, be detailed,
be funny if you want, just be sure to do it. The first time you have to revisit a
piece of your own code, you’ll be glad those comments are there.

REVIEW

In this session, you learned about simple JavaScript statements and operators. You
also learned about JavaScript data types and variables. You learned how to name a
variable as well as what constitutes an illegal variable name. You also found out
that JavaScript variables are loosely typed. This means that they take on the type
of whatever value you assign to them. It also means that any given variable can be
assigned any type of data. We also went over the basic JavaScript operators and
saw examples of how each one works. We’ll be using these operators extensively
over the next couple of days, so be sure to keep Table 2-2 and Table 2-3 earmarked
for easy reference.

QUIZ YOURSELF

1. Is #_of_pies a legal JavaScript variable name? What about _numPies?
Why or why not? (See “Variable names.”)

2. What is wrong with the following statement? greet = “I said
“Howdy!”” (See “Assignment Statements.”)

3. If x is 33 and y is 67, what is the value of x after the following statement
executes? x += y; (See “Other assignment operators.”)

4. If x is 12, y is 4, and z is 2, what is the value of each of these variables
after the following statement executes? x *= z++ * ++y; (See Table 2-2.)

5. Assuming the following is all on a single line, what is wrong with the fol-
lowing line of code? x = 1 y = 12 z = 100; (See “Assignment
Statements.”)

Friday Evening22

4804-2 Ch02.F 4/9/01 8:13 AM Page 22

Session Checklist

✔ Understanding Boolean values, expressions, and operators
✔ Understanding code blocks and flow of control statements

A t this point, we’ve seen how JavaScript code fits into a Web page and we’ve
seen how to create basic JavaScript statements. But, if we want to deliver
truly dynamic content on our Web pages, we need to be able to make

choices in our JavaScript programs.

Understanding Boolean Values and Expressions

As we saw in Session 2, JavaScript allows you to create and use variables contain-
ing Boolean values. “Boolean” is just a fancy word that means “true or false.” So,
you can create variables that look like this:

shoppingCartEmpty = false; readyToCheckout = true;

Notice that these values aren’t in quotes. That’s because true and false are
JavaScript keywords that have a special meaning to the JavaScript interpreter. A
keyword (often called a reserved word) is a word that is reserved for use by the

S E S S I O N

Flow of Control Statements

3

4804-2 Ch03.F 4/9/01 8:13 AM Page 23

JavaScript interpreter. This means that these words can’t be used for variable or
function names. (We’ll discuss functions in the next session.) These keywords rep-
resent Boolean or logical values.

If you aren’t familiar with Boolean values, working with them can be a bit
strange at first. Boolean values represent absolutes: A Boolean variable is either
true or false— there is no middle ground. You might also want to think of
Boolean values as switches representing on (true) or off (false). (You’ll also find
Boolean values sometimes represented by the numbers one and zero — true and
false, respectively. Actually, any value other than zero can be used to represent
true.)

If you compare this with a string variable (which can have an almost infinite
number of values), you might think that Boolean variables are a bit useless. But,
the fact that Booleans can have just two values makes them ideal for making
choices in a program.

Before you can make a choice in your JavaScript program, you have to express
that choice in a way that the JavaScript interpreter can understand. To do this,
you have to write a Boolean (or logical) expression of some sort. Don’t let this jar-
gon scare you; a logical expression is really just a true/false question and its
answer. In fact, without realizing it, you ask and answer logical questions every
day of your life. Questions like, “Do I have enough money for a soda?” You answer
this simply by digging the change out of your pocket, adding it up, and comparing
the total to the cost of a soda. Based on the result of the comparison (true or
false), you either buy the soda or you don’t. Asking logical questions in a
JavaScript program is just as easy. You simply compare the value of one variable
(the amount of change in your pockets) to some other value (the cost of the soda)
and then react based on the result (which is true or false).

Comparison operators

In the above example, the comparison we were making was to see if the amount of
change we had was less than or equal to the cost of a soda. However, there are lots
of other types of comparisons you can make in JavaScript. Each type of compari-
son has its own operator and the result of any of these comparisons will be either
a true or false Boolean value. Table 3-1 shows these operators and gives an
example of their use. The first four of these operators should be familiar from high
school algebra class. However the last two might require a bit of explanation.

Friday Evening24

4804-2 Ch03.F 4/9/01 8:13 AM Page 24

Table 3-1
Comparison Operators1

Operator Operation Sample Code Result

< Less than w < z true

> Greater than w > z false

<= Less than or equal to w <= z true

>= Greater than or equal to z >= x true

== Equality x == y true

!= Inequality (not equal) x != y false

1 For all examples assume w is 9, x is 10, y is 10 and z is 20.

The equality operator

In some programming languages, you can test for equality simply by using a single
equal sign, like so: areEqual = x = y; The problem with this method is that, in
this single statement, the equal sign is being used two different ways: as a test to
see if x and y are equal and to assign the result of this comparison to the variable
areEqual. This is perfectly fine for a simple statement like this one, but in more
complex statements, things can become a lot more difficult to follow. JavaScript
removes this problem by using distinct operators for an assignment operation (a
single equal sign) and an equality comparison (two equal signs). So, in JavaScript
this example statement would be rewritten as: areEqual = x == y; This state-
ment says, “Compare the values of x and y. If they are equal, put a true into the
variable areEqual. If they are not equal, put a false into areEqual.”

In JavaScript, a single equal sign always represents an assign-
ment operation, regardless of the context in which it appears.
This fact is probably the largest source of errors in JavaScript
programs. (We’ll see an example of this later in this session.) So,
if your JavaScript program is behaving strangely, the first thing
to check is whether or not you have correctly used two equal
signs when you are testing for equality.

Tip

Session 3—Flow of Control Statements 25

Part I—
Friday Evening

Session 3

4804-2 Ch03.F 4/9/01 8:13 AM Page 25

The inequality operator

In other programming languages, you’ll usually see a test for inequality written
using a less than (<) and a greater than (>) symbol: areNotEqual = x <> y; If
you read this literally, you are asking “Is x less than or greater than y?” This is,
frankly, a little confusing. Fortunately, JavaScript is able to express the concept of
inequality a little better. In JavaScript there is a special symbol used specifically
for expressing the concept of not: the exclamation point (!). So, to test for
inequality, you would code: areNotEqual = x != y; Which can be read literally
as “Is x not equal to y?”

Logical operators

The operators you’ve seen so far let you compare one value to another and gener-
ate a Boolean result. But, what if you need to base your decision on two or more
Boolean values? As shown in Table 3-2, JavaScript has several operators to help
you do just that.

Table 3-2
Logical Operators2

Operator Operation Sample Code Value of bool3

&& Logical AND bool3 = bool1 && bool2; false

|| Logical OR bool3 = bool1 || bool2; true

^ Exclusive OR bool3 = bool1 ^ bool2; true

! Logical negation (not) bool3 = !bool1; false

2 For all examples, assume bool1 is true and bool2 is false.

The logical AND operation

A logical AND operation returns a true if and only if all of the Boolean values you
are ANDing together are true. If even one value is false, the entire expression
will be false.

The logical OR and exclusive OR operations

The logical OR operation will return a true value if any of the values you are
ORing together are true. In fact, the only way a logical OR operation will return
false is if all of the values in the expression are false.

Friday Evening26

4804-2 Ch03.F 4/9/01 8:13 AM Page 26

The exclusive OR operation is a bit trickier than a logical OR. An exclusive OR
expression is true if (and only if) exactly one of the values in the expression is
true. If both values are true (or both values are false), the exclusive OR expres-
sion will be false.

The logical negation operation

The logical negation operation is a bit different from the operations you’ve looked
at so far. The difference is that negation simply reverses the Boolean value that it’s
applied to. So, if you negate a true value, you get false. Similarly, if you negate
a false value, you get true. To use the variables from Table 3-2 (where bool1 is
true and bool2 is false), here are some examples of negation (and the other
operators) at work:

bool3 = !bool2; // bool3 will be true
bool3 = !(bool1 && bool2); // bool3 will be true
bool3 = !(bool1 || bool2); // bool3 will be false
bool3 = !(bool1 ^ bool2); // bool3 will be false
bool3 = !(bool1 && !bool2); // bool3 will be false

There are a couple of things to notice here:

� When you want to negate an expression or Boolean variable, you just slap
an exclamation point up against its left-hand side.

� You can use parentheses to “nest” operations in the order you want them
to be carried out. In the second example, the parentheses tell the
JavaScript interpreter that you want the logical AND carried out first. The
result of that operation (false) will then be negated to give the final
result of true. Compare this with the last example, where bool2 is
negated before it is ANDed with bool1.

Understanding Flow of Control Statements

As I said at the beginning of this session, in order to create really interesting pro-
grams, you have to be able to make decisions. So now that you’ve got a basic
understanding of Boolean values and how they can be tested, let’s look at the
JavaScript statements that use them to make decisions.

The basic idea behind flow of control statements is that they let you decide
which block of code you want executed based on some condition. Of course, hav-
ing said that, I now have to define what a block of code is.

Session 3—Flow of Control Statements 27

Part I—
Friday Evening

Session 3

4804-2 Ch03.F 4/9/01 8:13 AM Page 27

The code block

In the simplest terms, a block of code can be one of two things:

� A single line of code.
� Zero or more lines of code that are enclosed by a set of curly braces ({}).

As far as the JavaScript interpreter is concerned, all of the code between
the curly braces is the same thing as a single line of code.

So, for example, this is a block of code: x = x + y; And this is a block of
code too:

{
y = 10;
x = 20;
document.write(“Hello!”);
}

If this is a bit confusing, don’t panic! The examples to come should help clear
things up.

The if and if . . . else statements

The simplest flow of control statement that JavaScript has to offer is the if state-
ment. This statement lets you easily decide if a block of code will execute. For
example:

strollerPrice = 199;
if (strollerPrice <= 100)

document.write(“This stroller is cheap!”);
document.write(“Thanks for shopping at Baby-Palooza.com!”);

How does this work? Well, following the if keyword, there is a Boolean expres-
sion (also known as a conditional expression) contained in parentheses. (In
JavaScript, conditional expressions are always in parentheses.) If this expression
evaluates to a value of true, we’ll execute the block of code after the condition. In
this case, that’s just a single statement. So, if the value of strollerPrice is less
than or equal to 100, the first document.write statement will be executed.
Otherwise, the first document.write statement will be skipped entirely.

It’s important to note here that this if statement will only trigger the execu-
tion of one statement. The second document.write statement is not a part of the
if statement and will be executed regardless of the outcome of our conditional

Friday Evening28

4804-2 Ch03.F 4/9/01 8:13 AM Page 28

expression. If you want more than one statement to be executed, you have to
enclose all of those statements inside a set of curly braces, like this:

if (strollerPrice <= 100) {
document.write(“This stroller is cheap! “);
document.write(“You certainly are getting a deal . . .”);
}

document.write(“Thanks for shopping at Baby-Palooza.com!”);

At this point, I should probably say something about coding style. You’ll notice
in this example that the opening curly brace is on the same line as the if state-
ment and that the closing curly brace is on its own line, indented to be even with
the lines above it. You’ll also notice that I always put a space between an opening
parenthesis and whatever comes after it. I’ll be using this style throughout this
book, but there isn’t anything magical about it. It’s purely a personal style that
I’ve developed over the years that, for me, makes source code more readable.
JavaScript ignores white space characters (spaces, tabs, and carriage returns), so
you can arrange your blocks of code in the manner that’s the most readable to you.

When used all by itself, the if statement is really only good for one thing:
excluding a block of code from being executed. What if you need to choose
between two blocks of code? Well, in this case, you can use the if statement along
with an else statement, like this:

if (strollerPrice <= 100) {
document.write(“This stroller is cheap!”);
}

else {
document.write(“This stroller is not so cheap.”);
}

The concept here is very simple: if the condition in parentheses evaluates to
true, then you execute the code block immediately following the condition.
Otherwise, execute the block of code following the else keyword.

You might have noticed here that both blocks of code in this example are only
one statement long, yet I’ve enclosed each in curly braces. Why do this? Well, for
one thing, it’s important for you to realize that you can do it this way. Also, it’s
just a good idea to enclose single-line blocks of code in curly braces. Doing so
removes any ambiguity as to which statements belong to a flow of control state-
ment. Plus, if you have to go back and add more statements to a block of code, you
won’t have to remember to add the curly braces, because they will already be
there!

Session 3—Flow of Control Statements 29

Part I—
Friday Evening

Session 3

4804-2 Ch03.F 4/9/01 8:13 AM Page 29

When you need to make a complex decision, you can nest several if . . .
else statements For example, consider this code:

strollerPrice = 199;
if (strollerPrice < 100) {

if (strollerPrice < 50) {
document.write(“Wow! This is cheap!”);
}

else {
document.write(“Very affordable!”);
}

}
else {

if (strollerPrice > 150) {
document.write(“This is a high-end model!”);
}

else {
document.write(“A bit pricey, but nice!”);
}

}

In this code, we’re using nested if . . . else statements to zero in on pre-
cisely how much a stroller costs and then print an appropriate message based on
that cost.

The assignment error

Earlier in this session, when I talked about the equality operator, I noted that in
JavaScript a single equal sign always represents an assignment operation. Why is
this important to know? Consider the following code:

strollerPrice = 199;
if (strollerPrice = 50) {

document.write(“This stroller is only $50!
”);
}

document.write(“Actually, the price is: $” + strollerPrice);

In this example, you’ll notice that I’m using the addition symbol to “add” a
number to a string. When you use the +operator like this, JavaScript will automat-
ically convert the number to a string and concatenate it with the string! You’ll
also notice that I’m writing out an HTML
 tag as part of our output. (Just
so you know,
 is the XHTML version of
. I’ll be using XHTML coding

Friday Evening30

4804-2 Ch03.F 4/9/01 8:13 AM Page 30

conventions throughout this book.) When you run this script, you’ll find that both
document.write statements have executed. Worse still, the value of
strollerPrice has been changed from 199 to 50! What happened? Well, remem-
ber, a single equal sign is an assignment statement, regardless of context. So, even
though the single equal sign is inside the conditional expression of an if state-
ment, the JavaScript interpreter still assigns the value of 50 to strollerPrice.

But, why does this condition evaluate to true? Remember, Boolean logic is
absolute, so something is either true or false. Also remember that Boolean val-
ues are sometimes represented as numbers: 1 for true and 0 for false. Actually,
any value (numbers or strings or whatever) other than 0 is considered to be true.
Only a numerical 0 is equivalent to false. So, the result of our “conditional
expression” is 50, which evaluates as true.

As I said before, this insidious problem is probably the top cause of bugs in
JavaScript programs. So be sure to keep your eyes open for it in your own programs!

The switch and break statements

A close relative of the if statement is the switch statement. This statement
allows you to very quickly choose between the known values of a variable and exe-
cute a corresponding code block. It’s not quite as flexible as an if statement, but
it’s easy to follow and fast. For example, let’s rework the previous example as a
switch statement.

strollerPrice = 199;
switch (strollerPrice) {

case 49: {
document.write(“Wow! This is cheap!”);
break;
}

case 99: {
document.write(“Very affordable!”);
break;
}

case 149: {
document.write(“A bit pricey, but nice!”);
break;
}

default: {
document.write(“This is a high-end model!”);
}

} // end of switch statement

Session 3—Flow of Control Statements 31

Part I—
Friday Evening

Session 3

4804-2 Ch03.F 4/9/01 8:13 AM Page 31

First comes the switch keyword, followed by the variable to test in parentheses.
Inside the code block that follows, there are several case statements. Each of these
is followed by a constant value that the variable will be tested against. If the value
of the variable matches any one of these constant values, the code block following
that case statement will be executed. If the value being tested doesn’t match any of
the cases, the statements following the default keyword will be executed. (Note
that if you know and list all the possible cases, you don’t have to specify a default
statement.) As shown here, strollerPrice doesn’t match any of the specified cases,
so this will jump right to the default statement and tell the user, “This is a high-
end model!” But, if strollerPrice were set to 99, this same code would write out
the string “Very affordable!” and then execute the break statement that follows.

The break statement will break out of the current flow of control statement.
When the JavaScript interpreter encounters a break statement, it immediately
halts the flow of control statement it’s in and resumes execution with the next
statement immediately following the flow of control statement.

The break statement will work with any flow of control statement, but it’s espe-
cially important to know how to use it with a switch statement. This is because,
without a break between case statements, execution will fall through to the next
case statement and execute the code block associated with that case, whether or
not the case is a match for the test variable! For example, if you were to remove all
of the break statements from the previous example, and set strollerPrice to 49,
all of the document.write statements in the switch would be executed! (Give it a
try with the source code on your CD-ROM.) This behavior can be confusing, but it
can also be useful in some situations where you need or want multiple cases to be
selected at one time. So, always remember to put break statements between your
cases, but keep looking for ways to use this behavior to your advantage.

The while and do . . . while statements

I’ve shown you how to select one block of code or another, but what if you need to
perform a block of code over and over again? JavaScript has several statements
that let you do just that. The first of these is the while statement. The while
statement is fairly simple, it simply repeats a block of code until some conditional
expression becomes false. For example:

stockPrice = 100;
while (stockPrice > 0) {

document.write(“Our stock is currently: $” + stockPrice +
“/share
”);
stockPrice -= 10;
}

Friday Evening32

4804-2 Ch03.F 4/9/01 8:13 AM Page 32

The key parts of this example are the conditional expression (stockPrice > 0)
and the statement that lowers the stockPrice each time through the loop. The
conditional expression is evaluated before the loop executes. If this expression eval-
uates to false, the code block after the condition is not executed. If however, the
condition is true, the code block is executed. When the code block finishes, the
condition is checked again, and, if it’s still true, the code block executes again.

The statement that changes stockPrice is just as important. Without this
statement, stockPrice would never change, our condition would never become
false, and our loop would never end! This turn of events is called an infinite loop.
If you ever accidentally introduce an infinite loop into one of your JavaScript pro-
grams, it will appear as if the browser has hung up. In most cases, the browser
will, after a few minutes, tell you that the script has been running longer than
expected and give you the chance to stop the script. (If not, you’ll have to manu-
ally close your Web browser using whatever task management facilities are avail-
able in your operating system.)

The main problem with the while statement is that if the condition is false
when you first try to execute the statement, your code block will never be exe-
cuted. If you need to make sure that your code block is executed at least once, use
a do . . . while statement instead. The following code, for example, wouldn’t
display anything at all if it were written as a while loop. However, in do . . .
while form, it’s immediately apparent that this particular stock has become
worthless.

stockPrice = 0;
do {

document.write(“Our stock is currently: $” + stockPrice +
“/share
”);
stockPrice -= 10;
} while (stockPrice > 0);

The for statement

The most powerful flow of control statement is undoubtedly the for loop. While a
bit difficult to master, the for loop gives you more control over your looping oper-
ations than any of the other statements. Conceptually, the basic format of a for
loop is this:

for (initialConditionSetup; endOfLoopTest; conditionModifier) {
codeBlock;
}

Session 3—Flow of Control Statements 33

Part I—
Friday Evening

Session 3

4804-2 Ch03.F 4/9/01 8:13 AM Page 33

So, if I want to write a for loop to add up the value of all the strollers I have in
stock, I can code something like this:

strollerPrice = 199; numStrollers = 15; totalValue = 0;
for (counter = 1; counter <= numStrollers; counter++) {

totalValue += strollerPrice;
}

document.write(“Stroller inventory is worth: $” + totalValue);

Notice that inside the parentheses are three JavaScript statements:

� The first statement, counter = 1;, actually creates a new variable named
counter that is local to the code block used in the for loop. When the
loop ends, this variable is discarded. (We’ll talk about local variables in
Session 4.)

� The second statement, counter <= numstrollers;, is our conditional
expression that generates a Boolean result. If this result is false, then the
loop ceases execution.

� The third statement, counter++, is executed once at the end of each trip
through the loop. In this case, this statement is used to increment the
counter variable by one each time through the loop.

So, when this loop executes, it will execute the statement totalValue +=
strollerPrice; over and over until the counter++ statement causes counter to
reach a value greater than the value of numStrollers. At that point, the loop will
end, the counter variable will be discarded, and totalValue will contain a value
of 2985.

The continue statement

You’ll often find yourself performing a series of tests in the loops you create. In
many cases, a true result will mean that it’s time to jump back to the top of the
loop. The continue statement lets you do just that.

strollerPrice = 199;
while (strollerPrice > 0) {

strollerPrice -= 50;
if (strollerPrice > 100) {

document.write(“More than $100” + “
”);
continue;
}

if (strollerPrice > 50) {

Friday Evening34

4804-2 Ch03.F 4/9/01 8:13 AM Page 34

document.write(“More than $50” + “
”);
continue;
}

}

In this example, I’m using the continue statement to jump back to the top of
my loop whenever one of my if statements evaluates to true. The continue
statement doesn’t reset any of the values in the loop, it simply skips everything
up to the end of the loop.

The ?: operator

The final statement we’ll look at is actually an operator. This operator, known as
the conditional operator, allows you to choose between two expressions to evalu-
ate. In abstract terms, here’s how it works:

result = (condition) ? (evaluate if condition is true) : (evaluate
if condition is false);

So, before the ?, we have a condition in parentheses. If that condition evalu-
ates to true, the expression between the ? and the : is evaluated. If the condition
is false however, the expression after the : is evaluated. So, in the following
example:

y = 10; z = 30;
x = (y < z) ? y * z : y + z;

The condition is true (10 is less than 30), so we multiply y by z and assign the
result to x.

REVIEW

In this session you’ve looked at Boolean values, logical expressions and operators,
code blocks, and JavaScript’s flow of control statements. You’ve seen how all of
these things work together to let you write JavaScript programs that can execute
different blocks of code depending on the outcome of logical decisions you make
in our programs. If you haven’t already, take some time to play with all of the
source code for this session that is on your CD-ROM. Tinker around with the values
assigned to the various variables and see how your tinkering affects the outcome
of the programs.

Session 3—Flow of Control Statements 35

Part I—
Friday Evening

Session 3

4804-2 Ch03.F 4/9/01 8:13 AM Page 35

QUIZ YOURSELF

1. What is a Boolean value? (See “Understanding Boolean Values And
Expressions.”)

2. What is a Boolean expression? (See “Understanding Boolean Values and
Expressions.”)

3. What is the difference between the = and == operators? (See “The equal-
ity operator” and “The assignment error.”)

4. What is a code block? (See “The code block.”)

5. What is the difference between a while and a do . . . while state-
ment? (See “The while and do . . . while statements.”)

Friday Evening36

4804-2 Ch03.F 4/9/01 8:13 AM Page 36

Session Checklist

✔ Learning when to create and use a function
✔ Understanding how functions return values
✔ Understanding JavaScript variable scope
✔ Learning how to store JavaScript code in external files

When you write a program, you’ll often find yourself doing the same things
over and over again. For example, take a few minutes to look at the file
Listing4-1.htm. (It’s in the Session04 folder on your CD-ROM.) As you can

see, this is a long and tedious HTML document. The thing that makes it both long
and tedious is that the code to output our product information is repeated over
and over. What’s worse, all this HTML and JavaScript only produces the simple
table shown in Figure 4-1.

S E S S I O N

How to Write JavaScript Functions

4

4804-2 Ch04.F 4/9/01 8:14 AM Page 37

Figure 4-1
The short and sweet output of the long and tedious code

Creating a Function

So, the question is, “How can we use JavaScript to reduce the size of this code?”
The answer is, “By writing a function.”

In the simplest terms, a function is just a code block that you give a name to.
There are a few advantages to putting your code into a function:

� You can use a function over and over again. All you have to do is call it by
its name. (This is one aspect of something technical types refer to as
“encapsulation.”)

� Functions can perform the same operation on different sets of values. For
example, if you wrote a function to square a number, you could pass it a
different number to square each time you called the function. The values
you pass to a function are called parameters.

� All of the JavaScript code we’ve looked at so far has been immediately exe-
cuted as soon as the JavaScript interpreter gets to it. Functions, on the
other hand, only execute when you call them explicitly.

In the Listing4-1.htm file, there are actually several places where functions
would improve things. For instance, in each row of our table, we are adding the
shipping cost to the product cost and displaying the result as a dollar amount.
Here’s a function that will calculate the final cost for us:

Friday Evening38

4804-2 Ch04.F 4/9/01 8:14 AM Page 38

function calcFinalCost(baseCost, shippingCost) {
return baseCost + shippingCost;
}

This is a very simple function, but, just for fun, let’s look closely at each part of it.

� First is the function keyword. This tells the JavaScript interpreter that
the code block that follows should be treated as a function and only exe-
cuted when explicitly called.

� Next is the function name, which is calcFinalCost. The rules for naming
functions are exactly the same as the rules for naming variables that we
saw in Session 2.

� In parentheses is the list of parameters that this function expects to
receive. In this case the function is expecting two parameters: baseCost
and shippingCost. These values are passed from the caller and are used in
the body of the function to perform the function’s task.

� Next, is the opening curly brace that marks the beginning of the body of
the function.

� On the next line is a simple addition operation where the values of the
parameters are added together.

� Also on this line is the return keyword. As you might guess from its
name, this keyword evaluates the expression that follows it and sends the
result back to whoever called the function.

� Finally, the closing curly brace marks the end of the function.

Calling a function

Now that we have this function defined, how do we actually use it? Well, the fol-
lowing code shows how the function would be used to help create the last row of
the output shown in Figure 4-1 (You can find the complete code on your CD-ROM.
Look for the file called Listing4-2.htm.):

<td>
<script language=”javascript”>
document.write(“$” + calcFinalCost(carSeatPrice, carSeatShip));
</script>
</td>

Session 4—How to Write JavaScript Functions 39

Part I—
Friday Evening

Session 4

4804-2 Ch04.F 4/9/01 8:14 AM Page 39

As you can see, we invoke our function simply by giving its name, followed (in
parentheses) by the parameters we want to pass to it. These values are passed by
position into the parameter variables we specified when we defined our function.
(In other words, baseCost acquires the value in carSeatPrice and shippingCost
takes on the value in shipping.) Those values are used to perform the calculation
defined in the function. Finally, the result of the function is passed back to the
point the function was called from and the result is used in our document.write
statement.

Using a function to reduce code size

This simple function is good for discussing the concepts behind functions, but it
really hasn’t made our HTML file any shorter or any less tedious, has it? So, let’s
define another, slightly more complex function that will actually reduce our code
size. The following code shows a function to display all relevant information for a
product:

function showProductInfo(price, desc, partNo, ship) {
document.write(“<tr>”);
document.write(“<td>” + partNo + “</td>”);
document.write(“<td>” + desc + “</td>”);
document.write(“<td>$” + calcFinalCost(price, ship) +
“</td>”);
document.write(“</tr>”);
}

So, instead of defining row after row using HTML, we can simply call this func-
tion for each product and it will produce the appropriate HTML for us. To see how
much this reduces the size of our code, take a look at the Listing4-3.htm file on
the CD-ROM.

Understanding the finer points of functions

At this point, you’ve actually got all the information that you need to write func-
tions all by yourself. However, there are a couple of additional points that I need
to mention before we proceed.

In both of the examples we’ve seen, our functions have accepted several para-
meters. However, functions are not required to accept any parameters at all. But,
when you define a function with no parameters, you still have to include a set of
parentheses after the function name. (This is called an empty parameter list.) Such
a function definition would look like this:

Friday Evening40

4804-2 Ch04.F 4/9/01 8:14 AM Page 40

function noParams() {
// function code goes here
}

And you would call it like this: myResult = noParams(); (Note that, even
though there are no parameters being passed, you must include the empty set of
parentheses after the function name.)

You might have noticed that in the showProductInfo function there was no
return keyword. That’s because this particular function had no need to return any
value. All of its work was accomplished using document.write statements, which
took effect immediately. This is perfectly legal in JavaScript. In fact, you’ll proba-
bly find yourself writing lots of functions that don’t return any values at all!

Understanding JavaScript Scope Rules

Scope is a concept that determines if a variable or function defined in one part of
your program is accessible from another part of your program. It can, for example,
be very useful to be able to hide a variable created in one part of a program from a
function created in another part of a program.

Most programming languages offer complex scope rules and have scope idiosyn-
crasies that can take months or even years to master. JavaScript, however, takes a
somewhat more simplistic approach to scope. In JavaScript, there are just two
types of scope:

Global Something with global scope is accessible from anywhere in your
HTML file. Functions, for example, are always global. This means
that any function you define can be called from any place else in
the file. (As we’ll see in Session 24, functions can even be accessed
from different browser windows!) Variables are global if they are
defined outside of a function.

Local Variables are local if they are defined inside a function.
Additionally, you must use the var keyword to avoid confusing
your local variable with any global variable that has the same
name. Local variables are only accessible from the function in
which they are defined.

Confused? The following example should help clear things up.

aGlobalVariable = “I’m global!
”;
anotherGlobal = “I’m global too!
”;

Session 4—How to Write JavaScript Functions 41

Part I—
Friday Evening

Session 4

4804-2 Ch04.F 4/9/01 8:14 AM Page 41

function scopeDemo() {
var aGlobalVariable = “Actually, I’m local!
”;
document.write(aGlobalVariable);
anotherGlobal = “I was changed by the function!
”;
}

document.write(aGlobalVariable);
document.write(anotherGlobal);
scopeDemo();
document.write(aGlobalVariable);
document.write(anotherGlobal);

If you run this code (it’s on the CD-ROM in the Listing4-4.htm file), you’ll see
some output that you might not expect. First, this code sets up two global vari-
ables. (Remember, it’s not their names that make them global, it’s the fact that
they are defined outside of any function! The names are just to help you follow
what’s supposed to be going on.) Then the code defines a function. After the func-
tion is defined, we output the value of aGlobalVariable and anotherGlobal. As
expected, these values are unchanged. Then we call our function.

The first thing the function does is to create a new local variable. As you can
see, this variable has exactly the same name as one of the global variables I’ve just
created. However, since I’ve used the var keyword in this statement, the
JavaScript interpreter knows that I’m creating a new variable that’s local to this
function. This means that, as long as this function is executing, any reference to
aGlobalVariable is actually a reference to the local variable with that name. So,
when the following statement executes, it’s the value of the local variable that’s
output, not the value of the global variable. However, when the next statement
references anotherGlobal, the JavaScript interpreter will find that there is no
local variable with that name. So, as you would expect, it assigns the new value to
the global variable. (Remember, global variables are available everywhere, even
inside functions!) The moment the function finishes executing, the JavaScript
interpreter throws away the local variable named aGlobalVariable. From that
moment on, any further references to aGlobalVariable refer to the global vari-
able defined in the first line of the script.

After returning from the function, the script again outputs the values in
aGlobalVariable and anotherGlobal. This time however, one of them has
changed; the value in anotherGlobal is now what was assigned to it inside the
function. However, the value in aGlobalVariable is unchanged.

If you still find the concept of scope confusing, here are some tips to help you
out:

Friday Evening42

4804-2 Ch04.F 4/9/01 8:14 AM Page 42

� First of all, never give more than one variable the same name. Just by fol-
lowing this simple rule, you’ll save yourself an incredible amount of
heartache.

� To further avoid confusion, always use the var keyword when you create
variables inside your functions. Of course, the var keyword is completely
optional, so why bother? Well, some older versions of Netscape Navigator
actually treat variables defined inside functions as global variables, unless
you use the var keyword when you define the variable. By using the var
keyword consistently, you’ll never have to worry about running afoul of
this strange behavior.

� You can also use the var keyword when defining global variables. This
won’t make your global variables local, but it will tell someone reading
your code that you were defining a variable and not just making another
assignment statement.

Using External Source Code Files

As I said at the start of this session, when you write a program, you’ll find yourself
doing the same things over and over again. In JavaScript programming this is true
not only for a single Web page, but for entire Web sites. Therefore, it stands to rea-
son that a function that’s useful on one page might come in handy on another
page as well. So, what’s needed is some way to share your JavaScript functions
(and other code) among all of the Web pages on your Web site. To accomplish this,
the <script> tag supports something called the src attribute. This attribute
(which stands for “source”) allows you to specify a separate file that contains
JavaScript code that you want to import into your Web page. For example, consider
the <script> tag in the following code.

<html>
<head>
<title>Welcome to Baby-Palooza.com</title>
<script language=”javascript” src=”babyPalooza.js”></script>
</head>
<body bgcolor=”white”>
<!-- Remaining HTML goes here -->
</body>
</html>

Session 4—How to Write JavaScript Functions 43

Part I—
Friday Evening

Session 4

4804-2 Ch04.F 4/9/01 8:14 AM Page 43

In this example you can see that all of our JavaScript code has been removed
from the first <script> block. Instead, the opening <script> tag looks like this:

<script language=”javascript” src=”babyPalooza.js”></script>

The src attribute tells the JavaScript interpreter that you want to include the
JavaScript code that can be found in the file named “babyPalooza.js”. So, the
interpreter retrieves this file and parses the code it finds there just as if the code
had been typed into the HTML file. (To see how all of this fits together, see the
Listing4-5.htm and babyPalooza.js files on your CD-ROM.)

The .js file extension on our external source file stands for, of
course, JavaScript. It’s not required that external source files use
this extension, but it is a good idea to do so, simply because it
will clearly identify your files as JavaScript source code.

The babyPalooza.js file is simply all of the JavaScript variable and function defi-
nitions we have been working with throughout this session. This is what is loaded
by the JavaScript interpreter in response to the src attribute in our first
<script>. As you can see from looking at these last two files, using the src
attribute can really help to reduce the overall size of your Web page. And, by plac-
ing your JavaScript code in a separate file, you can easily share your functions and
variable definitions between files.

REVIEW

Functions and the concept of code reuse were the focus of this session. You looked
at the structure of a function as well as why you would want to use functions. You
learned how functions return results and discussed the fact that some functions
don’t need to return results at all. You saw how functions are called and how they
can be used to reduce the overall size of a program by encapsulating tasks that are
repeated over and over again. You learned about JavaScript’s scope rules, and I
pointed out ways to avoid confusion when creating local and global variables.

Finally, I told you about the src attribute of the <script> tag and showed you
how it can be used to reduce the size of a Web page and to share JavaScript vari-
ables and functions among the different pages on your Web site.

Note

Friday Evening44

4804-2 Ch04.F 4/9/01 8:14 AM Page 44

QUIZ YOURSELF

1. What are parameters? (See “Creating a Function.”)

2. What does the return keyword do? (See “Creating a Function.”)

3. How do you call a function? (See “Calling a Function.”)

4. What is the difference between a local and a global variable? (See
“Understanding JavaScript Scope Rules.”)

5. What does the src attribute of the <script> tag do? (See “Using
External Source Code Files.”)

Session 4—How to Write JavaScript Functions 45

Part I—
Friday Evening

Session 4

4804-2 Ch04.F 4/9/01 8:14 AM Page 45

1. Where can you use the <script></script> tags in an HTML file?

2. What is a function?

3. What are the possible values for a variable that contains a Boolean value?

4. In your own words, describe what a code block is.

5. What rules must a JavaScript variable and function name follow?

6. What are the two ways to include comments in your JavaScript source
code?

7. What file format should your JavaScript code be stored in?

8. What is the language attribute of the <script> tag used for?

9. How do you return a value from a function?

10. Write a function that takes four Boolean parameters and returns a true
only if all four parameters are true.

11. Write a loop that adds the numbers from 1 to 100 and prints the result.

12. How many parameters must a function have?

13. What is the src attribute of the <script> tag used for?

14. In your own words, describe what the three expressions in the condition
of a for loop do.

15. What is the difference between local and global variables?

16. What value will be placed in x as a result of the following statements?
What will the value of y be?

y = 75;

x = (y = 100) ? 29 : 42;

P A R T

#
P A R T

Friday Evening

I

4804-2 PartReview1.F 4/9/01 8:14 AM Page 46

17. What kind of data can you assign to a JavaScript variable?

18. Create a function to square a number and return the result.

19. Create a function that takes one number as a parameter. If the number is
odd, the function should return true, otherwise, it should return false.
(Hint: Use the modulus operator.)

20. Write a function that accepts a number as a parameter and returns the
Boolean equivalent for that number.

Part I—Friday Evening Part Review 47

4804-2 PartReview1.F 4/9/01 8:14 AM Page 47

4804-2 DayPartOpener2.F 4/9/01 8:14 AM Page 48

Part II — Saturday Morning
Session 5
Working with JavaScript Strings

Session 6
Working with JavaScript Arrays

Session 7
Understanding the Browser Object Model

Session 8
Working with the window Object

Session 9
Working with the document Object

Session 10
Reacting to Events

Part III — Saturday Afternoon
Session 11
Dynamically Creating an HTML Page

Session 12
Working with HTML Forms

Session 13
Working with HTML Controls

Session 14
Working with Images

Session 15
Validating Form Data

Session 16
Cooking up Cookies with JavaScript

Part IV — Saturday Evening
Session 17
Understanding JavaScript Objects

Session 18
Creating and Using Methods

Session 19
Enhancing HTML with JavaScript Objects

Session 20
Dynamically Creating and Executing JavaScript

4804-2 DayPartOpener2.F 4/9/01 8:14 AM Page 49

P A R T

Saturday
Morning

II

Session 5
Working with JavaScript Strings

Session 6
Working with JavaScript Arrays

Session 7
Understanding the Browser Object Model

Session 8
Working with the window Object

Session 9
Working with the document Object

Session 10
Reacting to Events

4804-2 Pt02.F 4/9/01 8:14 AM Page 50

Session Checklist

✔ Understanding how JavaScript implements strings
✔ Understanding how to use JavaScript string properties and methods

J avaScript supports a lot of different types of data, but the one you’ll proba-
bly work with the most is the string. For that reason, I need to give you a
closer look at JavaScript strings and the different operations you can perform

on them. As you saw last evening, strings are easy to create; you simply assign
one to a variable like so:

var myString = “Welcome to Baby-Palooza!”;

This simple statement creates a new variable and assigns a string value to it.
Once this is done, you can manipulate the string in this variable in just about any
way you want.

String Mechanics

Of course, at this point, I haven’t told you all the different ways you can manipu-
late a string, have I? OK, grab your browser and let’s start manipulating!

S E S S I O N

Working with JavaScript Strings

5

4804-2 Ch05.F 4/9/01 8:14 AM Page 51

Concatenation

Perhaps the most basic string operation is concatenation. In the simplest terms,
concatenation is an operation where you take two or more strings and jam them
together to make a bigger string. Here’s an example:

var greeting = “Welcome to Baby-Palooza!”;
var beg = “Please come back soon!”;
var howdy = greeting + beg;

As mentioned in Session 3, when used with a string, the plus sign acts as a con-
catenation operator. So, the last statement is saying, “Take the contents of greet-
ing and tack the contents of beg onto the end of it. Then put the entire thing
into howdy.” After this code executes, what do you think the contents of howdy
will be? If you said that howdy will contain “Welcome to Baby-Palooza! Please come
back soon!” you were right.

No, this isn’t a typo, there really shouldn’t be a space between the “!” and
“Please.” (Remember, JavaScript is just a programming language, so it has no idea
about the rules of grammar. Heck, it doesn’t even know that these strings repre-
sent sentences!) In order to have a space between these strings, the last statement
would have to look like this:

var howdy = greeting + “ “ + beg;

See what I’ve done here? I’ve explicitly placed a blank space between my two
string variables. Now, the contents of howdy will look like this: “Welcome to Baby-
Palooza! Please come back soon!” This brings up several important points:

� You can concatenate string variables with hard-coded strings. Hard-coded
simply means something that you’ve typed in yourself. In this example,
the blank space (“ “) is the hard-coded string. (You’ll find that the term
literal is sometimes used instead of hard-coded.)

� You can concatenate as many string variables and hard-coded strings as
you want into one string.

� If you build strings this way, it’s entirely up to you, the programmer, to
account for spaces between strings, punctuation, and so on.

Now, as you saw in Session 2, JavaScript has a lot of operators. So, you might
be wondering if there is another concatenation operator. Actually, there is.
Remember the += operator? When you use it with two numbers, it works like this:

x += y; // This is the same as . . .
x = x + y;

Saturday Morning52

4804-2 Ch05.F 4/9/01 8:14 AM Page 52

So, assuming that greeting and beg are still defined as you saw earlier, what
do you think the following statement will do? greeting += “ “ + beg;

That’s right, it will take the value of greeting and concatenate it with a blank
space followed by the value in beg. Then the whole thing will be put back into the
greeting variable. The end result is that greeting will contain “Welcome to Baby-
Palooza! Please come back soon!”

Simple numeric conversion

Strings can also be used to do simple conversions of numbers into strings. For
example:

var descAndPrice = “Stroller: $” + 199;

As I’ve said before, in a case like this the JavaScript interpreter will take the
number, convert it into a string and concatenate that with the string “Stroller: $”.
The result of all this will be that the descAndPrice variable will contain the string
“Stroller: $199”. As you might expect, this also works for numbers with decimal
places in them:

var descAndPrice = “Stroller: $” + 199.95;

If you have a number that you need to quickly convert into a string, you can do
this by concatenating it with the empty string. The empty string is a string that
contains, well, nothing. (I suppose that’s why it’s called the empty string.) At any
rate, the empty string is represented by an empty set of either double “” or single
‘’ quotes. (Notice that there is no space between either set of quotes.) Since the
empty string is still a string, the simple act of concatenating it with the number
changes the number into a string. For example:

var cost = 199;
cost += “”;

String Methods and Properties

In JavaScript, strings are implemented as objects. So, when you create a string,
you are actually creating a JavaScript object, a String object. (Note the capital S
here. A String object is different from the string data that you find inside it.) I’ll
be discussing objects in much greater detail in Session 17, so I’m not going to
delve too deeply into this aspect of strings right now. But, if I want to tell you

Session 5—Working with JavaScript Strings 53

Part II—
Saturday M

orning
Session 5

4804-2 Ch05.F 4/9/01 8:14 AM Page 53

about String object methods and properties, you’ve got to know a little about
methods and properties and how they relate to objects.

In the simplest terms, an object is a chunk of data that has some sort of func-
tionality attached to it. That functionality is implemented as one or more proper-
ties and methods. Properties are straightforward; they are just variables that hold
information about the data in the object. Strings, for example, have only one
property, the length property. As the name implies, this property simply tells you
how many characters are in the string data.

Methods are a bit trickier. At this point, the best way to think of methods is as
if they are functions that belong to an object.

So, when you create a String object, you are creating a chunk of data (the char-
acters of the string) that has a bunch of properties and methods predefined for you
to use with it. The properties give you details about the data in the object and the
methods allow you to perform tasks using the data in the object. For Strings, those
tasks include things like searching for a character in the string data, extracting a
portion of the string data, or converting the string data to upper or lower case.

Using String methods and properties

How do you actually call one of these methods? Let’s look at an example:

var prez = “Thomas Jefferson”;
var upperPrez = prez.toUpperCase();

Here I’ve created a String object named prez. On the next line, I’ve invoked the
String method that will convert the contents of prez to upper case. As you might
guess, the result of this second statement is that the variable upperPrez will con-
tain “THOMAS JEFFERSON.” However, let’s look at how to invoke the method that
makes this happen.

First, there’s the name of my String object, prez, followed by a period. The
period tells the JavaScript interpreter that I want to access a property or method
inside the String object that I have named. So, after the period, I name what it is
that I want to access, in this case, that’s the toUpperCase method.

Earlier I said that methods are like functions that belong to objects. As you can
see in this example, as with a function, the method name is followed by a set of
parentheses. Some methods take parameters, just like functions do. So, just like a
function, you would pass those inside the parentheses. It’s important to realize
that every string you create gets access to every method that is defined for the
String object. But, when you invoke a String method, it only does its work on the
data in the String object that you’ve named. For example, consider this code:

Saturday Morning54

4804-2 Ch05.F 4/9/01 8:14 AM Page 54

var prez1 = “George Washington”;
var upperPrez1 = prez1.toUpperCase();
var prez2 = “Thomas Jefferson”;
var upperPrez2 = prez2.toUpperCase();

After this executes, upperPrez1 will be “GEORGE WASHINGTON” and
upperPrez2 will contain “THOMAS JEFFERSON.” This is just as simple as it looks
and works exactly the way you think it should. The prez1.toUpperCase() state-
ment tells JavaScript that you want an upper case copy of the data in prez1.
Similarly, prez2.toUpperCase() tells JavaScript that you want an upper case
copy of the data in prez2.

With that under your belt, getting at the length property should seem pretty
simple:

document.write(prez1.length); // writes out the value 17
document.write(prez2.length); // writes out the value 16

Again, it’s just a simple matter of specifying which String object you want to
work with and then following that with a period and the name of the property you
want to extract.

Many programming languages number the characters in a string
starting with the number 1. JavaScript, however, begins number-
ing characters with the number 0. So, for example, the string
“Baby” has a length of 4 characters, but those characters are
numbered from 0 (the B) to 3 (the y).

String methods you can use

Now that I’ve shown you how to call a String method, what methods are there to
call? (Note that, because you’ve only got a weekend to learn about JavaScript, this
book is only going to cover the most useful aspects of the language. If you want to
dig deeply into every nook and cranny of JavaScript (including the string methods
that you won’t find in this book), check out the official language specification for
JavaScript that is on your CD-ROM. It’s in the file ECMA-262.pdf.)

The charAt() method

This method allows you to extract a single character from a specified position in a
String object. For example, give this code a try (it’s on your CD-ROM if you don’t
feel like typing it in):

Note

Session 5—Working with JavaScript Strings 55

Part II—
Saturday M

orning
Session 5

4804-2 Ch05.F 4/9/01 8:14 AM Page 55

var greeting = “!azoolaP-ybaB ot emocleW”;
for (x=greeting.length - 1; x >=0 ; x--) {

document.write(greeting.charAt(x));
}

When you run this code, you’ll see it prints out “Welcome to Baby-Palooza!” If
you take a close look at the for loop, you’ll see why: I’ve begun the loop at the
end of the greeting string by setting x equal to the length of greeting minus
one. (Remember, JavaScript character string positions are numbered starting with
0. So, the position of the final character is the length minus one.) The loop then
progresses downward (note the x-- statement in the loop condition) until it goes
below 0. (Again, remember that the position of the first character in a string is 0.)

Each time through the loop the charAt method extracts the character found at
position x in greeting. The end result is that the string data is printed out back-
wards, giving us a now familiar salutation.

The indexOf() method

This method searches a String for a substring. If the substring is found, the posi-
tion at which it was found is returned. If the substring isn’t found, the method
will return a value of negative one (-1). There are actually two different forms for
calling this method. Here’s an example of the first one:

var itemDesc = “Stroller and SunShade”;
var sunPos = itemDesc.indexOf(“Sun”);
if (sunPos != -1) {

document.write(“Found ‘Sun’ at position: “ + sunPos);
}

else {
document.write(“Could not find ‘Sun’!”);
}

Here I’m checking to see if the characters “Sun” exist in the itemDesc string
variable. They do, so I output a short message telling me the position (13) where
“Sun” was found in the string data. (As with every other part of JavaScript, each
of the String methods you are seeing here is case-sensitive. So, if I had searched
for “sun” instead of “Sun,” the indexOf method would not have found a match
and would have returned a -1 result.)

As you might imagine, the indexOf method begins looking for your substring at
the start of the string data. This is usually fine, but there might be a time when
you want to exclude a portion of the string from your search. The second form of
the indexOf method is intended for just such a situation:

Saturday Morning56

4804-2 Ch05.F 4/9/01 8:14 AM Page 56

var custEmail = “somebody@aol.com”;
var atPos = custEmail.indexOf(“@”);
var aolPos = custEmail.indexOf(“aol”, atPos);
if (aolPos != -1) {

document.write(“Welcome AOL User!”);
}

else {
document.write(“Welcome non-AOL User!”);
}

In this example, I’m testing an e-mail address to see if it belongs to a specific
domain. So, since I only need to test what’s after the @ symbol, I use the first
form of indexOf to find the @. I then use that position information in the second
form of indexOf. In this second form, I pass a start position after the substring
you are looking for. This start position tells the method where in the string data to
begin looking for the substring.

The lastIndexOf() method

This method does the exact same thing as the indexOf method, except it starts
searching from the end of the string data, not the beginning. As with indexOf,
there are two forms of the lastIndexOf() method. In the first form, you simply
specify the substring you are searching for. In the second form, you specify the
substring along with a starting position. If you specify a starting position, the
search will progress from that point backwards toward the beginning of the string
data. Here’s an example:

var itemDesc = “Stroller and Stroller Carseat Adapter”;
var strollPos = itemDesc.lastIndexOf(“Stroller”);
if (strollPos != -1) {

document.write(“Found ‘Stroller’ at position: “ + strollPos);
}

else {
document.write(“Could not find ‘Stroller’!”);
}

If you run this code, you’ll find that “Stroller” is reported as found at position
13 and not at position 0. (Regardless of which end the search begins from, the
position returned is always counted from the start of the string data.)

Session 5—Working with JavaScript Strings 57

Part II—
Saturday M

orning
Session 5

4804-2 Ch05.F 4/9/01 8:14 AM Page 57

The split() method

The split method takes a string and splits it into an array. I haven’t told you
about arrays yet, but we’ll get to them soon, in Session 6.

The substring() method

The substring method extracts a new String from the interior of an existing
String.

var greeting = “Welcome to Baby-Palooza”;
document.write(greeting.substring(11, 15) + “
”); // “Baby”
document.write(greeting.substring(8, 10) + “
”); // “to”
document.write(greeting.substring(16)); // “Palooza”

The first parameter of the substring method is the starting position of the
String that you want to extract. The second parameter is the position that’s one
greater than the last character you want to extract. This is an important point: The
character specified in the first parameter will be a part of the extracted String, but
the character specified in the second parameter will not.

Another thing to notice is that the second parameter is entirely optional. If you
omit it (as I’ve done in the last line of this example) the remainder of the source
String will be extracted.

The toLowerCase() and toUpperCase() methods

As you’ve already seen, the toUpperCase method returns an all
UPPER CASE version of the data in a String object. As you can
probably guess, the toLowerCase method returns an all lower case
version of the data in a String object.

REVIEW

You’ve just taken a long look at JavaScript Strings. You learned that JavaScript
Strings are actually objects that have a length property and many different meth-
ods. You also learned how to access the length property and how to call the dif-
ferent String methods.

Saturday Morning58

4804-2 Ch05.F 4/9/01 8:14 AM Page 58

QUIZ YOURSELF

1. How do you concatenate two strings together? (See “Concatenation.”)

2. What happens when you concatenate a number with a string? (See
“Simple numeric conversion.”)

3. How do you call a String method? (See “Using String methods and
properties.”)

4. What does the length property tell you about a String? (See “String
methods and properties.”)

5. How are the character positions in a JavaScript String object numbered?
(See “String methods and properties.”)

Session 5—Working with JavaScript Strings 59

Part II—
Saturday M

orning
Session 5

4804-2 Ch05.F 4/9/01 8:14 AM Page 59

Session Checklist

✔ Understanding what arrays are and how to process their contents
✔ Understanding the kinds of data you can store in an array
✔ Understanding multidimensional arrays
✔ Learning about array methods

Up to this point, I’ve been creating a new variable every time I needed to
store a new value. For example, in Session 4, I used the following code to
hold product information:

strollerPrice = 199.95;
strollerDesc = “Rock & Stroll - Deluxe”;
strollerPartNo = “st-001”;
strollerShip = 20;
diaperPrice = 13.95;
diaperDesc = “Size 3, Extra Absorbent”;
diaperPartNo = “dp-003”;
diaperShip = 5;
carSeatPrice = 149.95;
carSeatDesc = “Ultra-Safe, Rear-Facing”;
carSeatPartNo = “cs-001”;
carSeatShip = 15;

S E S S I O N

Working with JavaScript Arrays

6

4804-2 Ch06.F 4/9/01 8:14 AM Page 61

While this is very descriptive, it’s also a very cumbersome way to do things.
Worst of all, if my inventory should ever change, I would have to create a new set
of variables (each with an appropriate name) for each product. Wouldn’t it be nice
if there were a type of variable that could hold a bunch of related, but different,
data all at once? Well, there is, and it’s called an array.

What Is an Array?

An array is a variable that has numbered or named slots that you can put data in.
You can think of these slots as a set of individual variables inside the array. For
example, the following code shows how one of the above products looks when it’s
placed in an array:

var strollerInfo = new Array();
strollerInfo[0] = 199.95;
strollerInfo[1] = “Rock & Stroll - Deluxe”;
strollerInfo[2] = “st-001”;
strollerInfo[3] = 20;

As with strings, JavaScript arrays are implemented as objects. Unlike strings,
however, you can’t just create an array by assigning a value to a variable. Instead,
you have to actually create an Array object. So, how do you create an Array object?
The answer is in the first line of our example: var strollerInfo = new Array();

As usual, I use the var keyword to signify that I am creating a new variable,
and then I give that new variable a name (strollerInfo). This is followed by the
new keyword. This keyword tells the JavaScript interpreter that I want to create a
new object of some type. In this case, I want to create a new Array object. So, I
follow the new keyword with a call to the Array() constructor method.

A constructor method is a special method that every type of object has. The first
thing that makes it special is that it has the same name as the type of object to
which it belongs. (Yes, String objects have a constructor method named
String().) Basically, a constructor method tells JavaScript what steps to take to
build a specified type of object. That’s why it’s called a constructor method; it’s
actually building the object you’ve requested. So, after this line is finished, I’ve
got a new Array object stored in the strollerInfo variable.

How to use an array

As I said earlier, an array can be thought of as a variable with a bunch of named or
numbered slots in it. Each of these slots can hold its own chunk of data, just as if

Saturday Morning62

4804-2 Ch06.F 4/9/01 8:14 AM Page 62

it were itself a variable. (Actually, the slots and the data in them are most often
referred to as elements of the array.) To access these slots you simply give the
name of the array variable, followed in square brackets by the number or name of
the slot you want to access. (The number or name you assign to a slot in an array
is called the index of that slot.)

Using numbered array elements

In the previous example, I’m using numbered slots to hold my product data. Notice
that I’ve started numbering my slots with zero. (You can actually begin numbering
your slots with any number you like, but beginning with zero is standard practice.)

You’ve seen how to get data into an array, but how do you get data out of an
array? Well, there are lots of ways to do this, but the most common way is to
process each slot in the array from inside a loop of some sort. Of course, to do
that, you have to know how long the array is. That’s why, as with String objects,
every Array object has a length property that tells you how many slots exist in
the array. (The JavaScript interpreter automatically updates the value in this prop-
erty as you add slots to the Array object.) So, with the previous example in mind,
take a look at this:

for (x=0; x<strollerInfo.length; x++) {
document.write(strollerInfo[x] + “
”);
}

When you run this code (it’s in the Listing6-2.htm file on the CD-ROM if you
don’t want to type it in), you’ll get a list of the contents of the array. The for loop
simply steps through each of the slots in the array and, using the number stored
in x, extracts and displays the data in each slot of the array.

Using named array elements

In my first example, I used numbered slots to hold my product data rather than
named slots. However, I could have just as easily have used named slots, as seen
here:

var strollerInfo = new Array();
strollerInfo[“price”] = 199.95;
strollerInfo[“desc”] = “Rock & Stroll - Deluxe”;
strollerInfo[“partNo”] = “st-001”;
strollerInfo[“shipCost”] = 20;

One advantage of this approach is that, instead of a meaningless number,
each slot’s name tells the programmer exactly what the slot holds. The downside,

Session 6—Working with JavaScript Arrays 63

Part II—
Saturday M

orning
Session 6

4804-2 Ch06.F 4/9/01 8:14 AM Page 63

however, is that you can no longer use a numeric counter to retrieve the contents
of the array. To solve this problem, JavaScript provides a special variant of the for
loop designed specifically for this sort of task. An example of this is shown below.

for (x in strollerInfo) {
document.write(strollerInfo[x] + “
”);
}

In this version of the for loop, the three expressions that would normally con-
trol the loop are replaced by the expression (x in strollerInfo). This expres-
sion tells the JavaScript interpreter that each time through the loop, the value of
x should become the name of the next slot in the strollerInfo array. So, the
first time through the loop, x contains “price.” The second time through it con-
tains “desc,” and so on. An added benefit of this approach is that, since x will take
on the name of each slot, you can inspect x and use its contents to display the
name of each slot. Like this:

for (x in strollerInfo) {
document.write(x + “ is “ + strollerInfo[x] + “
”);
}

It’s important to note that if you are going to use named slots you can give
your slots any name that will fit between a set of quotes. Even if that name isn’t a
valid JavaScript variable name! So, for example, the code shown here would be
perfectly legal:

var strollerInfo = new Array();
strollerInfo[“Price”] = 199.95;
strollerInfo[“Product Description”] = “Rock & Stroll - Deluxe”;
strollerInfo[“Baby-Palooza Part Number”] = “st-001”;
strollerInfo[“Shipping Cost, Ground”] = 20;
for (x in strollerInfo) {

document.write(x + “ is “ + strollerInfo[x] + “
”);
}

This would yield the much nicer output shown in Figure 6-1.
Unfortunately, there are a couple of drawbacks to using named slots:

� With named slots, you can only step through your array in one direction,
from top to bottom. With numbered slots, you can step through from the
bottom (length – 1) to the top (0).

Saturday Morning64

4804-2 Ch06.F 4/9/01 8:14 AM Page 64

� Directly accessing an array element with a named slot requires that you
know the name of the slot. If you are using verbose slot names, this can
make for some very difficult programming. A better solution is to use
numbered slots and set aside one slot for a detailed description of the
array’s contents.

Figure 6-1
The output of the code using verbose slot names

What kind of data can you put into an array?

Actually, since JavaScript variables are loosely typed (as mentioned in Session 2),
you can actually put any kind of data into any slot of a JavaScript Array object.
As you’ve already seen, you can even assign a different type of data to each slot in
an array. This makes JavaScript arrays very powerful. It also lets you create a mul-
tidimensional array.

What’s a Multidimensional Array?

Think of a multidimensional array as an array of arrays. Why would you ever need
something like this? Well, consider our product data: In the examples I’ve shown
you so far, I’ve actually only been assigning the data for one product into my
array. Given what you’ve seen thus far, the information for each of the other prod-
ucts would also have to be placed into its own Array object and you would then
have to manipulate each of these individually. Here again, it would be very nice if
there were a way to wrap all of the data into a single variable that could be easily
manipulated. With that in mind, take a look this:

Session 6—Working with JavaScript Arrays 65

Part II—
Saturday M

orning
Session 6

4804-2 Ch06.F 4/9/01 8:14 AM Page 65

var strollerInfo = new Array();
strollerInfo[0] = 199.95;
strollerInfo[1] = “Rock & Stroll - Deluxe”;
strollerInfo[2] = “st-001”;
strollerInfo[3] = 20;
var diaperInfo = new Array();
diaperInfo[0] = 13.95;
diaperInfo[1] = “Size 3, Extra Absorbent”;
diaperInfo[2] = “dp-003”;
diaperInfo[3] = 5;
var carSeatInfo = new Array();
carSeatInfo[0] = 149.95;
carSeatInfo[1] = “Ultra-Safe, Rear-Facing”;
carSeatInfo[2] = “cs-001”;
carSeatInfo[3] = 15;
var productInfo = new Array();
productInfo[0] = strollerInfo;
productInfo[1] = diaperInfo;
productInfo[2] = carSeatInfo;

As expected, I’ve created separate Array objects to hold the information for
each product. However after that’s done, I’ve also created a fourth array called
productInfo. I then take this array and fill its slots with the three product infor-
mation arrays I’ve already created. After doing this, I end up with an array of
arrays. I can then access all of the information about all of my products through
the productInfo variable.

How to access data in a multidimensional array

Accessing the data in a multidimensional array is a simple matter of specifying
each index needed to drill down to the slot you want in the appropriate array. For
example, the price for the car seat is kept in slot one of the third array in
productInfo. So if we wanted to print this out, we would code:

document.write(“Car seat price: “ + productInfo[2][0]);

See how this works? After the name of the multidimensional array
(productInfo), I’ve specified the index ([2]) of the subarray I want to access. If
you look back at the code that created this array, you’ll see that this is the slot
containing my car seat information. Once I’ve zeroed in on the correct array, I sim-
ply specify the index of the slot I want to extract data from ([1]). For another
example, if I wanted to change the price of the diapers to $15.95, I would code:

Saturday Morning66

4804-2 Ch06.F 4/9/01 8:14 AM Page 66

productInfo[1][0] = 15.95;

As our final example, the following code will take the arrays I just created and
display the contents of each slot.

for (x=0; x<productInfo.length; x++) {
for (y=0; y<productInfo[x].length; y++) {

document.write(productInfo[x][y] + “
”);
}

}

Here I’m using a couple of nested for loops to display all of the data in my
multidimensional array. The outer loop moves through the main array
(productInfo), while the inner loop displays the contents of each subarray.

Array Methods

As we’ve seen, JavaScript arrays are actually pretty easy to work with. However,
since they are objects, JavaScript arrays also come with a variety of methods that
make them even more useful and powerful. In this section, we’ll look at these
methods as well as the split() method that belongs to the String object. (Note
that examples of each of these methods can be found on your CD-ROM in the
Session06 folder.)

The Array() constructor method

There are actually a couple of different ways to use the Array() constructor
method.

new Array() With no parameters. As you’ve already seen, this
simply creates an empty Array object.

new Array(length) With a length parameter. This creates a new Array
object with length empty slots.

new Array(item1, With multiple parameters. This creates an
item2, etc.) Array object whose slots are filled with the items

you pass as parameters.

The concat() method

This concat() method will join multiple arrays together into a single new Array
object.

Session 6—Working with JavaScript Arrays 67

Part II—
Saturday M

orning
Session 6

4804-2 Ch06.F 4/9/01 8:14 AM Page 67

The join() method

This method will combine the individual elements of an array into a single string.
This string will be delimited by a character that you specify when you call the
join() method.

var bpArray = new Array(“Diapers”, “Baby Wipes”, “Rattle”);
var prodList = bpArray.join(“-”);

After this code executes, prodList will contain the string “Diapers-Baby Wipes-
Rattle.” If you don’t specify a delimiter, the join() method will use a comma by
default. (Compare this with the String.split() method discussed at the end of
this section.)

The pop() method

This method removes and returns the last element in an Array object. After this
method executes, the Array’s length property will be one less than before. For
example, the following code will result in lastProduct containing the string
“Rattle.”

var bpArray = new Array(“Diapers”, “Baby Wipes”, “Rattle”);
var lastProduct = bpArray.pop();

Internet Explorer 5 on the Macintosh does not support this
method or these (described later): push(), shift(), splice(), and
unShift().

The push() method

This method puts a new item at the end of an Array. Afterwards, the Array’s
length property will be one greater than before. After the following code exe-
cutes, the bpArray variable will have a new element at its end containing the
string “Diaper Cream.”

var bpArray = new Array(“Diapers”, “Baby Wipes”, “Rattle”);
bpArray.push(“Diaper Cream”);

Note

Saturday Morning68

4804-2 Ch06.F 4/9/01 8:14 AM Page 68

The reverse() method

This method will reverse the order of the elements of an Array object.

The shift() method

This method will remove the first element of an array (element 0) and move the
other elements up one. Afterwards, the Array’s length property will be one less
than before.

The slice() method

The slice() method will return a new Array object containing a subset of the ele-
ments in your original array. You simply specify a starting and ending element and
this method will return a new Array object containing each element from the start-
ing position to the end position minus one. In the following example the cleanUp
variable will be an Array object with two elements: “Diapers” and “Baby Wipes.”
Again, note that the specified ending element (element 2, “Rattle”) is not included
in the new Array object.

var bpArray = new Array(“Diapers”, “Baby Wipes”, “Rattle”,
“Stroller”, “Booties”);
var cleanUp = bpArray.slice(0, 2)

The sort() method

The sort() method will let you sort the contents of an Array object using what-
ever sorting process you want. You simply have to specify an appropriate sorting
function when you call the sort() method.

function simpleSort(item1, item2) {
var result = 0;
if (item1 > item2)

result = 1;
if (item1 < item2)

result = -1;
if (item1 == item2)

result = 0;
return result;

Session 6—Working with JavaScript Arrays 69

Part II—
Saturday M

orning
Session 6

4804-2 Ch06.F 4/9/01 8:14 AM Page 69

}
var bpArray = new Array(“Diapers”, “Baby Wipes”, “Rattle”, “Car
Seat”, “Stroller”);
bpArray.sort(simpleSort);

The sorting function (which you must write) will be called again and again by
the sort() method until all elements are sorted. Each time it’s called, it will
receive two parameters (here called item1 and item2). The sorting function must
compare these items and return a result based on that comparison. Note that the
comparison logic you use is totally up to you, but it should make sense for the
type of data you are sorting. In the above example, I’m just sorting strings, so a
simple string comparison is all that’s required. (JavaScript uses an alphabetical
order rule to compare strings. So, “ape” is less than “zebra.”)

� If item1 is greater than item2, the function should return a positive number.
� If item1is less than item2, the function should return a negative number.
� If item1is found to be equal to item2, the sorting function should return

a zero.

The sort() method uses these results to rearrange the contents of the Array in
sorted order. (It’s important to note that you can write as many sorting functions
as you want and use them with whichever Array objects you want. For example,
you can write one function to sort items in ascending order while another sorts
them in descending order.)

The splice() method

The splice() method is the most complex of the Array object methods. It allows
you to delete items from an Array and, optionally, insert new items in place of the
old ones. In its simplest form, the splice() method can delete one or more array
elements, like this:

var bpArray = new Array(“Diapers”, “Baby Wipes”, “Rattle”,
“Car Seat”, “Stroller”);
bpArray.splice(2, 1);

The first parameter tells the method which element to start the delete opera-
tion with. (In this case, it’s element 2, “Rattle”.) The second parameter tells
splice() how many elements to delete. In this case, I’ve specified a value of 1, so
only the “Rattle” element will be deleted. This effectively removes the element
from the middle of the array.

Saturday Morning70

4804-2 Ch06.F 4/9/01 8:14 AM Page 70

The second form of the splice() method doesn’t actually remove any elements,
it merely replaces their contents. For example:

var bpArray = new Array(“Diapers”, “Baby Wipes”, “Car Seat”,
“Stroller”);
bpArray.splice(1, 3, “Booties”, “Sun Shield”, “Baby Sling”);

Here again, the first parameter tells splice() where to start the operation. The
second parameter tells it how many elements, including the specified starting ele-
ment, need to be replaced. The remaining parameters are the new values that
should be assigned to the specified elements. So, after this code runs, bpArray[0]
will contain “Diapers”, bpArray[1] will contain “Booties”, bpArray[2] will con-
tain “Sun Shield”, and bpArray[3] will contain “Baby Sling”.

The toString() method

This method will combine all of the elements in an Array object into a single
string. Each element will be separated by a single comma. This is exactly the same
as calling the join() method without specifying a delimiter character.

The unShift() method

This method will add a new element to the beginning of the array and move all the
old elements up one. Afterwards, the Array’s length property will be one more
than before. So, after the following code executes, bpArray[0] will contain the
string “Stroller.”

var bpArray = new Array(“Diapers”, “Baby Wipes”, “Rattle”);

bpArray.unshift(“Stroller”);

The String.split() method

The final method you need to know about isn’t an Array object method at all, it’s
the split() method of the String object. As you might have guessed by now, this
method takes a string and breaks it into an Array object. The trick is: How does it
know where to break the string up? Well, when you call the split() method, you
specify a delimiter that the method will use to determine the start of each new
element. For example, the following code will create an Array with “Diapers”,
“Baby Wipes,” and “Rattle” as the elements.

var productList = “Diapers-Baby Wipes-Rattle”;
var bpArray = productList.split(“-”);

Session 6—Working with JavaScript Arrays 71

Part II—
Saturday M

orning
Session 6

4804-2 Ch06.F 4/9/01 8:14 AM Page 71

Putting It All Together

At this point, you’ve got all the pieces you need to really start making things hap-
pen. Two files in the Session06 folder of your CD-ROM (the babyPalooza.js and
index.htm files) take everything you’ve seen so far and combine it all to lay the
foundation of the Baby-Palooza.com storefront. Due to the length of these files I
won’t be showing them here, so load them into your editor (and your web browser)
so that you can follow along.

Looking first at the babyPalooza.js file, you’ll see that I’ve reorganized all of the
store data in terms of Array objects. This will allow me to manipulate all of my
product information through a single variable: productInfo.

I’ve also updated the showProductInfo function to take advantage of the fact
that it is now being passed an Array. As a result, it now pulls the product data
that it displays directly out of the Array object it receives, rather than processing
a bunch of parameters. As part of that process, I’ve also used a call to the split()
method along with a switch statement to determine the product’s category
(“Stroller,” “Rattle,” etc.) Displaying this information will give my customers a
slightly better idea of what they are buying.

Tying all of this together is the index.htm file. The main difference between the
current version of this file and what you saw in Session 4 is that I no longer
explicitly call showProductInfo for each product. Instead I simply loop through
my productInfo array and pass each product’s information Array object to the
function. (Remember, productInfo[x] actually refers to an entire subarray in my
multidimensional array.)

REVIEW

In this session you’ve learned about arrays, the JavaScript Array object, and all of
the different operations and methods they can use. You saw how arrays can be
used to hold a lot of data in a single variable while still allowing easy access to
that data. You also learned how to create and use an array whose slots are named
instead of numbered. You even saw a variant of the for loop that will let you work
with arrays that have named slots. Finally, we looked at an example of how every-
thing you’ve seen so far can be used together to lay the groundwork for a flexible
Web storefront.

Saturday Morning72

4804-2 Ch06.F 4/9/01 8:14 AM Page 72

QUIZ YOURSELF

1. What exactly is an array? (See “What is an Array?”)

2. How do you access the contents of an array? (See “How to use an array.”)

3. Why might you want to use named slots? (See “Using named array
elements.”)

4. What is a multidimensional array? (See “What’s a Multidimensional
Array?”)

5. What does the join() method do? How does it relate to the split()
method of the String object? (See “Array Methods.”)

Session 6—Working with JavaScript Arrays 73

Part II—
Saturday M

orning
Session 6

4804-2 Ch06.F 4/9/01 8:14 AM Page 73

Session Checklist

✔ Understanding what the Browser Object Model is
✔ Understanding the structure of the Browser Object Model
✔ Understanding how JavaScript works with the Browser Object

Model

Up to now, I’ve been telling you about JavaScript the programming lan-
guage. Now it’s time to talk about the environment that JavaScript actually
lives in. If you are thinking that means the Web browser, you are only par-

tially correct. While it’s true that the Web browser is the host for your JavaScript
programs, your programs will never interact directly with the Web browser. Instead,
you’ll be working with a collection of JavaScript objects that act as an intermedi-
ary between your JavaScript programs and the Web browser. This collection of
objects is sometimes called the Browser Object Model. The purpose of the Browser
Object Model is to provide a simple, consistent interface between your JavaScript
programs and the Web browser.

Why do things this way? Well, consider the personal computer industry.
Programs written for one platform (like the Macintosh) won’t run on another plat-
form (like Windows) without a lot of conversion work. This is because they use
very different programming interfaces to accomplish the same tasks.

S E S S I O N

Understanding the
Browser Object Model

7

4804-2 Ch07.F 4/9/01 8:14 AM Page 75

Now consider the Web browser industry. The JavaScript code you create for
Internet Explorer should be able to work perfectly well on Netscape’s Navigator.
(There are of course, some differences, but they are minor compared to moving
software between the Mac and Windows!) You can even use the code you wrote for
Navigator on Linux with Internet Explorer on the Macintosh. This is because both
browsers support the same programming interface, namely, the Browser Object
Model.

What’s in the Browser Object Model?

You’ve already been exposed to one part of the Browser Object Model: the docu-
ment object. As you’ll remember from Session 1, the document object represents
the actual HTML document that’s loaded into the Web browser. Just like the other
objects you’ve looked at (the String object in Session 5 and the Array object in
Session 6), the document object has a whole host of properties and methods all its
own. (In fact, the document object is so important, we’re going to discuss it in
detail in Session 9 a bit later this morning.)

There’s more to the Browser Object Model than just the document object. The
Browser Object Model is made up of a whole slew of objects that allow your
JavaScript programs to peek and poke into just about every nook and cranny of
the Web browser. All of these objects are arranged in what looks like an upside-
down tree structure. The window object sits at the top of this tree and all of the
other objects in the Browser Object Model can be found inside it. Figure 7-1 illus-
trates the main objects found in the Browser Object Model for Netscape Navigator 6
and Internet Explorer 5 (other browsers will be a bit different).

As you can see from Figure 7-1, the Browser Object Model is very big and rather
complex. So, the purpose of this session is to simply get familiar with the Browser
Object Model and the capabilities it offers. You’ll be learning about the individual
parts of the Browser Object Model over the remainder of the weekend. In the dis-
cussion that follows, I’ll give the names of the major objects in the Browser Object
Model along with a brief description of each. I’ll also tell you in which session
number that object is discussed.

The window object

The window object represents the Web browser window. It also encapsulates all of
the other objects we’ll be talking about in the remainder of this session.
(Remember the “array of arrays” from the end of Session 6? The concept behind
the window object is very similar to that. Think of it as an object that contains a

Saturday Morning76

4804-2 Ch07.F 4/9/01 8:14 AM Page 76

bunch of other objects.) Most of the objects inside the window object represent the
various controls that you see in your browser window. For example, the history
object (discussed in Session 27) holds the addresses of the Web pages you’ve vis-
ited. Other objects and properties inside the window object include the following.

Figure 7-1
The Browser Object Model

window

location screen

document

Other available objects
vary with browser version

Each item is the frames
array is a window object

navigatorhistory

forms

form

location

options

applets

imagesradio

checkbox documentElement

anchors

embeds

links

submit

hidden

fileupload

button

text

reset

text area

password

select plugins

styleSheets

frames

Session 7—Understanding the Browser Object Model 77

Part II—
Saturday M

orning
Session 7

4804-2 Ch07.F 4/9/01 8:14 AM Page 77

The document object: As mentioned in Session 1, the document object repre-
sents the currently loaded HTML page. There’s more information on the document
object to come later in this session, and we’ll be discussing it in detail in Session 9.

The frames array: JavaScript treats each frame that appears in the browser
window as a window object all to itself. So, if your Web site uses frames, the
JavaScript window object that represents the actual browser window (that is, not
one of the frames) is known as the parent window. This parent will contain an
Array object called the frames array. Each slot in the frames array will contain a
window object corresponding to one of the frames in the Web browser. While it
might sound confusing to have window objects inside window objects, it’s quite
easy to work with, as you’ll see in Session 23.

The location property: This is a String object that contains the address of the
Web page currently loaded into the Web browser. (The location object is discussed
in Session 27.)

The navigator object: This object holds details about the brand, version, and
capabilities of your Web browser. In addition to this basic information, it also con-
tains detailed lists of the plug-ins that are installed and the MIME types that the
browser knows about. Your JavaScript program can use this information to deter-
mine if a particular type of multimedia file will work in the browser. (The naviga-
tor object is discussed in Session 26. Support for plug-ins and MIME types is
discussed in Session 29.)

At this point, an illustration might help. Figure 7-2 shows a typical browser
window, frames and all, and how the parts of the window correspond to the objects
you’ve just been introduced to.

Another important aspect of the window object is the fact that it goes by sev-
eral different names. Usually if you want to refer to the window object, you just
use the name window. However, you don’t have to name the window object at all. If
JavaScript doesn’t know which object you are talking about, it will assume that
you are talking about the window object and use it by default. For example, the
following two statements are equivalent:

document.write(“Howdy!”); window.document.write(“Howdy!”);

As mentioned earlier, when you are working with frames, the window object
representing the actual browser window can be referred to as “parent.” You can use
this name even if you aren’t using frames.

Finally, you can also refer to the window object as “self” or “top.” (The name
“top” is also useful in the context of frames. We’ll talk more about that in Session
23 as well.) So, all of the following statements are equivalent.

document.write(“Howdy!”); parent.document.write(“Howdy!”);
self.document.write(“Howdy!”); top.document.write(“Howdy!”);

Saturday Morning78

4804-2 Ch07.F 4/9/01 8:14 AM Page 78

Figure 7-2
Parts of a browser window and corresponding JavaScript objects

The document object

You’ve already seen how the document object can be used to write a string out to
the browser window. However, the document object can do much more than just
this. The document object allows your JavaScript program to do the following.

Interact with HTML forms: This includes manipulating all of the various con-
trols available to HTML forms (text boxes, buttons, and so forth). You can even val-
idate the data in a form (Session 15) and change the location that a form is
submitted to. This is probably the single most useful aspect of JavaScript on the
Web page, so we’re going to be looking at this in extremely fine detail in Sessions
12, 13, and 15.

Manipulate cookies: The document object gives you direct control over the
cookies that are saved on the Web browser client’s machine. We’ll be looking at
this in Session 16.

Click here to see the history list

Document

The entire web browser window is represented by the window object

Location

Session 7—Understanding the Browser Object Model 79

Part II—
Saturday M

orning
Session 7

4804-2 Ch07.F 4/9/01 8:14 AM Page 79

Interact with images: The document object allows you to directly access and
manipulate the images that are loaded into your Web documents. In Session 14,
we’ll see how JavaScript will let us load images and even create simple animations.

Interact with Java applets: The document object also gives you access to any
Java applets that might be loaded by your Web page. We’ll look at this in Session 30.

JavaScript and the Browser Object Model

Now that you’ve got an idea of what’s in the Browser Object Model, you might be
wondering how you actually use it. I’ve already shown you a small sample of this,
in the discussion of the window object. Consider again, this line of code:

window.document.write(“Howdy!”);

What exactly is this code telling JavaScript to do? Well, remember from our dis-
cussion of String object methods that the period is an operator that tells
JavaScript to look inside an object so that you can access something contained in
it. So, this code says, “Look inside the window object and get me the document
object. Then, look inside the document object and call its write() method.” This
is how you access the parts of the Browser Object Model with JavaScript: Starting
with the window object, you list the names of the objects that will lead to the
object you want to access. All you have to remember is to separate the object
names with periods. This list of object names will tell JavaScript the path to follow
to access the Browser Object Model object you want.

A simple example

How does an HTML file map to the Browser Object Model? Here’s an example.

<html>
<head><title>Browser Object Model</title></head>
<body bgcolor=”white”>
Welcome to Baby-Palooza!
<form name=”order”>
Number of Strollers:
<input type=”text” name=”strollCount” value=”0” />

Saturday Morning80

4804-2 Ch07.F 4/9/01 8:14 AM Page 80

Number of Diapers:
<input type=”text” name=”diaperCount” value=”0” />

Number of Rattles:
<input type=”text” name=”rattleCount” value=”0” />
</form>
</body>
</html>

When the Web browser loads this file, it actually creates a complete set of Browser
Object Model objects to represent it. For this file, the following objects are created:

Object Meaning

The window object This represents the Web browser itself.

The document object This represents the HTML file.

A form object named This represents the <form> tag defined in our HTML file.
“order” Note that the name of this object is the same as the

name you specify in the name attribute of the <form>
tag. (If you have more than one <form> in your HTML
file, you need only give them each a unique name
attribute to access them through JavaScript.)

Three input objects These objects represent the text boxes defined inside the
named “strollCount,” order form. Each of these objects has a value property
“diaperCount,” and that holds the number that’s currently typed into the
“rattleCount” text box. Again, the name for each of these JavaScript

objects is taken directly from the name attribute used in
its corresponding HTML <input> tag.

Of course, there are other objects created. For example, a forms array is created
as well. But, since there are no corresponding definitions in the HTML file, those
objects will be empty. (In this case, the forms array will have a length of zero.)
In Figure 7-3, you can see how these objects are nested one inside the other.

Session 7—Understanding the Browser Object Model 81

Part II—
Saturday M

orning
Session 7

4804-2 Ch07.F 4/9/01 8:14 AM Page 81

Figure 7-3
Objects created by our simple HTML file

Knowing all of this, you can then write code that will access these objects. For
example:

var numStrollers = document.order.strollCount.value;
var numDiapers = document.order.diaperCount.value;

In each line of code, I’m “drilling down” from the outermost object (in this
case, the document object, remember that the window object is implied) to the
property I want to access (the value property of the individual text box objects).
The first line, for example, says, “Look in the document object and you’ll find an
object named order. Look inside the order object and you’ll find another object
named strollCount. Look inside this object and get the contents of its value
property. Finally, place that result into the numStrollers variable.” Of course, you
can also assign values to these properties as well:

document.order.strollCount.value = 10;
document.order.diaperCount.value = 95;

However, these are more than just simple assignment statements. Remember,
these objects correspond to HTML elements that are actually on the screen while
your JavaScript program is executing. So, if you assign a new value to the value
property of the rattleCount text box, that number will immediately appear on
screen in the text box! This is what makes the combination of JavaScript and the
Browser Object Model so very powerful. By using them together, your JavaScript
program can easily interact with the elements of the HTML page and dynamically
change the information that the user sees.

window object

document object

form Object "order"

input Object - "strollCount"

input Object - "diaperCount"

input Object - "rattleCount"

Saturday Morning82

4804-2 Ch07.F 4/9/01 8:14 AM Page 82

REVIEW

In this session, you learned about the Browser Object Model. You learned that, as
far as JavaScript is concerned, the Web browser and everything in it is just a col-
lection of JavaScript objects. You also learned how to create statements to access
the various parts of the Browser Object Model. Finally, you saw how interaction
between your JavaScript code and the Browser Object Model can change what the
user sees in the Web browser.

QUIZ YOURSELF

1. What does the window object represent? (See “The window object.”)

2. What is kept in the frames array? (See “The window object.”)

3. What does the self object refer to? (See “The window object.”)

4. How is the name attribute of an HTML tag used by the Browser Object
Model? (See “A simple example.”)

5. What happens when you assign a value to the value property of a text
box object? (See “A simple example.”)

Session 7—Understanding the Browser Object Model 83

Part II—
Saturday M

orning
Session 7

4804-2 Ch07.F 4/9/01 8:14 AM Page 83

Session Checklist

✔ Understanding what the window object is
✔ Learning about window object properties and methods

A s you’ve seen in the previous session, the window object is a JavaScript
object that represents the entire Web browser window. By working through
the window object, your JavaScript code can effectively control just about

every aspect of the browser. As you might imagine, Session 7 only scratched the
surface of what’s in the window object. In this session, we’re going to dig quite a
bit deeper into the window object so you can see how to use its properties and
methods in your JavaScript programs. (Examples of these properties and methods
can be found on your CD-ROM in the Session08 folder.)

Both Netscape and Internet Explorer have added proprietary
properties and methods to the window object. So I’ll restrict
myself to only those properties and methods that work in both
browsers. If you need to write JavaScript that’s specific to a
browser, refer to Session 26.

Note

S E S S I O N

Working with the window Object

8

4804-2 Ch08.F 4/9/01 8:14 AM Page 85

Properties of the window Object

As you read the following descriptions, keep in mind that a window object and its
properties can be assigned to a JavaScript variable just like any other object. Many
of the examples in this session make use of this fact to open and track multiple
windows.

The closed property

This tells you if a particular window object represents an open browser window. If
the window is open, the closed property will be false. If the window is closed, it
will be true.

The defaultStatus property

This property specifies a string that will be displayed in the browser’s status bar. (The
status bar is typically found in the lower left-hand corner of the browser window.)

The document property

This is the document object. It represents the HTML document that is currently
loaded into the browser window or the HTML document that is loaded into a partic-
ular frame. The document object is discussed in detail in the next session.

The frames array

This array holds one window object for each frame in a multiframe Web site. (The
frames array is discussed in detail in Session 23.)

The history property

The history property is an object that contains the history list — that is, a list of
Web sites visited by that window object. Each window object (including those in
the frames array) has its own history property. (The history object is discussed
in Session 27.)

Saturday Morning86

4804-2 Ch08.F 4/9/01 8:14 AM Page 86

The location property

The location property holds the Web address of the page you are currently viewing.
If you assign this property a new Web address, the Web browser will load that Web
page. (The location object is discussed in detail in Session 27.)

The name property

This property contains the name of the window object. Note that this is not the
same as the name of the JavaScript variable that actually holds the window object.
For example:

var catalogWindow = window.open();
catalogWindow.name = “catalog”;

Once you assign a name to a window object, you can use that name in the tar-
get attribute of an anchor tag. So, in the following example, clicking on the “See
the Catalog” link will load the catalog.htm file into the window that was opened
by your JavaScript code.

See the Catalog

The navigator property

The navigator object contains information about the Web browser including its
version, brand information and platform information. The following simple script
will reveal everything contained in the navigator object. (We’ll discuss how to use
this information to write browser-specific scripts in Session 26.)

for (x in navigator)
document.write(x + “ = “ + navigator[x] + “
”);

The opener property

When one window creates another (using the window.open() method, discussed
later in this session) the first window becomes the opener of the new window. This
allows you to actually communicate between windows. (We’ll look at this process
in Session 24.)

self.name = “original”;
var newWindow = window.open();
document.write(newWindow.opener.name);

Session 8—Working with the window Object 87

Part II—
Saturday M

orning
Session 8

4804-2 Ch08.F 4/9/01 8:14 AM Page 87

The parent property

If your site is arranged in frames, each frame is considered to be its own window.
So, each frame has its own window object. These window objects are all “children”
of the frameset document that loaded those frames into the Web browser. The win-
dow object representing the frameset document is therefore said to be the parent of
each frame. The parent property holds the window object representing the frame-
set document. This is shown in Figure 8-1. (The source code for Figure 8-1 is in the
file framesNparent.htm.)

Figure 8-1
Frames and the parent property

The screen property

The screen property contains information about the screen settings on the client
monitor. You can use this information to determine the resolution of the client
monitor and load the appropriately sized graphics. (We’ll discuss the screen prop-
erty in Session 14.)

The status property

This property holds a string that will be temporarily displayed in the browser’s sta-
tus bar. After a brief period, the string in the defaultStatus property will replace
this message.

Saturday Morning88

4804-2 Ch08.F 4/9/01 8:14 AM Page 88

The top property

The top property refers to the top-most window in a set of frames-based windows.
This is essentially the window object that represents the actual Web browser win-
dow. How is this different from the parent property? Consider Figure 8-2.

Figure 8-2
Frames within frames and the top property

This window shows a frameset within a frameset. As you can see, the innermost
set of frames (the bottom row) have a parent that is itself a frame in the browser
window. In this case, the parent for these frames is not the same thing as the
actual browser window. The top property, on the other hand, always represents the
actual browser window.

Methods of the window Object

The window object provides several methods. In this section, we’ll look at these
methods and see how they can be used to interact with the user and the web
browser itself.

Session 8—Working with the window Object 89

Part II—
Saturday M

orning
Session 8

4804-2 Ch08.F 4/9/01 8:14 AM Page 89

The alert() method

This method displays a dialog containing a message that you specify along with
a single OK button. Calling this method will halt execution of your JavaScript
program until the user clicks the OK button to proceed. (Note that in the Linux
version of Netscape Navigator, the alert() method does not halt execution of
your program!) The alert() method is extremely useful as a debugging tool. If
you need to know the value of a variable, simply slap it into an alert() call and
you’ll see the value pop up on the screen in front of you. For example, if you
wanted to know the value of a variable named price, you could simply code
alert(price).

The blur() method

The blur() method will remove the focus from the associated window object. This
means that the window object will no longer receive any keystrokes that the user
types. If you call blur() for a window in a frame, the focus will go to the top
object in its browser window. If you call blur() for a top level window (that is, the
window that represents the browser) that window will usually be sent to the back
of all other open browser windows.

The clearInterval() and clearTimeout() methods

See the discussions for the setInterval() and setTimeout() methods later in
this Session.

The close() method

Calling the close() method will close the associated browser window. As a secu-
rity measure, most Web browsers will only let you close the windows you create
yourself. If you try to close a browser window created by the system, you’ll usually
get a confirmation dialog telling you that the Web page you are viewing is trying
to close the window. For example, assuming that you start Internet Explorer (for
Windows) and immediately load in a file containing the following code:

var newWindow = window.open();
newWindow.close();
self.close();

The first close() call will proceed as expected. However, the second close()
call will bring up a dialog asking you to confirm that you want the window to close.

Saturday Morning90

4804-2 Ch08.F 4/9/01 8:14 AM Page 90

The confirm() method

The confirm() method lets you ask the user a simple “OK” or “Cancel” question.
You pass the confirm() method a string containing your question and it presents
that question to the user along with a set of OK and Cancel buttons. If the user
clicks the OK button, a true is returned. If the user clicks the Cancel button, a
false is returned.

if (confirm(“Would you like to proceed?”)) {
alert(“Here we go...”);
}

else {
alert(“I understand. These things can be scary!”);
}

The focus() method

The focus() method will tell the Web browser to direct keystrokes to the specified
window object. If the window object specified isn’t the front-most window, the
focus() method will bring that window to the front.

The moveBy() method

Calling this method will move the specified window by a specified number of pixels.

self.moveBy(10, 30); self.moveBy(-10,-30);

The first statement will move the window 10 pixels to the right and 30 pixels
down from its current position. The second statement will move the window 10
pixels up and 30 pixels to the left of its current position. Note that most browsers
will not let you move the window off of the screen.

The moveTo() method

This method moves a window to an absolute position on the screen. For example:

self.moveTo(0, 0); self.moveTo(100,300);

The first statement will move the window to the upper left corner of the screen.
The second statement will move the window to a position 100 pixels from the top
of the screen and 300 pixels from the left-hand side of the screen. Here again,
most browsers will not let you move the window off of the screen.

Session 8—Working with the window Object 91

Part II—
Saturday M

orning
Session 8

4804-2 Ch08.F 4/9/01 8:14 AM Page 91

The open() method

As you’ve seen in several of the other examples in this Session, the open()
method opens a new browser window and returns a window object to represent it.
If you call the open() method with no parameters, you will get an empty browser
window. If you want something more interesting, you can pass up to four parame-
ters in the following order:

url This is the Web address of a Web page that you want to
automatically load into the new window.

name This is a string that will be placed into the window.name
property of the new window.

featuresList This is a string specifying the features the new window
should have. This parameter lets you specify how big the
window should be, if it should have toolbars, scroll bars,
and so on. (We’ll discuss these features in Session 24.)

replace This is a Boolean value that specifies if the Web address
specified in the first parameter should replace the current
entry in the history list.

As an example, the following code would create a new window object named
“hungryMinds” which would display the Hungry Minds Web site.

var bookSite = window.open(“http://www.hungryminds.com”,
“hungryMinds”);

The prompt() method

The prompt() method allows you to ask the user a question, and get back an
answer. You pass two parameters to the prompt() method: a message string and a
default response value. The following statement will present the user with the dia-
log shown in Figure 8-3.

var response = prompt(“What is your favorite color?”, “black”);

Note the default response specified in the call to prompt() is shown in the text
box. The user can type over this value, or click OK to accept it as their reply. If
they click OK, the value typed into the text box will be returned to your script. If
the user clicks Cancel, a special value called null is returned to your script. A null
tells your program that nothing was returned by prompt(). (The null value is
used in JavaScript to represent “nothing” or an empty object.) Since null is a
JavaScript keyword, you can check for it like this:

Saturday Morning92

4804-2 Ch08.F 4/9/01 8:14 AM Page 92

var response = prompt(“What is your favorite color?”, “black”);
if (response == null) {

alert(“You clicked the Cancel button”);
}

else {
alert(“Your response was “ + response);
}

Figure 8-3
A dialog created by the prompt() method

The resizeTo() method

This method will resize a browser window to the width and height specified.

self.resizeTo(50, 325); // Set width to 50 and height to 325

Note that the size you specify represents the entire browser window (including
toolbars, buttons, and so forth) not just the document portion of the window!

The scroll() and scrollTo() methods

Each of these methods will let you scroll the content of a window to a specified
point. The point specified will appear in the upper left-hand corner of the window.

scroll(0, 0); scrollTo(0, 30);

The first statement will scroll to the top of a document while the second state-
ment will scroll 30 pixels down the document.

The scrollBy() method

The scrollBy() method will scroll a document a specified number of pixels from
its current position. The following statement will scroll a document up 25 pixels.

scrollBy(0, -25);

Session 8—Working with the window Object 93

Part II—
Saturday M

orning
Session 8

4804-2 Ch08.F 4/9/01 8:14 AM Page 93

The setInterval() and clearInterval() methods

The setInterval() method is almost exactly like the setTimeout() method. (In
fact, you should read the description of the setTimeout() method before continu-
ing here.) The main difference is that the JavaScript statement you pass to
setInterval() is executed over and over again. After each execution, the timer
resets and the countdown begins again. So, this statement will scroll down a docu-
ment, 100 pixels at a time, every two seconds.

var intervalID = setInterval(‘scrollBy(0, 100);’, 2000);

The only ways to stop this process is to either close the browser window or to
use the clearInterval() method to stop the timer from counting down.

clearInterval(intervalID);

The setTimeout() and clearTimeout() methods

This method is one of the most useful, and confusing, methods in the window
object. The setTimeout() method takes two parameters: The first is a string that
represents a valid JavaScript statement. The second is a number representing a
time period expressed in milliseconds. (A millisecond is 1/1000th of a second. So,
1000 milliseconds is 1 second.)

The setTimeout() method takes the first parameter and sets it aside in a spe-
cial queue. It then takes the second parameter and uses it to start a countdown.
For example, if you pass 2000 milliseconds for the second parameter, you’ll get a
two-second countdown.

Once the countdown is finished, the first parameter is retrieved and passed to
the JavaScript interpreter. The JavaScript interpreter then executes the statement
in the string just as if you had typed it directly into your source code.

In this example, the setTimeout() method will set up a five-second counter.
When this expires (that is, when it times out) the statement alert(‘Hello
World!’) will be executed.

setTimeout(“alert(‘Hello World!’)”, 5000);

Notice that the string we are passing is a valid JavaScript statement. Also note
how I’ve nested my quotes in this example. If I had written the statement this
way:

setTimeout(“alert(“Hello World!”)”, 5000);

Saturday Morning94

4804-2 Ch08.F 4/9/01 8:14 AM Page 94

The statement would have failed because you can’t have two sets of the same type
of quotes in a single string.

Another thing to note is that the setTimeout() method does not set up a
recursive call to the statement you specify in the first parameter. The JavaScript
statement in the first parameter is only executed once, and only after the speci-
fied number of milliseconds has passed. To execute a statement over and over
again, use the setInterval() method instead.

It’s not shown in any of these examples, but the setTimeout() method also
returns a result. This result is a timer ID that you can either hold onto or ignore
completely. If you decide to hold onto it, you can pass this timer ID to the
clearTimeout() method and the timer will be stopped and the associated
JavaScript statement will not be executed.

The setTimeout() method is an extremely powerful and important part of the
window object. In fact, it’s so useful, you’ll find it used in a large number of the
sample files for this session. (We’ll be talking more about the setTimeout()
method and its close cousin, the eval() function, in Session 20.)

You should never write a recursive function in JavaScript! If you
do, you’ll quickly generate an error message to the effect that
the JavaScript interpreter has run out of memory. In a worst-case
scenario, you can even crash the browser! Instead, always use the
setInterval() or setTimeout() methods to set up a repeating
function or code block. (For an example of a recursive function,
see the recurseBad.htm file in the Session08 folder. Just be sure
to save all of your work before you load this file!)

REVIEW

It’s been another information-packed session, but the result is that you now know
just about everything there is to know about the window object. You’ve learned
about the properties and methods that make up the window object, and, if you’ve
loaded any of the source files on the CD-ROM, you’ve seen how to use them.

QUIZ YOURSELF

1. What is the difference between the parent and top properties? (See
“Properties of the window Object.”)

Never

Session 8—Working with the window Object 95

Part II—
Saturday M

orning
Session 8

4804-2 Ch08.F 4/9/01 8:14 AM Page 95

2. What is in the navigator object? (See “Properties of the window
Object.”)

3. What does the opener property contain? (See “Properties of the window
Object.”)

4. What does the alert() method do? (See “Methods of the window
Object.”)

5. What do the setTimeout() and setInterval() methods do? (See
“Methods of the window Object.”)

Saturday Morning96

4804-2 Ch08.F 4/9/01 8:14 AM Page 96

Session Checklist

✔ Understanding what the document object is
✔ Learning about document object properties and methods

The document object is a JavaScript object that represents the HTML page
that’s currently loaded into the Web browser. As with the other objects you’ve
seen, the document object contains a whole host of properties and methods

that let you investigate and manipulate the HTML page. In this session, we’ll look
at these properties and methods to see how you can use them from JavaScript.
(Examples showing the use of each property and method can be found on your
CD-ROM in the Session09 folder.)

As with the window object, each of the major Web browsers
defines several proprietary properties and methods for the docu-
ment object. Again, I’ll be restricting my discussion to those
items that should work in the latest versions of Internet Explorer
and Netscape Navigator.

Note

S E S S I O N

Working with the
document Object

9

4804-2 Ch09.F 4/9/01 8:15 AM Page 97

Properties of the document Object

In the sections that follow, you’ll see how the properties of the document object
can be used to affect the way your HTML documents are seen by your users.

The alinkColor property

The alinkColor property specifies the color that should be used to display the
currently active link. The currently active link is the link that will be followed if
you press the return key or click the mouse on it. To change this, just assign it a
new color value:

document.alinkColor = “gray”;

If you need a bit more control over the color you want to use, you can also
assign a hexadecimal color value. Note however that these hex values need to be
preceded with a pound sign and not the 0x that you would use when assigning a
hexadecimal value to a JavaScript variable. So, an equivalent statement using a
hex value would look like this:

document.alinkColor = “#808080”;

When you assign a color this way, you are specifying the red, green, and blue
(RGB) color values that will be mixed to create the final color. In the above exam-
ple, all three colors are being assigned a value of 0x80 (128 decimal). In the fol-
lowing example:

document.alinkColor = “#00FF77”;

The value for red is 0x00 (zero, the lowest possible value), the value for green is
0xFF (which is 255 decimal and is the highest possible value) and the value for
blue is 0x77 (which is 119 decimal). These values will be mixed to arrive at the
final display color.

However, if you don’t want to muck about with numbers, there are several stan-
dardized color values that have been assigned names that you can use for your
colors. Table 9-1 shows the standard color names (and their equivalent hexadecimal
values) that you can use for this and the other color-related properties of the doc-
ument object.

Saturday Morning98

4804-2 Ch09.F 4/9/01 8:15 AM Page 98

Table 9-1
Standard Color Names and Numbers

Color Name Hexadecimal Color Name Hexadecimal
Color Number Color Number
(#RRGGBB) (#RRGGBB)

aqua #00FFFF navy #000080

black #000000 olive #808000

blue #0000FF purple #800080

fuchsia #FF00FF red #FF0000

gray #808080 silver #C0C0C0

green #008000 teal #008080

lime #00FF00 white #FFFFFF

maroon #800000 yellow #FFFF00

The anchors array

The anchors array holds one Anchor object for each set of tags that are in the document. Each Anchor object has a
name property that contains the name specified in the name attribute of the HTML
anchor tag. So, the following HTML

This is the top
<!-- Lots of content would go here -->
This is the bottom

would create an anchors array with two Anchor objects in it. The first anchor
object would have a name property of “top” and the second would have a name of
“bottom.”

The applets array

The applets array holds all of the Java applets that are embedded in the HTML
document. (Each item in this array corresponds to an <applet> tag in the HTML
document.) The properties and methods that you can access for these Java applets

Session 9—Working with the document Object 99

Part II—
Saturday M

orning
Session 9

4804-2 Ch09.F 4/9/01 8:15 AM Page 99

will be the same as the properties and methods that each applet makes available to
the outside world. We’ll be discussing the relationship between Java and JavaScript
in more detail in Session 30.

The bgColor property

This property lets you set the background color of the HTML document.

document.bgColor = “red”;

Note that in Netscape Navigator, you can only assign a value to bgColor at the
start of your HTML document (that is, in a script block located between the
<head></head> tags.) In Internet Explorer however, you can assign a value to this
property at any time. This will result in an immediate change of the background
color in your document.

The cookie property

The cookie property lets you read and set the client’s cookie value for an HTML
document. Reading and writing a cookie is very simple:

var theCookie = document.cookie; // read the cookie
document.cookie = theCookie; // write the cookie

However, as you’ll see in Session 16, actually using a cookie is a bit more complex.

The domain property

This property contains the host name of the Web server that the HTML document
was loaded from. (If the document was loaded from a local file, this property will
contain the empty string.) As I’ve hinted at previously, JavaScript code in one
browser window can communicate with JavaScript in another window. However,
this is allowed only if the document.domain property is the same for each window
that wants to communicate. So, if the two HTML files you want to communicate
come from two different servers on your site (that is, two different domains), this
can present a problem. In Session 24, I’ll show you how to use the
document.domain property to work around this restriction.

Saturday Morning100

4804-2 Ch09.F 4/9/01 8:15 AM Page 100

The embeds array

The embeds array contains one entry for each of the <embed> tags in the HTML
document. If an individual embedded item has a Java-style interface, you can
interact with it in the same way that you would a Java applet in the applets
array. However, this is entirely dependent on the embedded item.

The fgColor property

This property lets you change the foreground color of the HTML document.

document.fgColor = “blue”;

(Unlike the bgColor property, only older versions of Netscape Navigator restrict
the use of this property to the start of an HTML document. In Navigator v6 and
later, you can assign a value to fgColor whenever you like.)

The forms array

The forms array contains one form object for each set of <form></form> tags in
the HTML document. These form objects themselves contain objects representing
the various controls (text boxes, select menus, etc.) that the user interacts with in
the form. The form object and its contents are one of the most important and use-
ful parts of the document object, so I’ll be going over them in great detail in
Sessions 12, 13, and 15.

The images array

The images array contains one entry for each tag in the HTML document.
Each entry is a JavaScript Image object that you can use to load new images or
create simple animations. You’ll find information on the images array and how to
use it in Session 14.

The lastModified property

This is a String object containing the date that the HTML file was last changed on
disk.

Session 9—Working with the document Object 101

Part II—
Saturday M

orning
Session 9

4804-2 Ch09.F 4/9/01 8:15 AM Page 101

The linkColor property

This property holds the color that will be used to display links (<a href=”
somedestination”> tags) in the document. As with the fgColor property,
older versions of Netscape Navigator restrict the use of this property to the start of
an HTML document. In the latest browsers, you can assign a value to linkColor
whenever you like.

The links array

This holds a Link object for each tag in the
HTML file.

The Link object

A JavaScript Link object contains lots of different properties that can provide you
with a ton of information about the HTML link it represents. This information can
be used to write all sorts of interesting scripts. (The linksArray.htm file on your
CD-ROM shows one use for this information.) The properties of the Link object vary
from browser to browser, but the most common (and useful) are described in the
following sections.

The Link.hash property This contains a String object containing the hash part of the
Web address specified in the link. For example, in this link, the hash portion is #top.

Baby-
Palooza

The Link.host property This contains a String object containing the host informa-
tion from the link’s Web address. For example, in this link, the host portion is
www.baby-palooza.com:80.

Baby-Palooza

The Link.hostname property This contains a String object containing just the host
name information from the link’s Web address. For example, in this link, the host-
name portion is www.baby-palooza.com.

Baby-Palooza

Saturday Morning102

4804-2 Ch09.F 4/9/01 8:15 AM Page 102

The Link.href property This String object contains the entire Web address specified in
the link. For example, in this link, the href portion is http://www.baby-palooza.
com/.

Baby-Palooza

The Link.pathname property If the Web address points to a file that’s buried in a
folder somewhere on the server, this property will contain the path to that file. In
this link, the pathname property would contain the string strollers/index.htm.

<a href=”http://www.baby-
palooza.com/strollers/index.htm”>Strollers

The Link.port property This is a String object containing the port specified in the
link’s Web address.

Baby-Palooza!

Here, the port property would contain the value 80.

The Link.protocol property The protocol (http, ftp, etc.) specified in the link’s Web
address.

The Link.search property This is the query string specified in the Web address.

<a href=”http://www.baby-
palooza.com/search.htm?type=stroller”>Show Strollers

In this example, the search property would contain the string ?type=stroller.
Note that the question mark is included at the start of the string.

The Link.target property This is a String object containing the name of the target
window that is specified in the link. In the following link, the target property
will contain the string goodBooks.

Hungry
Minds

The Link.innerHTML Property This property is available in Netscape Navigator v6
and Internet Explorer v5 and later. Basically, it’s the text that shows up in the Web
browser for a particular link. For example, in this link, the string “Hungry Minds”
will be in the innerHTML property.

Session 9—Working with the document Object 103

Part II—
Saturday M

orning
Session 9

4804-2 Ch09.F 4/9/01 8:15 AM Page 103

Hungry Minds

The really neat thing about this property is that you can actually assign a new
string to it, and change the link’s text on the screen!

The location property

This holds the Web address the HTML document was loaded from. Assigning a new
Web address to location will force the browser to load the page stored at that
address.

document.location = “http://www.hungryminds.com”;

The plugins array

This is another name for the embeds array. Netscape Navigator 6 doesn’t support
this property, probably to avoid confusion with the navigator.plugins array
(which you’ll be learning about in Session 29). The navigator.plugins array
holds information about extensions installed in the browser itself, while the plug-
ins array (and the embeds array) holds information about the items embedded in
an individual HTML document. (Even though only Internet Explorer supports this
property, I mention it here to draw the distinction between the plugins array and
the navigator.plugins array.)

The referrer property

The referrer property is a String object that holds the Web address of the docu-
ment from which the current HTML document was reached. (Note that this prop-
erty is in the latest versions of Internet Explorer and Netscape Navigator, but does
not seem to work .)

The title property

This property holds a String containing the title of the HTML document. This is the
title that is specified between the <title></title> tags. (In Internet Explorer
v5+ and Netscape Navigator v6, you can assign this a new string and the title of
the window will change.)

Saturday Morning104

4804-2 Ch09.F 4/9/01 8:15 AM Page 104

The URL property

This property contains the same information as the location property. The main
difference is that, in Netscape Navigator, assigning a new Web address to the URL
property has no effect. (In Internet Explorer, assigning a new address to the URL
property will force the browser to load that page.)

The vlinkColor property

This property specifies the color to be used to display the links that have been
visited.

Methods of the document Object

In addition to the properties discussed in the previous sections, the document
object also contains several methods that allow you to manipulate the actual body
of the document.

The clear() method

In the past, the clear() method was used to clear the contents of a browser win-
dow. Now however, the clear() method doesn’t really do much of anything. In
fact, the clear() method will be removed from JavaScript in the near future. So,
why mention it? Well, there’s a lot of JavaScript out there that uses the clear()
method, so I thought you should know about it. However, don’t use the clear()
method in your own JavaScript code!

The open() and close() methods

When you use the write() or writeln() method to write a string to the docu-
ment object, you are actually sending data to something called a stream. A stream
is really just a holding place for data. The data sits in the stream until the browser
is ready for it. In this case, your string data sits in the stream until the browser
can write it out to the browser window. The act of preparing a stream for use is
called opening the stream. Conversely, when you finish using a stream, you should
close it. That’s what these methods do.

The open() method tells the browser that you want to write some new string
data to the current document object. The close() method tells the browser that

Session 9—Working with the document Object 105

Part II—
Saturday M

orning
Session 9

4804-2 Ch09.F 4/9/01 8:15 AM Page 105

you have finished writing your data. It also forces the browser to output any data
that’s left in the stream.

Normally, you don’t have to bother with either method. When the browser loads
an HTML file, it automatically opens an output stream and begins filling it with
the contents of the HTML file along with the output of any document.write() or
document.writeln() calls you make in your JavaScript code. Then, when the
HTML file is completely loaded (and your JavaScript code has finished creating its
output), the browser will close the stream and display the page. However, if you
want to send any text to the browser window, after the HTML page is loaded, you
need to proceed in the following manner:

1. Call document.open(). This will open the document object for writing
once again.

2. Make your document.write() or document.writeln() calls. This will let
you write out whatever HTML or plain text you wish.

3. Call document.close(). This tells the browser that you are finished writ-
ing your output to the browser window. In response, it will close the out-
put stream and write any characters left in the stream to the browser
window.

As you might guess, this combination of calls will actually let you create your
own HTML pages on the fly. While this is a very powerful feature of JavaScript,
there is one side effect of the open() method that you need to be aware of: When
you call the open() method, the contents of the document are cleared from the
browser window. (This is why the clear() method is no longer used. The open()
method does exactly the same thing.) Then whatever you write to the browser
window will actually replace the old contents of the browser window as soon as the
close() method is called! Consider the following:

<html>
<head>
<title>The document Object: the open() and close() Methods</title>
<script language=”javascript”>
function writeNewStuff() {

document.open();
for (x=0; x<5; x++) {

document.write(“Oh dear! I seem to have overwritten
everything!
”);
}

document.close();
}

Saturday Morning106

4804-2 Ch09.F 4/9/01 8:15 AM Page 106

</script>
</head>
<body bgcolor=”white”>
<script language=”javascript”>
for (x=0; x<5; x++) {

document.write(“Shop at Baby-Palooza!
”);
}

setTimeout(‘writeNewStuff()’, 5000);
</script>
</body>
</html>

Here, the code at the bottom of the file writes out five lines of propaganda and
then sets up a timer that will call the writeNewStuff() function five seconds
later. When this function executes, it calls the open() method and then writes out
five more lines of text. Finally, it calls close() to send that text to the browser
window. If you load this file into a browser, you’ll see the initial text on screen for
a few seconds and then it will suddenly be replaced by the output of the
writeNewStuff() function. If you then view the source of the browser window,
you’ll find the original contents of the HTML document are gone, including your
JavaScript code!

The moral of this story is that it’s a very bad idea to call the open() and
close() methods for the document that your code resides in. As we’ll see in
Session 23, a better approach is to have your JavaScript code in a control frame
and your content in another display frame. This way, your JavaScript code can use
the open(), write() and close() methods to change the contents in your display
frame while your JavaScript code remains untouched.

The write() method

At this point, you should be very familiar with what the write() method does. It
simply writes out a string to the browser window. That string can contain any
printable character, even characters that comprise HTML tags. We’ll discuss this
more in Session 11.

The writeln() method

The writeln() method is just like the write() method, with one addition. At the
end of the string you specify, it adds a new line character. While this doesn’t
appear in your final HTML output, it will help format the underlying HTML code by

Session 9—Working with the document Object 107

Part II—
Saturday M

orning
Session 9

4804-2 Ch09.F 4/9/01 8:15 AM Page 107

placing a new line at the end of each line of output (this causes subsequent lines
of output to start on the next line).

REVIEW

In this session, you learned about the properties and methods of the document
object. First, you saw how to use the properties to examine and change character-
istics of the currently loaded HTML document. Then, you saw how to use the doc-
ument.open(), document.write(), and document.close() methods to create
new contents for the browser window.

QUIZ YOURSELF

1. What is the document object? (See “Working with the document object.”)

2. What is kept in the forms array? (See “The forms array.”)

3. What does the links array represent? (See “The links array.”)

4. What happens when you assign a new Web address to the
document.location property? (See “The location property.”)

5. What is the major side effect of the document.open() method? (See “The
open() and close() methods.”)

Saturday Morning108

4804-2 Ch09.F 4/9/01 8:15 AM Page 108

Session Checklist

✔ Understanding what events are and how JavaScript can handle
them

✔ Learning which events you can handle with JavaScript
✔ Learning how to use events to respond to user actions

Y ou’ve seen how the JavaScript language works, and you’ve also learned a lot
about how the Browser Object Model allows JavaScript to interact with the
browser. However, almost everything I’ve shown you thus far has required

you, the programmer, to take the initiative in making things happen. In this ses-
sion, you’re going to learn how to write JavaScript code that actually waits for
things to happen and then reacts accordingly.

What Are “Events?”

To paraphrase a popular colloquialism, “stuff happens.” This is true not only in
life, but in the Web browser as well. When something interesting happens in the
Web browser, it’s called an event. For example, when the user clicks the mouse on a
button in a form, that’s an event. However, events aren’t just created by the user.

S E S S I O N

10
Reacting to Events

4804-2 Ch10.F 4/9/01 8:15 AM Page 109

When the browser finishes loading a Web page, that’s an event too. In fact, in the
Web browser environment, there are over a dozen different types of events that
can occur. There are events that tell you when keys have been pressed, when a
form has been submitted and even when the contents of a text box have changed!
The point of this is that an event exists to represent just about everything that
can occur in the Web browser. For example, each and every HTML control you cre-
ate will generate its own set of events. Because of this, you can write JavaScript
code to respond to each control’s events individually. This gives you an incredible
amount of control over the behavior of your Web pages.

Responding to an event is called handling the event, and the JavaScript code
you write to handle an event is called an event handler. So, for example, you can
write one event handler that’s called when your HTML document finishes loading,
and another that’s called when a new item is chosen from a select menu in one of
your forms. Of course, you don’t have to create event handlers for every event, but
if you really need to, you can.

Creating Event Handlers

An event handler usually takes the form of a JavaScript function that you create
specifically to handle a certain type of event. An event handler can also be one or
more JavaScript statements that are embedded in the HTML that defines the event.

The first step in creating an event handler is to actually define the event you
want to handle. Event definitions always begin with the letters on and are usually
defined as part of an HTML tag. For example, a load event occurs when the Web
browser finishes loading an HTML document. So, this event will be defined as an
onload event for the body of the document. So, the onload event is defined as
part of the <body> tag, like so:

<body onload=”alert(‘Welcome to Baby-Palooza.com!’)”>

Here I have the name of my event (onload) followed by an equal sign. After
that, in quotes, I have the JavaScript statement I want to execute in response to
the event. Almost all event definitions follow this same basic format.

The question now is, “What exactly does this do?” Well, the onload event for an
HTML document occurs after the last character of that document is loaded into the
Web browser. So, as soon as the Web browser has loaded the last character of the
HTML file, it looks to see if I have defined an onload event handler in the <body>
tag. I have, so at that point it actually executes the JavaScript statement that is
in quotes after the equal sign. The end result is that after the page loads, an alert
window will appear to welcome the user to the Baby-Palooza.com site.

Saturday Morning110

4804-2 Ch10.F 4/9/01 8:15 AM Page 110

The act of triggering an event is sometimes referred to as firing
the event. So, you might hear someone say something like,
“When the onload handler fires, you’ll be directed to a new Web
site.”

Event handlers can be more that just one JavaScript statement. So, this is per-
fectly legal:

<script language=”javascript”>
var pageLoaded = false;
</script>
<body onload=”alert(‘Welcome!’); pageLoaded = true;”>

This event handler consists of a call to the alert() method, followed by an
assignment statement. (Remember, as shown in Session 2, you can have multiple
JavaScript statements on a single line, just separate them with a semicolon.) There
are just two statements in this handler, but it could just as easily contain three
statements or a dozen.

Another important point to notice in this example is that the code in my event
handler has full access to my global variables (in this case, the pageLoaded vari-
able). Remember, JavaScript global variables are accessible everywhere, including
inside event handlers.

Of course, if your event handler needs to do something complex, you’ll probably
want to place it in a function. As you might expect, that would look something
like this:

<script language=”javascript”>
var pageLoaded = false;
function doLoad(isLoaded) {

pageLoaded = isLoaded;
alert(‘Welcome!’);
}

</script>
<body onload=”doLoad(true);”>

In this case, I’ve simply defined a function (doLoad()) to handle the event. So,
my event handler simply calls the function. To prove that this is the same as any
other function call, I’ve even passed it a parameter (true). (You don’t have to pass
a parameter if your function doesn’t require one.) It should be noted that there’s
no magic in the name I’ve given this function. You can give your event handling
functions whatever names you wish (as long as those names are valid JavaScript
function names). I’ve simply gotten into the habit of naming all of my event han-
dling functions “doEventName()”. This really helps me identify my event handling
functions when I’m looking through my code.

Note

Session 10—Reacting to Events 111

Part II—
Saturday M

orning
Session 10

4804-2 Ch10.F 4/9/01 8:15 AM Page 111

Events You Can Handle

Now that you know how events work in general, it’s time to learn about the different
events there are and how you can actually handle them with JavaScript. As with the
window and document objects, each of the major browsers defines several proprietary
events that the other browser simply doesn’t support. So, here again, I’ll restrict the
discussion to those events supported in the latest versions of the major browsers.

Another important point is that most events can be fired by lots of different
objects in the Browser Object Model. For example, not only can you define an
onload event for the <body> tag, you can also define one for every tag in
your HTML document (as you’ll see in Session 14). So, as you look over the follow-
ing descriptions, remember that, unless explicitly stated otherwise, any given
event will probably work for most HTML tags. (The trick is to experiment and see
which events a given tag will support.)

Finally, in the list of events that follows, I’m going to refer to each event as
you’d actually see it in a JavaScript program. For example, instead of talking about
the “load” event, I’ll simply refer to it as the “onload” event. (Note that the follow-
ing discussion covers the available events in a fairly generic fashion. While there are
examples of how to use each event on your CD-ROM in the Session10 folder, more
detailed examples of how to use each event can be found in later sessions.)

The onabort event

This event is unique to the JavaScript Image object. It fires when the user aborts
the loading of an image. In other words, if an image has not finished loading and
the user clicks the browser’s Stop button, each unloaded image will fire off an
onabort event.

Assuming these images are in the same document, clicking the Stop button
before either has loaded will cause both alert windows to display. (However, if one
image has finished loading before the Stop button is clicked, only the unfinished
image’s onabort handler will fire off.) We’ll be discussing the Image object and its
related events in Session 14.

The onblur event

In the world of programming, the term blur is used to indicate that an object on
the screen has had the user’s attention shifted away from it. When a window gets

Saturday Morning112

4804-2 Ch10.F 4/9/01 8:15 AM Page 112

blurred, that usually means that the window has been sent behind all of the other
windows that are on the screen. Coding an onblur handler for a window is actually
fairly simple. You simply define your handler in either the <body> or <frameset>
tag that is loaded into the window. For example:

<body bgcolor=”white” onblur=”doBlur()”>

For the controls in a form, getting blurred means that the user’s keystrokes no
longer go into a particular control. For example, consider the following form:

<form>
<input type=”text” name=”fname”
onblur=”alert(‘Enter your last name’)” />
<input type=”text” name=”lname”
onblur=”alert(‘Thanks!’)” />

</form>

Here I have two text fields. When I’m typing in the first field, it’s said to have
the focus. (See the discussion of the onfocus event later in this session.) This sim-
ply means that any keys I press will be sent to this control. If I press the tab key
to move to the next field (or if I click the mouse in the second field to select it),
the focus will shift to the second field and first field will fire an onblur event. It’s
important to note here that the onblur event can be fired for just about any con-
trol that you can put into a form, not just for text boxes.

The onchange event

The onchange event can be fired by any control in a form. However, it will only fire
when the contents or selected value of the control actually changes and the control
becomes blurred. If the contents don’t change or the control doesn’t become
blurred, the onchange event will not fire. See the onchangeEvent.htm file for a
detailed example.

The onclick and ondblclick events

These events will fire in response to a click or double-click on the HTML element in
which the event is defined. This is normally used to assign some sort of action to a
button in a form, like so:

<input type=”button” value=”Click Me!” onclick=”doClickMe()” />

Session 10—Reacting to Events 113

Part II—
Saturday M

orning
Session 10

4804-2 Ch10.F 4/9/01 8:15 AM Page 113

Saturday Morning114

However, this can also be used with just about any nonempty tag (that is, any
tag that has an opening and closing tag) to make a block of text clickable. For
example:

<b ondblclick=”alert(‘take things too far!’)”>You can...

For other bizarre permutations of this concept, see the anyTagCanHaveEvents.htm
file on your CD-ROM. Also, see “The Anchor Tag’s Nonevent” at the end of this
session for information on how to use the onclick event with your <a> tags.

The onerror event

There are two uses for the onerror event: telling when an image has not been
loaded properly and handling JavaScript errors in a particular window.

Trapping image errors

For images, the onerror event fires if an image fails to load due to an error. For
example, if an image doesn’t exist, an onerror event will fire for that tag.

Trapping JavaScript errors

As you’ve probably noticed by now, when an error occurs in your JavaScript pro-
gram (for example, if you try to execute a document.writ() call), the type of
error report you get depends on which browser you are using. In Internet Explorer,
you’ll get a dialog telling you what the error was, while Netscape Navigator will
simply halt the execution of your script and won’t do much beyond that. (To get
actual JavaScript error information from the most current versions of Netscape,
you have to type javascript: into the address box and press the return key.) If
you would like your error reporting to be a bit more consistent, you can define
your own JavaScript interpreter error handling function. Then, when an error
occurs in your program, your function will be called to handle the error.

Unfortunately, defining such an error handler is a bit different than what we’ve
seen so far, but it’s still pretty simple to do. You simply assign the name of your
error handling function to the onerror property of the window object, like so:

window.onerror = doWindowError;

4804-2 Ch10.F 4/9/01 8:15 AM Page 114

Then, you simply define your error handling function as you would any other
function. The only difference is that this function must accept three parameters: a
message string that details what the error was, the Web address of the file that
caused the error, and the line number where the error occurred. A simple example
might look like this:

function doWindowError(msg, url, line) {
// Handle the error any way you want here
return true;
}

window.onerror = doWindowError;

Note that, at the end of my error handling function, I return a true to the
JavaScript interpreter. This tells the interpreter that I handled the error myself
and that it shouldn’t process it any further. Of course, if you return a false, the
JavaScript interpreter will go ahead and do whatever else it thinks is necessary to
handle the error.

The onfocus event

This is the counterpart to the onblur event. When a window comes to the front, or
a control becomes the target of a user’s keystrokes, it is said to have gained the
focus. The onfocus event allows you to respond to this occurrence.

The onkeydown, onkeypress, and onkeyup events

These events allow you to detect when a key has been pressed inside a control.
We’ll discuss these events in more detail in Session 25.

The onload event

This event fires in two different instances: when an HTML document finishes load-
ing and when an image finishes loading.

Trapping HTML document loads

To define an onload handler for an HTML document, just define it in the <body> tag.

<body onload=”doLoad()”>

Session 10—Reacting to Events 115

Part II—
Saturday M

orning
Session 10

4804-2 Ch10.F 4/9/01 8:15 AM Page 115

Then, when the last character of the HTML document has been loaded by the
browser, the onload event handler will execute.

It’s important to realize that, for a complex HTML document, one with lots of
forms and other elements, having a document’s last character loaded by the
browser may not be the same as having the document ready to use. Before a docu-
ment is ready to use, its contents must be parsed by the JavaScript interpreter to
create all of the Browser Object Model objects needed to properly represent the
contents of the document. For example, if there are five forms in a document, all
five corresponding form objects might not exist when the onload handler fires.
This can cause big trouble if you try to use a not-yet-existent element from your
onload handler. We’ll see how to solve this problem in Session 24.

Trapping image loads

When used with tags, this event can tell your JavaScript program when an
image has finished loading. (In Session 14, you’ll see how this is used to create
animations.)

The onmousedown event

This is similar to the onclick event. It fires when the mouse is clicked inside an
element.

The onmousemove event

This event tells you when the mouse has been moved inside an element.

The onmouseout event

This event is triggered when the mouse leaves an element. Typically, you use this
event to undo whatever you might have done in response to an onmouseover event.

The onmouseover event

This event fires when the mouse moves over an element. You can define this event
for almost any nonempty HTML tag. Typically, it’s used to change the window’s sta-
tus line when the mouse passes over a link. Like so:

Saturday Morning116

4804-2 Ch10.F 4/9/01 8:15 AM Page 116

<a href= “http://www.baby-palooza.com”
onmouseover=”window.status=’Visit baby-palooza.com!’; return
true”>Baby-Palooza.com

When the mouse passes over this link, the status bar at the bottom of the win-
dow will change to contain the message “Visit baby-palooza.com!” (Note that after
changing the window.status property, my event handler returns a true value.
This is required when changing the window.status property from inside an event
handler.)

The onmouseup event

In contrast to the onclick and onmousedown events that tell you when an ele-
ment has been clicked, this event tells you when the mouse button has been
released in an element.

The onreset event

This event only fires in response to a click on a form’s Reset button. For example:

<form onreset=”return doReset()”>
<input type=”reset” value=”Reset Form” />
</form>

Notice that I’m defining the onreset event in the <form> tag and that I’m
using a return keyword as part of the event handler. The return keyword actually
returns the Boolean result of the event handler to the JavaScript interpreter. If
that value is true, the JavaScript interpreter will pass the reset event on to the
browser, which will then reset the form to its original state. However, if that
returned value is false, the JavaScript interpreter will tell the browser not to
bother with resetting the form. This means that your onreset handler can set the
form to whatever state it wishes, regardless of the original state of the form.

The onresize event

This event fires when the user resizes the browser or frame that the HTML docu-
ment is in. You define it as part of the <body> tag, like so:

<body onresize=”alert(‘You resized the window!’)”>

Session 10—Reacting to Events 117

Part II—
Saturday M

orning
Session 10

4804-2 Ch10.F 4/9/01 8:15 AM Page 117

The onsubmit event

This is another event that belongs to forms. It fires when the user clicks a form’s
Submit button. It’s defined similarly to the onreset event.

<form onsubmit=”return doSubmit()”>
<input type=”submit” value=”Submit Form” />
</form>

Like the onreset event, this event handler returns its result to the JavaScript
interpreter. If that value is true, it tells JavaScript to go ahead and let the
browser submit the form and its data. If the value returned is false, the
JavaScript interpreter will not allow the browser to submit the form. This allows
your onsubmit handler to actually validate the data in the form before the browser
submits it. If the data is good, you return a true and the form goes on its merry
way. If the data is bad, you return a false, and you can then force the user to
correct the data and try again. Of course, what constitutes good and bad data is
totally up to you. (In Session 15, we’ll take a look at different data validation
techniques.)

The onunload event

This event fires when an HTML document is being removed from the browser win-
dow. This can happen when the user clicks a link to go to another HTML document
or when the browser window is being closed. You specify an onunload handler in
the <body> tag.

<body bgcolor=”white” onunload=”alert(‘Bye-Bye...’)”>

Receiving this event is a good indication that it’s time for your JavaScript pro-
gram to do any cleaning up that might be necessary. As you’ll see in Session 16,
it’s a great time to save out the information I need to preserve the contents of my
shopping cart.

The Anchor Tag’s Nonevent

While all of the above events can make your Web site more interactive, what about
intercepting a simple click on a regular link? Actually, there are a couple of very
interesting ways that you can use JavaScript to enhance the behavior of links.

Saturday Morning118

4804-2 Ch10.F 4/9/01 8:15 AM Page 118

First, you can execute one or more JavaScript statements instead of jumping to
another HTML page. Consider the following example:

Click here to do something

In this example, I’ve replaced the normal Web address in the href attribute
with a JavaScript statement. Notice however that, unlike a standard event handler,
I’ve started my statement with javascript:. This tells the HTML interpreter that
what follows is a JavaScript statement, and not a standard Web address.

Another thing you can do is to combine a Web address with an onclick event
handler.

<a href=”http://www.hungryminds.com” onclick=”alert(‘This handler
will return false’); return false”>This link goes nowhere. . .

Here I’ve added an onclick handler that first displays an alert window and then
returns a false. Because this onclick handler returns false, the link specified in
the href attribute will not be followed when the user clicks on this link. On the
other hand, this link

<a href=”http://www.hungryminds.com” onclick=”alert(‘This handler
will return true’); return true”>This link works as expected

will display the alert window and then the link specified in the href attribute will
be followed, just as you would expect it to. So, by combining an anchor tag with
an onclick handler you can create links that only work when a specific condition
has been met.

REVIEW

In this session, you learned how to write JavaScript that responds to events. You
learned what events are available in the Web browser environment and what each
signifies. You also saw how to create individual event handlers for each and every
event that you want to react to. Finally, you learned how to use an onclick event
handler to create hyperlinks that are followed conditionally, based on the Boolean
result of the onclick handler.

Session 10—Reacting to Events 119

Part II—
Saturday M

orning
Session 10

4804-2 Ch10.F 4/9/01 8:15 AM Page 119

QUIZ YOURSELF

1. What is an event? (See “What are “Events?”)

2. What is an event handler? (See “Creating Event Handlers.”)

3. How does the onblur event differ for the browser window and a control
in a form? (See “The onblur event.”)

4. How can you use the onerror event to create your own error handling
routine? (See “The onerror event.”)

5. How can you use an onclick event handler to create a hyperlink that is
followed only if some JavaScript function returns true? (See “The Anchor
Tag’s Nonevent.”)

Saturday Morning120

4804-2 Ch10.F 4/9/01 8:15 AM Page 120

1. What is the empty string?

2. After the following statement executes, what will be stored in myVar?

var myVar = 9 + “”;

3. Write a statement that will extract the letters “Script” from the following
sentence, “I think JavaScript is neat!”

4. Write a function that accepts a string and returns true if the word
“JavaScript” is in the string. If the word “JavaScript” is not found, return
a false. Note that you should check for any variation of “JavaScript”
including “JAVASCRIPT,” “javascript,” or any other combination of upper-
and lower-case letters.

5. In your own words, describe the Browser Object Model.

6. Write a statement (or statements) that will create an array from the
following string, “Strollers:Diapers:Rattles:Bottles.”

7. How do you create a multidimensional array with JavaScript?

8. Write and test a function that will sort an array of strings in reverse
order (that is, from “Zebra” to “Apple”).

9. How do you move through the items of an array that uses named slots?

10. How does the document object relate to the window object?

11. What is the alert() method used for?

12. What does a Link object represent?

13. What are the document.open() and document.close() methods
used for?

P A R T

#
P A R T

Saturday Morning

II

4804-2 PartReview2.F 4/9/01 8:15 AM Page 121

14. Write a function that prompts the user to type in her name.

15. What is the difference between the document.write() and
document.writeln() methods?

16. Write a function that uses the confirm() method to decide if an alert
window should be displayed. (The contents of the alert window don’t
matter.)

17. What does the onclick event represent?

18. What is the difference between the onblur and onfocus events?

19. Create a link that sends the user to http://www.hungryminds.com.
Include an onclick handler that asks the user if they really want to visit
the Hungry Minds home page. If the handler returns true, jump to the
page. If the handler returns false, do not jump to the page.

20. What does the onload event signify when used with an tag?

Part II—Saturday Morning Part Review122

4804-2 PartReview2.F 4/9/01 8:15 AM Page 122

P A R T

Saturday
Afternoon

III

Session 11
Dynamically Creating an HTML Page

Session 12
Working with HTML Forms

Session 13
Working with HTML Controls

Session 14
Working with Images

Session 15
Validating Form Data

Session 16
Cooking up Cookies with JavaScript

4804-2 Pt03.F 4/9/01 8:15 AM Page 124

Session Checklist

✔ Understanding how JavaScript can dynamically create an HTML
document

✔ Understanding how JavaScript can dynamically create JavaScript
✔ Learning tips for debugging dynamically created HTML and

JavaScript

The initial idea behind JavaScript was that it would be used to enhance the
functionality of Web pages. In fact, JavaScript can do much more than just
enhance a Web page; it can actually be used to create a Web page from

scratch. For example, you’ve already seen (in Sessions 4 and 6), how the docu-
ment.write() method could be used to write out the HTML tags needed to create
a table. However, you aren’t restricted to just creating tables. You can use
JavaScript to dynamically build and output just about any HTML tag that you
want. For example, you can create forms, image tags, headings, and even blocks of
additional JavaScript code — all from within your JavaScript program.

S E S S I O N

Dynamically Creating
an HTML Page

11

4804-2 Ch11.F 4/9/01 8:15 AM Page 125

Dynamically Creating HTML

As you saw in Session 9, when the browser begins to load an HTML document, it
essentially makes a call to the document.open() method and then begins to parse
the HTML code in the document. As it parses the HTML, it sends any output that’s
generated to the browser window for the user to see. During this process, if any
document.write() calls are made, the output of those calls is sent to the HTML
parser and processed accordingly. The key phrase here is “processed accordingly.”
If the output of a document.write() call contains one or more HTML tags, those
tags will be rendered by the HTML parser and the result sent to the browser win-
dow, just as if the tags had been hard-coded in the original HTML file. So, the fol-
lowing JavaScript statement:

document.write(“This is bold text!”);

has the same overall effect as the following line of HTML:

This is bold text!

The important thing to realize here is that, as far as the HTML parser is con-
cerned, these are both just streams of characters to be parsed. Consider the follow-
ing combination of JavaScript and HTML.

Saturday Afternoon126

Not Dynamic HTML

It’s extremely important to note that what I’m talking about here is
“dynamically created HTML,” not Dynamic HTML (also known as
“DHTML”). What’s the difference?

Dynamically created HTML is HTML that is created and output by your
JavaScript code as your HTML document is loading. In other words, you
are using JavaScript to actually create the HTML that defines what the
Web page initially looks like.

Dynamic HTML is a combination of JavaScript and the Browser Object
Model that allows your JavaScript program to manipulate the appearance
and properties of the HTML that is already loaded into the browser. You’ll
be learning about Dynamic HTML in Session 22.

4804-2 Ch11.F 4/9/01 8:15 AM Page 126

<script language=”javascript”>
document.write(“This is bold text!”);
</script>

Here, my opening boldface tag is generated by the call to document.write()
and my closing boldface tag is a part of the enclosing HTML document. However,
all the HTML parser sees is a stream of characters to process. This continues until
every bit of HTML in the document (including any JavaScript-generated HTML) has
been processed. At this point, the browser closes the document and the page is
displayed in the browser. After the document is closed, there are only two ways to
change the contents of the window:

� Use document.open() to reopen the document. This would be followed by
the document.write() calls needed to output the desired HTML. After
everything was output, you would then call document.close() to tell the
browser to display the new contents. As we saw in Session 9, the drawback
to this approach is that this combination of calls will actually erase the
current contents of the window.

� The only other option is to use Dynamic HTML (DHTML) to modify the
structure of the HTML document. We’ll discuss this in detail in Session 22.

The point here is that if you want to dynamically generate the contents of your
HTML page, the best time to do so is while the page is being loaded.

HTML == JavaScript string

The key to dynamically creating HTML is to realize that, as far as the browser is
concerned, an HTML document is just a stream of characters. In terms of
JavaScript, this means that the HTML you’ll be creating can be thought of as one
or more strings. This means that you can manipulate the HTML you want to output
just as easily as you can manipulate any other JavaScript variable.

Storing HTML tags in string variables

The simplest, yet most powerful, trick to creating HTML with JavaScript is placing
HTML tags in string variables. For example, in Session 6, I showed you a function,
showProductInfo(), that created a table row by using a series of
document.write() calls. That section of the function looked like this:

document.write(“<tr>”);
document.write(“<td>” + category + “</td>”);

Session 11—Dynamically Creating an HTML Page 127

Part III—
Saturday Afternoon
Session 11

4804-2 Ch11.F 4/9/01 8:15 AM Page 127

document.write(“<td>” + pInfo[2] + “</td>”);
document.write(“<td>” + pInfo[1] + “</td>”);
document.write(“<td>$” + calcFinalCost(pInfo[0], pInfo[3]) +
“</td>”);
document.write(“</tr>”);

Here I have the strings “<td>”, “</td>”, “<tr>”, and “</tr>” repeated over
and over again. However, if I use a few variables to hold these strings, my code
might look like this:

var tag_tr = “<tr>”;
var tag_tr_end = “</tr>”;
var tag_td = “<td>”;
var tag_td_end = “</td>”;
document.write(tag_tr);
document.write(tag_td + category + tag_td_end);
document.write(tag_td + pInfo[2] + tag_td_end);
document.write(tag_td + pInfo[1] + tag_td_end);
document.write(tag_td + “$” + calcFinalCost(pInfo[0], pInfo[3])
+ tag_td_end);
document.write(tag_tr_end);

Of course, this change hasn’t really saved any keystrokes. In fact, my code has
actually gotten larger. However, this isn’t about saving space: it’s about flexibility.
Assuming that the variables I’ve just defined are still hanging around, consider the
following code:

var tableRow = tag_tr;
tableRow += tag_td + category + tag_td_end;
tableRow += tag_td + pInfo[2] + tag_td_end;
tableRow += tag_td + pInfo[1] + tag_td_end;
tableRow += tag_td + “$” + calcFinalCost(pInfo[0], pInfo[3]) +
tag_td_end;
tableRow += tag_tr_end;
document.write(tableRow);

As you can see, in this example I’ve placed the entire string representing my
table row into a single variable. Then, after I’ve built the string, I simply make one
call to document.write() to send the string to the HTML parser. This is nice, but
again, the fact that I’ve dropped to a single document.write() call isn’t the point.

The point is that I now have the definition for a fairly complex HTML structure
(an entire table row) inside a single JavaScript variable! This means that I can
reuse this HTML structure over and over again as I build my HTML page.

Saturday Afternoon128

4804-2 Ch11.F 4/9/01 8:15 AM Page 128

Creating customized controls

While it’s nice to be able to reuse HTML structures at will, the real power of
dynamically created HTML comes from creating customized controls for your Web
page. For example, it would be nice if the baby-palooza.com product listing con-
tained links that the user could click to obtain more information on a given prod-
uct. Assuming that the part number for a product is the basis for the name of its
information page, this becomes a simple thing to do, as shown below:

var tag_tr = “<tr>”;
var tag_tr_end = “</tr>”;
var tag_td = “<td>”;
var tag_td_end = “</td>”;
var tableRow = tag_tr;
tableRow += tag_td + category + tag_td_end;
tableRow += tag_td + pInfo[2] + tag_td_end;
tableRow += tag_td;
tableRow += “” + pInfo[1] + “”;
tableRow += tag_td_end;
tableRow += tag_td + “$” + calcFinalCost(pInfo[0], pInfo[3]) +
tag_td_end;
tableRow += tag_tr_end;
document.write(tableRow);

With this code in place, each table row that’s written to the browser will con-
tain a link to a page containing more information about the product listed in that
row of the table. And you don’t have to stop at simple links. You can also create a
more user-friendly link:

tableRow += “<a href=’” + pInfo[2] + “.htm’”;
tableRow += “ onmouseover=’window.status=”;
tableRow += ‘“View more information about ‘ + pInfo[1] + ‘“;return
true’ + “‘“;
tableRow += “>” + pInfo[1] + “”;

With this additional code, in addition to giving users a link to more information,
when they move the mouse over that link, they get a user-friendly description (in
the status bar of the browser) of where the link will be taking them.

In these examples, I’ve only been showing you how to build custom links. If you
wanted to, you could just as easily build some other type of custom control. For
example, assume that instead of creating a table row, you wanted your function to

Session 11—Dynamically Creating an HTML Page 129

Part III—
Saturday Afternoon
Session 11

4804-2 Ch11.F 4/9/01 8:15 AM Page 129

create a menu item for use in a select list in a form. The JavaScript to do that
might be as simple as this:

var optionItem = “<option value=’” + pInfo[2] + “‘>”;
optionItem += pInfo[1] + “</option>”;

The point is that you can create any type of HTML element you want and it can be
as customized as you want.

Debugging your dynamically created HTML

One problem you might have noticed in the above examples is that the JavaScript
code required for creating really useful HTML can quickly become very confusing.
This can make it difficult to find the cause of any problems that might come up
when you are testing your JavaScript code.

For example, the code required to create a link with an onmouseover event han-
dler is almost unreadable due to all of the nested quotes that you have to work
around. One way to make this type of quote nesting easier is to use escaped quotes
inside the string you want to build. An escaped quote is one that is preceded by a
backslash character (\). When the JavaScript interpreter sees an escaped quote, it
knows that that quote should not be considered as the end of the string. For
example, this is an illegal JavaScript string:

var msg = ‘That’s already in your shopping cart.’;

While this version, with an escaped single quote, is perfectly legal:

var msg = ‘That\’s already in your shopping cart.’;

The backslash tells the JavaScript interpreter that it shouldn’t consider this
quote to be the end of the string. Instead, it should be treated just like another
character in the string. You can also escape double quotes:

var quote = “Maia says, \”I love shopping at baby-palooza.com!\””;

So, the earlier example of a complex link could be rewritten like this:

tableRow += “ onmouseover=’window.status=\”View more information
about “ + pInfo[1] + “\”;return true’>” + pInfo[1] + “”;

While making your code more readable isn’t exactly a debugging tip, it can cer-
tainly help prevent bugs from occurring in the first place.

Saturday Afternoon130

4804-2 Ch11.F 4/9/01 8:15 AM Page 130

This technique can place any character into a string. For example,
\n is a new line character and \t is a tab. You can also include a
character by its hexadecimal character code. Simply code \xHH
(where HH is the hexadecimal character code) and the character
will be inserted into your string. For example, \x20 will put a
blank space into your final string. (To see the values for all char-
acters, see the charCodes.htm file.)

Another problem with dynamically generated HTML is that, in some browsers,
the HTML that’s generated never actually shows up when you view the source for
the page in the Web browser. This can lead to all sorts of problems, because it’s
very difficult to debug source code that you can’t actually see! The solution here is
to create a dummy text box control and, after you have built the HTML you are
going to output, shove that HTML into the text box so that you can examine it.
You’ll also need to put a line feed (\n) at the end of each line of HTML you are
placing in the text box, so that it won’t all be strung together.

A complete example

In the Session11 folder on your CD-ROM, you’ll find updated versions of the
babyPalooza.js and index.htm files. These files bring all of these concepts together
in an updated version of the baby-palooza.com product listing. (Due to the length
of these files, I can’t present them here, so be sure to open them in your HTML
editor so you can follow along with the discussion.) While these files are basically
the same as the ones you saw at the end of Session 6, there are a few new things
going on here. If you look in the babyPalooza.js file, you’ll notice that the
showProductInfo() function has been changed to build a single output string
instead of using multiple document.write() calls. Beyond that, two new global
variables have been added: debugFlag and debugInfo. If the debugFlag variable
is set to true, the showProductInfo() function will place the string it builds into
the debugInfo variable, followed by two carriage returns. The new index.htm file
also checks to see if the debugFlag variable is true. If it is, a completely new
HTML form is output to the browser. Inside this form is a <textarea> control that
contains all of the information in the debugInfo variable. This allows me to see
exactly what the HTML I’ve built looks like. If you load the index.htm file into
your browser you’ll see something like Figure 11-1.

Tip

Session 11—Dynamically Creating an HTML Page 131

Part III—
Saturday Afternoon
Session 11

4804-2 Ch11.F 4/9/01 8:15 AM Page 131

Figure 11-1
The shopping cart with dynamically generated HTML displayed

Dynamically Creating JavaScript

Now, if you can dynamically create HTML, you should be able to dynamically cre-
ate JavaScript, right? Well, yes, you can. However there is one major “gotcha” to
watch out for when dynamically creating a block of JavaScript.

When you output your <script> and </script> tags, you should never output
these tags as complete strings. That is to say, you should never ever code some-
thing like this:

document.write(“<script>”);
document.write(“</script>”);

If you do, the HTML and JavaScript interpreters will get hopelessly confused.
They’ll actually think that you are starting a new script block inside your current
script block. Since this is a big no-no, you’ll either be presented with an error dia-
log or your code will simply stop executing for no apparent reason.

Saturday Afternoon132

4804-2 Ch11.F 4/9/01 8:15 AM Page 132

The solution to this problem is actually very simple, just break the “tags” up in
your document.write() calls, like this:

document.write(“<scrip” + “t>”);
document.write(“<” + “/script>”);

By breaking these strings up like this, you prevent the HTML and JavaScript inter-
preters from mistaking them as HTML tags. This ability to dynamically generate
JavaScript code is a very powerful feature, so I’ll be discussing it in much more
detail in Sessions 20 and 23.

REVIEW

In this session, you learned how to use JavaScript to dynamically create HTML
code. You saw how to generate links and other HTML controls that have been cus-
tomized to reflect the information that you are presenting to your users. You also
learned how to use a text area control to display the HTML that your JavaScript
has dynamically created. Finally, you learned that JavaScript can also dynamically
generate more JavaScript code, but that there are potential problems that come
with generating a new set of <script></script> tags.

QUIZ YOURSELF

1. What is the difference between dynamically created HTML and DHTML?
(See the opening paragraphs of this session.)

2. How does the HTML parser see the output of a document.write() call?
(See “Dynamically Creating HTML.”)

3. Why would you want to store an HTML tag in a JavaScript variable? (See
“Storing HTML tags in string variables.”)

4. What kinds of HTML elements can you dynamically create with
JavaScript? (See “Creating customized controls.”)

5. Why should you not code a statement like document.write(
“<script>”)? (See “Dynamically Creating JavaScript.”)

Session 11—Dynamically Creating an HTML Page 133

Part III—
Saturday Afternoon
Session 11

4804-2 Ch11.F 4/9/01 8:15 AM Page 133

Session Checklist

✔ Learning about the JavaScript form object
✔ Understanding how JavaScript interacts with HTML forms and

input controls

F orms are the basis for just about every sort of activity on the Web. For exam-
ple, when your users subscribe to an e-mail newsletter or purchase a new
computer, you’ll have to present them with a form in order to get the job

done. So, to build a truly effective Web site, you have to understand how to use
HTML forms and the JavaScript form object.

How the form Object Relates to the <form> Tag

By now, you should have a pretty good idea of what the form object is. It’s simply
a JavaScript object that represents a set of HTML <form></form> tags. As you saw
in Session 9, the document object actually contains an array of form objects,
which goes by the clever name of forms. After an HTML document is loaded and
parsed, this array will contain one form object for each set of <form></form> tags
in the HTML document. The following code shows a simple HTML document with
three form objects:

S E S S I O N

Working with HTML Forms

12

4804-2 Ch12.F 4/9/01 8:15 AM Page 135

<html>
<body>
<form></form>
<form></form>
<form></form>
</body>
</html>

This will create a forms array with three entries. Since the forms array is a
property of the document object, you can reference these form objects like this:

var firstForm = document.forms[0];
var secondForm = document.forms[1];
var thirdForm = document.forms[2];

Give it a name

If you would rather not refer to your forms by number, you can also give each form
object a name. For example, given the simple HTML document I just defined, I
could code something like this:

document.forms[0].name = “formZero”;

Here, I’ve simply assigned a string to the name property of the first entry in my
forms array. I could then access this form object like so:

var firstForm = document.formZero;

Being able to assign a name is nice, but you can also specify a name for your
form objects inside your HTML document, as shown here:

<html>
<body>
<form name=”formZero”></form>
<form name=”formOne”></form>
<form name=”formTwo”></form>
</body>
</html>

When this HTML document is parsed, the resulting JavaScript form objects will
have their name properties automatically set to the names specified in the name=
attributes of each <form> tag. You can then access these form objects like so:

Saturday Afternoon136

4804-2 Ch12.F 4/9/01 8:15 AM Page 136

var firstForm = document.formZero; // Same as document.forms[0]
var secondForm = document.formOne; // Same as document.forms[1]
var thirdForm = document.formTwo; // Same as document.forms[2]

What’s in a name?

One thing that’s important to note here is that the names I’ve given my form
objects are all valid JavaScript variable names. While this isn’t absolutely neces-
sary, it’s a very good idea to make sure you only use valid JavaScript variable
names for your form objects, as well as the other HTML-based objects you work
with. Why? Consider this:

<html>
<body>
<form name=”form Zero”></form>
<form name=”form One”></form>
<form name=”form Two”></form>
</body>
</html>

Since HTML doesn’t place any restrictions on the values that can be used for an
attribute, these three name attributes are perfectly valid HTML. However, if I were
to try to use these names from JavaScript, I would have to code something like
this:

var firstForm = document.form Zero;
var secondForm = document.form One;
var thirdForm = document.form Two;

Unfortunately, none of these statements will work, because the JavaScript
interpreter will have a very hard time with the blank space in the middle of each
name. So, the only way to access these form objects will be through the forms
array. The moral of the story is, if you are going to give names to the elements in
your HTML documents try to use names that are also valid JavaScript variable
names!

How Controls Relate to the form Object

When you build a set of <form></form> tags on your HTML page, you rarely leave
it empty. In most cases, you’ll fill a form with text boxes, check boxes, pop-up

Session 12—Working with HTML Forms 137

Part III—
Saturday Afternoon
Session 12

4804-2 Ch12.F 4/9/01 8:15 AM Page 137

menus and other controls that the user can interact with directly. Each of these
has a corresponding HTML tag (or tags) that defines the control. When the HTML
document is loaded and parsed by the browser, these tags lead to the creation of
corresponding JavaScript objects. As you might expect by now, these control
objects can be found inside the form object that they are associated with. For
example, take a look at the following HTML document.

<html>
<body>
<form name=”formZero”>

<input type=”text” name=”userName”>
</form>
<form name=”formOne”>

<textarea name=”address”></address>
</form>
<form name=”formTwo”>

<input type=”checkbox” name=”spamMe”>Add me to your mail list
</form>
</body>
</html>

Here again, I’ve defined three form objects. However, each of these form objects
now contains an object that represents the control inside the form. As with my
forms, I’ve specified a name attribute for each control. So, if I want to access these
objects I can simply code something like this:

var uNameObject = document.formZero.userName;
var addressObject = document.formOne.address;
var spamMeObject = document.formTwo.spamMe;

After these statements execute, the new variables I’ve created will hold the objects
representing the controls in my three forms.

Suppose that you load that last HTML document into a Web browser and type
your name into the userName text box. How would you actually retrieve that
value? Actually, it’s pretty simple to do.

Every type of control that you can create in a form has a corresponding type of
JavaScript object. While these objects do differ somewhat, they all follow the same
basic format. In particular, they all have a property named value. This property con-
tains the current value that the control is set to. The concept of a control’s value dif-
fers from one type of control to the next, but, in the case of a text box or text area,
the value property will hold the string that’s currently typed into the control in the
browser window. So, if I wanted to extract the user’s name, I could code:

Saturday Afternoon138

4804-2 Ch12.F 4/9/01 8:15 AM Page 138

var uNameString = document.formZero.userName.value;

Similarly, if I wanted to set the user’s name, I could code:

document.formZero.userName.value = “John Doe”;

For the most part, this is the way you use JavaScript to get and set the value of
any HTML control. However, as I said before, each type of control object has a
slightly different set of properties and methods that allow you do much more than
just get or set their value. So I’m going to go over each type of control in detail in
the next session.

Inside the form Object

There’s a lot more to the form object than just the name property. Here’s a detailed
look at the properties and methods that will give you total control over the forms
on your HTML pages. (As always, you’ll find example programs for each of these
properties and methods in the Session12 folder on your CD-ROM.)

Properties of the form object

A <form> tag has a lot of different attributes that you can set to control its behav-
ior. The form object has properties that correspond to each of these attributes so
that you can work with them from JavaScript.

The action property

This property holds a Web address that tells the browser where to send the form
when the user clicks the Submit button. The initial value for this property is taken
from the action= attribute of the <form> tag. For example, given the following
HTML definition

<form name=”orderForm” action=”processOrder.cgi”></form>

the value of document.orderForm.action will be “processOrder.cgi.” If you assign
a new Web address to this property, the form will be sent to that new address
when the form’s Submit button is clicked.

The elements array

While it’s nice to be able to access a control directly using a name, there might
come a time when you want to process your controls in a more automatic fashion.

Session 12—Working with HTML Forms 139

Part III—
Saturday Afternoon
Session 12

4804-2 Ch12.F 4/9/01 8:15 AM Page 139

It’s also possible that your controls might not have names, or they might have
names that aren’t valid JavaScript variable names. For those situations, the form
object provides the elements array.

The elements array is an array that contains all of the control objects defined
in the form. You can access the items in this array two ways: by index number or
by name. For example, take a look at the following form definition.

<form name=”myForm”>
First Name:<input type=”text” name=”fname”
value=”Maia” />

Last Name:<input type=”text” name=”last name”
value=”Disbrow” />

Favorite Food:<input type=”text” name=”favorite food”
value=”Bananas” />

</form>

In this form I’ve defined three controls. Two of these controls have names that
simply aren’t valid JavaScript variable names. However, I can easily access these
controls by using the elements array. Accessing a control by its index in the ele-
ments array works just like any other array access:

for (x=0; x<document.myForm.elements.length; x++) {
document.write(document.myForm.elements[x].name);
document.write(“ contains “);
document.write(document.myForm.elements[x].value);
document.write(“
”);
}

However, if I wanted to use the name of a control, I can do that as well:

document.write(document.myForm.elements[“fname”].name);
document.write(“ contains “);
document.write(document.myForm.elements[“fname”].value);
document.write(“
”);
document.write(document.myForm.elements[“last name”].name);
document.write(“ contains “);
document.write(document.myForm.elements[“last name”].value);
document.write(“
”);
document.write(document.myForm.elements[“favorite food”].name);
document.write(“ contains “);
document.write(document.myForm.elements[“favorite food”].value);

In this case, the elements array is acting like an array with named slots...
because it is!

Saturday Afternoon140

4804-2 Ch12.F 4/9/01 8:15 AM Page 140

The encoding property

This property is equivalent to the enctype= attribute in a <form> tag. This
attribute tells the Web browser what encoding scheme should be used to transmit
the forms data when the Submit button is pressed.

A discussion of encoding types is beyond the scope of this book,
but you can find a complete discussion of them at the World
Wide Web Consortium’s Web site. Start your investigation at the
following link:
www.w3.org/TR/html4/interact/forms.html#form-content-type

The length property

This property tells you how many controls are in a form object. This is essentially
the same as the length property of the form’s elements array.

The method property

This property is the same as the method= attribute in a <form> tag. This property
tells the browser which method (post or get) to use when sending the form’s data
after the Submit button is clicked.

The name property

As you’ve seen already in this session, the name property is the same as the name=
attribute of a <form> tag.

The target property

This property corresponds to the target= property in the <form> tag. This prop-
erty lets you specify the name of a browser window or frame that should be used
to present the results of the form submission. For example, if your <form> tag
looks like

<form target=”resultWindow”>

when the user submits the form, a new browser window with the internal name
“resultWindow” will open up and the results of the form submission will be seen
in that window. (If a browser window named “resultWindow” already exists, it will
come to the front and the results of the submission will be displayed there.)

Cross-Ref

Session 12—Working with HTML Forms 141

Part III—
Saturday Afternoon
Session 12

4804-2 Ch12.F 4/9/01 8:15 AM Page 141

Methods of the form object

The form object also has several methods that allow you to trigger the various
actions that a form can perform. These methods make it easy to automate most
form actions.

The reset() method

When a user clicks on a form’s Reset button, the Web browser fires an onreset
event (as shown in Session 10) and resets the controls in the form to their default
values. If you would like to reset a form from your JavaScript program, calling the
reset() method for that form is exactly the same thing as clicking on the form’s
Reset button. In fact, the following control definitions have the same effect:

<input type=”reset” value=”Reset” />
<input type=”button” value=”Reset”
onclick=”document.formName.reset()” />

Of course, it’s easier to simply define an actual Reset button, but using the
reset() method gives you a lot more control over the process of resetting the
form. By using the reset() method, you the programmer get to decide when your
form should be reset.

The submit() method

Whereas the reset() method simulates clicking the Reset button, the submit()
method simulates clicking a form’s Submit button. Calling the submit() method is
almost exactly the same as waiting around for your user to click the Submit but-
ton, but there is one difference. When the user clicks the Submit button, an
onsubmit event is fired. However, when your JavaScript program calls the sub-
mit() method, there is no onsubmit event generated.

This actually makes quite a bit of sense. The onsubmit event is intended to give
your program a chance to validate the data in a form before it’s submitted.
However, if you are calling the submit() method explicitly, you will already be in
the middle of your JavaScript program. So, you should have already validated the
form’s data before attempting to call the submit() method.

Saturday Afternoon142

4804-2 Ch12.F 4/9/01 8:15 AM Page 142

REVIEW

In this session, you looked at the JavaScript form object and how it relates to the
HTML <form> tag. You learned about the properties and methods of the form object
and how they can be used to control the behavior of a form. You also saw how the
controls defined in a form relate to the form object and how you can access those
controls either by using the name of the control or the elements array.

QUIZ YOURSELF

1. Where are form objects kept in the document object? (See “How the form
Object Relates to the <form> Tag.”)

2. Why should you always give your forms and controls names? (See “Give it
a name.”)

3. What property holds the current value of an on-screen control? (See
“Inside the form Object.”)

4. How can you use the elements array to get at a control with a name that
isn’t a valid JavaScript variable name? (See “The elements array.”)

5. What happens when you call the submit() method for a form? What, if
anything, does not happen? (See “The submit() method.”)

Session 12—Working with HTML Forms 143

Part III—
Saturday Afternoon
Session 12

4804-2 Ch12.F 4/9/01 8:15 AM Page 143

Session Checklist

✔ Learning how to use HTML controls with JavaScript

N ow that you’ve seen how to use your forms from JavaScript, it’s time to
learn the details of how each HTML control can be used from JavaScript. As
you’ll see, most controls are very easy to work with. You simply respond to

one or two events or you just get or set the control’s value property to determine
its current state. However, some controls, like a select list, require a bit more work
to use effectively.

Working with Buttons

Buttons are probably the simplest HTML controls that you can define. However,
buttons can be very useful to your JavaScript program. By defining an onclick
handler for a button, you can have that button trigger any number of actions by
your JavaScript code. As you saw in Session 10, you can define an onclick han-
dler for a button like this:

<input type=”button” value=”On Screen Button Name”
onclick=”handler()” />

S E S S I O N

Working with HTML Controls

13

4804-2 Ch13.F 4/9/01 8:15 AM Page 145

So, when the user clicks the button, the handler function will be executed.
(Remember, an event handler doesn’t have to be a function call, it can simply be
one or more JavaScript statements that are coded right into the HTML definition
for your control. Refer back to Session 10 for the details on how to create an event
handler.)

You’ll notice here that, contrary to the advice I’ve given in Session 12, I haven’t
given this example button a name= attribute. You can give a button a name if you
want, but there usually isn’t any need to. The main reason you would want to give
a control a name is if you want to store data in it. The name will simply make
retrieval of that data easier. In a button, the value property of the button actu-
ally shows up on screen as the text the user sees in the button. So, it’s really not a
good idea to go changing the value of a button. However, you can give each of
your buttons names if you need to differentiate between them easily. (For exam-
ple, a function that could be called by several buttons might need to know exactly
which button called it.)

In addition to simple buttons like the one shown above, there are two special-
ized buttons: the Submit button and the Reset button. These buttons have a pre-
defined role in your HTML forms, so they don’t actually support onclick handlers
(or any other type of event handler).

While you can’t code an event handler directly into the definitions for these
buttons, they still generate events that your JavaScript code can latch on to. When
the user clicks the Submit button for a form, an onsubmit event is generated.
Similarly, when the user clicks the Reset button for a form, an onreset event is
generated. As you saw in Session 10, instead of specifying the handlers for these
events in the buttons themselves, you specify them in the <form> tag.

<form onsubmit=”return doSubmit()” onreset=”return doReset()”>
<!-- other controls go here -->
<input type= “submit” value= “Submit This Form” />
<input type=”reset” value=”Reset This Form” />
</form>

When the onsubmit handler is called, your program has a perfect opportunity
to check the data in the form to see if it’s valid or invalid. Data validation is an
important topic in its own right, so I’ll be discussing it in detail in Session 15.

Working with Check Boxes

Working with check boxes is almost as simple as working with buttons. There are a
few important differences though. For example, consider this HTML definition of a
simple check box:

Saturday Afternoon146

4804-2 Ch13.F 4/9/01 8:15 AM Page 146

<input type=”checkbox” name=”overnight” value=”Y” checked />
Overnight shipping?

The first thing to notice is that the text label (“Overnight shipping”) that will
appear next to this check box is not defined in the tag itself. Instead, it’s simply a
string of characters that appears after the tag. (The label could also come before
the tag; it simply depends on how you want your form to be laid out.) This means
that our value property can hold actual data. In this, case that data is a single
character, “Y”.

While I’ve given my check box a value, that value is only valid if the check box
is actually checked. Now, when I say “valid,” I’m speaking of being “logically”
valid. That is to say, the value property of this check box will always be “Y”, but,
if the check box isn’t checked, the user obviously doesn’t want anything to do
with this option I’ve given them. So, I’ll just ignore whatever value is held in the
check box.

The question then becomes, “How do you know if a check box is checked?” This is
where the checked property comes in. This is a Boolean property that simply tells
you if a check box is checked or not. If checked is true, the check box is checked.
If it is false, the check box isn’t checked. You can even assign a value to this prop-
erty and the on-screen appearance of the check box will change accordingly.

If a check box is not checked and you submit the form that it is
in, no information about that check box will be sent to the
server. That is to say, neither the name of the check box nor its
value will be transmitted to the server-side process that’s
invoked when the form is submitted. Check box information is
transmitted only if the check box is actually checked.

Like buttons, check boxes also generate an onclick event when they are
clicked. This gives your program a chance to instantly reset other parts of your
form whenever the user selects or deselects a check box. The trick to using an
onclick handler with a check box is to remember that the code for your onclick
handler is called after the check box has been checked or unchecked on the
screen. The following code shows all of these aspects of check boxes working
together.

<script language=”javascript”>
function doStandard() {

if (document.delivery.standard.checked) {
// turn off overnight check box
document.delivery.overnight.checked = false;
}

}

Tip

Session 13—Working with HTML Controls 147

Part III—
Saturday Afternoon
Session 13

4804-2 Ch13.F 4/9/01 8:15 AM Page 147

function doOvernight() {
if (document.delivery.overnight.checked) {

// turn off standard check box
document.delivery.standard.checked = false;
}

}
</script>
<form name=”delivery”>

Select a Delivery Method

<input type=”checkbox” name=”standard” value=”Y”
onclick=”doStandard()” /> Standard Shipping

<input type=”checkbox” name=”overnight” value=”Y”
onclick=”doOvernight()” /> Overnight shipping?

</form>

In this example, I’ve defined two check boxes. One representing standard deliv-
ery and the other representing overnight delivery. Each check box has an onclick
handler that fires when that check box is clicked. The structure of each handler is
similar, so I’ll just go over the handler for the standard delivery check box.

When the standard check box is clicked, the doStandard() function executes.
The first thing it does is inspect the checked property of the standard check box.
If checked is true, it then assigns a false to the checked property of the
overnight check box. When this happens, the overnight check box immediately
becomes unchecked on screen.

Another way to set a check box is to call its click() method. This will toggle
the state of the check box, just as if it had been clicked. The advantage of using
the click() method (as opposed to simply assigning a true to the checked prop-
erty) is that this method will also fire an onclick event for the check box.

Check boxes also support the onblur, and onfocus events (with corresponding
blur() and focus() methods to simulate these events). For more on these events,
be sure to refer to Session 10.

Finally, if you need to know whether or not a check box was initially checked,
you can inspect its defaultChecked property. If this property is true, the check
box was checked when the HTML file was first loaded. If the property is false, the
check box was not checked.

Working with the File Upload Control

If you aren’t familiar with the HTML file upload control, don’t worry. Very few
people even know that it exists, let alone how to use it. Basically, the file upload

Saturday Afternoon148

4804-2 Ch13.F 4/9/01 8:15 AM Page 148

control presents the user with a text box and a Browse... button. If users know the
path to the file they want to upload, they can type it directly into the text box.
However, it’s more likely that users will not know the path to the file, so they will
probably just click the Browse... button. When this button is clicked, the browser
will present a standard file open dialog. Users can then use this dialog to select a
file from their local file system. As soon as a user has selected a file, the path to
that file will appear in the text box. Then, when the user submits the form, the
file itself will actually be sent to the server.

It’s beyond the scope of this book to investigate what happens
once the file gets to the server. The main reason for this is that
beyond that point, the process is dependent on the Web server
software that is being run. Since I can’t know what kind of Web
server software you’ll be running, I’ll just have to tell you to
refer to the documentation for your Web server.

If you aren’t familiar with the file upload control, your first question might be,
“What does the HTML for one look like?” Well, it looks like this:

<input type=”file” name=”fileUploadField” />

Like most of the other controls you’ll see in this session, a file upload control
supports various events like onclick, onblur, and onfocus. However, the most
interesting event that this control supports is the onchange event. This event fires
after the user selects a different file to upload. If you need to restrict the type of
files that can be uploaded, this gives you a great opportunity to check the file to
see if it is one of the types you want to allow. The path name of the selected file
can be found in the value property of the file upload control. All you have to do
is extract this information and use some combination of JavaScript’s string meth-
ods to determine if the file’s name fits your criteria. (For an example of using a file
upload control, see the fileUpload.htm file on your CD-ROM.)

Working with Radio Buttons

The check box example that you saw earlier ensured that only one check box was
checked at a time. This behavior is similar to that exhibited by another type of
HTML control, the radio button. Radio buttons are actually very similar to check
boxes. In fact, you can think of radio buttons as sets of related check boxes. The
difference is that only one of these check boxes can be checked at any given time.
The simple act of turning one radio button on turns off all the others that are
related to it.

Note

Session 13—Working with HTML Controls 149

Part III—
Saturday Afternoon
Session 13

4804-2 Ch13.F 4/9/01 8:15 AM Page 149

Groups of related radio buttons are called families. You create a family of radio
buttons by giving all of the radio buttons in the family exactly the same name. For
example, the check boxes I defined earlier could be redefined as a family of radio
buttons like so:

<input type=”radio” name=”dMethod” value=”standard” checked />
Standard Shipping

<input type=”radio” name=”dMethod” value=”overnight” /> Overnight
Shipping

Here, I’ve created two radio buttons and placed them both into the family named
“dMethod” (short for “delivery method”). Now, when one radio button is checked,
the other will be unchecked automatically. (The Web browser handles all of this
checking and unchecking. Your JavaScript program doesn’t have to do anything.)

Another thing to notice is that the value of each radio button holds informa-
tion that directly reflects the meaning behind the check box. So, if the “Standard
Shipping” check box is checked, the entire family of radio buttons has a “logical”
value of “standard.”

Unfortunately, while a family of radio buttons can be thought to have a logical
value that’s equal to the value of the selected radio button, there isn’t a radio but-
ton method that will tell you which radio button in a family is selected. To deter-
mine which radio button is selected, you have to examine the checked property of
each radio button in a family until you find the one where checked is true.

How can you do this? After all, every radio button in a family has exactly the
same name, so how do you tell them apart? Actually, it’s fairly easy to do, because
when you create a radio button family, the JavaScript interpreter creates an array
to hold information about each radio button in the family. So, in the above exam-
ple, dMethod[0] is the “Standard Shipping” button and dMethod[1] is the
“Overnight Shipping” button.

When you submit a form containing a family of radio buttons,
the value that’s transmitted for that family is the value associ-
ated with the selected radio button (that is, the values of the
other radio buttons in the family are not sent to the server).

And, as with check boxes, radio buttons can have an onclick handler. So, know-
ing all of this, it’s actually a fairly simple matter to process a family of radio buttons:

function doDelivery() {
var dLen = document.delivery.dMethod.length;
for (x=0; x < dLen; x++) {

if (document.delivery.dMethod[x].checked) {
methodValue = document.delivery.dMethod[x].value;
alert(“You have selected “ + methodValue +

Note

Saturday Afternoon150

4804-2 Ch13.F 4/9/01 8:15 AM Page 150

Other Radio Button Tips

As I mentioned before, radio buttons and check boxes have a lot in com-
mon. As with check boxes, you can assign a true to the checked property
of a radio button and that radio button will become checked. (And all of
the other radio buttons in the family will turn themselves off.)

You can also use the click() method to simulate a mouse click on a radio
button and you can use the defaultChecked property to tell if the radio
button was selected when the HTML document was loaded.

And, just like check boxes, radio buttons also receive onblur and onfocus
events (and have the corresponding blur() and focus() methods).

“ shipping”);
break;
}

}
}

</script>
<form name=”delivery”>

Select a Delivery Method

<input type=”radio” name=”dMethod” value=”standard”
onclick=”doDelivery()” checked /> Standard Shipping

<input type=”radio” name=”dMethod” value=”overnight”
onclick=”doDelivery()” /> Overnight Shipping

</form>

Here, I’ve added an onclick handler to my radio button definitions. Since these
radio buttons each belong to the same family, they each call the same event han-
dler. (Note that they don’t have to call the same onclick handler, but it’s rare to
have different onclick handlers for radio buttons in the same family.)

When the handler begins to execute, the first thing it does is determine the
length of the array that holds the radio button family. (This tells it how many
radio buttons are in the family.) At that point, it’s simply a matter of using a for
loop to inspect the checked property of each radio button in the array until it
finds one that is true. At that point, it can extract the value from that radio but-
ton and present it in an alert window. The break statement terminates the loop so
that it doesn’t spend time looking at any remaining radio buttons. (Remember,
only one radio button in a family can be checked.)

Session 13—Working with HTML Controls 151

Part III—
Saturday Afternoon
Session 13

4804-2 Ch13.F 4/9/01 8:15 AM Page 151

Working with Select Lists

One of the most useful HTML controls available is the select list. A select list lets you
present your users with a menu of items that they can pick from. Before going fur-
ther with this discussion, take a look at this HTML definition for a simple select list.

Select a Product

<select name=”products” size=”1”>

<option value=”st-001”>Rock & Stroll - Deluxe</option>
<option value=”dp-003”>Size 3, Extra Absorbent</option>
<option value=”cs-001”>Ultra-Safe, Rear-Facing</option>
<option value=”rt-001”>UberNoise 5000</option>
<option value=”bw-001”>Clean and Fragrant</option>

</select>

In this example, I’ve defined a simple select list with five items in it. (Each set
of <option></option> tags defines an individual menu item.) Each of these items
corresponds to one of the products in the Baby-Palooza.com inventory. As you can
see, I’ve placed the part number of each product into the value= attribute of each
option and I’ve used the description for the product to specify the text that will
show up in the select list when this is loaded into the Web browser. While this is a
fairly simple select list, it’s a very complicated control in and of itself. So, the
question becomes, “How does JavaScript interact with this control?”

The select object

As you might expect, the Browser Object Model defines a JavaScript object called
the Select object. This object has several properties and methods that allow you to
interact directly with the select lists you define in your HTML forms.

The length property

This tells you how many sets of <option></option> tags are defined for the select
list.

The name property

This is the name that is specified in the name= attribute of the <select> tag.

Saturday Afternoon152

4804-2 Ch13.F 4/9/01 8:15 AM Page 152

The options array

This is an array of Option objects. Each item in the array corresponds directly to
one set of <option></option> tags in the select list. Understanding the options
array is the key to working with select lists, so I’ll be discussing it in more detail
in just a moment.

The selectedIndex property

This property holds the numeric index of the selected item in the options array. So,
if the user has selected the first item in the list, the selectedIndex property will
have a value of zero. (Remember, JavaScript array index numbers begin with zero.) If
no item in the list is selected, this property will contain a negative one (-1).

The blur() and focus() methods

These remove the focus from a select list and give the focus to a select list, respec-
tively. They also generate the corresponding onblur and onfocus events for the
select list.

The click() method

As with the other controls you’ve seen, this simulates a mouse click on the select
list.

The onchange event

There is one additional event defined for a select list: the onchange event. This
event fires when the user actually changes her selection in the list. If the user
clicks on the list, but doesn’t change her selection, the event never fires. Compare
this to an onclick event, which will fire regardless of whether or not the selection
in the list is changed. (Note also that older versions of Netscape Navigator simply
don’t support the onclick event for use with select lists, all they support is the
onchange event.)

Understanding the Options array

As I said, the options array is the key to working with select lists. Because it’s an
array, the options array has a length property (which tells you the same thing as
the length property of the Select object). Each item in the options array is a
JavaScript Option object, each of which represents a single set of <option>
</option> tags. Each individual Option object has the following properties:

Session 13—Working with HTML Controls 153

Part III—
Saturday Afternoon
Session 13

4804-2 Ch13.F 4/9/01 8:15 AM Page 153

The defaultSelected property

This property holds a Boolean value that tells you if the corresponding menu item
was selected by default — that is, when the HTML file was first loaded by the Web
browser.

The selected property

This is a Boolean value that tells you if the corresponding menu item is currently
selected or not. If this is true, the menu item is selected, if it’s false, the menu
item is not selected.

The text property

This is a String object that holds the text that you defined between the <option>
</option> tags. For example, in the definition <option value=”rt-001”>
UberNoise 5000</option> the text property of this Option object will be the
string “UberNoise 5000”. It’s important to note that you can assign a new value to
this property, effectively changing the text that is displayed for that menu item.

The value property

As with the other tags you’ve seen, this property holds the contents of the value=
attribute in the original tag. The main difference is that, since each Option object
has its own value attribute, a select list can hold a lot of different possible values.

When you submit a form containing a select list, only the value
associated with the selected menu item is transmitted to the
server. If the select list allows multiple selections, the values of
all selected items are transmitted.

A simple select list example

Since the options array is just that, an array, you might be thinking that the sim-
plest way to interact with a select list is to simply loop through all of the items in
the options array until you find the item where selected is true. You can do
this, but don’t forget about the selectedIndex property. Since this property
already contains the index number of the selected menu item, you can use it to
jump directly to the menu item you are interested in. (This code comes from the
selectList.htm file on your CD-ROM.)

Note

Saturday Afternoon154

4804-2 Ch13.F 4/9/01 8:15 AM Page 154

<script language=”javascript”>
function doProductPick() {

var si = document.order.products.selectedIndex;
var partNo = document.order.products.options[si].value;
var desc = document.order.products.options[si].text;
alert(“You selected part number “+ partNo +”, ‘“+ desc + “‘“);
}

</script>
<form name=”order”>

Select a Product

<select name=”products” size=”1” onchange=”doProductPick()”>

<option value=”st-001”>Rock & Stroll - Deluxe</option>
<option value=”dp-003”>Size 3, Extra Absorbent</option>
<option value=”cs-001”>Ultra-Safe, Rear-Facing</option>
<option value=”rt-001”>UberNoise 5000</option>
<option value=”bw-001”>Clean and Fragrant</option>

</select>
</form>

In this code, I’ve added an onchange handler to my select list definition. So
when the user changes the selected item in the list, an onchange event will fire
and my handler function will be called. When the handler function executes, the
first thing it does is to retrieve the value kept in the select list’s selectedIndex
property. I can then use this information to directly access the value and text
properties of the item that is selected in my select list and report that information
back to the user.

Selecting an item in the list

As you’ve just seen, it’s actually pretty simple to read information from a select
list. But, what if you want to actually cause an item in the list to become
selected? Your first impulse might be to assign a new value to the selectedIndex
property of the list. However, that won’t actually make anything happen. Instead,
you need to assign a true value to the selected property of the Option object
you want to become selected. The following bit of code from the
selectAnOption.htm file shows one way you might do this.

function pickNext() {
var si = document.order.products.selectedIndex;
if (si == (document.order.products.length - 1)) {

next = 0;

Session 13—Working with HTML Controls 155

Part III—
Saturday Afternoon
Session 13

4804-2 Ch13.F 4/9/01 8:15 AM Page 155

}
else {

next = ++si;
}

document.order.products.options[next].selected = true;
}

function pickPrev() {
var si = document.order.products.selectedIndex;
if (si == -1) {

si = 0;
}

if (si == 0) {
next = (document.order.products.length - 1);
}

else {
next = --si;
}

document.order.products.options[next].selected = true;
}

</script>
<form name=”order”>

Select a Product

<select name=”products” size=”5”>

<option value=”st-001”>Rock & Stroll - Deluxe</option>
<option value=”dp-003”>Size 3, Extra Absorbent</option>
<option value=”cs-001”>Ultra-Safe, Rear-Facing</option>
<option value=”rt-001”>UberNoise 5000</option>
<option value=”bw-001”>Clean and Fragrant</option>

</select>

<input type=”button” value=”Next” onclick=”pickNext()” />
<input type=”button” value=”Previous” onclick=”pickPrev()” />

</form>

If you load this example file into your Web browser and then click on the “Next”
and “Previous” buttons, you’ll see that the selected item changes as you click the
buttons. One additional thing to note is that, when this select list is first loaded
into the Web browser, no item will be selected by default. This means that the
selectedIndex property of the Select object will be a negative one. So, I have to
check for that occurrence explicitly in the code for the pickPrev() function.

Saturday Afternoon156

4804-2 Ch13.F 4/9/01 8:15 AM Page 156

While this example doesn’t include an onchange handler, it’s important to note
that when you select a menu item in this fashion, an onchange event is not gener-
ated! (So, if you need to completely duplicate an onchange event, you’ll have to
call your onchange event handler after you select your new menu item.)

Multiple-select lists

Thus far, all the examples you’ve seen have involved single-select lists. That is to
say, lists that can only have one item selected at a time. HTML however, provides
for another type of selection list, the multiple-selection list. As the name implies,
in a multiple-selection list, the user can select as many items from the list as they
want. In HTML, the only difference between the two is the addition of a “multiple”
attribute to the select list definition. In JavaScript however, the differences are a
bit more substantial.

The selectedIndex property and multiple-select lists

First and foremost, in a multiple-select list, the role of the selectedIndex prop-
erty becomes even more important. In a single-select list, the odds of running into
a list with nothing selected are a fairly low. If the HTML definition of the list spec-
ifies an initially selected item or if the user selects an item, then the list will
always have an item selected from there on out. In a multiple-select list however,
the user can select or deselect as many items as she wants. So, it’s entirely possible
to have a list with no items selected. Because of this, you should always check the
selectedIndex property before performing any operation on a multiple-select list.
If the value is negative one (-1), you’ll know that there is nothing selected in the
list and can act accordingly.

If the value of selectedIndex is not negative one, then you know that at least
one item in the list is selected. In this case however, the selectedIndex property
is only telling you the index of the first selected item in the list. It’s up to you to
determine what the other selected items are. The following code is from the
multipleSelectList.htm file on your CD-ROM. It shows a typical multiple-select list
and how you might use it.

function showSelected() {
var si = document.order.products.selectedIndex;
if (si == -1) {

alert(“No items are selected!”);
}

else {

Session 13—Working with HTML Controls 157

Part III—
Saturday Afternoon
Session 13

4804-2 Ch13.F 4/9/01 8:15 AM Page 157

var report = “You have selected: \n”;
var partNo = “”;
var desc = “”;
for (x=si; x < document.order.products.length; x++) {

if (document.order.products.options[x].selected) {
partNo = document.order.products.options[x].value;
desc = document.order.products.options[x].text;
report += partNo + “ - “ + desc + “\n”;
}

}
alert(report);
}

}
</script>
<form name=”order”>

Select a Product

<select name=”products” size=”5” multiple>

<option value=”st-001”>Rock & Stroll - Deluxe</option>
<option value=”dp-003”>Size 3, Extra Absorbent</option>
<option value=”cs-001”>Ultra-Safe, Rear-Facing</option>
<option value=”rt-001”>UberNoise 5000</option>
<option value=”bw-001”>Clean and Fragrant</option>

</select>

<input type=”button” value=”Show All Selected”
onclick=”showSelected()” />

</form>

As you can see from this example, working with a multiple-select list isn’t really
too difficult. The main thing is to check the selectedIndex property immediately
before attempting to work with the list. If it turns out that there is at least one item
selected, I then enter a simple for loop to check each item in the list. (Note however
that the for loop starts its work at the index number reported in the selectedIndex
property. This lets me skip over the unselected items at the top of the list.)

Adding or removing options in a select list

The last bit of select list information that I want to give to you in this session is
how to add and remove items in a select list. That’s right; JavaScript will allow you
to add new items to a select list or to remove old items from the list.

To remove an item from a select list, all you have to do is assign a null value to
the options array element that holds the item you want to remove. This will

Saturday Afternoon158

4804-2 Ch13.F 4/9/01 8:15 AM Page 158

remove that item from the list and move all the items below it up to fill the newly
emptied space.

Adding an item is a bit more complex. It requires two steps:

1. Create a new Option object using the Option object’s constructor method.
(Remember, we discussed constructor methods in Session 6.)

2. Assign this new Option object to the end of the options array of the
select list you want the new item to appear in.

The constructor method for the Option object is actually pretty simple. You pass
it up to four parameters, and it will return a new Option object that you can add to
the end of a select list. Those parameters, in the order that they must appear, are:

1. text: This is the text you want to appear in the menu when the new
item is added.

2. value: This will be placed into the new item’s value property.

3. defaultSelected: This is used to set the defaultSelected property of
the new item.

4. selected: This tells the JavaScript interpreter if the new item should be
selected or not when it is placed into the select list.

All of these parameters are optional, but you should usually provide at least the
first two. (If you don’t provide any parameters, you can set the appropriate proper-
ties after the new Option object is created.)

The addRemoveOptionsSelectList.htm file shows you how all of this can be used to
create dynamic select lists. (Be sure to open this file in your HTML editor so that
you can follow along with the next paragraph.) Looking at the HTML portion of this
file, you’ll see that I have two select lists, one containing my product information
and the other an empty list that will hold the items in the user’s shopping cart.
When the user selects an item in the product list and then clicks the “Add to Cart”
button, the addToCart() function is called. First, this function checks to see if an
item in the product list is selected. If there isn’t a selected item, an alert window is
displayed to tell the user to select an item first. If there is an item selected however,
the function retrieves the value and text properties of that item and passes them
to the Option constructor method to create a new Option item. This new Option item
is then assigned to the end of the select list representing our shopping cart. This
causes the new item to appear immediately in the shopping cart. Finally, I assign a
null to the appropriate element of the products select list, which removes the origi-
nally selected item from that list. (removeFromCart() works much the same way.
The names of the select lists are reversed to move the selected item from the shop-
ping cart back to the products list.)

Session 13—Working with HTML Controls 159

Part III—
Saturday Afternoon
Session 13

4804-2 Ch13.F 4/9/01 8:15 AM Page 159

Working with Text-Based Controls

Well, after that, you’re probably in the mood to tackle something a bit more sim-
plistic. You’re in luck, because it’s time to talk about how JavaScript interacts with
the various text-based HTML controls. When I say “text-based,” I’m talking about
the controls whose job it is to handle lines or blocks of text. These include text
boxes, text areas, password fields, and hidden fields. Here’s an example of each one:

<!-- Text box -->
<input type=”text” name=”aTextBox” value=”Hello World!” />
<!-- Text Area -->
<textarea name=”aTextArea” rows=”5” cols=”60”>Howdy
Terra!</textarea>
<!-- Password field -->
<input type=”password” name=”aPassword” />
<!-- Hidden Field -->
<input type=”hidden” name=”hiddenField” value=”I’m Hidden!” />

While these are all different types of controls, JavaScript sees them all as con-
trols that handle text. Because of this, you use each of these controls in a very
similar fashion.

The most useful thing you can do with a text-based control is simply get or set
the text string that’s in it. Because the user can type directly into all of these con-
trols (except for hidden field controls) this ability gives you the opportunity to
interact directly with the user. As you’ve no doubt guessed by now, to get or set
the information in one of these controls, you simply access the value property of
the control. When you read the value property, you’ll get back the text as it
appears at that moment in the control. When you assign a string to the value
property, you’ll change the contents of that control on the screen. (For examples
of how to use these controls, see the textBasedControls.htm file.)

Text-based control tips

When you work with a password field, remember that what appears on screen will
be shown as all asterisks (*) or some other character. This is to prevent someone
from stealing a password by looking over someone’s shoulder. However, when you
access the value property of a password field, you’ll get the actual text of the pass-
word. So, if you display that information on the screen, you’ll be revealing the
user’s password! Most users won’t like that, so be careful when you work with
password fields.

Saturday Afternoon160

4804-2 Ch13.F 4/9/01 8:15 AM Page 160

Hidden fields have slowly become the workhorse of HTML controls. They can
contain just about any type of string or numeric data and the length of the data
they hold depends only on how much memory the Web browser is willing to let
them have. As you cruise the Internet looking at JavaScript code, you’ll see lots of
programmers hiding lots of crucial information in hidden fields. So, be on the
lookout for it.

Text-based control events

Like most of the other controls you’ve seen, the text-based controls (with the
exception of hidden fields) support the onblur and onfocus events. Another
interesting event supported by text-based controls is the onchange event. This
event fires when the contents of a text-based control are changed and then the
control loses the focus. As we’ll see in Session 15, these events give your program
the perfect opportunity to react to user input and validate the values that they
type into your forms.

REVIEW

In this session, you’ve gotten a detailed look at how JavaScript interacts with each
type of HTML control. Although all of the controls work in much the same way (by
keeping the really good stuff in the value property), you saw how each different
control requires a slightly different approach from your JavaScript code. You
learned the differences between check boxes and radio buttons as well as how to
use a select list. You also learned how to use each of the different text-based con-
trols. In Session 15, you’ll build on this knowledge and learn how to ensure that
the data a user enters into your form controls is valid for your application.

QUIZ YOURSELF

1. What property do you examine to see if a particular check box or radio
button is selected? (See “Working with Check Boxes” and “Working with
Radio Buttons.”)

2. What is held in the value property of a file upload control? (See “Working
with the File Upload Control.”)

Session 13—Working with HTML Controls 161

Part III—
Saturday Afternoon
Session 13

4804-2 Ch13.F 4/9/01 8:15 AM Page 161

3. What exactly is a family of radio buttons? (See “Working with Radio
Buttons.”)

4. What does the selectedIndex property tell you about a select list? (See
“Working with Select Lists.”)

5. How can you dynamically add a new item to a select list? (See “Adding or
removing Options in a select list.”)

Saturday Afternoon162

4804-2 Ch13.F 4/9/01 8:15 AM Page 162

Session Checklist

✔ Learning how to use JavaScript to control images on the HTML
page

✔ Understanding the JavaScript Image object
✔ Understanding how to create JavaScript-based rollover buttons and

animations

The ability to transmit images is one of the most popular aspects of the World
Wide Web. Because of their popularity, pictures have infiltrated almost every
part of the Web browsing experience. For example, instead of HTML buttons,

most Web sites feature clickable images that change when you move the mouse
over them. While you might know and love all of these neat little graphic tricks,
you might not know that JavaScript is the power behind almost each and every
one of them. In this session, you’ll learn how to use JavaScript to interact with the
images in an HTML document and how you can create these simple animations to
enhance users’ experiences on your site.

S E S S I O N

14
Working with Images

4804-2 Ch14.F 4/9/01 8:15 AM Page 163

Understanding the Image Object

The key to manipulating the images in your HTML documents is the JavaScript
Image object. When your HTML document loads into the Web browser, the
JavaScript interpreter creates an Image object for each tag that it finds in
the document. It places all of these Image objects in an images array (which you’ll
find in the document object). If you don’t want to use the images array, you can
specify a name= attribute for each tag and access your Image objects directly.
For example, assuming that the following tag is the first image in a document:

You can access the associated Image object by using either document.images[
0] or document.happyBaby. If, for some reason, you can’t give your images names
that are also valid JavaScript variable names, you can still access them by name by
using the images array just like you would use the elements array in a form
object. For example, if you have an image defined like this:

You can access it by using the images array, like so:

var poorlyNamedImage = document.images[‘poorly named’];

Properties of the Image object

Now that you know how to get to an Image object, you’ll want to know exactly
what it is that you’ll find there. (You’ll find sample source code that exercises all
of these properties in the Session14 folder on your CD-ROM.)

The border property

This property contains the border value that was set for the image in the
tag. For example, given this tag, the border property for document.happyBaby
will be 10:

The complete property

This is a Boolean property that tells you if an image has completed loading.

Saturday Afternoon164

4804-2 Ch14.F 4/9/01 8:15 AM Page 164

The height and width properties

These properties tell you the current height and width (in pixels) of the picture. If
you specify height and width attributes in your tag, these properties will
reflect those values. If you do not specify these attributes, these properties will be
the actual height and width of the image. Note that after an image loads, you can
assign a new value to either property and the image will be resized accordingly.
(For an example of both properties, see the heightNwidthProperties.htm file on
your CD-ROM.)

The hspace and vspace properties

These represent the the amount of horizontal and vertical padding used to offset
the image from the content around it. Note that these properties can be changed
after the image finishes loading and the image will be repositioned accordingly.
(See also the discussion of the vspace property, below.)

The name property

This is the name of the image. If name is a valid JavaScript variable name, you can
use it to access the image directly rather than having to go through the images
array.

The src and lowsrc properties

This is the Web address of the picture that should be loaded for this image. If you
assign a new value to this property, the Web browser will actually load the picture
stored at that address. This is the basis for all JavaScript-based animations. For
more information, see the sections “Creating Rollovers with JavaScript” and
“Creating an Animation with JavaScript” later in this session.

The lowsrc property is the Web address of a low-resolution version of the
image. If the browser is running on a device with a low resolution, this image will
be used instead of the one specified by the src property.

Image object events

As you saw in Session 10, tags support several events that allow you to
detect if and when an image actually loads successfully. I’m listing them again
here to be complete, but you should refer back to the sample source code for
Session 10 to see a simple example of each of these event handlers in action.

Session 14—Working with Images 165

Part III—
Saturday Afternoon
Session 14

4804-2 Ch14.F 4/9/01 8:15 AM Page 165

The onabort event

This event fires if the user stops the loading of an image — that is, if the user
clicks the browser’s Stop button before the image is fully loaded.

The onerror event

This event fires if there is an error during the loading of an image.

The onload event

This event fires after an image has been successfully loaded into the browser.

Images without the tag

As I said at the start of this session, the JavaScript interpreter creates an Image
object for each tag that it finds in your HTML document. However, if you
want, you can create Image objects that don’t have an associated tag. You
do this by using the Image object constructor, like so: var myImage = new
Image(); This statement will create a new Image object without an associated
 tag. At this point, you can load an actual image file into this Image object
simply by assigning a Web address to its src property, like this: myImage.src =
“happyBaby.jpg”;

When this picture finishes loading, you’ll have an Image object with a picture
loaded into it. However, that picture will not show up in the Web browser! In order
for an image to show up in the Web browser, it must be associated with an
tag somewhere in the HTML document. Without this association, the Web browser
simply doesn’t know where to draw the image. Assume that the code you’ve just
looked at has executed and that in your HTML file, you have the following
tag:

If you execute the following JavaScript statement

document.babyFace.src = myImage.src;

the graphic that was contained in document.babyFace will be replaced by the
graphic in myImage. Furthermore, because document.babyFace is associated with
an tag in the HTML document, the new graphic will replace the old graphic
in the Web browser!

Saturday Afternoon166

4804-2 Ch14.F 4/9/01 8:15 AM Page 166

Creating Rollovers with JavaScript

Now that you’ve seen how one graphic can replace another, you’ll probably want to
see how to use that fact to do something useful. The simplest thing you can do
with this technique is to create what’s called a rollover button. These are called
rollovers because when you roll the mouse over them, they change somehow. The
effect can be as simple as a change in highlighting or you can actually switch to a
completely different graphic.

The first step in creating a rollover button is to create a link that just happens
to be an image. This is as simple as surrounding an tag with a set of
 tags. For example, suppose I wanted to create a “More Info”
image that would let my users jump to a page with further information on a
product. Such a link might look like this:

This will place an image on an HTML page that is surrounded by a standard link.
When the user clicks this image, the link will activate and she will jump to the
specified page.

In order to create a rollover, you have to tell the browser to swap this image
with another one when the mouse moves on top of the image. Then, to complete
the rollover effect, you need to restore the original image when the mouse moves
away. If you remember what you learned in Session 10, you’ve probably realized
that the key to creating this effect is to use the onmouseover and onmouseout
events to detect when the mouse has moved over and off of the image.

Now, both the <a> and tags support the onmouseover and onmouseout
events, so its really a matter of personal preference as to which tag you associate
these events with. When creating a rollover, I personally prefer to hook the events
to the tag. By doing so, I’ve created a complete little animation all in one
tag. For example:

<img name=’stMore’ src=’moreInfo.jpg’ border=’0’
onmouseover=”document.stMore.src=’moreInfoOn.jpg’”
onmouseout=”document.stMore.src=’moreInfo.jpg’” />

While this might look like a very complex bit of code, it’s actually fairly simple.
As before, the <a> tags create a link that surrounds our tag. So, when
the image is clicked, the user will jump to the specified page.

Session 14—Working with Images 167

Part III—
Saturday Afternoon
Session 14

4804-2 Ch14.F 4/9/01 8:15 AM Page 167

The tag is given the name “stMore” and told (by the “src=” attribute) to
initially load the graphic file moreInfo.jpg. The border property is set to zero so
that no border will appear around the image.

The event handlers are where all the action is. The onmouseover handler says,
“When the mouse comes over this tag, change the src property of the
document.stMore Image object to be moreInfoOn.jpg.” As you learned earlier,
when you change the src property of an Image object, the browser will actually
load the specified image. If the Image object is associated with an tag (like
this one is), the new image will then replace the old one in the Web browser.

When the mouse moves over this image, the new image will be loaded and replace
the old image. All that’s left to complete the effect is to restore the old image.

When the mouse moves off of the image, the onmouseout event handler will
execute. As you can see, this handler is almost the same as the onmouseover han-
dler. The only difference is that this handler assigns the original graphic back to
the src property of the Image object. This forces the browser to redraw the origi-
nal graphic, and completes the rollover effect. (Note that you’ll find the source
code for this example in the simpleRollover.htm file on your CD-ROM.)

Creating an Animation with JavaScript

By now, you’ve probably already figured out how to do animations all by yourself.
It’s just a rollover with a lot more images, right? Well, sort of. When you are per-
forming an animation, there are a couple of other things to consider besides just
switching images. First, you have to decide how you will keep track of all the
images in your animation. Second, you have to somehow preload the images in your
animation, so that the first time it runs, there won’t be a noticeable lag between
frames. Finally, you have to decide how fast your animation is going to be.

Store your animation frames in an array

The answer to the first problem is actually pretty simple: Just store each frame of
your animation in an array. Remember, JavaScript arrays can hold any type of data,
so it’s a simple matter to build one that holds a series of Image objects. Of course,
storing your images in an array implies that you’ll be stepping from frame to frame
using a numeric index into the array. This in turn means that you’ll have to load
the images into the array in some sort of order. The upshot of all this is that the
frames of your animation need to be stored in a series of files that are numbered in
the order in which the frames should be played. For example, if you have a three-
frame animation, you might number the individual graphic files like this:

myAnim0.jpg, myAnim1.jpg, myAnim3.jpg

Saturday Afternoon168

4804-2 Ch14.F 4/9/01 8:15 AM Page 168

(Of course, you can start your numbering with “1,” but, since JavaScript starts
numbering arrays with zero, I always find it easier to start my numbering with
zero as well.)

Preloading images

The second problem is that of preloading the images that make up your animation.
Solving this problem is as simple as creating the Image objects that will hold the
frames and then setting each one’s src attribute to the appropriate file name. This
will begin the process of loading each frame while your HTML page is still being
loaded into the browser. You can then delay the start of the animation until the
complete property of the last frame becomes true.

An example of creating and loading animation frames

At this point, it’s probably a good idea to go ahead and show you how what I’ve
discussed so far fits together. The following code shows you how to create an array
of images and begin loading all of your animation frames into it.

var titleFrames = new Array();
var titleNumFrames = 16;
for (x=0; x < titleNumFrames; x++) {

titleFrames[x] = new Image();
titleFrames[x].src = “titleAnim” + x + “.jpg”;
}

The first thing to notice is that none of this code is part of a function. In fact,
when you look at the actual source file that this code comes from (the
simpleAnimation.htm file), you’ll see that these lines of code are in a <script>
block that’s at the top of my HTML document. So, these lines execute immediately
as the document is being loaded. The first line creates a new Array object called
titleFrames. (The purpose of this example is to create a title animation for the
baby-palooza.com site, so all of the associated variable names begin with the
string “title.”) Next, I set up a global variable that tells the program how many
frames there are in my animation. In this example there are 16 frames, named
titleAnim0.jpg through titleAnim15.jpg.

After I’ve set up my variables, I enter a for loop. Each time through this loop, I
create a new Image object and assign it to the next slot in my array. After creating
the Image object, I immediately set its src property to the name of the next image
file in my animation. Notice how I’m using JavaScript’s ability to concatenate

Session 14—Working with Images 169

Part III—
Saturday Afternoon
Session 14

4804-2 Ch14.F 4/9/01 8:15 AM Page 169

strings with numbers to generate the correct file name each time through the loop.
Each time I assign a value to one of these src properties, the Web browser begins
loading the specified image file.

Timing your animation

Now it’s time to actually start and run the animation. To properly discuss how this
is done, I need to show you all of the source code involved. So, here it is:

<script language=”javascript”>
var titleFrames = new Array();
var titleNumFrames = 16;
var titleAnimSpeed = 200;
var titleCurrentFrame = 1;
for (x=0; x < titleNumFrames; x++) {

titleFrames[x] = new Image();
titleFrames[x].src = “titleAnim” + x + “.jpg”;
}

function titleAnimate() {
if (titleFrames[titleNumFrames - 1].complete) {

document.titleAnim.src = titleFrames[
titleCurrentFrame++].src;

if (titleCurrentFrame == titleNumFrames) {
titleCurrentFrame = 0;
}

}
else {

setTimeout(‘titleAnimate()’, titleAnimSpeed);
}

}
</script>
<img name=’titleAnim’ src=’titleAnim0.jpg’ border=’0’
onload=”setTimeout(‘titleAnimate()’, titleAnimSpeed)” />

At the top of this code, you can see that I’ve specified two other global vari-
ables. The first, titleAnimSpeed, holds the number of milliseconds delay that
should come between frames. The second, titleCurrentFrame, tells the program
which frame of the animation to display next. After the set up of the global vari-
ables, you’ll find the for loop that loads the animation frames into my array of
Image objects.

Saturday Afternoon170

4804-2 Ch14.F 4/9/01 8:15 AM Page 170

After this is the titleAnimate() function. This function actually performs the
image swapping in my animation. I’ll come back to this in a few moments.

Finally, you see the tag that actually drives the animation. I’ve given
this the name titleAnim and the picture that’s initially loaded into it is
titleAnim0.jpg (which is the first frame of my animation).

Now, how can an tag drive my animation? Well, look at the onload han-
dler that’s defined for this tag and remember that the onload event for an
tag only fires when the image has actually finished loading. When the image fin-
ishes loading, the onload handler will call the setTimeout() method and pass it
the name of my animation function and tell it to wait 200 milliseconds before call-
ing it. (Remember the value in titleAnimSpeed is 200.)

So, 200 milliseconds after the first frame of my animation loads, the
titleAnimate() function is called. The first thing this function does is check and
see if the last frame of my animation has finished loading. If it has not, the func-
tion makes another call to the setTimeout() method, which delays the start of
the animation another 200 milliseconds. This continues until the final frame of the
animation has finished loading and the animation is ready to commence.

If the final frame of my animation has finished loading the function takes the
src property of the current animation frame and assigns it to the src property of
the titleAnim Image object. Since the titleAnim Image object is tied to an
 tag, the new picture replaces the old one on the screen.

Note the use of the increment operator (++) in the assignment statement. This
will bump up the current frame of the animation by one. The if statement that
follows will then check to see if the end of the animation has been reached. If it
has, the number of the current frame is reset to zero so that the animation can
start all over again.

If you think there’s something missing from this whole scenario, you’re
absolutely correct. Even if you understand every line of this code, you might be
wondering, “Where’s the next call to setTimeout()? How can the animation
progress if the titleAnimate() function doesn’t call setTimeout() again?”

Actually, there isn’t any need for another call to the setTimeout() method,
because there’s one already built into the tag! You see, when you assign a
new value to an Image object’s src property, you are starting the process of load-
ing the image all over again. So, if that Image object is tied to an tag, and
that tag has an onload handler, that handler will be executed every time you
assign a new value to the Image object’s src property. This means that the simple
act of switching animation frames actually kicks off the process that will cause the
next frame to be loaded.

OK, I admit it ... creating an animation this way is a lot of work. However, this
technique does work with any graphic file format that your browser can load. So,

Session 14—Working with Images 171

Part III—
Saturday Afternoon
Session 14

4804-2 Ch14.F 4/9/01 8:15 AM Page 171

if you have bunch of .jpg or .png files that you want to animate, you can do so
without having to convert them into a .gif animation. In fact, if you don’t mind a
bit of extra work, you can even create your animation using files that are stored in
different graphics formats!

Loading Images Based on Screen Size

In Session 8, I briefly mentioned the screen property of the window object. This
property holds information about the client’s current screen settings. So you can,
for example, use this information to determine if your graphics will fit on the
client’s screen. If your default graphics won’t fit the screen properly, you can
either load a set of correctly sized graphics (which will require you to actually
have a set of correctly sized graphics), or you can dynamically reset the width and
height properties of your Image objects. An example of the first approach is
shown in the following code:

for (x=0; x < titleNumFrames; x++) {
titleFrames[x] = new Image();
if (screen.availWidth < 800) {

titleFrames[x].src = “titleAnim” + x + “-small.jpg”;
}

else {
titleFrames[x].src = “titleAnim” + x + “.jpg”;
}

}

Here, I’m checking the availWidth property of the window.screen object. If it
is less than 800 pixels, I’m loading an equivalent, but smaller, version of my ani-
mation frame.

The other approach relies on the fact that, if you resize an image along one
axis, the browser will automatically scale it properly along the other axis.

<img name=’titleAnim’ src=’titleAnim0.jpg’ border=’0’
onload=”setTimeout(‘titleAnimate()’, titleAnimSpeed)” />
<script language= “javascript”>
if (screen.availWidth < 800) {

document.titleAnim.width = document.titleAnim.width / 2;
}

</script>

Saturday Afternoon172

4804-2 Ch14.F 4/9/01 8:15 AM Page 172

REVIEW

In this session, you learned all about how JavaScript interacts with images on the
HTML page. You saw how to create a rollover button and how event handlers can
be used as triggers for changing the images that are displayed in the Web browser.
You also learned how to create a JavaScript-based animation and how to dynami-
cally resize the images in the browser to fit the available space in the client’s
browser window. With all of this under your belt, it’s time to begin dressing up the
shopping cart. On your CD-ROM, you’ll find new versions of the index.htm and
babyPalooza.js files. These new versions incorporate just about everything you’ve
learned from this session to add an animated title and rollover buttons to the basic
product display. (To see the new look of the shopping cart, load the index.htm file
from the Session14 folder.) Take a few moments to study these files and you’ll have
a good idea of how the information from this session can be combined with the
knowledge you already have.

QUIZ YOURSELF

1. What does the complete property of an Image object tell you? (See “The
complete property.”)

2. What happens when you assign the Web address of an image file to the
src property of an Image object? (See “The src and lowsrc properties.”)

3. How can you create an Image object without a corresponding HTML
 tag? (See “Images without the tag.”)

4. Which events allow you to create a rollover graphic button? (See
“Creating Rollovers with JavaScript.”)

5. How do you determine the time between the frames of a JavaScript-based
animation? (See “Timing your animation.”)

Session 14—Working with Images 173

Part III—
Saturday Afternoon
Session 14

4804-2 Ch14.F 4/9/01 8:15 AM Page 173

Session Checklist

✔ Learning how to validate the data in a form using JavaScript
✔ Understanding the value of defensive programming

One of the most popular uses of JavaScript is to validate the data in a form
before that data is sent to the server. As the Web has become more and
more popular, this ability has become increasingly important. After all, if

thousands of people are hitting the same Web site every second, it’s much easier
for the Web server to cope if most of the data validation chores can be performed
on the client.

Another reason to perform data validation on the client is so your users will get
immediate feedback. When you validate form data with JavaScript, you can
instantly tell users that there is a problem and get it corrected. If you send the
data to the server for validation, the user has to sit there and wait for the data to
be sent, processed, and a result page returned. If the data was bad, the user then
has to back up a page, fix it, and send it off again. This can be incredibly frustrat-
ing, especially if the error message that comes back from the server is cryptic or
incomplete.

S E S S I O N

Validating Form Data

15

4804-2 Ch15.F 4/9/01 8:15 AM Page 175

Program Defensively

The key to data validation is to assume, right from the beginning, that users will
be entering bad data. Yes, this is a pessimistic view, and it does mean more work
for you, the programmer, but adopting it will save you a lot of heartache in the
long run. Actually, there isn’t really that much extra work involved; all you have
to do is look for ways to remove the possibility of bad data being entered. A few
ways to do this include:

� Set up default values that make sense. If you supply good default values in
your form fields, the user may never even touch most of the fields, which
means they won’t enter bad data in them. (Another advantage is that if
the user resets the form, the default values will be reloaded. If this isn’t
the behavior that you want, you can create an onreset event handler to
reset the form the way you want.)

� Protect fields that you don’t want changed. Very few people realize that
JavaScript makes it easy to set up a field so that users can’t mess with it.
As you’ll see later in this session, an onfocus handler is all you need to
make this happen.

� Use select lists whenever possible. If you present users with a list of possi-
ble values for a form field, it’s impossible for them to enter bad data into
that field. For example, instead entering a two-character state code (AL,
AK, and so forth) into a text box, give them a select list with all of the
states already in it. Like this:

<select name=”state” size=”1”>

<option value=”AL”>Alabama</option>

<option value=”AK”>Alaska</option>

<!-- other states follow -->

</select>

� Provide an interface that controls how the user can make changes to the
form. For example, provide buttons that increase or decrease a value by a
certain amount.

Setting up default values

If you are using JavaScript to dynamically generate your HTML page (as seen in
Session 11), it’s very simple to set up controls with appropriate default values. As
an example of this, let me return to the shopping cart I’ve been building. To create

Saturday Afternoon176

4804-2 Ch15.F 4/9/01 8:15 AM Page 176

an informative shopping cart display, it’s a good idea to include a count of how
many units of an item are available along with a count of how many units the user
has put in her cart. One way to display this information on screen would be to put
each value in its own text field. To implement this in my shopping cart, I need to
add two slots to my product arrays: one for the quantity on hand and another for
the number of units the user has in her shopping cart. So, my product array defin-
ition would now look like this (note that all of the code you’ll be seeing in this
session can be found in the index.htm and babyPalooza.js files in the Session15
folder on your CD-ROM):

var index = 0;
var strollerInfo = new Array();
strollerInfo[index++] = 199.95;
strollerInfo[index++] = “Rock & Stroll - Deluxe”;
strollerInfo[index++] = “st-001”;
strollerInfo[index++] = 20;
strollerInfo[index++] = 10; // Quantity on hand
strollerInfo[index++] = 0; // Number in cart

Now, assuming that I want to display each of these new values in a text field,
it’s a fairly simple matter to come up with the JavaScript code that will generate
the appropriate HTML. For example, the following shows the code I’ll add to the
showProductInfo() function to create the needed text fields.

var onHandBox = “<input type=’text’ name=’quan_” + pInfo[2] + “‘“;
onHandBox += “ value=’” + pInfo[4] + “‘ size=’6’ />”;

var inCartBox = “<input type=’text’ name=’inCart_” + pInfo[2]+
“‘“;
inCartBox += “ value=’” + pInfo[5] + “‘ size=’6’ />”;

As you can see, this code will create two text field definitions. Each of these
definitions will have a default value attribute that’s taken directly from my prod-
uct information array. The tags created by this code will look like this:

<input type=’text’ name=’quan_st-001’ value=’10’ size=’6’ />
<input type=’text’ name=’inCart_st-001’ value=’0’ size=’6’ />

(Another simple defensive trick is to use the maxlength= attribute of your text
fields to restrict the amount of data that can be entered into a field. For example, if
a field will hold a 5-digit postal code, you would set the maxlength= attribute to 5.)

Session 15—Validating Form Data 177

Part III—
Saturday Afternoon
Session 15

4804-2 Ch15.F 4/9/01 8:15 AM Page 177

Protecting fields with an onfocus handler

Now that I have these text fields defined, I need to determine exactly how I want
the user to interact with them. The inCart field is pretty simple: I want the user
to be able to type a number directly into it so that they can specify exactly how
many units of an item that they want. It would also be nice if there were a button
or two that would increase or decrease the number in this field by one. I’ll show
you how to do that in just a moment, but first I need to talk about the quantity
on hand field.

The quantity on hand field poses a bit of a problem: I want to be able to update
it myself (to reflect how many units of an item remain), but I don’t want the user
to be able to change the value in the field. Fortunately, the solution to this prob-
lem is incredibly simple, as shown here:

<input type=’text’ name=’quan_st-001’
onfocus=”document.cart.elements[‘inCart_st-001’].focus()”
value=’10’ size=’6’ />

In this code, I’ve added an onfocus event handler to the definition of my quan-
tity on hand text field. All the handler does is call the focus() method for the
corresponding inCart text field. As I’ve mentioned before, the onfocus event is
generated when a control becomes the target of the user’s keystrokes. So, if the
user clicks in this field or tabs to it, the onfocus handler will be called. The han-
dler will then call the focus() method for the inCart field. This method then
makes the inCart control the target of the user’s keystrokes. The overall effect is
that when the user tries to type something into the quantity on hand field, the
insertion point will actually jump to the inCart field! The upshot of this is that
with this event handler in place, the user can never type anything into my quan-
tity on hand field. (If your site is based on HTML v4.0 or XHTML, a simpler
approach is to create your controls with the readonly attribute. As the name
implies, this attribute makes a control read-only, so that the user cannot edit its
contents. For example, <input type=”text” readonly /> would create a read-
only text box. However, this attribute is not available in older versions of HTML,
while the JavaScript-based approach shown above should work in most JavaScript-
capable browsers.)

Controlling user input

With the quantity on hand field protected, I can now turn my attention to the
inCart field. As I said before, I’d like the user to be able to type a number into this
field to immediately specify how many units of an item they want. However, in
addition to that ability, I’d like to provide users with a set of buttons that will allow

Saturday Afternoon178

4804-2 Ch15.F 4/9/01 8:15 AM Page 178

them to add or subtract one unit at a time. These buttons (along with the rest of
the new shopping cart design) are shown at the end of each row in Figure 15-1.

Figure 15-1
Shopping cart with text fields and other controls added

As you can see, these are simple plus and minus buttons. When the user clicks
one, I want the buttons to react with an appropriate animation — that is, the but-
tons should appear to depress and then pop back up — and to either add or sub-
tract one unit to the appropriate inCart text field. The HTML that sets this up
looks like this:

<img name=’plus_st-001’ src=’plus.jpg’
onmousedown=”document.images[‘plus_st-001’].src=’plusOn.jpg’”
onmouseout=”document.images[‘plus_st-001’].src=’plus.jpg’”

onmouseup=”document.images[‘plus_st-001’].src=’plus.jpg’” />
<img name=’minus_st-001’ src=’minus.jpg’
onmousedown=”document.images[‘minus_st-001’].src=’minusOn.jpg’”
onmouseout=”document.images[‘minus_st-001’].src=’minus.jpg’”
onmouseup=”document.images[‘minus_st-001’].src=’minus.jpg’” />

In this code, I’m using three mouse-related event handlers to control the anima-
tion for my buttons. (The onmouseout handler is necessary to handle the case
where the user clicks the button, but moves the mouse away from the button
before they let go of the mouse button.) As shown here, this code only creates a

Session 15—Validating Form Data 179

Part III—
Saturday Afternoon
Session 15

4804-2 Ch15.F 4/9/01 8:15 AM Page 179

couple of animated buttons. If I actually want to react to clicks on these buttons, I
have to change the onmouseup handlers to call a function that will update the val-
ues in my text fields.

onmouseup=”doPlus(‘st-001’);document.images[‘plus_st-
001’].src=’plus.jpg’”
onmouseup=”doMinus(‘st-001’);document.images[‘minus_st-
001’].src=’minus.jpg’”

Here I’ve defined a couple of new functions: doPlus() and doMinus(). These
functions add one and subtract one unit of an item from the user’s shopping cart.
To specify which item is being added or removed, I pass each function an appropri-
ate part number. Since these functions are so similar, I’ll just go over the first one,
doPlus():

function findPartNo(partNo) {
var result = “”;
for (x=0; x < productInfo.length; x++) {

if (productInfo[x][2] == partNo) {
result = productInfo[x];
break;
}

}
return result;
}

function doPlus(partNo) {
var prodInfo = findPartNo(partNo);
// Do we have enough on hand to do this?
if (prodInfo[4] > 0) {

// Update the quantities in the array
prodInfo[4]--;
prodInfo[5]++;
// Copy these new values to the form
document.cart.elements[“quan_” + partNo].value =
prodInfo[4];
document.cart.elements[“inCart_” + partNo].value =
prodInfo[5];
}

else {
alert(“There are no more of this item in stock!”);
}

}

Saturday Afternoon180

4804-2 Ch15.F 4/9/01 8:15 AM Page 180

When doPlus() is called, the first thing it does is use the findPartNo() func-
tion to search for the array that contains the selected product information. As you
can see, the findPartNo() function is just a simple for loop that moves through
the productInfo array until it finds a match for the part number that was speci-
fied. At that point, the entire sub array is returned to the caller (in this case, the
doPlus() function).

Once the doPlus() function has the correct product information, it checks to
see if there are any units remaining in stock. If there aren’t, an alert window is
displayed to alert the user to this fact. If however, there is at least one more unit
in stock, the function subtracts one from the quantity on hand field and adds one
to the number in cart field.

After this, all that’s left is to copy these new values to the text fields on-screen.
To do this, the function takes the part number it was passed and uses it to access
the text fields via the elements array in the form. (Remember, the elements array
in a form object lets you access a control in the form by supplying a string con-
taining the control’s name. Instead of hard-coding that string, I’m simply building
it on the fly.) This updates the text fields on the screen and lets the user know
that the item has been added to the cart.

Validating Text Fields

At this point, all that’s left is to make sure the user doesn’t type something invalid
into one of the inCart text fields. This is easily accomplished using an onchange
event handler. The following HTML shows how to set this up.

<input type=’text’ name=’inCart_st-001’
onchange=’enterQuantity(“st-001”)’ value=’0’ size=’6’ />

As mentioned before, an onchange event fires when the user changes the value
in a control and the control loses the focus. So, this is a great time to make sure
the user has typed in a value that’s appropriate for the control. In this case, I need
to check to see if the control is empty and, if not, does it contain a number?

Checking for blank text fields

Checking for a blank text field is one of the simplest, and most common, data vali-
dation tasks in programming. After all, it’s very hard to give your users what they
want if they don’t supply you with all the information you need. So, it’s very
important to have a function handy that can check for a blank string in a field.

Session 15—Validating Form Data 181

Part III—
Saturday Afternoon
Session 15

4804-2 Ch15.F 4/9/01 8:15 AM Page 181

function isBlank(theString) {
var result = true;
if (theString != “”) {

for (x=0; x < theString.length; x++) {
var theChar = theString.charAt(x);
if (theChar != “ “) {

result = false;
break;
}

}
}

return result;
}

This function takes a very simplistic approach to checking for a blank string.
First it compares the string to the empty string. If the string is not empty, it then
checks each character in the string to see if any of them are not space characters.
If even one character is not a space, the string is not blank and so the function
returns a false. Otherwise, the function returns a true. (You might have noticed
that this function checks a string and not a text field. I’ll show you how to use
this function with a text field in just a moment.)

Checking for numeric values

Another common task is checking user input to make sure that it contains nothing
but numbers. There are lots of ways to do this, one of which looks like this:

function isNumeric(theString) {
var validChars = “0123456789”;
var result = true;
for (x=0; x < theString.length; x++) {

var theChar = theString.charAt(x);
// is this char in the set of validChars?
if (validChars.indexOf(theChar) == -1) {

result = false;
break;
}

}
return result;
}

Saturday Afternoon182

4804-2 Ch15.F 4/9/01 8:15 AM Page 182

This is another fairly simple operation. I’m simply checking each character in
the string to see if it is one of the characters 0 to 9. If even one character isn’t in
this set of valid characters, the entire string is rejected.

Using data validation in a program

Now that I’ve got functions to check for blank and numeric values, I can use these
functions to create my enterQuantity() function. This function is quite lengthy,
so instead of presenting it here, I’ll ask you to find it in the babyPalooza.js file (in
the Session15 folder on your CD-ROM) and follow along in your HTML editor.

As you saw a bit earlier, an onchange event in one of my inCart text fields will
cause this function to execute. The first thing the enterQuantity() function does
is grab the product information array that the user is trying to update. Then, it
retrieves the value that is typed into the text field and checks to see if that value
is blank. If it is, we set the value to a “0” string and proceed. (It seems reasonable
to me that someone would empty a field to zero it out, so that is what this code
assumes.)

Once the function has retrieved the string from the text box, it needs to make
sure that it is actually a number. If the isNumeric() function says the string is
not a number, the function puts up an alert window to that effect and resets the
value in the inCart text field to the value that is saved in the product informa-
tion array. If however, the value is a number, things get a little more interesting.
First, the function uses a JavaScript function named parseInt() to convert the
string into an actual number. The parseInt() function can take up to two para-
meters, the first is the string you want to convert and the second is the base of
the number that the string represents. In this case, my number is a decimal value,
so I pass a base value of 10. (Note that you don’t have to supply base information
to the parseInt() function. If you don’t however, parseInt() will look at the
string itself for a hint as to what the base of the number is. If the number starts
with a 0 character, it will assume that the number is octal (base 8). If the number
starts with 0x it will assume that it is hexadecimal (base 16). So, just to be on the
safe side, I always specify the base of the number I’m converting.)

Once the conversion is done, the function makes sure that there are enough
units to cover the request. If not, it will display an alert window and reset the
value in the inCart text field to the value saved in the product information array.

If there are enough units to cover the request, the function performs the neces-
sary math to update the product information array and then puts those new values
into the appropriate fields in the form. (If you are wondering why this function is
returning a Boolean result, see the “Validating Data When a Form Is Submitted”
section later in this Session.)

Session 15—Validating Form Data 183

Part III—
Saturday Afternoon
Session 15

4804-2 Ch15.F 4/9/01 8:15 AM Page 183

Validating Other Types of Controls

Of course, not every form is made up of nothing but text fields. However, text
fields are probably the most difficult to validate. After all, text fields can contain
just about any type of data and that data can have all sorts of restrictions on it.
The techniques I’ve just shown you are intended to give you an idea of how to go
about writing your own data validation routines for your own text fields. The
other types of fields you can include in a form are, for the most part, self-validat-
ing. For example, if you set it up correctly, a select list should contain nothing but
valid values. As for check boxes and radio buttons, if you need to require that one
or more of them be turned on or off, you can check them simply by looking at the
checked property of each control and reacting accordingly.

About the only other type of control that really requires any sort of data vali-
dation is the file upload field. (For an example of how to validate one of these
fields, see “Working with the File Upload Control” in Session 13.)

Validating Data When a Form Is Submitted

The examples I’ve shown so far try to validate the data in a form as the user is
entering that data. However, you can wait until a form is submitted before you
validate its data. As you saw in Session 10, you do this by creating an event han-
dler for the onsubmit event. When the user clicks a Submit button it generates an
onsubmit event. Your onsubmit handler can then check each field in the form for
valid data. If you find something wrong with the form, your event handler can
return a false and the form will not be submitted. If the data is good, you can
simply return a true and the form will be submitted.

Actually, it’s usually a good idea to do both kinds of data validation. In other
words, check the data as it’s being entered and then again when the user clicks
the Submit button. This gives you an extra bit of protection against those users
that like to kill time by finding ways to break Web sites. With that in mind, here’s
the doSubmit() function that I’m using to check my data one last time before
submitting it.

function doSubmit() {
var partNo = “”;
var result = true;
// Look at each product in the inventory
for (y=0; y < productInfo.length; y++) {

partNo = productInfo[y][2]; // Get the part number
// And use that to check each field

Saturday Afternoon184

4804-2 Ch15.F 4/9/01 8:15 AM Page 184

if (!enterQuantity(partNo)) {
result = false;
break;
}

}
return result;
}

You might have noticed earlier that the enterQuantity() function returns a
Boolean result. Here is why: By returning a Boolean result, I can reuse the
enterQuantity() function to automatically validate each field from the
doSubmit() function. If any field has bad data in it, the enterQuantity() will
report that fact and the doSubmit() function can then return a false value to
cancel the submission of the form.

REVIEW

In this session, you saw several different techniques for data validation. You
learned how to validate data on the fly, as well as how to validate data when the
user clicks the Submit button. You saw how programming defensively and using
default values could help reduce the amount of data validation you actually have
to do. I also showed you how to protect a text field from user input by using an
onfocus handler. You even learned how to create a set of custom graphics-based
controls that limit the range of user input to a form.

QUIZ YOURSELF

1. Can select lists reduce your data validation chores? (See “Program
Defensively.”)

2. How can your JavaScript program generate custom controls with default
values? (See “Setting up default values.”)

3. How can you use an onfocus event handler to protect a field? (See
“Protecting fields with an onfocus handler.”)

4. Why would you check for blank text fields? (See “Checking for blank text
fields.”)

5. How does the onsubmit handler allow you to validate your form data?
(See “Validating Data When a Form Is Submitted.”)

Session 15—Validating Form Data 185

Part III—
Saturday Afternoon
Session 15

4804-2 Ch15.F 4/9/01 8:15 AM Page 185

Session Checklist

✔ Learning about the internal structure of cookies and how to
manipulate them

✔ Learning how to determine if cookies are active

A s of now, my shopping cart has almost all of the basic functionality that it
needs. One glaring exception is that if the user leaves the site and returns
later, the contents of the shopping cart will be forgotten and the user will

have to make her selections all over again. To fix this, I need some mechanism
that will allow the shopping cart to remember its contents and rebuild itself
accordingly. Browser cookies were invented to solve exactly this sort of problem.

What Is a Cookie?

A cookie is a tiny chunk of data that the Web browser stores on the client’s
machine. When I say “tiny,” I mean about 4 KB (4,096 bytes), though the exact
size depends on the browser that’s being used. (Just keep your cookies under
4,000 bytes in length and you shouldn’t have any problems.) While cookies are
usually thought of as a strictly client-side affair, they are actually managed by
both the Web browser and Web server working together. The Web browser can send

S E S S I O N

Cooking up Cookies
with JavaScript

16

4804-2 Ch16.F 4/9/01 8:15 AM Page 187

a cookie to the server, which will store it for later use. Then, when a Web browser
requests an HTML document, the server looks at all of the cookies it has available
and determines which of these should be sent along with the requested document.
These cookies are sent as headers that precede the actual HTML document. As
these cookie headers reach the browser, they are parsed and incorporated into the
Browser Object Model representation for that HTML document.

As you may remember from Session 9, so far as JavaScript is concerned, a
cookie is just another property of the document object. This makes reading and
writing cookies simple:

var theCookie = document.cookie; // read the cookie
document.cookie = theCookie; // write the cookie

However, actually using the contents of a cookie can be much trickier. But to
understand why, you have to understand how cookies are structured.

Ingredients of a cookie

When you reduce it down to its simplest terms, a cookie is simply a name string,
followed by an equal sign, followed by a string that represents the value of the
cookie. A semicolon marks the end of this value string. So, the simplest cookie you
could cook up might look like this: name=value; The name you give to a cookie
can be just about anything. However, it can’t contain white space characters
(blank spaces, tabs, and such), commas, or semicolons. The value part of a cookie
has the same restrictions.

While cookie names can be just about anything, you’ll probably want to give
your cookie a name that describes exactly what the cookie contains. For example,
since my cookie will eventually hold shopping cart information, I might want to
call it “bpShopCart” (for “baby-palooza shopping cart”) or something similar. So,
without actually knowing what’s in the shopping cart, my basic cookie might look
something like this:

bpShopCart=shopcartcontents;

Cookie attributes

After the initial name and value pair, you can add any or all of the following four
attributes to gain more control over how your cookie will be used.

Saturday Afternoon188

4804-2 Ch16.F 4/9/01 8:15 AM Page 188

� expires: This attribute is followed by a value that specifies an expiration
date for the cookie. This date tells you when the Web browser should
delete the cookie from the client’s machine. If no expiration date is speci-
fied, the cookie will be deleted when the user exits the Web browser. I’ll be
discussing the expires attribute in much greater detail a bit later in this
session.

� domain: By default, cookies are only available to the HTML documents that
are on the same server as the document that created the cookie. For exam-
ple, if a cookie is created by a document on the “www.baby-palooza.com”
server, that cookie will not be available to a document on the
“orders.baby-palooza.com” server. You can change this by adding a domain
specification to your cookie:

bpShopcart=shopcartcontents;domain=baby-palooza.com

Here the domain I’ve specified means that this cookie will be made avail-
able to any HTML document requested from “www.baby-palooza.com,”
“orders.baby-palooza.com,” or any other server in the “baby-palooza.com”
domain.

� path: Normally, a cookie is only available to the HTML documents that are
in the same folder as the document that created the cookie. (In other
words, if a cookie is created by a document in the Session16 folder, it isn’t
available to a document in the Session15 folder.) However, by adding a
path specification to your cookie, you can make it available to the docu-
ments in other folders. For example, if I wanted my cookie to be available
to all documents in all of the “Session” folders that are at the root of my
Web server, I could specify:

bpShopcart=shopcartcontents;path=/Session

With this path specification in place, the Web server will supply this
cookie along with any HTML document that comes from any root-level
folder whose name begins with “Session.” (Note that the path and domain
attributes you specify are case sensitive only if your Web server is case
sensitive.) If you want your cookie to be sent along with every HTML docu-
ment on the server, you would specify a path of /. (Which specifies the
root and everything under it!)

� secure: If this attribute is specified, the cookie will only be sent if the
client and server are joined by a secure connection (that is, “https” or
some other secure connection). bpShopcart=shopcartcontents;secure

Session 16—Cooking up Cookies with JavaScript 189

Part III—
Saturday Afternoon
Session 16

4804-2 Ch16.F 4/9/01 8:15 AM Page 189

Cookie values

At this point, you might be thinking that cookies look pretty simple. Well, they
are pretty simple. However, I’ve yet to consider what the value of my cookie will
actually be. Remember, I’ve got to somehow store the entire contents of my shop-
ping cart inside my cookie. How can I do this? Well, I could create a separate
cookie for each item in my product inventory and then check each cookie in turn.
However, the cookie specification states that no client may store more than 300
cookies total, and that no more than 20 cookies can come from the same domain.
So, if my product inventory has more than 20 products, this restriction will make a
“one cookie per product” approach unworkable.

A much better approach is to store all of my shopping cart information inside a
single cookie. I can accomplish this by encoding the part number and quantity for
each item in my shopping cart and placing all of this information into a single
value string.

Remember, a cookie value can contain almost anything you wish, with the
exception of white space characters, commas, and semicolons. Fortunately, I don’t
need to use any of these characters to create my cookie value. (Of course, if you do
ever need to use one of the characters that aren’t allowed in a cookie, you can use
the JavaScript escape() function to encode those characters into a form that you
can safely keep in a cookie. To decode these characters, you can use the
unescape() function to return them to their original state. I’ll be discussing these
functions in greater detail in Session 28.) So, what will my cookie actually look
like? Consider the following sample cookie:

bpShopCart=3st-0015dp-003;

Given what you know about the way the Baby-Palooza product inventory is set
up, you might be able to discern that, according to this cookie, there are three units
of part number st-001 and five units of part number dp-003 in the shopping cart.
However, you are only able to make this determination because you are familiar with
the way the inventory is set up and because the human brain is the best pattern-
matching machine in the known universe. A JavaScript program, on the other hand,
will have no earthly idea what this string signifies. Worse yet, it will find it almost
impossible to extract any meaningful information from it at all. So, let me refine the
design of my cookie so that it’s easier to see how my data is actually arranged:

bpShopCart=3:st-001|5:dp-003;

In this version, I’ve added two different separator characters that break up the
value in the cookie and give it a bit of structure. The vertical bar (also sometimes
called a “pipe”) character is used to separate the information for each product in

Saturday Afternoon190

4804-2 Ch16.F 4/9/01 8:15 AM Page 190

the shopping cart (that is, to separate the diapers from the strollers). Inside each
of these divisions, a colon character is used to separate the quantity in the cart
from the product number it is applied to. So, with a mere glance, a human can tell
that this shopping cart holds three units of part number st-001 and five units of
part number dp-003. And, as I’ll show you shortly, it’s now child’s play for a
JavaScript program to extract useful information from this cookie.

So, why did I pick the vertical bar and colon characters for my separators?
Honestly, I did it because, for me, they provide the best visual cues as to how this
data is arranged. When you design the cookies you’ll be using in your own pro-
jects, you can use whatever separator characters you want. The only restrictions
are that you can’t use white space characters, commas, or semicolons and that
your separators shouldn’t be something that might appear as data inside your
cookie. (For example, since my part numbers contain dashes, I wouldn’t want to
use a dash for one of my separators.)

At this point, it’s important that you realize that the cookie string I’m building
here is unique to this shopping cart. In all likelihood, each project that you work
on will require a completely different cookie structure (if the project even uses
cookies at all). The point of this session is to introduce you to the issues that you
will confront when working with cookies, not to make you think that there is only
one correct way to build and use them.

Cookie Usage Guidelines

Over the years, cookies have received a fair amount of bad press. This is because
several clever companies figured out that, because a cookie can hold just about
anything, they could just as easily hold personal information as well as what’s in a
shopping cart. This can include credit card numbers, passwords, and, perhaps most
disturbing of all, information about a person’s Web browsing habits. When privacy
advocates got wind of this, there was a general outcry against the use of cookies.
As you might imagine, the ability to use cookies is far too useful to go away com-
pletely, so Web browser manufacturers responded by allowing individual users to
set up their browsers to notify them when a cookie was being saved or to reject all
cookies automatically. This means that, if you build a site that depends on cookies
being enabled, you have to be prepared for the inevitable case where a user has
turned them off and they simply aren’t available.

As you’ll see a bit later, it’s not that hard to tell if cookies are turned off or not,
but it’s much more difficult to persuade cookie-haters to even use your site. Your
best bet is to tell visitors that you are using cookies and explain to them exactly
what you are tracking with those cookies. This can usually be accomplished with a

Session 16—Cooking up Cookies with JavaScript 191

Part III—
Saturday Afternoon
Session 16

4804-2 Ch16.F 4/9/01 8:15 AM Page 191

simple disclaimer or privacy guidelines information page. If, after reading your dis-
claimer the user still doesn’t want your cookies on her machine, there’s very little
you can do about it. While this may be a victory for privacy advocates, it can be a
real pain for the JavaScript programmer. If cookies aren’t available, you can either
lock the user out of your site (which is not the best way to keep a customer if you
are building an online business) or you can provide the user with as much func-
tionality as possible without using cookies. (For the Baby-Palooza site, I’ll be try-
ing to provide my users with as much functionality as possible.)

Building and Saving Cookies

As you’ve seen, the act of saving a cookie is really very simple. All you have to do
is build your cookie string and then issue a statement similar to this:

document.cookie = theCookie;

The tricky part is the actual building of the cookie string. However, once you’ve
decided what your cookie value will actually look like, this isn’t too difficult to do.
As you’ll remember from earlier in this session, my cookie string is going to look
like this:

bpShopCart=quantity:partNumber|quantity:partNumber|etc. . .;

So, really, all I need is a simple loop that will go through my product informa-
tion array and add each product’s information to my final cookie string. Here is a
simple function that will do the job quite nicely.

function saveCart() {
var theCookieName = “bpShopCart=”;
var theCookieValue = “”;
for (x=0; x<productInfo.length; x++) {

// Only include if this item has
// been placed in the shopping cart
if (productInfo[x][5] > 0) {

// if this is the first item we’ve found
// do not add a separator
if (theCookieValue != “”) {

theCookieValue += “|”;
}

// add the quantity to the cookie
theCookieValue += productInfo[x][5] + “:”;

Saturday Afternoon192

4804-2 Ch16.F 4/9/01 8:15 AM Page 192

// add the part number to the cookie
theCookieValue += productInfo[x][2];
}

}
document.cookie = theCookieName + theCookieValue + “;”;
alert(document.cookie);
}

As you can see, this code isn’t terribly complex. I’m simply moving through my
product information array and, if a product has been placed in the shopping cart, I
add its information to my cookie value string. After I’ve built my cookie value, I
simply concatenate it with the cookie’s name and a semicolon and assign it to the
document.cookie property. The call to the alert() method simply allows me to
check the contents of my cookie so I can tell if I’ve built it properly.

At this point, the question becomes, “When do I build and save my cookie?”
Well, if you glance back at Session 10, you might notice an event called the onun-
load event. This event is fired whenever the browser unloads the current Web page.
This happens when the user moves to another page, or when the Reload button is
clicked. You trap the onunload event by specifying your handler in the <body> tag
of your HTML document. So, if I change my <body> tag to look like this:

<body bgcolor=”white” onunload=”saveCart()”>

The saveCart() function will be called whenever the page containing my shop-
ping cart is unloaded. So, if I place three strollers and two rattles in my shopping
cart and then reload the page, I’ll get an alert window with a cookie string that
looks like this:

bpShopCart=3:st-001|2:rt-001.

Hopefully, this is almost exactly what you expected the cookie to look like.
However, if you look closely, you’ll notice something missing: the ending semi-
colon. Even though the saveCart() function adds a semicolon to the end of the
cookie when it saves it, that semicolon is not a part of the cookie string that you
get when you later examine the document.cookie property. While this might be
unexpected, it actually makes processing cookies easier, simply because you don’t
have to worry about stripping off the semicolon.

Adding an expiration date

As it stands now, my cookie is ready to use. However, one little thing is missing:
an expiration date. Without an expiration date, this cookie will only exist for as

Session 16—Cooking up Cookies with JavaScript 193

Part III—
Saturday Afternoon
Session 16

4804-2 Ch16.F 4/9/01 8:15 AM Page 193

long as the user has her Web browser open. This is because, as I mentioned earlier,
a cookie saved without an expiration date will be deleted as soon as the user ends
her browser session.

You see, when you close your Web browser, part of its shutdown process is to
look at the expiration dates of all of the cookies it has gathered. If the expiration
date of a cookie has passed, or if the cookie simply doesn’t have an expiration
date, the browser will delete the cookie from the client’s machine. So, in its cur-
rent form, my cookie will only be good until the user closes her Web browser.
While this might sound good enough, consider the poor user that spends an hour
shopping at your site, filling her cart with all sorts of goodies, only to realize that
her credit card has expired. Having renewed her credit card a few days later, she
returns to your site only to find that everything she has selected has disappeared!
How likely is she to repeat all of that work just to give you money?

Again, you specify a cookie expiration date by adding an expires= attribute to
the end of your cookie. This will give you a cookie that looks something like this:

bpShopCart=shopcartcontents;expires=expirationdate;

The catch here is that you have to format the expiration date in a very specific
way. Fortunately, JavaScript contains an object that makes creating a properly for-
matted expiration date very simple.

Using the Date object with a cookie

As the name suggests, the JavaScript Date object is used to hold information about
a date. As with the other built-in JavaScript objects you’ve seen, you create a new
Date object by using the new keyword, like this: var currentDate = new Date();

In this example, I’ve not passed any parameters to the Date constructor method.
Because of this, the constructor will return a Date object that contains information
about the current time and date that are contained in the client’s system clock.
Once you’ve got a Date object created, there are lots of different things you can do
with it. However, at this point, I’m only interested in using it to create an expira-
tion date for my cookie. (I’ll be discussing the Date object in detail in Session 27.
For now, I’m just going to discuss the parts of the Date object that are useful for
the creation of cookies.)

I can do this by adding a time interval to my Date object and then using the
resulting date to tack an expiration date onto the end of my cookie. For example, if I
want my cookie to expire in two weeks, I create a Date object representing the cur-
rent time, add two weeks to that, and then use this new date (which is two weeks
into the future) to generate the expiration date for my cookie. In order to accom-
plish this, you need to know about three methods of the JavaScript Date object.

Saturday Afternoon194

4804-2 Ch16.F 4/9/01 8:15 AM Page 194

� The getTime() method. This method returns the date as the number of
milliseconds that have passed since midnight on January 1, 1970.

� The setTime() method. This method accepts a single parameter: an inte-
ger number of milliseconds that have passed since midnight on January 1,
1970. This number will be used to reset the Date object to that date.

� The toGMTString() Method. A cookie’s expiration date must follow a cer-
tain format. Specifically, it must be formatted as a Greenwich Mean Time
(GMT) date string. This method returns the contents of a Date object in
exactly that format.

Now that you know about these methods of the Date object, take a look at the
revised saveCart() function.

function saveCart() {
var theCookieName = “bpShopCart=”;
var theCookieValue = “”;
for (x=0; x<productInfo.length; x++) {

// Only include if this item has
// been placed in the shopping cart
if (productInfo[x][5] > 0) {

// if this is the first item we’ve found
// do not add a separator
if (theCookieValue != “”) {

theCookieValue += “|”;
}

// add the quantity to the cookie
theCookieValue += productInfo[x][5] + “:”;
// add the part number to the cookie
theCookieValue += productInfo[x][2];
}

}
var expireTime = new Date(); // add the expiration date

// How many milliseconds are there in two weeks?
var twoWeeks = 14 * 24 * 60 * 60 * 1000;
expireTime.setTime(expireTime.getTime() + twoWeeks);
document.cookie = theCookieName + theCookieValue + “;expires=”
+ expireTime.toGMTString() + “;”;
alert(document.cookie);
}

Session 16—Cooking up Cookies with JavaScript 195

Part III—
Saturday Afternoon
Session 16

4804-2 Ch16.F 4/9/01 8:15 AM Page 195

As you can see, there really isn’t that much to this. The first new step is to cre-
ate a Date object that contains the current time and date from the client’s system
clock. After this, a simple calculation yields the number of milliseconds that make
up a two-week interval. (Remember, there are 1,000 milliseconds in a second.) I
then use the getTime() method to extract the number of milliseconds that consti-
tute the current date and add my two week interval to that. I then pass this result
to the setTime() method and my expireTime Date object will then contain a date
that is two weeks into the future.

The only thing left to do is extract this information in the form of a GMT for-
matted string and add it onto the end of my cookie string. When it’s all over, the
cookie string that’s generated might look something like this:

bpShopCart=2:rt-001;expires=Tue, 12 Dec 2000 19:38:17 UTC;

Loading and Decoding Cookies

Now that I’ve got my cookie saved out and I know that it’s going to be around for
a while, I have to turn my attention to loading it back in when the user returns to
my site.

As you’ve probably guessed, if the onunload event is a good time for saving a
cookie, the onload event is a perfect signal for loading a cookie back in. If you’ll
remember, loading the actual cookie is a snap: var theCookie = document.
cookie;

As with saving a cookie, the real work comes from decoding the information
that is contained in the value portion of the cookie string. Fortunately, the Array
and String handling methods you saw in Session 5 and Session 6 make this very
easy to do.

function loadCart() {
var myCookieName = “bpShopCart”;
var theCookie = document.cookie;
// Remember, there can be multiple name=value pairs!
// So, break the cookie up along the semi-colons

var allCookies = theCookie.split(“;”);
// Now, take each of those name=value pairs and split them
for (a=0; a<allCookies.length; a++) {

var thisCookie = allCookies[a].split(“=”);
// Does the name in this cookie match?
if (thisCookie[0] == myCookieName) {

Saturday Afternoon196

4804-2 Ch16.F 4/9/01 8:15 AM Page 196

// break out the products in the cart
if (thisCookie.length > 1) {

var products = thisCookie[1].split(“|”);
if (products.length > 0) {

// Split out the part numbers and quantities
// for each product
for (b=0; b<products.length; b++) {

var detailInfo = products[b].split(“:”);
// Store the new value in the
// on-screen text box
document.cart.elements[‘inCart_’ +

detailInfo[1]].value = detailInfo[0];
// Finally, use the enterQuantity function
// to validate the value and update the
// main productInfo array
enterQuantity(detailInfo[1]);
}

}
else {

// If there is nothing in the cookie,
// do nothing
break;
}

}
}

}
}

As you can see, I’m using the String object’s split() method to break the
cookie apart into smaller and smaller units of information. The first call to
split() breaks up any name=value pairs that are in the cookie. I then loop
through these pairs and use a second call to split() to break them into their con-
stituent parts (that is, the name and the value). I then search each pair for the
name I used for my cookie (“bpShopCart”).

If the names match, and the cookie is not empty, I know that this is the value
I’m interested in. So, I then split that value into yet another array that contains
the information about all of the products that were in my shopping cart when the
cookie was saved. One last loop splits each chunk of product information into an
array containing the part number and quantity.

Session 16—Cooking up Cookies with JavaScript 197

Part III—
Saturday Afternoon
Session 16

4804-2 Ch16.F 4/9/01 8:15 AM Page 197

At this point, it’s a simple matter to assign the quantity to the appropriate text
box on screen. A final call to the enterQuantity() function ensures that the
value is valid and updates the values in the actual productInfo array. With all of
this code in place, my shopping cart will automatically rebuild itself whenever the
user returns to it. (As long as they come back within two weeks!)

Deleting a Cookie

While it’s nice to be able to make cookies hang around, there are times when you
want to get rid of them completely. One such time might be when the user actually
places an order. After all, once they’ve ordered the products in their shopping cart,
they’ll hardly want to see those items pop up in their cart again.

The only way to really delete a cookie is to save a cookie with the same name,
but with an empty value and no expiration date. This will force the browser to
delete the cookie when the user finishes using the Web browser. For the Baby-
Palooza site, this can be accomplished fairly simply. All I need to do is create a
new global variable called clearCookie. Then, when the order form is successfully
submitted, clearCookie will be set to true. All that remains is to modify the last
few lines of the saveCart() function to look like this:

if (clearCookie) {
document.cookie = theCookieName + “;expires=;”;
}

else {
document.cookie = theCookieName + theCookieValue +
“;expires=” + expireTime.toGMTString() + “;”;
}

Telling if Cookies Are Turned Off

Finally, I need to address how you can determine if cookies have been disabled in
the user’s browser. In the case of the shopping cart I’ve been building here, not
having access to cookies really won’t be that much of a tragedy. If the user leaves
or resets the page with the shopping cart on it, she’ll simply lose all of the items
she had previously added to her cart. While this isn’t that big a deal for the Baby-
Palooza site, it can be a real headache for some other sites. So, it’s a good idea to
have a way to determine if cookies are available or not. The function shown here
can do just that:

Saturday Afternoon198

4804-2 Ch16.F 4/9/01 8:15 AM Page 198

function cookiesActive() {
var result = false;
if (document.cookie != “”) { //Handle the simple case first

result = true;
}

else {
document.cookie = “active=yes;”;
// Try to save and reload it
if (document.cookie == “active=yes”) {

result = true; // now trash it...
document.cookie = “active=;expires=;”;
}

}
return result;
}

As you can see, this function takes a very simple approach to the problem. If
the document.cookie property is not empty, cookies must be active. If it is
empty, it checks to see if it can save and reload a simple cookie. If it can, cookies
are active. If not, cookies must be turned off. That’s about all there is to it!

If your browser is Internet Explorer version 5 or Netscape
Navigator version 6, you can also check the navigator.
cookieEnabled property. You’ll learn more about this property in
Session 26.

REVIEW

In this session, you learned all about cookies and how they can be used from
JavaScript. You learned that cookies are stored as name=value pairs. You also
found out about the four cookie attributes that you can specify (expires, domain,
path, and secure) for your cookies. You learned how to use the value portion of a
cookie to store multiple chunks of information, rather than breaking that informa-
tion up among multiple cookies. I also told you about some of the privacy concerns
surrounding cookies and how you might address those on your Web site. You
learned how to use the onunload and onload events to trigger the saving and
loading of cookie information. I showed you how to build a cookie complete with
an expiration date (using the JavaScript Date object). You also saw how to delete a
cookie and how to determine if cookies are active in the client browser.

Tip

Session 16—Cooking up Cookies with JavaScript 199

Part III—
Saturday Afternoon
Session 16

4804-2 Ch16.F 4/9/01 8:15 AM Page 199

QUIZ YOURSELF

1. What can you store in a cookie? (See “Ingredients of a cookie.”)

2. How does the browser know when to delete a cookie? (See “Adding an
expiration date.”)

3. How do you delete a cookie? (See “Deleting a Cookie.”)

4. What statement will load a cookie? (See “What Is a Cookie?”)

5. How can you determine if cookies are active in the client’s browser? (See
“Telling if Cookies Are Turned Off.”)

Saturday Afternoon200

4804-2 Ch16.F 4/9/01 8:15 AM Page 200

1. Create a simple HTML document that uses JavaScript to dynamically cre-
ate a new JavaScript code block. This new code block should execute the
following alert() call: alert(“Welcome to Babies-A’Plenty!”)

2. What does the elements array inside a form object represent?

3. What does the reset() method of a form object do?

4. What does the following JavaScript represent? document.forms[2]

5. How can you use JavaScript to check or uncheck a check box in a form?

6. What does the options array inside a Select object represent?

7. If you extract the value from a password field, what will you actually get?

8. What is the difference between a Submit or Reset button and a generic
button?

9. What does the src property of an Image object represent?

10. What does the onload event signify for an tag?

11. What does the onerror event signify for an tag?

12. In your own words, how does a JavaScript-based rollover work?

13. What does the parseInt() function do?

14. Why should you try to validate data as it’s being entered and when the
user submits a form?

15. Why should you assume that users would enter bad data into your forms?

16. In your own words, why is data validation so important?

17. How much data can a cookie hold?

P A R T

#
P A R T

Saturday
Afternoon

III

4804-2 PartReview3.F 4/9/01 8:15 AM Page 201

18. When are the ideal times to save and load your cookies?

19. What does a cookie’s expiration date signify?

20. You might have noticed that a “Grand Total” text box appeared on the
baby-palooza.com Web site in Session 15. However, no code was added to
actually place a grand total here. Take the final source code from Session
16 and update it to calculate and display the grand total whenever the
user changes a quantity elsewhere in the shopping cart. Also, be sure to
protect the grand total text box so that the user cannot type anything
into it. (Note that when you have this code completed, you might find
that the values calculated for the grand total contain more decimal places
than you expect. You’ll learn how to solve this problem in Session 25.)

Part III—Saturday Afternoon Part Review202

4804-2 PartReview3.F 4/9/01 8:15 AM Page 202

P A R T

Saturday
Evening

IV

Session 17
Understanding JavaScript Objects

Session 18
Creating and Using Methods

Session 19
Enhancing HTML with JavaScript Objects

Session 20
Dynamically Creating and Executing
JavaScript

4804-2 Pt04.F 4/9/01 8:15 AM Page 204

Session Checklist

✔ Learning how to create your own objects
✔ Understanding constructor functions
✔ Learning how to define properties for your objects
✔ Understanding what “this” is

A s of this moment, you’ve actually seen everything you need to create a
JavaScript-based Web site. However, if you want to tap the real power of
JavaScript, you need to learn how to create and use your own JavaScript

objects.

What Is an Object?

I’ve been throwing around the word “object” for quite a while now, but I’ve not yet
really explained what an object is. Of course, you know what an object is in the
real world: It’s simply something that is an entity unto itself. For example, a golf
ball is an object, as is a human being.

S E S S I O N

Understanding JavaScript Objects

17

4804-2 Ch17.F 4/9/01 8:16 AM Page 205

In the real world, objects have physical properties as well as actions that can be
performed by, on, or with them. A golf ball, for example, has physical properties
including its size (4.27 centimeters in diameter), its shape (the good ones are usu-
ally spherical), and its texture (it’s got all those cute dimples). There are lots of
things you can do with golf balls too: You can roll them, bounce them, or even
play golf with them.

One interesting thing about real world objects is that they can contain other
objects. A golf ball contains a rubber ball surrounded by a tightly wound rubber
band. (Well, that’s what was in the one my grandfather cut open when I was
seven!) Each of these is an object in its own right, but they’ve been packaged
together to create a new type of object.

Computer-based objects are very similar in concept. The main difference is that
instead of dealing with chunks of physical matter, computer objects deal with
chunks of computer data. So, computer-based objects have properties as well as a
set of actions that they can perform. (As you’ve guessed by now, these actions are
called methods for a computer-based object.) Finally, as with real-world objects,
computer-based objects can be combined to create completely new types of objects.

You’ve seen examples of each of these things throughout the first half of this
book. For example, a JavaScript String object has a length property that tells you
how many characters are in the string. It also has lots of different methods
(actions) that it can perform. For example, the toUpperCase() method will return
all of the characters in the string in their uppercase equivalents.

You’ve also seen how objects can be combined to create totally new entities. For
example, the document object is just a collection of a bunch of different types of
objects — forms, controls, a few strings — each with its own set of properties and
methods. All of these objects work together to create something much more inter-
esting and useful.

Compare this to, say, a human being from the real world. A human being is
really just a collection of objects — kidneys, lungs, the odd brain or two — each
with its own properties and “methods,” all working together to create something
much more interesting and useful.

Why Bother Creating Your Own Objects?

At the start of this session, I mentioned that you know all you need to know to
create a JavaScript-based Web site. So, why should you even bother learning how
to create and use objects? Actually, for most Web sites, you won’t need to use
objects (other than the ones that are built into JavaScript) at all! However, as
you’ll see in the next few sessions, you’ll need to use objects if you want to build
really cool, complex, and useful Web sites.

Saturday Evening206

4804-2 Ch17.F 4/9/01 8:16 AM Page 206

Of course, there are other reasons to use objects. One of the best is reusability.
When you define a new type of object, you end up with a complete, self-contained
entity that describes the properties and methods of a particular type of data. (This
is called encapsulation.) You can then take that object definition and drop it into
any new project that you work on. This is much nicer than having to rebuild every-
thing from scratch. (If you don’t think reusability is a big deal, just ask your doctor
which would be easier: transplanting a kidney or building a new one from scratch.)

Imagine if you will, a shopping cart object. Now imagine that your quite-mad
employer has ordered you to put together 50 e-commerce sites. Wouldn’t it be nice
if you could take your shopping cart object and reuse it in each site with almost
no modification?

How to Define and Create JavaScript Objects

Every programming language that supports objects has a slightly different way of
creating those objects. However, those differences are usually just a matter of syn-
tax; the steps you go through are almost always exactly the same.

The first thing you have to do is decide what type of data your object will repre-
sent. Is it a string, an array, or a sales detail? For the purposes of this discussion, I’ll
be defining an object to represent an individual product in my product information
array.

Next, you have to decide what kinds of properties and methods your object
should have. To do this, stop and think about the data you are trying to encapsu-
late in your object. What sorts of information will you need to store in the object?
What sorts of actions do you need to be able to perform on that data?

Once you’ve got all of this nailed down, you can begin to write the program
code that will actually define your object. In JavaScript you do this by defining a
constructor function along with one or more functions that will implement the
methods of your object.

I’ve already got a definition for a product information array, which looks like this:

First slot = Price
Second slot = Description
Third slot = Part Number
Fourth slot = Shipping cost
Fifth slot = Quantity on Hand
Sixth slot = Quantity Ordered

With this definition in place, I was able to write a bunch of assignment statements
that created a product information array. Like this:

Session 17—Understanding JavaScript Objects 207

Part IV—
Saturday Evening

Session 17

4804-2 Ch17.F 4/9/01 8:16 AM Page 207

var index = 0;
var strollerInfo = new Array();
strollerInfo[index++] = 199.95;
strollerInfo[index++] = “Rock & Stroll - Deluxe”;
strollerInfo[index++] = “st-001”;
strollerInfo[index++] = 20;
strollerInfo[index++] = 5;
strollerInfo[index++] = 0;

This is pretty simple, but it does mean that I have to repeat the same basic
statements over and over again for each product in my inventory. (See the discus-
sion in Session 6 for a reminder of just how much code this is.)

The question then is how do I rework this as an object? Well, first I need to cre-
ate a constructor function, like this one:

function itemInfo(oPrice, oDesc, oPartNum, oShipping, oInStock) {
this.price = oPrice;
this.description = oDesc;
this.partNumber = oPartNum;
this.shipping = oShipping;
this.inStock = oInStock;
this.inCart = 0;
}

As you look at this listing, I’m pretty sure you’re wondering what the heck this
is. Before I address that question, let me point out a few other things. First of all,
notice that this constructor function is defined using the function keyword that
you are already familiar with. In JavaScript, constructor functions are defined
almost exactly like other functions. The main difference is how and when they are
used. Specifically, they are only used to create new objects; you don’t call them for
any other reason.

Second, just like a regular function, you can pass parameters to constructor
functions. These parameters can be used for anything you like, but the most com-
mon use is to pass default or original values that you want placed into your object
when it is first created. In the itemInfo constructor, I’m allowing the passage of
parameters that will specify the original price, description, and so forth for the
product I want to store information about.

Saturday Evening208

4804-2 Ch17.F 4/9/01 8:16 AM Page 208

What the heck is this?

Which brings us neatly to the subject of the this keyword. In the simplest terms,
whenever you see the this keyword, it is referring to the current object. So, what
is this doing in a constructor function?

To answer that, remember what a constructor function does: It actually builds
an object and fills it with data. Now, if you are in the middle of constructing an
object, that object won’t actually have a name yet, so the JavaScript interpreter
needs some way to differentiate it from any other objects that might be floating
around in memory. The this keyword is just what the doctor ordered: When used
inside a constructor function, it refers to the object that is being built right at
that moment. (Note that you can use the this keyword outside of constructor
functions. It’s a very handy keyword!)

How is an object constructed?

Now that I have my constructor function, let me show you how it’s used. With this
constructor function in place, instead of coding this:

var index = 0;
var strollerInfo = new Array();
strollerInfo[index++] = 199.95;
strollerInfo[index++] = “Rock & Stroll - Deluxe”;
strollerInfo[index++] = “st-001”;
strollerInfo[index++] = 20;
strollerInfo[index++] = 5;
strollerInfo[index++] = 0;

I can now code this:

function itemInfo(oPrice, oDesc, oPartNum, oShipping, oInStock) {
this.price = oPrice;
this.description = oDesc;
this.partNumber = oPartNum;
this.shipping = oShipping;
this.inStock = oInStock;
this.inCart = 0;
}

var strollerInfo = new itemInfo(199.95, “Rock & Stroll – Deluxe”,
“st-001”, 20, 5);

Session 17—Understanding JavaScript Objects 209

Part IV—
Saturday Evening

Session 17

4804-2 Ch17.F 4/9/01 8:16 AM Page 209

So, what’s going on here? Well, as with the array-based version, I’m using the
new keyword to invoke a constructor function. In this case however, I’m invoking a
constructor that I’ve written myself (the itemInfo() constructor function) and
not one that’s built into the JavaScript interpreter.

When the constructor function is invoked, it’s passed five parameters. The first
of these parameters goes into the parameter variable named oPrice. Then the fol-
lowing statement is executed: this.price = oPrice;

Remember, at this point, the JavaScript interpreter is in the middle of creating
a new object. Given that circumstance, this statement tells the JavaScript inter-
preter that this new object should have a property named “price.” Furthermore,
the value of the price property should be the value that was passed via the
oPrice parameter. So, since it’s being executed in the context of object creation,
this statement actually does a couple of things:

� It creates a property in the new object.
� It assigns an initial value to the newly created property.

When the constructor finishes, you’ll have a new object stored in the
strollerInfo variable. That object will have the structure and contents shown in
Table 17-1.

Table 17-1
Contents of the strollerInfo Object

Property Name Value

price 199.95

description “Rock & Stroll – Deluxe”

partNumber “st-001”

shipping 20

inStock 5

inCart 0

One thing to note here is that I didn’t use a parameter value to fill in my
inCart property. Instead I simply assigned it a default value that makes sense.
(After all, when my shopping cart is first created, it will be empty.) Again, con-
structor functions are, at heart, functions. This means that you can make them as

Saturday Evening210

4804-2 Ch17.F 4/9/01 8:16 AM Page 210

complex or as simple as you like. Just remember: The purpose of a constructor
function is to create a new object, not to make something happen elsewhere in
your program. (At this point, you might be wondering how to define the methods
that belong to this object. It isn’t that hard to do, but, because it is a bit more
complex than defining properties, I’m going to leave the discussion of how to
define and use methods until the next session.) So, with that said, I can now
replace my product information arrays with objects, as shown by the following
code:

var strollerInfo = new itemInfo(199.95, “Rock & Stroll - Deluxe”,
“st-001”, 20, 5);
var diaperInfo = new itemInfo(13.95, “Size 3, Extra Absorbent”,
“dp-003”, 5, 100);
var carSeatInfo = new itemInfo(149.95, “Ultra-Safe, Rear-Facing”,
“cs-001”, 15, 5);
var rattleInfo = new itemInfo(4.95, “UberNoise 5000”, “rt-001”,
5, 155);
var babyWipeInfo = new itemInfo(9.95, “Clean and Fragrant”, “bw-
001”, 6, 75);

You might have heard other programmers use the terms class and
instance when talking about objects. What do these terms mean?
Well, when the above code finishes executing, I’ll have five dif-
ferent objects, each of which holds information about a different
product in my inventory. However, since each object was created
by the same constructor function, they are all said to be of the
same class, specifically, the itemInfo class. (A class gets its
name from its constructor function.) Each individual object,
however, is called an instance of that class. In the real world, a
class could be thought of as a group of people, for example,
American citizens. An instance of that class of people would be
an individual citizen, like the former American president Gerald
Ford.

When this code has executed, I’ll have five itemInfo objects. Each of these will
have exactly the same properties, but the values in those properties will be differ-
ent, depending on the values I passed to the constructor function. Table 17-2
shows exactly what I mean.

Tip

Session 17—Understanding JavaScript Objects 211

Part IV—
Saturday Evening

Session 17

4804-2 Ch17.F 4/9/01 8:16 AM Page 211

Table 17-2
Contents of the Five itemInfo Objects

Object

Properties strollerInfo diaperInfo carSeatInfo rattleInfo babyWipeInfo

price 199.95 13.95 149.95 4.95 9.95

description “Rock & “Size 3, “Ultra-Safe, “UberNoise “Clean and
Stroll – Extra Rear-Facing” 5000” Fragrant”
Deluxe” Absorbent”

partNumber “st-001” “dp-003” “cs-001” “rt-001” “bw-001”

shipping 20 5 15 5 6

inStock 5 100 5 155 75

inCart 0 0 0 0 0

Using the Objects You Create

Now, if I simply leave my code in this state, I’ve got a big problem: Every bit of the
code I’ve created so far has used arrays to manipulate my product information. Of
course, I’m still going to need an easy way to loop through all of my inventory
items, so it’s probably a good idea to leave the main productInfo array as it is for
now. This means that the following code can stay exactly the way it is:

index = 0;
var productInfo = new Array();
productInfo[index++] = strollerInfo;
productInfo[index++] = diaperInfo;
productInfo[index++] = carSeatInfo;
productInfo[index++] = rattleInfo;
productInfo[index++] = babyWipeInfo;

What remains then, is to change all of the functions that treat productInfo as
if it was a multidimensional array. One such function is the function you wrote to
calculate the grand total of everything in the shopping cart. (You wrote this func-
tion as the answer to one of the Saturday Afternoon Part Review questions.) My
version is shown here:

Saturday Evening212

4804-2 Ch17.F 4/9/01 8:16 AM Page 212

function calcGrandTotal() {
var grandTotal = 0;
for (x=0; x<productInfo.length; x++) {

// Are there any of this item in the cart?
if (productInfo[x][5] > 0) {

grandTotal += calcFinalCost(productInfo[x][0],
productInfo[x][3]) * productInfo[x][5];
}

}
document.cart.elements[‘grandTotal’].value = grandTotal;
}

So, what I’ve got to do here is rewrite this, and the other functions in
babyPalooza.js so that they no longer try to access a second dimension in the
productInfo array. There are a lot of functions to consider in the babyPalooza.js
file, but the approach to fixing each one is pretty much the same, so I’ll just go
over the changes that are required for the calcGrandTotal() function.

function calcGrandTotal() {
var grandTotal = 0;
for (x=0; x<productInfo.length; x++) {

var thisItem = productInfo[x];
// Are there any of this item in the cart?
if (thisItem.inCart > 0) {

grandTotal += calcFinalCost(thisItem.price,
thisItem.shipping) * thisItem.inCart;
}

}
document.cart.elements[‘grandTotal’].value = grandTotal;
}

As you can see, this isn’t too different from the previous version. The main dif-
ference is that as I move through the productInfo array, I extract the itemInfo
object and place it in a local variable called thisItem. Like this: var thisItem =
productInfo[x]; I can then access the appropriate properties in the object to
carry out the needed calculations. Like so:

grandTotal += calcFinalCost(thisItem.price, thisItem.shipping) *
thisItem.inCart;

As another example, let’s see how the findPartNo() and doPlus() functions
look like after they’ve been changed to support objects.

Session 17—Understanding JavaScript Objects 213

Part IV—
Saturday Evening

Session 17

4804-2 Ch17.F 4/9/01 8:16 AM Page 213

function findPartNo(partNo) {
var result = “”;
for (x=0; x < productInfo.length; x++) {

var thisItem = productInfo[x];
if (thisItem.partNumber == partNo) {

result = thisItem;
break;
}

}
return result;
}

function doPlus(partNo) {
var prodInfo = findPartNo(partNo);
// Do we have enough on hand to do this?
if (prodInfo.inStock > 0) {

// Update the quantities in the array
prodInfo.inStock--;
prodInfo.inCart++;
// Copy these new values to the form
document.cart.elements[“quan_” + partNo].value =
prodInfo.inStock;
document.cart.elements[“inCart_” + partNo].value =
prodInfo.inCart;
calcGrandTotal()
}

else {
alert(“There are no more of this item in stock!”);
}

}

As you can see, there really isn’t that big a difference here. All I’ve done is
switch from array slot numbers to object property names. (To compare these new
functions with their old counterparts, see the babyPalooza.js file in the Session16
folder on your CD-ROM.) You should find that the baby-palooza.com site behaves
exactly the same way as it did before. (For a challenge, take the code from the
PartReview03 folder and change it to use objects. Be sure not to cheat by looking
at the code in the Session17 folder!)

Saturday Evening214

4804-2 Ch17.F 4/9/01 8:16 AM Page 214

REVIEW

In this session, you learned the basics of creating your own JavaScript objects. You
learned what objects are and how they have many of the same qualities as objects
from the real world. You learned how to create a simple constructor function and
how to call it to create a new object. You also learned about the this keyword and
saw how it is used in a constructor function. (Don’t worry, I’ll be telling you how
to use this in other places in upcoming sessions.) Finally, you saw how to use the
objects you create in your JavaScript code. Of course, at this point, I really haven’t
shown you much to recommend objects over arrays. I’ll be taking care of this in
the next session when I show you how to define and use methods with your
objects.

QUIZ YOURSELF

1. What is the difference between an object you define in your JavaScript
program and an object in the real world? (See “What Is an Object?”)

2. What does a constructor function do? (See “How is an object
constructed?”)

3. What does the this keyword represent? (See “What the heck is this?”)

4. What’s the difference between a constructor function and a regular func-
tion? (See “How is an object constructed?”)

5. How do you access the properties in the objects you create? (See “Using
the Objects You Create.”)

Session 17—Understanding JavaScript Objects 215

Part IV—
Saturday Evening

Session 17

4804-2 Ch17.F 4/9/01 8:16 AM Page 215

Session Checklist

✔ Adding methods to your JavaScript objects

A s you saw in the last session, creating your own JavaScript objects really
isn’t too difficult. However, really simple objects that just have properties
in them (like the itemInfo object from the last session) don’t really give

you all that much bang for your buck. Objects become really interesting and much
more useful, when you add methods to them.

What Is a Method?

As I said earlier, a method is sort of like a function that belongs to an object.
Actually, methods belong to an entire class of objects. For example, every object
that’s a member of a String class has a toUpperCase() method. So, it’s a bit more
precise to say that a method is a function that belongs to an entire class of
objects.

The upshot of this is that — as with properties — when you define a new class
(by creating a constructor function), any methods that you define in your class
will be available to each and every object that you create with that constructor
function.

S E S S I O N

Creating and Using Methods

18

4804-2 Ch18.F 4/9/01 8:16 AM Page 217

Defining a method

In JavaScript, adding a method to a class is a two-part process.

� Define the method in the constructor function. This requires a single line
of code. In this line of code, you give the method a name, and you associ-
ate it with a function that will actually carry out the processes of the
method.

� Write the function that implements the method. When you call a method,
an actual JavaScript function is executed. The catch is, when you create
your own objects, you have to write these functions yourself. Fortunately,
these functions are just like every other function you’ve seen so far. The
only difference is that you should never execute them directly; they
should only be called as a result of a method being called.

If this is a bit confusing, don’t worry. It should become clear once you see an
example.

But, before I can show you an example, I need to back up a bit and decide
exactly what I want to write a method for. To do this, I’ll return to the itemInfo
object I defined in the last session and see if it could benefit from a method or two.

Well, what are some operations that might make sense for this type of object?
Looking at the source code I’ve written so far, I can see that the calcFinalCost()
function is an ideal candidate for being turned into a method for this class of objects.
Here’s the code for calcFinalCost() as it appeared the last time you saw it:

function calcFinalCost(baseCost, shippingCost) {
return baseCost + shippingCost;
}

As you can see, this is a very simple function. It takes two numbers as parame-
ters and returns the sum of those numbers. While it’s a fairly simple function,
using it is a bit more complex than it would be if it were a method of the
itemInfo class. For example, consider the original source code for the
calcGrandTotal() function:

function calcGrandTotal() {
var grandTotal = 0;
for (x=0; x<productInfo.length; x++) {

var thisItem = productInfo[x];
// Are there any of this item in the cart?
if (thisItem.inCart > 0) {

grandTotal += calcFinalCost(thisItem.price,

Saturday Evening218

4804-2 Ch18.F 4/9/01 8:16 AM Page 218

thisItem.shipping) * thisItem.inCart;
}

}
document.cart.elements[‘grandTotal’].value = grandTotal;
}

Looking at this, you might be wondering how in the world this could be any
simpler. Well, notice that in order to call calcFinalCost(), I actually have to
extract the price and shipping properties from the itemInfo object I’m working
with. As you’ll see in a moment, by reworking calcFinalCost() as a method, I
can get rid of these two steps completely!

Specifying a method in a constructor function

Now that I’ve decided what to turn into a method, I can show you how to actually
do it. First, I have to modify the itemInfo constructor function to actually define
the method. This is shown in my updated itemInfo constructor.

function itemInfo(oPrice, oDesc, oPartNum, oShipping, oInStock) {
this.price = oPrice;
this.description = oDesc;
this.partNumber = oPartNum;
this.shipping = oShipping;
this.inStock = oInStock;
this.inCart = 0;
this.calcFinalCost = itemInfo_doCalcFinalCost;
}

In the new version of the itemInfo constructor function, only one thing has
changed: I’ve added the following statement to the end of the function.

this.calcFinalCost = itemInfo_doCalcFinalCost;

The left hand side of this statement works exactly like the statements above it. It
tells the JavaScript interpreter that, for this object that is being created right
now, I want to add a new slot that goes by the name “calcFinalCost.”

What then, differentiates this from the definition of a property? Well, it’s
what’s on the right hand side of the statement that does the trick. The right hand
side of this statement is the name “itemInfo_doCalcFinalCost.” Now, since this isn’t
the name of a local or global variable, and it isn’t a numeric value or a quoted
string, the JavaScript interpreter realizes that it must be something else. It is, in
fact, the name of the function that will be used to implement the method whose
name is given on the left hand side of the statement.

Session 18—Creating and Using Methods 219

Part IV—
Saturday Evening

Session 18

4804-2 Ch18.F 4/9/01 8:16 AM Page 219

To put it another way, this line tells the JavaScript interpreter that every object
created by this constructor function will have a method named “calcFinalCost.”
But, whenever the calcFinalCost() method is called, the JavaScript interpreter
should actually execute the function named “itemInfo_doCalcFinalCost.”

So, to sum up, the name on the left-hand side of the statement is the name I
want to give my method, but the name on the right-hand side of the statement is
the name of the function that will actually be executed when the method is called.
(Technical types like to say that the function implements the method.)

Once again, there isn’t anything magical about the names I’m using. I’ve simply
adopted a standard way of naming methods and the functions that implement
them. Specifically, I always prefix my implementation functions with the name of
the class they belong to, followed by an underscore and the characters do. This lets
me quickly see which functions are actually method implementation functions and
which class they belong to. If you like, you can give your method implementation
functions any valid function name you like. Lot’s of programmers actually use the
same name for the method and the implementation function. This is perfectly fine,
but it can lead to some confusion when you revisit your source code a few months
later.

Writing a function to implement a method

With my method defined in my constructor function, I need to actually create the
function that will implement the method. Fortunately, in this case, all I have to do
is rename and tweak the calcFinalCost() function, as shown here:

function itemInfo_doCalcFinalCost() {
return this.price + this.shipping;
}

As you can see, the only things that have changed here are the name of the
function and the fact that the this keyword now appears in the function. Why is
this necessary? Well, remember that this method will be accessible from any
object that is created by the itemInfo constructor function. Because of this, the
method needs some way to determine which price property and which shipping
property to use. Here again, the this keyword tells the method to use the proper-
ties that belong to the current object. Of course, that begs the question, “How
does an object become the ‘current’ object?”

Assuming that the method definitions you’ve just seen are in effect, consider
the following code:

var strollerInfo = new itemInfo(199.95, “Rock & Stroll – Deluxe”,
“st-001”, 20, 5);

Saturday Evening220

4804-2 Ch18.F 4/9/01 8:16 AM Page 220

var diaperInfo = new itemInfo(13.95, “Size 3, Extra Absorbent”,
“dp-003”, 5, 100);

var strollPrice = strollerInfo.calcFinalCost();
var diaperPrice = diaperInfo.calcFinalCost();

In this example I’ve created two new itemInfo objects: strollerInfo and
diaperInfo. I then proceed to call the caclFinalCost() method for each object.
Now, when I call the method, I have to give the name of the object along with the
name of the method. The simple act of naming the object along with the method
tells the JavaScript interpreter which object should be used when the this key-
word is encountered in the method. Neat, eh?

Using a custom method in your program

Now that my method and its implementation function are defined, the last thing I
need to do is change the other code in my program so that any calls to the old
calcFinalCost() function become calls to the calcFinalCost() method. (There
are actually two or three places where this happens, so I’m just going to show you
the changes in the calcGrandTotal() function.)

function calcGrandTotal() {
var grandTotal = 0;
for (x=0; x<productInfo.length; x++) {

var thisItem = productInfo[x];
// Are there any of this item in the cart?
if (thisItem.inCart > 0) {

grandTotal += thisItem.calcFinalCost() *
thisItem.inCart;
}

}
document.cart.elements[‘grandTotal’].value = grandTotal;
}

As you can see, this actually makes my code a bit smaller and a lot simpler!
When I say “simpler,” I don’t just mean that it’s easier to type; I’m also talking

about maintenance and adding functionality in the future. In this example I only
have to change my code in two or three places. But, what if the actual math
required for calculating the final cost had changed? (For example, what if sales tax
became a consideration?) Using the old setup, I might have to change each and
every call to the calcFinalCost() function (perhaps to include a third or fourth
parameter). However, by using the object and method approach, I only have to
change the code in one place: the implementation function.

Session 18—Creating and Using Methods 221

Part IV—
Saturday Evening

Session 18

4804-2 Ch18.F 4/9/01 8:16 AM Page 221

No parameters required

Looking at my new itemInfo constructor, you might have noticed that when I
defined my method I didn’t specify any parameters.

this.calcFinalCost = itemInfo_doCalcFinalCost;

This isn’t because the itemInfo_doCalcFinalCost() function doesn’t take any
parameters, it’s because you simply aren’t allowed to list parameters (or even an
empty set of parentheses) when you define a method. As with every other
JavaScript function you create, the functions that implement your methods can
accept as few or as many parameters as you want. You just can’t list them inside
your constructor function.

Implementing the Inventory as an Object

Since practice makes perfect, let me walk you through the process of reworking
the inventory as an object. Basically, I want to take the productInfo array that
I’ve been using, and make it part of a larger object that handles all of my inven-
tory-related tasks. As things stand right now, those tasks include finding items in
the inventory, adding items to the inventory, and adding and subtracting units to
and from the inventory. As before, my first step is to create a constructor function
for my new inventory class.

function inventory() {
this.productList = new Array();
this.addInventoryItem = inventory_doAddInventoryItem;
this.findPartNo = inventory_doFindPartNo;
this.plusOne = inventory_doPlusOne;
this.minusOne = inventory_doMinusOne;
}

The first line of this constructor creates a property called productList. This
will end up serving the same purpose as the old productInfo array. (Note that I
didn’t have to change the name; however, since this array is now part of a larger
structure, I felt this new name better described the purpose of the array.)

The second line defines a method called addInventoryItem. As the name
implies, the purpose of this method is to add an item to my inventory. In the old
scheme of things, I simply added the items to my productInfo array one after the
other. However, now that this array is held inside an object, it makes sense to have
a method for this task rather than access the array directly.

Saturday Evening222

4804-2 Ch18.F 4/9/01 8:16 AM Page 222

This brings up another advantage of using objects: If, at some point in the
future, I decide to change the way items are stored in my inventory (that is, I
want to store them in something other than an array), I don’t have to hunt down
and replace all of the code that adds items to my inventory. Instead, I just have to
rewrite the addInventoryItem method.

The remaining statements define the other three methods that my inventory
class needs at this point. The names may look familiar because these are three
functions that I’ve already written! So, all I have to do is rework them a bit to
turn them into methods. All four of these methods are pretty straightforward, so
I’ll just give you all of them now.

function inventory_doAddInventoryItem(theItem) {
var next = this.productList.length;
this.productList[next] = theItem;
}

function inventory_doFindPartNo(partNo) {
var result = “”;
for (x=0; x < this.productList.length; x++) {

var thisItem = this.productList[x];
if (thisItem.partNumber == partNo) {

result = thisItem;
break;
}

}
return result;
}

function inventory_doPlusOne(partNo) {
var prodInfo = this.findPartNo(partNo);
// Do we have enough on hand to do this?
if (prodInfo.inStock > 0) {

// Update the quantities in the array
prodInfo.inStock--;
prodInfo.inCart++;
// Copy these new values to the form
document.cart.elements[“quan_” + partNo].value =
prodInfo.inStock;
document.cart.elements[“inCart_” + partNo].value =
prodInfo.inCart;
calcGrandTotal()
}

else {

Session 18—Creating and Using Methods 223

Part IV—
Saturday Evening

Session 18

4804-2 Ch18.F 4/9/01 8:16 AM Page 223

alert(“There are no more of this item in stock!”);
}

}
function inventory_doMinusOne(partNo) {

var prodInfo = this.findPartNo(partNo);
// Do we have enough on hand to do this?
if (prodInfo.inCart > 0) {

// Update the quantities in the array
prodInfo.inStock++;
prodInfo.inCart--;
// Copy these new values to the form
document.cart.elements[“quan_” + partNo].value =
prodInfo.inStock;
document.cart.elements[“inCart_” + partNo].value =
prodInfo.inCart;
calcGrandTotal()
}

else {
alert(“You have no more in your shopping cart!”);
}

}

If you compare these methods with the functions they were derived from, you
can see that there really isn’t much difference. Of course, all of the references to
the old productInfo array have been replaced with references to productList,
but that’s probably the most obvious change. What’s less obvious is that the this
keyword has snuck its way into all of these methods. Why? Well, remember that
these are methods now, so they belong to an object. Until now, there’s only been
the possibility of having one shopping cart with only one inventory. But, now that
everything is being rewritten as an object, there’s the very real possibility of mul-
tiple shopping carts, each with one or more inventory objects inside it! Because of
this, these methods must use the this keyword in order to know which inventory
object they are actually working with when they are called.

The only truly new method here is the addInventoryItem() method. As you
can see though, there really isn’t that much to it. You simply pass it an itemInfo
object, and it adds it to the end of the productList array.

The only thing left to do now is to actually put the new inventory object to
use. The code that does this is shown here.

// create the inventory object
var bpInventory = new inventory();

Saturday Evening224

4804-2 Ch18.F 4/9/01 8:16 AM Page 224

// now, load it with items
var strollerInfo = new itemInfo(199.95, “Rock & Stroll - Deluxe”,
“st-001”, 20, 5);
var diaperInfo = new itemInfo(13.95, “Size 3, Extra Absorbent”,
“dp-003”, 5, 100);
var carSeatInfo = new itemInfo(149.95, “Ultra-Safe, Rear-Facing”,
“cs-001”, 15, 5);
var rattleInfo = new itemInfo(4.95, “UberNoise 5000”, “rt-001”,
5, 155);
var babyWipeInfo = new itemInfo(9.95, “Clean and Fragrant”,
“bw-001”, 6, 75);

bpInventory.addInventoryItem(strollerInfo);
bpInventory.addInventoryItem(diaperInfo);
bpInventory.addInventoryItem(carSeatInfo);
bpInventory.addInventoryItem(rattleInfo);
bpInventory.addInventoryItem(babyWipeInfo);

That’s pretty much all there is to it! Of course, the other chunks of code that
need to access the productList array will need to be rewritten a bit. The changes
that are required, however, are trivial. The following code shows how the
calcGrandTotal() function has to change to accommodate the inventory object.
(Be sure to compare this to the original code for calcGrandTotal(), shown ear-
lier in this session.)

function calcGrandTotal() {
var grandTotal = 0;
for (x=0; x<bpInventory.productList.length; x++) {

var thisItem = bpInventory.productList[x];
// Are there any of this item in the cart?
if (thisItem.inCart > 0) {

grandTotal += thisItem.calcFinalCost() *
thisItem.inCart;
}

}
document.cart.elements[‘grandTotal’].value = grandTotal;
}

Session 18—Creating and Using Methods 225

Part IV—
Saturday Evening

Session 18

4804-2 Ch18.F 4/9/01 8:16 AM Page 225

REVIEW

In this session, you learned how to add methods to your JavaScript objects. As
part of this, you learned how a method differs from a function and what an imple-
mentation function is. You also saw several examples of how to turn “ordinary”
JavaScript code into a set of objects with properties and methods.

QUIZ YOURSELF

1. How does a method differ from a function? (See “What Is a Method?”)

2. What are the steps for adding a method to a class? (See “Defining a
method.”)

3. What is the implementation function of a method? (See “Defining a
method.”)

4. How do you actually specify that an object will contain a particular
method? (See “Specifying a method in a constructor function.”)

5. How should you name your methods and implementation functions? (See
“Specifying a method in a constructor function.”)

Saturday Evening226

4804-2 Ch18.F 4/9/01 8:16 AM Page 226

Session Checklist

✔ Using JavaScript objects to enhance HTML controls
✔ Understanding how JavaScript objects can make data validation

easier
✔ Adding your own properties and methods to predefined JavaScript

objects

A t this point, you know how to create and use your own objects. You also
know how to use JavaScript to work with the various parts of the HTML
page. So, you might be thinking that it would be really neat if you could

create custom objects that would make working with an HTML document even eas-
ier. Well, you can!

Enhancing HTML Controls

Probably the most useful thing you can do is to create custom JavaScript objects
that enhance the HTML controls on your Web pages. As you’ll recall from Session
13, all of the various HTML controls already have equivalent JavaScript objects,
complete with a slew of properties and methods. However, these objects really only

S E S S I O N

Enhancing HTML with
JavaScript Objects

19

4804-2 Ch19.F 4/9/01 8:16 AM Page 227

provide the most basic functionality. For example, why is there no getValue()
method to return the value of the selected radio button in a family? Sure, you can
figure out which radio button is selected and get its value by yourself, but the
omission is puzzling. Of course, just because one method is missing, that doesn’t
mean that you’ll want to throw away a perfectly good object. An ideal solution
would be to take the JavaScript objects that already exist (like the String object or
the object that represents a radio button) and add the new properties and methods
to them that you want.

In other programming languages, this sort of thing is very easy to do. You take
a preexisting class of objects, add some new properties and methods to it, and
you’ve got a new class. This new class is called a subclass; and it can contain all of
the properties and methods of the old class (which is called the “super class”)
along with all of the new properties and methods that you’ve added. This process
doesn’t affect the old class in any way, so the two classes will actually coexist
inside your program at the same time. Unfortunately, in JavaScript, this isn’t as
easy as it should be. JavaScript does offer a way to add new properties and meth-
ods to a predefined class, but it doesn’t really allow you to create subclasses, and
it doesn’t seem to work at all with the classes that are in the Browser Object
Model. (I’ll be discussing this aspect of JavaScript a bit later in this session, in the
section titled, “Extending Preexisting JavaScript Objects.”)

Creating an object wrapper

Since you can’t modify the properties and methods of a control object directly, I’ll
show you how to do the next best thing: create a wrapper object. As the name
implies, a wrapper object is an object that wraps around another object. Since the
wrapper is itself an object, you can give it whatever properties and methods you
want. Now, before this gets too confusing, let me walk you through an example to
show you exactly what I’m talking about.

For this example, I’ll try to address my earlier complaint about radio buttons.
Specifically, why isn’t there a getValue() method associated with radio button
objects? In the code that follows, I’m going to create a wrapper object that will add
this method, along with a few others, to radio buttons. As with any other object
you create, you need to decide exactly what functionality you want your wrapper
object to have. A quick look at the constructor for my wrapper should give you an
idea of what sort of functionality I want. (This source code can be found in the
Session19 folder on your CD-ROM.)

function radioObj(radioFamilyObject) {
this.control = radioFamilyObject;

Saturday Evening228

4804-2 Ch19.F 4/9/01 8:16 AM Page 228

this.getLength = radioObj_doGetLength;
this.getSelected = radioObj_doGetSelected;
this.setSelected = radioObj_doSetSelected;
this.channelUp = radioObj_doChannelUp;
this.channelDown = radioObj_doChannelDown;
this.getValue = radioObj_doGetValue;
}

In this constructor, I’ve defined one property (control) and six new methods.
You’ll also notice that this constructor accepts a parameter, radioFamilyObject.
This parameter is assigned to the control property as the object is being created.
So, what is the control property? Well, remember that this is a wrapper object.
What it’s wrapping is, in fact, another object. In this case, it’s wrapping around a
preexisting JavaScript radio button object. If that’s still not clear, consider the fol-
lowing code.

<form name=”delivery”>
Select a Delivery Method

<input type=”radio” name=”dMethod” value=”standard” checked />
Standard Shipping

<input type=”radio” name=”dMethod” value=”overnight” />
Overnight Shipping

<input type=”radio” name=”dMethod” value=”snail mail” />
Slowest Possible

<script language=”javascript”>
// ‘wrap’ my custom object around the JavaScript object
var dMethodRadio = new radioObj(document.delivery.dMethod);
</script>

</form>

In this listing, I’ve created a very simple form with one radio button family
inside it. In the script block that follows, I’m calling the radioObj constructor and
passing it the JavaScript object that represents that radio button family. This object
is what’s assigned to the control property inside the wrapper object. So, after this
code executes, my wrapper object will have access to this control object and all of
the properties and methods that come with it. For example, if I were to code

alert(dMethodRadio.control.length);

an alert window containing a “3” would appear.
The only trick to creating the methods for a wrapper object is to remember to

use the control property to actually retrieve information about your JavaScript
control object. While the code to do this isn’t difficult, it is fairly lengthy! So,

Session 19—Enhancing HTML with JavaScript Objects 229

Part IV—
Saturday Evening

Session 19

4804-2 Ch19.F 4/9/01 8:16 AM Page 229

open up the radioObj.htm file from the Session19 folder on your CD-ROM and give
it a quick look over. Then use it to follow along with the rest of the discussion.

The first method for my wrapper, getLength(), is the simplest of them all. Like
the short example I gave earlier, it simply looks at the length property of the con-
trol object and returns it. Note also the presence of the this keyword. Remember
that since this is an object, there could actually be dozens or hundreds of radio
button families (and radioObj objects) defined in this HTML document. Again, the
this keyword tells the JavaScript interpreter which of the radioObj objects I’m
actually working with at that moment.

The remaining methods work much the same way. However, you’ll also notice
that each of the other methods has a tendency to call one another. For example,
the getValue() method calls the getSelected() method to determine which
radio button to return the value from.

Tying your objects to your HTML

The last piece of this puzzle is the way you actually tie your custom objects to
your HTML page. As you’ve already seen, your custom objects can actually include
a preexisting JavaScript object as a property. But, how do you actually get these
objects to interact with other parts of the HTML page? As always, the answer is
event handlers. Take a look at the <form> at the end of the radioObj.htm file and
you’ll see what I mean.

This is basically the same as first form you saw in this session, but I’ve added
onclick handlers to my radio buttons. I’ve also added several simple buttons, each
with an onclick handler that calls a different method of the dMethodRadio object.

Don’t forget that just about any nonempty HTML tag (that is, any
HTML tag with a beginning and ending tag) can trigger events. So,
if you need to, you can hook your custom objects (or even your
plain old functions) to just about any HTML tag in your document.

Extending Preexisting JavaScript Objects

As I mentioned at the start of this session, JavaScript contains a mechanism that
will allow you to add properties and methods to some preexisting JavaScript
objects. This is done by adding properties and/or methods to an object’s prototype.

You can think of an object’s prototype as its blueprint. If you change the proto-
type, you change the structure of the object. It’s sort of like making a change to
an object’s constructor function, except that you can do it while your program is
running.

Tip

Saturday Evening230

4804-2 Ch19.F 4/9/01 8:16 AM Page 230

Now, before I go further, I need to tell you a bit more about how JavaScript
objects work. In addition to the String and Array objects that you’ve already
learned about, JavaScript has several other built-in objects. (You’ll learn about
most of these other objects in subsequent sessions.) All of these objects however,
are based upon a single parent object that is named simply, Object. The Object
class is the basis of almost every object in JavaScript, including the objects you
create yourself.

The point of all this is that you can only change the prototype for a class if
that class is built into the JavaScript language or if that class is one that you
define yourself. So, while you can change the prototype for, say, the String class,
you can’t change it for something like a radio button object. This is because radio
button objects are a part of the Browser Object Model and not a part of the
JavaScript language.

Enhancing the String class

So, with that in mind, what sorts of enhancements would be nice for something
like the String class? Well, as you’ll remember, one of the more common data vali-
dation tasks for strings is to check and see if the string is blank. So, let’s add a
method to the string class that does just that. The following line of code shows
how you actually add a new method to the String class.

String.prototype.isBlank = String_doIsBlank;

Pretty simple, eh? On the left-hand side of my statement is my class (String in
this case), followed by the prototype keyword, followed by the name of the new
method (isBlank). On the right-hand side of the statement is the name of the
function that will implement the new method. The only thing left to do is to actu-
ally write the implementation function and test it out.

function String_doIsBlank() {
var result = true;
if (this != “”) {

for (x=0; x < this.length; x++) {
var theChar = this.charAt(x);
if (theChar != “ “) {

result = false;
break;
}

}
}

Session 19—Enhancing HTML with JavaScript Objects 231

Part IV—
Saturday Evening

Session 19

4804-2 Ch19.F 4/9/01 8:16 AM Page 231

return result;
}

var oldAndBlank = “ “;
// Add the new method to the String prototype
String.prototype.isBlank = String_doIsBlank;

var blank = “”;
var notBlank = “Not blank!”;
var alsoBlank = “ “;
alert(blank.isBlank());
alert(notBlank.isBlank());
alert(alsoBlank.isBlank());
// Even ‘old’ strings get the new method!
alert(oldAndBlank.isBlank());

If you are thinking that the code for the isBlank() method looks familiar, you
are right. This is simply the code for the isBlank() function that I’ve been using
all along. Of course, it’s been modified a little: The parameter that was passed
(which told the function which string to check) has been replaced by the this
keyword.

As you can see from this code, after I modify the prototype for the String
class, every String object I create immediately has access to the new method.
However, something you might not have expected is that even the String objects I
created before I added the new method (the oldAndBlank variable in this example)
have access to it! As far as I know, this rather surprising behavior is unique to
JavaScript and it makes the prototype a “retroactive blueprint” for all of your
objects, rather than a simple blueprint for any new objects you create.

Adding properties via the prototype

Of course, you can add properties in exactly the same way as you add methods.
The values you assign to these properties will be immediately available in all
objects of that class. For example, if I wanted to add a language property to all of
my String objects, I would simply code:

String.prototype.language = “English”;
var greeting = “Bonjour!”;
greeting.language = “French”;

I can then use this property just like any other property of the String class; I
could even create methods to work with the property. Of course, if you want to use

Saturday Evening232

4804-2 Ch19.F 4/9/01 8:16 AM Page 232

the prototype approach to extend a class of objects, be sure to place all of your
prototype-modifying statements at the start of your HTML document. This way,
you’ll be sure that all of your modifications have been made before the main part
of your code begins to execute.

Adding Data Validation to HTML Controls

If you put all of this together in your mind, I think you might begin to see that a
natural use for these techniques would be to add enhanced data validation meth-
ods to the controls in your HTML forms. For example, wouldn’t it be neat if your
text boxes could validate themselves? Of course it would!

function textObj(textControl, validChars) {
this.control = textControl;
this.allowedChars = validChars;
this.isValid = textObj_doIsValid;
this.getText = textObj_doGetText;
this.setText = textObj_doSetText;
this.isBlank = textObj_doIsBlank;
}

Here I have a fairly simple object that I’ll be able to wrap around a JavaScript
text box control object. The control property is the same as what you’ve seen
before, and I’m pretty sure you can guess what the getText(), setText(), and
isBlank() methods do. But, the allowedChars property and the isValid()
method are entirely new.

Basically, the allowedChars property lets you specify which characters can be
typed into the control, and the isValid() method makes sure that only those
characters are actually in the control. For example, if I wanted to create a control
that only accepted numeric characters, my HTML might look like this:

<input type=”text” size=”30” name=”NumText” />

And my JavaScript code would look like this:

var numText = new textObj(document.formName.NumText,
“0123456789”);

The code in the textOjb.htm file shows one way to implement all of these meth-
ods. (Again, this code isn’t too difficult, but it is pretty long, so open the file in
your HTML editor so you can follow along.)

Session 19—Enhancing HTML with JavaScript Objects 233

Part IV—
Saturday Evening

Session 19

4804-2 Ch19.F 4/9/01 8:16 AM Page 233

For the most part, these methods defined in this file are all very straightfor-
ward. (You’ll notice, however, that the isBlank() method simply calls the
isBlank() method that I added to the String class. To see exactly how this is
done, see the textObj.htm file on your CD-ROM.) The only tricky method in the
bunch is the isValid() method. This method examines the characters that have
been typed into the control and compares them with the characters that are in the
allowedChars property for the object. If any of those characters are not in the set
of allowedChars, an alert window is displayed telling the user which characters
actually are allowed.

By taking this approach, I can set up a text box that can validate its own con-
tents against any set of characters that I define. Better still, I don’t have to write a
custom validation routine for each different type of data. The example file on your
CD-ROM creates text boxes that check for numeric characters, alphanumeric charac-
ters, hexadecimal characters, octal characters and more. However, if you really
wanted, you could set up a text box that only allowed consonants or just vowels.
It’s totally up to you.

Of course, I still have to tie this validation routine to my control. As usual, all
this requires is an appropriate event handler.

<input type=”text” size=”30” name=”NumText”
onchange=”numText.isValid()” />

REVIEW

In this session, you saw how JavaScript objects can be used to enhance the abili-
ties of your HTML documents. You learned how to create a wrapper object to add
new properties and methods to the JavaScript objects that represent the controls
in your HTML forms. You also learned about how to change the prototype for any
of JavaScript’s built-in objects to add new properties and methods to those objects.
Finally, you saw an example of how to use these new techniques to create a text
box object that “knows” how to validate its own contents.

QUIZ YOURSELF

1. What is a wrapper object? (See “Creating an object wrapper.”)

2. How do you “hook” your JavaScript objects to your HTML? (See “Tying
your objects to your HTML.”)

Saturday Evening234

4804-2 Ch19.F 4/9/01 8:16 AM Page 234

3. What is an object’s prototype? (See “Extending Preexisting JavaScript
Objects.”)

4. When you add a property or method via the prototype of a class, which
objects can use the new property or method? (See “Enhancing the String
class.”)

5. Why might you want to create self-validating controls? (See “Adding Data
Validation to HTML Controls.”)

Session 19—Enhancing HTML with JavaScript Objects 235

Part IV—
Saturday Evening

Session 19

4804-2 Ch19.F 4/9/01 8:16 AM Page 235

Session Checklist

✔ Learning about the eval() function
✔ Understanding how setTimeout() and setInterval() work with

JavaScript objects

In Session 11, you learned how to use JavaScript to create HTML tags on the
fly. You also saw how to dynamically create blocks of JavaScript code. The idea
behind both of these tricks was that you could build a customized Web page

before the browser even shows the page. But what if you need to create and exe-
cute a JavaScript statement after your Web page has finished loading? As you saw
in Session 9, trying to generate new content for a page after it’s loaded will actu-
ally wipe out the page as it currently exists. So, what you need is some way to
dynamically create and execute new JavaScript statements without harming the
current contents of your HTML document. Fortunately, JavaScript provides a func-
tion that lets you do exactly that.

Using the eval() Function

The eval() function is probably the coolest, and most powerful, function in all of
JavaScript. Simply put, the eval() function takes a string and passes it to the

S E S S I O N

Dynamically Creating and
Executing JavaScript

20

4804-2 Ch20.F 4/9/01 8:16 AM Page 237

JavaScript interpreter for execution. So, this line of code: eval(“alert(‘Hello
World!’)”); has exactly the same effect as this line of code: alert(‘Hello
World!”); in both cases, an alert window containing the words “Hello World!” will
appear.

As I said, you pass the eval() function a string for it to pass along to the
JavaScript interpreter. In the example above, I passed it a hard-coded string.
However, I could have passed it a variable that contained a string

var myCommand = “alert(‘Hello World!’)”;
eval(myCommand);

and the result would be the same. In fact, you can mix variables and hard-coded
strings.

var myCommand = “alert”;
eval(myCommand + “(‘Hello World!’)”);

As long as the end result is a string, the eval() function will dutifully pass it to
the JavaScript interpreter for execution.

While the eval() function is very cool, it isn’t magical. So, once your string gets
to the JavaScript interpreter, it still has to be a valid JavaScript statement. For exam-
ple, the following eval() call will generate an error just as it would if you had hard-
coded the statement into your program: eval(“allert(‘Hello World!’)”);

Variables and the eval() function

When the eval() function passes a string to the JavaScript interpreter for execu-
tion, the interpreter executes the command just as if it were a part of your pro-
gram. This means that the command has access to all of your global variables and
any local variables that a normal statement would at that point in your program.
For example:

var who = “World!”;
var greeting = “Hello “;
eval(“alert(greeting + who)”);
function greet() {

var who = “Everybody!”;
eval(“alert(greeting + who)”);
}

greet();

Here, the first eval() call will produce an alert window that says, “Hello
World!” Inside the function however, I’ve declared a local variable named who that

Saturday Evening238

4804-2 Ch20.F 4/9/01 8:16 AM Page 238

will be used by the second eval() call. This will result in an alert window that
says, “Hello Everybody!”

In the above example, you’ll notice that the string I’m passing to the eval()
function contains the names of my variables that I want the alert() method to
display.

eval(“alert(greeting + who)”);

In other words, the contents of the greeting and who variables won’t be evalu-
ated until after this command string has been passed to the JavaScript interpreter.
However, I could have written this statement in a slightly different fashion:

eval(“alert(‘“ + greeting + who + “‘)”);

Do you see the difference here? In this second version, the contents of my vari-
ables are being extracted and placed into the command string before it’s passed to
the JavaScript interpreter. This is the same as coding:

eval(“alert(‘Hello World!’)”);

So, the question as to whether you should pass variables or hard-coded strings
is pretty much a matter of personal preference. However, as you can see from these
simple statements, from a coding point of view, it’s certainly easier to just pass
your variable names and let the JavaScript interpreter sort everything out for you.

What kinds of statements can you eval()?

Thus far, all the examples I’ve shown you have been of very simple statements
being passed to the eval() function. However, the eval() function can handle
even the most complex JavaScript statements. The following example, while not
the most complex possible, should give you an idea of what I’m talking about:

<form name=”myForm”>
<input type=”text” name=”result” />
</form>
<script language=”javascript”>
var theForm = “myForm”;
var theControl = “result”;
var val = “Hello World!”;
eval(“document.” + theForm + “.” + theControl + “.value = val”);
</script>

Back in Session 11, I said that one of the most powerful things about using
JavaScript to create HTML was that you could store entire HTML structures in

Session 20—Dynamically Creating and Executing JavaScript 239

Part IV—
Saturday Evening

Session 20

4804-2 Ch20.F 4/9/01 8:16 AM Page 239

JavaScript variables and then rearrange them programmatically to get the output
you wanted. In this example, I’ve applied that same idea to JavaScript structures.
By placing the names of these structures (that is, the names of my form and my
text box) into JavaScript variables, I can use them to build commands that can be
passed to the eval() function for execution.

The setTimeout() and setInterval() Methods

You might be thinking that the eval() function seems very similar to the win-
dow.setTimeout() and window.setInterval() methods that you learned about
in Session 8. Well, it is! These methods of the window object do pretty much
exactly the same thing as the eval() function, they simply do it after a specified
delay. (For detailed examples of these methods, refer back to Session 8.)

Using objects with setTimeOut() and setInterval()

As I said, the main difference between these methods and the eval() function is
that the eval() function executes your command immediately. The setTimeOut()
and setInterval() methods, however, wait until a specified number of millisec-
onds have passed before they will execute your command. Due to the speed at
which today’s computers run, even a few milliseconds can make a big difference in
the state of your program. So, if you want to use either of these methods with an
object, you have to be a little more careful about how you structure the command
you pass to the method. For example, consider this:

function annoying_doAnnoy() {
alert(this.msg);
setTimeout(‘this.annoy()’, 5000);
}

function annoying(message) {
this.msg = message;
this.annoy = annoying_doAnnoy;
}

var annoyEM = new annoying(“Hello!”);
annoyEM.annoy();

Looking at this, you might think that this code will repeatedly display an alert
window with the message “Hello!” in it. Well, that’s what it’s intended to do, but
there is a flaw in the code that will cause it to fail after the first alert window is
displayed. The flaw is in the setTimeout() statement: setTimeout(‘this.
annoy()’, 5000);

Saturday Evening240

4804-2 Ch20.F 4/9/01 8:16 AM Page 240

This statement is telling the JavaScript interpreter to wait five seconds and
then call the annoy() method of this object. The problem with this is that, in
five seconds the value of this will almost certainly be undefined, simply because
our method will have finished executing five seconds ago. Actually, during those
five seconds, this will probably have taken on several new values. Unfortunately,
none of them are likely to be the same as when the setTimeout() method was
called. The end result is that the annoy() method won’t be found and you’ll get an
error message.

The only way around this is to specify the name of the object whose method you
want to be called. Of course, all of the Browser Object Model objects are smart enough
to keep their names hidden away inside themselves. You can do the same thing with
your custom objects, but it does require a bit of extra work when you define your
objects. The following short program will show you what I’m talking about.

function annoying_doAnnoy() {
alert(this.msg);
setTimeout(this.name + ‘.annoy()’, 5000);
}

function annoying(name, message) {
this.name = name;
this.msg = message;
this.annoy = annoying_doAnnoy;
}

var annoyEM = new annoying(“annoyEM”, “Hello!”);
annoyEM.annoy();

In this listing, I’ve added a name property to my object definition. It’s important
to note that the value I assign to this property is the same as the name I’m giving
to the JavaScript variable that will hold the object I’m creating. In other words,
the name property in my object is the same as the name of the JavaScript variable
that is holding the object. In this case, that name is “annoyEM.”

Why bother? Well, by giving my object knowledge of its own JavaScript variable
name, I can create a setTimeou() call like this one:

setTimeout(this.name + ‘.annoy()’, 5000);

In this case, this is the same as coding:

setTimeout(‘annoyEM.annoy()’, 5000);

When this statement executes five seconds later, the correct object will be ref-
erenced and the call will be successful. (Note that everything I’ve told you here
about setTimeout() can be applied to setInterval() also.)

Session 20—Dynamically Creating and Executing JavaScript 241

Part IV—
Saturday Evening

Session 20

4804-2 Ch20.F 4/9/01 8:16 AM Page 241

Using setTimeout() creating an animation object

Don’t be fooled by the simplicity of this concept. Keeping an object’s JavaScript
variable name inside it is an incredibly powerful technique that can allow you to
perform all sorts of tasks that would otherwise be quite a bit more difficult. For
example, in Session 14, I showed you how to create a simple animation. While the
code involved was fairly simple, it really doesn’t lend itself to multiple animations
on the same page. However, if this code could be rewritten as an object, it would
be a simple matter to sprinkle JavaScript-based animations throughout your pages.
Here’s one way to create an animation object.

function animation_doPreLoad() {
for (x=0; x < this.numFrames; x++) {

this.animFrames[x] = new Image();
this.animFrames[x].src = this.imgPath + this.name + x +
“.jpg”;
}

}
function animation_doAnimate() {

if (this.animFrames[this.numFrames - 1].complete) {
eval(“document.” + this.imgName + “.src =
this.animFrames[this.currentFrame++].src”);
if (this.currentFrame == this.numFrames) {

this.currentFrame = 0;
}

}
else {

setTimeout(this.name + ‘.animate()’, this.animSpeed);
}

}
function animation(name, path, numFrames, speed) {

this.name = name;
this.imgName = name + “_img”;
this.imgPath = path;
this.animFrames = new Array();
this.numFrames = numFrames;
this.animSpeed = speed;
this.currentFrame = 1;
this.preLoad = animation_doPreLoad;
this.animate = animation_doAnimate;
this.preLoad();
}

Saturday Evening242

4804-2 Ch20.F 4/9/01 8:16 AM Page 242

Here I’ve taken the animation code from Session 14 and turned it into a simple
object. The first parameter to the animation constructor function is the name of
the JavaScript variable that will hold the object. I’ve also decided that the names
of my graphics files will be based on this name as well. (So, if my JavaScript vari-
able is titleAnim, the names of the graphics files on disk will be
titleAnim0.jpg, titleAnim1.jpg, etc.) This is an arbitrary decision, but it
makes the design of the object much simpler and establishes a logical relation
between my graphics and the JavaScript code that will work with them.

The second parameter is the path that must be followed on the server to actu-
ally get to the graphics for my animation. Note that this is only a partial path, up
to, but not including, the actual file name.

The remaining parameters specify the number of frames in the animation as
well as the speed the animation should be replayed at. With this object defined,
all that’s needed to create and play an animation is a simple JavaScript statement,
like this:

var titleAnim = new animation(‘titleAnim’, “../images/”, 16, 250);

Along with a corresponding tag in your HTML document:

<img name=’titleAnim_img’
src=’../images/titleAnim0.jpg’ border=’0’
onload=”setTimeout(‘titleAnim.animate()’, titleAnim.animSpeed)” />

Looking at the animate() method, you can see that both the eval() function
and the setTimeout() method play a role in making this animation work. The
eval() function is needed (along with the name of the tag) to load the
next frame. But, before the animation can start, the setTimeout() method (along
with the name of the JavaScript variable) is needed to check if all of the frames
are loaded. It’s easy to perform these tasks when you are working with simple
functions, but when you move to an object-based animation, you need access to
the names involved to make things run smoothly.

Creating the Shopping Cart Object

At last! You’ve finally seen all of the techniques that are needed to create the
shopping cart object. So, without further delay, let me show you the constructor
for the shipping cart object. (Note that, since there’s so much code involved, I’m
just going to show you the most important parts. Of course, you’ll find all of the
source code for the shopping cart object on your CD-ROM in the Session20 folder.)

Session 20—Dynamically Creating and Executing JavaScript 243

Part IV—
Saturday Evening

Session 20

4804-2 Ch20.F 4/9/01 8:16 AM Page 243

function shopCart(cartName) {
this.name = cartName;
this.cartForm = cartName + “_form”;
this.cookieName = cartName + “_cookie”;
this.clearCookie = false;
this.inven = new inventory();
this.initCart = shopCart_doInitCart;
this.calcGrandTotal = shopCart_doCalcGrandTotal;
this.plusOne = shopCart_doPlusOne;
this.minusOne = shopCart_doMinusOne;
this.enterQuantity = shopCart_doEnterQuantity;
this.showProductInfo = shopCart_doShowProductInfo;
this.drawCart = shopCart_doDrawCart;
this.saveCart = shopCart_doSaveCart;
this.loadCart = shopCart_doLoadCart;

this.submitCart = shopCart_doSubmitCart;
this.initCart();
}

As you’ve probably guessed, I’ve simply retooled my old functions to become
methods of the shopCart class. Since the methods are, for the most part, things
you’ve already seen, let me go over the properties that are defined here.

The first property is name. As with the other examples you’ve seen in this ses-
sion, the name property is used to dynamically create JavaScript statements.
However, these statements aren’t used with the eval() function. Consider this
excerpt from the showProductInfo() method.

var inCartBox = “<input type=’text’ name=’inCart_” +
pInfo.partNumber + “‘“;
inCartBox += “onchange=’” + this.name + “.enterQuantity(\”” +
pInfo.partNumber + “\”)’”;
inCartBox += “ value=’” + pInfo.inCart + “‘ size=’6’ />”;

For each item in my inventory, I create a text box that shows how many of that
item the user has in her shopping cart. This code defines that text box. Now, if the
user changes the value in this text box, I need to call an onchange handler to ver-
ify that the value typed in is valid. This job falls to the enterQuantity() method,
but I also need to specify which object this method belongs to. (Remember, there
could be multiple shopping cart objects, so I can’t hard-code the name of my
JavaScript variable here.) This is where the name property becomes invaluable.
Assuming that the name of my shopping cart variable is “bpCart”, this code will
generate the following HTML for the first item in my inventory:

Saturday Evening244

4804-2 Ch20.F 4/9/01 8:16 AM Page 244

<input type=’text’ name=’inCart_st-001’
onchange=’bpCart.enterQuantity(“st-001”)’ value=’0’ size=’6’ />

As you can see, the onchange handler that’s generated is exactly what’s needed to
invoke the enterQuantity() method for the bpCart variable.

The second property is cartForm. This is simply the name followed by “_form”. One
of the advantages of objects is that they let you “encapsulate” everything that some-
thing can do. One of the things that I want my shopping cart to do is to create and
output the form that it will display its information in. So, this is the name that I’ll use
to create that form. This name is used in lots of different places in the shopCart
methods, but the simplest is the calcGrandTotal() method, as shown here:

function shopCart_doCalcGrandTotal() {
var grandTotal = 0;
for (x=0; x<this.inven.productList.length; x++) {

var thisItem = this.inven.productList[x];
// Are there any of this item in the cart?
if (thisItem.inCart > 0) {

grandTotal += thisItem.calcFinalCost() *
thisItem.inCart;
}

}
eval(“document.” + this.cartForm +
“.elements[‘grandTotal’].value = grandTotal”);
}

The statement of interest here is the last statement in the method. Here I’m
using the cartForm property to create a command string that is then passed to
the eval() function. Once the JavaScript interpreter executes this statement, the
text box showing the grand total of items ordered will be updated with the new
total. The remainder of the properties and methods in the shopCart class work in
much the same way. The cookieName property lets each shopping cart maintain its
own cookie and all of the other methods have been reworked to use the cartForm
property to communicate with the HTML form that is associated with each
shopCart object.

Take a minute to load the index.htm file that’s in the Session20 folder into your
Web browser. As you’ll see, it works exactly like the last version you saw. The only
difference is that almost all of the underlying JavaScript has been converted to
make use of objects.

Session 20—Dynamically Creating and Executing JavaScript 245

Part IV—
Saturday Evening

Session 20

4804-2 Ch20.F 4/9/01 8:16 AM Page 245

REVIEW

In this session, you learned how to use the eval() function to dynamically create
and execute JavaScript statements. You also learned how this function works with
global and local variables. Next, you learned about how using the setTimeout()
and setInterval() methods with JavaScript objects can lead to problems. I
showed you that one way around this problem is to give your JavaScript objects a
name property to hold the name of the JavaScript variable the object is kept in.
This name can then be used to build setTimeout() and setInterval() state-
ments that access the proper object and work correctly. Finally, you saw how all of
these techniques can be used together to create a complex object like a shopping
cart object.

QUIZ YOURSELF

1. What does the eval() function do? (See “Using the eval() Function.”)

2. How does eval() differ from setTimeout() or setInterval()? (See
“The setTimeout() and setInterval() Methods.”)

3. Why should you not use the this keyword with the setTimeout() and
setInterval() methods? (See “Using objects with setTimeout() and
setInterval().”)

4. Should you pass strings or variable names to the eval() function? (See
“Variables and the eval() function.”)

5. What kind of statements should you not pass to the eval() function?
(See “What kinds of statements can you eval()?”)

Saturday Evening246

4804-2 Ch20.F 4/9/01 8:16 AM Page 246

1. When speaking about objects, what is the difference between a class and
an instance?

2. When used inside a constructor function, what does the this keyword
refer to?

3. What steps do you go through to create a custom class of objects?

4. What kinds of data can you store in the properties of an object?

5. How many parameters can you pass to a constructor function?

6. How are the parameters of methods shown inside a constructor function?

7. In your own words, what is a method?

8. What is the difference between a method and an implementation function?

9. When used inside a method, what does the this keyword refer to?

10. Assuming that the following statement appears inside a constructor func-
tion, what does it signify?

this.action = doAction;

11. How can you enhance HTML controls with JavaScript objects?

12. How do you connect a wrapper object to the object it wraps around?

13. What happens when you add a property or method to an object’s proto-
type?

14. What statement would you use to add a new property called
“languageDirection” to the String class?

15. What is the Object class?

P A R T

#
P A R T

Saturday Evening

IV

4804-2 PartReview4.F 4/9/01 8:16 AM Page 247

16. When you pass a statement to the eval() function, when is that state-
ment executed?

17. What will happen when the following statement is executed?

eval(‘documint.write(“Hello World!”)’);

18. What advantage is there to storing an object’s JavaScript variable name
with the object?

19. Which of the following statements is more likely to succeed?

setTimeout(“myObject.myMethod()”, 1000);

setTimeout(“this.myMethod()”, 1000);

20. In Session 20, I created an animation class. As written, this class will
only work with JPEG graphics. Take the animationObject.js source code
from the Session20 folder and change it so that the type of graphic to be
used in the animation can be specified when you create a new animation
object.

Part IV—Saturday Evening Part Review248

4804-2 PartReview4.F 4/9/01 8:16 AM Page 248

4804-2 DayPartOpener3.F 4/9/01 8:16 AM Page 250

Part V — Sunday Morning
Session 21
Working with Cascading Style Sheets

Session 22
Creating Dynamic HTML with JavaScript

Session 23
Working with Frames

Session 24
Working with Windows

Session 25
Improving the User Interface

Session 26
Working with Different Browsers

Part VI — Sunday Afternoon
Session 27
Working with Dates, Numbers, and Web Addresses

Session 28
Communicating with Server-Side Processes

Session 29
Supporting Multimedia

Session 30
Working with Java Applets

4804-2 DayPartOpener3.F 4/9/01 8:16 AM Page 251

P A R T

Sunday
Morning

V

Session 21
Working with Cascading Style Sheets

Session 22
Creating Dynamic HTML with JavaScript

Session 23
Working with Frames

Session 24
Working with Windows

Session 25
Improving the User Interface

Session 26
Working with Different Browsers

4804-2 Pt05.F 4/9/01 8:16 AM Page 252

Session Checklist

✔ Learning the basics of Cascading Style Sheets
✔ Understanding how JavaScript works with Cascading Style Sheets
✔ Learning about the Document Object Model

O ver the past few years, there’s been a big push to try to separate Web con-
tent (the words and pictures on a Web page) from the style in which that
content is presented (the text fonts, sizes, and so forth). The idea is that if

you can separate the content from the styles, you can present the same content
on a wide variety of devices (such as Macintoshes, Palm PDAs, Windows PCs, televi-
sions, and the like) simply by changing the styles that are used. To make this
dream a reality, the World Wide Web Consortium (usually referred to as the W3C)
created a standard called Cascading Style Sheets or simply CSS. By using CSS, you
can control the appearance of just about every element on your HTML page,
including the font family, size, color, transparency, and position. Best of all, you
can use JavaScript to modify these styles after your page has been loaded and
drawn in the Web browser. But, before I can tell you how to use JavaScript to work
with your style sheets, I need to tell you a little about how style sheets themselves
work. (By the way, since this book’s primary concern is JavaScript, I’m not going
to go into the CSS standard in detail. For everything you need to know about CSS,
visit the official CSS information site at www.w3.org/TR/REC-CSS2.)

S E S S I O N

Working with Cascading
Style Sheets

21

4804-2 Ch21.F 4/9/01 8:16 AM Page 253

The Basics of CSS

The first thing to know is that if you are going to use style sheets, you should
make the commitment to use them for all of the styles that you use in your Web
pages. This means no tags of any sort and no color or bgcolor attributes
in your tables! While this might sound like a big sacrifice, believe me, once you
use style sheets a few times, you’ll never want to go back to using the tag!
(If you just can’t let go of the tag, you can mix style sheets with older
styling options. However, I strongly recommend that you move entirely to style
sheets as soon as you are comfortable with them.)

What are style sheets?

Simply put, style sheets are lists of rules that tell the browser how to style various
elements in your HTML document. These style rules are then applied to your HTML
document as the Web browser is loading and drawing it in the browser window. For
example, I might define a style rule that says, “I want anything inside a set of
<address></address> tags to be shown in green.” With this information in hand,
the Web browser will scan my document and whenever it finds a set of
<address></address> tags, it will color the text inside green.

The <style> tag

Now that you know what style sheets are, the question becomes, “How do I put
them in my HTML document?” There are actually several ways to insert styles into
your HTML document, but the easiest way is to use the HTML <style> tag. For
example, here’s the <style> tag that would tell the browser to color all of my
<address> tags green:

<style type=”text/css”>
address { color:green }
</style>

The tag itself tells the browser that a list of style rules will be coming next. The
type= attribute tells the browser what standard these rules follow. The type speci-
fied here tells the browser that these rules are plain text and that they follow the
Cascading Style Sheet standard. (Note that there is at least one other style sheet
“standard.” Ironically, it’s the JavaScript Style Sheets standard that was developed
by Netscape. However, even though this is a book about JavaScript, we won’t be
talking about this standard, simply because it is not the official standard of the

Sunday Morning254

4804-2 Ch21.F 4/9/01 8:16 AM Page 254

W3C, and because only Netscape browsers support it.) Of course, you can have
more than one rule in a style block, as shown here:

<style type=”text/css”>
address { color:green }
p { color:red }
</style>

About the only other thing you need to remember about the <style> tag is
that you should include it at the top of your HTML document (preferably inside
the <head></head> tags) so that the browser will know about your rules before it
tries to render your document.

Anatomy of a style rule

OK, so what exactly does the rule address { color:green } mean, and how does
it work? Well, at the most basic level, CSS rules are intended to be applied to HTML
tags. So, the first part of a rule is simply the name of the HTML tag that you want
the rule applied to; in this case, that’s the <address> tag.

The rest of the rule is enclosed in curly braces ({}) and tells the browser exactly
how you want it to style the contents of the specified tag. In this case, I’ve speci-
fied that I want the color of the contents of this tag to be green.

Knowing this, it’s pretty easy to see that the second rule in my example, p {
color:red } tells the browser that I want to color all of the text in all of my <p>
tags red.

This brings up an important point: When you specify a style rule in this fash-
ion, you are requesting that every occurrence of the specified tag should be styled
in exactly the same way. While this can be useful, it’s more common to want to
apply styles to individual parts of a document. To allow for this, the CSS standard
also allows for classes and IDs.

Using CSS classes

CSS classes aren’t the same as the object classes you learned about last night, but
they are similar in concept. You define a CSS class when you want a group of ele-
ments on your HTML page to use the same style. For example, consider the follow-
ing style sheet.

<style type=”text/css”>
p { font-weight:bold }
p.alert { font-style:italic }
</style>

Session 21—Working with Cascading Style Sheets 255

Part V—
Sunday M

orning
Session 21

4804-2 Ch21.F 4/9/01 8:16 AM Page 255

The first rule says that all <p> blocks should be boldface. The second rule
defines a class of <p> blocks that go by the name alert. This rule states that any
<p> blocks in the alert class should be styled in italics. (You can list more than
one style specification in the curly braces.) The trick now is simply creating a <p>
block that is in the “alert” class. This is done simply by adding an appropriate
class= attribute to a <p> tag:

<p>Write to us at:</p>
<p class=”alert”>
Hungry Minds

909 Third Avenue

New York, NY 10022

</p>
<p>Thank You!</p>

If you apply the style sheet defined earlier to this, you’ll see something like
Figure 21-1.

Figure 21-1
The effect of our style sheet when applied to our HTML

As you can see, the first line is in boldface, the address is in italics and the last
line is back to just being boldface. What you might not also notice is that the
italic section is in boldface as well. This is the “cascading” part of CSS. When two
or more rules match an element, they all apply to the element. If there is a con-
flict between rules, the rule that more precisely matches the element wins. If two
or more rules precisely match the element, the last rule that was defined is the
one that wins. As an example of this, consider the following:

Sunday Morning256

4804-2 Ch21.F 4/9/01 8:16 AM Page 256

<style type=”text/css”>
p { font-weight:bold }
p.alert { font-weight:normal; font-style:italic }
</style>
<p>Write to us at:</p>
<p class=”alert”>
Hungry Minds

909 Third Avenue

New York, NY 10022

</p>
<p>Thank You!</p>

If you load this code into your browser, you’ll see something like Figure 21-2.

Figure 21-2
An example of cascading and conflicting style rules

Both rules define a setting for font-weight, but the second rule is the one that
wins because it more precisely matches the HTML tag that surrounds the address.

In each of these examples, I’ve shown a class being defined for a particular tag.
While this is perfectly valid, you don’t have to tie a class to any one type of tag. The
following code shows how to define a class for use with just about any HTML tag.

<style type=”text/css”>
p { font-weight:bold }
.alert { font-weight:normal; font-style:italic }
</style>
<p>Write to us at:</p>

Session 21—Working with Cascading Style Sheets 257

Part V—
Sunday M

orning
Session 21

4804-2 Ch21.F 4/9/01 8:16 AM Page 257

<p class=”alert”>
Hungry Minds

909 Third Avenue

New York, NY 10022

</p>Or, send us an
<a class=”alert”
href=”mailto:custserdum@hungryminds.com”>e-mail!
<p>Thank You!</p>

Notice that in this example, I’ve defined my class without a tag simply by creat-
ing a rule that begins with a period. This is followed by the class name I want to
use and then the styles that should be applied to elements of that class. I can
then use this class inside both my <p> and my <a> tag.

Using CSS IDs

OK, so you can create document-wide styles and styles that are applied to a group
of tags that you specify. What if you want a style to apply to a single element and
no others? In that case, you can create a style that is associated with a CSS ID.
This is an ID that should be unique inside a given type of HTML tag. In other
words, you can have a <p> tag with an ID of contactInfo and you can have an
<h1> tag with an ID of contactInfo, but you can’t have two <p> tags (or two
<h1> tags) with an ID of contactInfo. The following shows how to declare and use
a style rule using an ID.

<style type=”text/css”>
p { font-weight:bold }
#contactInfo { font-weight:normal; font-style:italic }
a#contactInfo { font-weight:bold; font-style:italic }
</style>
<p>Write to us at:</p>
<p id=”contactInfo”>
Hungry Minds

909 Third Avenue

New York, NY 10022

</p>Or, send us an
<a id=”contactInfo”
href=”mailto:custserdum@hungryminds.com”>e-mail!
<p>Thank You!</p>

As you can see, ID definitions are preceded with a pound sign (#) character.
Here I’ve defined two ID-oriented rules: The first will match any element with an

Sunday Morning258

4804-2 Ch21.F 4/9/01 8:16 AM Page 258

id= attribute of contactInfo and the second will match only the <a> tag that has
an id= attribute of contactInfo.

Styles can also be applied to individual tags by using the style= attribute. You
simply list the style specifications you want applied to the tag and separate them
with semicolons. For example, if I only wanted one set of <p></p> tags to be red
and boldface, and I didn’t want to bother with an ID definition, I could code:

<p style=”color:red;font-weight:bold”>I’ll be red and bold!</p>

The problem with this approach is that it scatters your style definitions through-
out your HTML document, making them difficult to update if and when a change is
necessary.

The tag

Most HTML tags that enclose text have side effects. For instance, the <a> tags
create a link and the <p></p> tags create the look of a paragraph by adding white
space above and below the text in the tags. So, what tag can you use if all you
want is to apply a style to a chunk of text without any visual side effects? You can
use the tag!

The tag is a recent addition to HTML that exists for no purpose other
than to allow you to demarcate a chunk of text. This makes it perfect for applying
styles without any HTML-related side effects. Here’s an example of the tag
in action.

<style type=”text/css”>
p { font-weight:bold }
#contactInfo { font-weight:normal; font-style:italic }
a#contactInfo { font-weight:bold; font-style:italic;
text-decoration:none }
.noticeMe { text-decoration:underline }
</style>
<p>Write to us at:</p>
<p id=”contactInfo”>
Hungry Minds

909 Third Avenue

New York, NY 10022

</p>Or, send us an
<a id=”contactInfo”
href=”mailto:custserdum@hungryminds.com”>e-mail!
<p>Thank You!</p>

Session 21—Working with Cascading Style Sheets 259

Part V—
Sunday M

orning
Session 21

4804-2 Ch21.F 4/9/01 8:16 AM Page 259

Using the tag, along with an appropriate style rule, allows me to underline
the text I want without any other visual side effects.

Using external style sheets

While the <style> tag makes it easy to create styles for a document, you don’t
really begin to tap the power of style sheets until you use them to style all of the
documents on your Web site. You can do this by storing your style rules in an
external file and then linking that file to each of the HTML documents that you
want to use those rules. There is one huge advantage to keeping your styles in
external files: If you need to change a style on your Web site, you simply change
the external style sheet and all of the pages that use that external style sheet will
reflect the change immediately. This might not seem to important if your site only
has a few pages, but if your site is several hundred or several thousand pages in
size, it can save you hours or even days of work! There are two basic ways to use
an external style sheet with your HTML documents: the <link> tag and the
@import rule. (Note that any rules that are specified in an external style sheet can
be overridden by the rules you specify in your document’s <style> block. Simply
define the styles you want to take precedence after you link in your external style
sheet.)

Using the <link> tag

The <link> tag is an HTML tag that lets you establish a link between your HTML
document and an external document of some sort. Using it to create a link with an
external style sheet is actually very simple. All you do is code something like this:

<link rel=”stylesheet” type=”text/css” href=”babyPalooza.css”
title=”bpStyles” />

This tag is pretty simple. The rel= attribute tells the browser what type of doc-
ument we are linking to while the type= attribute tells the browser what type of
style sheet it is. The href= attribute tells the browser the Web address of the
external file. Finally, the title= attribute gives the external file a name that the
browser can use to reference the file.

The @import rule

Another way to bring in an external style sheet is to use the @import rule at the
start of your <style> block. It looks like this.

Sunday Morning260

4804-2 Ch21.F 4/9/01 8:16 AM Page 260

<style type=”text/css”>
@import “babyPalooza.css”;
p { font-weight:bold }
</style>

You simply create a new rule that starts with @import and then follow that
with the Web address of the style sheet you want to import. (You can specify
styles using any or all of these methods. However, if you are going to use the
@import rule, be sure to use it before you define any other styles. If you don’t, the
@import rule will be ignored by the browser.)

That’s pretty much the basics of what you need to know about CSS in order to
be able to use them. Of course, there are tons of other styling options that you
can specify. In order to find out about all of these other details, I once again rec-
ommend that you visit the official CSS documentation page at www.w3.org/TR/
REC-CSS2. So, with all of that out of the way, it’s time to show you how you can
use CSS and JavaScript together.

Using JavaScript with CSS

The key to using JavaScript with your style sheets is the Document Object Model.
Now, I’ve already told you about the Browser Object Model, but the Document
Object Model is slightly different. The Browser Object Model is the set of objects
that allows a programming language (in our case, JavaScript) to interact with the
Web browser and everything in it, including the document loaded into the browser.
The Document Object Model (DOM for short) is a standardized set of objects that
can be used to represent an HTML or XML document in any environment. (Like
CSS, the DOM standard is maintained by the W3C.) Fortunately, the document
object that’s included in the Browser Object Model is based on the DOM and that’s
what allows your JavaScript programs to interact with the styles that you apply to
the elements in your HTML document.

In Session 9, you got a pretty thorough tour of the document object. However,
to save space (and avoid confusion) I did leave out many of the methods that are
specified in the DOM standard. At this point however, it’s necessary to tell you
about one of those methods: the getElementById() method. You see, when an
HTML document is turned into a DOM-compliant object, every element (that is,
each set of tags) in the document has a corresponding object created to represent
it. These objects are called element objects and they contain an unbelievable
amount of information about the element and what’s inside it. But, before you can
inspect or change any of that information, you have to get hold of the element

Session 21—Working with Cascading Style Sheets 261

Part V—
Sunday M

orning
Session 21

4804-2 Ch21.F 4/9/01 8:16 AM Page 261

object itself. That’s where the getElementById() method comes in. If you pass
the ID of an element to this method, it will return the corresponding element
object. You can then do pretty much what you want to the element and the
changes will show up in the browser window.

As an example of this, I’ll create a CSS-based script that will hide and show a
control simply by changing the style rule that’s associated with the control. To
make this example both interesting and useful, the control I’ll do this to will be the
debug information text box on the Baby-Palooza.com home page. First, I need to
define a couple of styles that will make hiding and showing the control possible.

body { background-color:white; font-family:arial; font-size:8pt }
td { font-size:8pt }
textarea.debug { visibility:visible }
textarea.debugHidden { visibility:hidden }

Next, I need to slightly change the tag that defines the text area control that
will display my debug information. (This is in the index.htm file.)

<textarea id=’debugCtl’ name=’debug’ rows=’20’ cols=’70’>

All that’s left at this point is to define a button to trigger the change and the
JavaScript function that will actually make it happen. Here’s the definition of that
new button from the index.htm file:

<input type=’button’ name=’toggle’ value=’Hide Debug Info’
onclick=’doShowHideDebug()’ />

And the JavaScript function is shown here:

function doShowHideDebug() {
var debugText = document.getElementById(“debugCtl”);
if (document.forms[1].toggle.value == “Hide Debug Info”) {

debugText.className = “debugHidden”;
document.forms[1].toggle.value = “Show Debug Info”;
}

else {
debugText.className = “debug”;
document.forms[1].toggle.value = “Hide Debug Info”;
}

}

The first thing this function does is call the document.getElementById()
method and pass it an ID of debugCtl. This returns an element object that

Sunday Morning262

4804-2 Ch21.F 4/9/01 8:16 AM Page 262

represents my text area control. I then use an if statement to determine whether
I should hide or show the control. This decision is based on the value that’s inside
my button. (Remember, the value property of a button is the string that actually
shows up in the button on screen.) If the value in the button is Hide Debug Info
the control must be visible. So, I change the className property of the text area
to debugHidden. This immediately switches the style rule that is applied to the
control and removes it from the screen. The final step is to change the value prop-
erty of my button so that the button reads Show Debug Info. (Showing the con-
trol again is done in much the same way. To see all of this code in action, load the
index.htm file from the Session21 folder on your CD-ROM.)

As I said earlier, the object returned by the getElementById() method exposes
a lot of information about the element in question. However, anything else you
might do with this information lies in the realm of Dynamic-HTML. This is a large
topic with so much neat stuff to cover, I’ll leave it for now so that I can discuss it
in depth in the next session.

Deciding Which Style Sheet to Use

Remember at the start of this session, I said that style sheets were intended to
help separate the content in a Web page from the style in which it was presented.
So, you can define one set of styles for use with a Windows PC, another for a
Macintosh, and so on. The trick is deciding which set of styles to use.

Of course, you can specify styles inside a set of <style></style> tags, so you
could just use JavaScript to dynamically generate all of your rules right there
inside your page as it’s loaded. However, this would be incredibly inefficient
because you’d have to keep all of your styles for all the platforms you support
right there in your JavaScript code. So, using external style sheets and dynami-
cally deciding which one to link is the way to go. The only problem is how do you
determine which platform the browser is running on so that you can dynamically
generate the appropriate <link> tag?

In Session 26, I’ll be telling you all about the navigator object and how it can
help you write cross-browser scripts. Until then, one property of the navigator
object provides a perfect solution to this problem. This property, named platform,
tells you exactly what you think it does: which computer platform the browser is
running on. Table 21-1 shows the value of navigator.platform for several
browsers and platforms.

Session 21—Working with Cascading Style Sheets 263

Part V—
Sunday M

orning
Session 21

4804-2 Ch21.F 4/9/01 8:16 AM Page 263

Table 21-1
Values of navigator.platform

Platform Browser Value of navigator.platform

Windows Me Netscape/Internet Explorer Win32

Macintosh OS 9.0.4 Netscape/Internet Explorer MacPPC

Linux (Mandrake 7.1) Netscape LinuxELF2.0

As you can see, finding out which computer you are running on is pretty sim-
ple. The following code will show you how you can use this information (and a
couple of String methods) to dynamically generate the appropriate <link> tag.

var styleLink = ‘<link rel=”stylesheet” type=”text/css”
title=”bpStyles” ‘;
var platform = navigator.platform.substring(0, 3).toUpperCase();
if (platform == “WIN”) {

styleLink += ‘href=”babyPalooza-Win.css” />’;
}

if (platform == “MAC”) {
styleLink += ‘href=”babyPalooza-Mac.css” />’;
}

if (platform == “LIN”) {
styleLink += ‘href=”babyPalooza-Linux.css” />’;
}

document.writeln(styleLink);

Of course, to work properly, this code should appear at the top of your HTML
document.

REVIEW

In this session, you learned about Cascading Style Sheets. You saw how to create a
style sheet inside your HTML document and how to load an external style sheet.
You saw how JavaScript can extract an object that represents an individual ele-
ment (tag) from the document object. You also learned that, once you’ve got that
element object in hand, you can do all sorts of neat things to it. Finally, you
learned how the platform property of the navigator object can help you create a
JavaScript program that lets you dynamically load the style sheet that’s best

Sunday Morning264

4804-2 Ch21.F 4/9/01 8:16 AM Page 264

suited for the platform that the browser is running on. In the next session, I’ll be
delving even further into these topics as I show you how to use Dynamic HTML to
create all sorts of neat effects on your Web pages.

QUIZ YOURSELF

1. What is the purpose of a style sheet? (See the opening paragraphs of this
session.)

2. What are the two ways of linking to an external style sheet? (See “Using
external style sheets.”)

3. What is the difference between a CSS class and a CSS ID? (See “Using CSS
classes” and “Using CSS IDs.”)

4. What does the document.getElementById() method do? (See “Using
JavaScript with CSS.”)

5. What information does the navigator.platform property contain? (See
“Deciding Which Style Sheet to Use.”)

Session 21—Working with Cascading Style Sheets 265

Part V—
Sunday M

orning
Session 21

4804-2 Ch21.F 4/9/01 8:16 AM Page 265

Session Checklist

✔ Learning how JavaScript can manipulate HTML dynamically
✔ Learning about DHTML properties
✔ Moving elements around the screen with CSS and JavaScript
✔ Changing the text on screen after the page has loaded

In Session 11, you learned how to dynamically create HTML in order to present
your users with customized Web pages. In this session, you’ll be learning how
you can use JavaScript to dynamically change the appearance and content of

an HTML page after it’s already loaded into the Web browser. This process is called
Dynamic-HTML or DHTML for short.

In the past, creating DHTML was a rather arcane art. Each of the major browsers
had a different underlying object model and, as a result, you had to write com-
pletely different blocks of DHTML and JavaScript to accomplish the same things in
each browser. Fortunately, with the adoption of the latest Document Object Model
(DOM) standard, and the release of the latest versions of Internet Explorer and
Netscape Navigator, that’s beginning to change for the better. Unfortunately, how-
ever, DOM support isn’t yet complete in both browsers so it’s still necessary to use
a trick or two to create a DHTML script that will run without modification. But it
can be done, and it’s actually very simple to do!

S E S S I O N

Creating Dynamic HTML
with JavaScript

22

4804-2 Ch22.F 4/9/01 8:17 AM Page 267

As I write this, the latest version of the DOM is Level 2. As noted
above, the major browsers have incorporated a large part of the
functionality of the Level 2 DOM, but some pieces are still miss-
ing. I’ll be focusing on the parts that work in the latest versions
of both Internet Explorer and Netscape Navigator. (In other
words, what you’ll be learning in this session is not guaranteed
to work in older browsers.) For more information on the DOM
Level 2 standard, visit www.w3.org/TR/DOM-Level-2-Core/.

Dynamically Changing Styles

Cascading Style Sheets (CSS), which you studied in the last session, are the basis
of all style manipulation under the DOM. So, to make styles easy to manipulate,
the DOM makes provisions for browsers to define style objects that contain all the
information needed to apply various style information to an element on the HTML
page. The latest versions of both Internet Explorer and Netscape Navigator make
this information available to your JavaScript program in the form of an object
named style that’s a property of an element object.

When working in the realm of the DOM, the term element refers to a set of
opening and closing HTML tags and their contents or a single empty HTML tag. For
example:

<p>This is an element</p>

In the line above, everything (including the <p></p> tags) is one element. In
addition, elements (and element objects) can be nested one inside the other. In
the line

<p>This is a bunch of elements</p>

there are actually several elements: one for the <p></p> tags, one for the
tags. And each of these chunks of text:

This is a
bunch
of elements

Is an element all it’s own, regardless of how many lines it may take. Finally, an
empty tag like <hr /> is an element as well.

Note

Sunday Morning268

4804-2 Ch22.F 4/9/01 8:17 AM Page 268

Obtaining an element object

If you’ll remember from the last session, you can obtain an element object simply by
calling the document.getElementById() method and passing it the id= attribute of
the element you are interested in. So, if I have the following HTML defined:

<p id=”welcome”>Welcome to Baby-Palooza.com!</p>

You can obtain the element object that represents this set of <p></p> tags (includ-
ing all the subelements) with the following JavaScript:

var welcomeElement = document.getElementById(“welcome”);

Once you have the element object in your possession, things begin to get very
interesting.

Examining the style object

In the previous session, I showed you how to show or hide an element by changing
the CSS class that it was associated with. While this is a neat trick, it’s also a fairly
inelegant way to do things. After all, when you change an element’s CSS class, you
are basically changing all of the style information for that element. It would be
much nicer if you could only change a particular aspect of an element’s style with-
out affecting its class or other style attributes. This is exactly what a style object
allows you to do.

Getting at the style object for an element is easy: Simply extract the element in
question using the getElementById() method and then you can examine any
property of the style object that you are interested in. For example, to see the
color property of the welcomeElement defined earlier, I could code:

alert(welcomeElement.style.color);

By now, you’re probably very curious as to the names of all the properties inside
the style object. Well, unfortunately, there are a lot of them. No really, I mean a lot!

Because of this, I’m not going to go over each property in detail. Instead, I’m
going to give you a quick JavaScript program to list all of the properties and their
contents. I will be going over some of the more useful properties, but for the full
list (along with valid values for each) you should check out the CSS information
page at www.w3.org/TR/REC-CSS2.

<p id=”welcome”>Welcome to Baby-Palooza.com</p>
<script language=”javascript”>

Session 22—Creating Dynamic HTML with JavaScript 269

Part V—
Sunday M

orning
Session 22

4804-2 Ch22.F 4/9/01 8:17 AM Page 269

// Get the element that represents our test paragraph
var welcomeElement = document.getElementById(“welcome”);
// List all the properties of the element’s style object
for (x in welcomeElement.style) {

document.write(x + “ = “);
document.write(eval(‘welcomeElement.style.’ + x));
document.write(“
”);
}

If you load this program (it’s in the Session22 folder on your CD-ROM), you’ll see
the welcoming text followed by a list of properties that come straight from the
style object.

Changing a style property

The nice thing about the style object is that all of its properties are changeable.
So, if I want to make my welcoming text red, all I have to code is:

welcomeElement.style.color = “red”;

and the text will immediately become red on the screen. Of course, while you can
assign values to the various properties of the style object, you need to make sure
that the value you assign is valid for that property. Again, you’ll find a complete
list of valid values for each style property at www.w3.org/TR/REC-CSS2. But, in
the interest of getting you going right away, here’s a list of some of the more use-
ful style properties along with their valid values. (As usual, you’ll find a program
demonstrating each of these properties on your CD-ROM. As you play with the
example programs on the CD-ROM, don’t worry too much about entering an invalid
value. Usually, the DOM will reject an invalid value and use an applicable default
without any trouble. About the worst you might run into is a simple JavaScript
error dialog.)

When you compare the list of style properties on the W3C Web
site with the list here, the W3C properties will have names like
“background-color” rather than “backgroundColor.” Since the
W3C names are not valid JavaScript variable names, the browser
makers removed the hyphens and capitalized the first letter of
the second word in order to make them usable from JavaScript.
However, when you are using these properties in your CSS style
rules, you must use the hyphenated form.

Note

Sunday Morning270

4804-2 Ch22.F 4/9/01 8:17 AM Page 270

The backgroundColor property

This property controls the background color of the element. Valid values include
any of the standard color names from Session 9 or any six-digit RGB hexadecimal
color value. (See Table 9-1 for a partial list.)

welcomeElement.style.backgroundColor = “yellow”;

The backgroundImage property

This property lets you specify an image to be placed in the background of the ele-
ment (above the background color but behind the text). You must specify the Web
address of the image in a very specific format, as shown in the example below.
(Note that no quotes are necessary inside the parentheses.)

welcomeElement.style.backgroundImage =
“url(../images/happyBaby.jpg)”;

The backgroundRepeat property

If you specify a background image, you can also specify if that image should be
repeated in the element by setting this property. Valid values are repeat (the
default), repeat-x (repeats the image across the page), repeat-y (repeats the
image down the page), and no-repeat. (For some really nifty background image
effects, be sure to check out the background-attachment and background-position
properties at www.w3.org/TR/REC-CSS2.)

welcomeElement.style.backgroundRepeat = “no-repeat”;

The borderColor property

If you have created a border around an element (see the borderStyle property
later in this session), this property can be used to set its color. Valid values are the
same as for the color property.

welcomeElement.style.borderColor = “green”;

You can also pass multiple values to specify a different color for each edge of
the border.

welcomeElement.style.borderColor = “green red black blue”;

Session 22—Creating Dynamic HTML with JavaScript 271

Part V—
Sunday M

orning
Session 22

4804-2 Ch22.F 4/9/01 8:17 AM Page 271

The borderStyle property

This property lets you specify style of the border around the element. Valid values
are dashed, dotted, double, groove, inset, none, outset, ridge, and solid.
You can specify a single value and it will be used for all four edges of the border.
Or, you can specify a value for two, three, or all four edges. For example, the fol-
lowing statement will create a double border around the element.

welcomeElement.style.borderStyle = “double”;

The following statement will create a border that is solid on the top and bottom
and dashed down the sides.

welcomeElement.style.borderStyle = “solid dashed”;

(For more precise control over the border around an element, you can set the bor-
der-top, border-left, border-right, and border-bottom properties individually.)

The borderWidth property

If you have created a border around an element (see the borderStyle property,
above), this property can be used to set the width of the line used to draw it. Valid
values are medium, thin, thick, or a number of pixels. (Note that you cannot
specify a negative number.)

welcomeElement.style.borderWidth = “10px”;

You can also pass multiple values to specify a different width for each edge of
the border.

welcomeElement.style.borderWidth = “thin thick medium 20px”;

The color property

This property controls the color that the element’s text is drawn in. Valid values
include any of the standard color names from Session 9 or any six-digit RGB hexa-
decimal color value. (See Table 9-1 for a partial list.)

welcomeElement.style.color = “brown”;

The display property

This property controls how the element is laid out and displayed in the Web
browser. Valid values are block, inline, list-item, and none. Elements that

Sunday Morning272

4804-2 Ch22.F 4/9/01 8:17 AM Page 272

“block out” areas on the screen (like the <p></p> tags) should have a value of
block, while elements that exist inside other elements (like the tags)
should have a display value of inline. The list-item setting is similar to the
block setting with the addition of a list item marker. (In other words, a bullet.
Note that not all browsers support this setting.) To remove an element from the
screen and cause the other elements on the screen to fill in where the element
was, set the element’s display property to none.

welcomeElement.style.display = “none”;

The fontFamily property

This property controls the font family (Helvetica, Arial, Times, to name a few) used
to draw the text inside the element. You can, theoretically, specify any font family
installed on the client. If you specify a font family that isn’t installed on the
client, the browser’s default font will be used.

welcomeElement.style.fontFamily = “symbol”;

The fontSize property

This property controls the font size of the text inside the element. Any number
from zero up is valid, but you also need to supply a unit measurement for the size
specified. Table 22-1 presents valid units.

Table 22-1
Valid Units of Measurement to Specify Font Size of an Element

Unit Usage

% The font should be scaled to the given percentage of the default
font size for the element. (For example, if the default height is
10pt and a 120% fontSize is specified, the font would be scaled
to 12pt.)

cm Centimeters — the size is supplied in centimeters.

em ems — this means that the number is expressed in ems.

ex x-height — this scales the font relative to the height of the char-
acter x in the font.

mm Millimeters — the size is supplied in millimeters.

Continued

Session 22—Creating Dynamic HTML with JavaScript 273

Part V—
Sunday M

orning
Session 22

4804-2 Ch22.F 4/9/01 8:17 AM Page 273

Table 22-1 Continued

Unit Usage

pc Picas — the number supplied is a number of picas.

pt Points — this is a traditional font point size. (Approximately 1/72
of an inch.)

px Pixels — this means that the number supplied is a number of
pixels. (Note that if you don’t supply a unit designation, px will
be used by default.)

So, any of the following statements would be a valid assignment to the fontSize
property:

welcomeElement.style.fontSize = “10px”;
welcomeElement.style.fontSize = “45%”;
welcomeElement.style.fontSize = “10cm”; // yikes!

The fontStyle property

This property controls the style applied to the text inside the element. Valid values
are normal, italic, and oblique. (Most browsers render italic and oblique the
same way.)

welcomeElement.style.fontStyle = “italic”;

The fontWeight property

This property controls the weight (density) of the text inside the element. Valid
values are normal, bold, bolder, lighter, 100, 200, 300, 400, 500, 600, 700,
800, and 900. The normal setting is equivalent to 400 and the bold setting is
equivalent to 700.

welcomeElement.style.weight = “900”; // as bold as it gets!

The height property

This property specifies the height of the element on the screen. You can assign this
property any positive number and the element will be resized. (Note that you can
use the same measurement units specified in Table 22-1, in the discussion of the

Sunday Morning274

4804-2 Ch22.F 4/9/01 8:17 AM Page 274

fontSize property earlier in this section. Note also that a percentage value is inter-
preted to mean a percentage of the vertical space visible in the browser window.)

welcomeElement.style.height = “50%”;

The margin property

This property lets you specify the margins surrounding the element. Valid values
include positive and negative numbers. (Note that all browsers may not support
specifying negative values. You can use the same measurement units specified in
Table 22-1.)

welcomeElement.style.margin = “50px”;

You can also pass multiple values to specify a different margin size for each side
of the element.

welcomeElement.style.margin = “20px 50pt 10px 35mm”;

(For more precise control over the margin around an element, you can set the mar-
gin-top, margin-left, margin-right, and margin-bottom properties individually.)

The padding property

This property lets you specify the padding on the inside of the element (that is,
the space between the outside edges of the element and the text inside). Valid val-
ues include positive numbers from zero on up. (You can use the same measurement
units specified in Table 22-1.)

welcomeElement.style.padding = “50px”;

You can also pass multiple values to specify a different padding width for each
side of the element.

welcomeElement.style.padding = “20px 50pt 10px 35mm”;

(For more precise control over the padding inside an element, you can set
the padding-top, padding-left, padding-right, and padding-bottom properties
individually.)

The textAlign property

This property specifies the alignment of the text in the element. Valid values are
left, right, and center.

welcomeElement.style.textAlign = “center”;

Session 22—Creating Dynamic HTML with JavaScript 275

Part V—
Sunday M

orning
Session 22

4804-2 Ch22.F 4/9/01 8:17 AM Page 275

The visibility property

This property determines if the element is visible or not. Valid values are visible
and hidden.

welcomeElement.style.visbility = “hidden”;

Note that even if you hide an element it will still take up space on the page. To
remove an element from the layout of a page, set its display property to none.
(See the discussion of the display property earlier in this session for more infor-
mation on this.)

The width property

This property specifies the width of the element on the screen. You can assign this
property any positive number and the element will be resized. (Note that you can
use the same measurement units specified in Table 22-1. Note also that a percent-
age value is interpreted to mean a percentage of the horizontal space visible in the
browser window.)

welcomeElement.style.width = “25px”;

Moving Elements Around

One of the nice things about CSS is that it lets you precisely position elements on
the screen. Simply by specifying the appropriate values for the position, top,
left, bottom, and right properties of the style object, you can tell the browser
exactly how and where you want something to appear on the screen. The really cool
part however, is that you can also take an element and, simply by repeatedly chang-
ing one or more of these position-related properties, move stuff around the browser
window. (There are loads of other neat things you can do with the position-related
properties of the style object. Unfortunately, there just isn’t room to cover them all
in this book. So, I’ll just be focusing on how to move things around the screen. For
the scoop on all the other capabilities these properties give you, be sure to visit the
official CSS documentation site at www.w3.org/TR/DOM-Level-2-Core/.)

The position property

The key to CSS-based animations is the position property. This property lets you
tell the browser how you want an element positioned on the page as opposed to

Sunday Morning276

4804-2 Ch22.F 4/9/01 8:17 AM Page 276

exactly where you want it positioned. There are several different values you can
assign to the position property, but for the purpose of animation, you want to
specify a value of absolute. This value tells the browser that you, the program-
mer, will let the browser know exactly where to position the element on the page.
It’s then up to you to specify a physical position and shape for the element by set-
ting the top, left, bottom, right, height, and width properties to the appropri-
ate values. You already know about the height and width properties, so let me
tell you a bit about the others.

The top, left, bottom, and right properties let you determine where on
screen an element is drawn, relative to the parent element that it’s inside. For
example, if you have a inside a <p></p>, and you reset the top,
left, bottom, or right properties of the element, the values you
specify will be taken as being relative to the position of the <p></p> element.

For example, if I assign a value of 50 to the bottom property of the
 element, the bottom of that element will be moved so that it’s 50
pixels away from the bottom of the <p></p> element.

If an element has no parent (or if the parent element isn’t positioned itself),
these properties specify the position of the element relative to the <body></body>
element (in other words, the browser window).

If you found that a bit confusing, don’t worry... it’s really not that hard once
you’ve seen it in action. So, with that in mind, crank up your HTML editor and
open the movingThings.htm file from the Session22 folder on your CD-ROM. This is
a rather simple (if lengthy) program that takes a paragraph element and moves it
back and forth across the top of the browser window. I’ve thrown in a background
image so that you can watch the paragraph float over it.

Looking at this code, you see that after specifying my styles, I create a simple
paragraph element that holds my usual greeting. When my JavaScript begins exe-
cuting, the first thing it does is retrieve the element object for my paragraph. Next
I assign a value of “absolute” to this element’s position property. This removes
the element from the layout flow of the page and gives me the ability to move it
around.

Skipping to the end, you’ll see that a simple call to the setInterval() method
is what kicks off the animation and keeps it going. Every 10/1000 of a second, it
calls the moveit() function, which slides the paragraph back and forth across the
page. While the concept behind the moveit() function is fairly simple, the way
the styles work in today’s browsers make it a little trickier than you might expect.

The first problem is that, unless you specify a nonzero value for the top, left,
bottom, or right style properties, they will contain empty strings until you put
something in them. So, the moveit() function checks for that, and sets the
curPos variable to zero if the left property actually is empty.

Session 22—Creating Dynamic HTML with JavaScript 277

Part V—
Sunday M

orning
Session 22

4804-2 Ch22.F 4/9/01 8:17 AM Page 277

If the left property isn’t empty, we’ve actually got an even stickier problem to
deal with. You see, all four of the position-related properties are actually stored as
strings, complete with unit information at the end! So, if you assign a zero to the
left property, what you’ll actually get back later is 0px. This makes performing
math with these properties rather difficult. So, rather than fooling around with a
bunch of intermediate String method calls, the moveit() function splits the con-
tents of the left property into an array (using the p in px as the separator) and
then converts the numeric part into an actual number. (Remember, px are the
default units for all of the numeric style properties. So, if you use a different set
of units, you’ll have to modify your code accordingly to extract the numbers you
need.) Once I’ve secured the value I need, I check to see which direction I’m mov-
ing and incrementally increase or decrease the left property accordingly.

Finally, you’ll notice that in order to change directions, I’m forced to compare
the left position of my element with the width of the screen minus a hard-coded
value (470). This is necessary because, unless you set the width property of an
element, there’s no way to tell how wide it is. So, if you’ll look at the style rule I
defined for my paragraph, you’ll see that I set it to be 450 pixels wide, just enough
to get all my message text on one line. (The 20 extra pixels account for the scroll
bar on the right-hand side of the window.)

While this is a very simple program, it actually contains all the tricks you need
to create your own CSS-based animations. Remember, with this technique, you can
move any element: a paragraph, a list, an image, whatever you want.

Changing Text in the Browser Window

The last DHTML trick I want to share with you is how to change the text you see in
your browser window. As you’ve seen before, if you try to do this with
document.write() calls, you’ll just end up erasing the contents of your browser
window. Fortunately, DHTML makes what seems impossible, incredibly easy.

The innerHTML property

The key to this trick is a wonderfully nonstandard property of the element object
named innerHTML. That’s right, I said it was nonstandard. Unfortunately, there
really isn’t a simple equivalent to the innerHTML property in the DOM. That’s too
bad, because the innerHTML property is incredibly easy to use and incredibly pow-
erful too. Even though innerHTML isn’t a part of the DOM, I’m telling you about it
here for two reasons:

Sunday Morning278

4804-2 Ch22.F 4/9/01 8:17 AM Page 278

1. As I’ve said before, DOM compliance in the major browsers isn’t yet 100%.
So, while there might be a multistep way to accomplish the same thing
via the DOM, not all versions of the major browsers support the DOM fully
enough to allow it.

2. Amazingly, all current browser versions on all platforms (that I’ve been
able to test) support the innerHTML property. This combined with its
usefulness and popularity, have me convinced that the innerHTML prop-
erty is here to stay.

So, what does the innerHTML property do? Well, it allows you to change the
HTML that’s inside an element. It’s that simple and that powerful. For example,
consider the following code.

<p id=”welcome”>Welcome to Baby-Palooza.com</p>
<script language=”javascript”>

var welcomeElement = document.getElementById(“welcome”);
welcomeElement.innerHTML = “Thanks for your business!”;
</script>

As usual, this code defines a paragraph element and then a call to the
getElementById() method retrieves the object that represents that element. The
final statement however, is what makes the innerHTML property so special. You’ll
notice that I’m assigning a new string to the innerHTML property. Part of this
string is a set of tags. Immediately after this statement executes, the text
in my paragraph will change to the text “Thanks for your business!” and it will be
in boldface! (If you don’t believe it, give the innerHTMLProperty.htm file a try and
see for yourself.) If that seems simple, it is! Fortunately, the innerHTML property
is just as powerful as it is simple. So, make sure you know exactly what you are
changing when you use the innerHTML property and remember that the key is to
assign each of your elements a unique ID. Once you’ve done that, creating your
DHTML JavaScript code becomes incredibly simple.

REVIEW

In this session, you learned how to create JavaScript code that will dynamically
manipulate the HTML elements in your Web pages. You learned how an element’s
style object contains everything you need to manipulate the appearance of an ele-
ment on the page. In addition, you found out how JavaScript can move an HTML
element around the browser window. Finally, you learned how the innerHTML prop-
erty of an element can be changed to place new text on the screen.

Session 22—Creating Dynamic HTML with JavaScript 279

Part V—
Sunday M

orning
Session 22

4804-2 Ch22.F 4/9/01 8:17 AM Page 279

Since there’s been so much concept and theory in this session, I didn’t have room
to show you a neat little JavaScript program that allows you to investigate all of
the properties of the style object at your leisure. You’ll find this program in the
dhtmlStyle.htm file on your CD-ROM. Load it into your favorite browser and start
changing style properties. After you’ve played with it a bit, take a look at the
source code. It incorporates almost everything we’ve discussed in this session and
more than a few concepts from the other parts of the book. Plus, it’s a very useful
investigative tool in its own right!

QUIZ YOURSELF

1. Where is the style information for an element kept? (See “Dynamically
Changing Styles.”)

2. What exactly is an element? (See “Dynamically Changing Styles.”)

3. How do you format a Web address when you assign it to the
backgroundImage property of the style object? (See “The
backgroundImage property.”)

4. What are the different units of measurement used by CSS and the proper-
ties of the style object? (See “The fontSize property.”)

5. What do you need to watch out for when working with the position-related
top, left, bottom, and right properties? (See “The position property.”)

Sunday Morning280

4804-2 Ch22.F 4/9/01 8:17 AM Page 280

Session Checklist

✔ Understanding how JavaScript can communicate between frames
✔ Dynamically creating new content for a frame
✔ Handling frame-based documents loaded without their frameset
✔ Resizing frames with JavaScript

Whether you love them or hate them, frames-based Web sites are here to
stay. Fortunately, from a JavaScript programmer’s point of view, working
with a frames-based site is almost as easy as working with a nonframes-

based site.

How JavaScript Views Frames

To create a frames-based site, you first have to define an HTML frameset document.
This is just an HTML document that has a set of <frameset></frameset> tags
rather than a set of <body></body> tags. Inside the <frameset></frameset> tags
you define one or more <frame> tags that tell the browser which file to load for
each frame along with how the frame should appear in the browser window. The

S E S S I O N

Working with Frames

23

4804-2 Ch23.F 4/9/01 8:17 AM Page 281

following code shows a simple frameset document. (Note that this code is in the
listing23-1.htm file in the Session23 folder.)

<html>
<head><title>Welcome to Baby-Palooza.com!</title></head>
<frameset rows=”70%,*” frameborder=”0”>

<frame name=”prodInfo” src=”welcome.htm” scrolling=”yes”
frameborder=”no”></frame>
<frame name=”cart” src=”cart.htm” scrolling=”yes”
frameborder=”no”></frame>

</frameset>
</html>

In Session 8, I mentioned that, as far as JavaScript is concerned, a frame is just
another window object. So, when you load this document into a Web browser, it
actually creates three window objects: one to represent the frameset document
itself and one for each of the <frame> tags. The window object representing the
frameset document becomes the parent object, and the others become entries in
the parent.frames array.

If you look closely at the preceding code, you’ll see that, in addition to specify-
ing which HTML file should be loaded into each frame (the src= attribute), I’ve
also given each of my frames a name= attribute. As you might expect, these will
end up being used as the names of the JavaScript window objects that represent
each frame.

Communicating between frames

If you have a bit of JavaScript in one frame that needs to talk to a bit of
JavaScript in another frame, it’s very simple to do. For example, let’s assume that
the frameset shown earlier is loaded and that the following code is defined in the
welcome.htm file:

function welcome() {
alert(“Welcome to Baby-Palooza.com!”);
}

If I wanted to call this function from the cart.htm file, any one of the following
statements would do the trick.

parent.prodInfo.welcome();
parent.frames[0].welcome();
parent.frames[‘prodInfo’].welcome();

Sunday Morning282

4804-2 Ch23.F 4/9/01 8:17 AM Page 282

How does this work? Well, consider the first of these statements:

parent.prodInfo.welcome();

The first thing to remember is that this statement is being executed from inside
a frame (the cart frame to be exact). So, in order to reach the prodInfo frame,
the code has to have a reference point in common with the prodInfo frame. That’s
where the parent object comes in. Since both of these frames were created from
the same frameset document, they both have the same parent. So this code says,
“Look inside my parent object. Inside this, you should find another object named
prodInfo. Look inside this object and call the function named welcome.” The
other two statements work in almost exactly the same way. The only difference is
that they go through the parent object’s frames array rather than addressing the
frame directly by name.

Frame-to-frame communication isn’t restricted to making function calls. You
can access any variables, functions, or objects that you might have defined in
another frame.

Working with nested frames

As you can see, using JavaScript to work with frames is pretty simple. However, it’s
entirely possible to create a frames-based site that has multiple framesets nested
one within the other. Consider the following frameset document:

<html>
<head><title>Welcome to Baby-Palooza.com!</title></head>
<frameset rows=”70%,*” frameborder=”0”>

<frame name=”prodInfo” src=”welcome.htm” scrolling=”yes”
frameborder=”no”></frame>
<frameset cols=”50%,50%” frameborder=”0”>

<frame name=”cart” src=”cart.htm” scrolling=”yes”
frameborder=”no”></frame>
<frame name=”ads” src=”ads.htm” scrolling=”yes”
frameborder=”no”></frame>

</frameset>
</frameset>
</html>

Here, my first frameset defines two rows while my second splits the bottom rows
into two columns. Assuming that my welcome() function is still defined in the
welcome.htm file, how could code in the ads frame call it? Either of these state-
ments would work.

Session 23—Working with Frames 283

Part V—
Sunday M

orning
Session 23

4804-2 Ch23.F 4/9/01 8:17 AM Page 283

parent.parent.prodInfo.welcome();
top.prodInfo.welcome();

When you nest frames, each set of <frameset></frameset> tags becomes the
parent object of the frames defined inside it. So, because my ads frame is inside
two sets of <frameset></frameset> tags, I have to back up through two parent
objects to reach the prodInfo frame.

Of course, if you have a lot of nested frames, traipsing through all of these par-
ent objects can quickly become tedious. So, JavaScript provides the top object.
The top object represents the actual frameset document that was loaded into the
browser. A special feature of the top object is that, instead of using a multidimen-
sional array to hold nested frames, each frame’s window object is turned into a
property of the top object. So, even though the ads frame is nested two levels
deep, you can access it simply by coding top.ads. The same holds true for
top.prodInfo and top.cart. So, assuming that the following function is defined
in the ads.htm file:

function showAd() {
alert(“Please support our sponsors!”);
}

You could call this function from the welcome.htm file simply by coding:

top.ads.showAd();

The timing problem

For the most part, communicating between frames is very simple. However, this
assumes that the contents of all of your frames are completely loaded. What if, as
it’s being loaded, the JavaScript code in your first frame tries to call a function in
your last frame? If the HTML document in your last frame hasn’t finished loading
and that function doesn’t exist, you’ll get an error message and your JavaScript
program will halt. How can you get around this problem? The only real solution to
this is to check and see if the contents of a given frame are fully loaded before you
try to access anything in that frame.

For example, assume that the code from our second frameset document is being
loaded. The first thing the browser will do is load the contents of the first frame
(the welcome.htm) file and execute any JavaScript it finds there. If one of the
JavaScript statements in this file attempts to call the showAds() function that’s in
the ads.htm file, the statement will very likely fail because the ads.htm file simply
hasn’t had time to be loaded into the ads frame yet.

Sunday Morning284

4804-2 Ch23.F 4/9/01 8:17 AM Page 284

You might think that you could simply put an onload event handler into the
ads.htm file. This handler could send some sort of message to the prodInfo frame
telling it that it was loaded and that it was safe to call the showAds() function.
While this will work for a very simple HTML file, it might not work for a complex
HTML file with a lot of forms and controls. The reason is that the onload handler
simply fires when all of the data for a page has been loaded. Unfortunately, this
doesn’t always correspond to the time when all of the data on a page has been
loaded and then parsed into all of the JavaScript objects that make up the Browser
Object Model. So, even though the data for a page has been loaded into the
browser, the JavaScript objects that represent that data might not be available yet.
The solution to this problem is actually quite simple, but not incredibly obvious.

<html>
<head>
<script language=”javascript”>
function showAd() {

alert(“Please support our sponsors!”);
}

</script>
</head>
<body>
This is the advertising frame!
<form name=”dummy”>
<input type=”hidden” name=”dummy” />
</form>
</body>
</html>

Here you’ll notice that I’ve defined a dummy form. It has no purpose other than
to simply sit there and take up space. To see why, consider this version of the wel-
come.htm file.

<html>
<head>
<script language=”javascript”>
function welcome() {

alert(“Welcome to Baby-Palooza.com!”);
}

function doAdShow() {
var tryAgain = true;
if (top.ads != null) {

Session 23—Working with Frames 285

Part V—
Sunday M

orning
Session 23

4804-2 Ch23.F 4/9/01 8:17 AM Page 285

if (top.ads.document != null) {
if (top.ads.document.forms.length > 0) {

top.ads.showAd();
tryAgain = false;
}

}
}

if (tryAgain) {
setTimeout(‘doAdShow()’, 1000);
}

}
</script>
</head>
<body onload=”doAdShow()”>
Welcome to Baby-Palooza.com!

</body>
</html>

Rather than calling the showAd() function directly, I’ve defined an onload han-
dler that calls the doAdShow() function. This function begins by setting up a local
variable called tryAgain and assigns it a value of true. With this out of the way,
the function uses three if statements to check and see if the contents of the ads
frame have been completely loaded and parsed. First, it checks to see if the top.ads
object exists. The existence of this object tells the function that, at the very least,
the <frame> tag that will load the ads.htm file has been parsed. The function then
checks to see if the top.ads.document object exists. If this object exists, you can be
sure that the ads.htm file has begun to load. Finally, the function checks to see if
the length property of the top.ads.document.forms array is greater than zero. If
this value is greater than zero, the function knows for sure that the dummy form
has been loaded, parsed, and is available for JavaScript to use.

Why check the length of the forms array? Remember that the JavaScript inter-
preter loads and parses the information in an HTML document from the top to the
bottom as it comes to it. By placing a an empty form at the end of my document
and then checking to see if that form is loaded and parsed, I can tell if everything
before that form has been loaded and parsed! So, if all of these tests are success-
ful, the function can call the showAd() function with complete confidence and set
the tryAgain variable to false. However, if any of these if statements fails, the
value of tryAgain will remain true and a call to the setTimeout() method will
tell the JavaScript interpreter to try again in one second.

Sunday Morning286

4804-2 Ch23.F 4/9/01 8:17 AM Page 286

Dynamically Creating Frame Content

In Session 11, you saw how document.write() and document.writeln() could be
used to dynamically create HTML and JavaScript code in a window. Well, it’s also
possible to use these calls to dynamically create HTML and JavaScript code in a
different frame.

Actually, the process for writing HTML or JavaScript out to a different frame is
almost exactly the same as for writing HTML out to the current frame. The only
difference is that you have to specify the name of the frame you want to write to.
For example, consider this slightly different version of the nested.htm file.

<html>
<head><title>Welcome to Baby-Palooza.com!</title>
<script language=”javascript”>
function loadProdInfo() {

top.prodInfo.document.open();
top.prodInfo.document.writeln(“<html><body

bgcolor=’white’>”);
top.prodInfo.document.writeln(“Welcome to Baby-

Palooza.com!”);
top.prodInfo.document.writeln(“</body></html>”);
top.prodInfo.document.close();
}

</script>
</head>
<frameset onload=”loadProdInfo()” rows=”70%,*” frameborder=”0”>

<frame name=”prodInfo” src=”” scrolling=”yes”
frameborder=”no”></frame>
<frameset name=”shopInfo” cols=”50%,50%” frameborder=”0”>

<frame name=”cart” src=”” scrolling=”yes”
frameborder=”no”></frame>
<frame name=”ads” src=”” scrolling=”yes”
frameborder=”no”></frame>

</frameset>
</frameset>
</html>

As soon as the outermost frameset finishes loading, the loadProdInfo() func-
tion is called. This function contains five simple statements that store an entirely
new HTML document into the prodInfo frame. The first of these statements calls

Session 23—Working with Frames 287

Part V—
Sunday M

orning
Session 23

4804-2 Ch23.F 4/9/01 8:17 AM Page 287

the document.open() method for the prodInfo frame. As you learned in Session 9,
this clears the current contents of the frame and opens an output stream into it.

The next three statements write out the new HTML document into the frame. It’s
important that you realize that these statements are writing out a complete and
valid HTML document! When you replace the contents of a frame in this way, you
must output a set of valid <html></html> and <body></body> tags if you want your
new document to be processed properly. This includes any additional attributes (like
the bgcolor= attribute in the <body> tag) that you need for your document to be
properly formatted. While it is true that today’s browsers will assume that a docu-
ment is an HTML document, future browsers are under no obligation to do the same!
So, to get the correct results, always output as much information as possible.

The final statement calls document.close() for the prodInfo frame. This
closes the output stream and tells the browser that you are finished adding text to
the document. The browser will then complete the process of rendering the HTML
you’ve sent to the frame.

Using the frameset document as a control center

On many frames-based Web sites, you’ll find that all of the JavaScript code that con-
trols the site is loaded into one frame. This JavaScript code then creates or manipu-
lates the contents of the other frames. Oddly, this JavaScript code is almost always
to be found in one of the visible frames on the site. It’s a little known fact that you
can actually run JavaScript code inside a frameset document. This makes it a perfect
“control center” for all of the JavaScript code associated with a site. In fact, many
sites actually place their JavaScript code in a “hidden” frame. For example:

<frameset rows=”100%,0” frameborder=”0”>
<frame name=”prodInfo” src=”welcome.htm” scrolling=”yes”
frameborder=”no”></frame>
<frame name=”cart” src=”cart.htm” scrolling=”yes”
frameborder=”no”></frame>

</frameset>

The second frame has a height of zero pixels, so it will be hidden from view. The
author of the site could then place all of her JavaScript code into the cart.htm file
where it would be a bit safer from prying eyes.

Protecting your JavaScript source code

One of the biggest concerns professional programmers have had about JavaScript is
“How can I protect my source code?” Unfortunately, this is almost impossible to

Sunday Morning288

4804-2 Ch23.F 4/9/01 8:17 AM Page 288

do. Since JavaScript is just plain text, it’s easy for users to see it simply by using
the “View Source” or “View Frame Source” of their Web browser.

Even hiding your code in a hidden frame offers no real protection. A determined
user could simply view the source of your frameset document and then load the
file specified in the src= attribute of your hidden frame. So, if your JavaScript
code is going to contain trade secrets, you should seriously consider rewriting it as
a server-side process.

Dealing with Improperly Loaded Frames

One reason some users dislike frames is that, when they bookmark a frames-based
site, they often end up bookmarking an individual page from within a frame and
not the site itself. However, with the addition of a few lines of JavaScript to each
page of a site, this problem is fairly easy to overcome. If I add these lines to the
top of the welcome.htm file:

if (parent == self) {
document.location.href = “index.htm”;
}

When the page loads, it will check to see if the parent object is equal to the
window object that the document is loaded into. If these are equal, you know that
there is no frameset present, which means that the welcome.htm file was loaded
all by itself. If this is the case, the statement document.location.href =
“index.htm”; will force the Web browser to immediately load the index.htm file.
This in turn will set the site up appropriately in the browser window.

Of course, if your site is extremely complex, users will want a bookmark to
return them directly to the page they were on. They’ll also want the other frames
of the site to reappear containing the pages that were loaded when the site was
bookmarked. This is a bit more difficult to accomplish.

Unfortunately, most browsers only store the Web address of the frameset docu-
ment when a frames-based Web site is bookmarked. So, perhaps the best way to
provide this functionality is to supply a button on your site that, when clicked,
will create a cookie detailing which pages are visible in each frame. When the user
returns to the site, this cookie can be examined and the proper pages reloaded into
the appropriate frames.

Session 23—Working with Frames 289

Part V—
Sunday M

orning
Session 23

4804-2 Ch23.F 4/9/01 8:17 AM Page 289

Modifying Frame Sizes

The last frame-based trick I’d like to share with you is how to use JavaScript to
change the size of the frames that are on the screen. (Note that this trick relies on
CSS and at least one nonstandard field of the element object. As such, it only
works in the latest versions of Internet Explorer and Netscape Navigator.)

When you go to an e-commerce site, there’s usually a shopping cart icon that
you can click to view what’s in your shopping cart. This usually loads a new page
showing the contents of your cart. Then, to go back to what you were doing, you
have to hit the back button and wait for the page to reload. Wouldn’t it be nice if
the shopping cart display could be placed in a hidden frame that, when you
wanted to view it, would pop up and then go away when you were through with
it? Here’s one way you can make this happen.

<script language=”javascript”>
function toggleCart(turnOn) {

var frameSetElement = parent.document.getElementById(
“bpFrames”);

if (turnOn) {
frameSetElement.rows = “40%,*”;

}
else {

frameSetElement.rows = “100%,*”;
}

}
</script>
<frameset id=”bpFrames” rows=”100%,0” frameborder=”0”>

<frame id=”prodInfo” name=”prodInfo” src=”bpMenu.htm”
scrolling=”yes” frameborder=”no”></frame>
<frame id=”cart” name=”cart” src=”bpCart.htm” scrolling=”yes”
frameborder=”no”></frame>

</frameset>

Here I’ve defined a frameset with two frames in it. However, I’ve also given it an
ID of bpFrames. This ID information is used by the toggleCart() function to
either hide or show the second frame based on the Boolean value that’s passed to
the function. The toggleCart() function itself is very simple. It uses the

Sunday Morning290

4804-2 Ch23.F 4/9/01 8:17 AM Page 290

getElementById() method to retrieve the element object that represents the
bpFrames frameset. It then makes a simple assignment to the rows property of the
element object. Changing this property actually resizes the frames in the frameset
to match the new sizes specified. (Yes, there’s also a cols property that does
exactly the same thing for the columns in a frameset.)

So, if the turnOn parameter is true, the rows property is set to 40%,*, which
shrinks the size of the top row to just 40 percent of the visible browser window
and lets the second row take up the remaining space. If the turnOn parameter is
false, the rows property is set to 100%,0, which expands the top row to com-
pletely fill the visible browser window and sets the height of the second row to
zero pixels. With this code in place, all I need is a couple of buttons or links that
will call the toggleCart() function and pass it an appropriate value for the
turnOn parameter. Assuming that the toggleCart() function will be a part of the
frameset document, this code might look something like this.

Show Cart

Hide Cart

REVIEW

In this session, you learned how JavaScript views frames and how JavaScript state-
ments can be written to work across frame boundaries. You also learned how to
dynamically create a new document inside a frame as well as how to make sure
that the contents of a frame are completely loaded and parsed. You’ve also learned
how to determine if a page from a frameset has been loaded outside of its frame
and how to react to fix that situation. Finally, you learned how to use JavaScript
and the element object to dynamically change the size of frames in a frameset.

To tie all of these concepts together I’ve updated the Baby-Palooza.com shopping
cart to work from inside a set of frames. To see this new version, load the index.htm
file from the Session23 folder on your CD-ROM. When the page loads, you should
only see a single frame. Click the Show Cart link and the shopping cart frame should
appear at the bottom of the browser window. After you’ve played with this a bit,
begin browsing through the source code to see how all the concepts from this ses-
sion fit together with the things you’ve learned in previous sessions.

Session 23—Working with Frames 291

Part V—
Sunday M

orning
Session 23

4804-2 Ch23.F 4/9/01 8:17 AM Page 291

QUIZ YOURSELF

1. What is the difference between the top and parent objects? (See
“Working with nested frames.”)

2. How do frame objects and window objects compare? (See “How JavaScript
Views Frames.”)

3. What happens if you try to access something in a frame that isn’t fully
loaded? (See “The timing problem.”)

4. What methods do you use to write new content into a frame? (See
“Dynamically Creating Frame Content.”)

5. How can you create a “hidden” frame in which to place your JavaScript
code? (See “Using the frameset document as a control center.”)

Sunday Morning292

4804-2 Ch23.F 4/9/01 8:17 AM Page 292

Session Checklist

✔ Opening and closing windows with JavaScript
✔ Understanding how JavaScript communicates between windows
✔ Creating content in a different window

A s you’ve seen throughout this weekend, JavaScript gives you almost com-
plete control over the Web browser. This includes the ability to create your
own browser windows and fill them with whatever content you see fit.

Opening a New Browser Window

In Session 8, I briefly introduced you to the window.open() method. This method
opens a new browser window and returns the window object that represents it. As
mentioned in Session 8, window.open() can take up to four parameters in the fol-
lowing order:

� url: This is the Web address of a Web page that you want to automatically
load into the new window.

� name: This is a string that will be placed into the window.name property of
the new window.

S E S S I O N

Working with Windows

24

4804-2 Ch24.F 4/9/01 8:17 AM Page 293

� featuresList: This is a string specifying what features the new window
should have. With this parameter, you can specify how big the window
should be, if it should have toolbars, scroll bars, and so on. (We’ll be dis-
cussing these features in the “Using the window features list” section
below.)

� replace: This is a Boolean value that specifies if the Web address specified
in the first parameter should replace the current entry in the Web
browser’s history list.

Of course, if all you want is a new window with nothing in it, you don’t have to
pass any parameters to the window.open() method at all. For example, the follow-
ing code will create an empty browser window and assign the object that repre-
sents it to a variable:

var blankWindow = window.open();

On the other hand, if you want your new window to automatically have some con-
tent appear in it, you just pass the Web address of the page you want loaded into
the window.

var hungryMindsSite = window.open(“http://www.hungryminds.com”);

Giving your window a name

As you saw in Session 8, window objects have a name property. The second parame-
ter of the window.open() method lets you set this property as the window is
being created. For example, the following creates an empty window with its name
property set to “cartWin”.

var cartWin = window.open(“”, “cartWin”);

Note that you aren’t required to give your new window a name when you create
it. If you want, you can set it later:

var cartWin = window.open(); cartWin.name = “cartWin”;

In these examples, I’ve set the name property of my new window object to be
exactly the same as the JavaScript variable name that holds the object. (As you
learned in Session 20, this isn’t necessary, but it can be helpful when dynamically
creating JavaScript code.) Setting the name property of the windows you create is
completely optional. But, if you plan on having several windows open at once, it’s
a good idea to name them all, just to help differentiate among them.

Sunday Morning294

4804-2 Ch24.F 4/9/01 8:17 AM Page 294

Using the window features list

If you only use the first two parameters of the window.open() method, the win-
dows you open will all look exactly alike. They’ll all have a toolbar, a menu bar,
scroll bars, and all the other accoutrements of a standard Web browser. If you want
your new window to look a bit different, you have to specify the features you want
(and don’t want) by using the featuresList parameter. The featuresList para-
meter is a string that can contain one or more feature flags. These flags are sepa-
rated by commas and look something like this:

“feature1=yes,feature2=no,feature3=no”

Table 24-1, shows each feature flag along with its possible values.

Table 24-1
Feature Flags for Use With the window.open() Method

Flag Name Possible Values Usage

directories yes or no Specifies if the window should have a set of
directory buttons. (In Internet Explorer, this is
the Links Bar. In Netscape Navigator, it’s the
Personal Toolbar.)

height and Any positive Specifies the height and width of the new
width integer value window in pixels.

location yes or no Specifies if the window should have a box that
the user can type a Web address into. (In
Internet Explorer, this is the Address Bar. In
Netscape Navigator, it’s the Location Toolbar.)

menubar yes or no Specifies if the window should have a main
menu bar. (The one containing the File and
Edit menus. Note that this will not apply to
Macintosh Web browsers.)

resizable yes or no Specifies if the user should be able to resize
the window or not. (Note that there is no “e”
in the middle of “resizable”!)

scrollbars yes or no Specifies if the window should have scroll bars.

Continued

Session 24—Working with Windows 295

Part V—
Sunday M

orning
Session 24

4804-2 Ch24.F 4/9/01 8:17 AM Page 295

Table 24-1 Continued

Flag Name Possible Values Usage

status yes or no Specifies if there should be a status bar at the
bottom of the window.

toolbar yes or no Specifies if the window should have a main
toolbar. (This is the toolbar containing the
Forward and Back arrows, the Reload and Stop
buttons, and so on.)

So, if I want to create an empty window with a status bar and scroll bars, I
would code:

var cartWin = window.open(“”, “cartWin”,
“status=yes,scrollbars=yes”);

If you execute this code, you’ll notice that the window created has only a status
bar and a scroll bar; none of the other window controls appear at all! This is
because, when you specify a featuresList parameter, any features that you don’t
list are automatically given a value of no. (Except, of course, for the height and
width features. If you don’t give values for those, the new window will be the
same height and/or width as the window that creates it.) So, if you create a win-
dow using just the height and width features, like this:

var cartWin = window.open(“”, “cartWin”, “height=100,width=200”);

All you will get is a small window with a title bar and whatever window controls
are provided by the host operating system (such as a close box). This behavior
might seem a bit odd at first, but it actually makes the creation of custom win-
dows much easier. This is simply because, when it comes to customized windows,
it’s usually quicker to list the things you do want rather than all the things you
don’t want.

Creating Content in a New Window

Once you’ve got a new window open, you’ll probably want to put some content in
it. Of course, you could just use the url parameter of the window.open() call to
load an HTML document into the new window when it opens. But, if you need to
create a custom document in your new window, you might find it easier to rely on
document.write() calls.

Sunday Morning296

4804-2 Ch24.F 4/9/01 8:17 AM Page 296

The process for creating content in a different window is almost exactly the same
as the process for creating content in a different frame. The only difference is that
instead of going through a parent or top object, you simply go through the win-
dow object that represents the new window. For example, if I wanted to create a
new window that simply says “Hello World!,” the code shown here will do the trick.

var greetWin = window.open(“”, “greetWin”,
“height=100,width=200”);
greetWin.document.open();
greetWin.document.write(“<html><body bgcolor=’white’>”);
greetWin.document.write(“Hello World!”);
greetWin.document.write(“</body></html>”);
greetWin.document.close();

As you can see, this is pretty much the same thing that you saw in the last ses-
sion. First, I open up my new window and store the object that represents it in the
greetWin variable. Next, the greetWin.document.open() call opens a stream into
the document object inside the new window. At this point, it’s a simple matter of
making several document.write() calls to output the content I want to appear in
the new window. After that, I call document.close() to cut off the stream and
force the content to be shown in the window.

As with frames, it’s very important that you remember to write out everything
that’s needed to create a complete HTML document. This includes sets of
<html></html> and <body></body> tags as well as any attributes that you want
included with those tags.

Communicating between Windows

As you saw in the last session, frame-to-frame communication between JavaScript
programs isn’t all that difficult. So, given that frames are really just windows,
window-to-window communication should be fairly easy as well, right? Well, yes, it
is, but there is a small difference. As you’ve just seen, when one window (which I’ll
call the “Parent”) opens another (which I’ll call the “Child”), the Parent window
can easily access the methods (and properties and functions and global variables)
of the Child window simply by working through the window object it got back from
the window.open() method. However, the Child window doesn’t have a way to
automatically access its Parent window. (In particular, it doesn’t have a parent
object to work with as a frame would.)

Session 24—Working with Windows 297

Part V—
Sunday M

orning
Session 24

4804-2 Ch24.F 4/9/01 8:17 AM Page 297

To solve this problem, every window object includes an opener property (which
I briefly discussed in Session 8). If a window was opened by some other window,
its opener property will contain a window object that represents its Parent. By
working through the opener property, a Child window can access any of the
objects, functions, or variables defined in the Parent window. (Of course, if a win-
dow was not opened by the window.open() call, its opener property will be
null.) The following bit of JavaScript opens a new window and defines a simple
function (this is in the listing24-2.htm file).

var childWin = window.open(“childWin.htm”, “childWin”);
function doGreeting(theGreeting) {

alert(“The kid says: ‘“ + theGreeting + “‘“);
}

This new window will automatically be loaded with the childWin.htm document:

<html>
<head>
<title>Calling a Window’s opener</title>
<script language=”javascript”>
if (self.opener != null) {

self.opener.doGreeting(“Hello from the new window!”);
}

</script>
</head>
<body>
</body>
</html>

If you load the listing24-2.htm file into your Web browser, you’ll see the Child
window open and then a moment later you’ll get an alert saying “The kid says:
‘Hello from the new window!’”. This shows that, with its opener in hand, a Child
window can access any of the methods, properties, functions, or global variables
that are defined in its Parent.

Solving the timing problem for windows

In Session 23, you learned that if the JavaScript in one frame tries to call a func-
tion in another frame and that second frame isn’t fully loaded yet, an error could
occur. This same timing problem can rear its head when working with multiple
windows. If a Parent window tries to call a function or fill in a form field in a Child

Sunday Morning298

4804-2 Ch24.F 4/9/01 8:17 AM Page 298

window before that Child window is fully loaded, you’ll probably be rewarded with
a “not defined” error. But, since windows and frames are so similar, the solution to
this problem is similar as well. Again, I’ll assume that there’s a function that I
need to call in my Child window as soon as possible after the window opens. The
following shows the HTML file that will be loaded into my Child window. (This is
from the ads.htm file on your CD-ROM.)

<html>
<head>
<title>An Ad!</title>
<style type=”text/css”>
body { background-color:white }
</style>
<script language=”javascript”>
function showAd() {

alert(“Please support our sponsors!”);
}

</script>
</head>
<body>
This might as well be a pop-up ad!
<form name=”dummy”>
<input type=”hidden” name=”dummy” />
</form>
</body>
</html>

As with frames, the key to solving this problem is to place a dummy form at the
end of the document you are loading. This next bit of JavaScript shows the code
from my Parent window that will make sure my Child window is completely loaded.

function doAdShow() {
var tryAgain = true;
if (adWin != null) {

if (adWin.document != null) {
if (adWin.document.forms.length > 0) {

adWin.showAd();
tryAgain = false;
}

}
}

Session 24—Working with Windows 299

Part V—
Sunday M

orning
Session 24

4804-2 Ch24.F 4/9/01 8:17 AM Page 299

if (tryAgain) {
setTimeout(‘doAdShow()’, 1000);
}

}
var adWin = window.open(“ads.htm”, “adWin”,
“height=100,width=200”);
// Attempt to call a function inside the Child window
doAdShow();

Here again, the solution is remarkably similar to the solution for frames. After
opening my Child window, I call the doAdShow() function. This function uses a
series of if statements to make sure that the window and its document object
exist, and that the last form in the window has been loaded and parsed by the
JavaScript interpreter. Only when all of these conditions are true does the func-
tion actually call the showAd() function inside the Child window. If even one of
these conditions is false, the function uses a setTimeout() call to try again one
second later.

Using the document.domain property

Thus far, all of the windows you’ve seen have been able to communicate with one
another quite easily. However, there is one situation where JavaScript actually pro-
hibits windows from communicating. If your JavaScript code resides in two HTML
documents that come from different servers, the JavaScript in these documents
will not be able to communicate. This is done in order to provide a basic level of
security for your JavaScript code. After all, you certainly wouldn’t want a bit of
JavaScript code from “evil-crackers.com” to be able to talk to the JavaScript code
on your Web site! The downside to this however, is that even if your code exists in
the same domain yet on different servers (such as “www.baby-palooza.com” and
“support.baby-palooza.com”), communication is still prohibited. Fortunately, a
solution exists in the form of the document.domain property. Initially, this prop-
erty will hold the domain and subdomain name of the Web server that the HTML
document came from. For example, if you were to load “http://www.baby-palooza.
com/index.htm” into your Web browser, the document.domain property for this
document would be “www.baby-palooza.com.”

Now, if a bit of JavaScript code inside this file wanted to open and then
communicate with a the contents of the file at “http://support.baby-palooza.com/
problemForm. htm,” both of these files would need to establish that they were in
the same domain before they would be allowed to communicate. (Note that,
since I don’t know what kind of setup you actually have and since neither

Sunday Morning300

4804-2 Ch24.F 4/9/01 8:17 AM Page 300

“www.baby-palooza.com” or “support.baby-palooza.com” actually exits, I’m just
going to give you the code that would be required to pull this off and then you
can adapt it to your own network set up.)

In the index.htm file on the “www” server, you might have some code like this:

var readyToTalk = false;
var probFormWin = window.open(“http://support.baby-
palooza.com/problemForm.htm”, “probFormWin”);
self.document.domain = “baby-palooza.com”;

Then, in the problemForm.htm file (on the “support” server), you might have this:

self.document.domain = “baby-palooza.com”;
// and then at the bottom of the file . . .
self.opener.readyToTalk = true;

The key to this entire process is in the statement

self.document.domain = “baby-palooza.com”;

which appears in both files. This tells the JavaScript interpreter that both of these
HTML documents belong to the same domain and should be allowed to communicate.
But you’re probably thinking, “What’s to stop the folks at ‘evil-cracker.com’ from set-
ting the domain properties of their documents to ‘baby-palooza.com’?” Actually, the
JavaScript interpreter is what’s stopping them! You see the JavaScript interpreter
will only let you set the domain property to the domain suffix that the document
originated from. So, a document that comes from “www.evil-crackers.com” can only
have its domain property set to “evil-crackers.com” and not “baby-palooza.com” (or
anything else for that matter).

Closing Your Windows

Once you are done with a window, you can either allow the user to close it or you
can close it yourself with a call to the window.close() method. Using the window.
close() method is fairly straightforward; you call it and the window in question
disappears.

� If your JavaScript code creates a Child window and then tries to close it,
the Child window should disappear without a fuss.

Session 24—Working with Windows 301

Part V—
Sunday M

orning
Session 24

4804-2 Ch24.F 4/9/01 8:17 AM Page 301

� If your JavaScript code creates a Child window and then the Child window
tries to close itself, this too should work precisely the way you expect.

� If your JavaScript code, running in any window, tries to close either its
Parent window or the first browser window you opened, you will get a dia-
log asking you to confirm the closing of the window. This is a security fea-
ture designed to prevent malicious JavaScript programs from shutting
down a user’s Web browser (which means that there’s really no way to get
around it).

REVIEW

In this session, you learned how to open new windows with the window.open()
method. You also learned about all of the different parameters that can be passed
to the window.open() method to create a window with exactly the features that
you want (a menu bar, scroll bars, etc.). You learned that dynamically creating con-
tent in a new window is done in almost exactly the same way as with frames. You
saw how easy it is, using the window.opener property to create two-way communi-
cations between Parent and Child windows. This allows the JavaScript in one win-
dow to access the objects, functions, and global variables in another window. You
learned how HTML documents from different servers are forbidden to talk to one
another, unless they have the same value in their document.domain properties.
Finally, you learned how to close windows using the window.close() method.

QUIZ YOURSELF

1. Why give your new windows names? (See “Giving your window a name.”)

2. How do you create an empty window? (See “Opening a New Browser
Window.”)

3. What does the status feature flag determine about your new window?
(See “Using the window features list.”)

4. What is the document.domain property used for? (See “Using the
document.domain property.”)

5. What happens when a Child window tries to close its Parent window? (See
“Closing Your Windows.”)

Sunday Morning302

4804-2 Ch24.F 4/9/01 8:17 AM Page 302

Session Checklist

✔ Using visual cues to improve your user interface
✔ “Disguising” read-only text boxes
✔ Correcting the display of floating-point numbers

The last time I fiddled with my shopping cart (at the end of Session 23), it
was very close to being complete. But, even though it doesn’t need much
more functionality, it could use a few tweaks to make it easier to use. So, in

this session, I’m going to show you several ways that you can use JavaScript,
HTML, and Cascading Style Sheets (CSS) to make your Web pages easier for your
users to understand and use. (As with the other CSS-based tricks I’ve shown you,
not all of the things discussed in this session will currently work with all browsers.
However, this should be corrected in future browser releases.)

Using Visual Cues

Today’s Web is largely a visual medium. Because of this, and the fact that the most
popular operating systems are graphics-based, users have become a bit lazy,

S E S S I O N

Improving the User Interface

25

4804-2 Ch25.F 4/9/01 8:17 AM Page 303

expecting the way things work to be obvious with just a glance. (Of course, all Web
pages work in pretty much the same way, but it’s still quite easy to create a Web
site that can confuse even the most veteran of users.)

Highlighting your links

One of the most fundamental things you can do for your users is to make sure that
they can tell what is a link and what isn’t. By convention, a Web browser will
underline a link and draw it in a color that’s different from the surrounding text.
However, if you have a bit of ordinary text that you want to underline, this can
still lead to some confusion on the part of the user. Fortunately, CSS makes it easy
to set up your links so that they will change color when the mouse passes over
them. This creates a simple visual cue for users that tells them that the text in
question is a link they can click. To set this up, all you have to do is define a CSS
rule like this:

a:hover { color:red }

With this rule, you’re telling the browser that, when the mouse hovers over a
set of <a> tags, it should change the color of the text inside to red. While this
is fairly obvious, the :hover designation is something that you haven’t seen
before. It’s not a class definition, and it’s not an ID definition, so what is it?

Well, the : in this rule marks it as a CSS pseudoclass. CSS pseudoclasses can be
thought of as “convenience” classes. They represent common situations where you
might want to change the appearance of an element. In this case, I’m changing the
appearance of a link when the mouse hovers over it. (If you think this sounds like
an image rollover as seen in Session 14, you are right, except the whole thing is
managed by CSS and the browser.)

There are several other CSS pseudoclasses. However, as I write
this, the current crop of browsers supports only a handful of
them. For more on these other pseudoclasses, be sure to visit the
CSS documentation page at www.w3.org/TR/REC-CSS2/.

Emulating :hover with JavaScript

According to the CSS documentation, the :hover pseudoclass will, one day, work
with any HTML element. As of right now though, it only seems to work with
<a> tags. This is unfortunate because the hover effect is a great way to let
users know that what they have the mouse over is actually a control of some sort.

Tip

Sunday Morning304

4804-2 Ch25.F 4/9/01 8:17 AM Page 304

In fact, it’s such a good user interface tool, that it’s worth a little time and
JavaScript to emulate it for the other elements on a Web page. For example, in my
shopping cart, it would be nice if the + and - controls became highlighted when
the mouse hovered over them.

Because these controls are implemented as images, one of the few ways I can
highlight them (without drawing new images and creating a rollover) is to draw a
border around them as the mouse passes over. You might remember however, that I
defined these images without borders in my HTML document. So, the first thing I
have to do is change my tags so that they have borders. Of course, if I
change the tag directly, I’ll end up with black borders that show up all the
time. So, instead of changing the tag for each of my controls, I’ll define a
CSS class like this:

img.button { border-style:solid;border-color:white;border-
width:1px }

Then, I can change my tag definitions to make use of this class, like so:

(Note that I’ve omitted most of the contents of the tag to save space.) This
will create a class of images that all have a solid, white border that’s one pixel
wide. (And, because my background color is also white, this border will be effec-
tively invisible. Of course, you could use DHTML to add a border on the fly. But, if
you do this, your images will jump up and down on the page as the border is added
and taken away by your DHTML code. You get a much nicer effect if you start with
an invisible border.)

At this point, it’s a simple matter of creating a rollover effect similar to the one
that you saw in Session 14. However, instead of swapping images, this rollover
effect will actually be changing the style applied to my element. Since this is a bit
more complex than an image swap, I’m going to define a couple of new methods to
handle the effect.

// This method highlights an element by turning its border red
function shopCart_doHilightBorder(theID) {

var theElement = document.getElementById(theID);
theElement.style.borderColor = “red”;
}

// This method removes the border highlight from an element
function shopCart_doDimBorder(theID) {

var theElement = document.getElementById(theID);
theElement.style.borderColor = “white”;
}

Session 25—Improving the User Interface 305

Part V—
Sunday M

orning
Session 25

4804-2 Ch25.F 4/9/01 8:17 AM Page 305

As you can see, each of these methods takes an element ID string and uses it to
retrieve the element object for that ID. It then sets the borderColor property of
that element’s style to either red or white, depending on whether or not the ele-
ment is being highlighted or dimmed. Of course, I still need to tie these methods to
my image controls. As always, simply specifying the proper event handlers does this.

<img name=’plus_st-001’ src=’../images/plus.jpg’ class=’button’
onmouseover=”bpCart.hilightBorder(‘plus_st-001’)”
onmouseout=”bpCart.dimBorder(‘plus_st-001’)” />

With this code in place for all of my + and - controls, moving the mouse over
any of these controls will result in the control being highlighted with a red border.
When the mouse moves away, the border color will become white and the highlight
will disappear.

If you are using a Macintosh or Netscape 6, you might find that
this code generates errors when you pass the mouse over the +
and - controls. You’ll learn how to work around this in the next
session.

Visual cues for text boxes

While the JavaScript-based hover effect shown above can be used for any type of
element, it’s especially useful for text boxes. You can even use the same code that
you just saw. All you have to do is define the appropriate event handlers as shown
here. (Again, I’ve left out some of the tag’s code to save space and focus on the
relevant bits.)

<input type=’text’ id=’inCart_st-001’ name=’inCart_st-001’
onmouseover=”bpCart.hilightBorder(‘inCart_st-001’)”
onmouseout=”bpCart.dimBorder(‘inCart_st-001’)”
value=’0’ size=’6’ />

With these handlers in place, my “inCart” text boxes will be highlighted in red
as the mouse moves over them. (Remember, text boxes already have a border
around them, so there’s no need for a special CSS rule.)

Highlighting the active text box

Another CSS pseudoclass that doesn’t seem to work at the moment is the :focus
pseudoclass. This class lets you determine how an element should look when it has
the focus. This is another very useful pseudoclass, so, once again, a little

Note

Sunday Morning306

4804-2 Ch25.F 4/9/01 8:17 AM Page 306

JavaScript will allow me to emulate it until the browser world catches up to the
standard. The next bit of code shows two new methods that I’ve defined for the
shopping cart object. These let me change the style of a text box that currently
has the focus.

function shopCart_doFocusInCart(partNo) {
var tFieldElement = document.getElementById(‘inCart_’ +
partNo);
tFieldElement.style.borderStyle = “ridge”;
tFieldElement.style.backgroundColor = “#dddddd”;
eval(“document.” + this.cartForm + “.elements[‘inCart_” +

partNo + “‘].select()”);
}

function shopCart_doBlurInCart(partNo) {
var tFieldElement = document.getElementById(‘inCart_’ +
partNo);
tFieldElement.style.borderStyle = “inset”;
tFieldElement.style.backgroundColor = “white”;
}

And here is the definition of a text box that uses these methods, along with the
highlighting methods discussed earlier.

<input type=’text’ id=’inCart_st-001’ name=’inCart_st-001’
onfocus=’bpCart.focusInCart(“st-001”)’
onblur=’bpCart.blurInCart(“st-001”)’
onmouseover=”bpCart.hilightBorder(‘inCart_st-001’)”
onmouseout=”bpCart.dimBorder(‘inCart_st-001’)”
onchange=’bpCart.enterQuantity(“st-001”)’
value=’0’ size=’6’ />

When this text box gets the focus, the focusInCart() method will change the
border style of the text box to a value of ridge. This will give the text box a
slightly raised appearance. Then it will change the background color to #dddddd.
This is a fairly light gray color that will show that the box has the focus, without
overpowering the text in the box.

Finally, the focusInCart() method uses the eval() function to call the
select() method of the text box. This method selects all of the text in the text
box. So, when the user begins to type, what she types will automatically replace
the previous contents of the box.

Session 25—Improving the User Interface 307

Part V—
Sunday M

orning
Session 25

4804-2 Ch25.F 4/9/01 8:17 AM Page 307

When the text box loses the focus, the blurInCart() method will reset the
border style of the text box back to inset and then change the box’s background
color back to white. Of course, you can modify this handler to apply whatever
styles you wish to your text boxes.

Eliminating visual cues from read-only text boxes

As it stands now, there is one very confusing aspect to my shopping cart: Some
text boxes can be typed in and some can’t. Specifically, users can type into the
Quantity Ordered boxes, but they can’t type into the Quantity On Hand or Grand
Total boxes.

As you saw in Session 22, it is possible to use JavaScript and DHTML to com-
pletely remove these text boxes from the screen and replace them with sets of
 tags that could be updated to reflect new totals. However, this
would be a lot of work to do something that text boxes already do very well: dis-
play text.

Instead of removing the text boxes, why not simply remove the visual cues that
tell the user that they are text boxes? Thanks to years of conditioning, most users
recognize a text box from three simple visual cues: a flashing insertion point
(when the text box has the focus), an I-beam cursor (when the mouse is over a
text box), and a distinctive border. Take these cues away, and most users will never
know that they are looking at a text box.

The insertion point is already taken care of. If you’ll remember, back in Session
15, you saw how the onfocus event (and the focus() method) could be used to
keep the insertion point from ever landing in a text box that you wanted to write-
protect.

Taking care of the last two cues is even easier. Both the I-beam cursor and the
distinctive text box border can be eliminated simply by defining an appropriate
CSS class and then applying it to the text boxes you want. For example, here’s the
CSS class definition.

input.noEdit { border-style:none; cursor:default }

And here’s the definition of a text box that belongs to this class.

<input type=’text’ class=’noEdit’ name=’quan_st-001’
onfocus=”document.bpCart_form.elements[‘inCart_st-001’].focus()”
value=’5’ size=’6’ />

The only thing new here is the cursor part of my CSS class. The cursor rule tells
the browser what kind of mouse pointer to display when the mouse is over an ele-
ment. In this case, I’ve told it to use the default pointer, which, in most operating

Sunday Morning308

4804-2 Ch25.F 4/9/01 8:17 AM Page 308

systems, is a standard arrow pointer. (Other values that you can use for cursor
include: crosshair, wait, and help. You can even define your own cursors and
have the browser use those!) So, when the browser draws text boxes of this class,
they will have no border and when the mouse passes over them, the pointer won’t
change into an I-beam. However, since these are still text boxes, you can still change
their values with a simple JavaScript statement. Figure 25-1 shows how this appears
in the browser window.

Figure 25-1
Text boxes without borders

Using the status bar

If you have a Web page that’s full of links, controls, and images, it’s a good bet
that even the savviest of users may have some trouble figuring out what every-
thing does. So, it’s become a fairly standard practice to give users a clue via a
short message in the status bar at the bottom of the browser. (Yes, you’ve seen this
before, but it’s such an important technique, I wanted to include it here as well.)
For example, in Session 23, I defined a couple of links to show and hide the frame
that contains my shopping cart. Those links looked like this:

Show Cart
Hide Cart

If you held the mouse over one of these links, you’d see the status bar change
to display the actual JavaScript statement that will be executed when the link is
clicked. While this is extremely detailed information about what the link does, it
isn’t in the friendliest form.

Session 25—Improving the User Interface 309

Part V—
Sunday M

orning
Session 25

4804-2 Ch25.F 4/9/01 8:17 AM Page 309

The solution is to use an onmouseover event handler to change the contents of
the status bar to something a bit more descriptive.

<a href=”javascript:parent.toggleCart(true)”
onmouseover=”window.status=’View your shopping cart...’;return
true;”>Show Cart
<a href=”javascript:parent.toggleCart(false)”
onmouseover=”window.status=’Hide your shopping cart...’;return
true;”>Hide Cart

Now, when the mouse enters one of these links, the status bar will be changed
to display a nice friendly message that tells the user exactly what will happen
when they click the link. (Don’t forget to add the return true; statement to the
end of your event handler. Without it, your custom message won’t appear!)

One of the more annoying aspects of using a complex Web page
with lots of controls is the way the tab key works. By default, the
Web browser will tab from control to control in the order that the
controls were defined in the HTML document. Unfortunately, this
might not match the way the controls are arranged on the screen.
This can lead to lots of confusion as the user repeatedly hits the
tab key only to have the focus jump to a control on a completely
different part of the page. To solve this problem, HTML controls
can be given a tabIndex attribute. This attribute lets you specify
the order that you want the controls on your page to be accessed
via the tab key. Simply give the first control a tabIndex of 1, the
second a tabIndex of 2, and so on. If there are any controls that
you want the tab key to skip over, give them a tabIndex of 0.

Correcting the Display of Floating-Point Numbers

If you haven’t noticed by now, there’s something seriously wrong with the way my
shopping cart displays floating-point numbers. If you haven’t caught it yet, take a
good look at the grand total shown in Figure 25-1. According to my calculations,
the value displayed should be $50.85. However, what I’ve got showing is
$50.8499999.

Believe it or not, this value is actually correct; at least as far as JavaScript is
concerned. You see, JavaScript stores numbers internally in binary (base 2) format.
While binary is great for storing integers, it’s slightly less adept at representing

Tip

Sunday Morning310

4804-2 Ch25.F 4/9/01 8:17 AM Page 310

floating-point values. Because of this, the simple act of adding a couple of float-
ing-point numbers together can lead to errors like the one you see here.

It’s very important to note that, internally, the value calculated
will be correct. In other words, this problem will not affect any
floating-point calculations that you perform in your JavaScript
program. The only thing that’s affected is the display of floating
point numbers.

Unfortunately, the only real fix for this problem is to write a custom function
that will truncate floating-point numbers to an appropriate number of digits
before they are displayed. On the plus side, once you’ve got this function written,
you can use it for all of the floating-point numbers you want to display. You’ll find
the following function in the floatingPoint.js file on your CD-ROM:

function twoDecimals(theNum) {
var result = “”;
// Change the number to a string for manipulation
var fpString = theNum + “”;
// find the decimal point
var decimalAt = fpString.indexOf(“.”);
// if there is no decimal point, add one along with two zeroes
if (decimalAt == -1) {

result = fpString + “.00”;
}

else {
// pull off the fractional part
var frac = fpString.substring(decimalAt);
// multipy it by 100
frac = parseFloat(frac) * 100;
// Round this new number off
frac = Math.round(frac);
// and use it to rebuild our two decimal places
// and return the result
var wholeNum = fpString.substring(0, decimalAt)
result = wholeNum + “.” + frac;
}

return result;
}

In this listing, I’ve defined a simple function that accepts a floating-point num-
ber and returns it rounded to two decimal places. The function starts by changing
the number into a string (by concatenating it with the empty string). At that

Note

Session 25—Improving the User Interface 311

Part V—
Sunday M

orning
Session 25

4804-2 Ch25.F 4/9/01 8:17 AM Page 311

point, the indexOf() method is used to determine if there is already a decimal
point in the string. If there isn’t, the function simply appends a decimal place and
two zeros to the end of the string and returns that as its result.

If there is a decimal point, things get a bit more interesting. First, the frac-
tional part of the number (along with the decimal place) is stripped off and stored
in the frac variable. I then use the parseFloat() function to convert the string
in frac into an actual floating-point number. As you can see, the parseFloat()
function does for floating-point numbers what the parseInt() function (dis-
cussed in Session 15) does for integer numbers. However, unlike the parseInt()
function, there is no base parameter to worry with; the parseFloat() function
only accepts decimal values.

This new floating-point value is then multiplied by 100. This effectively shifts
the decimal place two digits to the right. So, if frac was originally “.84999999994”
it will now be “84.999999994”.

I can now use the Math.round() method to round this to the nearest whole
number (in the above example that would be “85”). As you might guess, the Math
object is an object that’s built into JavaScript. It provides various and sundry math-
ematical constants and methods that you can use to manipulate numbers in your
JavaScript program. (I’ll be discussing this object in more detail in Session 27.)
Unfortunately, the Math object does not include a method that lets you round a
floating-point number to a certain number of decimal places. So, you have to resort
to trickery like what’s shown here to get a properly rounded floating-point number.

Once I have my fractional part correctly rounded, I simply reattach it to the
whole number portion of my original number and return this result to whoever
called the function. In the case of my shopping cart, the who that will call this
function will be the shopCart.calcGrandTotal() method. Fortunately, only one
line has to change in this method to support this function:

eval(“document.” + this.cartForm + “.elements[‘grandTotal’].value
= twoDecimals(grandTotal)”);

With this code in place, my shopping cart will now calculate and display all of its
floating-point values correctly.

REVIEW

In this session, you saw how easy it is to use JavaScript and CSS to add visual cues
to your Web site. If used properly, these cues can help visitors to your Web site
understand and use it more effectively. One group of visual cues you learned about
was the CSS pseudoclasses. While these don’t yet work in all browsers, you saw

Sunday Morning312

4804-2 Ch25.F 4/9/01 8:17 AM Page 312

that JavaScript can be used to emulate some of the more useful of these pseudo-
classes. You also learned how CSS can be used to remove visual cues from certain
elements on the page (in this case, text boxes) to keep your users focused on only
those elements that they can actually interact with. You revisited the process of
displaying helpful information in the browser’s status bar. Finally, you learned
about the problem JavaScript has with displaying certain floating-point numbers
and how to correct it.

As you can see, learning to use JavaScript effectively in your Web pages isn’t just
about learning JavaScript. More often than not, you need to be able to mix and
match various technologies to achieve the effect you want. So, take a few
moments to review all of the source code in the Session25 folder of your CD-ROM to
see how all of these different things come together to create what you’ve seen in
this session.

QUIZ YOURSELF

1. What does :hover represent? (See “Highlighting your links.”)

2. How can you emulate the :hover pseudoclass with JavaScript? (See
“Emulating :hover with JavaScript.”)

3. What does :focus do? (See “Highlighting the active text box.”)

4. What does the CSS cursor rule allow you to change? (See “Eliminating
visual cues from read-only text boxes.”)

5. How do you correct JavaScript’s floating-point display problem? (See
“Correcting the Display of Floating-Point Numbers.”)

Session 25—Improving the User Interface 313

Part V—
Sunday M

orning
Session 25

4804-2 Ch25.F 4/9/01 8:17 AM Page 313

Session Checklist

✔ Detecting different browser brands and versions
✔ Requiring a specific version of JavaScript from the client web

browser
✔ Hiding JavaScript code from incompatible browsers

A lmost everything I’ve shown you thus far has been “browser agnostic.” That
is to say, it should work in both of the major Web browsers without modifi-
cation. (Everything you’ve seen so far should work in any browser that sup-

ports the ECMAScript, DOM Level 2, and CSS Level 2 standards.) While this is the
way life should be, it hasn’t always been so nice. Until recently, writing JavaScript
that did something useful, worked in both browsers, and only required one version
of your code was nearly impossible. Although this has changed dramatically for
the better, there still may be an occasion when you need to create a JavaScript
program that’s tailored to one browser or another.

Properties of the navigator Object

The key to creating a JavaScript program that targets one browser or another is
the window.navigator object. This object (which takes its name from the original

S E S S I O N

Working with Different Browsers

26

4804-2 Ch26.F 4/9/01 8:17 AM Page 315

Netscape Navigator product) contains everything you need to determine which
browser brand and version your program is executing in. Using the navigator
object is actually pretty simple. You just look at the contents of one or more of the
navigator object’s properties to determine the browser brand and version. Then,
based on that information, you execute the code that you know will work in that
browser.

The catch to this rather simple process is that, rather than following a strict
format for storing information in the navigator object, each browser vendor
stores its data in a slightly different format. So, while you know that you can
determine the browser version from the navigator object, how you make that
determination is different for each browser. Before I actually show you how to pull
this information from the navigator object, let me give you a quick rundown of
its more useful properties. (Yes, there are other properties in the navigator
object, but they are usually specific to one browser or another.)

The appCodeName property

Programmers love code names. I suppose it’s because they make us feel like secret
agents instead of the geeks we really are. Regardless of why, almost every com-
puter program ever developed has had a code name. So, the navigator object con-
tains an appCodeName property that is supposed to contain the code name that
the browser was developed under. This is a simple String object, so it’s very easy to
examine and use.

While this property might seem to be a great way to determine which browser
you are using, it isn’t. You see, when Microsoft entered the browser market, they
wanted to make sure their browser was as compatible as possible with Netscape
Navigator (then the market leader). Unfortunately, a lot of scripts at the time
relied on the value that they found in the appCodeName property. So, in order to
break as few scripts as possible, all versions of Internet Explorer return exactly the
same appCodeName as Netscape Navigator does: Mozilla. (Mozilla is the name of the
original graphical Web browser. Almost every Web browser that has followed is
based on it in one way or another. Mozilla is still being worked on to this day, and
a great many people prefer it to the big-name browsers. To get a copy, visit the
Mozilla organization’s home page at www.mozilla.org.)

The appName property

While the appCodeName property isn’t of much use at all, the appName property is
very useful indeed. If you examine it in a Netscape browser, you get back

Sunday Morning316

4804-2 Ch26.F 4/9/01 8:17 AM Page 316

“Netscape.” If you examine it in Microsoft’s browser, you get back “Microsoft
Internet Explorer.” Here again, this is a simple String object, so you can examine
its contents easily:

The appVersion property

This is perhaps the most important property in the navigator object. As the name
implies, it tells you what the version number is for the browser that your code is
executing in. Unfortunately, how you interpret this information depends on which
browser you are dealing with. I’ll be discussing this process in great detail in the
section “Determining the Browser Version.” While you might expect this property
to be a simple numeric value, it’s actually a String object.

The cookieEnabled property

This is a simple Boolean value that lets you determine whether or not cookies are
enabled in the browser. This property is new to the latest versions of the major
Web browsers, so if you need to check cookie availability in an older browser, don’t
rely on the existence of this property. (See the cookiesActive() function in the
cookies.js file for an example of how to check for cookie availability.)

The language and userLanguage properties

These properties can tell you which language a visitor to your site has her Web
browser set up to display. Note that the language property is only found in
Netscape browsers while the userLanguage property is only found in Internet
Explorer. You can check for the existence of one property or the other simply by
comparing it to null. (This is similar to the trick used in Session 23 to determine
if a frame’s contents were loaded.)

if (navigator.language != null) {
// work with Netscape language information
}

if (navigator.userLanguage != null) {
// work with Internet Explorer language information
}

Session 26—Working with Different Browsers 317

Part V—
Sunday M

orning
Session 26

4804-2 Ch26.F 4/9/01 8:17 AM Page 317

The mimeTypes array

This array contains a list of all the MIME types that are known to the client’s com-
puter. MIME stands for Multipurpose Internet Mail Extensions. Originally, MIME
types were used to identify the types of data that were included in e-mail attach-
ments. This array is closely linked with the plugins array, which is mentioned
later in this session. You’ll be learning much more about MIME types in Session 29,
when you learn how to identify and use browser plug-ins and multimedia.

The platform property

In Session 21, you learned that the navigator.platform property contains a
String object that tells you which computer platform the browser is running on.
You can use this value to provide platform specific content for your visitors or to
direct them to a site devoted to their computer platform. For an example of one
way to use this property, see “Deciding Which Style Sheet to Use” in Session 21.

The plugins array

The plugins array contains a list of all of the plug-ins that are installed in the
client’s Web browser. If you need to display a particular type of multimedia file
(like an Acrobat PDF file or a QuickTime Movie) in the Web browser, you can search
this array to see if the user has an appropriate plug-in installed. The plugins
array is closely linked with the mimeTypes array (mentioned earlier), so you’ll be
hearing more about both of them in Session 29 when you learn about multimedia.

The userAgent property

Traditionally, this property has simply contained a combination of the appCodeName
and appVersion properties, with the two values separated by a forward-slash /.
However, the Netscape 6 browser now includes some additional information dealing
with its HTML rendering engine (which is named Gecko). (This information is also
found in two Netscape 6-specific properties: navigator.product and navigator.
productSub. At this point it’s unclear how you might use this information, but it’s
in there if the need should arise.)

Sunday Morning318

4804-2 Ch26.F 4/9/01 8:17 AM Page 318

Determining the Browser Version

Looking at the properties of the navigator object, you might be thinking, “Gosh,
it looks like determining the browser version is simple!” Well, it certainly should
be. But, as I said earlier, each of the browser vendors stores their version informa-
tion in a slightly different format. So, while it is very simple to determine which
browser you are using (via the appName property) and which platform your code is
running on (via the platform property) getting down to the browser version is a
little tricky. For example, here is the value of navigator.appVersion from
Netscape Navigator 6 on the Macintosh.

5.0 (Macintosh; en-US)

And here is the value of navigator.appVersion from Internet Explorer 5 on the
Macintosh.

4.0 (compatible; MSIE 5.0; Macintosh; I; PPC)

Extracting Netscape version information

The Netscape information is fairly straightforward: it’s the actual version number
of the browser (remember, there never was an official Netscape 5 release, but the
internal version for Netscape 6 is actually 5.0), followed in parentheses by plat-
form and language information. So, extracting the version number from this infor-
mation is actually pretty simple, as shown here:

var versionNum = “”;
if (navigator.appName == “Netscape”) {

var fParen = navigator.appVersion.indexOf(“(“);
if (fParen != -1) {

versionNum = navigator.appVersion.substring(0, fParen);
versionNum = parseFloat(versionNum, 10);
}

else {
document.write(“Could not determine version number!
”);
document.write(“The appVersion property contains:
”);
document.write(navigator.appVersion);
}

Session 26—Working with Different Browsers 319

Part V—
Sunday M

orning
Session 26

4804-2 Ch26.F 4/9/01 8:17 AM Page 319

}
else {

document.write(“This is not a Netscape Browser!”);
}

if (versionNum != “”) {
document.write(“You are using version “ + versionNum + “ of “

+ navigator.appName);
}

As you can see, this is pretty simple. After checking to see that this is indeed a
Netscape browser, the code finds the location of the first parenthesis in the
appVersion property. This location is then used by the substring() method to
extract the actual version number. But, before substring() is called, the code
checks to make sure that the first parenthesis was really found. If it wasn’t, the
code displays an error message telling the user that the version number of the
browser could not be obtained. (It’s important to check for this because, while
rare, it is possible to change the information in the appVersion property with
browser-customization software. So, it’s a good idea to make sure the version infor-
mation is in the proper format before you base any decisions on that information.)

Extracting Internet Explorer version information

Now that you know how to get the version information from a Netscape browser, it
probably seems like a pretty simple task to extract the same information from
Internet Explorer. Well, let’s take another look at what you actually get from the
appVersion property for Internet Explorer 5 on the Macintosh:

4.0 (compatible; MSIE 5.0; Macintosh; I; PPC)

As you can see here, the version number is 4.0. But, unlike Netscape, Internet
Explorer didn’t skip a version number so this should be version 5.0, right? Right.

What you are seeing here is another example of how Microsoft wanted Internet
Explorer to be as compatible with Netscape as possible. So, the first version num-
ber in Internet Explorer’s appVersion property is the version number of Netscape
that this version of Internet Explorer is compatible with! In other words, this is
telling you that this browser is compatible with Netscape version 4.0. How then, do
you tell which version of Internet Explorer this is? Well, it’s actually pretty easy
once you know where to look.

If you’ll notice, right in the middle of this appVersion value is the string “MSIE
5.0.” This is what tells you which version of Internet Explorer you are dealing
with. While this information is buried inside the appVersion property, it always

Sunday Morning320

4804-2 Ch26.F 4/9/01 8:17 AM Page 320

starts with the characters “MSIE” (which stands for “Microsoft Internet Explorer”),
so it’s actually pretty easy get:

var versionNum = “”;
if (navigator.appName == “Microsoft Internet Explorer”) {

var msieFlag = navigator.appVersion.indexOf(“MSIE”);
if (msieFlag != -1) {

var msieVersionEnd = navigator.appVersion.indexOf(“;”,
msieFlag);
versionNum = navigator.appVersion.substring(msieFlag + 4,
msieVersionEnd);
versionNum = parseFloat(versionNum);
}

else {
document.write(“Could not find version number!
”);
document.write(“The appVersion property is:
”);
document.write(navigator.appVersion);
}

}
else {

document.write(“This is not Microsoft Internet Explorer!”);
}

if (versionNum != “”) {
document.write(“You are using version “ + versionNum + “ of “

+ navigator.appName);
}

This is almost exactly the same process as determining a Netscape version num-
ber. The only real difference is that you have to pull a string from the middle of
the appVersion property rather than from its start.

Requiring a Certain Browser Version

If you create a Web site that uses some of the newer features of JavaScript or
Cascading Style Sheets or even HTML, you will need to know when an incompatible
browser comes a-calling. The choices here are the same as when you learned about
cookie support in Session 16. If the client’s browser doesn’t support the features
your site needs, you can either block them from using the site entirely or you can
redirect them to a more appropriate version of your site.

Session 26—Working with Different Browsers 321

Part V—
Sunday M

orning
Session 26

4804-2 Ch26.F 4/9/01 8:17 AM Page 321

Consider, for example, the site that I’ve been building throughout this book.
While it might seem fairly simple to someone that’s been reading along (at least I
hope it does), it actually relies quite heavily on many tricks that are only available
in the latest versions of the major Web browsers. So, if the site gets visitors who
are using older browsers, rather than generate a bunch of errors, the polite thing
to do is to tell them that they need to update their browser and provide them with
the links to do so. With that in mind, I’ve created a set of functions that can be
used to determine which browser, browser version, and platform my JavaScript
code is executing in. These functions can all be found in the browserSnoop.js file
which is in the Session26 folder on your CD-ROM. You’ve actually already seen (at
one time or another) the code for all of the functions in this file, so in Table 26-1,
you’ll find a brief rundown of each function and what it does.

Table 26-1
The Functions Defined in browserSnoop.js

Function Name Purpose

isNetscape() Returns true if current browser is Netscape.

isIE() Returns true if current browser is Internet Explorer.

getNetscapeVersion() Returns the version of a Netscape browser. (If used with
Internet Explorer, it returns the version of Netscape
that the browser is compatible with.)

getIEversion() Returns the version of an Internet Explorer browser.

isMac() Returns true if the browser is running on a Macintosh.

isWin() Returns true if the browser is running on a Windows PC.

isLinux() Returns true if the browser is running on a Linux box.

By using these functions together, you can easily determine what type of
browser your JavaScript code is executing in and generate the content that is
appropriate. As I said earlier, for the Baby-Palooza site, I want to tell users of older
browsers that their browser isn’t compatible and give them links to download the
latest browsers. So, I’ve placed this functionality into the index.htm file that’s in
the Session26 folder on your CD-ROM. This code is a bit long, so open it up in your
HTML editor and take a quick look at it. At first this code might look complicated,
but if you study it for a bit, you’ll see that there really isn’t anything to this. A
series of simple if statements determines if the current browser is either Netscape

Sunday Morning322

4804-2 Ch26.F 4/9/01 8:17 AM Page 322

version 6+ (by checking for a version number of 5 or greater) or Internet Explorer
version 5+. If so, the variable browserOK is set to true. A final if statement uses
the value of this variable to decide whether it should write out the <frame-
set></frameset> tags that will create the Web site or a simple “your browser is
incompatible” document.

Creating Code for Specific Browsers

Even if you have the proper version of a browser, that browser still might not be
able to support everything that you want it to do. For example, in the last session,
I added a highlight outline to the + and - buttons in the shopping cart. I also
included a rather cryptic note that, on the Macintosh and with this highlighting
code in place, moving the mouse over those buttons might cause errors. The reason
for this is, while this code works perfectly in Internet Explorer v5.5 on Windows, it
doesn’t work in Internet Explorer v5 for the Macintosh. It also doesn’t work in
Netscape 6! While the errors that are generated aren’t fatal, they certainly don’t
look good.

Fortunately, once you know how to check the browser version and platform, it’s
incredibly easy to create code that only works in certain browsers. For example,
here’s the code from the last session that’s causing the trouble.

// This method highlights an element by turning its border red
function shopCart_doHilightBorder(theID) {

var theElement = document.getElementById(theID);
theElement.style.borderColor = “red”;
}

// This method removes the border highlight from an element
function shopCart_doDimBorder(theID) {

var theElement = document.getElementById(theID);
theElement.style.borderColor = “white”;
}

There actually isn’t anything terribly wrong with the code itself. It does work
when you use it to highlight the border around a text box, but in Netscape 6 and
Internet Explorer 5 for the Macintosh, it simply won’t work for images. The reason
is, these browsers don’t supply a style object for Image elements. So, you simply
can’t set the border color for an image in this way. (With luck, this will be fixed
when these browsers become more CSS compliant.) The fix for this is very simple:
If the current browser isn’t Internet Explorer v5 or later on Windows, don’t even

Session 26—Working with Different Browsers 323

Part V—
Sunday M

orning
Session 26

4804-2 Ch26.F 4/9/01 8:17 AM Page 323

attempt either of these operations. So, you just have to add a simple if state-
ment, like this:

// This method highlights an element by turning its border red
function shopCart_doHilightBorder(theID) {

if (isWin() && isIE()) {
var theElement = document.getElementById(theID);
theElement.style.borderColor = “red”;
}

}
// This method removes the border highlight from an element
function shopCart_doDimBorder(theID) {

if (isWin() && isIE()) {
var theElement = document.getElementById(theID);
theElement.style.borderColor = “white”;
}

}

If you are wondering why I didn’t check the browser version, remember that I
checked the this when the user first came to the site. If they didn’t have the
appropriate browser version, they would never even see the shopping cart, let
alone get this far!

Requiring JavaScript

At this point, you know how to use JavaScript to require a certain brand and ver-
sion of browser for your Web site. But, what if JavaScript itself isn’t available? Yes,
as ghastly as it seems, there actually are browsers out there that don’t support
JavaScript. Worse yet, some JavaScript-capable browsers will let a user turn
JavaScript support completely off!

Fortunately, there’s a simple way to handle this situation: the <noscript>
</noscript> tags. Simply place a set of these tags in the first page of your Web
site and any non-JavaScript-capable browsers that load that page will display
whatever is inside the tags. (JavaScript-capable browsers, on the other hand, will
ignore these tags and their contents.) For the Baby-Palooza site, I might want to
include the following:

<noscript>
<body>
<h1>

Sunday Morning324

4804-2 Ch26.F 4/9/01 8:17 AM Page 324

Welcome to Baby-Palooza!
</h1>
Unfortunately, your browser
is not compatible with the Baby-Palooza Web site.

This site requires either Netscape Navigator
v6+ or Internet Explorer v5+.
You can find
these browsers by clicking on one of the following links

Get Internet Explorer

Get Netscape Navigator
</body>
</noscript>

Using this code, when a JavaScript-incapable browser, or a browser with JavaScript
support turned off, visits my site, the HTML between the <noscript></noscript>
tags will be displayed telling the user that he needs to upgrade his browser.

Hiding JavaScript from Older Browsers

While it’s nice to be able to require that a browser support JavaScript, more often
than not, you’ll probably find yourself in the situation where you’ve got a page
that’s enhanced by JavaScript, but JavaScript isn’t essential to the operation of the
page. In this case, it’s silly to lock a user out of your site simply because the client’s
browser doesn’t support JavaScript. However, if such a user does come to your site,
your JavaScript code may well show up in the final output of your page unless you
hide it from the browser. This is due to the way that most HTML rendering engines
handle tags that they don’t support. When an HTML rendering engine encounters a
tag it doesn’t support, it discards the tag, but it displays the text inside the tag
using the default characteristics (font, size, and so forth) for the page.

So, if an older browser encounters a set of <script></script> tags, and it
doesn’t know what they are, it will simply discard the tags, and display the
JavaScript inside as if it was regular text, which it is! The solution to this problem
is extremely simple: wrap your JavaScript code in a set of HTML comment tags. So,
the following block of code:

<script language=”javascript”>
alert(“Welcome to Baby-Palooza!”);
</script>

Session 26—Working with Different Browsers 325

Part V—
Sunday M

orning
Session 26

4804-2 Ch26.F 4/9/01 8:17 AM Page 325

Would become this:

<script language=”javascript”>
<!--
alert(“Welcome to Baby-Palooza!”);
// -->
</script>

When an older HTML rendering engine gets hold of this, it will discard the
<script></script> tags and then, thanks to the HTML comment markers, ignore
all of the JavaScript code inside. A JavaScript-capable browser, however, is smart
enough to know about this trick, so it will ignore the HTML comments and just
execute the JavaScript.

Requiring a Particular JavaScript Version

Finally, there’s the situation where you need to make sure that the client’s browser
is running a particular version of JavaScript. Of course, the latest big-name
browsers run the very latest version of the JavaScript language, so they include all
of the language features that you’ve seen in this book. Older browsers however,
run older versions of JavaScript and those versions are missing such nice things as
Arrays (added in JavaScript version 1.1), Image objects (also added in JavaScript
version 1.1), and the screen object (added in JavaScript version 1.2).

To require a particular version of JavaScript, you simply specify the version you
need in the language attribute of your <script> tag. For example:

<script language=”javascript1.2”>
alert(“Your screen is “ + screen.width + “pixels wide.”);
</script>

By specifying a JavaScript version in this way you are telling the browser, “If
JavaScript version 1.2 or later isn’t available in this browser, don’t execute this
block of code.”

REVIEW

In this session, you learned about the navigator object and how to use it along
with JavaScript to determine which brand and version of a browser is executing
your JavaScript program. You also saw how to use that information to write pro-
grams that work around features that may be missing from a particular browser.

Sunday Morning326

4804-2 Ch26.F 4/9/01 8:17 AM Page 326

You learned how to create an initial page for your site that would check the
browser version and, if necessary, present users with a message telling them that
they need to upgrade their browsers in order to use your site. You saw how the
<noscript></noscript> tags can be used to weed out browsers that don’t support
JavaScript. You also learned how to hide JavaScript code from older browsers by
using HTML comment tags. Finally, you learned how the language= attribute of
the <script> tag can be used to tell the browser that a certain version of
JavaScript is required to run the code in a particular script block.

QUIZ YOURSELF

1. What does the navigator.appCodeName property contain? Why is it
somewhat less than useful? (See “The appCodeName property.”)

2. How is version information stored in the navigator.appVersion property?
(See “Determining the Browser Version.”)

3. What does the first version number in the navigator.appVersion prop-
erty of an Internet Explorer browser represent? (See “Extracting Internet
Explorer version information.”)

4. How can you use browser version, brand, and platform information to
generate code that works around browser problems? (See “Creating Code
for Specific Browsers.”)

5. What do the <noscript></noscript> tags do? (See “Requiring
JavaScript.”)

Session 26—Working with Different Browsers 327

Part V—
Sunday M

orning
Session 26

4804-2 Ch26.F 4/9/01 8:17 AM Page 327

1. What is a style sheet?

2. What is the purpose of the HTML tag?

3. Why would you want to use an external style sheet?

4. What method of the document object do you use to obtain an element
object? What value do you pass to this method?

5. If you assign a value to an element’s style.top property, and you don’t
specify a unit of measurement, what unit of measurement will be used?

6. What does the innerHTML property of an element represent? What hap-
pens if you assign a new value to this property?

7. What does the style.position property specify for an element?

8. What does the top object represent?

9. When working inside a frame, what does the parent object represent?

10. Assuming that an HTML document should only be displayed as part of a
set of frames, how can you tell if that HTML document was loaded with-
out its frame set?

11. If you open a new window and you only specify its height and width,
which toolbars will the window have?

12. How can you close a window that you have created?

13. How can you determine if the contents of a window have been fully
loaded?

14. What does the opener property tell you about a window?

15. What does the parseFloat() function do?

P A R T

#
P A R T

Sunday Morning

V

4804-2 PartReview5.F 4/9/01 8:17 AM Page 329

16. Why does JavaScript have difficulty displaying floating-point numbers
accurately?

17. How can you make a text box control appear to be just another bit of
text on the screen?

18. In the navigator.appVersion property, what does the string “MSIE”
signify?

19. How do you tell the Web browser that a particular version of JavaScript is
required to execute a <script></script> block?

20. How can you hide your JavaScript code from older, non-JavaScript-
compliant Web browsers?

Part V—Sunday Morning Part Review330

4804-2 PartReview5.F 4/9/01 8:17 AM Page 330

P A R T

Sunday
Afternoon

VI

Session 27
Working with Dates, Numbers, and Web
Addresses

Session 28
Communicating with Server-Side
Processes

Session 29
Supporting Multimedia

Session 30
Working with Java Applets

4804-2 Pt06.F 4/9/01 8:17 AM Page 332

Session Checklist

✔ Using the Date and Math objects built into JavaScript
✔ Using the history and location objects of the Browser Object Model

A s with any programming languages, some parts of JavaScript are important
enough that you need to know about them but not important enough to
warrant an entire chapter in a book. So, in this session I’m going to give

you a close look at several utility classes and objects. Two of these are part of the
JavaScript language, and two are a part of the Browser Object Model. While none of
these items is essential for creating JavaScript programs, knowing how to use them
can make your life a lot easier.

The Date Class

Perhaps the most useful of these utility items is the Date class that is built into
JavaScript. As you learned in Session 16, this class allows you to create objects that
hold date and time information. The Date class constructor function can create Date
objects in lots of different ways. The easiest is the one you saw in Session 16:

S E S S I O N

Working with Dates, Numbers,
and Web Addresses

27

4804-2 Ch27.F 4/9/01 8:17 AM Page 333

var rightNow = new Date();

When called this way, the Date constructor will read the system clock in the
client’s machine and create a Date object using the time and date settings it finds
there. You can also create a Date object like this:

var numMilliseconds = 0;
var myDate = new Date(numMilliseconds);

When you create a Date object this way, the date and time you get represents
the number of milliseconds (thousandths of a second) that have passed since 12
a.m., January 1, 1970, Greenwich Mean Time (GMT). However, unless the client is
actually in the GMT time zone, the date and time will be adjusted to correspond to
the client’s time zone.

For example, I live in the Eastern Time Zone of the United States. This is five
hours behind GMT. So, when I execute the above code and display the resulting
Date object, I see something like this:

Wed Dec 31 19:00:00 GMT-0500 1969

Which is five hours before midnight, January 1, 1970. This brings up an important
point; the millisecond values you use can be positive or negative. Positive values
give dates after January 1, 1970 GMT, while negative values give dates before
January 1, 1970 GMT. According to the ECMAScript standard, there are exactly
86,400,000 milliseconds in a day. (Leap seconds are not taken into account.) Date
objects can represent any date up to 100,000,000 days before or after midnight,
January 1, 1970 GMT.

If you don’t know the number of milliseconds that represent your date, you can
simply pass the Date constructor a string that specifies your date, like this:

var myDate = new Date(“May 5, 2000 21:40:00”);

The format of this date string is simply “Month Day, Year Hours:Minutes:Seconds”.
You can omit the “Hours:Minutes:Seconds” portion, but if you do include it, it has to
be in 24-hour format.

Finally, you can create a Date object by passing a series of integer numbers that
represent the time you want in the new object. For example, an equivalent of the
above would be:

var myDate = new Date(2000, 4, 5, 21, 40, 0);

In this case, the parameters are:

var myDate = new Date(year, month, day, hours, minutes, seconds);

Sunday Afternoon334

4804-2 Ch27.F 4/9/01 8:17 AM Page 334

It’s important to note that, as with just about everything else in JavaScript,
several of these values are zero-relative. So, instead of passing 5 for the month of
May, I pass a 4. (January is month 0 and December is month 11. There is no month
12. However, for the day of the month, I pass a 5, because there is no 0 day in a
month.)

Similarly, hours, minutes, and seconds should be given within the range of 0 to
23 for hours, and 0 to 59 for minutes and seconds. (Because there is no 24th hour
in a day and no 60th minute in an hour or 60th second in a minute.)

If you don’t want to bother with the hours, minutes, and seconds, you don’t
have to supply them. So, to represent midnight on May 5, 2000 I could have just
coded:

var myDate = new Date(2000, 4, 5);

Methods of the Date class

There are over three dozen different methods in the Date class, so rather than bore
you to death with all of them, I’m just going to go over the ones that you’ll probably
find the most useful in your day-to-day programming activities. (You can, of course,
find out about all of the Date methods by checking the ECMAScript documentation
that’s on your CD-ROM.) Furthermore, since most Date methods come in pairs that
get and set some value in a Date object, I’ll discuss these pairs of methods together.

The getDate() and setDate() methods

These methods get or set the day of the month in a Date object. Let me say that
again. These methods get or set the day of the month in a Date object. Compare
this with the getDay() methods (which is discussed next) and you’ll see why I
repeated myself here. If you are calling setDate(), you simply pass a value from 1
to 31 that represents the day of the month you want placed in the Date object.
When you call the getDate() method, you’ll get back a number between 1 and 31.

var myDate = new Date(“May 5, 2000 21:40:00”);
myDate.setDate(25);
alert(myDate.getDate());

The getDay() method

This method gets the day of the week in a Date object. When you call this method,
you’ll get back a value between 0 (Sunday) and 6 (Saturday).

Session 27—Working with Dates, Numbers, and Web Addresses 335

Part VI—
Sunday Afternoon

Session 27

4804-2 Ch27.F 4/9/01 8:17 AM Page 335

var myDate = new Date(“May 5, 2000 21:40:00”);
alert(myDate.getDay());

The getFullYear() and setFullYear() methods

These methods let you get and set a full four-digit year value (that is, “1999” as
opposed to “99”) in a Date object. Note that when you set a Date object’s year to a
different value, JavaScript will automatically recalculate the day of the week so
that the new Date is actually valid. For example, May 5, 2000 was a Friday. But
following the execution of this code the day of the week in the myDate object will
be Saturday:

var myDate = new Date(“May 5, 2000 21:40:00”);
myDate.setFullYear(2001);

Yes, the Date object does provide methods that let you set a two-
digit year value. However, if the Y2K problem taught us anything,
it’s that you should always use a four-digit year value to avoid
ambiguity. So, please, always use four-digit years! (Believe me,
programmers in 2099 will thank you.)

The getHours() and setHours() methods

These methods get and set the hour value in a Date object. Remember that hours
are expressed as values from 0 (midnight) to 23 (11 p.m.).

The getMinutes() and setMinutes() methods

These methods get and set the minutes value in a Date object. Remember that in
JavaScript, minutes are expressed as a value from 0 to 59. (Because there is no
60th minute in an hour.)

The getMonth() and setMonth() methods

These methods get and set the month value in a Date object. Remember that in
JavaScript, months are expressed as a value from 0 (January) to 11 (December).
Note that when you set a Date object’s month to a different value, JavaScript will
automatically recalculate the day of the week so that the new Date is actually
valid. For example, May 5, 2000 was a Friday. But following the execution of this
code:

Tip

Sunday Afternoon336

4804-2 Ch27.F 4/9/01 8:17 AM Page 336

var myDate = new Date(“May 5, 2000 21:40:00”);
myDate.setMonth(9);

The day of the week in the myDate object will be Thursday.

The getTime() and setTime() methods

As you saw in Session 16 (in the discussion of how to create a cookie expiration
date), these methods get and set the time as a number of milliseconds since mid-
night January 1, 1970. Being able to get a date in this format allows you to easily
perform date mathematics. For example, to determine the day my daughter’s first
birthday will fall on, I could use the following code:

var bDate = new Date(“May 5, 2000 21:40:00”);
var oneYear = 86400000 * 365;
var bDayMS = bDate.getTime();
bDate.setTime(bDayMS + oneYear);

The bDate variable will then contain the date: Sat May 5 21:40:00 EDT 2001

The getTimeZoneOffset() method

This method returns the time difference, in minutes, between the specified Date
object and Greenwich Mean Time.

var myDate = new Date(“May 5, 2000”);
var tzOffset = myDate.getTimezoneOffset();
document.write(“The date is: “ + myDate + “
”);
document.write(“The time zone offset is: “ + tzOffset + “
minutes);

The toGMTString() method

As you learned in Session 16 (in the discussion of how to create a cookie expira-
tion date), this method will return the contents of a Date object with the time
shifted to its equivalent in the Greenwich Mean Time zone. For example, the fol-
lowing code:

var myDate = new Date(“May 5, 2000 21:40:00”);
alert(myDate.toGMTString());

Will produce an alert window showing the following date: Sat, 6 May 2000
01:40:00 UTC

Session 27—Working with Dates, Numbers, and Web Addresses 337

Part VI—
Sunday Afternoon

Session 27

4804-2 Ch27.F 4/9/01 8:17 AM Page 337

The toLocaleString() method

This method returns the time from a Date object as a formatted string. The format
of this string can vary from browser to browser, but you’ll usually get the day of
the week (completely spelled out, that is, “Saturday” instead of “Sat”), the month
(also spelled out), the day of the month and the hours, minutes, and seconds. If
you need to display your date in a nice, human-readable format, this is usually the
friendliest format that any of the Date methods will give you. If this isn’t friendly
enough, you can always extract the individual pieces of your date (using the
methods discussed above) and build your own date string for display.

The UTC Date methods

Almost all of the remaining Date methods deal with UTC (Universal Coordinated
Time). That is to say, they report the time as if the client’s computer were located
in the Greenwich Mean Time zone. These methods are basically the same as the
ones you’ve just seen, with the addition of the characters “UTC” in their names.
For example, the getUTCHours() method will retrieve the hours part of a date as if
that date were in the Greenwich Mean Time zone. These methods allow you to
standardize all of your time calculations in a single, client-independent time zone
if you need to. (For examples of these methods in use, see the UTCmethods.htm
file in the Session27 folder on your CD-ROM.)

Using the Date object on your Web site

One of the more common uses of the Date object is to display the time and/or date
on a Web site and constantly update it. So, I’ll add a date and time display that
updates itself once a second to the menu page of the Baby-Palooza Web site. First,
I need someplace to actually display the time and date. Since this is going to be a
dynamically changing display, it will be easiest to show the information in a text
box. So, I need to define a form and a text box, like this:

<form name=“timeDisplay”>
<input type=“text” class=“noEdit” name=“theTime” value=“” />
</form>

Notice that the class of this text box is noEdit. If you’ll remember from Session
25, this is the class I defined that removes the border from a text box and makes
sure that the cursor doesn’t change when it passes over the text box. So, this text
box will appear to just be another bit of text on the page.

Sunday Afternoon338

4804-2 Ch27.F 4/9/01 8:17 AM Page 338

Next, I need to define a function that will display and update the time in this
text box.

function showTime() {
var rightNow = new Date();
var tString = rightNow.toLocaleString();
document.timeDisplay.theTime.value = tString;
setTimeout(‘showTime()’, 1000);
}

This extremely simple function does the trick. It first creates a new Date object
that contains the current time (taken from the client’s system clock). It then
extracts that time information as a formatted string (via the toLocalString()
method) and places it into the text box I’ve just created. A final call to the
setTimeout() method ensures that the showTime() function will be called again
one second later, which starts the whole process over and updates the time
display.

The Math Object

The Math object is a JavaScript object that holds various and sundry mathematical
constants and provides access to common mathematical functions. (Note that this
is not a class! So, you can’t create new Math objects. All you can do is use the one
Math object that’s built into JavaScript. Fortunately, that’s all you really need.)
Some of these will be familiar from your high school and college math courses,
while others will be things you’ve probably never heard of. Basically, if you need to
write JavaScript programs that perform lots of number crunching, you’ll be glad
that the Math object is available. If not, well, you don’t have to use it, but it’s
good to know that its there just in case you do need it one day.

Constant properties of the Math object

The Math object contains the following constant properties. These are called con-
stants for the simple reason that you can’t change them (so they have a constant
value). However, you access them just as you would the properties of any other
object. (Note that there are more constant properties defined in the Math object.
Be sure to check the ECMAScript documentation on your CD-ROM to find out about
the others.)

Session 27—Working with Dates, Numbers, and Web Addresses 339

Part VI—
Sunday Afternoon

Session 27

4804-2 Ch27.F 4/9/01 8:17 AM Page 339

The Math.E property

This is the constant value 2.718281828459045.

The Math.PI property

This is the constant value 3.141592653589793. (that is, π)

The Math.SQRT2 property

This is the constant value 1.4142135623730951. (that is, √2)

Methods of the Math object

There are almost twenty different methods in the Math object, very few of which
are useful for day-to-day programming. So, I’ll just go over the most useful ones
here. Be sure to check the ECMAScript documentation on your CD-ROM for details
on all of the Math object’s methods. Examples of these methods and others can be
found in the mathMethods.htm file on your CD-ROM.

The Math.abs() method

This method will return the absolute value of the number you pass to it.

The Math.max() and Math.min() methods

You pass these methods two or more numbers and they return the largest or small-
est of those numbers respectively.

The Math.pow() method

You pass this method two numbers. The first number will be raised to the power of
the second. For example, the following is the same as 2 * 2 * 2.

var result = Math.pow(2, 3);

The Math.random() method

This method takes no parameters and returns a pseudorandom number between 0
and 1.

Sunday Afternoon340

4804-2 Ch27.F 4/9/01 8:17 AM Page 340

The Math.round() method

This method rounds the number you pass it to the closest integer value.

The Math.sqrt() method

This method returns the square root of the number you pass to it.

The location Object

In Sessions 8 and 9, you learned about the window.location property and the
document.location property respectively. If you were looking closely, you might
have noticed that each of these properties seems to represent the same thing: the
Web address of the HTML document that is currently loaded into the Web browser. As
you’ve seen in subsequent sessions, you can actually force the browser to load a new
HTML document simply by assigning a new Web address to one of these properties.

While it might seem that these are just simple String objects, each of these
location properties is actually a complex object in its own right. While you can use
it as a simple redirection tool, the properties and methods of the location object
can give you a lot of information about the Web address that is currently loaded
into the Web browser.

(While the window.location and document.location properties hold essen-
tially the same information, the document.location property will probably be left
behind in favor of the document.URL property. So, I’m going to restrict my discus-
sion to window.location.)

Properties of the location object

Any of the following properties can be set to a new value. Doing so will usually
cause the browser to load the document specified by the new value. However, this
is a browser-specific behavior, so, the best way to guarantee that your new docu-
ment will be loaded is to always build your new Web address as a complete string
and then assign it to the location.href property.

The hash property

This contains a String object containing the “hash” part of the Web address speci-
fied in the href property. For example, if the href property contains

http://www.baby-palooza.com/index.htm#top

the hash portion is #top.

Session 27—Working with Dates, Numbers, and Web Addresses 341

Part VI—
Sunday Afternoon

Session 27

4804-2 Ch27.F 4/9/01 8:17 AM Page 341

The host property

This contains a String object containing the host information from the Web address
specified in the href property. For example, if the href property contains

http://www.baby-palooza.com

the host portion is “www.baby-palooza.com:80”.

The hostname property

This contains a String object containing just the host name information from the
Web address in the href property. For example, if the href property contains in
this link:

http://www.baby-palooza.com

The hostname portion is “www.baby-palooza.com”.

The href property

This contains the complete Web address of the current location. Assigning a new
Web address to this property will force the Web browser to load the document at
that address.

The pathname property

If the Web address in the href property points to a file that’s buried in a folder
somewhere on the server, this property will contain the path to that file. For
example, if this is the href property:

http://www.baby-palooza.com/strollers/index.htm

The pathname property would contain the string “strollers/index.htm”.

The port property

This is a String object containing the port specified in the href property.

http://www.baby-palooza.com:80

Here, the port property would contain the value 80.

Sunday Afternoon342

4804-2 Ch27.F 4/9/01 8:17 AM Page 342

The protocol property

This is the protocol (http, ftp, etc.) that was used to load the Web address speci-
fied in the href property.

The search property

This is the query string specified in the Web address in the href property.

http://www.baby-palooza.com/search.htm?type=stroller

In this example, the search property would contain the string
?type=stroller. Note that the question mark is included at the start of the
string.

Methods of the location object

If you want to load a new page into the web browser, you can just assign a new
Web address to the location.href property. However, one of the following meth-
ods will give you more control over the process.

The reload() method

This method tells the browser to reload the document referenced in the href
property. This method can take a Boolean parameter, which is named force. If the
force parameter is true, the page will be reloaded from the Web server even if an
up-to-date copy exists in the browser’s cache.

The replace() method

When you call this method, you pass it the Web address of a new document that
you want loaded into the Web browser. This new document will be loaded into the
Web browser and its Web address will replace the Web address of the currently
loaded document in the browser’s history list. (See the next section for a discussion
of the history list.) This can be very handy if you have a series of “invisible”
JavaScript pages, each of which triggers the loading of the next until a final page is
reached. If each of these interim pages uses the replace() method to load the next
page, then only the final page (the one the user actually sees), will end up in the
history list. So, when the user clicks the Back button in the browser, all of the
interim pages will be skipped over and the user will go directly back to the starting
page. (A complete example of this can be found in the locationReplaceMethod.htm
file on your CD-ROM.)

Session 27—Working with Dates, Numbers, and Web Addresses 343

Part VI—
Sunday Afternoon

Session 27

4804-2 Ch27.F 4/9/01 8:17 AM Page 343

The history Object

The last object I want to tell you about in this session is the window.history
object. As the name suggests, this object holds a list of the Web addresses that the
user has visited since she started up her browser.

The length property

The history object has only one property: length. This property tells you how
many entries are in the history list.

Methods of the history object

Thus far, the history object looks a lot like an Array doesn’t it? Well, it is, but it’s
a rather special Array. Because it contains information about the user’s Web surfing
habits, it’s been decided that JavaScript programs should not be able to actually
read any of the Web addresses in the history list. In other words, a statement like
alert(history[0]) will either yield an error or a value of undefined. So, the
best you can do is use one of the history object’s methods to move the browser
back and forth through the list of pages that have been visited.

The back() method

Calling this method will cause the browser to reload the Web address stored in the
previous history list entry, if one exists. (It’s just like hitting the browser’s Back
button.)

The forward() method

Calling this method will cause the browser to load the Web address stored in the
next history list entry, if one exists. (It’s just like hitting the browser’s Forward
button.)

The go() method

When you call this method, you pass it a positive or a negative integer. The
browser will jump that many places in the history list (forward if the number is
positive and backward if the number is negative) and load the Web address stored
at that point in the history list.

Sunday Afternoon344

4804-2 Ch27.F 4/9/01 8:17 AM Page 344

The history object, frames, and windows

While the history object might not seem that thrilling at first, one very important
aspect of it is that every frame and every window you create has its own history
object. So, it’s entirely possible to create a set of controls that live in one frame
and allow you to move backwards and forwards through the history of another
frame.

Another important thing to know is that, in a frames-based Web site, the top
object also has a history object that is sort of an amalgam of all the history
objects that belong to its frames. So, if the user changes the page in one frame,
then changes the page in another frame, those individual changes not only go into
each frame’s history list, they both go into the top object’s master history list.
Moving back and forth through this history list will actually change the contents
of the appropriate frames and not the top window.

REVIEW

In this session, you learned about several utility objects and classes that are built
into the JavaScript language and the Browser Object Model. You saw how the Date
class can be used to create Date objects that hold time and date information. You
also learned how to perform simple date mathematics to create new dates. You
learned about the Math object and its properties and methods. You learned how
the location object can be used to move the browser from one HTML document to
another and how the properties of this object can give you information about the
document that is currently loaded. Finally, you learned how the history object
can be used to move back and forth through the list of pages that have been
viewed since the browser was started.

QUIZ YOURSELF

1. How do you create a Date object that contains the current date and time?
(See “The Date Class.”)

2. In JavaScript Date objects, what integer value represents Monday? What
value represents Saturday? (See “The getDay() method.”)

Session 27—Working with Dates, Numbers, and Web Addresses 345

Part VI—
Sunday Afternoon

Session 27

4804-2 Ch27.F 4/9/01 8:17 AM Page 345

3. What is the difference between the getDay() and getDate() methods?
(See “The getDate() and setDate() methods” and “The getDay() method.”)

4. How can you use the location object to make the browser load a new
HTML document? (See “The href property.”)

5. Why aren’t JavaScript programs allowed to see the actual contents of the
history object? (See “Methods of the history object.”)

Sunday Afternoon346

4804-2 Ch27.F 4/9/01 8:17 AM Page 346

Session Checklist

✔ Preparing data for transmission to a server-side process
✔ Decoding data embedded in a Web address

While JavaScript is a very powerful language, there are some things that it
can’t do from inside a Web browser. For example, it can’t open a connec-
tion with a database. It’s also not very good at creating charts, graphs, or

other graphics. On those occasions when you need to do something that JavaScript
simply can’t do (or doesn’t do very well), you’ll probably want to turn the task
over to some sort of server-side application.

The Common Gateway Interface

If you’ve been using the Web for a while now, you’ve undoubtedly heard of the
Common Gateway Interface or CGI. Usually, you’ll hear about the CGI in terms of an
application — for example, “I had to write a CGI application to collect data from a
Web page form and put it in a database.” The term CGI application is really a bit of
a misnomer because it implies that the application is written in some language
called CGI. But, the CGI isn’t a programming language; it’s simply a protocol that

S E S S I O N

Communicating with
Server-Side Processes

28

4804-2 Ch28.F 4/9/01 8:17 AM Page 347

client-side programs use to communicate with server-side programs. So, when you
hear someone talk about that “CGI application” that they wrote, all they are say-
ing is that they wrote a program that uses the CGI protocol to send/receive data
to/from some other process. So, CGI applications can be written in any language
that supports the protocol. Perl, C, and Python are all popular languages for creat-
ing CGI applications but they are by no means the only languages that you can use
to create CGI applications.

Understanding the CGI data format

Entire books can be (and have been) written about the CGI. (For all the technical
details on CGI, you should visit the CGI specification page at www.w3.org/CGI/.)
However, the whole thing really boils down to the way that data is formatted so
that it can be transmitted between the client and the server. Basically, data that’s
formatted for transmission through the CGI looks like this:

name1=value1&name2=value2&name3=value3

As you can see, this is just a series of name and value pairs that are separated
by ampersands. As simple as this appears to be, there are still a couple of rules
that you have to follow to properly transmit data through the CGI.

� Spaces are not allowed. Blank spaces and other white space characters are
not allowed anywhere in the data that you want to send through the CGI.
If you want to send a blank space you must either replace it with a + or
send its equivalent hexadecimal code. To transmit other white space char-
acters (like tabs and line feeds) you should send their hexadecimal codes.
This of course, leads to the question, “How do I create these hexadecimal
codes?” To answer this question, JavaScript provides the escape() func-
tion. (Replacing the special characters in a string with their hexadecimal
equivalents is usually referred to as escaping the string.) You’ll be learning
about this function and its counterpart, the unescape() function, a bit
later in this session.

� Any other special characters, including the ampersand (&) and equal sign
(=) should also be transmitted as hexadecimal characters. When you trans-
mit data via the CGI, equal signs are always used to associate a value with
a name and ampersands are always treated as separators of name=value
pairs. So, if one of your values includes an ampersand or an equal sign, it
must be sent as a hexadecimal code, so that the receiving program doesn’t
misinterpret your data.

Sunday Afternoon348

4804-2 Ch28.F 4/9/01 8:17 AM Page 348

As an example of this, assume that you have three fields that you want to
transmit through the CGI: firstName, lastName, and address. Further assume
that the values of these fields are “John,” “Public,” and “123 Anyplace Rd.” This
information could be transmitted through the CGI in either of the following forms:

firstName=John&lastName=Public&address=123+Anyplace+Rd.
firstName=John&lastName=Public&address=123%20Anyplace%20Rd.

In the first of these, the spaces in the address have been replaced by plus signs
(+). In the second, the spaces have been replaced by their equivalent hexadecimal
code (20). The percent sign (%) is used to tell the CGI application that the next
two characters are a hexadecimal character code that should be transformed back
into an actual character before processing further. (This might lead you wonder
how you can transmit + and % through the CGI without confusion. I’ll be dis-
cussing that in just a bit.)

The CGI methods

As I said earlier, the CGI is a protocol that a client and server can use to transmit
data between each other. The way that this data is formatted is only one part of
this protocol. Another part is how the formatted data actually gets to where it’s
going. In the CGI protocol, there are two standard methods that are used to trans-
mit data. These methods are known as post and get. (Note that the CGI protocol
doesn’t use objects, so these aren’t methods in the same sense that toUpperCase()
is a method of the String object. They are called methods because they each
describe a process for transmitting data. This makes them “methods” in that they
describe how to carry out a real-world task, moving data from one place to another,
rather than being associated with abstract objects.)

The get method

The get method is the simpler of the two. When data is transmitted in this way, it
is formatted as shown above and then simply tacked onto the end of the Web
address of the CGI application that the data is being sent to. So, if I wanted to
send my firstName and lastName data to an application on the Baby-Palooza Web
site via the get method, I would use a Web address that looks like this:

http://www.babypalooza.com/cgiapp.exe?firstName=
John&lastName=Public

Here, cgiapp.exe is the name of the server-side CGI application that I want to
invoke. Everything that comes after the question mark is called the query string or

Session 28—Communicating with Server-Side Processes 349

Part VI—
Sunday Afternoon

Session 28

4804-2 Ch28.F 4/9/01 8:17 AM Page 349

the search string. (From here on out, I’ll be referring to this as the “search string,”
because that’s the way JavaScript refers to it.) When the Web server looks at this,
it will see that cgiapp.exe is an executable program and not an HTML document.
So, it will start this program up and pass to it a parameter that contains the
search string that was sent as part of the Web address. It’s then up to cgiapp.exe
to extract the information it needs from the search string, process it, and return
its results to the Web server. The Web server will then take those results (usually a
complete HTML document) and send them back to the client.

As you can see, the get method is very simple to use. However, it does have the
drawback that you are limited in how much data you can transmit this way. Web
browsers usually have a maximum allowed size for a Web address, so if you want to
transmit a lot of data (like the contents of one or more text fields) the get
method is not the way to go.

The post method

The post method is much better suited for transmitting large amounts of data.
While the format of the data is exactly the same, the way it’s sent is different.
When data is transmitted via the post method, nothing is added to the end of the
Web address. Instead, a special header is sent that tells the Web server how many
bytes of data are being transmitted. That actual data is then sent in one big chunk
to the Web server. The Web server turns around and passes this same information
(the number of bytes and the big chunk of data) to the CGI application. The CGI
application can then read the data from a standard input stream (which is similar
to the streams you learned about in Session 9) and process it in exactly the same
way as if it had gotten the data from the search string.

How CGI Works with HTML and JavaScript

When you create an HTML form, you can use the method= attribute to specify
which of the two CGI methods (get or post) that you want the browser to use
when it sends the forms data to the Web server. For example, given this form
definition:

<form method=“post” action=“cgiapp.exe”>
<input type=“text” name=“fName” />
<input type=“text” name=“fName” />
<input type=“submit” value=“submit” />
</form>

Sunday Afternoon350

4804-2 Ch28.F 4/9/01 8:17 AM Page 350

When this form’s Submit button is clicked, its data will be sent to the
cgiapp.exe application via the post method. If the initial <form> tag had looked
like this:

<form method=“get” action=“cgiapp.exe”>

Then the data in this form would be sent via the get method. (Many folks don’t
realize that if you don’t specify a method for a form, it will default to the get
method. This can be very bad news if your form data contains sensitive informa-
tion like passwords or credit card information. This is because, when the get
method is used to submit your form data, the browser will attach that data,
including any sensitive information, to the end of the Web address that’s specified
in the action= attribute of your form. On the other hand, when you use the post
method, the data in your form is hidden from casual observers. So, if it’s the post
method you want, be sure to specify it when you define your forms!)

Using get and post with HTML

As I mentioned earlier, if you want to send white space or other special characters
through the CGI, you need to make sure that those characters have been properly
escaped before you send them. If all you are doing is collecting data in a form and
then letting the browser send that data when the Submit button is clicked, you
don’t have anything to worry about. The browser will automatically arrange your
data into a CGI-compliant format and escape all of the data that was in the form
before it is sent. In other words, if you let it, the browser will automatically han-
dle all of the CGI dirty work for you.

Using the get method with JavaScript

While the browser is perfectly capable of handling simple data submissions, there
will probably be times when you need to exercise a bit more control over what gets
sent to your server-side process. In those cases, you can actually use JavaScript to
build and submit your own CGI-compliant data via the get method.

Building and using a search/query string

Using JavaScript to create a get method-compliant search string is extremely easy
to do and you don’t even need to use a form to do it. For example, assume that I
need to create a series of links that, when clicked, will invoke a server-side appli-
cation that generates a sales report. When this application is invoked, it expects

Session 28—Communicating with Server-Side Processes 351

Part VI—
Sunday Afternoon

Session 28

4804-2 Ch28.F 4/9/01 8:17 AM Page 351

to receive two parameters: a year and a quarter for which sales should be summa-
rized. (Note that all of the code for the following example can be found in the files
bpReports.htm and qtrSalesSummary.htm, which are in the Session28 folder on
your CD-ROM.) First, I have to define the appropriate links, which might look
something like this:

Q1, 2001
Q2, 2001
Q3, 2001
Q4, 2001

In each of these links, I’m calling a JavaScript function named doQtrSummary().
This function will take the parameters I pass to it (a year and a quarter for my
report) and build an appropriate search string that I can use to invoke my server-
side process. Here’s what that function looks like:

function doQtrSummary(year, qtr) {
var sStr = “year=” + year;
sStr += “&qtr=” + qtr;
location.href = “qtrSalesSummary.htm” + “?” + sStr;
}

As you can see, there isn’t much to this. First, I take the year value and con-
catenate it with the string year=. This will give me the name=value pair that
represents my year parameter. Next, I take this string and concatenate it with the
name=value pair that will represent my quarter parameter. Note the ampersand
that separates the two name=value pairs. When these first two lines of code finish,
I’ll have a string that looks like this (assuming that the first link is the one that’s
clicked): year=2001&qtr=1

All that’s left is to append this to the end of the Web address of the server-side
CGI application that I want to invoke. This is done in the last line of the function.
(Of course, since I don’t know what sort of server setup you have, I can’t really
invoke a conventional CGI application in this example. As a substitute, I’m just
invoking another HTML file. However, the way I’m invoking this HTML file is
exactly the same way you would invoke any other CGI application.) Notice that,
between the Web address of my CGI application and the search string, there is a
question mark. This question mark is what separates the actual Web address of
your CGI application from the search string that you want to send to it. So, when
all of this concatenation is finished, my final Web address will look like this:
qtrSalesSummary.htm?year=2001&qtr=1

Sunday Afternoon352

4804-2 Ch28.F 4/9/01 8:17 AM Page 352

Once I have this Web address and search string combination built, all I have to
do is assign it to the href property of the location object. As you saw in the last
session, this will tell the browser to request this document from the Web server.
When the Web server sees this request, it will break off the search string (every-
thing from the question mark on) and pass it to the CGI application that I’ve
requested. It’s then up to the CGI application to process the search string and pass
its results back to the Web server, which in turn will pass them back to the Web
browser.

Escaping the values in a search string

As you can see, building and sending a get method request to a CGI application is
amazingly simple. However, what I’ve just shown you is the simplest case. None of
the values in this example had any white space or special characters that needed
to be escaped before transmitting them through the CGI. So, to make things a bit
more interesting, I’ll change my function to allow the user to add a title to the
report.

function doQtrSummary(year, qtr) {
var title = prompt(“Title for report...”, “Sales Summary”);
if (title != null) {

var sStr = “year=” + year;
sStr += “&qtr=” + qtr;
sStr += “&title=” + escape(title);
location.href = “qtrSalesSummary.htm” + “?” + sStr;
}

}

In this version of my function, a prompt window asks the user to specify a title
to use for the report. Since the user can type anything in this prompt window, I
need to make sure that any white space or special characters she enters will make
it through the CGI properly. So, I take the value that the user typed in and pass it
to the escape() function. The escape() function looks at each character in a
string and, if a character is a white space or special character, it replaces that
character with its hexadecimal code value, preceded by a percent sign (%). So, for
example, the following statement:

alert(escape(“Hello & Welcome!”));

Will open an alert window that displays the following string:

Hello%20%26%20Welcome%21

Session 28—Communicating with Server-Side Processes 353

Part VI—
Sunday Afternoon

Session 28

4804-2 Ch28.F 4/9/01 8:17 AM Page 353

In this case, the escape() function changed each space character into %20, the
ampersand character into %26 and the exclamation point into %21. Unlike the char-
acters that they represent, these character codes can pass safely through the CGI.
It’s very important to understand that you should only escape() individual values
in your search string, and not your entire search string! Consider this function:

function doQtrSummary(year, qtr) {
var title = prompt(“Title for report...”, “Sales Summary”);
if (title != null) {

var sStr = “year=” + year;
sStr += “&qtr=” + qtr;
sStr += “&title=” + title;
location.href = “qtrSalesSummary.htm?” + escape(sStr);
}

}

Well, in this version of the function, I’m escaping the entire search string and
not just the values that are in it. This would give me a search string that looks
something like this:

year%3D2001%26qtr%3D1%26title%3DSales%20Summary

Instead of the correct string, which is this:

year=2001&qtr=1&title=Sales%20Summary

Escaping the + character

As I said earlier, when you are building a search string, you must replace any
spaces in that string with either a + character or its hexadecimal equivalent (%20).
As I write this, it’s become less and less common to use the + character to replace
spaces. So, many CGI applications simply treat them as + characters if there are
hexadecimal equivalents also in the search string. However, many older CGI appli-
cations still treat plus signs as spaces and substitute accordingly. Unfortunately,
you never know how a CGI application will act until you actually try it (or unless
you write it yourself). However, you can count on all CGI applications to properly
handle hexadecimal equivalents. So, whenever you build a search string, it’s always
a good idea to escape any plus signs that might be in your data. This can be
problem however, because, as it stands right now, the escape() function does not
actually escape plus signs! So, if I execute this statement:

alert(escape(“One + One is Two”)) ;

Sunday Afternoon354

4804-2 Ch28.F 4/9/01 8:17 AM Page 354

What will display is this: One%20+%20One%20is%20Two Passing this to a CGI
application can lead to trouble if that CGI application doesn’t handle plus signs in
the way you expect. So, the only real solution is to create a wrapper function for
the escape() function that will also escape any plus characters that it finds in a
string:

function escapePlus(tStr) {
var escaped = escape(tStr);
var result = “”;
for (x=0; x<escaped.length; x++) {

if (escaped.charAt(x) == “+”) {
result += “%2B”;
}

else {
result += escaped.charAt(x);
}

}
return result;
}

The first thing this function does is call the escape() function and pass it the
string I want escaped. This will escape all of the appropriate characters, except for
plus signs. The function then enters a for loop that looks at each character in the
escaped version of the string. If a character is a plus sign, the hexadecimal equiva-
lent of a plus sign (%2B) is added to the end of the result string. If the character is
not a plus sign, the character is simply copied to the end of the result string. When
the loop is finished, the result string is sent back to the caller, giving them a string
with all the necessary characters changed into their hexadecimal equivalents.

Retrieving data from a get method request

In my example, the target of my get request is another HTML file. Not many
people realize that you can actually pass data to another HTML file using a get
method request. Then, in the target file, you can use JavaScript to retrieve that
data and act upon it.

In this example, the target of my get method request is the file
qtrSalesSummary.htm. When this file loads, the search string that was passed to
it will be available in the search property of the location object. So, in the
simplest case, I could retrieve this information and display it like this:
alert(location.search);

Session 28—Communicating with Server-Side Processes 355

Part VI—
Sunday Afternoon

Session 28

4804-2 Ch28.F 4/9/01 8:17 AM Page 355

What you’ll find in the location.search property will be the raw data that
makes up the get method request that was sent to the HTML page. So, assuming
that the user clicked on the first quarter link and left the report title alone, the
value in location.search would be:

?year=2001&qtr=1&title=Sales%20Summary

Looking at this value, you’ll notice that the data is still in its escaped form and
that there is a question mark at the beginning of the data. Unfortunately, the
question mark will always be there, so before you can process the data you have to
get rid of it. (As you’ll see however, this isn’t too difficult.) Furthermore, since the
remaining data is arranged in name=value pairs, processing it is as simple as pro-
cessing the cookie data that you worked with in Session 16. In fact, it’s pretty
easy to write a function that will extract any given value out of the search string
so that you can easily use it in your JavaScript program. The following code shows
such a function from the qtrSalesSummary.htm file.

function getParam(paramName) {
var sStr = location.search.substring(1);
var result = “undefined”;
if (sStr != “”) {

var nvPairs = sStr.split(“&”);
for (x=0; x<nvPairs.length; x++) {

if (nvPairs[x].indexOf(paramName + “=”) != -1) {
var nvItem = nvPairs[x].split(“=”);
result = unescape(nvItem[1]);
break;
}

}
}

return result;
}

The first thing this function has to do is retrieve the actual search string from
the location.search property. Notice that it uses a call to the substring()
method to extract everything except the question mark at the beginning of the
search string. If the search string is not empty, the function then uses the
split() method to create an array. Each entry in the array holds one name=value
pair from the search string. A for loop then moves through this array searching
for the parameter name that was passed to the function. When it’s found, that
name=value pair is itself split into a new array. The second element of this array

Sunday Afternoon356

4804-2 Ch28.F 4/9/01 8:17 AM Page 356

(the value part of the name=value pair) is then passed to the unescape() function
and returned to whomever called the function. I’m sure that you can pretty well
guess what the unescape() function does. It simply takes a string and searches it
for hexadecimal character codes. When it finds one, it replaces it with its equiva-
lent printable character. That’s all there is to it!

Using the post method with JavaScript

While using a get method request from JavaScript is fairly simple, using a post
method request can be a bit trickier. First of all, there really isn’t any way that
JavaScript can retrieve data from a post method request. This means that if you
want to send data from one HTML page to another, you will have to use the get
method. So as far as the post method goes, all this leaves is using JavaScript to
build a post method request for transmission to a more conventional CGI applica-
tion on the Web server.

Actually, you’ve already seen how to do this. You see, when you validate data,
or assign a value to a form control, you are changing the data that will be sent
when the user clicks the Submit button for that form or when you call the form’s
submit() method. So, everything you learned in Sessions 12, 13, and 15 can be
used to prepare your data for transmission by the post method. In fact, these
same lessons apply to the get method as well. As I mentioned earlier in this ses-
sion, if you submit a form using the get method, the browser will simply build a
search string (just like the one you learned to build earlier in this session — it will
even escape the values for you) and tack it on to the end of the Web address that
you specified in the action= attribute of your <form> tag.

REVIEW

In this session, you learned about the Common Gateway Interface (CGI) protocol
and how JavaScript can work with it to send data to a server-side process or to
another HTML file. You learned how data has to be formatted as a search string to
be useful to a CGI application. You learned about the characters that aren’t allowed
in a search string and how to replace those characters with equivalent hexadecimal
codes. You saw how JavaScript can retrieve the contents of a get method request
and extract information from it for use in your JavaScript program. Finally, you
found out that all the lessons you’ve learned about validating data in a form and
working with a form’s controls are really just aspects of creating a valid post or
get request that will be sent when a form is submitted.

Session 28—Communicating with Server-Side Processes 357

Part VI—
Sunday Afternoon

Session 28

4804-2 Ch28.F 4/9/01 8:17 AM Page 357

QUIZ YOURSELF

1. What programming language can you use to write a CGI application?
(See “The Common Gateway Interface.”)

2. How is data formatted in a CGI-compliant search string? (See
“Understanding the CGI data format.”)

3. What do the escape() and unescape() functions do? (See “Escaping the
values in a search string” and “Retrieving data from a get method
request.”)

4. What purposes do the ampersand and equals characters serve in the CGI
protocol? (See “Understanding the CGI data format.”)

5. What is the difference between get and post? (See “The CGI methods.”)

Sunday Afternoon358

4804-2 Ch28.F 4/9/01 8:17 AM Page 358

Session Checklist

✔ Detecting and using plug-ins and helper applications
✔ Learning how JavaScript can enhance the <object> tag

One of the coolest things about today’s Web browsers is that they can display
a lot of different types of data. However, they don’t always do it alone. In
fact, when you get right down to it, most Web browsers can only display

text (HTML) and basic types of graphics. If you want to display a different type of
file or data, you’ll probably have to use a browser plug-in or helper application to
get the job done.

Understanding Plug-ins and Helpers

A browser “plug-in” is simply a program that works inside the Web browser and
allows it to display a type of data that it wouldn’t otherwise be able to show. For
example, Adobe distributes a free browser plug-in that allows you to view Portable
Document Format (PDF) files right in the Web browser without having to start up a
separate program.

S E S S I O N

Supporting Multimedia

29

4804-2 Ch29.F 4/9/01 8:17 AM Page 359

A helper application on the other hand, is a program that is separate from the
browser. If the browser doesn’t know how to handle a particular type of file, and
the browser doesn’t have a plug-in available that can handle the data in the file, it
will start up an appropriate helper application and tell it to open and display the
file.

The nicest thing about plug-ins and helper applications is that, if you structure
your HTML code properly, the browser will automatically load the correct plug-in
(or run the correct helper) and display your data automatically. While plug-ins and
helpers can dramatically increase the power of a Web browser, there is one tiny
catch: they have to be installed on the client in order to use them. This is where
JavaScript comes in. You can use JavaScript to determine whether or not a client’s
machine has the plug-in or helper application needed to properly view your partic-
ular type of data. If it does, you can dynamically generate the HTML needed to
load your data and display it. If it doesn’t, you can generate a different batch of
HTML that will tell the user that they need a particular plug-in and give them a
link to the place where they can go and get it. (This is pretty much exactly the
same as the way you handle things when you come across an older or non-
JavaScript-capable browser, as discussed in Session 26.) In order to use JavaScript
to detect a plug-in or helper application, you have to make use of two special
properties of the navigator object: the mimeTypes array and the plugins array.

For some reason Microsoft simply does not support either the
mimeTypes or plugins arrays in the current version of Internet
Explorer for Windows (This omission is all the more mystifying
when you consider that Internet Explorer for the Macintosh does
support these arrays!) With luck, this will be fixed in the near
future. Until then, what you are about to read applies only to
Netscape browsers and Internet Explorer for the Macintosh.

Using the mimeTypes Array

As you learned in Session 26, the navigator object contains all sorts of informa-
tion about the browser that the client is using to execute your JavaScript program.
In addition to this browser information, it also provides information about the
MIME types that are known to the client’s computer.

Note

Sunday Afternoon360

4804-2 Ch29.F 4/9/01 8:17 AM Page 360

What’s a MIME (type) good for?

Basically, MIME types were invented so that e-mail programs can look at a file
attached to an e-mail message and determine what type of data is in the file. If
the user tries to save an attached file, the e-mail program can use the MIME type
information to save the file with the correct file type information.

This is a very important capability to have when sending files from one type of
computer to another. Windows, for example, tracks file type by using a three-
character extension at the end of a file’s name. The Macintosh, on the other hand,
keeps file type information inside the file itself. So, if you e-mail a text file from a
Windows machine to a Macintosh, the e-mail client on the Macintosh will use the
MIME type specified for the file to make sure that the file is saved correctly (as a
text file) on the Macintosh.

Since MIME types are platform-independent, they quickly became the standard
for specifying file types on the Internet. When a Web browser requests a docu-
ment, one of the first bits of information that the Web server sends back to the
browser is the document’s MIME type. The browser looks at the MIME type informa-
tion and uses it to determine how to handle that document.

The first part of a MIME type is a string that specifies the generic type of data
that is in the file: for example, “text.” This is followed by a forward slash (/),
which is followed by a string that specifies the specific type of data that is in the
file: for example, “html.” So, the complete MIME type for an HTML document
would look like this: text/html. When the Web browser receives a document with
this MIME type, it knows that it’s dealing with an HTML file and reacts accordingly.

The Internet Assigned Numbers Authority (IANA) maintains the
list of currently defined MIME types. You can visit their site at
www.iana.org. Once you get there, look in the “Protocol
Numbers and Assignment Services” for the MIME types directory.
(IANA refers to these as “Media Types.”)

What’s in the mimeTypes array?

The mimeTypes array contains one mimeType object for each MIME type that is
defined on the client’s computer. Each mimeType object has four properties:

� description: This is a short description of the data that this MIME type
represents.

Tip

Session 29—Supporting Multimedia 361

Part VI—
Sunday Afternoon

Session 29

4804-2 Ch29.F 4/9/01 8:17 AM Page 361

� enabledPlugin: If there is an installed plug-in that handles this type of
data, this property will be a reference to that plug-in. (This is actually a
reference to an entry in the plugins array. See the upcoming discussion of
the plugins array for more information.) If this property is null, then it’s
very likely that no plug-in is available to handle this type of data.
However, this property is not always the best way to determine if a plug-in
is available for a certain type of data. To make that determination, you
need to check the plugins array.

� suffixes: This is a comma-separated list of the file name suffixes that
may be found on files of this MIME type. For example, the suffixes associ-
ated with the text/html MIME type are htm and html.

� type: This is the actual MIME type specification string (that is,
“text/html”).

Getting a list of MIME types

Since the navigator.mimeTypes property is just an array, it’s very simple to get a
list of the MIME types that are defined on the client’s machine. The following list-
ing shows a simple bit of JavaScript and HTML that will generate a nicely format-
ted table that displays all of the pertinent information from the mimeTypes array.
(This code can be found in the mimeTypes.htm file in the Session29 folder on your
CD-ROM.)

<table border=“1” width=“100%”>
<tr>

<th>MIME Type</th>
<th>Plug-in Available</th>
<th>Description</th>
<th align=‘left’>File Suffixes</th>

</tr>
<script language=“javascript”>
for (x = 0; x < navigator.mimeTypes.length; x++) {

document.write(“<tr>”);
document.write(“<td width=‘25%’>” +
navigator.mimeTypes[x].type + “ </td>”);
if (navigator.mimeTypes[x].enabledPlugin != null) {

document.write(“<td width=‘25%’>” +
navigator.mimeTypes[x].enabledPlugin.name +
“ </td>”);
}

Sunday Afternoon362

4804-2 Ch29.F 4/9/01 8:17 AM Page 362

else {
document.write(“<td width=‘25%’>Handled by Default
Plug-in or Helper Application</td>”);
}

document.write(“<td width=‘25%’>” +
navigator.mimeTypes[x].description + “ </td>”);
document.write(“<td width=‘25%’>” +
navigator.mimeTypes[x].suffixes + “ </td>”);
document.write(“</tr>”);
}

</script>
</table>

The code in this listing should look very familiar. It’s a simple for loop that
examines each entry in the mimeTypes array and displays what it finds in a table.
The only real trick here is the check to see if an enabledPlugin is available for a
MIME type. If one is, the program displays the name property of the plug-in. If not,
it displays a short message telling you that this MIME type will be handled either
by the Default Plug-in or a helper application. (The Default Plug-in is just what
the name implies. If the browser can’t find a plug-in specifically intended for a
given MIME type, the Default Plug-in will try to handle the data. If it can’t, the
browser will then search for a helper application to handle the data.)

If you load the mimeTypes.htm file and look at the output, you’ll
notice that there are some MIME types that look like this:
image/x-targa. The x- signifies that this MIME type is not yet a
standardized MIME type.

Understanding the plugins Array

Now that you have an understanding of MIME types and how that information is
available from JavaScript, I need to tell you about the plugins array. As you saw
in the last section, the entries in the plugins array are linked to the mimeTypes
array via the enabledPlugin property. Each entry in the plugins array is a
plugin object that describes one plug-in that is installed in the client’s browser.
A plugin object has four properties:

� description: This is a short description that tells you something about
the plug-in. This usually includes the name of the plug-in vendor and what
the plug-in is supposed to do.

Tip

Session 29—Supporting Multimedia 363

Part VI—
Sunday Afternoon

Session 29

4804-2 Ch29.F 4/9/01 8:17 AM Page 363

� filename: This is the name of the actual file that the plug-in was loaded
from. Depending on the platform, this property might contain the com-
plete path to the file or just the file name.

� length: This is an integer value that tells you how many different MIME
types this plug-in supports. (This is the length of the unnamed array of
MIME types that’s discussed below.)

� name: This is the name of the plug-in.
� unnamed array of MIME types: Finally, each plugin object has an array of

mimeType objects. (These have exactly the same structure as the mimeType
objects discussed earlier.) Each entry in this array represents one MIME
type that the plug-in can display or otherwise supports.

Accessing a plug-in’s array of MIME types

The key to working with a plugin object is the array of mimeType objects that’s
associated with the plug-in. If you need to know for sure what types of data a
plug-in supports, all you have to do is loop through this array and check the MIME
type specified in each entry. If the MIME type you need is listed, you can be sure
that the plug-in can handle that type of data.

Actually, accessing this list of MIME types isn’t too difficult. The biggest trick is
simply knowing that it’s there. Once you do, you can get at the information inside
simply by treating the plugins array as a multidimensional array. (Which, in fact,
it is!) The next listing shows you a simple program that will display all of the
plug-ins that are installed on the client’s machine, along with the MIME types that
each plug-in supports. (This code can also be found in the plugIns.htm file on your
CD-ROM.)

<table border=“1” width=“100%”>
<tr>

<th>Plug-in Name</th><th>Plug-in File Name</th>
<th>Mime Types Handled</th><th>Description</th>

</tr>
<script language=“javascript”>
for (x = 0; x < navigator.plugins.length; x++) {

document.write(“<tr>”);
document.write(“<td width=‘25%’>” +
navigator.plugins[x].name + “ </td>”);
document.write(“<td width=‘25%’>” +
navigator.plugins[x].filename + “ </td>”);

Sunday Afternoon364

4804-2 Ch29.F 4/9/01 8:17 AM Page 364

if (navigator.plugins[x].length > 0) {
document.write(“<td width=‘25%’>”);
for (y=0; y < navigator.plugins[x].length; y++) {

document.write(navigator.plugins[x][y].type +
“
”);
}

document.write(“</td>”);
}

else {
document.write(“<td width=‘25%’>No MIME Types</td>”);
}

document.write(“<td width=‘25%’>” +
navigator.plugins[x].description + “ </td>”);
document.write(“</tr>”);
}

</script>
</table>

Once again, there isn’t anything terribly difficult here. This code simply loops
through the plugins array and displays the contents of each entry in the array.
The only tricky bit is the code that displays the MIME types that a plug-in sup-
ports, and even that is fairly simple. The code simply checks the length property
of the current plugin object and then loops through each mimeType object that’s
in the unnamed array. For each entry in this array, the program outputs the actual
MIME type information along with a
 tag.

Detecting Plug-Ins and Supported MIME Types

Looking at the structure of the mimeType and plugin objects, you might already
have some idea of how to go about checking for the existence of a plug-in. There
are actually several different ways to do this, so I’ll go over them one at a time.

Checking for a plug-in by name

The easiest, and least reliable, way to check for a plug-in is to check for it by
name. You can do this because JavaScript uses the name property of each plugin
object as an index for each entry in the plugins array. For example, to check for
the existence of Apple Computer’s QuickTime plug-in, you can simply code an if
statement like this one:

Session 29—Supporting Multimedia 365

Part VI—
Sunday Afternoon

Session 29

4804-2 Ch29.F 4/9/01 8:17 AM Page 365

if (navigator.plugins[“QuickTime Plug-In”]) {
// embed QuickTime movie here
}

else {
// tell the user to go get the plug-in
}

The trouble with this is that this plug-in name isn’t consistent across computer
platforms or even from version to version of the plug-in! For example, the name
“QuickTime Plug-In” came from version 2.x of the plug-in that is installed on one
of my Windows NT computers. Turning to the Macintosh on my desk, I see that the
name of the QuickTime plug-in that’s installed there is “QuickTime Plug-in 5.0.”

A slightly better approach is to loop through the plugins array and check for a
telltale part of the plug-in’s name. A function that does this is shown below. (Note
that this function and several others can be found in the multimedia.js file on
your CD-ROM.)

function findPluginByPartialName(theName) {
var foundMatchAt = -1;
if (navigator.plugins.length > 0) {

for (x=0; x < navigator.plugins.length; x++) {
var plugName =

navigator.plugins[x].name.toUpperCase();
if (plugName.indexOf(theName.toUpperCase()) != -1) {

foundMatchAt = x;
break;
}

}
}

return foundMatchAt;
}

If this function finds a match for the partial name that was supplied, it will
return the index number into the plugins array where the plug-in was found. This
index number can then be used to examine the MIME types associated with the
plug-in. The drawback to this approach is that if two plug-ins have very similar
names, it’s entirely possible that this function might detect the wrong plug-in.
While you can check the MIME types to make sure you’ve got the right plug-in,
this is an extra step that really isn’t necessary.

Sunday Afternoon366

4804-2 Ch29.F 4/9/01 8:17 AM Page 366

Checking for a plug-in by MIME type

By far, the easiest and most reliable way to check for an appropriate plug-in is to
simply check each installed plug-in and see if any of them support the MIME type
of the data you want to display. As soon as you find a plug-in that supports your
data type, you can stop your search and let the browser take care of the rest.

This does mean that you might not end up with exactly the plug-in that you
want. For example, both QuickTime and Netscape’s old LiveAudio plug-in will
handle WAV sound files. This means that as long as one of these is installed, you
should be able to embed and play a WAV file in the client’s Web browser.

Of course, if you must have a feature that only one plug-in can provide then
you should make sure that the appropriate plug-in is available. But, if that plug-in
is not available, you should seriously consider making your data available through
an alternate plug-in if one is available. Having said all that, here’s a function will
check for a plug-in that supports a specific MIME type.

function findPluginByMIMEtype(theMIMEtype) {
var foundMatchAt = -1;
if (navigator.plugins.length > 0) {

var numTypes = 0;
for (x=0; x < navigator.plugins.length; x++) {

numTypes = navigator.plugins[x].length;
for (y=0; y < navigator.plugins[x].length; y++) {

if (navigator.plugins[x][y].type == theMIMEtype) {
foundMatchAt = x;
break;
}

}
if (foundMatchAt != -1) {

break;
}

}
}

return foundMatchAt;
}

Session 29—Supporting Multimedia 367

Part VI—
Sunday Afternoon

Session 29

4804-2 Ch29.F 4/9/01 8:17 AM Page 367

Detecting a helper application

If you can’t find a plug-in that supports the type of data you want to display, you
might want to check and see if a helper application is available. To do this, simply
loop through the mimeTypes array and see if the MIME type that describes your
data is defined. If it is, the client’s machine should have a helper application for
that type of data. The following is a function that will check the mimeTypes array
for a specified MIME type.

function findHelperApp(theMIMEtype) {
var foundMatchAt = -1;
if (navigator.mimeTypes.length > 0) {

for (x=0; x < navigator.mimeTypes.length; x++) {
if (navigator.mimeTypes[x].type == theMIMEtype) {

foundMatchAt = x;
break;
}

}
}

return foundMatchAt;
}

Using Multimedia Files

Now that you know how to detect plug-ins and helper applications, you need to
learn how to use this knowledge to actually present multimedia files to your users.
Before you look at the code to do this, let me go over the different situations you
have to be wary of.

� The absolute best-case scenario you can hope for is that the user will have
an appropriate plug-in installed. If so, you can simply generate the
JavaScript code or HTML tag (or tags) that will embed the data into your
Web page and let the browser take care of the rest.

� If no plug-in is available, the next best situation is that a helper applica-
tion exists. In this case, you have to trigger the launch of the helper appli-
cation somehow. You can do this by providing a link to your data file that
the user can click. If you want to skip the step of having the user click on
a link, you can automate this by assigning the Web address of your data

Sunday Afternoon368

4804-2 Ch29.F 4/9/01 8:17 AM Page 368

file to the location.href property (as seen in Sessions 27 and 28). Either
of these will force the browser to launch the helper application, which will
then load your data file and process it accordingly.

� Finally, if no plug-in is available, and no helper application is available,
you should either tell the user that they need to obtain the plug-in before
they can view your site or provide them with an alternate page to view.

As an example of this, take a look at the openPDF.htm file on your CD-ROM. It
shows you the code needed to embed an Adobe Acrobat (PDF) file in a Web page.
(The PDF file I’m embedding in this example is the ECMAScript documentation file
that’s also on your CD-ROM.) Looking at this code, you’ll notice that, once I’ve
determined that it’s safe to load the PDF file (either plugInAvail or helperAvail
is true), I simply assign the Web address of the PDF file to the location.href
property. The reason for this is because I’ve found that this is simply the best way
to invoke the Acrobat PDF viewer plug-in.

This is an important point: every plug-in is different. Sometimes the same
plug-in will behave differently from version to version or from platform to plat-
form. So, the moral is that you need to test extensively with the plug-in you want
to use. The techniques shown in this session are just intended to get you to the
point where you can tell if a plug-in is available. Actually making that plug-in
work will depend on the plug-in itself.

If neither the plug-in nor the helper application can be found, the code dis-
plays a simple message telling the user where to go to get the plug-in. It also gives
them the chance to click on a link that will try to load the PDF file, just in case
the information in the mimeTypes and plugins arrays was wrong.

Finally, the code checks to see if the current browser is Internet Explorer run-
ning on Windows (using a couple of the functions from the browserSnoop.js file in
Session 26). Remember, at the start of this session I made note of the fact that the
current versions of Internet Explorer for Windows (version 5.x as I write this) don’t
allow you to do anything with either the mimeTypes or plugins arrays. You can’t
even find out their lengths! So, if this code is loaded into Internet Explorer v5.x
on a Windows machine, it will fail to find either a plug-in or a helper application
and simply display the fail-safe text at the end.

However, given the fact that Adobe Acrobat ships with almost every Windows-
based computer, it’s pretty safe to assume that, if the browser is Internet Explorer
on Windows, that the Acrobat Reader plug-in is available. So, if that is the case, I
try again to load the PDF file into the browser. If the plug-in or helper is available,
the file will load into the browser and the fail-safe text will disappear. Otherwise,
the file simply won’t load and the fail-safe message will remain on screen.

Session 29—Supporting Multimedia 369

Part VI—
Sunday Afternoon

Session 29

4804-2 Ch29.F 4/9/01 8:17 AM Page 369

PDF files are actually a bit odd in that they can easily be displayed in the
browser simply by assigning their Web address to the location.href property.
Usually, once you’ve determined that a plug-in is available, you’ll want to generate
an appropriate <object> tag to insert your data into the Web page. (In the past,
other HTML tags (<embed> and <applet> in particular) have been used to embed
files into a Web page.The <object> tag will eventually replace these tags, so that’s
the tag I’m going to concentrate on here.)

The <object> tag has a whole host of attributes you can use, but its basic for-
mat is this:

<object data=“Web address of file” type=”MIME type of file”>
HTML to parse if file cannot be embedded
</object>

When the browser encounters an <object> tag, it basically takes the same steps as
the code to display a PDF file does. It tries to find a plug-in that supports the
specified MIME type. If it finds one, it lets that plug-in display the specified file.

However, if the browser can’t find an appropriate plug-in, it won’t try to find a
helper application for the file. Instead, it will simply parse the HTML that is
between the opening and closing <object></object> tags. This HTML can be just
about anything, including more <object> tags. While this does mean that you can
nest <object> tags to try and embed successively less-impressive types of data in
your document, you can’t use this technique to launch a helper application if one
exists.

Of course, you might think that you could just include a chunk of JavaScript
inside your <object></object> tags that would check for your helper application
and launch it if it exists. Unfortunately, it turns out that any JavaScript inside a
set of <object></object> tags will be executed regardless of whether or not the
object could be loaded.

To make matters worse, the <object> tag doesn’t support an onerror event
handler. So, you can’t write an event handler that will execute if your object does
not load (though the <object> tag does support many other event handlers). All
of this together means that you have to get a bit sneaky in order to check for a
helper application when using the <object> tag. The next listing, which tries to
display a QuickTime movie, will show you what I mean.

<script language=“javascript”>
function checkHelper() {

if (findHelperApp(“video/quicktime”)) {
location.href = “baby.mov”;
}

}

Sunday Afternoon370

4804-2 Ch29.F 4/9/01 8:17 AM Page 370

</script>
<object data=“baby.mov” type=“video/quicktime”
width=“100%” height=“100%”>

You don’t seem to have the QuickTime Plug-In. You can go

here to get it.

Or, you can try viewing the movie in a separate window by clicking
here.
</object>

In this example, I’ve defined an <object> tag that attempts to load and play a
QuickTime movie. If the QuickTime plug-in is available, the browser will automati-
cally load it and play the movie. If, however, the QuickTime plug-in is not avail-
able, the HTML code inside the <object></object> tags will be parsed and
displayed in the browser window.

For the most part, this HTML code is exactly what you’ve seen before. However,
the first line is something new: an tag. This tag displays a cute little picture
of a sad baby (which is appropriate given that the movie couldn’t load). In addi-
tion, this tag has an onload handler. When this sad baby’s picture finishes
loading, the function checkHelper() will be called. This function checks for the
existence of a helper application for QuickTime movies and, if it finds one, tells
the browser to load the movie immediately. Of course, a sad baby picture might not
be appropriate for your site, but you can always use an invisible picture (that is, 1
pixel by 1 pixel or a small square that is the same color as your background) to
generate the same effect. It’s sneaky, but it works!

REVIEW

In this session, you learned about browser plug-ins and helper applications and
how you can use JavaScript to work with them. You learned what MIME types are
and how they are used to specify file type information for files transmitted over
the Internet. You learned that the navigator.mimeTypes array contains a list of
all the different file types that the browser can display, either by itself or with
assistance from a helper application. You also learned that the navigator.
plugins array contains a list of all the installed browser plug-ins along with infor-
mation on which MIME types that a given plug-in can display. You saw how
JavaScript could be used to search these arrays to determine if a particular plug-in
is installed or if a helper application is available for a particular MIME type.

Session 29—Supporting Multimedia 371

Part VI—
Sunday Afternoon

Session 29

4804-2 Ch29.F 4/9/01 8:17 AM Page 371

Finally, you saw how JavaScript can check for the existence of a helper application
when an <object> tag fails to load a multimedia file because a plug-in can’t be
found.

QUIZ YOURSELF

1. What is the difference between a plug-in and a helper application? (See
“Understanding Plug-ins and Helpers.”)

2. What is a MIME type? (See “Using the mimeTypes Array”)

3. What does the first half of a MIME type tell you? What does the second
half of a MIME type tell you? (See “What’s a MIME (type) good for?”)

4. What is the most reliable way to check and see if a plug-in exists to han-
dle a particular MIME type? (See “Checking for a plug-in by MIME type.”)

5. How can you use JavaScript and an tag to determine if an object
has failed to load? (See “Using Multimedia Files.”)

Sunday Afternoon372

4804-2 Ch29.F 4/9/01 8:17 AM Page 372

Session Checklist

✔ Embedding a Java applet in an HTML document
✔ Learning how JavaScript can communicate with a Java applet

One of the more useful types of objects you can embed in a Web page is a
Java applet. Unlike most other types of embeddable objects, Java applets
are actually miniapplications. This means that they can do all of the things

that a JavaScript program can do, and more! Best of all, depending on which
browser the client is using, you can actually control a Java applet using JavaScript.

Everything I’m going to discuss in this chapter should work in
every one of the major browsers. As I write this however, the
only browsers that support JavaScript to Java communication are
Internet Explorer 5.x for the PC and Netscape Navigator 4.x.
Internet Explorer for the Macintosh doesn’t support this type of
thing at all. And while Netscape 6 is supposed to support this
feature, it seems to be missing from the first release. So, look at
this final session as a promise of things to come, or something
nice you can do for those users with these browsers.

Note

S E S S I O N

Working with Java Applets

30

4804-2 Ch30.F 4/9/01 8:17 AM Page 373

Adding a Java Applet to Your HTML Document

Most Java development environments will, if you ask them to, automatically
generate an HTML document that shows you how to embed your Java applet into
an HTML document. However, if you are using Sun’s JDK tools to build your Java
applet from scratch, you’ll need to know how to do this yourself.

The <applet> tag

The <applet> tag is currently the easiest way to add a Java applet to an HTML
document. (Note that in the future, the <object> tag will replace the <applet>
tag. As of now however, the <object> tag seems to have real trouble when it
comes to handling applets.) While the <applet> tag can be fairly complex, you can
almost always get by with just a few simple attributes. Usually, an applet tag will
look something like this:

<applet name=“appletName” code=“applet.class”
codebase=“folderToLookIn”>
<param name=“param1Name” value=“value for first parameter” />
<param name=“param2Name” value=“value for second parameter” />
HTML to include if browser does not support applets
</applet>

As with every other tag I’ve shown you, the name= attribute specifies the name
that JavaScript will use to communicate with the applet. The code= attribute is
the name of the Java .class file that will actually be loaded and executed by the
browser. (A .class file is the Java equivalent of an .exe file in the Windows environ-
ment.) The codebase= attribute tells the browser which folder to look in to find
the class file that was specified in the code= attribute. (If the class file is in the
same folder as the HTML document the <applet> tag is in, you can omit this
attribute.)

If you want to pass parameters to your applet, you can specify a series of
<param> tags. Each of these tags will define one parameter that will be passed
directly to the applet after it is loaded.

Finally, just in case the client’s browser doesn’t support Java applets, you can
also specify a block of HTML that should be displayed. Usually, this will be a sim-
ple message telling the user that they need to use a Java-capable browser to view
the applet, but it can be just about anything you want. (Oddly, JavaScript code
blocks don’t seem to work here. But, as you’ll see shortly, you can use the
tag trick from Session 29 to trigger a JavaScript function if you need to.)

Sunday Afternoon374

4804-2 Ch30.F 4/9/01 8:17 AM Page 374

Communicating with a Java Applet

Once you have a Java applet embedded in your HTML document, your JavaScript
code can actually reference that applet and access its public methods and proper-
ties. (“Public” is the Java equivalent of “global” in JavaScript. You can’t access
anything in a Java applet unless it was defined as public in the applet.)

Basically, the way you do this is just as simple as you might hope it would be.
As you’ll remember from Session 9, there is an array called applets inside the
document object. As you might expect, this is simply an array of all the Java
applets that are defined in the currently loaded HTML document. This means that
you can access your applets either by name or via the applets array. For example,
assuming the first applet in my HTML document is named “myApplet” and it has a
public method named getInfo(), I could call that method with either of the fol-
lowing JavaScript statements.

document.applets[0].getInfo();
document.myApplet.getInfo();

That’s really all there is to it!

You might be thinking that it would be nice if the code in a Java
applet could call the JavaScript code in a Web page. Well, yes, it
would be! Unfortunately, the only browsers that support this are
older versions of Netscape Navigator. Netscape 6 was supposed
to support it, but that feature also seems to be broken in the
first release.

Working with a banner applet

So, in order to pull all this together, let me show you a complete example. First,
I need an applet to work with. When you download the Java Developer’s Kit (JDK)
from the Java site at http://java.sun.com, you’ll find that amongst the stuff
you get are about two dozen sample programs. So, I decided to take one of those
and create a nifty banner for the Baby-Palooza Web site. (Not to worry, the folks at
Sun generously allow you to copy, change, and redistribute the sample programs,
just as long as you give them proper credit. Like, for example, this fine note.) The
applet I started with is called “Nervous Text.” This applet takes a string and ani-
mates it on the screen as if it had just finished drinking about ten pots of coffee.
(In other words, the letters jump around a bit.) The basic <applet> tag for this
applet looks like this:

Tip

Session 30—Working with Java Applets 375

Part VI—
Sunday Afternoon

Session 30

4804-2 Ch30.F 4/9/01 8:17 AM Page 375

<applet name=“banner” code=“NervousText.class”
width=“100%” height=“50”>
<param name=“text” value=“Welcome to Baby-Palooza!” />

</applet>

The text parameter is simply some string that you want the applet to animate.
While this is nice and simple, this applet doesn’t allow for any sort of changes
after the applet is loaded. In other words, once it’s loaded, it only animates the
string that you initially pass it.

What I wanted was something a bit more flexible. Specifically, I wanted to be
able to change the text that was displayed along with the background color of the
applet and the color of the text in the applet. So, I had to make a few minor
changes to the applet to allow for these features. Now, this isn’t a book on Java
programming, so I’m not going to go into great detail about these changes. (If you
want to see all of the changes, the final source code for the changed applet can be
found in the NervousText.java file in the Session30 folder on your CD-ROM.)
However, I will go over the change that was needed to reset the text that’s dis-
played by the applet.

Using a public Java method

When the Nervous Text applet is first invoked, it reads the text parameter that
was passed to it from the HTML file and stores it in a variable named banner. This
means that, in order to change the text that’s displayed by the applet, the value of
the banner variable has to be changed. So, I added a simple method to do just
that:

public void setBanner(String newBanner) {
banner = newBanner;
resetBanner();
}

As you can see, Java’s syntax is remarkably similar to that of JavaScript. The
important thing to notice here, however, is that this method is defined as public.
This means that anyone can call it, even the JavaScript interpreter that’s running
inside the Web browser. So, assuming that my <applet> tag is defined as shown
earlier, I can call this method using a statement like this:

document.banner.setBanner(“Be sure to stock up on baby-wipes!”);

and the dancing text in my banner will be changed to the string that I passed it.

Sunday Afternoon376

4804-2 Ch30.F 4/9/01 8:17 AM Page 376

As I said, I want to be able to change not only the text in my banner, but also
the background color and the color of the text. This required the creation of sev-
eral more public methods in the Java applet. But, once they were created, they
could be accessed in just the same way.

The nervousBaby.htm file

Open the file nervousBaby.htm in both your HTML editor and web browser. Play
with the Applet a bit in the web browser and then follow along in your HTML
editor as I discuss what’s going on in the paragraphs that follow.

First of all, the <applet> tag now includes two new parameters: bgColor and
textColor. These are RGB color values (similar to the ones you learned about in
Session 9) that tell the browser what colors to use for the applet’s background and
text color, respectively. (Note that these parameters should only include the raw
color values, without any hexadecimal notation characters — that’s to say, you can
pass FFFFFF but not 0xFFFFFF.)

There is also a block of HTML text inside the <applet> tag that will be dis-
played if the browser does not support applets. Notice that I’m using the tag
trick from Session 29 to trigger a JavaScript function if the applet does not load.
The function that’s triggered then checks to see if the “application/java” MIME
type is defined in the client’s browser. If it is, it’s a pretty good bet that the user
has simply turned off Java support in her browser. In that case, the function
displays a short message telling the user that if she wants to see the applet, she
needs to turn Java support back on.

Next, an onload handler attempts to retrieve the applet’s default values and
display them in the form at the bottom of the page. You’ll notice that this handler
makes use of another function, checkAppletStatus(), that tells it if the applet is
loaded or not. Applets can be very large and complex, so it’s a good idea to make
sure that they are loaded before you try to communicate with them. The process
here is exactly the same as you saw in Sessions 23 and 24. The main difference is
that I’ve added a method (getLoadStatus()) to this applet that will actually
return a true when the applet is up and running. (See the NervousText.java file
for the details on this method.)

Once it’s been determined that the applet is ready to go, the onload handler
retrieves the banner text, background color, and text color from the applet and
places those values in the form for the user to see.

Finally, there’s the form at the bottom of the page. This form contains several
controls that allow the user to see the values used by the applet and to change
those values. Changing a value is accomplished with a simple onclick handler
that calls the appropriate method in the applet.

Session 30—Working with Java Applets 377

Part VI—
Sunday Afternoon

Session 30

4804-2 Ch30.F 4/9/01 8:17 AM Page 377

For example, to change the banner text, the user simply types the new text into
the form and then clicks the Set Banner Text button. The onclick handler for this
button extracts the text from the text box and passes it to the applet’s
setBanner() method.

REVIEW

In this session, you learned that controlling a Java applet with JavaScript is really
quite simple. The only real requirement is that the Java methods and properties
you want to access must be declared as public in the Java applet. Given that, and
the proper Web browser, JavaScript can access any public method or property in
any applet that is loaded into the HTML document.

QUIZ YOURSELF

1. Where are applets located in the Browser Object Model? (See
“Communicating with a Java Applet.”)

2. What do the <param> tags in the <applet> tag represent? (See “The
<applet> tag”)

3. In order for JavaScript to access a Java method or property, how must
that method or property be declared in the Java applet? (See
“Communicating with a Java Applet.”)

4. How can you tell if an applet is loaded? (See “The nervousBaby.htm file”)

5. How can you tell if an applet failed to load? (See “The nervousBaby.htm
file”)

Sunday Afternoon378

4804-2 Ch30.F 4/9/01 8:17 AM Page 378

1. What statement would you use to create a Date object that contained the
date and time January 15, 2001, 9:47:25 a.m.?

2. How can your JavaScript program force the Web browser to reload an
HTML document, even if that document is already in the browser’s cache?

3. Using the techniques you learned in Session 19, extend the Date class to
include two new methods: getDayName() and getMonthName(). The first
of these should return the name of the day of the week that’s held in the
Date object. The second should return the name of the month that’s held
in the Date object.

4. As noted in Session 25, the Math object does not have a method to round
a number to a specified number of digits. Create a new function named
roundTo() that will let you round a value to a specified number of digits.
This function should take two parameters: a number to round and the
number of digits to round to. (Hint: The twoDecimals() function from
Session 25 is a good starting point.)

5. How many history objects are there in a frames-based Web site?

6. What is the purpose of the location.replace() method?

7. What is the default CGI method that will be used if a <form> tag does not
specify a method= attribute?

8. How can a JavaScript program in an HTML document extract the data
from a post method request?

9. If one HTML file sends data to another via a get method request, where
will a JavaScript program in the target HTML file be able to find this
data?

P A R T

#
P A R T

Sunday Afternoon

VI

4804-2 PartReview6.F 4/9/01 8:17 AM Page 379

10. Why must you escape the data that you want to send through the CGI?

11. If you need to transmit a large amount of data from an HTML document
to a server-side CGI application, which CGI method should you use?

12. What does the enabledPlugin property of a mimeType object tell you?

13. What does the length property of a plugin object tell you?

14. What does the suffixes property of a mimeType object contain?

15. What is the Default Plug-in?

16. When looking at a MIME type, what do the combined characters
x- signify?

17. What is (roughly) the Java equivalent of a global function or variable?

18. What does the code= attribute of an <applet> tag represent?

19. Assuming that an applet named shoppingCart contains a public method
named printCart() what JavaScript statement would you use to call
this method?

20. If this same applet were the fourth applet in your HTML document, how
could you call this method via the applets array?

Part VI—Sunday Afternoon Part Review380

4804-2 PartReview6.F 4/9/01 8:17 AM Page 380

Friday Evening Review Answers

1. You can place these tags pretty much wherever you want in your HTML
file. By convention, however, they usually end up at the start of an HTML
file between the <head></head> tags.

2. A function is really just a code block with a name. You can pass it para-
meters to process and it can return a result.

3. There are only two Boolean values: true and false.

4. A code block is either a single line of JavaScript code or any number of
lines of JavaScript code enclosed in curly braces ({}). As far as the
JavaScript interpreter is concerned a code block is the logical equivalent
of a single line of code.

5. JavaScript variable and function names must start with a dollar sign,
underscore, or alphabetic character. After that, they can be any combina-
tion of letters, numbers, the underscore, or the dollar sign.

6. Two forward slashes (//) anywhere on a line will mark the remainder of
that line as a comment. For multiple line comments, include your com-
ments between /* and */.

7. This is sort of a trick question. JavaScript code is just plain ASCII text, so
you don’t have to store it in any special file format.

APPENDIX

Answers to Part Reviews

A

4804-2 AppA.F 4/9/01 8:18 AM Page 381

Appendix A382

8. This attribute tells the Web browser which scripting language the script is
written in. If you don’t specify a value for the language= attribute,
JavaScript is assumed.

9. Simply use the return keyword followed by the value or expression you
want to return.

10. Answers will vary. One possible solution is on your CD-ROM.

11. Answers will vary. One possible solution is on your CD-ROM.

12. This is another trick question. A function can have as few or as many
parameters as you want. Don’t forget however, even a function with no
parameters must include a set of parentheses when you define the func-
tion and when you call the function.

13. This attribute lets you specify the location of an external file containing
JavaScript source code. This code will be loaded and made available to the
JavaScript in your HTML file.

14. The first expression sets up the initial state of your loop counter variable.
The second expression specifies a test that will be made each time
through the loop. If the test evaluates to false, execution of the loop
will stop. The third expression is executed at the end of each trip
through the loop and modifies your counter variable so that the loop will
eventually terminate.

15. Global variables are available to any part of your JavaScript program.
Local variables are only available in the function where they are defined.
Be sure to use the var keyword to define local variables.

16. The value in x will be 29. The value in y will be 100. The key to this
question is that there is only one equal sign in the conditional expres-
sion of the second statement. Because of this, y will be assigned a
value of 100, the condition will evaluate to true (because 100 is not 0
[remember, if its not 0, it’s the same as a Boolean true]) and so x will be
assigned a value of 29.

17. JavaScript variables are loosely typed, so you can assign them any type
of data.

18. Answers will vary. One possible solution is on your CD-ROM.

19. Answers will vary. One possible solution is on your CD-ROM.

20. Answers will vary. One possible solution is on your CD-ROM.

4804-2 AppA.F 4/9/01 8:18 AM Page 382

Answers to Part Reviews 383

Saturday Morning Review Answers

1. The empty string is a string that contains no character data and has
a length of zero. However, it is still a string as far as JavaScript is
concerned.

2. The contents of myVar will be a string object that has one character in it:
9. Why? Well, when you concatenate the number 9 with the empty string,
the JavaScript interpreter will convert the 9 into a string and then con-
catenate that string with the empty string. The resulting string is 9.

3. Answers will vary. One possible solution is on your CD-ROM.

4. Answers will vary. One possible solution is on your CD-ROM.

5. The Browser Object Model is a collection of JavaScript objects that repre-
sent the various parts of the Web browser and the HTML document that is
loaded into it. The properties and methods of these objects allow your
JavaScript program to access and manipulate the Web browser and the
HTML document that these objects represent.

6. Answers will vary. One possible solution is on your CD-ROM.

7. In JavaScript, a multidimensional array is merely an array that contains
other arrays. So, you would first create your subarrays, and then assign
each one to the elements of the main array. The main array would then
be considered multidimensional.

8. Answers will vary. One possible solution is on your CD-ROM.

9. To move through the elements of an array with named slots, use the
for . . . in statement as described in the “Using named array ele-
ments” section of Session 6.

10. The document object is a property of the window object. While the
window object represents a browser window or frame, the document object
represents the actual HTML document that is loaded into that window or
frame.

11. The alert() method is used to display simple messages in a pop-up
window. The user can dismiss an alert window by clicking the supplied OK
button.

12. A Link object represents an individual set of <a href=”some Web
address”> tags. Link objects are kept in the links array property of
the document object.

4804-2 AppA.F 4/9/01 8:18 AM Page 383

Appendix A384

13. The document.open() method opens the document object so that
you can write new text into it.. You then use document.write() or
document.writeln() calls to send text to the document object. When
you have finished writing your text, you call document.close() to close
the document and tell the browser to display the text you’ve written.

14. Answers will vary. One possible solution is on your CD-ROM.

15. The document.write() method writes only the text you specify. The
document.writeln() method follows the text you specify with a new
line character.

16. Answers will vary. One possible solution is on your CD-ROM.

17. The onclick event represents a mouse click inside an element.

18. When a window or form element is selected and will receive keystrokes, it
is said to have the focus. An onfocus event is fired as soon as a window
or form element becomes the focus. When a window or form control loses
the focus, it has become blurred. An onblur event fires whenever a win-
dow or form element loses the focus.

19. Answers will vary. One possible solution is on your CD-ROM.

20. When used with an tag, an onload event tells you that the image
has actually finished loading into the Web browser.

Saturday Afternoon Review Answers

1. Answers will vary. One possible solution is on your CD-ROM.

2. The elements array holds all of the JavaScript objects that correspond to
the controls defined in the form.

3. Calling the reset() method of a form is the same as clicking on that
form’s Reset button. It will fire an onreset event for the form and then
reset the values in the form to their defaults.

4. The JavaScript document.forms[2] represents the JavaScript Form object
that corresponds to the third form defined in the HTML document.
(Remember, all JavaScript arrays begin numbering with zero, not one.)

5. You can check or uncheck a check box by assigning a true or false to
its checked property.

4804-2 AppA.F 4/9/01 8:18 AM Page 384

Answers to Part Reviews 385

6. Each entry in the options array represents a single menu item in the
select list.

7. If you pluck the value from a password field, you’ll actually get back the
raw text of the password. It will not be encrypted or otherwise protected
in any way.

8. The Submit and Reset buttons for a form have very specific purposes.
They either submit or reset a form. You can modify their behavior
slightly by writing appropriate onsubmit and onreset handlers, but you
really can’t change them much. A generic button, on the other hand, can
do just about anything you want. (Including submitting or resetting a
form!) All you have to do is write an appropriate onclick handler.

9. The src property of an Image object holds the Web address of the graphic
file that is loaded into the Image object.

10. For tags, the onload event fires when the graphic file specified in
the src property has been successfully loaded by the Web browser.

11. The Web browser will fire an onerror event for an tag if it cannot
load the graphic file specified by the src property.

12. A JavaScript-based rollover works by taking advantage of two events:
onmouseover and onmouseout. When the onmouseover event fires for
your tag, you switch the src property of the image to point to a
new graphic that represents the “on” state of the rollover. When the
onmouseout event fires, you switch the src property of the image to
point back to the original image.

13. The parseInt() function takes a string and converts it into an actual
numeric value.

14. Validating your data twice is just another example of good defensive
programming.

15. People make mistakes. What? You need another reason?

16. Answers will vary, but the basic concept here is that if the data that
comes from your form isn’t valid, everything that is based on that data
will be flawed. This can mean unfilled orders, bad demographics, and so
on. A little up-front data validation can save you a world of heartache
later on.

17. A cookie can hold about 4KB of data. This includes the name, the equal
sign, and the value that follows it.

18. The onunload and onload events are ideal times to save and load your
cookie values.

4804-2 AppA.F 4/9/01 8:18 AM Page 385

Appendix A386

19. A cookie’s expiration date tells the Web browser when that cookie should
be deleted.

20. Answers will vary. One possible solution is on your CD-ROM.

Saturday Evening Review Answers

1. A class is a group of objects, all of which were created by the same con-
structor function. An instance is an individual object from a class.

2. When used inside a constructor function, the this keyword refers to the
object that is being created by the constructor function.

3. First decide what type of data your custom class will represent. Second,
decide what properties and methods should be included in the class.
Finally, write and test the code to implement the class. This includes the
constructor function and all of the implementation functions for the
methods of the class.

4. You can store any type of JavaScript data in the properties of your objects.

5. A constructor function is still a function, so you can pass as few or as
many parameters as you want.

6. Actually, the parameters for methods cannot be shown inside a construc-
tor function. You should only list a method’s parameters in the imple-
mentation function for the method.

7. Answers will vary, but a method is a function that is tied to a class of
objects.

8. A method is a function that belongs to a class of objects. An implementa-
tion function is the code that actually carries out the tasks of a method.

9. When used inside a method, the this keyword refers to the object for
which the method was called. For example, in the statement
myString.toUpperCase() the value of this inside the toUpperCase()
method would be the myString object.

10. This statement is defining a method for the object to be created by the
constructor function. The method name is action and its implementation
function is named doAction.

11. You can enhance HTML controls by creating custom JavaScript objects
that wrap around standard Browser Object Model objects for those con-
trols. These custom objects can contain new properties and methods that
extend the capabilities of the HTML controls.

4804-2 AppA.F 4/9/01 8:18 AM Page 386

Answers to Part Reviews 387

12. Simply store the original object in a property inside the wrapper object.

13. When you change the prototype for an object, every object based on that
prototype gains the new property or method. This even includes objects
that already exist.

14. String.prototype.languageDirection = “leftToRight”;

15. The Object class is a class defined inside the JavaScript interpreter. All
the other classes that are defined in the JavaScript language (String,
Array, and so forth), and all of the classes you define, are based upon it.

16. Statements passed to the eval() function are evaluated and executed
immediately.

17. This statement will generate an error. (There is no documint object.)

18. By keeping an object’s JavaScript variable name inside the object, you
can easily create self-referential code from that object. This is invaluable
when dynamically creating JavaScript and HTML.

19. The first statement is the one that will succeed. This is because it specifi-
cally names the object and method to be called when the timer expires.
The second statement will fail because, when the timer expires, the value
of this will be undefined or completely different than it was when the
setTimeout() statement was called.

20. Answers will vary. One possible solution is on your CD-ROM.

Sunday Morning Review Answers

1. A style sheet is a list of rules that tells the Web browser how to style the
various elements in your HTML document.

2. The tag is used to mark a chunk of text. You can then
attach event handlers and/or styles to that chunk of text without any of
the visual side effects that would come from using a different HTML tag.

3. By using an external style sheet, you can place all of your style defini-
tions in one place. Every HTML page in your Web site can then use these
definitions by linking in the external style sheet. Then, if you ever need
to change a style that’s used in your Web site, you simply change the
external style sheet and all of your HTML pages will automatically reflect
the change.

4804-2 AppA.F 4/9/01 8:18 AM Page 387

Appendix A388

4. You use the document.getElementById() method to obtain an element
object. You pass this method the ID of the element you want to retrieve.

5. The default unit of measurement for all of the style properties is pixels (px).

6. The innerHTML property represents the actual HTML code (tags and text)
that is inside an element. If you change an element’s innerHTML prop-
erty, the new value will immediately appear in the browser window.

7. This property lets you tell the browser how you want an element posi-
tioned on the page (as opposed to where). A position value of absolute
tells the browser that you will be providing the exact coordinates (via the
top, bottom, left, and right properties) of where the element should
be positioned.

8. The top object represents the actual browser window that is visible on
screen. It will contain references to all of the frames that are loaded into
the browser, no matter how deeply they are nested.

9. The parent object represents the frameset document that loaded the
frame.

10. Simply compare the document’s self object with its parent object. If
they are the same, the document was loaded into a window by itself and
not into a frameset.

11. The window will have no toolbars at all. Remember, if you specify even
one feature in the featuresList parameter, the features you don’t spec-
ify will all be turned off. So, if you only specify a height and width, all of
the other window features will be turned off, which means no toolbars
will appear in the new window.

12. Simply call the window.close() method for the window you want to
close. If your window is in a variable named myWindow, you would code:
myWindow.close();

13. Define a dummy form at the end of the HTML document that will be
loaded into your new window. Then, check the length of the forms array
in the new window. When the length of this array has become equal to
the number of forms in your new window, you know that everything in
the HTML document has been loaded and is ready for use.

14. If a window was opened by another window, its opener property will
contain a reference to the window that opened it.

15. The parseFloat() function takes a string that contains a floating-point
number and turns it into an actual numeric value.

4804-2 AppA.F 4/9/01 8:18 AM Page 388

Answers to Part Reviews 389

16. This is a bit of a trick question. As I said in Session 25, as far as
JavaScript is concerned, the floating-point numbers it’s displaying are
correct. Indeed, they are correct to the precision that is allowed by the
way JavaScript represents floating-point numbers internally.
Unfortunately, this isn’t what we humans expect to see, so in order to
display these values for human-consumption, they need to be rounded
off using a specially written function.

17. Use a set of style rules to set the border style of the text box to none and
the appearance of the cursor (when it’s over the text box) to default.
The text box should then appear to be just another area of text in the
browser window.

18. The string “MSIE” signifies that the number that follows is the Internet
Explorer version number for this Web browser.

19. You specify the version of JavaScript that is required inside the
language= attribute of the <script> tag. Like this:

<script language=”javascript1.1”>

20. Simply enclose your JavaScript code inside a set of HTML comment mark-
ers. Like this:

<script language=”javascript”>

<!--

document.write(“Hello World!”);

// -->

</script>

Sunday Afternoon Review Answers

1. var myDate = new Date(2001, 0, 15, 9, 47, 25);

2. By calling the location.reload() method and passing it a parameter of
true, you can force the Web browser to reload the HTML document that is
currently loaded in the Web browser.

3. Answers will vary. One possible solution is on your CD-ROM.

4. Answers will vary. One possible solution is on your CD-ROM.

4804-2 AppA.F 4/9/01 8:18 AM Page 389

Appendix A390

5. The answer to this question depends on how many frames there are.
Basically, there will be one history object for each frame, plus one his-
tory object for the top object. Each frame’s history object will hold a
list of the pages that have been displayed in that frame. The top object’s
history object will hold a list of all pages displayed in all frames.

6. The location.replace() method allows you load a new HTML document
and have its Web address replace the Web address of the current docu-
ment in the history list. This allows you to remove interim documents
from the history list for a window or frame.

7. If a <form> tag doesn’t specify a method= attribute, the get method will
be used by default.

8. This is a trick question. HTML documents don’t receive data from post
method requests.

9. The data sent will be found in the search property of the location object.

10. Certain characters (spaces, ampersands, equal signs, etc.) act as delim-
iters and/or stops in the CGI protocol. For these characters to pass safely
through the CGI, you must replace these characters with their hexadeci-
mal code equivalents.

11. To transmit a large amount of data, you should always use the post
method. This method transmits the data as a single large chunk and
makes it available to the CGI application as an input stream. The get
method on the other hand, transmits the data as a part of the Web
address of the CGI application. This makes it subject to any limitations
that Web browsers or Web servers might put on the length of a Web
address.

12. The enabledPlugin property of a mimeType object tells you if a plug-in
that can handle this MIME type is installed. If there is, this property will
contain a reference to the appropriate plugin object. If not, this property
will be null.

13. The length property of a plugin object tells you how many MIME types
the plug-in supports. An unnamed array of mimeType objects that repre-
sent these MIME types is a part of every plugin object.

14. The suffix property of a mimeType object holds a comma-separated list of
the various file name suffixes that are associated with files of this type.

15. The Default Plug-in is a browser plug-in that attempts to handle any
MIME type that no other plug-in can handle. If the Default Plug-in can’t
handle a MIME type, the browser will then attempt to locate and execute
a helper application for that MIME type.

4804-2 AppA.F 4/9/01 8:18 AM Page 390

Answers to Part Reviews 391

16. The characters x- in a MIME type mean that the MIME type is not yet a
standard MIME type.

17. In Java, things that you want to be globally accessible must be declared
as public. This is roughly (very roughly) equivalent to the global concept
in JavaScript.

18. The code= attribute of the <applet> tag specifies the Java.class file that
should be loaded by the browser.

19. You could call this method with the following statement:

document.shoppingCart.printCart();

20. document.applets[3].printCart();

4804-2 AppA.F 4/9/01 8:18 AM Page 391

This appendix provides you with information on the contents of the CD-ROM
that accompanies this book.

There are seven programs included on this CD:

� Acrobat Reader 4.0
� ECMAScript Standard Documentation
� BBEdit Lite and BBEdit (for Macintosh users)
� A link to Netscape Navigator (for Macintosh and Windows)
� Internet Explorer (for Macintosh and Windows)
� Self-assessment test

Also included are source code examples from the book, a PDF file containing the
latest version of the ECMAScript standard, and an electronic, searchable version of
the book that can be viewed with Adobe Acrobat Reader.

System Requirements

Make sure that your computer meets the minimum system requirements listed in
this section. If your computer doesn’t match up to most of these requirements,
you may have a problem using the contents of the CD.

For Microsoft Windows 9x, Windows ME, Windows NT, or Windows 2000:

� PC with a Pentium processor running at 120 MHz or faster
� At least 64 MB of RAM

APPENDIX

What’s on the CD-ROM

B

4804-2 AppB.F 4/9/01 8:18 AM Page 393

Appendix B394

� Ethernet network interface card (NIC) or modem with a speed of at least
28,800 bps

� A CD-ROM drive — double-speed (2x) or faster

For Macintosh:

� An iMac, iBook, or any other G3 processor-based Macintosh
� At least 64MB of RAM
� A CD-ROM drive — double-speed (2x) or faster

You will need at least 150 MB of hard drive space to install all the software from
this CD.

Using the CD with Microsoft Windows

To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

2. Open the My Computer icon on your desktop.

3. Right-click on your CD-ROM drive icon and pick the Explore item.

4. At this point, you can install any of the software you wish or you can
copy the sample source code files from the CD-ROM to your local hard
drive.

5. If you choose to install the third-party software, carefully follow the
instructions that you see on the screen after you begin the installation
process.

Using the CD with the Mac OS

To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

2. Double-click on the CD-ROM icon that appears on the desktop.

3. At this point, you can install any of the software you wish or you can copy
the sample source code files from the CD-ROM to your local hard drive.

4. If you choose to install the third-party software, carefully follow the
instructions that you see on the screen after you begin the installation
process.

4804-2 AppB.F 4/9/01 8:18 AM Page 394

What’s on the CD-ROM 395

What’s on the CD

The CD-ROM contains source code examples, applications, and an electronic version
of the book. Following is a summary of the contents of the CD-ROM arranged by
category.

Source code

The source code files for each session are each in a separate folder. These folders are
named “Sessionxx”, where xx is the session number. Each folder’s contents have
been designed to stand alone, so you can just use your browser to open the files
directly from any of the session folders. There is also an images folder that contains
all of the images that are used by the code in all of the session folders. If you copy
the session folders to your hard drive, be sure to copy the images folder as well.

Some of the questions in the part reviews require you to create JavaScript pro-
grams. The answers to these questions can be found in one of the “PartReviewxx”
folders on the CD-ROM. (Where xx is the Part Review number.)

Applications

The following applications are on the CD-ROM.

Browsers

A browser is the client software you use to access files on the Internet or to read
local HTML files.

� Internet Explorer: A Web browser for Windows 9x or later and the
Macintosh. Freeware. For more information: www.microsoft.com

� Netscape Navigator: A Web browser for Windows 9x or later and the
Macintosh. Freeware. For more information: www.netscape.com

Editors

If you don’t already have a good HTML editor, there are a couple of great ones on
the CD-ROM.

� BBEdit Lite & BBEdit Demo: This is arguably the best text editor for the
Macintosh. Two versions are provided: BBEdit Lite is a freeware editor with all
the basic features you need. The BBEdit Demo is a restricted-use demonstra-
tion of the full BBEdit program. For more information: web.barebones.com

4804-2 AppB.F 4/9/01 8:18 AM Page 395

Appendix B396

Electronic version of The ECMAScript Standard

The complete text of the ECMAScript standard is on the CD-ROM in Adobe’s
Portable Document Format (PDF), readable with the Adobe Acrobat Reader (also
included). For more information on Adobe Acrobat Reader, go to www.adobe.com.

Electronic version of JavaScript Weekend Crash Course

The complete (and searchable) text of this book is on the CD-ROM in Adobe’s
Portable Document Format (PDF), readable with the Adobe Acrobat Reader (also
included).

Self-assessment test

The self-assessment test software helps you evaluate how much you’ve learned
from this Weekend Crash Course. It will also help you identify which sessions
you’ve perfected, and which you may need to revisit.

Troubleshooting

If you have difficulty installing or using the CD-ROM programs, try the following
solutions:

� Turn off any antivirus software that you may have running. Installers
sometimes mimic virus activity and can make your computer incorrectly
believe that it is being infected by a virus. (Be sure to turn the antivirus
software back on later.)

� Close all running programs. The more programs you’re running, the less
memory is available to other programs. Installers also typically update files
and programs; if you keep other programs running, installation may not
work properly.

If you still have trouble with the CD, please call the Hungry Minds Customer
Service phone number: (800) 762-2974. Outside the United States, call (317)
572-3993. Hungry Minds will provide technical support only for installation and
other general quality control items; for technical support on the applications
themselves, consult the program’s vendor or author.

4804-2 AppB.F 4/9/01 8:18 AM Page 396

�
<a> tags, 259
:hover pseudoclass for, 304–306
onmouseout event support, 167
onmouseover event support, 167

action property, 139
active link, color of, 98–99
addition with assignment operator

(+-), 17
addToCart() function, 159
Adobe Acrobat, 369
alert() method, 90, 111, 193,

238–239, 383
alinkColor property, 98–99
allowedChars property, 233
Anchor objects, 99
anchor tags
onclick events and, 119
window object names in, 87

anchors array, 99
animate() method, 243

animation frames, storing in arrays,
168–169

animation objects, creating with
setTimeOut(), 242–243

animations, 101, 168–172
for buttons, 179–180
image swapping in, 171
with position property, 276–278
preloading images, 169
of strings, 375–376
timing, 170–172

appCodeName property, 316
<applet> tag, 370, 374–376
bgColor parameter, 377
code attribute, 374, 391
codebase attribute, 374
default values, 377
HTML text in, 377
name attribute, 374
text parameter, 376
textColor parameter, 377

applets array, 99–100, 375
appName property, 316–317
appVersion property, 317

Index

4804-2 Index.F 4/9/01 8:18 AM Page 397

Array() constructor method, 62, 67
Array objects, 196–198

creating, 62
length property, 63

arrays
adding elements to, 68, 71
for animation frame storage, 168–169
of applets, 99–100
combining elements into single string,

68, 71
concatenating, 67
data in, 65
definition of, 62
elements, 63
extracting data from, 63
functions of, 62–63
methods for, 67–71
moving through, 383
multidimensional, 65–67, 383
named slots in, 63–65
for object information storage, 212–214
for radio button information, 150
removing first element in, 69
removing last element in, 68
reversing order of elements in, 69
for search string data, 356–357
slices of, 69
sorting contents of, 69–70
splicing elements into, 70–71
splitting String objects into, 58

assignment errors, 31
assignment operators, 17–18
assignment statements, 14, 207–208

�
Back button, 343–344
background color

of elements, 271
of HTML documents, 100

background images, of elements, 271

backslash character (\), as escape
character, 130

banner applets, 365–366
banner variable, 376
BBEdit

BBEdit Lite, 10
on CD-ROM, 395

bgColor property, 100
bit flag operators, 20–21
blank spaces

in CGI data, 348
placing in strings, 52

blocks of code, 28
blur() method, 90
blurInCart() method, 308
blurring, 112–113, 384
<body> tag, 10, 288
onblur handler in, 113
onload events, 110
onload handler in, 115–116
onunload handler in, 193

Boolean expressions, 24
Boolean values, 15, 23–24, 31, 381
Boolean variables, negating, 27
borders

for elements, 271–272, 389
for tags, 305

 tag, 30, 365
break statement, 32
Browser Object Model, 75–77, 383

accessing parts of, 80–82
window object, 76–79

browser window, 76–79. See also
window object

Address Bar or Location Toolbar, 295
clearing contents of, 105–106
closing, 90, 118, 301–302
communicating between, 297–301
content creation in, 296–297
directory buttons for, 295
features of, 295–296
features specification for, 92

Index398

4804-2 Index.F 4/9/01 8:18 AM Page 398

focusing on, 91
height and width, 295
loading of, checking, 298–300
loading Web pages into, 92
menu bar, 295
moving, 91
naming, 294
openers of, 87
opening, 92, 293–294
removing focus from, 90
resizing, 93, 117, 295
scroll bars, 295
scrolling through, 93
status bar, 296
timing problem, 298–300
toolbar, 296, 388
writing strings to, 107

browserOK variable, 323
buttons, 145–146

animations for, 180–181
assigning actions to, 113–114
naming, 146
rollover buttons, 167–168
value property, 146, 263

�
C language, 6, 348
Cancel questions, 91
Cascading Style Sheets (CSS), 253–254,

268. See also style sheets
classes, 255–258
element positioning with, 276
:focus pseudoclass, 306–307
IDs, 258–259
link color settings, 304
pseudoclasses, 304
Web site for, 253, 261

case sensitivity
of String methods, 56
of variable names, 16

case statement, 32
CD-ROM (accompanying)

addRemoveOptionsSelectList.htm
file, 159

anyTagCanHaveEvents.htm file, 114
applications on, 395
array methods, 67
babyPalooza.js file, 44, 72, 131
bpReports.htm file, 352
browsers on, 7, 395
browserSnoop.js file, 322
contents of, 393
control manipulation example, 263
document object examples, 97
ECMAScript documentation,

339–340, 396
editors on, 395
enterQuantity() function, 183
event examples, 112
fileUpload.htm file, 149
floatingPoint.js file, 311
frameset document example, 282
heightNwidthProperties.htm file, 165
Image object examples, 164
index.htm file, 72, 131
innerHTMLProperty.htm file, 279
linksArray.htm file, 102
Listing4-1.htm file, 37–38
Listing4-2.htm file, 39
Listing4-3.htm file, 40
Listing4-4.htm file, 42
Listing4-5.htm file, 44
Listing6-2.htm file, 63
locationReplaceMethod.htm file, 343
mimeTypes.htm file, 362
movingThings.htm file, 277
multipleSelectList.htm file, 157–158
nervousBaby.htm file, 377
NervousText.java file, 376

Continued

Index 399

4804-2 Index.F 4/9/01 8:18 AM Page 399

CD-ROM (accompanying) (continued)
official language specification, 55
openPDF.htm file, 369
plugIns.htm file, 364
qtSalesSummary.htm file, 352
radioObj.htm file, 230
recursive function, 95
selectAnOption.htm file, 155–156
selectList.htm file, 154
shopping cart code, 243
simpleRollover.htm file, 168
source code examples, 395
style properties and values, 270
system requirements for, 393–394
textObj.htm file, 233–234
troubleshooting, 396
window object examples, 85
wrapper object example, 228

CGI applications
whitespace and special characters,

sending through, 349–351
characters, 15
charAt() method, 55–56
check boxes, 146–148
checked property, 147, 384
defaultChecked property, 148
onblur and onfocus events of, 147
onclick events of, 147
text labels for, 147
toggling state of, 148
value for, 147

checkAppletStatus() function, 377
checkHelper() function, 371
.class files, 374
classes, CSS, 255–258

changing, 269
classes, object, 211, 386

clear() method, 105
clearCookie variable, 198
clearInterval() method, 90, 94
clearTimeout() method, 90, 94–95
click() method, 148
clicks, mouse, 113–114
close() method, 90, 105–107, 297,

301–302, 388
closed property, 86
code

browser-specific, 323–324
controlling from frameset documents,

288
importing, 43–44
protecting, 288–289
security of, 300
wrapping in comment tags, 325–326

code blocks, 28, 381
repeating, 32–33
selecting, 27–32

code files, reducing size of, 40
coding style, 29
colon character (:)

in cookie definitions, 191
for CSS pseudoclasses, 304

colors
for background, 100
for links, 98–99, 102, 105

comment marker, forward slashes as, 381
comments, 21–22

blocks of, 21–22
Common Gateway Interface (CGI),

347–348
data format, 348–349
methods of, 349–350
specification page on, 348

Index400

4804-2 Index.F 4/9/01 8:18 AM Page 400

Common Gateway Interface (CGI)
applications, 347–348, 390

escaping characters in, 349–351,
353–355

get method requests to, 352–353
search strings, 350

comparison operators, 24–26
concat() method, 67
concatenation, 52–53
conditional expressions, 28, 382
conditional operator, 35
confirm() method, 91
constant properties, of Math object,

339–340
constants, 339–340
constructor functions, 207–210, 386

creating, 222
method specification in, 219–220
parameters and, 222
parameters of, 208
this keyword, 208–209

constructor methods, 62
for arrays, 67

content
creating, 296–297
separating from style, 253. See also

Cascading Style Sheets (CSS)
continue statement, 34–35
control frames, 107
control property, 229, 233
controls. See HTML controls
cookie property, 100
cookieEnabled property, 317
cookies, 8, 385

availability of, 189, 317
building, 192–196
components of, 188
decoding, 196–198
definition of, 187
deleting, 198

domain attribute, 189
expiration dates for, 189, 193–196, 386
expires attribute, 189
loading, 196
manipulating, 79
naming, 188
path attribute, 189
privacy issues, 191–192
saving, 196
secure attribute, 189
separation characters in, 190–191
status of, 198–199
values of, 190–191

counter variables, 34
counters, 94–95
curly braces {}, 28–29

for code blocks, 381
for functions, 39
for style rules, 255

cursor, types of, 308–309
cursor rule, 308–309

�
data, writing to document objects,

105–107
data transmission methods, 349–350
data types, 15
data validation, 146, 175, 357, 385

for controls, 233–234
for HTML forms, 181–183
upon form submission, 184–185

Date class, 333–334
constructor function for, 333–334
getDate() method, 335
getDay() method, 335–336
getFullYear() method, 336

Continued

Index 401

4804-2 Index.F 4/9/01 8:18 AM Page 401

Date class (continued)
getHours() method, 336
getMinutes() method, 336
getMonth() method, 336–337
getTime() method, 337
getTimeZoneOffset() method, 337
methods of, 335–338
setDate() method, 335
setFullYear() method, 336
setHours() method, 336
setMinutes() method, 336
setMonth() method, 336–337
setTime() method, 337
toGMTString() method, 337
toLocalString() method, 338

Date object
with cookies, 194–196
creating, 194, 333–335
getTime() method, 195
setTime() method, 195
as string, 338
toGMTString() method, 195
uses of, 338–339

day of the month, 335
day of the week, 335–336
debugging
alert() method for, 90
dynamically created HTML, 130–131

decrement operator, 20
Default Plug-in, 363, 390
default statement, 32
defaultStatus property, 86
dialogs. See also messages

creating, 92–93
display frames, 107
document object, 10, 76, 78–81, 86, 97,

261, 383
alinkColor property, 98–99
anchors array, 99
applets array, 99–100, 375

bgColor property, 100
clear() method, 105
close() method, 105–107, 297
cookie property, 100
domain property, 100, 300–301
embeds array, 101
fgColor property, 100
forms array, 101
getElementById() method,

261–263, 388
images array, 101
lastModified property, 101
linkColor property, 102
links array, 102–103, 383
location property, 104
methods of, 105–107
open() method, 105–107, 384
plugins array, 104
properties of, 98–105
referrer property, 104
title property, 104
URL property, 104
vlinkColor property, 105
write() method, 107, 297, 394
writeIn() method, 107

Document Object Model (DOM), 261,
267–268

compliance with, 279
document property, 86
domain property, 100, 300–301
doPlus() function, 180–181
doQtrSummary() function, 352
doStandard() function, 148
doSubmit() function, 184–185
doubleclicks, mouse, 113–114
do...while statement, 33
dummy forms, 285, 299
Dynamic HTML (DHTML), 126–127, 267

CSS-based animations, 276–278

Index402

4804-2 Index.F 4/9/01 8:18 AM Page 402

�
ECMAScript standard, 6

on CD-ROM, 396
editors, 10

on CD-ROM, 395
element objects, 261–263
innerHTML property, 278–279
nesting, 268
obtaining, 269

elements, 63, 268
animating, 276–278
background color, 271
background images, 271
border color, 271, 306
border style, 272
border width, 272
changing HTML in, 279
display of, 272–273
height of, 274–275
margins around, 275
padding for, 275
positioning, 276–278
style objects of, 269
text alignment in, 275
text color, 272
text font, 273–274
visibility of, 276
width of, 276

elements array, 384
for form objects, 139–140

else keyword, 29
e-mail, MIME types for, 361
<embed> tags, 101, 370
embeds array, 101
empty string, 383

concatenating numbers with, 53
enabledPlugin property, 362–363
encapsulation, 38, 207
encoding property, 141

encoding types, for forms, 141
enterQuantity() function, 183,

185, 198
equal sign (=), 14, 17

for assignment operations, 25, 30–31
equality operator, 25
error handlers, for JavaScript errors,

114–115
errors

with image loading, 114
JavaScript, 114–115

escape() function, 190, 348,
353–354, 390

wrapper function for, 355
escaped quotes, 130
European Computer Manufacturers

Association (ECMA), 6
eval() function, 237–239, 307, 387

capabilities of, 239–240
eval() method, 245

for animation objects, 243
event handlers, 110, 146

creating, 110–111
for customized objects, 230
in functions, 111
global variable access, 111
multiple statements in, 111
naming, 111

event handling, 110
events, 109–110

defining, 110
firing, 111
of Image object, 165–166
onabort event, 112
onblur event, 112–113
onchange event, 113
onclick event, 113–114
ondblclick event, 113–114
onerror event, 114–115

Continued

Index 403

4804-2 Index.F 4/9/01 8:18 AM Page 403

events (continued)
onfocus event, 115
onkeydown event, 115
onkeypress event, 115
onkeyup event, 115
onload event, 110, 115–116
onmousedown event, 116
onmousemove event, 116
onmouseover event, 116–117
onmouseup event, 117
onreset event, 117
onresize event, 117
onsubmit event, 118
onunload event, 118

exclamation point (!), for negation
operations, 27

exclusive OR operation, 26–27
expressions

choosing between, 35
negating, 27

external files
source files, 43–44
specifying location, 382

external style sheets, 260–261,
263–264, 387

�
false keyword, 23
feature flags, 295–296
featureslist parameter, 295–296, 388
fgColor property, 100
file open dialog, 149
file upload control, 148–149
onchange event support, 149

file upload field, validating, 184
floating-point numbers, 15–16

display of, 310–311, 389
truncating, 311–312

flow of control statements, 27–28
breaking out of, 32
do...while statements, 33–34
if statements, 28–30
if...else statements, 29–30
while statements, 32–33

focus() method, 91
:focus pseudoclass, 306–307
focusInCart() method, 307
focusing, 113, 115, 384
 tags, 254
for loops

for animations, 169–170
for named slot operations, 64
for stepping through arrays, 67

for statement, 33–34
foreground color, of HTML documents,

101
for...in statement, 383
form object, 81, 101, 135–136
action property, 139
controls and, 137–138
elements array, 139–140
encoding property, 141
length property, 141
method property, 141, 350
methods of, 142
name property, 141
naming, 136–137
properties of, 139–141
reset() method, 142, 384
submit() method, 142
target property, 141

<form> tag, 81, 101, 135, 390
onsubmit and onreset events in, 146

forms. See HTML forms
forms array, 81, 101, 136

length of, 286
Forward button, 344

Index404

4804-2 Index.F 4/9/01 8:18 AM Page 404

forward slashes (//), as comment
marker, 381

frac variable, 312
<frame> tags, 281–282
frames

bookmarking, 289
communicating between, 282–283
dynamically creating content in,

287–289
hiding or displaying, 290–291
history objects of, 345, 390
loading, 289
nested, 283–284
parents of, 88
resizing, 117, 290–291
timing of loading and calling, 284–286
top-most, 89
window objects of, 88, 282, 284

frames array, 78, 86
frameset documents, 282–284

controlling JavaScript code from, 288
top object, 284

<frameset> tags, 281–282
onblur handler in, 113
as parent object, 284

framesets, 282–284
function keyword, 39, 208
functions, 381

calling, 39–40
creating, 38–39
empty parameter lists, 40–41
event handlers in, 111
for method implementation, 219–221
names of, 39, 382
parameters of, 39, 382
reducing code size with, 40
scope of, 41–43
this keyword in, 220–221

�
get method, 349–357
get method requests, 352–353

retrieving data from, 355–356
getDate() method, 335
getDay() method, 335–336
getElementById() method, 269,

291, 388
getFullYear() method, 336
getHours() method, 336
getLoadStatus() function, 377
getMinutes() method, 336
getMonth() method, 336–337
getText() method, 233
getTime() method, 195, 337
getTimeZoneOffset() method, 337
global scope, 41–43
global variables, 111, 382
Greenwich Mean Time information, 337

	
hash portion of Web addresses, 102
hash property, 341
<head> tags, style block in, 255
helper applications, 359–360

detecting, 368
launching, 370–371
triggering launch of, 368–369

hexadecimal codes
for blanks and whitespace characters,

348
replacing with printable characters, 357
for special characters, 348

hexadecimal color values, for links,
98–99

hexadecimal numbers, 16

Index 405

4804-2 Index.F 4/9/01 8:18 AM Page 405

hidden fields, 160–161
history list, 86, 344–345
history object, 77, 344–345, 390
back() method, 344
forward() method, 344
go() method, 344
length property, 344

history property, 86
hour values, 336
hover effect, 304–306
:hover pseudoclass, 304–306
href property, 341, 353
HTML

debugging, 130–131
dynamically creating, 126–132
dynamically creating in frames, 287–289

HTML controls
accessing, 140
blurred, 113
buttons, 145–146
changed, 113
check boxes, 146–148
customizing, 129–130
data validation for, 233–234
enhancing, 227–228, 386
events generated by, 110
file upload control, 148–149
form object and, 137–138
getting and setting, 139
hiding or showing, 262–263
highlighting, 304–306
JavaScript objects corresponding to, 138
radio buttons, 149–151
select lists, 152–159
tabIndex attribute, 310
text-based, 160–161
validating, 184
values of, 138
wrapper objects for, 228–230

HTML documents
adding applets to, 374
background color, 100
changing contents of, 127
cookie values for, 100
domain information, 100
embedded items in, 101
foreground color, 101
last modified date, 101
linking to external documents, 260
loading, 115–116
location information, 104
navigating with tab key, 310
referring document information, 104
reloading, 343
style. See Cascading Style Sheets (CSS);

style sheets
title information, 104
unloading, 118

HTML files, 9–10
processing order, 12

HTML forms, 135
controlling user input, 179–181
data validation for, 118, 146, 175,

181–183
data validation upon submission,

184–185
default values for, 176–177
displaying results of, 141
dummy forms, 285, 299
encoding, 141
interacting with, 79
loading and parsing, checking, 285–286
naming, 136–137
onfocus event handler for, 178
protecting fields in, 176, 178
Reset button, 117, 142
resetting, 142
restricting field length, 177

Index406

4804-2 Index.F 4/9/01 8:18 AM Page 406

select lists for, 176
sending to Web addresses, 139
Submit button, 142
submitting, 118, 142
updating text fields, 181
user interfaces for, 176

HTML frameset documents, 281–282
HTML Kit, 10
HTML pages. See also document object

on-the-fly creation of, 106
sending data to, 106

HTML parser, 10
HTML rendering engines, 325
<html> tag, 10, 288
HTML tags
class attributes in, 256–258
connecting custom objects to, 230
dynamically building, 125
events for, 112
id attributes in, 258–259
for JavaScript, 8–9
nonempty, 114
storing in string variables, 127–128
style attribute in, 259

Hungry Minds Customer Service, 396
Hypertext Markup Language. See HTML

I-beam cursor, eliminating, 308
if statements, 28–30
if...else statements, 29–30
Image object, 101, 164

accessing, 164
border property, 164
complete property, 164
creating, 166
dynamically resizing, 172

events of, 165–166
height property, 165
hspace property, 165
lowsrc property, 165
name property, 165
with no tag, 166
properties of, 164–165
src property, 165, 385
vspace property, 165
width property, 165

Image object constructor, 166
images

aborting loading of, 112
for animations, 169
errors in loading, 114
horizontal and vertical padding, 165
interacting with, 80
as links, 167
loading, 115–116
low-resolution version of, 165
naming, 165
repositioning, 165
resizing, 165
Web address of, 165

images array, 101, 164
 tags, 101, 164, 371

for animation objects, 243
for animations, 171
association with images, 166
borders for, 305
onload event handler in, 116, 384
onload events for, 171, 385
onmouseout event support, 167
onmouseover event support, 167
triggering functions with, 377

implementation functions, 386
@import rule, 260–261
increment operator, 19–20
index, of slots, 63

Index 407

4804-2 Index.F 4/9/01 8:18 AM Page 407

indexOf() method, 56–57
position information in, 57

inequality operator, 26
infinite loops, 33
innerHTML property, 278–279, 388
<input> tag, 81
insertion point, positioning, 308
instances, object, 211
integers, 15–16
Internet Assigned Numbers Authority

(IANA), 361
Internet Explorer (IE), 7
appCodeName property, 316
array methods and, 68
background color specification, 100
on CD-ROM, 395
JavaScript to Java communication

support, 373
mimeTypes property and plugins array

support, 360, 369
navigator.cookieEnabled

property, 199
version information, 320–321, 389

isBlank() method, 231–234
isNumeric() function, 183
isValid() method, 233–234

�
Java, 6

versus JavaScript, 8
syntax, 376

Java applets, 373
adding to HTML documents, 374
arrays of, 99–100
banner applets, 365–366
communicating with, 375–378
getInfo() method, 375
interacting with, 80
passing parameters to, 374

public methods, 375–377, 391
setBanner() method, 378

Java Developer’s Kit (JDK), 365
JavaScript

in ASCII text, 10
dynamically creating, 132–133
errors in, 114–115
functions of, 7
hiding, 325–326
HTML tag for, 8–9
versus Java, 8
origins of, 6
requiring browser capability for, 324–325
restrictions on, 8
server-side version, 7
standardized version, 6
version of, requiring, 326, 389
zero-relative, 335

JavaScript interpreter, 10
string evaluation, 237–239

JavaScript programs, halting execution,
90

JavaScript Style Sheets, 254–255
join() method, 68
.jpg files, animating, 172
.js file extensions, 44
JScript, 6

server-side, 7

�
key press events, 115
keywords, 23–24

language property, 232–233, 317, 382
lastIndexOf() method, 57
lastModified property, 101

Index408

4804-2 Index.F 4/9/01 8:18 AM Page 408

length property, 141
of Array objects, 63
of String objects, 54–55

Link objects, 102, 383
<link> tag, 260

dynamically generating, 263–264
linkColor property, 102
Link.hash property, 102
Link.host property, 102
Link.hostname property, 102
Link.href property, 102
Link.innerHTML property, 103
Link.pathname property, 103
Link.port property, 103
Link.protocol property, 103
links

color of, 98–99, 102, 105
customizing, 129
executing statements with, 119
hash information, 102
highlighting, 304
host information, 102
href information, 102
images as, 167
onscreen text of, 103
pathname information, 103
port information, 103
protocol information, 103
query string, 103
status bar descriptions of, 129
target window name, 103

links array, 102–103, 383
Link.search property, 103
Link.target property, 103
Linux, Netscape Navigator version, 90
LiveScript, 5–6
LiveWire, 7
local scope, 41–43
local variables, 34, 382
location object, 341–343
hash property, 341
host property, 342

hostname property, 342
href property, 341–342, 353, 369
pathname property, 342
port property, 342
protocol property, 343
reload() method, 343, 389
replace() method, 343, 390
search property, 343, 356, 390

location property, 78, 87, 104
logical AND operation, 26
logical expressions, 24
logical negation operation, 27
logical operators, 26–27
logical OR operation, 26
logical values, 24
loop counters, 382
loops

for examining radio button values,
150–151

infinite, 33
for loops, 33–34
stepping through arrays with, 63
testing, 34–35
while loops, 32–33

�
Mac OS, using CD-ROM with, 394
Math object, 312, 339–341
abs() method, 340
constant properties of, 339–340
max() method, 340
methods of, 340
min() method, 340
pow() method, 340
random() method, 340
round() method, 341
sqrt() method, 341

Math.E property, 340
mathematical operators, 18–21
Math.PI property, 340

Index 409

4804-2 Index.F 4/9/01 8:18 AM Page 409

Math.round() method, 312
Math.SQRT2 property, 340
messages

alerts, 90
confirm messages, 91
user prompts, 92–93

method property, 141, 350
methods, 54, 386

adding to preexisting objects, 228–233
for arrays, 67–71
calling, 54, 218
creating, 222–224
customized, 221
defining, 217–221
of document object, 105–107
of form object, 142
implementation function, 219–221
naming, 219–220
parameters and, 222
parameters of, 54
specifying in constructor functions,

219–220
this keyword, 224
of window object, 89–95

Microsoft JScript, 6
Microsoft Windows, using CD-ROM

with, 394
mimeType objects, 361–362
description property, 361
enabledPlugin property, 362–363, 390
suffixes property, 362, 390
type property, 362

mimeTypes array, 361–362
looping through, 368

mimeTypes property, 318, 360
minutes values, 336
modulus operator, 20
month values, 336–337
mouse, hover effect, 304–306

mouse click events, 116
mouse move events, 116
mouse over events, 116–117
mouse release events, 117
mouse rollovers, 167–168, 305, 385

creating, 167–168
moveBy() method, 91
moveit() function, 277–278
moveTo() method, 91
Mozilla, 316
multidimensional arrays, 65–67, 383

accessing data in, 66–67
multimedia files, client support

capabilities for, 368–369
Multipurpose Internet Mail Extensions

(MIME) types, 78, 318, 361, 391
list of, 362–363
in plugin objects, 364–365
plug-ins support for, 367

�
name property, 87, 141, 244
navigator object, 78, 87, 263
appCodeName property, 316
appName property, 316–317
appVersion property, 317, 319–321
cookieEnabled property, 317
language property, 317
mimeTypes property, 318, 360–363
platform property, 263–264, 318
plugins array, 318, 360
product property, 318
productSub property, 318
properties of, 315–316
userAgent property, 318
userLanguage property, 317

navigator property, 87

Index410

4804-2 Index.F 4/9/01 8:18 AM Page 410

navigator.plugins array, 104
negation, 27
Nervous Text applet, 375–376
Netscape Corporation, 5–6
Netscape Navigator, 7

background color specification, 100
on CD-ROM, 395
foreground color values, 101
JavaScript error information, 114
JavaScript Style Sheets, 254–255
JavaScript to Java communication

support, 373
link color values, 102
navigator.cookieEnabled property,

199
onchange event support, 153
userAgent property, 318
version information, 319–320

new keyword, 62, 210
<noscript> tags, 324–325
Notepad, 10
null value, 92–93
numbers

converting into strings, 53
specifying, 16

�
Object class, 231, 387
<object> tag, 370–371, 374

as replacement for <applet>, 374
objects, 15

accessing properties in, 213
actions of, 206
adding methods and properties to,

230–233
arrays as, 62

constructor functions for, 207–210
constructor methods for, 62
controls, equivalent to, 227–228
creating, 207–212
customizing, 228, 230, 386
definition of, 54, 205–206
designating as current object, 220–221
encapsulation of, 207
implementing, 222–225, 243–245
methods of, 206. See also methods
name property, 241
parent class of, 231
properties of, 206
prototypes of, 230–233, 387
strings as, 53
subclasses and superclasses of, 228
uses of, 206–207
variable names in, 387
wrapper objects for, 228–230

octal numbers, 16
OK questions, 91
onabort event, 112, 166
onblur event, 112–113, 384
onchange event, 113

for file upload control, 149
onchange handler, 181, 244–245
onclick event, 113–114, 119, 384
onclick handler, 377–378

for buttons, 145
for check boxes, 147–148

ondblclick event, 113–114
onerror event, 114–115, 166, 385
onfocus event, 115, 384
onfocus handler, 178
onkeydown event, 115
onkeypress event, 115
onkeyup event, 115

Index 411

4804-2 Index.F 4/9/01 8:18 AM Page 411

onload events, 110, 115–116, 166,
384–385

for loading cookies, 196
onload handler, 377

for frame loading, 285–286
onmousedown event, 116
onmousemove event, 116
onmouseout event, 167, 385
onmouseout handler, 168
onmouseover event, 116–117, 167
onmouseover handler, 168, 310, 385
onmouseup event, 117
onmouseup handler, 180
onreset event, 117, 142, 146
onresize event, 117
onsubmit event, 118, 146
onsubmit handler, 184
onunload event, 118, 193, 385
open() method, 92, 105–107,

293–294, 384
opener property, 87, 298, 388
openers, 87
operations, nesting, 27
operators for concatenation, 52–53
Option object constructor method, 159
Option objects, 153
<option> tag, 152
options array, 153–154, 385
defaultSelected property, 154
null values in, 158
selected property, 154–156
text property, 154
value property, 154

�
<p> tags, 259
<param> tags, 374
parameters, 38–40

empty parameter lists, 40–41

parent objects, 283, 388
<frameset> tags as, 284

parent property, 88
parent window, 78
parentheses, for conditional

expressions, 28
parseFloat() function, 312, 388
parseInt() function, 183, 312, 385
password fields, 160
value property, 160, 385

percent sign (%), as hexadecimal code
marker, 349

period
for accessing object contents, 80
for accessing String methods, 54

Perl, 348
pickPrev() function, 156
platform information, 318
platform property, 263–264, 318
plugin objects, 363–364
description property, 363
filename property, 364
length property, 364–365, 390
mimeTypes objects array, 364–365
name property, 364–366

plug-ins, 78, 359–360
accessing MIME types array of, 364–365
checking for, 369
checking for by MIME type, 367
checking for by name, 365–366

plugins array, 104, 318, 360, 363–365
plus sign (+)

for blank spaces, 348–349
as concatenation operator, 52
escaping, 354–355

.png files, animating, 172
pop() method, 68
Portable Document Format (PDF) files,

369–370

Index412

4804-2 Index.F 4/9/01 8:18 AM Page 412

position property, 276–278
absolute value, 277

post method, 350–351, 357, 390
pound sign (#), for CSS ID

definitions, 258
privacy issues, cookies and, 191–192
prompt() method, 92–93
properties, 54, 386

adding to preexisting objects, 228–233
of document object, 98–105
of form object, 139–141

prototype keyword, 231
prototypes, 387

adding methods and properties to,
230–233

pseudoclasses, CSS, 304
public methods, 375–377
push() method, 68
Python, 348

�
query strings, 349–350
question mark (?), 356

in search strings, 352
QuickTime movie plug-in, 371
quotation marks

escaped, 130
nesting, 14
single versus double, 14

�
radio buttons, 149–151
checked property, 150–151
click method, 151
defaultChecked property, 151

families of, 150
getValue() method, 228–229
onblur and onfocus events, 151
onclick handler for, 150–151

readonly attribute, 178
referrer property, 104
reserved words, 23–24
Reset button, 117, 142, 146, 385
reset() method, 142, 384
resizeTo() method, 93
return keyword, 39, 117, 383
reverse() method, 69
rollovers, 167–168, 305, 385

�
scope, 41–43
screen property, 88, 172
screen settings, information about, 88
<script> blocks, 169
<script> tag, 8–9, 325–326

embedding in other tags, 9
language attribute, 9, 326
outputting, 132
placement of, 9, 11–12
src attribute, 43–44

scripting languages, 8
scripts, 5
scroll() method, 93
scrollBy() method, 93
scrollTo() method, 93
search strings, 350

escaping values in, 353–355
extracting data from, 356
get method compliance, 351–352

searching, for substrings, 56–57
security, cookies and, 189

Index 413

4804-2 Index.F 4/9/01 8:18 AM Page 413

select lists, 152–159
adding and removing options, 158–159
example of, 154–155
for HTML forms, 176
multiple-selection lists, 157–158
onchange events, 157
selectedIndex property, 157–158
selecting items in, 155–156

select() method, 307
Select object, 152–153
blur() method, 153
click() method, 153
focus() method, 153
length property, 152
name property, 152
onchange event, 153
options array, 153–154
selectedIndex property, 153–155

selectedIndex property, 153–155,
157–158

self-assessment test, on CD-ROM, 396
semicolon (;), 14

in cookie definitions, 188, 193
Server-Side JavaScript, 7
server-side processes. See also CGI

applications; Common Gateway
Interface (CGI)

communicating with, 347–348
setDate() method, 335
setFullYear() method, 336
setHours() method, 336
setInterval() method, 94, 240–241
setMinutes() method, 336
setMonth() method, 336–337
setText() method, 233
setTime() method, 195, 337
setTimeOut() method, 94, 240–241

for animation objects, 242–243
shift() method, 69

shopping carts, 11
SimpleText, 10
slashes (//), as comment markers, 21
slice() method, 69
slots, 62

accessing, 63
index of, 63
named, 63–65
numbered, 63

sort() method, 69–70
sorting array contents, 69–70
source code. See also code

protecting, 288–289
 tag, 259–260, 277, 387
special characters

escaping, 353–355, 390
hexadecimal codes for, 348

splice() method, 70–71
split() method, 58, 197, 356
src attribute, 43–44, 385
standard input stream, 350
statements

assignment, 14
ending punctuation, 14
executing with links, 119
execution of, immediate versus

specified, 240
recursive functions, 95
repeating calls to, 95

status bar
link descriptions in, 129
uses of, 309–310

status property, 88
Stop button, 112
streams, 105

opening, 105
String class, enhancing, 231–232
String() constructor method, 62
String methods, case sensitivity of, 56

Index414

4804-2 Index.F 4/9/01 8:18 AM Page 414

String object
isBlank() method, 231–232
language property, 232–233

String objects, 53–54
converting case of, 58
extracting single characters from, 55–56
extracting substrings from, 58
methods and properties of, 54–58
searching for substrings, 56–57
split() method, 197
splitting into arrays, 58

string variables, storing HTML tags in,
127–128

strings, 15
animating, 375–376
breaking into Array objects, 71
concatenating, 52–53
creating, 51
date information as, 338
empty string, 383
enclosing in quotes, 14
hard-coded, 52
length property of, 54–55
literal, 52
numbering characters in, 55
numeric conversions, 53
passing to interpreter, 237–239
placing blank spaces in, 52
sorting, 70

String.split() method, 71
<style> block, @import rule, 260–261
style objects, 269

background color property, 271
background image property, 271
border color property, 271–272
display property, 272–273
font family property, 273
font size property, 273–274
font style property, 274

font weight property, 274
height property, 274–275
margin property, 275
padding property, 275
properties, changing, 270
properties, displaying, 269–270
text alignment property, 275
text color property, 272
visibility property, 276
width property, 276

style rules, 255, 389
cascading, 256–257
conflicts between, 256–257
external storage of, 260–261
ID definitions, 258–259

style sheets, 387. See also Cascading Style
Sheets (CSS)

definition of, 254
external, 260–261, 263–264, 387
platform-specific, 263–364
selecting one for use, 263–364

<style> tag, 254–255, 260
type attribute, 254

styles. See also Cascading Style Sheets
(CSS); style sheets

applying to blocks of text, 259–260
JavaScript interaction with, 261
precedence of, 260

subclasses, 228
Submit button, 118, 142, 146, 385
submit() method, 142
substring() method, 58, 320, 356
substrings

extracting from String objects, 58
searching for, 56–57

Sun Microsystems, 6
superclasses, 228
switch statement, 31–32, 72
system requirements, 393–394

Index 415

4804-2 Index.F 4/9/01 8:18 AM Page 415

�
tab key, 310
target attribute, 87
target property, 141
tasks, automating, 7
text areas, 160
text-based controls, 160–161
onblur and onfocus events, 161
onchange event, 161
value property, 160

text boxes, 160
visual cues for, 306–309, 389

text fields
blank, checking for, 181–182
numeric values in, checking for, 182–183
validating, 181–183

this keyword, 208–209, 220–221,
224, 386

for wrapper objects, 230
time information. See also Date object

displaying, 338–339
time zone information, 337
timer ID, 95
title property, 104
<title> tag, 104
toGMTString() method, 195, 337
toLocalString() method, 338
toLowerCase() method, 58
top object, 284, 388
history object of, 345

top property, 89
toString() method, 71
toUpperCase() method, 54–55, 58
true keyword, 23

�
unescape() function, 190, 357
Universal Coordinated Time (UTC), 338
unShift() method, 71
URL property, 105
user input, controlling, 179–181
userAgent property, 318
userLanguage property, 317
users

feedback from, 91
interacting with, 160
prompting for information, 92–93
visual cues for. See visual cues

�
value property, 263, 385

of text-based controls, 160
var keyword, 41–43, 62, 382
variables, 14–17

arrays. See arrays
assigning strings to, 51
assigning values to, 14
creating, 15
global, 382
local, 382
loosely typed, 382
names of, 16–17, 43, 382
scope of, 41–43
types of, 15

vertical bar (|), in cookie definitions,
190–191

vi, 10

Index416

4804-2 Index.F 4/9/01 8:18 AM Page 416

visited links, color of, 105
visual cues

eliminating, 308–309
for links, 303–305
for text boxes, 306–309

vlinkColor property, 105

�
Web browsers

Back button, 343–344
browser-specific code for, 323–324
CGI compliance capabilities, 351
cookie availability on, 317
cookie management, 187–188
determining platform, 263–264
DOM standard support, 267–268
extensions to, 104
Forward button, 344
helper applications and, 360
hiding JavaScript from, 325–326
information about, 78, 87, 315–316
interface with JavaScript programs,

75–76. See also Browser Object
Model

JavaScript-capable and -incapable,
324–325

language information, 317
name information, 316–317
platform information, 318
plug-ins for, 104, 318, 359–360
requiring JavaScript version support, 326
specifying, 315–316
status bar, 86
status information, 88
Stop button, 112
version information, 317
version information, extracting, 319–321

version-specific Web sites and, 321–323
window of. See browser window

Web pages
addresses of, 78
location information, 87
sharing functions among, 43

Web servers, cookie management,
187–188

Web sites
frames-based, 281–282. See also frames
history list of, 86
version-specific, 321–323
visual cues on. See visual cues

while statement, 32–33
whitespace characters, 29

in CGI data, 348
escaping, 353–355, 390

window object, 76–79, 81, 85, 383
alert() method, 90
blur() method, 90
clearInterval() method, 90, 94
clearTimeout() method, 90, 94–95
close() method, 90, 301–302, 388
closed property, 86
confirm() method, 91
defaultStatus property, 86
document object, 78
document property, 86
featureslist parameter, 295–296, 388
focus() method, 91
frames array, 78, 86
history property, 86, 344–345
location property, 78, 87, 341–343
methods of, 89–95
moveBy() method, 91
moveTo() method, 91
name property, 87, 294

Continued

Index 417

4804-2 Index.F 4/9/01 8:18 AM Page 417

window object (continued)
navigator object. See navigator

object
navigator property, 87
open() method, 92, 293–294
opener property, 87, 298, 388
parent property, 88
prompt() method, 92–93
properties of, 86–89
resizeTo() method, 93
screen property, 88, 172
scroll() method, 93
scrollBy() method, 93
scrollTo() method, 93
setInterval() method, 94
setTimeout() method, 94
status property, 88
top property, 89

windows. See also browser window
focusing on, 115
history objects of, 345

Window’s Scripting Host (WSH), 7
WordPad, 10
World Wide Web Consortium, 253

Web site, 141
wrapper objects, 228–230, 386
control property, 229

write() method, 107, 297, 384
writeIn() method, 107

�
XHTML, 30–31

�
year values, 336

Index418

4804-2 Index.F 4/9/01 8:18 AM Page 418

© 2001 Hungry Minds, Inc. All rights reserved. Hungry Minds, the Hungry Minds logo and Weekend Crash Course are trademarks or registered trademarks of Hungry Minds.
All other trademarks are the property of their respective owner.

Red Hat® Linux® 7 Weekend
Crash Course™

by Naba Barkakati
432 pages
Red Hat Linux 7 on 3 CDs
ISBN 0-7645-4741-0

Visual Basic® 6 Weekend
Crash Course™

by Richard Mansfield
408 pages
ISBN 0-7645-4679-1

Flash™ 5 Weekend Crash
Course™

by Shamms Mortier
408 pages
ISBN 0-7645-3546-3

Dreamweaver® 4 Weekend
Crash Course™

by Wendy Peck
408 pages
ISBN 0-7645-3575-7

Available wherever
books are sold,

or go to:
www.hungryminds.com

Get Up to Speed
in a Weekend!

Also available:

Access® 2000 Programming Weekend Crash Course™

by Cary N. Prague, Jennifer Reardon, Lawrence S. Kasevich, Diana Reid, and
Phuc Phan 600 pages ISBN 0-7645-4688-0

Active Server Pages 3 Weekend Crash Course™

by Eric Smith 450 pages ISBN 0-7645-4756-9

C++ Weekend Crash Course™

by Stephen R. Davis 552 pages ISBN 0-7645-4689-9

C# Weekend Crash Course™ (Available July 2001)
by Stephen R. Davis 432 pages ISBN 0-7645-4789-5

HTML 4.01 Weekend Crash Course™

by Greg Perry 480 pages ISBN 0-7645-4746-1

Java™ 2 Weekend Crash Course™

by Julio Sanchez and Maria Canton 432 pages ISBN 0-7645-4768-2

JavaScript Weekend Crash Course™

by Steven Disbrow 408 pages ISBN 0-7645-4804-2

JSP Weekend Crash Course™

by Andrew Utter And Geremy Kawaller 408 pages ISBN 0-7645-4796-8

Linux® Weekend Crash Course™

by Naba Barkakati 410 pages ISBN 0-7645-3593-5

Each book comes with a CD-ROM and
features 30 fast, focused lessons that will
have you up and running in only 15 hours.

4804-2 BOB.F 4/9/01 8:18 AM Page 427

CD-ROM Installation Instructions

The sample JavaScript programs from each session are contained in a separate
folder on the CD-ROM. For example, the programs from Session 1 are contained in
the Session01 folder and the programs from Session20 are contained in the
Session20 folder. You can load these programs directly into your Web browser from
the CD-ROM, or you can copy any of the folders to your hard disk and run the pro-
grams from there.

Each of the third-party programs (Netscape Navigator, Internet Explorer, and
BBEdit) is contained in their own folders. Simply run the provided setup program and
follow the instructions that are provided. See Appendix B for further information.

The directory named Self-Assessment Test contains the installation program
Setup_st.exe. With the book’s CD-ROM in the drive, open the Self-Assessment Test
directory and double-click on the program icon for Setup_st to install the self-
assessment software and run the tests. The self-assessment software requires that
the CD-ROM remain in the drive while the tests are running.

4804-2 Install.F 4/9/01 8:18 AM Page 428

	JavaScript® Weekend Crash Course™
	Front Matter
	About the Author
	Credits
	Preface
	Acknowledgments
	Contents at a Glance
	Contents

	Part I Friday Evening
	Getting to Know JavaScript
	Statements and Operators
	Flow of Control Statements
	How to Write JavaScript Functions
	Part I Review

	Part II —Saturday Morning
	Working with JavaScript Strings
	Working with JavaScript Arrays
	Understanding the Browser Object Model
	Working with the window Object
	Working with the document Object
	Reacting to Events
	Part II Review

	Part III -Saturday Afternoon
	Dynamically Creating an HTML Page
	Working with HTML Forms
	Working with HTML Controls
	Working with Images
	Validating Form Data
	Cooking up Cookies with JavaScript
	Part III Review

	Part IV Saturday Evening
	Understanding JavaScript Objects
	Creating and Using Methods
	Enhancing HTML with JavaScript Objects
	Dynamically Creating and Executing JavaScript
	Part IV Review

	Part V
	Working with Cascading Style Sheets
	Creating Dynamic HTML with JavaScript
	Working with Frames
	Working with Windows
	Improving the User Interface
	Working with Different Browsers
	Part V Review

	Part VI
	Working with Dates, Numbers, and Web Addresses
	Communicating with Server-Side Processes
	Supporting Multimedia
	Working with Java Applets
	Part VI Review

	Appendixes
	Appenix A Answers to Part Reviews
	Appendix B What’s on the CD-ROM

	Index
	CD-ROM Installation Instructions

