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PREFACE 
 
 
 

Mankind, under the grace of God, hungers for spiritual peace, 
esthetic achievements, family security, justice, and liberty, 

none directly satisfied by industrial productivity. But productivity 
allows the sharing of the plentiful rather than fighting over 
scarcity; it provides time for spiritual, esthetic, and family 

matters. It allows society to delegate special skills to  
institutions of religion, justice, and the preservation of liberty. 

 
HARLAN MILLS 

DPMA and Human Productivity 
 
 
As computer professionals, we strive to build system that are useful and that work; as 
software engineers, we are faced with the task of creating complex system in the presence of 
scarce computing and human resource. Over the past few years, object-oriented technology 
has evolved in diverse segments of the computer sciences as a means of managing the 
complexity inherent in many different kinds of systems. The object model has proven to be a 
very powerful and unifying concept. 
 
 
Changes to the First Edition 
 
Since the publication of the first edition of Object-Oriented Design with Applications, object-
oriented technology has indeed moved into the mainstream of industrial-strength software 
development. We have encountered the use of the object-oriented paradigm throughout the 
world, for such diverse domains as the administration of banking transactions; the 
automation of bowling alleys; the management of public utilities; and the mapping of the 
human genome. Many of the next generation operating systems, database systems, telephony 
systems, avionics systems, and multimedia applications are being written using 
object-oriented techniques. Indeed, many such projects have chosen to use object-oriented 
technology simply because there appears to be no other way to economically produce an 
enduring and resilient programming system. 
 
Over the past several years, hundreds of projects have applied the notation and process 
described in Object-Oriented Design with Applications1. Through our own work with several of 

                                                 
1 Including my own projects. Ultimately, I’m a developer, not just a methodologist. The first question you should 
ask any methodologist is if he or she uses their own methods to develop software 
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these projects, as well as the kind contribution of many individuals who have taken the time 
to communicate with us, we have found ways to improve our method, in terms of better 
articulating the process, adding and clarifying certain semantics otherwise missing or difficult 
to express in the notation, and simplifying the notation where possible. 
 
During this time, many other methods have also appeared, including the work of Jacobson, 
Rumbaugh, Coad and Yourdon, Constantine, Shlaer and Mellor, Martin and Odell, 
Wasserman, Goldberg and Rubin, Embley, WirfsBrock, Goldstein and Alger, Henderson-
Sellers, Firesmith, and others. Rumbaugh's work is particularly interesting, for as he points 
out, our methods are more similar than they are different. We have surveyed many of these 
methods, interviewed developers and managers who have applied them, and where possible, 
tried these methods ourselves. Because we are more interested in helping projects succeed 
with object-oriented technology rather than dogmatically hanging on to practices solely for 
emotional or historical reasons, we have tried to incorporate the best from each of these 
methods in our own work. We gratefully acknowledge the fundamental and unique 
contributions each of these people has made to the field. 
 
It is in the best interests of the software development industry, and object oriented technology 
in particular, that there be standard notations for development. Therefore, this edition 
presents a unified notation that, where possible, eliminates the cosmetic differences between 
our notation and that of others, particularly Jacobson's and Rumbaugh's. As before, and to 
encourage the unrestricted use of the method, this notation is in the public domain. 
 
The goals, audience, and structure of this edition remain the same as for the first edition. 
However, there are five major differences between this edition and the original publication. 
 
First, Chapter 5 has been expanded to provide much more specific detail about the unified 
notation. To enhance the reader's understanding of this notation, we explicitly distinguish 
between its fundamental and advanced elements. In addition, we have given special attention 
to how the various views of the notation integrate with one another. 
 
Second, Chapters 6 and 7, dealing with the process and pragmatics of object-oriented analysis 
and design, have been greatly expanded. We have also changed the title of this second edition 
to reflect the fact that our process does indeed encompass analysis as well as design. 
 
Third, we have chosen to express all programming examples in the main text using C++. This 
language is rapidly becoming the de facto standard in many application domains; 
additionally, most professional developers who are versed in other object-oriented 
programming languages can read C++. This is not to say that we view other languages - such 
as Smalltalk, CLOS, Ada, or Eiffel - as less important. The focus of this book is on analysis and 
design, and because we need to express concrete examples, we choose to do so in a 
reasonably common programming language. Where applicable, we describe the semantics 
unique to these other languages and their impact upon the method, 
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Fourth, this edition introduces several new application examples. Certain idioms and 
architectural frameworks have emerged in various application domains, and these examples 
take advantage of these practices. For example, client/server computing provides the basis of 
a revised application example. 
 
Finally, almost every chapter provides references to and discussion of the relevant object-
oriented technology that has appeared since the first edition. 
 
 
Goals 
 
This book provides practical guidance on the construction of object-oriented systems. Its 
specific goals are: 
 

• To provide a sound understanding of the fundamental concepts of the object model 
• To facilitate a mastery of the notation and process of object-oriented analysis and 

design 
• To teach the realistic application of object-oriented development within a variety of 

problem domains 
 
The concepts presented herein all stand on a solid theoretical foundation, but this is primarily 
a pragmatic book that addresses the practical needs and concerns of the software engineering 
community. 
 
 
Audience 
 
This book is written for the computer professional as well as for the student. 

• For the practicing software engineer, we show you how to effectively use object-
oriented technology to solve real problems. 

• In your role as an analyst or architect, we offer you a path from requirements to 
implementation, using object-oriented analysis and design. We develop your ability to 
distinguish "good” object-oriented architectures from "bad" ones, and to trade off 
alternate designs when the perversity of the real world intrudes. Perhaps most 
important, we offer you fresh approaches to reasoning about complex systems. 

• For the program manager, we provide insight on how to allocate the resources of a 
team of developers, and on how to manage the risks associated with complex software 
systems. 

• For the tool builder and the tool user, we provide a rigorous treatment of the notation 
and process of object-oriented development as a basis for computer-aided software 
engineering (CASE) tools. 

• For the student, we provide the instruction necessary for you to begin acquiring 
several important skills in the science and art of developing complex systems. 
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This book is also suitable for use in undergraduate and graduate courses as well as in 
professional seminars and individual study. Because it deals primarily with a method of 
software development, it is most appropriate for courses in software engineering and 
advanced programming, and as a supplement to courses involving specific object-oriented 
programming languages. 
 
 
Structure 
 
The book is divided into three major sections - Concepts, The Method, and Applications with 
considerable supplemental material woven throughout. 
 
 
Concepts 
The first section examines the inherent complexity of software and the ways in which 
complexity manifests itself. We present the object model as a means of helping us manage 
this complexity. In detail, we examine the fundamental elements of the object model: 
abstraction, encapsulation, modularity, hierarchy, typing, concurrency, and persistence. We 
address basic questions such as "What is a class?" and "What is an object?" Because the 
identification of meaningful classes and objects is the key task in object-oriented 
development, we spend considerable time studying the nature of classification. In particular, 
we examine approaches to classification in other disciplines, such as biology, linguistics, and 
psychology, then apply these lessons to the problem of discovering classes and objects in 
software systems. 
 
 
The Method 
The second section presents a method for the development of complex systems based on the 
object model. We first present a graphic notation for object-oriented analysis and design, 
followed by its process. We also examine the pragmatics of object-oriented development - in 
particular, its place in the software development life cycle and its implications for project 
management. 
 
 
Applications 
The final section offers a collection of five complete, nontrivial examples encompassing a 
diverse selection of problem domains: data acquisition, application frameworks, client/server 
information management, artificial intelligence, and command and control. We have chosen 
these particular problem domains because they are representative of the kinds of complex 
problems faced by the practicing software engineer. It is easy to show how certain principles 
apply to simple problems, but because our focus is on building useful systems for the real 
world, we are more interested in showing how the object model scales up to complex 
applications. Some readers may be unfamiliar with the problem domains chosen, so we begin 
each application with a brief discussion of the fundamental technology involved (such as 
database design and blackboard system architecture). The development of software systems 

nbodke
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is rarely amenable to cookbook approaches; therefore, we emphasize the incremental 
development of applications, guided by a number of sound principles and well-formed 
models. 
 
 
Supplemental Material 
A considerable amount of supplemental material is woven throughout the book. Most 
chapters have boxes that provide information on important topics, such as the mechanics of 
method dispatch in different object-oriented programming languages. We also include an 
appendix on object-oriented programming languages, in which we consider the distinction 
between object-based and object-oriented programming languages and the evolution and 
essential properties of both categories of languages. For those readers who are unfamiliar 
with certain object-oriented programming languages, we provide a summary of the features 
of a few common languages, with examples. We also provide a glossary of common terms 
and an extensive classified bibliography that provides references to source material on the 
object model. Lastly, the end pages provide a summary of the notation and process of the 
object-oriented development method. 
 
Available apart from the text, and new to the second edition, is an Instructor's Guide 
containing suggested exercises, discussion questions, and projects, which should prove very 
useful in the classroom. The Instructor’s Guide with Exercises (ISBN 0-8053-534PO) has been 
developed by Mary Beth Rosson from IBM's Thomas J. Watson laboratory. Qualified 
instructors may receive a free copy from their local sales representatives or by emailing 
aw.cse@aw.com. Questions, suggestions, and contributions to the Instructor's Guide may be 
emailed to rosson@watson.ibm.com. 
 
Tools and training that support the Booch method are available from a variety of sources. For 
further information, contact Rational at any of the numbers listed on the last page of this 
book. Additionally, Addison-Wesley can provide educational users with software that 
supports this notation. 
 
 
Using this Book 
 
This book may be read from cover to cover or it may be used in less structured ways. If you 
are seeking a deep understanding of the underlying concepts of the object model or the 
motivation for the principles of object-oriented development, you should start with Chapter 1 
and continue forward in order. If you are primarily interested in learning the details of the 
notation and process of object-oriented analysis and design, start with Chapters 5 and 6; 
Chapter 7 is especially useful to managers of projects using this method. If you are most 
interested in the practical application of object-oriented technology to a specific problem 
domain, select any or all of Chapters 8 through 12. 
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CONCEPTS 
 
 

Sir Isaac Newton secretly admitted to some friends: He  
understood how gravity behaved, but not how it worked! 
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CHAPTER I 

2 

 
 
Complexity 
 
 
 
 
A physician, a civil engineer, and a computer scientist were arguing about what was the 
oldest profession in the world. The physician remarked, "Weil, in the Bible, it says that God 
created Eve from a rib taken out of Adam. This clearly required surgery, and so I can rightly 
claim that mine is the oldest profession in the world." The civil engineer interrupted, and said, 
"But even earlier in the book of Genesis, it states that God created the order of the heavens 
and the earth from out of the chaos. This was the first and certainly the most spectacular 
application of civil engineering. Therefore, fair doctor, you are wrong: mine is the oldest 
profession in the world." The computer scientist leaned back in her chair, smiled, and then 
said confidently, "Ah, but who do you think created the chaos?" 
 
 
1.1 The Inherent Complexity of Software 
 
The Properties of Simple and Complex Software Systems 
 
A dying star on the verge of collapse, a child learning how to read, white blood cells rushing 
to attack a virus: these are but a few of the objects in the physical world that involve truly 
awesome complexity. Software may also involve elements of great complexity; however, the 
complexity we find here is of a fundamentally different kind. As Brooks points out, "Einstein 
argued that there must be simplified explanations of nature, because God is not capricious or 
arbitrary. No such faith comforts the software engineer. Much of the complexity that he must 
master is arbitrary complexity" [1]. 
 
We do realize that some software systems are not complex. These are the largely forgettable 
applications that are specified, constructed, maintained, and used by the same person, 
usually the amateur programmer or the professional developer working in isolation. This is 
not to say that all such systems are crude and inelegant, nor do we mean to belittle their 
creators. Such systems tend to have a very limited purpose and a very short life span. We can 
afford to throw them away and replace them with entirely new software rather than attempt 
to reuse them, repair them, or extend their functionality, Such applications are generally more 
tedious than difficult to develop; consequently, learning how to design them does not interest 
us. 
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Instead, we are much more interested in the challenges of developing what we will call 
industrial-strength software. Here we find applications that exhibit a very rich set of behaviors, 
as, for example, in reactive systems that drive or are driven by events in the physical world, 
and for which time and space are scarce resources; applications that maintain the integrity of 
hundreds of thousands of records of information while allowing concurrent updates and 
queries; and systems for the command and control of real-world entities, such as the routing 
of air or railway traffic. Software systems such as these tend to have a long life span, and over 
time, many users come to depend upon their proper functioning. In the world of industrial-
strength software, we also find frameworks that simplify the creation of domain-specific 
applications, and programs that mimic some aspect of human intelligence. Although such 
applications are generally products of research and development they are no less complex, 
for they are the means and artifacts of incremental and exploratory development. 
 
The distinguishing characteristic of industrial-strength software is that it is intensely difficult, 
if not impossible, for the individual developer to comprehend all the subtleties of its design. 
Stated in blunt terms, the complexity of such systems exceeds the human intellectual 
capacity. Alas, this complexity we speak of seems to be an essential property of all large 
software systems. By essential we mean that we may master this complexity, but we can never 
make it go away. 
 
Certainly, there will always be geniuses among us, people of extraordinary skill who can do 
the work of a handful of mere mortal developers, the software engineering equivalents of 
Frank Lloyd Wright or Leonardo da Vinci. These are the people whom we seek to deploy as 
our systems architects: the ones who devise innovative idioms, mechanisms, and frameworks 
that others can use as the architectural foundations of other applications or systems. 
However, as Peters observes, "The world is only sparsely populated with geniuses. There is 
no reason to believe that the software engineering community has an inordinately large 
proportion of then" [2]. Although there is a touch of genius in all of us, in the realm of 
industrial-strength software we cannot always rely upon divine inspiration to carry us 
through. Therefore, we must consider more disciplined ways to master complexity. To better 
understand what we seek to control, let us next examine why complexity is an essential 
property of all software systems. 
 
 
Why Software Is Inherently Complex 
 
As Brooks suggests, "The complexity of software is an essential property, not an accidental 
one" [3]. We observe that this inherent complexity derives from four elements: the complexity 
of the problem domain, the difficulty of managing the developmental process, the flexibility 
possible through software, and the problems of characterizing the behavior of discrete 
systems. 
 
The Complexity of the Problem Domain The problems we try to solve in software often 
involve elements of inescapable complexity, in which we find a myriad of competing, 
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perhaps even contradictory, requirements. Consider the requirements for the electronic 
system of a multi-engine aircraft, a cellular phone switching system, or an autonomous robot. 
The raw functionality of such systems is difficult enough to comprehend, but now add all of 
the (often implicit) nonfunctional requirements such as usability, performance, cost, 
survivability, and reliability. This unrestrained external complexity is what causes the 
arbitrary complexity about which Brooks writes. 
 
This external complexity usually springs from the "impedance mismatch" that exists between 
the users of a system and its developers: users generally find it very hard to give precise 
expression to their needs in a form that developers can understand In extreme cases, users 
may have only vague ideas of what they want in a software system. This is not so much the 
fault of either the users or the developers of a system; rather, it occurs because each group 
generally lacks expertise in the domain of the other. Users and developers have different 
perspectives on the nature of the problem and make different assumptions regarding the 
nature of the solution. Actually, even if users had perfect knowledge of their needs, we 
currently have few instruments for precisely capturing these requirements. The common way 
of expressing requirements today is with large volumes of text, occasionally accompanied by 
a few drawings. Such documents are difficult to comprehend, are open to varying 
interpretations, and too often contain elements that are designs rather than essential 
requirements. 
 
A further complication is that the requirements of a software system often change during its 
development, largely because the very existence of a software development project alters the 
rules of the problem. Seeing early products, such as design documents and prototypes, and 
then using a system once it is installed and operational, are forcing functions that lead users 
to better understand and articulate their real needs. At the same time, this process helps 
developers master the problem domain, enabling them to ask better questions that illuminate 
the dark comers of a system's desired behavior. 
 
Because a large software system is a capital investment, we cannot afford to scrap an existing 
system every time its requirements change. Planned or not, 
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The task of the software development team is to engineer the illusion of simplicity. 
 
large systems tend to evolve over time, a condition that is often incorrectly labeled software 
maintenance. To be more precise, it is maintenance when we correct errors; it is evolution when 
we respond to changing requirements; it is preservation when we continue to use 
extraordinary means to keep an ancient and decaying piece of software in operation. 
Unfortunately, reality suggests that an inordinate percentage of software development 
resources are spent on software preservation. 
 
The Difficulty of Managing the Development Process The fundamental task of the 
software development team is Lo engineer the illusion of simplicity - to shield users from this 
vast and often arbitrary external complexity. Certainly, size is no great virtue in a software 
system. We strive to write less code by inventing clever and powerful mechanisms that give 
us this illusion of simplicity, as well as by reusing frame-works of existing designs and code. 
However, the sheer volume of a system's requirements is sometimes inescapable and forces 
us cither to write a large amount of new software or to reuse existing software in novel ways. 
Just two decades ago, assembly language programs of only a few thousand lines of code 
stressed the limits of our software engineering abilities. Today, it is not unusual to find 
delivered systems whose size is measured in hundreds of thousands, or even millions of lines 
of code (and all of that in a high-order programming language, as well). No one person can 
ever understand such a system completely. Even if we decompose our implementation in 
meaningful ways, we still end up with hundreds and sometimes thousands of separate 
modules. This amount of work demands that we use a team of developers, and ideally we use 
as small a team as possible. However, no matter what its size, there are always significant 
challenges associated with team development. More developers means more complex 
communication and hence more difficult coordination, particularly if the team is 
geographically dispersed, as is often the case in very large projects. With a team of 
developers, the key management challenge is always to maintain a unity and integrity of 
design. 



 Chapter 1: Complexity      6 

 
The Flexibility Possible Through Software A home-building company generally does not 
operate its own tree farm from which to harvest trees for lumber; it is highly unusual for a 
construction firm to build an on-site steel mill to forge custom girders for a new building. Yet 
in the software industry such practice is common. Software offers the ultimate flexibility, so it 
is possible for a developer to express almost any kind of abstraction. This flexibility turns out 
to be an incredibly seductive property, however, because it also forces the developer to craft 
virtually all the primitive building blocks upon which these higher-level abstractions stand. 
While the construction industry has uniform building codes and standards for the quality of 
raw materials, few such standards exist in the software industry. As a result, software 
development remains a labor-intensive business. 
 
The Problems of Characterizing the Behavior of Discrete Systems If we toss a ball into 
the air, we can reliably predict its path because we know that under normal conditions, 
certain laws of physics apply. We would be very surprised if just because we threw the ball a 
little harder, halfway through its flight it suddenly stopped and shot straight up into the air2 
in a not-quite-debugged software simulation of this ball's motion, exactly that kind of 
behavior can easily occur. 
 
Within a large application, there may be hundreds or even thousands of variables as well as 
more than one thread of control. The entire collection of these variables, their current values, 
and the current address and calling stack of each process within the system constitute the 
present state of the application. Because we execute out software on digital computers, we 
have a system with discrete states. By contrast, analog systems such as the motion of the 
tossed ball are continuous systems. Parnas suggests that "when we say that a system is 
described by a continuous function, we are saying that it can contain no hidden surprises. 
Small changes in inputs will always cause correspondingly small changes in outputs" [4]. On 
the other hand, discrete systems by their very nature have a finite number of possible states; 
in large systems, there is a combinatorial explosion that makes this number very large. We try 
to design our systems with a separation of concerns, so that the behavior in one part of a 
system has minimal impact upon the behavior in another. However, the fact remains that the 
phase transitions among discrete states cannot be modeled by continuous functions. Each 
event external to a software system has the potential of placing that system in a new state, 
and furthermore, the mapping from state to state is not always deterministic. In the worst 
circumstances, an external event may corrupt the state of a system, because its designers 
failed to take into account certain interactions among events. For example, imagine a 
commercial airplane whose flight surfaces and cabin environment are managed by a single 
computer. We would be very unhappy if, as a result of a passenger in seat 38J turning on an 
overhead light, the plane immediately executed a sharp dive. In continuous systems this kind 

                                                 
2 Actually, even simple continuous systems can exhibit very complex behavior, because of the presence of chaos. 
Chaos introduces a randomness that makes it impossible Lo precisely predict the future state of a system. For 
example, given the initial state of two drops of water at the top of a stream, we cannot predict exactly where 
they will be relative Lo one another at the bottom of the stream. Chaos has been found in systems as diverse as 
the weather, chemical reactions, biological systems, and even computer networks. Fortunately, there appears Lo 
be underlying order in all chaotic systems, in the form, of patterns called attractors. 
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of behavior would be unlikely, but in discrete systems all external events can affect any part 
of the system's internal state. Certainly, this is the primary motivation for vigorous testing of 
our systems, but for all except the most trivial systems, exhaustive testing is impossible. Since 
we have neither the mathematical tools nor the intellectual capacity to model the complete 
behavior of large discrete systems, we must be content with acceptable levels of confidence 
regarding their correctness. 
 
 
The Consequences of Unrestrained Complexity 
 
"The more complex the system, the more open it is to total breakdown" [5]. Rarely would a 
builder think about adding a new sub-basement to an existing 100-story building; to do so 
would be very costly and would undoubtedly invite failure. Amazingly, users of software 
systems rarely think twice about asking for equivalent changes. Besides, they argue, it is only 
a simple matter of programming. 
 
Our failure to master the complexity of software results in projects that are late, over budget, 
and deficient in their stated requirements. We often call this condition the software crisis, but 
frankly, a malady that has carried on this long must be called normal. Sadly, this crisis 
translates into the squandering of human resources - a most precious commodity - as well as 
a considerable loss of opportunities. There are simply not enough good developers around to 
create all the new software that users need. Furthermore, a significant number of the 
developmental personnel in any given organization must often be dedicated to the 
maintenance or preservation of geriatric software. Given the indirect as well as the direct 
contribution of software to the economic base of most industrialized countries, and 
considering the ways in which software can amplify the powers of the individual, it is 
unacceptable to allow this situation to continue. 
 
How can we change this dismal picture? Since the underlying problem springs from the 
inherent complexity of software, our suggestion is to first study how complex systems in 
other disciplines are organized. Indeed, if we open our eyes to the world about us, we will 
observe successful systems of significant complexity. Some of these systems are the works of 
humanity, such as the Space Shuttle, the England/France tunnel, and large business 
organizations such as Microsoft or General Electric. Many even more complex systems 
appear in nature, such as the human circulatory system or the structure of a plant. 
 
 
1.2 The Structure of Complex Systems 
 
Examples of Complex Systems 
 
The Structure of a Personal Computer A personal computer is a device of moderate 
complexity. Most of them are composed of the same major elements: a central processing unit 
(CPU), a monitor, a keyboard, and some sort of secondary storage device, usually either a 
floppy disk or a hard disk drive. We may take any one of these parts and further decompose 
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it. For example, a CPU typically encompasses primary memory, an arithmetic/logic unit 
(ALU), and a bus to which peripheral devices are attached. Each of these parts may in turn be 
further decomposed: an ALU may be divided into registers and random control logic, which 
themselves are constructed from even more primitive elements, such as NAND gates, 
inverters, and so on. 
 
Here we see the hierarchic nature of a complex system. A personal computer functions 
properly only because of the collaborative activity of each of its major parts. Together, these 
separate parts logically form a whole. Indeed, we can reason about how a computer works 
only because we can decompose it into parts that we can study separately. Thus, we may 
study the operation of a monitor independently of the operation of the hard disk drive. 
Similarly, we may study the ALU without regard for the primary memory subsystem. 
 
Not only are complex systems hierarchic, but the levels of this hierarchy represent different 
levels of abstraction, each built upon the other, and each understandable by itself. At each 
level of abstraction, we find a collection of devices that collaborate to provide services to 
higher layers. We choose a given level of abstraction to suit our particular needs. For instance, 
if we were trying to track down a timing problem in the primary memory, we might properly 
look at the gate-level architecture of the computer, but this level of abstraction would be 
inappropriate if we were trying to find the source of a problem in a spreadsheet application. 
 
The Structure of Plants and Animals In botany, scientists seek to understand the 
similarities and differences among plants through a study of their morphology, that is, their 
form and structure. Plants are complex multicellular organisms, and from the cooperative 
activity of various plant organ systems arise such complex behaviors as photosynthesis and 
transpiration. 
 
Plants consist of three major structures (roots, stems, and leaves), and each of these has its 
own structure. For example, roots encompass branch roots, root hairs, the root apex, and the 
root cap. Similarly, a cross-section of a leaf reveals its epidermis, mesophyll, and vascular 
tissue. Each of these structures is further composed of a collection of cells, and inside each cell 
we find yet another level of complexity, encompassing such elements as chloroplasts, a 
nucleus, and so on. As with the structure of a computer, the parts of a plant form a hierarchy, 
and each level of this hierarchy embodies its own complexity. 
 
All parts at the same level of abstraction interact in well-defined ways. For example, at the 
highest level of abstraction, roots are responsible for absorbing water and minerals from the 
soil. Roots interact with stems, which transport these raw materials up to the leaves. The 
leaves in turn use the water and minerals provided by the stems to produce food through 
photosynthesis. 
 
There are always clear boundaries between the outside and the inside of a given level. For 
example, we can state that the parts of a leaf work together to provide the functionality of the 
leaf as a whole, and yet have little or no direct interaction with the elementary parts of the 
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roots. In simpler terms, there is a clear separation of concerns among the parts at different 
levels of abstraction. 
 
In a computer, we find NAND gates used in the design of the CPU as well as in the hard disk 
drive. Likewise, a considerable amount of commonality cuts across all parts of the structural 
hierarchy of a plant. This is God's way of achieving an economy of expression. For example, 
cells serve as the basic building blocks in all structures of a plant; ultimately, the roots, stems, 
and leaves of a plant are all composed of cells. Yet, although each of these primitive elements 
is indeed a cell, there are many different kinds of cells. For example, there are cells with and 
without chloroplasts, cells with walls that are impervious to water and cells with walls that 
are permeable, and even living cells and dead cells. 
 
In studying the morphology of a plant, we do not find individual parts that are each 
responsible for only one small step in a single larger process, such as photosynthesis. In fact, 
there are no centralized parts that directly coordinate the activities of lower level ones. 
Instead, we find separate parts that act as independent agents, each of which exhibits some 
fairly complex behavior, and each of which contributes to many higher-level functions. Only 
through the mutual cooperation of meaningful collections of these agents do we see the 
higher-level functionality of a plant. The science of complexity calls this emergent behavior: The 
behavior of the whole is greater than the sum of its parts [6]. 
 
Turning briefly to the field of zoology, we note that multicellular animals exhibit a 
hierarchical structure similar to that of plants: collections of cells form tissues, tissues work 
together as organs, clusters of organs define systems (such as the digestive system), and so 
on. We cannot help but again notice God's awesome economy of expression: the fundamental 
building block of all animal matter is the cell, just as the cell is the elementary structure of all 
plant life. Granted, there are differences between these two. For example, plant cells are 
enclosed by rigid cellulose walls, but animal cells are not. Notwithstanding these differences, 
however, both of these structures are undeniably cells. This is an example of commonality 
that crosses domains. 
 
A number of mechanisms above the cellular level are also shared by plant and animal fife. For 
example, both use some sort of vascular system to transport nutrients within the organism, 
and both exhibit differentiation by sex among members of the same species. 
 
The Structure of Matter The study of fields as diverse as astronomy and nuclear physics 
provides us with many other examples of incredibly complex systems. Spanning these two 
disciplines, we find yet another structural hierarchy. Astronomers study galaxies that are 
arranged in clusters, and stars, planets, and various debris are the constituents of galaxies. 
Likewise, nuclear physicists are concerned with a structural hierarchy, but one on an entirely 
different scale. Atoms are made up of electrons, protons, and neutrons; electrons appear to be 
elementary particles, but protons, neutrons, and other particles are formed from more basic 
components called quarks. 
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Again we find that a great commonality in the form of shared mechanisms unifies this vast 
hierarchy. Specifically, there appear to be only four distinct kinds of forces at work in the 
universe: gravity, electromagnetic interaction, the strong force, and the weak force. Many 
laws of physics involving these elementary forces, such as the laws of conservation of energy 
and of momentum, apply to galaxies as well as quarks. 
 
The Structure of Social Institutions As a final example of complex systems, we turn to the 
structure of social institutions. Groups of people join together to accomplish tasks that cannot 
be done by individuals. Some organizations are transitory, and some endure beyond many 
lifetimes. As organizations grow larger, we see a distinct hierarchy emerge. Multinational 
corporations contain companies, which in turn are made up of divisions, which in turn 
contain branches, which in turn encompass local offices, and so on. If the organization 
endures, the boundaries among these parts may change, and over time, a new, more stable 
hierarchy may emerge. 
 
The relationships among the various parts of a large organization are just like those found 
among the components of a computer, or a plant, or even a galaxy. Specifically, the degree of 
interaction among employees within an individual office is greater than that between 
employees of different offices. A mail clerk usually does not interact with the chief executive 
officer of a company but does interact frequently with other people in the mail room. Here 
too, these different levels are unified by common mechanisms. The clerk and the executive 
are both paid by the same financial organization, and both share common facilities, such as 
the company's telephone system, to accomplish their tasks. 
 
 
The Five Attributes of a Complex System 
 
Drawing from this line of study, we conclude that there are five attributes common to all 
complex systems. Building upon the work of Simon and Ando, Courtois suggests the 
following: 
 

1. "Frequently, complexity takes the form of a hierarchy, whereby a complex system is composed 
of interrelated subsystems that have in turn their own subsystems, and so on, until some lowest 
level of elementary components is reached" [7]. 

 
Simon points out that "the fact that many complex systems have a nearly decomposable, 
hierarchic structure is a major facilitating factor enabling us to understand, describe, and even 
'see' such systems and their parts" [8]. Indeed, it is likely that we can understand only those 
systems that have a hierarchic structure. 
 
It is important to realize that the architecture of a complex system is a function of its 
components as well as the hierarchic relationships among these components. As Rechtin 
observes, "All systems have subsystems and all systems are parts of larger systems . . . The 
valued added by a system must come from the relationships between the parts, not from the 
parts per se" [9]. 
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Regarding the nature of the primitive components of a complex system, our experience 
suggests that 
 

2. The choice of what components in a system are primitive is relatively arbitrary and is largely 
up to the discretion of the observer of the system. 

 
What is primitive for one observer may be at a much higher level of abstraction for another. 
 
Simon calls hierarchic systems decomposable, because they can be divided into identifiable 
parts; he calls them nearly decomposable, because their parts are not completely 
independent. This leads us to another attribute common to all complex systems: 
 

3. “Intracomponent linkages are generally stronger than intercommoning linkages. This fact has 
the effect of separating the high-frequency dynamics of the components - involving the internal 
structure of the components - from the low-frequency dynamics - involving interaction among 
components"[10]. 

 
This difference between intra- and intercomponent interactions provides a clear separation of 
concerns among the various parts of a system, making it possible to study each part in 
relative isolation. 
 
As we have discussed, many complex systems are implemented with an economy of 
expression. Simon thus notes that 
 

4. "Hierarchic systems are usually composed of only a few different kinds of subsystems in 
various combinations and arrangements " [11]. 

 
In other words, complex systems have common patterns. These patterns may involve the 
reuse of small components, such as the cells found in both plants and animals, or of larger 
structures, such as vascular systems, also found in both plants and animals. 
 
Earlier, we noted that complex systems tend to evolve over time. As Simon suggests, 
"complex systems will evolve from simple systems much more rapidly if there are stable 
intermediate forms than if there are not” [12]. In more dramatic terms, Gall states that 
 

5. “A complex system that works is invariably found to have evolved from a simple system that 
worked.... A complex system designed from scratch never works and cannot be patched up to 
make it work. You have to start over, beginning with a working simple system " [13]. 

 
As systems evolve, objects that were once considered complex become the primitive objects 
upon which more complex systems are built. Furthermore, we can never craft these primitive 
objects correctly the first time: we must use them in context first, and then improve them over 
time as we learn more about the real behavior of the system. 
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Organized and Disorganized Complexity 
 
The Canonical Form of a Complex System The discovery of common abstractions and 
mechanisms greatly facilitates our understanding of complex systems. For example, with just 
a few minutes of orientation, an experienced pilot can step into a multiengine jet aircraft he or 
she has never flown before and safely fly the vehicle. Having recognized the properties 
common to all such aircraft, such as the functioning of the rudder, ailerons, and throttle, the 
pilot primarily needs to learn what properties are unique to that particular aircraft. If the pilot 
already knows how to fly a given aircraft, it is far easier to know how to fly a similar one. 
 
This example suggests; that we have been using the term hierarchy in a rather loose fashion. 
Most interesting systems do not embody a single hierarchy; instead, we find that many 
different hierarchies are usually present within the same complex system. For example, an 
aircraft may be studied by decomposing it into its propulsion system, flight-control system, 
and so on. This decomposition represents a structural, or "part of" hierarchy. Alternately, we 
can cut across the system in an entirely orthogonal way. For example, a turbofan engine is a 
specific kind of jet engine, and a Pratt and Whitney TF30 is a specific kind of turbofan engine. 
Stated another way, a jet engine represents a generalization of the properties common to 
every kind of jet engine; a turbofan engine is simply a specialized kind of jet engine, with 
properties that distinguish it, for example, from ramjet engines. 
 

 
 
Figure 1-1 
The Canonical Form of a Complex System 
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This second hierarchy represents an "is a" hierarchy. In our experience, we have found it 
essential to view a system from both perspectives, studying its "is a" hierarchy as well as its 
"part of” hierarchy. For reasons that will become clear in the next chapter, we call these 
hierarchies the class structure and the object structure, respectively3. 
 
Combining the concept of the class and object structure together with the five attributes of a 
complex system, we find that virtually all complex systems take en the same (canonical) form, 
as we show in Figure 1-1. Here we see the two orthogonal hierarchies of the system: its class 
structure and its object structure. Each hierarchy is layered, with the more abstract classes 
and objects built upon more primitive ones. What class or object is chosen as primitive is 
relative to the problem at hand, Especially among the parts of the object structure, there are 
close collaborations among objects at the same level of abstraction, Looking inside any given 
level reveals yet another level of complexity. Notice also that the class structure and the object 
structure are not completely independent; rather, each object in the object structure represents 
a specific instance of some class. As the figure suggests, there are usually many more objects 
than classes of objects within a complex system. Thus, by showing the "part of" as well as the 
"is a" hierarchy, we explicitly expose the redundancy of the system under consideration, lf we 
did not reveal a system's class structure, we would have to duplicate our knowledge about 
the properties of each individual part. With the inclusion of the class structure, we capture 
these common properties in one place. 
 
Our experience is that the most successful complex software systems are those whose designs 
explicitly encompass a well-engineered class and object structure and whose structure 
embodies the five attributes of complex systems described in the previous section. Lest the 
importance of this observation be missed, let us be even more direct: we very rarely 
encounter software systems that are delivered on time, within budget, and that meet their 
requirements, unless they are designed with these factors in mind. 
 
Collectively, we speak of the class and object structure of a system as its architecture. 
  
The Limitations of the Human Capacity for Dealing with Complexity If we know what the 
design of complex software systems should be like, then why do we still have serious 
problems in successfully developing them? As we discuss in the next chapter, this concept of 
the organized complexity of software (whose guiding principles we call the object model) is 
relatively new. However, there is yet another factor that dominates: the fundamental 
limitations of the human capacity for dealing with complexity. 
 
As we first begin to analyze a complex software system, we find many parts that must 
interact in a multitude of intricate ways, with little perceptible commonality among either the 
parts or their interactions: this is an example of disorganized complexity. As we work to 
bring organization to this complexity through the process of design, we must think about 
many things at once.  For example, in an air traffic control system, we must deal with the state 
                                                 
3 Complex software systems embody other kinds of hierarchies as well. Of particular importance is its module 
structure, which describes the relationships among the physical components of the system, and the process 
hierarchy, which describes the relationships among the system's dynamic components. 
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of many different aircraft at once, involving such properties as their location, speed, and 
heading. Especially in the case of discrete systems, we must cope with a fairly large, intricate, 
and sometimes no deterministic state space. Unfortunately, it: is absolutely impossible for a 
single person to keep track of all of these details at once. Experiments by psychologists, such 
as those of Miller, suggest that the maximum number of chunks of information that an 
individual can simultaneously comprehend is on the order of seven, plus or minus two [14]. 
This channel capacity seems to be related to the capacity of short-term 
 
 
 

 
Figure 1-2 
Algorithmic Decomposition 
 
memory. Simon additionally notes that processing speed is a limiting factor: it takes the mind 
about five seconds to accept a new chunk of information [15] 
 
We are thus faced with a fundamental dilemma. The complexity of the software systems we 
are asked to develop is increasing, yet there are basic limits upon our ability to cope with this 
complexity. How then do we resolve this predicament? 
 
 
1.3 Bringing Order to Chaos 
 
The Role of Decomposition 
 
As Dijkstra suggests, “The technique of mastering complexity has been known since ancient 
times: divide et impera (divide and rule)" [16]. When designing a complex software system, it is 
essential to decompose it into smaller and smaller parts, each of which we may then refine 
independently. In this manner, we satisfy the very real constraint that exists upon the channel 
capacity of human cognition: to understand any given level of a system, we need only 
comprehend a few parts (rather than all parts) at once. Indeed, as Parnas observes, intelligent 
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decomposition directly addresses the inherent complexity of software by forcing a division of 
a system's state space [17]. 
 
Algorithmic Decomposition Most of us have been formally trained in the dogma of top-
down structured design, and so we approach decomposition as a simple matter of 
algorithmic decomposition, wherein each module in the system denotes a major step in some 
overall process. Figure 1-2 is an example of one of the products of structured design, a 
structure chart that shows the relationships among various functional elements of the 
solution. This particular structure chart illustrates part of the design of a program that 
updates the 

 
Figure 1-3 
Object-Oriented Decomposition 
 
content of a master file. It was automatically generated from a data flow diagram by an expert 
system tool that embodies the rules of structured design [18]. 
 
Object-Oriented Decomposition We suggest that there is an alternate decomposition 
possible for the same problem. In Figure 1-3, we have decomposed the system according to 
the key abstractions in the problem domain. Rather than decomposing the problem into steps 
such as Get formatted update and Add check sum , we have identified objects such as Master File 
and Check Sum, which derive directly from the vocabulary of the problem domain. 
 
Although both designs solve the same problem, they do so in quite different ways. In this 
second decomposition, we view the world as a set of autonomous agents that collaborate to 
perform some higher level behavior. Get formatted update thus does not exist as an 
independent algorithm; rather, it is an operation associated with the object File of Updates. 
Calling this operation creates another object, Update to Card. In this manner, each object in our 
solution embodies its own unique behavior, and each one models some object in the real 
world. From this perspective, an object is simply a tangible entity which exhibits some well-
defined behavior. Objects do things, and we ask them to perform what they do by sending 
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them messages. Because our decomposition is based upon objects and not algorithms, we call 
this an object-oriented decomposition. 
 
Algorithmic versus Object-Oriented Decomposition Which is the right way to decompose 
a complex system - by algorithms or by objects? Actually, this is a trick question, because the 
right answer is that both views are important: the algorithmic view highlights the ordering of 
events, and the object-oriented view emphasizes the agents that either cause action or are the 
subjects upon which these operations act. However, the fact remains that we cannot construct 
a complex system in both ways simultaneously, for they are completely orthogonal views4. 
We must start decomposing a system either by algorithms or by objects, and then use the 
resulting structure as the framework for expressing the other perspective. 
 
Our experience leads us to apply the object-oriented view first because this approach is better 
at helping us organize the inherent complexity of software systems, just as it helped us to 
describe the organized complexity of complex systems as diverse as computers, plants, 
galaxies, and large social institutions. As we will discuss further in Chapters 2 and 7, object-
oriented decomposition has a number of highly significant advantages over algorithmic 
decomposition. Object-oriented decomposition yields smaller systems through the reuse of 
common mechanisms, thus providing an important economy of expression. Object-oriented 
systems are also more resilient to change and thus better able to evolve over time, because 
their design is based upon stable intermediate forms. Indeed, object-oriented decomposition 
greatly reduces the risk of building complex software systems, because they are designed to 
evolve incrementally from smaller systems in which we already have confidence. 
Furthermore, object-oriented decomposition directly addresses the inherent complexity of 
software by helping us make intelligent decisions regarding the separation of concerns in a 
large state space. 
 
Chapters 8 through 12 demonstrate these benefits through several complete applications, 
drawn from a diverse set of problem domains. The sidebar in this chapter further compares 
and contrasts the object-oriented view with more traditional approaches to design. 

                                                 
4 Langdon suggests that this orthogonality has been studied since ancient times. As he states, "C. H. Waddington 
has noted that the duality of views can be traced back to the ancient Greeks. A passive view was proposed by 
Democritus, who asserted that the world was composed of matter called atoms. Democritus' view places things 
at the Center of focus. On the othe'r hand, the classical spokesman for the active view is Heraclitus, who 
emphasized the notion of process" [34]. 
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Categories of Analysis and Design Methods 
 
We find it useful to distinguish between the terms method and methodology. A method is a 
disciplined process for generating a set of models that describe various aspects of a software 
system under development, using some well-defined notation. A methodology is a collection 
of methods applied across the software development life cycle and unified by some general, 
philosophical approach. Methods are important for several reasons. Foremost, they instill a 
discipline into the development of complex software systems. They define the products that 
serve as common vehicles for communication among the members of a development team. 
Additionally, methods define the milestones needed by management to measure progress 
and to manage risk. 
 
Methods have evolved in response to the growing complexity of software systems. In the 
early days of computing, one simply did not write large programs, because the capabilities of 
our machines were greatly limited. The dominant constraints in building systems were then 
largely due to hardware: machines had small amounts of main memory, programs had to 
contend with considerable latency within secondary storage devices such as magnetic drums, 
and processors had cycle times measured in the hundreds of microseconds. In the 1960s and 
1970s the economics of computing began to change dramatically as hardware costs 
plummeted and computer capabilities rose. As a result, it was more desirable and now finally 
economical to automate more and more applications of increasing complexity. High-order 
programming languages entered the scene as important tools. Such languages improved the 
productivity of the individual developer and of the development team as a whole, thus 
ironically pressuring us to create software systems of even greater complexity. 
 
Many design methods were proposed during the 1960s and 1970s to address this growing 
complexity. The most influential of them was top-down structured design, also known as 
composite design. This method was directly influenced by the topology of traditional high-
order programming languages, such as FORTRAN and COBOL. In these languages, the 
fundamental unit of decomposition is the subprogram, and the resulting program takes the 
shape of a tree in which subprograms perform their work by calling other subprograms. This 
is exactly the approach taken by top-down structured design: one applies algorithmic 
decomposition -to break a large problem down into smaller steps. 
 
Since the 1960s and 1970s, computers of vastly greater capabilities have evolved. The value of 
structured design has not changed, but as Stein observes, "Structured programming appears 
to fall apart when applications exceed 100,000 lines or so of code" [19]. More recently, dozens 
of design methods have been proposed, many of them invented to deal with the perceived 
shortcomings of top-down structured design. The more interesting and successful design 
methods are cataloged by Peters [20] and Yau and Tsai [21], and in a comprehensive survey 
by Teledyne-Brown Engineering [22]. Perhaps not surprisingly, many of these methods are 
largely variations upon a similar theme. Indeed, as Sommerville suggests, most methods can 
be categorized as one of three kinds [23]: 
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• Top-down structured design 
• Data-driven design 
• Object-oriented design 
 
Top-down structured design is exemplified by the work of Yourdon and Constantine [24], 
Myers [25], and Page-Jones [26]. The foundations of this method derive from the work of 
Wirth [27, 28] and Dahl, Dijkstra, and Hoare [29]; an important variation on structured design 
is found in the design method of Mills, Linger, and Hevner [30]. Each of these variations 
applies algorithmic decomposition. More software has probably been written using these 
design methods than with any other. Nevertheless, structured design does not address the 
issues of data abstraction and information hiding, nor does it provide an adequate means of 
dealing with concurrency. Structured design does not scale up well for extremely complex 
systems, and this method is largely inappropriate for use with object-based and object-
oriented programming languages. 
 
Data-driven design is best exemplified by the early work of Jackson [31, 32] and the methods 
of Warnier and Orr [33]. In this method, the structure of a software system is derived by 
mapping system inputs to outputs. As with structured design, data-driven design has been 
successfully applied to a number of complex domains, particularly information management 
systems, which involve direct relationships between the inputs and outputs of the system, but 
require little concern for time-critical events. 
 
Object-oriented analysis and design is the method we introduce in this book. Its underlying 
concept is that one should model software systems as collections of cooperating objects, 
treating individual objects as instances of a class within a hierarchy of classes. Object-oriented 
analysis and design directly reflects the topology of more recent high-order programming 
languages such as Smalltalk, Object Pascal, C++, the Common Lisp Object System (CLOS), 
and Ada. 
 
 
The Role of Abstraction 
 
Earlier, we referred to Miller's experiments, from which he concluded that an individual can 
comprehend only about seven, plus or minus two, chunks of information at one time. This 
number appears to be independent of information content. As Miller himself observes, "The 
span of absolute judgment and the span of immediate memory impose severe limitations on 
the amount of information that we are able to receive, process and remember. By organizing 
the stimulus input simultaneously into several dimensions and successively into a sequence 
of chunks, we manage to break ... this informational bottleneck" [35]. In contemporary terms, 
we call this process chunking, or abstraction. 
 
As Wulf describes it, "We (humans) have developed an exceptionally powerful technique for 
dealing with complexity. We abstract from it. Unable to master the entirety of a complex 
object, we choose to ignore its inessential details, dealing instead with the generalized, 
idealized model of the object [36]. For example, when studying how photosynthesis works in 
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a plant, we can focus upon the chemical reactions in certain cells in a leaf, and ignore all other 
parts, such as the roots and stems. We are still constrained by the number of things that we 
can comprehend at one time, but through abstraction, we use chunks of information with 
increasingly greater semantic content. This is especially true if we take an object-oriented 
view of the world, because objects, as abstractions of entities in the real world, represent a 
particularly dense and cohesive clustering of information. Chapter 2 examines the meaning of 
abstraction in much greater detail. 
 
 
The Role of Hierarchy  
 
Another way to increase the semantic content of individual chunks of information is by 
explicitly recognizing the class and object hierarchies within a complex software system. The 
object structure is important because it illustrates how different objects collaborate with one 
another through patterns of interaction that we call mechanisms. The class structure is equally 
important, because it highlights common structure and behavior within a system. Thus, 
rather than study each individual photosynthesizing cell within a specific plant leaf, it is 
enough to study one such cell, because we expect that all others will exhibit similar behavior. 
Although we treat each instance of a particular kind of object as distinct, we may assume that 
it shares the same behavior as all other instances of that same kind of object. By classifying 
objects into groups of related abstractions (for example, kinds of plant cells versus animal 
cells), we come to explicitly distinguish the common and distinct properties of different 
objects, which further helps us to master their inherent complexity [37]. 
 
Identifying the hierarchies within a complex software system is often not easy, because it 
requires the discovery of patterns among many objects, each of which may embody some 
tremendously complicated behavior. Once we have exposed these hierarchies, however, the 
structure of a complex system, and in turn our understanding of it, becomes vastly simplified. 
Chapter 3 considers in detail the nature of class and object hierarchies, and Chapter 4 
describes techniques that facilitate our identification of these patterns. 
 
 
1.4 On Designing Complex Systems 
 
Engineering as a Science and an Art 
 
The practice of every engineering discipline - be it civil, mechanical, chemical, electrical, or 
software engineering - involves elements of both science and art. As Petroski eloquently 
states, "The conception of a design for a new structure can involve as much a leap of the 
imagination and as much a synthesis of experience and knowledge as any artist is required to 
bring to his canvas or paper. And once that design is articulated by the engineer as artist, it 
must be analyzed by the engineer as scientist in as rigorous an application of the scientific 
method as any scientist must make" [38]. Similarly, Dijkstra observes that "the programming 
challenge is a large-scale exercise in applied abstraction and thus requires the abilities of the 
formal mathematician blended with the attitude of the competent engineer." [39]. 
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The role of the engineer as artist is particularly challenging when the task is to design an 
entirely new system. Frankly, this is the most common circumstance in software engineering. 
Especially in the case of reactive systems and systems for command and control, we are 
frequently asked to write software for an entirely unique set of requirements, often to be 
executed on a configuration of target processors constructed specifically for this system. In 
other cases, such as the creation of frameworks, tools for research in artificial intelligence, or 
even information management systems, we may have a well defined, stable target 
environment, but our requirements may stress the software technology in one or more 
dimensions. For example, we may be asked to craft systems that are faster, have greater 
capacity, or have radically improved functionality. In all these situations, we try to use 
proven abstractions and mechanisms (the "stable intermediate forms," in Simon's words) as a 
foundation upon which to build new complex systems. In the presence of a large library of 
reusable software components, the software engineer must assemble these parts in innovative 
ways to satisfy the stated and implicit requirements, just as the painter or the musician must 
push the limits of his or her medium. Unfortunately, since such rich libraries rarely exist for 
the software engineer, he or she must usually proceed with a relatively primitive set of 
facilities. 
 
 
The Meaning of Design 
 
In every engineering discipline, design encompasses the disciplined approach we use to 
invent a solution for some problem, thus providing a path from requirements to 
implementation. In the context of software engineering, Mostow suggests that the purpose of 
design is to construct a system that: 
 

• "Satisfies a given (perhaps informal) functional specification 
• Conforms to limitations of the target medium 
• Meets implicit or explicit requirements on performance and resource usage 
• Satisfies implicit or explicit design criteria on the form of the artifact 
• Satisfies restrictions on the design process itself, such as its length or cost, or the tools 

available for doing the design" [40] 
 
As Stroustrup suggests, "the purpose of design is to create a clean and relatively simple 
internal structure, sometimes also called an architecture.... A design is the end product of the 
design process" [41]. Design involves balancing a set of competing requirements. The 
products of design are models that enable us to reason about our structures, make trade-offs 
when requirements conflict, and in general, provide a blueprint for implementation. 
 
The Importance of Model Building The building of models has a broad acceptance among all 
engineering disciplines, largely because model building appeals to the principles of 
decomposition, abstraction, and hierarchy [42]. Each model within a design describes a 
specific aspect of the system under consideration. As much as possible, we seek to build new 
models upon old models in which we already have confidence. Models give us the 
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opportunity to fail under controlled conditions. We evaluate each model under both expected 
and unusual situations, and then alter them when they fail to behave as we expect or desire. 
 
We have found that in order to express all the subtleties of a complex system, we must use 
more than one kind of model. For example, when designing a single-board computer, an 
electrical engineer must take into consideration the gate-level view of the system as well as 
the physical layout of integrated circuits on the board. This gate-level view forms a logical 
picture of the design of the system, which helps the engineer to reason about the cooperative 
behavior of the gates. The board layout represents the physical packaging of these gates, 
constrained by the board size, available power, and the kinds of integrated circuits that exist. 
From this view, the engineer can independently reason about factors such as heat dissipation 
and manufacturability. The board designer must also consider dynamic as well as static 
aspects of the system under construction. Thus, the electrical engineer uses diagrams showing 
the static connections among individual gates, as well as timing diagrams that show the 
behavior of these gates over time. The engineer can then employ tools such as oscilloscopes 
and digital analyzers to validate the correctness of both the static and dynamic models. 
 
The Elements of Software Design Methods Clearly, there is no magic, no "silver bullet” 
[43], that: can unfailingly lead the software engineer down the path from requirements to the 
implementation of a complex software system. In fact, the design of complex software 
systems does not lend itself at all to cookbook approaches. Rather, as noted earlier in the fifth 
attribute of complex systems, the design of such systems involves an incremental and 
iterative process. 
 
Still, sound design methods do bring some much-needed discipline to the development 
process. The software engineering community has evolved dozens of, different design 
methods, which we can loosely classify into three categories (see sidebar). Despite their 
differences, all of these methods have elements in common. Specifically, each method 
includes the following: 
 

• Notation The language for expressing each model 
 

• Process The activities leading to the orderly construction of the system's models 
• Tools  The artifacts that eliminate the tedium of model building and enforce 

rules about the models themselves, so that errors and inconsistencies can be exposed 
 
A sound design method is based upon a solid theoretical foundation, yet offers degrees of 
freedom for artistic innovation. 
 
The Models of Object-Oriented Development Is there a "best” design method? No, there is 
no absolute answer to this question, which is actually just a veiled way of asking the earlier 
question: What is the best way to decompose a complex system? To reiterate, we have found 
great value in building models  
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Figure 1-4 
The Models of Object-Oriented Development 
 
that are focused upon the "things" we find, in the problem space, forming what we refer to as 
an object-oriented decomposition. 
 
Object-oriented analysis and design is the method that leads us to an object-oriented 
decomposition. By applying object-oriented design, we create software that is resilient to 
change and written with economy of expression. We achieve a greater level of confidence in 
the correctness of our software through an intelligent separation of its state space. Ultimately, 
we reduce the risks that are inherent in developing complex software systems. 
 
Because model building is so important to the systems, object-oriented development offers a 
rich describe in Figure 1-4. The models of object-oriented analysis and design reflect the 
importance of explicitly capturing both the class and object hierarchies of the system under 
design. These models also cover the spectrum of the important design decisions that we must 
consider in developing a complex system, and so encourage us to craft implementations that 
embody the five attributes of well-formed complex systems. 
 
Chapter 5 presents each of these four models in detail. Chapter 6 explains the process of 
object-oriented design, which provides an orderly set of steps for the creation and evolution 
of these models. Chapter 7 examines the pragmatics of managing a project using object-
oriented design.  
 
In this chapter, we have made a case for using object-oriented analysis and design to master 
the complexity associated with developing software systems. Additionally, we have 
suggested a number of fundamental benefits to be derived from applying this method. Before 
we present the notation and process of object-oriented design, however, we must study the 
principles upon which object-oriented development is founded, namely, abstraction, 
encapsulation, modularity, hierarchy, typing, concurrency, and persistence. 
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Summary 
 

• Software is inherently complex; the complexity of software systems often exceeds the 
human intellectual capacity. 

 
• The task of the software development team is to engineer the illusion of simplicity. 

 
• Complexity often takes the form of a hierarchy; it is useful to model both the "is a" and 

the "part: of' hierarchies of a complex system. 
 

• Complex systems generally evolve from stable intermediate forms. 
 

• There are fundamental limiting factors of human cognition; we can address these 
constraints through the use of decomposition, abstraction, and hierarchy. 

 
• Complex systems can be viewed cither by focusing upon things or processes; there are 

compelling reasons for applying object-oriented decomposition, in which we view the 
world as a meaningful collection of objects that collaborate to achieve some higher 
level behavior. 

 
• Object-oriented analysis and design is the method that leads us to an object-oriented 

decomposition; object-oriented design defines a notation and process for constructing 
complex software systems, and offers a rich set of logical and physical models with 
which we may reason about different aspects of the system under consideration. 

 
 
Further Readings 
 
The challenges associated with developing complex software systems are articulately 
described in the classic works by Brooks in [H 1975] and [H 1987]. Glass [H 1982], the Defense 
Science Board [H 1987], and the joint Service Task Force [H 1982] provide further information 
on contemporary software practices. Empirical studies on the nature and causes of software 
failures may be found in van Genuchten [H 1991], Guindon, et. al. [H 1987] and Jones [H 
1992]. 
 
Simon [A 1962, 1982] are the seminal references on the architecture of complex systems; 
Courtois [A 1985] applies these ideas to the domain of software. Alexander's seminal work in 
[I 1979] provides a fresh approach to architecting physical structures. Peter [I 1986] and 
Petroski [I 1985] examine complexity in the context of social and physical systems, 
respectively. Similarly, Allen and Stan- [A 1982] examine hierarchical systems in a number of 
domains. Flood and Carson [A 1988] offer a formal study of complexity as seen through the 
theory of systems science. Waldrop [A 1992] describes the emerging science of complexity 
and its study of complex adaptive systems, emergent behavior, and self-organization. The 
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report by Miller [A 1956] provides empirical evidence for the fundamental limiting factors of 
human cognition. 
 
There are a number of excellent references on the subject of software engineering. Ross, 
Goodenough, and Irvine [H 1980], and Zelkowitz [H 1978] are two of the classic papers 
summarizing the essential elements of software engineering. Extended works on the subject 
include Jensen and Tonies [H 1979], Sommerville [H 1985], Vick and Ramamoorthy [H 1984], 
Wegner [H 1980], Pressman [H 1992], Oman and Lewis [A 1990], Berzins and Lucli [H 1991], 
and Ng and Yeh [H 1990]. Other papers relevant to software engineering in general may be 
found in Yourdon [H 1979] and Freeman and Wasserman [H 1983]. Graham [F 1991] and 
Berard [H 1993] both present a broad treatment of object-oriented software engineering. 
 
Gleick [I 1987] offers a very readable introduction to the science of chaos. 
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The Object Model 
 
 
 
 
Object-oriented technology is built upon a sound engineering foundation, whose elements we 
collectively call the object model. The object model encompasses the principles of 
abstraction, encapsulation, modularity, hierarchy, typing, concurrency, and persistence. By 
themselves, none of these principles are new. What is important about the object model is 
that these elements are brought together in a synergistic way. 
 
Let there be no doubt that object-oriented analysis and design is fundamentally different than 
traditional structured design approaches: it requires a different way of thinking about 
decomposition, and it produces software architectures that are largely outside the realm of the 
structured design culture. These differences arise from the fact that structured design 
methods build upon structured programming, whereas object-oriented design builds upon 
object-oriented programming. Unfortunately, object-oriented programming means different 
things to different people. As Rentsch correctly predicted, "My guess is that object-oriented 
programming will be in the 1980s what structured programming was in the 1970s. Everyone 
will be in favor of it. Every manufacturer will promote his products as supporting it. Every 
manager will pay lip service to it. Every programmer will practice it (differently). And no one 
will know just what it is" [1]. Rentsch's predictions still apply to the 1990s. 
 
In this chapter, we will show clearly what object-oriented development is and what it is not, 
and hew it differs from other methods through its use of the seven elements of the object 
model. 
 
 
2.1 The Evolution of the Object Model 
 
Trends in Software Engineering 
 
The Generations of Programming Languages As we look back upon the relatively brief yet 
colorful history of software engineering, we cannot help but notice two sweeping trends: 
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• The shift in focus from programming-in-the-small to programming-in-the-large 
• The evolution of high-order programming languages 

 
Most new industrial-strength software systems are larger and more complex than their 
predecessors were even just a few years ago. This growth in complexity has prompted a 
significant amount of useful applied research in software engineering, particularly with 
regard to decomposition, abstraction, and hierarchy. The development of more expressive 
programming languages has complemented these advances. The trend has been a move away 
from languages that tell the computer what to do (imperative languages) toward languages 
that describe the key abstractions in the problem domain (declarative languages). 
 
Wegner has classified some of the more popular high-order programming languages in 
generations arranged according to the language features they first introduced: 
 

• First-Generation Languages (1954-1958) 
 

FORTRANI  Mathematical expressions 
ALGOL 58  Mathematical expressions 
Flowmatic  Mathematical expressions 
IPL V Mathematical expressions 

 
• Second-Generation Languages (1959~1961)  

 
FORTRANII   Subroutines, separate compilation 
ALGOL 60  Block structure, data types 
COBOL  Data description, file handling 
Lisp   List processing, pointers, garbage collection 
 

• Third-Generation Languages (1962-1970) 
 

PL/1   FORTRAN + ALGOL + COBOL 
  ALGOL 68  Rigorous successor to ALGOL 60 

Pascal   Simple successor to ALGOL 60 
Simula   Classes, data abstraction 

 
• The Generation Gap (1970-1980) 

Many different languages were invented, but few endured [2]. 
 
In successive generations, the kind of abstraction mechanism each language supported 
changed. First-generation languages were used primarily for scientific and engineering 
applications, and the vocabulary of this problem domain was almost entirely mathematics. 
Languages such as FORTRAN 1 were thus developed to allow the programmer to write 
mathematical formulas, thereby freeing the programmer from some of the intricacies of 
assembly or machine language. This first generation of high-order programming languages 
therefore represented a step closer to the problem space, and a step further away from the 
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underlying machine. Among second-generation languages, the emphasis was upon 
algorithmic abstractions. By this time, machines were becoming more and more powerful, 
and the economics of the computer industry meant that more kinds of problems could be 
automated, especially for business applications. Now, the focus was largely upon telling the 
machine what to do: read these personnel records first, sort them next, and then print this 
report. Again, this new generation of high-order programming languages moved us a step 
closer to the problem space, and further away from the underlying machine. By the late 
1960s, especially with the advent of transistors and then integrated circuit technology, the 
cost of computer hardware had dropped dramatically, yet processing capacity had grown 
almost exponentially. Larger problems could now be solved, but these demanded the 
manipulation of more kinds of data, Thus, languages such as ALGOL 60 and, later, Pascal 
evolved with support for data abstraction. Now a programmer could describe the meaning of 
related kinds of data (their type) and let the programming language enforce these design 
decisions. This generation of high-order programming languages again moved our software a 
step closer to the problem domain, and further away from the underlying machine. 
 
The 1970s provided us with a frenzy of activity in programming language research, resulting 
in the creation of literally a couple of thousand different programming languages and their 
dialects. To a large extent, the drive to write larger and larger programs highlighted the 
inadequacies of earlier languages; thus, many new language mechanisms were developed to 
address these limitations. Few of these languages survived (have you seen a recent textbook 
on the languages Fred, Chaos, or Tranquil?); however, many of the concepts that they 
introduced found their way into successors of earlier languages. Thus, today we have 
Smalltalk (a revolutionary successor to Simula), Ada (a successor to ALGOL 68 and Pascal, 
with contributions from Simula, Alphard, and CLU), 

 
Figure 2-1 
The Topology of First- and Early Second-Generation Programming Languages 
 
CLOS (which evolved from Lisp, LOOPS, and Flavors), C++ (derived from a marriage of C 
and Simula), and Eiffel (derived from Simula and Ada). What is of the greatest interest to us 
is the class of languages we call object-based and object-oriented. Object-based and object-
oriented programming languages best support the object-oriented decomposition of software. 
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The Topology of First- and Early Second-Generation Programming Languages To show 
precisely what we mean, let's study the structure of each generation of programming 
languages. In Figure 2-1, we see the topology of most first-and early second-generation 
programming languages. By topology, we mean the basic physical building blocks of the 
language and how those parts can be connected. In this figure, we see that for languages such 
as FORTRAN and COBOL, the basic physical building block of all applications is the 
subprogram (or the paragraph, for those who speak COBOL). Applications written in these 
languages exhibit a relatively flat physical structure, consisting only of global data and 
subprograms. The arrows in this figure indicate dependencies of the subprograms on various 
data. During design, one can logically separate different kinds of data from one another, but 
there is little in these languages that can enforce these design decisions. An error in one part 
of a program can have a devastating ripple effect across the rest of the system, because the 
global data structures are exposed for all subprograms to see. When modifications are made 
to a large system, it is difficult to maintain the integrity of the original design. Often, entropy 
sets in: after even a short period of maintenance, a program written in one of these languages 
usually contains a tremendous amount of cross-coupling among subprograms, implied 
meanings of data, and twisted flows of control, thus threatening the reliability of the entire 
system and certainly reducing the overall clarity of the solution. 
 

 
Figure 2-2 
The Topology of Late Second- and Early Third-Generation Programming Languages 
 
The Topology of Late Second- and Early Third-Generation Programming Languages By 
the mid-1960s, programs were finally being recognized as important intermediate points 
between the problem and the computer [3]. As Shaw points out, "The first software 
abstraction, now called the 'procedural' abstraction, grew directly out of this pragmatic view 
of software. . . . Subprograms were invented prior to 1950, but were not fully appreciated as 
abstractions at the time. . . . Instead, they were originally seen as labor-saving devices.... Very 
quickly though, subprograms were appreciated as a way to abstract program functions" [4]. 
The realization that subprograms could serve as an abstraction mechanism had three 
important consequences. First, languages were invented that supported a variety of 
parameter passing mechanisms. Second, the foundations of structured programming were 
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laid, manifesting themselves in language support for the nesting of subprograms and the 
development of theories regarding control structures and the scope and visibility of 
declarations. Third, structured design methods emerged, offering guidance to designers 
trying to build large systems using subprograms as basic physical building blocks. Thus, it is 
not surprising, as Figure 2-2 shows, that the topology of late second- and early third-
generation languages is largely a variation on the theme of earlier generations. This topology 
addresses some of the inadequacies of earlier languages, namely, the need to have greater 
control over algorithmic abstractions, but it still fails to address the problems of 
programming-in-the-large and data design. 
 
The Topology of Late Third-Generation Programming Languages Starting with 
FORTRAN II, and appearing in most late third-generation program languages, another 
important structuring mechanism evolved to address the growing issues of programming-in-
the-large. Larger programming projects meant larger 
 

 
Figure 2-3 
The Topology of Late Third-Generation Programming Languages 
 
development teams, and thus the need to develop different parts of the same program 
independently. The answer to this need was the separately compiled module, which in its 
early conception was little more than an arbitrary container for data and subprograms, as 
Figure 2-3 shows. Modules were rarely recognized as an important abstraction mechanism; in 
practice they were used simply to group subprograms that were most likely to change 
together. Most languages of this generation, while supporting some sort of modular structure, 
had few rules that required semantic consistency among module interfaces. A developer 
writing a subprogram for one module might assume that it would be called with three 
different parameters: a floating-point number, an array of ten elements, and an integer 
representing a Boolean flag. In another module, a call to this subprogram might incorrectly 
use actual parameters that: violated these assumptions: an integer, an array of five elements, 
and a negative number. Similarly, one module might use a block of common data which it 
assumed as its own, and another module might violate these assumptions by directly 
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manipulating this data. Unfortunately, because most of these languages had dismal support 
for data abstraction and strong typing, such errors could be detected only during execution of 
the program. 
 
The Topology of Object-Based and Object-Oriented Programming Languages The 
importance of data abstraction to mastering complexity is clearly stated by Shankar: "The 
nature of abstractions that may be achieved through the use of procedures is well suited to 
the description of abstract operations, but is not particularly well suited to the description of 
abstract objects. This is a serious drawback, for in many applications, the complexity of the 
data objects to be manipulated contributes substantially to the overall complexity of the 
problem,' [5]. This realization had two important consequences. First, data-driven design 
 

 
Figure 2-4  
The Topology of Small- to Moderate-Sized Applications Using Object-Based and Object-Oriented 
Programming Languages 
 
methods emerged, which provided a disciplined approach to the problems of doing data 
abstraction in algorithmically oriented languages. Second, theories regarding the concept of a 
type appeared, which eventually found their realization in languages such as Pascal. 
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The natural conclusion of these ideas first appeared in the language Simula and was 
improved upon during the period of the language generation gap, resulting in the relatively 
recent development of several languages such as -Smalltalk, Object Pascal, C++, CLOS, Ada, 
and Eiffel. For reasons that we will explain shortly, these languages are called object-based or 
object-oriented. Figure 2-4 illustrates the topology of these languages for small- to moderate-
sized applications. The physical building block in these languages is the module, which 
represents a logical collection of classes and objects instead of subprograms, as in earlier 
languages. To state it another way, "lf procedures and functions are verbs and pieces of data 
are nouns, a procedure-oriented program is organized around verbs while an object-oriented 
program is organized around nouns" [6]. For this reason, the physical structure of a small to 
moderate-sized object-oriented application appears as a graph, not as a tree, which is typical 
of algorithmically oriented languages. Additionally, there is little or no global data. Instead, 
data and operations are united in such a way 
 

 
Figure 2-5 
The Topology of Large Applications Using Object-Based and Object-Oriented 
Programming Languages  
 
that the fundamental logical building blocks of our systems are no longer algorithms, but 
instead are classes and objects. 
 
By now we have progressed beyond programming-in-the-large and must cope with 
programming-in-the-colossal. For very complex systems, we find that classes, objects, and 
modules provide an essential yet insufficient means of abstraction. Fortunately, the object 
model scales up. In large systems, we find clusters of abstractions built in layers on top of one 
another. At any given level of abstraction, we find meaningful collections of objects that 
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collaborate to achieve some higher-level behavior. If we look inside any given cluster to view 
its implementation, we unveil yet another set of cooperative abstractions. This is exactly the 
organization of complexity described in Chapter 1; this topology is shown in Figure 2-5. 
 
 
Foundations of the Object Model 
 
Structured design methods evolved to guide developers who were trying to build complex 
systems using algorithms as their fundamental building blocks. Similarly, object-oriented 
design methods have evolved to help developers exploit the expressive power of object-based 
and object-oriented programming languages, using the class and object as basic building 
blocks. 
 
Actually, the object model has been influenced by a number of factors, not just object-oriented 
programming. Indeed, as the sidebar further discusses, the object model has proven to be a 
unifying concept in computer science, applicable not just to programming languages, but also 
to the design of user interfaces, databases, and even computer architectures. The reason for 
this widespread appeal is simply that an object orientation helps us to cope with the 
complexity inherent in many different kinds of systems. 
 
object-oriented analysis and design thus represents an evolutionary development, not a 
revolutionary one; it does not break with advances from the past, but builds upon proven 
ones. Unfortunately, most programmers today are formally and informally trained only in 
the principles of structured design. Certainly, many good engineers have developed and 
deployed countless useful software systems using these techniques. However, there are limits 
to the amount of complexity we can handle using only algorithmic decomposition; thus we 
must turn to object-oriented decomposition. Furthermore, if we try to use languages such as 
C++ and Ada as if they were only traditional, algorithmically oriented languages, we not only 
miss the power available to us, but we usually end up worse off than if we had used an older 
language such as C or Pascal. Give a power drill to a carpenter who knows nothing about 
electricity, and he would use it as a hammer. He will end up bending quite a few nails and 
smashing several fingers, for a power drill makes a lousy hammer. 
 
 
OOP, OOD, and OOA 
 
Because the object model derives from so many- disparate sources, it has unfortunately been 
accompanied by a muddle of terminology. A Smalltalk programmer uses methods, a C++ 
programmer uses virtual member functions, and a CLOS programmer uses generic functions. An 
Object Pascal programmer talks of a type coercion; an Ada programmer calls the same thing a 
type conversion. To minimize the confusion, let's define what is object-oriented and what is 
not. The glossary provides a summary of all the terms described here, plus many others. 
 
Bhaskar has observed that the phrase object-oriented "has been bandied about with carefree 
abandon with much the same reverence accorded 'rnotherhood,' 'apple pie,' and 'structured 
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programming' [7]. What we can agree upon is that the concept of an object is central to 
anything object-oriented. In the previous chapter, we informally defined an object as a 
tangible entity that exhibits some well-defined behavior. Stefik and Bobrow define objects as 
"entities that combine the properties of procedures and data since they perform computations 
and save local state" [8]. Defining objects as entities begs the question somewhat, but the basic 
concept here is that objects serve to unify the ideas of algorithmic and data abstraction. Jones 
further clarifies this term by noting that "in the object model, emphasis is placed on crisply 
characterizing the components of the physical or abstract system to be  
 
Foundations of the Object Model 
 
As Yonezawa and Tokoro point out, "The term 'object' emerged almost independently in 
various fields in computer science, almost simultaneously in the early 1970s, to refer to 
notions that were different in their appearance, yet mutually related. All of these notions 
were invented to manage the complexity of software systems in such a way that objects 
represented components of a modularly decomposed system or modular units of knowledge 
representation" [9]. Levy adds that the following events have contributed to the evolution of 
object-oriented concepts: 
 
• "Advances in computer architecture, including capability systems and hardware support 
for operating systems concepts 
• Advances in programming languages, as demonstrated in Simula, Smalltalk, CLU, and Ada 
• Advances in programming methodology, including modularization and information 
hiding" [10] 
 
We would add to this list three more contributions to the foundation of the object model: 
 
• Advances in database models 
• Research in artificial intelligence 
• Advances in philosophy and cognitive science 
 
The concept of an object had its beginnings in hardware over twenty years ago, starting with 
the invention of descriptor-based architectures and, later, capability-based architectures [11]. 
These architectures represented a break from the classical von Neumann architectures, and 
carne about through attempts to close the gap between the high-level abstractions of 
programming languages and the low-level abstractions of the machine itself [12]. According 
to its proponents, the advantages of such architectures are many: better error detection, 
improved execution efficiency, fewer instruction types, simpler compilation, and reduced 
storage requirements. Computers that have an object-oriented architecture include the 
Burroughs 5000, the Plessey 250, and the Cambridge CAP [13], SWARD [14], the Intel 432 
[15], Caltech's COM [16], the IBM System/38 [17], the Rational R1000, and the BiiN 40 and 60. 
 
Closely related to developments in object-oriented architectures are object-oriented operating 
systems. Dijkstra's work with the THE multiprogramming system first introduced the 
concept of building systems as layered state machines [18]. Other pioneering object-oriented 
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operating systems include the Plessey/System 250 (for the Plessey 250 multiprocessor), 
Flydra (for CMUs C.mmp), CAUSS (for the CDC 6400), CAP (for the Cambridge CAP 
computer), UCLA Secure UNIX (for the PDP 11/45 and 11/70), StarOS (for CMUs Cm*), 
Medusa (also for CMUs Cm*), and iMAX (for the Intel 432) [19]. The next generation of 
operating systems appears to follow this trend: Microsoft's Cairo project and Taligent's Pink 
project are both object-oriented operating systems. 
 
Perhaps the most important contribution to the object model derives from the class of 
programming languages we call object-based and object-oriented. The fundamental ideas of 
classes and objects first appeared in the language Simula 67. The Flex system, followed by 
various dialects of Smalltalk, such as Smalltalk-72, -74, and -76, and finally the current 
version, Smalltalk-80, took Simula's object-oriented paradigm to its natural conclusion by 
making everything in the language an instance of a class. In the 1970s languages such as 
Alphard, CLU, Euclid, Gypsy, Mesa, and Modula were developed, which supported the then-
emerging ideas of data abstraction. More recently, language research has led to the grafting of 
Simula and Smalltalk concepts onto traditional high-order programming languages. The 
unification of object-oriented concepts with C has lead to the languages C++ and Objective C. 
Adding object-oriented programming mechanisms to Pascal has led to the languages Object 
Pascal, Eiffel, and Ada. Additionally, there are many dialects of Lisp that incorporate the 
object-oriented features of Simula and Smalltalk, including Flavors, LOOPS, and more 
recently, the Common Lisp Object System (CLOS). The appendix discusses these and other 
programming language developments in greater detail. 
 
The first person to formally identify the importance of composing systems in layers of 
abstraction was Dijkstra. Parnas later introduced the idea of information hiding [20], and in 
the 1970s a number of researchers, most notably Liskov and Zilles [21], Guttag [22], and Shaw 
[23], pioneered the development of abstract data type mechanisms. Hoare contributed to 
these developments with his proposal for a theory of types and subclasses [24]. 
 
Although database technology has evolved somewhat independently of software 
engineering, it has also contributed to the object model [25], primarily through the ideas of 
the entity-relationship (ER) approach to data modeling [26]. In the ER model, first proposed 
by Chen [27], the world is modeled in terms of its entities, the attributes of these entities, and 
the relationships among these entities. 
 
In the field of artificial intelligence, developments in knowledge representation have 
contributed to an understanding of object-oriented abstractions. In 1975, Minsky first 
proposed a theory of frames to represent real-world objects as perceived by image and 
natural language recognition systems [28]. Since then, frames have been used as the 
architectural foundation for a variety of intelligent systems. 
 
Lastly, philosophy and cognitive science have contributed to the advancement of the object 
model. The idea that the world could be viewed either in terms of objects or processes was a 
Greek innovation, and in the seventeenth century, we find Descartes observing that humans 
naturally apply an object-oriented view of the world [29]. In the twentieth century, Rand 
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expanded upon these themes in her philosophy of objectivist epistemology [30]. More 
recently, Minsky has proposed a model of human intelligence in which he considers the mind 
to be organized as a society of otherwise mindless agents [31]. Minsky argues that only 
through the cooperative behavior of these agents do we find what we call intelligence. 
 
 
modeled by a programmed system. . . . Objects have a certain 'integrity' which should not - in 
fact, cannot - be violated. An object can only change state, behave, be manipulated, or stand 
in relation to other objects in ways appropriate to that object. Stated differently, there exist 
invariant properties that characterize an object and its behavior. An elevator, for example, is 
characterized by invariant properties including [that] it only travels up and down inside its 
shaft. . . . Any elevator simulation must incorporate these invariants, for they are integral to 
the notion of an elevator” [32]. 
 
Object-Oriented Programming What then, is object-oriented programming (or OOP, as it is 
sometimes written)? We define it as follows: 
 

Object-oriented programming is a method of implementation in which programs are organized as 
cooperative collections of objects, each of which represents an instance of some class, and whose 
classes are all members of a hierarchy of classes united via inheritance relationships. 

 
There are three important parts to this definition: object-oriented programming (1) uses 
objects, not algorithms, as its fundamental logical building blocks (the “part of” hierarchy we 
introduced in Chapter l); (2) each object is an instance of some class; and (3) classes are related 
to one another via inheritance relationships (the "is a" hierarchy we spoke of in Chapter l). A 
program may appear to be object-oriented, but if any of these elements is missing, it is not an 
object-oriented program. Specifically, programming without inheritance 'is distinctly not 
object-oriented; we call it programming with abstract data types. 
 
By this definition, some languages are object-oriented, and some are not. Stroustrup suggests 
that: "if the term 'object-oriented language' means anything, it must mean a language that has 
mechanisms that support the object-oriented style of programming well.... A language 
supports a programming style well if it provides facilities that make it convenient to use that 
style. A language does not support a technique if it takes exceptional effort or skill to write 
such programs; in that case, the language merely enables programmers to use the techniques" 
[33]. From a theoretical perspective, one can fake object oriented programming in non-object-
oriented programming languages like Pascal and even COBOL or assembly language, but it is 
horribly ungainly to do so. Cardelli and Wegner thus say "that a language is object-oriented if 
and only if it satisfies the following requirements: 
 

• It supports objects that are data abstractions with an interface of named operations and 
a hidden local state. 

• Objects have an associated type [class]. 
• Types [classes] may inherit attributes from supertypes [superclasses]" [34]. 
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For a language to support inheritance means that it is possible to express "is a" relationships 
among types, for example, a red rose is a kind of flower, and a flower is a kind of plant. If a 
language does not provide direct support for inheritance, then it is not object-oriented. 
Cardelli and Wegner distinguish such languages by calling them object-based rather than 
object-oriented. Under this definition, Smalltalk, Object Pascal, C++, Eiffel, and CLOS are all 
object-oriented, and Ada is object-based. However, since objects and classes are elements of 
both kinds of languages, it is both possible and highly desirable for us to use object-oriented 
design methods for both object-based and object-oriented programming languages. 
 
Object-Oriented Design The emphasis in programming methods is primarily on the proper 
and effective use of particular language mechanisms. By contrast, design methods emphasize 
the proper and effective structuring of a complex system. What then is object-oriented 
design? We suggest that 
 

Object-oriented design is a method of design encompassing the process of object-oriented 
decomposition and a notation for depicting both logical and physical as well as static and dynamic 
models of the system under design. 

 
There are two important parts to this definition: object-oriented design (1) leads to an object-
oriented decomposition and (2) uses different notations to express different models of the 
logical (class and object structure) and physical (module and process architecture) design of a 
system, in addition to the static and dynamic aspects of the system. 
 
The support: for object-oriented decomposition is what makes object-oriented design quite 
different from structured design: the former uses class and object abstractions to logically 
structure systems, and the latter uses algorithmic abstractions. We will use the term object-
oriented design to refer to any method that leads to an object-oriented decomposition. We will 
occasionally use the acronym OOD to designate the particular method of object-oriented 
design described in this book. 
 
Object-Oriented Analysis The object model has influenced even earlier phases of the 
software development life cycle. Traditional structured analysis techniques, best typified by 
the work of DeMarco [35], Yourdon [36], and Gane and Sarson [37], with real-time extensions 
by Ward, and Mellor [38] and by Hatley and Pirbhai [39], focus upon the flow of data within 
a system. Object-oriented analysis (or OOA, as it is sometimes called) emphasizes the 
building of real-world models, using an object-oriented view of the world: 
 

Object-oriented analysis is a method of analysis that examines requirements from the perspective of 
the classes and objects found in the vocabulary of the problem domain. 

 
How are OOA, OOD, and OOP related? Basically, the products of object oriented analysis 
serve as the models from which we may start an object-oriented design; the products of 
object-oriented design can then be used as blueprints for completely implementing a system 
using object-oriented programming methods. 
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2.2 Elements of the Object Model 
 
Kinds of Programming Paradigms 
 
Jenkins and Glasgow observe that "most programmers work in one language and use only 
one programming style. They program in a paradigm enforced by the language they use. 
Frequently, they have not been exposed to alternate ways of thinking about a problem, and 
hence have difficulty in seeing the ad-vantage of choosing a style more appropriate to the 
problem at hand,' [40]. Bobrow and Stefik define a programming style as "a way of 
organizing programs on the basis of some conceptual model of programming and an 
appropriate language to make programs written in the style clear” [41]. They further suggest 
that there are five main kinds of programming styles, here listed with the kinds of 
abstractions they employ: 
 

• Procedure-oriented  Algorithms 
• Object-oriented  Classes and objects 
• Logic-oriented   Goals, often expressed in a predicate calculus 
• Rule-oriented   If-then rules 
• Constraint-oriented   Invariant relationships 

 
There is no single programming style that is best for all kinds of applications. For example, 
rule-oriented programming would be best for the design of a knowledge base, and 
procedure-oriented programming would be best suited for the design of computation-intense 
operations. From our experience, the object-oriented style is best suited to the broadest set of 
applications; indeed, this programming paradigm often serves as the architectural framework 
in which we employ other paradigms. 
 
Each of these styles of programming is based upon its own conceptual framework. Each 
requires a different mindset, a different way of thinking about the problem. For all things 
object-oriented, the conceptual framework is the object model. There are four major elements 
of this model: 
 

• Abstraction 
• Encapsulation 
• Modularity 
• Hierarchy 

 
By major, we mean that a model without any one of these elements is not object-oriented. 
There are three minor elements of the object model: 
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• Typing 
• Concurrency 
• Persistence 

 
By minor, we mean that each of these elements is a useful, but not essential, part of the object 
model. 
 
Without this conceptual framework, you may be programming in a language such as 
Smalltalk, Object Pascal, C++, CLOS, Eiffel, or Ada, but your design is going to smell like a 
FORTRAN, Pascal, or C application. You will have missed out on or otherwise abused the 
expressive power of the object-oriented language you are using for implementation. More 
importantly, you are not likely to have mastered the complexity of the problem at hand. 
 
 
Abstraction 
 
The Meaning of Abstraction Abstraction is one of the fundamental ways that we as humans 
cope with complexity. Hoare suggests that "abstraction arises from a recognition of 
similarities between certain objects, situations, or processes in the real world, and the decision 
to concentrate upon these similarities and to ignore for the time being the differences" [42]. 
Shaw defines an abstraction as "a simplified description, or specification, of a system that 
emphasizes some of the system's details or properties while suppressing others. A good 
abstraction is one that emphasizes details that are significant to the reader or user and 
suppresses details that are, at least for the moment, immaterial or diversionary" [43]. Berzins, 
Gray, and Naumann recommend that ~'a concept qualifies as an abstraction only if it can be 
described, understood, and analyzed independently of the mechanism that will eventually be 
used to realize it”, [44]. Combining these different viewpoints, we define an abstraction as 
follows: 
 

An abstraction denotes the essential characteristics of an object that distinguish it from all other 
kinds of objects and thus provide crisply defined conceptual boundaries, relative to the perspective of 
the viewer. 

 
An abstraction focuses on the outside view of an object, and so serves to separate an object's 
essential behavior from its implementation. Abelson and Sussman call this 
behavior/implementation division an abstraction barrier [45] achieved by applying the 
principle of least commitment, through which the interface of an object provides its essential 
behavior, and nothing more [46]. "We like to use an additional principle that we call the 
principle of least astonishment, through which an abstraction captures the entire behavior of 
some object, no more and no less, and offers no surprises or side effects that beyond the scope 
of the abstraction. 
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Abstraction focuses upon the essential characteristics of some object, relative to the perspective of the 
viewer. 
 
Deciding upon the right set of abstractions for a given domain is the central problem in 
object-oriented design. Because this topic is so important, the whole of Chapter 4 is devoted 
to it. 
 
Seidewitz and Stark suggest that "there is a spectrum of abstraction, from objects which 
closely model problem domain entities to objects which really have no reason for existence" 
[47]. From the most to the least useful, these kinds of abstractions include the following: 
 
Entity abstraction 
 

An object that represents a 
useful model of a problem 
domain or solution-domain 
entity 
 

Action abstraction 
 

An object that provides a 
generalized set of operations, all 
of which perform the same kind 
of function 
 

Virtual machine abstraction 
 

An object that groups together 
operations that are all used by 
some superior level of control, or 
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operations that all use some 
junior-level set of operations 
 

Coincidental abstraction An object that: packages a set of 
operations that have no relation 
to each other 
 

We strive to build entity abstractions, because they directly parallel the vocabulary of a given 
problem domain. 
 
A client is any object that uses the resources of another object (known as the server). We can 
characterize the behavior of an object by considering the services that it provides to other 
objects, as well as the operations that it may perform upon other objects. This view forces us 
to concentrate upon the outside view of an object, and leads us to what Meyer calls the 
contract model of programming [48]: the outside view of each object defines a contract upon 
which other objects may depend, and which in turn must be carried out by the inside view of 
the object itself (often in collaboration with other objects). This contract thus establishes all the 
assumptions a client object may make about the behavior of a server object. In other words, 
this contract encompasses the responsibilities of an object, namely, the behavior for which it is 
held accountable [49]. 
 
Individually, each operation that contributes to this contract has a unique signature 
comprising all of its formal arguments and return type. We call the entire set of operations 
that a client may perform upon an object, together with the legal orderings in which they- 
may be invoked, its protocol. A protocol denotes the ways in which an object may act and 
react, and thus constitutes the entire static: and dynamic outside view of the abstraction. 
 
Central to the idea of an abstraction is the concept of invariance. An invariant is some Boolean 
(true or false) condition whose truth must be preserved. For each operation associated with 
an object, we may define preconditions (invariants assumed by the operation) as well as post 
conditions (invariants satisfied by the operation). Violating an invariant breaks the contract 
associated with an abstraction. If a precondition is violated, this means that a Client has not 
satisfied its part of the bargain, and hence the server cannot proceed reliably. Similarly, if a 
postcondition is violated, this means that a server has not carried out its part of the contract, 
and so its clients can no longer trust the behavior of the server. An exception is an indication 
that some invariant has not been or cannot be satisfied. As we will describe later, certain 
languages permit objects to throw exceptions so as to abandon processing and alert some 
other object to the problem, who in turn may catch the exception and handle the problem. 
 
As an aside, the terms operation, method, and member function evolved from three different 
programming cultures (Ada, Smalltalk, and C++, respectively). They all mean virtually the 
same thing, and so we will use them interchangeably. 
 
All abstractions have static as well as dynamic properties. For example, a file object takes up a 
certain amount of space on a particular memory device; it has a name, and it has contents. 
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These are all static properties. The value of each of these properties is dynamic, relative to the 
lifetime of the object: a file object may grow or shrink in size, its name may change, its 
contents may change. In a procedure-oriented style of programming, the activity that changes 
the dynamic value of objects is the central part of all programs: things happen when 
subprograms are called and statements are executed. In a rule-oriented style of programming, 
things happen when new events cause rules to fire, which in turn may trigger other rules, and 
so on. In an object-oriented style of programming, things happen whenever we operate upon 
an object (in Smalltalk terminology, when we send a message to an object). Thus, invoking an 
operation upon an object elicits some reaction from the object. What operations we can 
meaningfully perform upon an object and how that object reacts constitute the entire 
behavior of the object. 
 
Examples of Abstraction Let's illustrate these concepts with some examples. Our purpose 
here is to show how we can concretely express abstractions, not, so much how we find the 
right abstractions for the given problem. We defer a complete treatment of this latter topic to 
Chapter 4. 
 
On a hydroponics farm, plants are grown in a nutrient solution, without sand, gravel, or 
other soils. Maintaining the proper greenhouse environment is a delicate job, and depends 
upon the kind of plant being grown and its age. One must control diverse factors such as 
temperature, humidity, light, pH, and nutrient concentrations. On a large farm, it is not 
unusual to have an automated system that constantly monitors and adjusts these elements. 
Simply stated, the purpose of an automated gardener is to efficiently carry out, with minimal 
human intervention, growing plans for the healthy production of multiple crops. 
 
One of the key abstractions in this problem is that of a sensor. Actually, there are several 
different kinds of sensors. Anything that affects production must be measured, and so we 
must have sensors for air and water temperature, humidity, light, pH, and nutrient 
concentrations, among other things. Viewed from the outside, a temperature sensor is simply 
an object that knows how to measure the temperature at some specific location. What is a 
temperature? It is some numeric value, within a limited range of values and with a certain 
precision, that represents degrees in the scale of Fahrenheit, Centigrade, or Kelvin, whichever 
is most appropriate for our problem. What then is a location? It is some identifiable place on 
the farm at which we desire to measure the temperature; presumably, there are only a few 
such locations. What is important for a temperature sensor is not so much where it is located, 
but the fact that it has a unique location and identity from all other temperature sensors. Now 
we are ready to ask: What are the responsibilities of a temperature sensor? Our design 
decision is that a sensor is responsible for knowing the temperature at a given location, and 
reporting that temperature when asked. More concretely, what operations can a client 
perform upon a temperature sensor? Our design decision is that a client can calibrate it, as 
well as ask what the current temperature is. 
 
Let's use C++ to capture these design decisions. For those readers who are not familiar with 
C++, or for that matter any of the other object-oriented programming languages we mention 
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in this book, the appendix provides a brief overview of several languages, with examples. In 
C++, we might write the -4-1-rations that capture our abstraction of a temperature sensor: 
 
//Temperature in degrees Fahrenheit  
typedef float Temperature; 
 
// Number uniquely denoting the location of a sensor  
typedef unsigned int Location; 
 
class TemperatureSensor  { 
Public: 
 
TemperatureSensor(Location); 
~TemperatureSensor() ; 
 
void calibrate(Temperature actualTemperature); 
 
Temperature currentTemperature() const; 
 
private: 
… 
}; 
 
The two typedefs, Temperature and Location, provide convenient aliases for more primitive 
types, thus letting us express our abstractions in the vocabulary of the problem domain5. 
Temperature is a floating-point type representing temperature in degrees Fahrenheit. The type 
Location denotes the places where temperature sensors may be deployed throughout the 
farm. 
 
The class TemperatureSensor captures our abstraction of a sensor itself; its representation is 
hidden in the private part of the class. 
 
TemperatureSensor is defined as a class, not a concrete object, and therefore we must first create 
an instance so that we have something upon which to operate. For example, we might write: 
 
Temperature temperature; 
 
TemperatureSensor greenhouselSensor(l);  
TemperatureSensor greenhouse2Sensor(2); 
 
temperature = greenhouselSensor.currentTemperature(); 
 

                                                 
5 Unfortunately, however, typedefs do not introduce new types, and so offer litue type safety. For example, in 
C++, the following declaration simply creates a synonym for the Prirrutive type int: 
 
typedef int Count; 
 
As We will discuss in a later section, other languages, such as Ada and Eiffel, have more rigorous semantics 
regarding the strong typing of primitive types. 
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Consider the invariants associated with the operation currentTemperature: its preconditions 
include the assumption that the sensor has been elaborated with a valid location, and its 
postconditions include the assumption that the value returned is in degrees Fahrenheit. 
 
The abstraction we have described thus far is passive; some client object must operate upon 
an air temperature sensor object to determine its current temperature. However, there is 
another legitimate abstraction that may be more or less appropriate depending upon the 
broader system design decisions we might make. Specifically, rather than the temperature 
sensor being passive, we might make it active, so that it is not acted upon but rather acts 
upon other objects whenever the temperature at its location changes a certain number of 
degrees from a given set point. This abstraction is almost the same as our first one, except that 
its responsibilities have changed slightly: a sensor is now responsible for reporting the 
current temperature when it changes, not just when asked. What new operations must this 
abstraction provide? A common programming idiom used in such circumstances is the 
callback, in which a client provides a function to the server (the callback function), and the 
server calls the client's function whenever the appropriate conditions are met. Thus, we might 
write the following: 
 
class ActiveTemperatureSensor { 
public: 
 
ActiveTemperatureSensor(Location, void (*f)(Location, Temperature)); 
~ActiveTemperatureSensor(); 
 
void calibrate(Temperature actualTemperature);  
void establishSetpoint(Temperature setpoint, Temperature delta); 
 
Temperature currentTemperature() const; 
 
private: 
… 
}; 
 
This class is a bit more complicated than the first, but it captures our new abstraction quite 
well. Whenever we create a sensor object, we must as before provide its location, but we must 
now also provide a callback function whose signature includes a Location parameter and a 
Temperature parameter. Additionally, a client of this abstraction may invoke the operation 
establishSetpoint to establish a critical range of temperatures. It is then the responsibility of the 
ActiveTemperatureSensor object to invoke the given callback function whenever the temperature 
at its location drops below or rises above the given setpoint. When the callback is invoked, the 
sensor provides its location and the current temperature, so that the client has sufficient 
information to respond to the condition. 
 
Notice that a client can still inquire as to the current temperature of a sensor at any time. 
What if a client never establishes a setpoint? Our abstraction must make some reasonable 
assumption: one design decision might be to initially assume an infinite range of critical 
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temperatures, and so the callback would never be invoked until some client finally 
established a setpoint. 
 
How the ActiveTemperatureSensor class carries out its responsibilities is a function of its inside 
view, and is of no concern to outside clients. These then are the secrets of the class, which are 
implemented by the class' private parts together with the definition of its member functions. 
 
Let's consider a different abstraction. For each crop, there must be a growing plan that 
describes how temperature, light, nutrients, and other factors should change over time to 
maximize the harvest. A growing plan is a legitimate entity abstraction, because it forms part 
of the vocabulary of the problem domain. Each crop has its own growing plan, -but the 
growing plans for all crops take the same form. Basically, a growing plan is a mapping of 
time to action. For example, on day 15 in the lifetime of a certain crop, our growing plan 
might be to maintain a temperature of 78oF for 16 hours, turn on the lights for 14 of these 
hours, and then drop the temperature to 65T for the rest of the day. We might also want to 
add certain extra nutrients in the middle of the day, while still maintaining a slightly acidic 
pH. 
 
A growing plan is thus responsible for keeping track of all interesting actions associated with 
growing a crop, correlated with the times at which those actions should take place. Our 
decision is also that we will not require a growing plan to carry out its plan: we will leave this 
as the responsibility of a different abstraction. In this manner, we create a clear separation of 
concerns among the logically different parts of the system, so as to reduce the conceptual size 
of each individual abstraction. 
 
From the perspective of the outside of each growing-plan object, a client must be able to 
establish the details of a plan, modify a plan, and inquire about a plan. For example, there 
might be an object that sits at the boundary of the human/machine interface and translates 
human input into plans. This is the object that establishes the details of a growing-plan, and 
so it must be able to change the state of a growing-plan object. There must also be an object 
that carries out the growing plan, and it must be able to read the details of a plan for a 
particular time. 
 
As this example points out, no object stands alone; every object collaborates with other objects 
to achieve some behavior6. Our design decisions about how these objects cooperate with one 
another define the boundaries of each abstraction and thus the responsibilities and protocol of 
each object. 
 
We might capture our design decisions for a growing plan as follows. First, we provide the 
following typedefs, so as to bring our abstractions closer to the Vocabulary of the problem 
domain: 
 
                                                 
6 Stated another way, with apologies to the poet john Donne, no object is an island (although an island may be 
abstracted as an object). 
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// Number denoting the day of the year  
typedef unsigned int Day; 
 
// Number denoting the hour of the day  
typedef unsigned int Hour; 
 
// Boolean type  
enum Lights {OFF, ON}; 
 
// Number denoting acidity/alkalinity on a scale of 1 to 14  
typedef float pH; 
 
// Number denoting percent concentration from 0 to 100  
typedef float Concentration; 
 
Next, as a tactical design decision, we provide the following structure: 
 
// Structure denoting relevant plan conditions  
struct Condition {  
  Temperature temperature;  
  Lights lighting;  
  pH acidity;  
  Concentration concentration; 
}; 
 
Here we have something less than an entity abstraction: a Condition is simply a physical 
aggregation of other things, with no intrinsic behavior. For this reason, we use a C++ record 
structure, rather than a C++ class, which has richer semantics. 
 
Finally, we turn to the growing-plan class itself: 
 
class GrowingPlan {  
public: 
 
GrowingPlan(char* name);  
virtual ~GrowingPlan(); 
 
void clear();  
virtual void establish(Day, Hour, const Condition&); 
 
const char* name() const;  
const Condition& desiredConditions(Day, Hour) const; 
 
protected: 
… 
}; 
 
Notice that we have introduced one new responsibility to this abstraction: a growing plan has 
a name, which a client can set and inquire about. Also, note that we declare the operation 
establish as virtual, because we expect subclasses to override the default behavior provided by 
the class GrowingPlan. 
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In the declaration of this class, the public part exports constructor and destructor member 
functions (which provide for the birth and death of an object, respectively), two modifiers (the 
member functions clear and establish), and two selectors (the member functions name and 
desiredConditions). We have intentionally left out the private members (designated by the 
ellipses), because at this point in our design we wish to focus only upon the responsibilities of 
the class, not its representation. 
 
 

 
 
Encapsulation hides the details of the implementation of an object. 
 
The Meaning of Encapsulation Although we earlier described our abstraction of the class 
GrowingPlan as a time/action mapping, its implementation is not necessarily a literal table or 
map data structure. Indeed, whichever representation is chosen is immaterial to the client's 
contract with this class, as long as that representation upholds the contract. Simply stated, the 
abstraction of an object should precede the decisions about its implementation. Once an 
implementation is selected, it should be treated as a secret of the abstraction and hidden from 
most clients. As Ingalls wisely suggests, "No part of a complex System should depend on the 
internal details of any other part" [50]. Whereas abstraction "helps people to think about what 
they- are doing," encapsulation allows program changes to be reliably made with limited 
effort” [51]. 
 
Abstraction and encapsulation are complementary concepts: abstraction focuses upon the 
observable behavior of an object, whereas encapsulation focuses upon the implementation that 
gives rise to this behavior. Encapsulation is most often achieved through information biding, 
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which is the process of hiding all the secrets of an object that do not contribute to its essential 
characteristics; typically, the structure of an object is hidden, as well as the ,implementation of 
its methods. 
 
Encapsulation provides explicit barriers among different abstractions and thus leads to a clear 
separation of concerns. For example, consider again the structure of a plant. To understand 
how photosynthesis works at a high level of abstraction, we can ignore details such as the 
responsibilities of plant roots or the chemistry of cell walls. Similarly, in designing a database 
application, it is standard practice to write programs so that they don't care about the 
physical representation of data, but depend only upon a schema that denotes the data's 
logical view [52]. In both of these cases, objects at one level of abstraction are shielded from 
implementation details at lower levels of abstraction. 
 
Liskov goes as far as to suggest that "for abstraction to work, implementations must be 
encapsulated" [53]. In practice, this means that each class must have two parts: an interface 
and an implementation. The interface of a class captures only its outside view, encompassing 
our abstraction of the behavior common to all instances of the class. The implementation of a 
class comprises the representation of the abstraction as well as the mechanisms that achieve 
the desired behavior. The interface of a class is the one place where we assert all of the 
assumptions that a client may make about any instances of the class; the implementation 
encapsulates details about which no client may make assumptions. 
 
To summarize, we define encapsulation as follows: 
 

Encapsulation is the process of compartmentalizing the elements of an abstraction that constitute 
its structure and behavior; encapsulation serves to separate the contractual interface of an 
abstraction and its implementation. 

 
Britton and Parnas call these encapsulated elements the "secrets" of an abstraction [54]. 
 
Examples of Encapsulation To illustrate the principle of encapsulation, let's return to the 
problem of the hydroponics gardening system. Another key abstraction in this problem 
domain is that of a heater. A heater is at a fairly low level of abstraction, and thus we might 
decide that there are only three meaningful operations that we can perform upon this object: 
turn it on, turn it off, and find out if it is running. We do not make it a responsibility of this 
abstraction to maintain a fixed temperature. Instead, we choose to give this responsibility to 
another object, which must collaborate with a temperature sensor and a heater to achieve this 
higher-level behavior. We call this behavior higher-level because it builds upon the primitive 
semantics of temperature sensors and heaters and adds some new semantics, namely, 
hysteresis, which prevents the heater from being turned on and off too rapidly- when the 
temperature is near boundary conditions. By deciding upon this separation of 
responsibilities, we make each individual abstraction more cohesive. 
 
We begin with another typedef: 
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// Boolean type  
enum Boolean {FALSE, TRUE}; 
 
For the heater class, in ' addition to the three operations mentioned earlier, we must also 
provide metaoperations, namely, constructor and destructor operations that initialize and 
destroy instances of this class, respectively. Because our system might have multiple heaters, 
we use the constructor to associate each software object with a physical heater, similar to the 
approach we used with the TemperatureSensor class. Given these design decisions, we might 
write the definition of the class Heater in C++ as follows: 
 
Class Heater {  
public: 
 
Heater(location);  
~Heater(); 
 
void turnOn();  
void turnoff(); 
 
Boolean isOn() const; 
 
private: 
… 
};  
 
This interface represents all that a client needs to know about the class Heater. 
 
Turning to the inside view of this class, we have an entirely different perspective. Suppose 
that our system engineers have decided to locate the computers that control each greenhouse 
away from the building (perhaps to avoid the harsh environment), and to connect each 
computer to its sensors and actuators via serial lines. One reasonable implementation for the 
heater class might be to use an electromechanical relay that controls the power going to each 
physical heater, with the relays in turn commanded by messages sent along these serial lines. 
For example, to turn on a heater, we might transmit a special command string, followed by a 
number identifying the specific heater, followed by another number used to signal turning 
the heater on. 
 
Consider the following class, which captures our abstraction of a serial port: 
 
Class SerialPort {  
public: 
 
SerialPort();  
~SerialPort(); 
 
void write(char*);  
void write(int); 
 
static SerialPort ports[10]; 
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private: 
… 
}; 
 
Here we provide a class whose instances denote actual serial ports, to which We can write 
strings and integers. Additionally, we declare an array of serial Ports, denoting all the 
different serial ports in our systems. 
 
We complete the declaration of the class Heater by adding three attributes: 
 
class Heater {  
public: 
… 
protected:  
  const Location repLocation;  
  Boolean repIs0n;  
  SerialPort* repPort; 
}; 
 
These three attributes (repLocation, repIsOn, and repPort) form the encapsulated representation of 
this class. The rules of C++ are such that compiling client code that tries to access these 
member objects directly- will result in a semantic error. 
 
We may next provide the implementation of each operation associated with this class: 
 
Heater::Heater(location 1) : repLocation(1), repIs0n(FALSE), 
repPort(&SerialPort::ports[1]) {} 
 
Heater::~Heater() {} 
 
void Heater::turnOn() { 
  if (!repIs0n) {  
    repPort->write(“*”); 
    repPort->write(repLocation);  
    repPort->write(1);  
    repIs0n = TRUE; 
  } 
} 
 
void Heater::turnoff() { 
  if (repIs0n) { 
    repPort->write(“*”); 
    repPort->write(replocation);  
    repPort->write(O);  
    repIs0n = FALSE; 
  } 
} 
 
Boolean Heater::isOn() const { 
  return repIs0n; 
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} 
 
This implementation is typical of well-structured object-oriented systems: the implementation 
of a particular class is generally small, because it can build upon the resources provided by 
lower-level classes. 
 
Suppose that for whatever reason our system engineers choose to use memory-mapped I/0 
instead of serial communication lines. We would not need to change the interface of this class; 
we would only need to modify its implementation. Because of C++'s obsolescence rules, we 
would probably have to recompile this class and the closure of its clients, but because the 
functional behavior of this abstraction would not change, we would not have to modify any 
code that used this class unless a particular client depended upon the time or space semantics 
of the original implementation (which would be highly undesirable and so very unlikely, in 
any case). 
 
Let's next consider the implementation of the class GrowingPlan. As we mentioned earlier, a 
growing plan is essentially a time/action mapping. Perhaps the most reasonable 
representation for this abstraction would be a dictionary of time/action pairs, using an open 
hash table. We need not store an action for every hour, because things don't change that 
quickly. Rather, we can store actions only for when they- change, and have the 
implementation extrapolate between times. 
 
In this manner, our implementation encapsulates two secrets: the use of an open hash table 
(which is distinctly a part of the vocabulary of the solution domain, not the problem domain), 
and the use of extrapolation to reduce our storage requirements (otherwise we would have to 
store many more time/action pairs over the duration of a growing season). No client of this 
abstraction need ever know about these implementation decisions, because they do not 
materially affect the outwardly observable behavior of the class. 
 
Intelligent encapsulation localizes design decisions that are likely to change. As a system 
evolves, its developers might discover that in actual use, certain operations take longer than 
acceptable or that some objects consume more space than is available. In such situations, the 
representation of an object is often changed so that more efficient algorithms can be applied 
or so that one can optimize for space by calculating rather then storing certain data. This 
ability to change the representation of an abstraction without disturbing any of its clients is 
the essential benefit of encapsulation. 
 
Ideally, attempts to access the underlying representation of an object should be detected at 
the time a client's code is compiled. How a particular language should address this matter is 
debated with great religious fervor in the object-oriented programming language community. 
For example, Smalltalk prevents a client from directly accessing the instance variables of 
another class; violations are detected at the time of compilation. On the other hand, Object 
Pascal does not encapsulate the representation of a class, so there is nothing in the language 
that prevents clients from referencing the fields of another object directly. CLOS takes an 
intermediate position; each slot may have one of the Slot options :reader, :writer, or :accessor, 
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which grant a client read access, write access, or read/write access, respectively. If none of 
these options are used, then the slot is fully encapsulated. By convention, revealing that some 
value is Stored in a slot is considered a breakdown of the abstraction, and so good CLOS style 
requires that when the interface to a class is published, only its generic function names are 
documented, and the fact that a slot has accessor functions is not revealed [55]. C++ offers 
even more flexible control over the Visibility of member objects and member functions. 
Specifically, members may be placed in the public, private, or protected parts of a class. 
Members declared in the public parts are visible to all clients; members declared in the 
private parts are fully encapsulated; and members declared in the protected parts are visible 
only to the class itself and its subclasses. C++ also supports the notion of friends: cooperative 
classes that are permitted to see each other's private parts. 
 
Hiding is a relative concept: what is hidden at one level of abstraction may represent the 
outside view at another level of abstraction. The underlying representation of an object can be 
revealed, but in most cases only if the creator of the abstraction explicitly exposes the 
implementation, and then only if the client is willing to accept the resulting additional 
complexity. Thus, encapsulation cannot stop a developer from doing stupid things: as 
Stroustrup points out, "Hiding is for the prevention of accidents, not the prevention of fraud" 
[56]. Of course, no programming language prevents a human from literally seeing the 
implementation of a class, although an operating system might deny access to a particular file 
that contains the implementation of a class. In practice, there are times when one must study 
the implementation of a class to really understand its meaning, especially if the external 
documentation is lacking. 
 
 
Modularity 
 
The Meaning of Modularity As Myers observes, "The act of partitioning a program into 
individual components can reduce its complexity to some degree. . . . Although partitioning a 
program is helpful for this reason, a more powerful justification for partitioning a program is 
that it creates a number of well defined, documented boundaries within the program. These 
boundaries, or interfaces, are invaluable in the comprehension of the program" [57]. In some 
languages, such as Smalltalk, there is no concept of a module, and so the class forms the only 
physical unit of decomposition. In many others, including Object Pascal, C++, CLOS, and 
Ada, the module is a separate language construct, and therefore warrants a separate set of 
design decisions. In these languages, classes and objects form the logical structure of a 
system; we place these abstractions in modules to produce the system's physical architecture. 
Especially for larger applications, in which we may have many hundreds of classes, the use of 
modules is essential to help manage complexity. 
 
Liskov states that "modularization consists of dividing a program into modules which can be 
compiled separately, but which have connections with other modules. We will use the 
definition of Parnas: The connections between modules are the assumptions which the 
modules make about each other " [58]. Most languages that support the module as a separate 
concept also distinguish between the interface of a module and its implementation. Thus, it is 
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fair to say that modularity and encapsulation go hand in hand. As with encapsulation, 
particular languages support modularity in diverse ways. For example, modules in C++ are 
nothing more than separately compiled files. The traditional practice in the C/C++ 
community is to place module interfaces in files named with a h suffix; these are called header 
files. Module implementations are placed in files named with a c suffix7. Dependencies among 
files can then be asserted 
 

 
Modularity packages abstractions into discrete units. 
 
using the #include macro. This approach is entirely one of convention; it is neither required nor 
enforced by the language itself. Object Pascal is a little more formal about the matter. In this 
language, the syntax for units (its name for modules) distinguishes between module interface 
and implementation. Dependencies among units may be asserted only in a module's 
interface. Ada goes one step further. A package (its name for modules) has two parts: the 
package specification and the package body. Unlike Object Pascal, Ada allows connections 
among modules to be asserted separately in the specification and body of a package. Thus, it 
is possible for a package body to depend upon modules that are otherwise not visible to the 
package's specification. 
 
Deciding upon the right set of modules for a given problem is almost as hard a problem as 
deciding upon the right set of abstractions. Zelkowitz is absolutely right when he states that 
"because the solution may not be known *hen the design stage starts, decomposition into 
smaller modules may be quite difficult. For older applications (such as compiler writing), this 

                                                 
7 The suffixes cc, cp, and cpp are commonly used for C++ programs. 
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process may become standard, but for new ones (such as defense systems or spacecraft 
control), it may be quite difficult" [59]. 
 
Modules serve as the physical containers in which we declare the classes and objects of our 
logical design. This is no different than the situation faced by the electrical engineer designing 
a board-level computer. NAND, NOR, and NOT gates might be used to construct the 
necessary logic, but these gates must be physically- packaged in standard integrated circuits, 
such as a 7400, 7402, or 7404. Lacking any such standard software parts, the software engineer 
has considerably more degrees of freedom - as if the electrical engineer had a silicon foundry 
at his or her disposal. 
 
For tiny problems, the developer might decide to declare every class and object in the same 
package. For anything but the most trivial software, a better solution is to group logically 
related classes and objects in the same module, and expose only those elements that other 
modules absolutely must see. This kind of modularization is a good thing, but it can be taken 
to extremes. For example, consider an application that runs on a distributed set of processors 
and uses a message passing mechanism to coordinate the activities of different programs. in a 
large system, like that described in Chapter 12, it is common to have several hundred or even 
a few thousand kinds of messages. A naive strategy might be to define each message class in 
its own module. As it turns out, this is a singularly poor design decision. Not only does it 
create a documentation nightmare, but it makes it terribly difficult for any users to find the 
classes they need. Furthermore, when decisions change, hundreds of modules must be 
modified or recompiled. This example shows how information hiding can backfire [60]. 
Arbitrary modularization is sometimes worse than no modularization at all. 
 
In traditional structured design, modularization is primarily concerned with the meaningful 
grouping of subprograms, using the criteria of coupling and cohesion. In object-oriented 
design, the problem is subtly different: the task is to decide where to physically package the 
classes and objects from the design's logical structure, which are distinctly different from 
subprograms. 
 
Our experience indicates that there are several useful technical as well as nontechnical 
guidelines that can help us achieve an intelligent modularization of classes and objects. As 
Britton and Parnas have observed, "The overall goal of the decomposition into modules is the 
reduction of software cost by allowing modules to be designed and revised independently. . . 
Each module's structure should be simple enough that it can be understood fully; it should be 
possible to change the implementation of other modules without knowledge of the 
implementation of other modules and without affecting the behavior of other modules; [and] 
the case of making a change in the design should bear a reasonable relationship to the 
likelihood of the change being needed" [61]. There is a pragmatic edge to these guidelines. In 
practice, the cost of recompiling the body of a module is relatively small: only that unit need 
be recompiled and the application relinked. However, the cost of recompiling the interface of a 
module is relatively high. Especially with strongly typed languages, one must recompile the 
module interface, its body, all other modules that depend upon this interface, the modules 
that depend upon these modules, and so on. Thus, for very large programs (assuming that 
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our development environment does not support incremental compilation), a change in a 
single module interface might result in many minutes if not hours of recompilation. 
Obviously, a development manager cannot often afford to allow a massive "big bang" 
recompilation to happen too frequently. For this reason, a module's interface should be as 
narrow as possible, yet still satisfy the needs of all using modules. Our style is to hide as 
much as we can in the implementation of a module incrementally shifting declarations from a 
modules implementation to its interface is far less painful and destabilizing than ripping out 
extraneous interface code. 
 
The developer must therefore balance two competing technical concerns: the desire to 
encapsulate abstractions, and the need to make certain abstractions visible to other modules. 
Parnas, Ciements, and Weiss offer the following guidance: "System details that are likely to 
change independently should be the secrets of separate modules; the only assumptions that 
should appear between modules are those that are considered unlikely to change. Every data 
structure is private to one module; it may be directly accessed by one or more programs 
within the module but not by programs outside the module. Any other program that requires 
information stored in a module's data Structures must obtain it by calling module programs" 
[62]. In other words, strive to build modules that are cohesive (by grouping logically related 
abstractions) and loosely coupled (by minimizing the dependencies among modules). From 
this perspective, we may define modularity as follows: 
 

Modularity is the property of a system that has been decomposed into a set of cohesive and loosely 
coupled modules. 

 
Thus, the principles of abstraction, encapsulation, and modularity are An object provides a 
crisp boundary around a single abstraction, and both encapsulation and modularity provide 
barriers around this abstraction.  
 
Two additional technical issues can affect modularization decisions. First, since modules 
usually serve as the elementary and indivisible units of software at can be reused across 
applications, a developer might choose to package classes and objects into modules in a way 
that makes their reuse convenient. Second, many compilers generate object code in segments, 
one for each module. Therefore, there may be practical limits on the size of individual 
modules. With regard to the dynamics of subprogram calls, the placement of declarations 
within modules can greatly affect the locality of reference and thus ,the paging behavior of a 
virtual memory system. Poor locality happens when subprogram calls occur across segments 
and lead to cache misses and page thrashing that ultimately slow down the whole system. 
 
Several competing no technical needs may also affect modularization decisions. Typically, 
work assignments in a development team are given on a Module-by-module basis, and so the 
boundaries of modules may be established to minimize the interfaces among different parts 
of the development organization. Senior designers are usually given responsibility for 
module -Interfaces, and more junior developers complete their implementation. On a larger 
scale, the same situation applies with subcontractor relationships. Abstractions may be 
packaged so as to quickly stabilize the module interfaces agreed upon among the various 
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companies. Changing such interfaces usually involves much wailing and gnashing of teeth - 
not to mention a vast amount of paperwork - and so this factor often leads to conservatively 
designed interfaces. Speaking of paperwork, modules also usually serve as the unit of 
documentation and configuration management. Having ten modules where one would do 
sometimes means ten times the paperwork, and so, unfortunately, sometimes the 
documentation requirements drive the module design decisions (usually in the most negative 
way). Security may also be an issue: most code may be considered unclassified, but other 
code that might be classified secret or higher is best placed in separate modules. 
 
Juggling these different requirements is difficult, but don't lose sight of the most important 
point: finding the right classes and objects and then organizing them into separate modules 
are largely independent design decisions. The identification of classes and objects is part of the 
logical design of the system, but the identification of modules is part of the system's physical 
design. One cannot make all the logical design decisions before making all the physical ones, 
or vice versa; rather, these design decisions happen iteratively. 
 
Examples of Modularity Let's look at modularity in the hydroponics gardening system. 
Suppose that instead of building some special-purpose hardware, we decide to use a 
commercially available workstation, and employ an off-the-shelf graphical user interface 
(GUI). At this workstation, an operator could create new growing plans, modify old ones, and 
follow the progress of currently active ones. Since one of our key abstractions here is that of a 
growing plan, we might therefore create a module whose purpose is to collect all of the 
classes associated with individual growing plans. In C++, we might write the header file for 
this module (which we name gplan.h) as: 
 
// gplan.h 
 
#ifndef _GPLAN_H 
#define _GPLAN_H 1 
 
#include "gtypes.h"  
#include "except.h"  
#include "actions.h" 
 
class GrowingPlan ... 
 
class FruitGrowingPlan ... 
 
class GrainGrowingPlan ... 
 
… 
#endif 
 
Here we import three other header files (gtypes.h, except.h, and actions.h), upon whose interface 
we must rely. 
 
The implementations of these growing-plan classes then appear in the implementation of this 
module, in a file we name (by convention) gplan.cpp. 
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We might also define a module whose purpose is to collect all of the code associated with 
application-specific dialog boxes. This unit most likely depends upon the classes declared in 
the interface of gplan.h, as well as files that encapsulate certain GUI interfaces, and so it must 
in turn include the header file gplan.h, as well as the appropriate GUI header files. 
 
Our design will probably include many other modules, each of which imports the interface of 
lower level units. Ultimately, we must define some main program from which we can invoke 
this application from the operating ,system. In object-oriented design, defining this main 
program is often the least important decision, whereas in traditional structured design, the 
main program serves as the root, the keystone that holds everything else together. We 
suggest hat the object-oriented view is more natural, for as Meyer observes, "Practical 
software systems are more appropriately described as offering a number of services. Defining 
these systems by single functions is usually possible, but fields rather artificial answers.... 
Real systems have no top" [63]. 
 
 
Hierarchy 
 
The Meaning of Hierarchy Abstraction is a good thing, but in all except the most trivial 
applications, we may find many more different abstractions than we can comprehend at one 
time. Encapsulation helps manage this complexity by hiding the inside view of our 
abstractions. Modularity helps also, by giving us a way to cluster logically related 
abstractions. Still, this is not enough. A set of abstractions often forms a hierarchy, and by 
identifying these hierarchies in our ,design, we greatly simplify our understanding of the 
problem. 
 
We define hierarchy as follows: 
 

Hierarchy is a ranking or ordering of abstractions. 
 
The most important hierarchies in a complex system are its class structure e "is a" hierarchy) 
and its object structure (the "part of' hierarchy). 
 
Examples of Hierarchy: Single Inheritance Inheritance is the most important "is a” 
hierarchy, and as we noted earlier, it is an essential element of object systems. Basically, 
inheritance defines a relationship among classes, one class shares the structure or behavior 
defined in one or more classes (denoting single inheritance and multiple inheritance, 
respectively). Inheritance thus represents a hierarchy of abstractions, in which a subclass 
inherits from one or more superclasses. Typically, a subclass augments or redefines the 
existing structure and behavior of its superclasses. 
 
Semantically, inheritance denotes an "is-a" relationship. For example, a bear a" kind of 
mammal a house "is a" kind of tangible asset, and a quick sort "is sorting algorithm. 
Inheritance thus implies a generalization/specialization hierarchy, wherein a subclass 
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specializes the more general structure or behavior of its superclasses. Indeed, this is the 
litmus test r inheritance: if B "is not a" kind of A, then B should not inherit from A. 
 
Consider the different kinds of growing plans we might use in the hydroponics gardening 
system. An earlier section described our abstraction of a generalized growing plan. Different 
kinds of crops, however, demand specialized growing plans. For example, the growing plan 
for all fruits is 
 
 
 
 
 

 
Abstractions form a hierarchy. 
 
generally the same, but is quite different from the plan for all vegetables, or for all floral 
crops. Because of this clustering of abstractions, it is reasonable to define a standard fruit-
growing plan that encapsulates the specialized behavior common to all fruits, such as the 
knowledge of when to pollinate or when to harvest the fruit. We can assert this "is a" 
relationship among these abstractions in C++ as follows: 
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// yield type  
typedef unsigned int Yield; 
 
class FruitGrowingPlan : public GrowingPlan { 
public: 
 
  FruitGrowinjgPlan(char* name);  
  virtual ~FruitGrowingPlan(); 
 
  virtual void establish(Day, Hour, Condition&);  
  void scheduleHarvest(Day, Hour); 
 
  Boolean isHarvested() const;  
  unsigned daysUntilHarvest() const;  
  Yield estimatedYield() const; 
 
protected:  
 
  Boolean repHarvested;  
  Yield repYield; 
}; 
 
This class declaration captures our design decision wherein a FruitGrowingPlan "is -a" kind of 
GrowingPlan, with some additional structure (the member objects repHarvested and repYield) and 
behavior (the four new member functions, plus the overriding of the superclass operation 
establish). Using this class, we could declare even more specialized subclasses, such as the 
class AppleGrowingPlan . 
 
As we evolve our inheritance hierarchy, the structure and behavior that are common for 
different classes will tend to migrate to common superclasses. This is why we often speak of 
inheritance as being a generalization/specialization hierarchy. Superclasses represent 
generalized abstractions, and subclasses represent specializations in which fields and 
methods from the superclass are added, modified, or even hidden. In this manner, 
inheritance lets us state our ~abstractions with an economy of expression. Indeed, neglecting 
the "is a" hierarchies that exist can lead to bloated, inelegant designs . As Cox points out, 
«Without inheritance, every class would be a free-standing unit, each developed from the 
ground up. Different classes would bear no relationship with one another, since the 
developer of each provides methods in whatever manner he Chooses. Any consistency across 
classes is the result of discipline on the part of the programmers. Inheritance makes it possible 
to define new software in the Same way we introduce any concept to a newcomer, by 
comparing it with something that is already familiar" [64]. 
 
There is a healthy tension among the principles of abstraction, encapsulation, and hierarchy. 
As Danforth and Tomlinson point out, "Data abstraction attempts to provide an opaque 
barrier behind which methods and state are hidden; inheritance requires opening this 
interface to some extent and may allow state as well as methods to be accessed without 
abstraction" [65]. For a given class, there are usually two kinds of clients: objects that invoke 
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operations upon instances of the class, and subclasses that inherit from the class. Liskov 
therefore notes that, with inheritance, encapsulation can be violated in one of three ways: 
"The subclass might access an instance variable of its superclass, call a private operation of its 
superclass, or refer directly to superclasses of its superclass" [66]. Different programming 
languages trade off support for encapsulation and inheritance in different ways, but among 
the languages described in this book, C++ offers perhaps the greatest flexibility. Specifically, 
the interface of a class may have three parts: private parts, which declare members that are 
accessible only to the class itself, protected parts, which declare members that are accessible 
only to, the class and its subclasses, and public parts, which are accessible to all clients. 
 
Examples of Hierarchy: Multiple Inheritance The previous example illustrated the use of 
single inheritance: the subclass FruitGrowingPlan had exactly one superclass, the class 
GrowingPlan. For certain abstractions, it is useful to provide inheritance from multiple 
superclasses. For example, suppose that we choose to define a class representing a kind of 
plant. in C++, we might declare this class as follows: 
 
class Plant {  
public: 
 
  Plant (char* name, char* species);  
  virtual ~Plant(); 
 
  void setDatePlanted(Day);  
  virtual establishGrowingConditions(const Condition&); 
 
  const char* name() const;  
  const char* species() const;  
  Day datePlanted() Const; 
 
Protected:  
  char* repName;  
  char* repSpecies;  
  Day repPlanted;  
 
private: 
… 
}; 
 
According to this class definition, each instance of the class Plant has a name, species, and 
date of planting. Additionally, optimal growing conditions may be established for each 
particular kind of plant. Because we expect this behavior to be specialized by subclasses, we 
declare this operation as virtual in C++8. Notice that the three member objects are declared as 
protected; thus, they are accessible only to the class itself and its subclasses. On the other 
hand, all members declared in the private part are accessible only to the class itself. 
 

                                                 
8 In CLOS, we use generic functions; in Smafitalk, all operations of a superclass may be specialized by a subclass, 
and so no special designation is required. 
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Our analysis of the problem domain might suggest that flowering plants fruits and vegetables 
have specialized properties that are relevant to our application. For example, given a 
flowering plant, its expected time to flower and time to seed might be important to us. 
Similarly, the time to harvest might be an important part of our abstraction of all fruits and 
vegetables. One way we could capture our design decisions would be to make two new 
classes, a Flower class and a FruitVegetable class, both subclasses of the class Plant. However, 
what if we need to model a plant that both flowered and produced fruit? For ,example, 
florists commonly use blossoms from apple, cherry, and plum trees. For this abstraction, we 
would need to invent a third class, a FlowerFruitVegetable, that duplicated information from the 
Flower and FruitVegetablePlant classes. 
 
A better way to express our abstractions and thereby avoid this redundancy is to use multiple 
inheritance. First, we invent classes that independently capture the properties unique to 
flowering plants and fruits and vegetables: 
 
class FlowerMixin { 
public: 
 
  FlowerMixin(Day timeToFlower, Day timeToSeed);  
  virtual ~FlowerMixin(); 
 
  Day timeToFlower() const;  
  Day timeToSced() const; 
 
protected: 
… 
}; 
 
class FruitVegetableMixin { 
public: 
 
  FruitVegetablieMixin(Day timeToHarvest);  
  virtual ~FruitVegetableMixin(); 
 
  Day timeToHarvesto const; 
 
protected: 
 
… 
}; 
 
Notice that these two classes have no superclass; they standalone. These are Called mixin 
classes, because they are meant to be mixed together with other classes to produce new 
subclasses. For example, we can define a Rose class as follows: 
 
class Rose : public Plant, public FlowerMixin... 
 
Similarly, a Carrot class can be declared as follows: 
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class Carrot : public Plant, public FruitVegetableMixin {}; 
 
in both cases, we form the subclass by inheriting from two superclasses. Instances of the 
subclass Rose thus include the structure and behavior from the class Plant together with the 
structure and behavior from the class FlowerMixin. Now, suppose we want to declare a class for 
a plant such as the cherry tree that has both flowers and fruit. We might write the following: 
 
class Cherry : public Plant, 
 public FlowerMixin, 
 public FruitVegetableMixin ... 
 
Multiple inheritance is conceptually straightforward, but it does introduce some practical 
complexities for programming languages. Languages must address two issues: clashes 
among names from different superclasses, and repeated inheritance. Clashes will occur when 
two or more superclasses provide a field or operation with the same name or signature as a 
peer superclass. In C++, such clashes must be resolved with explicit qualification; in 
Smalltalk, the first occurrence of the name is used. Repeated inheritance occurs when two or 
more peer superclasses share a common superclass. In such a situation, the inheritance lattice 
will be diamond-shaped, and so the question arises, does the leaf class have one copy or 
multiple copies of the structure of the shared superclass? Some languages prohibit repeated 
inheritance, some unilaterally choose one approach, and others, such as C++, permit the 
programmer to decide. In C++, virtual base classes are used to denote a sharing of repeated 
structures, whereas nonvirtual base classes result in duplicate copies appearing in the 
subclass (with explicit qualification required to distinguish among the copies). 
 
Multiple inheritance is often overused. For example, cotton candy is a kind of candy, but it is 
distinctly not a kind of cotton. Again, the litmus test for inheritance applies: if B is not a kind 
of A, then B should not inherit from A. Often, i11-formed multiple inheritance lattices can be 
reduced to a single superclass plus aggregation of the other classes by the subclass. 
 
Examples of Hierarchy: Aggregation Whereas these "is a" hierarchies denote 
generalization/specialization relationships, "part of, hierarchies describe aggregation 
relationships. For example, consider the following class: 
 
class Garden {  
public: 
 
  Garden();  
  virtual ~Garden(); 
 
protected:  
 
  Plant* repPlants[100];  
  GrowingPlan repPlan; 
}; 
 
Here we have the abstraction of a garden, consisting of a collection of plants together with a 
growing plan. 
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When dealing with hierarchies such as these, we often speak of levels of abstraction, a concept 
first described by Dijkstra [67]. In terms of its "is a" hierarchy, a high-level abstraction is 
generalized, and a low-level abstraction is specialized. Therefore, we say that a Flower class is 
at a higher level of abstraction then a Plant class. In terms of its "part of' hierarchy, a class is at 
a higher level of abstraction than any of the classes that make up its implementation. Thus, 
the class Garden is at a higher level of abstraction than the type plant, upon which it builds. 
 
Aggregation is not a concept unique to object-oriented programming languages. Indeed, any 
language that supports record-like structures supports aggregation. However, the 
combination of inheritance with aggregation is powerful: aggregation permits the physical 
grouping of logically related structures, and inheritance allows these common groups to be 
easily reused one different abstractions. 
 
Aggregation raises the issue of ownership. Our abstraction of a garden permits different 
plants to be raised in a garden over time, but replacing a plant does not change the identity of 
the garden as a whole, nor does removing a garden necessarily destroy all of its plants (they 
are likely just transplanted). In other words, the lifetime of a garden and its plants are 
independent: We capture this design decision in the example above, by including pointers to 
Plant objects rather than values. In contrast, we have decided that a GrowingPlan object is 
intrinsically associated with a Garden object, and does not exist independently of the garden. 
For this reason, we use a value of GrowingPlan. Therefore, when we create an instance of Garden, 
we also create an instance of GrowingPlan; when we destroy the Garden object, we in turn 
destroy the GrowingPlan instance. We will discuss the semantics of ownership by value versus 
reference more detail in the next chapter. 
 
 
Typing 
 
Meaning of Typing The concept of a type derives primarily from the  theories of abstract data 
types. As Deutsch suggests, "A type is a precise characterization of structural or behavioral 
properties which a collection of entities all share" [68]. For our purposes, we will use the 
terms type and class interchangeably9. Although the concepts of a type and a class are similar, 
we include typing as a separate element of the object model because the concept of a type 
places a very different emphasis upon the meaning of abstraction. Specifically, we state the 
following: 
 
 
 

                                                 
9 A type and a class are not exactly the sarne thing; sorne languages actually distinguish these two concepts. For 
example, early versions of the language Trellis/Owl permitted an object to have both a class and a type. Even in 
Smalltalk, objects of the classes SmallInteger, LargeNegativeInteger, and LargePositiveInteger are all of the same 
type, Integer, although not of the sarne class [69]. For most mortals, however, separating the concepts of type 
and class is utterly confusing and adds very litle value. It is sufficient to say that a class implements a type. 
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Strong typing prevents mixing abstractions. 
 

Typing is the enforcement Of the class of an object, such, that objects of different types may not be 
interchanged, or at the most, they may be interchanged only in very restricted ways. 

 
Typing lets us express our abstractions so that the programming language in which we 
implement them can be made to enforce design decisions. Wegner observes that this kind of 
enforcement is essential for programming-in-the-large [70]. 
 
The idea of conformance is central to the notion of typing. For example, consider units of 
measurement in physics [71]. When we divide distance by time, we expect some value 
denoting speed, not weight. Similarly, multiplying temperature by a unit of force doesn't 
make sense, but multiplying mass by force does. These are both examples of strong typing, 
wherein the rules of our domain prescribe and enforce certain legal combinations of 
abstractions. 
 
Examples of Typing: Strong and Weak Typing A given programming language may be 
strongly- typed, weakly typed, or even untyped, yet still be called object-oriented. For 
example, Eiffel is strongly-typed, meaning that type conformance is strictly- enforced: 
operations cannot be called upon an object unless the exact signature of that operation is 
defined in the object's class or superclasses. In strongly typed languages, violation of type 
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conformance can be detected at the time of compilation. Smalltalk, on the other hand, is an 
untyped language: a client can send any message to any class (although a class may not know 
how respond to the message). Violations of type conformance may not be known until 
execution, and usually manifest themselves as execution errors. Languages such as C++ are 
hybrid: they have tendencies toward strong typing, but it is possible to ignore or suppress the 
typing rules. 
 
Consider the abstraction of the various kinds of storage tanks that might exist in a 
greenhouse. We are likely to have storage tanks for water as well as various nutrients; 
although one holds a liquid and the other a solid, these abstractions are sufficiently similar to 
warrant a hierarchy of classes, as the following example illustrates. First, we introduce 
another typedef: 
 
// Number  denoting level from 0 to 100 percent  
typedef float Level; 
 
C++, typedefs do not introduce new types. In particular, the typedefs Level and Concentration 
are both floating-point numbers, and can be intermixed. In this aspect, C++ is weakly typed: 
values of primitive types such as int and float are indistinguishable within that particular type. 
In contrast, languages such as Ada and Object Pascal enforce strong typing among primitive 
types. In Ada, for example, the derived type and subtype constructs allow the developer to 
define distinct types, constrained by range or precision from more general types. 
 
Next, we have the class hierarchy for storage tanks: 
 
class StorageTank { 
public: 
 
  StorageTank();  
  virtual ~StorageTank(); 
 
  virtual void fill();  
  virtual void startDraining(); 
  virtual void stopOraining(); 
 
  Boolean isEmpty() const;  
  Level level() const;  
 
protected: 
… 
}; 
 
class WaterTank : public  StorageTank { 
public: 
 
  WaterTank(); 
  ~WaterTank(); 
 
  virtual void fill();  
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  virtual void startDraining();  
  virtual Void stopDraining();  
  void startHeating();  
  void stopHeating(); 
 
  Temperature currentTemperature() const; 
Protected: 
… 
}; 
 
class NutrientTank : public StorageTank { 
public: 
 
  NutrientTank();  
  virtual ~NutrientTank(); 
 
  virtual void startDraining(); 
   virtual void stopDraining(); 
 
Protected: 
… 
}; 
 
The class StorageTank is the base class in this hierarchy, and provides the structure and 
behavior common to all such tanks, such as the ability to fill and drain the tank. WaterTank and 
NutrientTank are both subclasses of StorageTank. Both subclasses redefine some of the behavior of 
the superclass, and the class WaterTank introduces some new behavior associated with 
temperature. 
 
Suppose that we have the following declarations: 
 
StorageTank s1, s2;  
WaterTank w;  
NutrientTank n; 
 
Variables such as s1, s2, w, and n are not objects. To be precise, these are simply names we use 
to designate objects of their respective classes: when we say "the object s1," we really mean the 
instance of StorageTank denoted by the variable s1. We will explain this subtlety again in the 
next chapter. 
 
With regard to type checking among classes, C++ is more strongly typed, meaning that 
expressions that invoke operations are checked for type correctness at the time of 
compilation. For example, the following statements are legal: 
 
Level 1 = sl.level();  
w.startDraining();  
n.stopDraining(); 
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In the first statement, we invoke the selector level, declared for the base class StorageTank. In the 
next two statements, we invoke a modifier (startDraining, and stopDraining) declared in the base 
class, but overridden in the subclass. 
 
However, the following statements are not legal and would be rejected at compilation time: 
 
sl.startHeatinI(); Illegal 
n.stopHeating();  Illegal 
 
Neither of these two statements is legal because the methods startHeating and stopHeating are not 
defined for the class of the corresponding variable, nor for any superclasses of its class. On 
the other hand, the following statement is legal: 
 
n.fill(); 
 
though fill is not defined in the class NutrientTank it is defined in the superclass StorageTank, from 
which the class NutrientTank inherits its structure and behavior. 
 
Strong typing lets us use our programming language to enforce certain design decisions, and 
so is particularly relevant as the complexity of our system grows. However, there is a dark 
side to strong typing. Practically, strong typing Introduces semantic dependencies such that 
even small changes in the interface of a base class require recompilation of all subclasses. 
Also, in the absence of parameterized classes, which we will discuss further in the next 
chapter and in Chapter 9, it is problematic to have type-safe collections of heterogeneous 
objects. For example, suppose we need the abstraction of a greenhouse inventory, which 
collects all of the tangible assets associated with a particular greenhouse. A common C idiom 
applied to C++ is to use a container class that stores pointers to void, which represents objects 
of an indefinite type: 
 
class Inventory { 
public: 
 
  Inventory()  
  ~Inventory(); 
 
  void add(void*);  
  void remove(void*); 
 
  void* mostRecento const; 
 
  void apply(Boolean (*)(void*)); 
private: 
… 
}; 
 
The operation apply is an iterator, which allows us to apply an operation to every item in the 
collection. We will discuss iterators in more detail in the next chapter. 
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Given an instance of the class Inventory, we may add and remove pointers to objects of any 
class. However, this approach is not type-safe: we can legally add tangible assets such as 
storage tanks to an inventory, as well as nontangible assets, such as temperature or growing 
plans, which violates our abstraction of an inventory. Similarly, we might add a WaterTank 
object as well as a TemperatureSensor object, and unless we are careful, invoke the selector 
mostRecent, expecting to find a water tank when we are actually returned a storage tank. 
 
There are two general solutions to these problems. First, we could use a type-safe container 
class. Instead of manipulating pointers to void, we might define an inventory class that 
manipulates only objects of the class TangibleAsset, which we would use as a mixin class for all 
classes that represent tangible assets, such as WaterTank but not GrowingPlan. This approach 
addresses the first problem, wherein objects of different types are incorrectly mingled. 
Second, we could use some form of runtime type identification; this addresses the second 
problem of knowing what kind of object you happen to be examining at the moment. in 
Smalltalk, for example, it is possible to query an object for its class. In C++, runtime type 
identification is not yet part of the language standard10, but a similar effect can be achieved 
pragmatically, by defining an operation in the base class that returns a string or enumeration 
type identifying the particular class of the object. In general, however, runtime type 
identification should be used only when there is a compelling reason, because it can represent 
a weakening of encapsulation. As we will discuss in the next section, the use of polymorphic 
operations can often (but not always) mitigate the need for runtime type identification. 
 
A strongly typed language is one in which all expressions are guaranteed to be type-
consistent. The meaning of type consistency is best illustrated by the following example, 
using the previously declared variables. The following assignment statements are legal: 
 
s1 = s2; 
S1 = w; 
 
The first statement is legal because the class of the variable on the left side of the statement 
(StorageTank) is the same as the class of the expression on the right side. The second statement 
is also legal because the class of the variable on the left side (StorageTank) is a superclass of the 
variable on the right side (WaterTank). However, this assignment results in a loss of information 
(known in C++ as ilicing). The subclass WaterTank introduces structure and behavior beyond 
that defined in the base class, and this information cannot be copied to an instance of the base 
class. 
 
Consider the following illegal statements: 
 
w = s1; // Illegal  
w = n; // Illegal 
 
The first statement is not legal because the class of the variable on the left side of the 
assignment statement (WaterTank) is a subclass of the class of the variable on the right side 
                                                 
10 Runtime type identification has been adopted for future versions of C++. 
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(StorageTank). The second statement is illegal because the classes of the two variables are peers, 
and are not along the same line o inheritance (although they have a common superclass). 
 
In some situations, it is necessary to convert a value from one type to another. For example, 
consider the following function: 
 
void checkLevel(const StorageTank& s); 
 
lf and only if we are certain that the actual argument we are given is of the class WaterTank, 
then we may explicitly coerce the value of the base class to the subclass, as in the following 
expression: 
 
if «(WaterTank&)s).currentTemperature0 < 32.0) ... 
 
This expression is type-consistent, although it is not completely type-safe. For example, if the 
variable s happened to denote an object of the class NutrientTank at runtime, then the coercion 
would fail with unpredictable results during execution. In general, type conversion is to be 
avoided, because it often represents a violation of abstraction. 
 
As Tesler points out, there are a number of important benefits to be derived from using 
strongly typed languages: 
 

• "Without type checking, a program in most languages can 'crash' in mysterious ways 
at runtime. 

• In most systems, the edit-compile-debug cycle is so tedious that early error detection is 
indispensable. 

• Type declarations help to document programs. 
• Most compilers can generate more efficient object code if types are declared" [72]. 

 
Untyped languages offer greater flexibility, but even with untyped languages, as Borning and 
Ingalls observe, "In almost all cases, the programmer in fact knows what sorts of objects are 
expected as the arguments of a message, and what sort of object will be returned" [73]. In 
practice, the safety offered by strongly typed languages usually more then compensates for 
the flexibility lost by not using an untyped language, especially for programming-in-the-
large. 
 
Examples of Typing: Static and Dynamic Binding The concepts of strong typing d static 
typing are entirely different. Strong typing refers to type consistency, whereas static typing - 
also known as static binding or early binding - refers Po the time when names are bound to 
types. Static binding means that the types all variables and expressions are fixed at the time of 
compilation; dynamic binding (also called late binding) means that the types of all variables and 
expressions are not known until runtime. Because strong typing and binding independent 
concepts, a language may be both strongly and statically typed strongly typed yet support 
dynamic binding (Object Pascal and C++), or untyped yet support dynamic binding 
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(Smalltalk). CLOS fits somewhere between C++ and Smalltalk, in that an implementation 
may either enforce or ignore any type declarations asserted by a programmer. 
 
Let's again illustrate these concepts with an example from C++. Consider the following 
nonmember function11: 
 
void balanceLevels(StorageTank& s1, StorageTank& s2); 
 
Calling the operation balanceLevels with instances of StorageTank or any of its subclasses is type-
consistent because the type of each actual parameter is part of the same line of inheritance, 
whose base class is StorageTank. 
 
In the implementation of this function, we might have the expression: 
 
if (s1.level() > s2.level())  
  s2.fill(); 
 
What are the semantics of invoking the selector level? This operation is declared only in the 
base StorageTank, and therefore, no matter what specific class or subclass instance we provide 
for the formal argument s1, the base class operation will be invoked. Here, the call to level is 
statically bound: at the time of compilation, we know exactly what operation will be invoked. 
 
On the other hand, consider the semantics of invoking the modifier fill, which is dynamically 
bound. This operation is declared in the base class and then redefined only in the subclass 
WaterTank. If the actual argument to s1 is a WaterTank instance, then WaterTank::fill will be invoked; 
if the actual argument to s1 is a NutrientTank instance, then StorageTank::fill will be invoked12. 
 
This feature is called polymorpbism; it represents a concept in type theory in which a single 
name (such as a variable declaration) may denote objects of many different classes that are 
related by some common superclass. Any object denoted by this name is therefore able to 
respond to some cormnon set of operations [74]. The opposite of polymorphism is 
monomorpbism, which is found in all languages that are both strongly typed and statically 
bound, such as Ada. 
 
Polymorphism exists when the features of inheritance and dynamic binding interact. It is 
perhaps the most powerful feature of object-oriented programming languages next to their 
support for abstraction, and it is what distinguishes object-oriented programming from more 
traditional programming with abstract data types. As we will see in the following chapters, 
polymorphism is also a central concept in object-oriented design. 
 

                                                 
11 A nonmember function is a function not directly associated with a class. Nonmember functions are also called 
free subprograms. In a pure object-oriented language such as Smalltalk, there are no free subprograrns; every 
operation must be associated with some class. 
 
12 StorageTank::fill is the syntax C++ uses to explicitly qualify the name of a declaration 
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Concurrency 
 
The Meaning of Concurrency For certain kinds of problems, an automated system may 
have to handle many different events simultaneously. Other problems may involve so much 
computation that they exceed the capacity of any single processor. In each of these cases, it is 
natural to consider using a distributed set of computers for the target implementation or to 
use processors capable of multitasking. A single process - also known as a thread of control is 
the root from which independent dynamic action occurs within a system. Every program has 
at least one thread of control, but a system involving concurrency may have many such 
threads: some that are transitory, and others that last the entire lifetime of the system's 
execution. Systems executing across multiple CPUs allow for truly concurrent threads of 
control, whereas systems running on a single CPU can only achieve the illusion of concurrent 
threads of control, usually by means of some time-slicing algorithm. 
 
 
 
 

 
Concurrency allows different objects to act at the same time. 
 
 
We also distinguish between heavyweight and lightweight concurrency. A heavyweight  
process is one that is typically independently managed by the target operating system, and so 
encompasses its own address space. A lightweight process usually lives within a single 
operating system process along with other lightweight processes, which share the same 
address space. Communication among heavyweight processes is generally expensive, 
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involving some form of interprocess communication; communication among lightweight 
processes is less expensive, and often involves shared data. 
 
Many contemporary operating systems now provide direct support for currency, and so there 
is greater opportunity (and demand) for concurrency in object-oriented systems. For example, 
UNIX provides the system call fork, which spans a new process. Similarly, Windows/NT and 
OS/2 are multithreaded, and provide programmatic interfaces for creating and manipulating 
procces. 
 
Lim and Johnson point out that "designing features for concurrency in OOP ages is not much 
different from [doing so in] other kinds of languages-concurrency is orthogonal to OOP at the 
lowest levels of abstraction. OOP or not, all the traditional problems in concurrent 
programming still remain" [75]. Indeed, building a large piece of software is hard enough; 
designing one that encompasses multiple threads of control is much harder because one must 
worry about such issues as deadlock, livelock, starvation, mutual exclusion and race 
conditions. Fortunately, as Lim and Johnson also point out, "At the highest levels of 
abstraction, OOP can alleviate the concurrency problem for the majority of programmers by 
hiding the concurrency inside reusable abstractions" [76]. Black et al. therefore suggest that 
"an object model is appropriate for a distributed system because it implicifly defines (1) the 
units of distribution and movement and (2) the entities that communicate" [77]. 
 
Whereas object-oriented programming focuses upon data abstraction, encapsulation, and 
inheritance, concurrency focuses upon process abstraction and synchronization [78]. The 
object is a concept that unifies these two different viewpoints: each object (drawn from an 
abstraction of the real world) may represent a separate thread of control (a process 
abstraction). Such objects are called active. In a system based on an object-oriented design, we 
can conceptualize the world as consisting of a set of cooperative objects, some of which are 
active and thus serve as centers of independent activity. Given this conception, we define 
concurrency as follows: 
 

Concurrency is tbe properly that distinguisbes an active object from one tbat is not active. 
 
Examples of Concurrency Our carlier discussion of abstraction introduced the class 
ActiveTemperatureSensor, whose behavior required periodically sensing the current temperature 
and then invoking the callback function of a client object whenever the temperature changed 
a certain number of degrees from a given setpoint. We did not explain how the class 
implemented this behavior. That fact is a secret of the implementation, but it is clear that 
some form of concurrency is required. In general, there are three approaches to concurrency 
in object-oriented design. 
 
First, concurrency is an intrinsic feature of certain programming languages. For example, 
Ada's mechanism for expressing a concurrent process is the task. Similarly, Smalltalk 
provides the class Process, which we may use as the superclass of all active objects. There are a 
number of other concurrent object-oriented programming languages, such as Actors, Orient 
84/K, and ABCL/1, that provide similar mechanisms for concurrency and synchronization. 
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In cach case, we may create an active object that runs some process concurrently with all 
other active objects. 
 
Second, we may use a class library that implements some form of lightweight processes. This 
is the approach taken by the AT&T task library for C++, which provides the classes Sched, 
Timer, Task, and others. Naturally, the implementation of this library is highly platform-
dependent, although the interface to the library is relatively portable. In this approach, 
concurrency is not an intrinsic part of the language (and so does not place any burdens upon 
nonconcurrent systems), but appears as if it were intrinsic, through the presence of these 
standard classes. 
 
Third, we may use interrupts to give us the illusion of concurrency. Of course, this requires 
that we have knowledge of certain low-level hardware details. For example, in our 
implementation of the class ActiveTemperatureSensor, we might have a hardware timer that 
periodically interrupts the application, during which time all such sensors read the current 
temperature, then invoke their callback function as necessary. 
 
No matter which approach to concurrency we take, one of the realities about concurrency is 
that once you introduce it into a system, you must consider how active objects synchronize 
their activities with one another as well as with objects that are purely sequential. For 
example, if two active objects try to send messages to a third object, we must be certain to use 
some means of mutual exclusion, so that the state of the object being acted upon is not 
corrupted when both active objects try to update its state simultaneously. This is the point 
where the ideas of abstraction, encapsulation, and concurrency interact. In the presence of 
concurrency, it is not enough simply to define the methods of an object; we must also make 
certain that the semantics of these methods are preserved in the presence of multiple threads 
of control. 
 
 
Persistence 
 
An object in software takes up some amount of space and exists for a particular amount of 
time. Atkinson et al. suggest that there is a continuum of object existence, ranging from 
transitory objects that arise within the evaluation of an expression, to objects in a database 
that outlive the execution of a single program. This spectrum of object persistence 
encompasses the following: 
 

• “Transient results in expression evaluation 
• Local variables in procedure activations 
• Own variables [as in ALGOL 60], global variables, and heap items whose extent is 

different from their scope 
• Data that exists between executions of a program 
• Data that exists between various versions of a program 
• Data that outlives the program" [79] 

 

nbodke
Polygonal Line

nbodke
Polygonal Line

nbodke
Polygonal Line

nbodke
Polygonal Line

nbodke
Polygonal Line

nbodke
Polygonal Line



 Chapter 2: The Object Model      73 

Traditional programming languages usually address only the first three kinds of object 
persistence; persistence of the last three kinds is typically the domain of database technology. 
This leads to a clash of cultures that sometimes results in very strange architectures: 
programmers end up crafting ad hoc schemes for storing objects whose state must be 
preserved between program executions, and database designers misapply their technology to 
cope with transient objects [80]. 
 
UnifVing the concepts of concurrency and objects gives rise to concurrent object-oriented 
programming languages. In a similar fashion, introducing the concept of persistence to the 
object model gives rise to object-oriented databases. In practice, such databases build upon 
proven technology, such as sequential, indexed, hierarchical, network, or relational database 
models, but then offer to the programmer the abstraction of an object-oriented interface, 
through which database queries and other operations are completed in terms of objects 
whose lifetime transcends the lifetime of an individual program. This unification vastly 
simplifies the development of certain kinds of applications. In particular, it allows us to apply 
the same design methods to the database and nondatabase segments of an application, as we 
will see in Chapter 10. 
 
 
 

 
Persistence saves the state and class of an object across time or space. 
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Very few object-oriented programming languages provide direct support for persistence; 
Smalltalk is one notable exception, wherein there are protocols for streaming objects to and 
from disk (which must be redefined by subclasses). However, streaming objects to flat files is 
a naive solution to persistence that does not scale well. More commonly, persistence is 
achieved through a modest number of commercially available object-oriented databases [81]. 
Another reasonable approach to persistence is to provide an object-oriented skin over a 
relational database. This approach is most appealing when there is a large capital investment 
in relational database technology that would be risky or too expensive to replace. We will 
examine this very situation in Chapter 10. 
 
Persistence deals with more than just the lifetime of data. In object-oriented databases, not 
only does the state of an object persist, but its, class must also transcend any individual 
program, so that every program interprets this saved state in the same way. This clearly 
makes it challenging to maintain the integrity of a database as it grows, particularly if we 
must change the class of an object. 
 
Our discussion thus far pertains to persistence in time. In most systems, an object, once 
created, consumes the same physical memory until it ceases to exist. However, for systems 
that execute upon a distributed set of processors, we must sometimes be concerned with 
persistence across space. In such systems, it is useful to think of objects that can move from 
machine to machine, and that may even have different representations on different machines. 
We examine this kind of persistence further in the application in Chapter 12. 
 
To summarize, we define persistence as follows: 
 

Persistence is theproperty of an object tbrougb which its existence transcends time (i.e. tbe object 
continues to exist after its creator ceases to exist) and/or space (i. e. the objects location moves from 
the address space in wbich it was created). 

 
 
2.3 Applylng the Object Model 
 
Benefits of the Object Model 
 
As we have shown, the object model is fundamentally different from the models embraced by 
the more traditional methods of structured analysis, structured design, and structured 
programming. This does not mean that the object model abandons all of the sound principles 
and experiences of these older methods. Rather, it introduces several novel elements that 
build upon these earlier models. Thus, the object model offers a number of significant benefits 
that other models simply do not provide. Most importantly, the use of the object model leads 
us to construct systems that embody the five attributes of well-structured complex systems. 
In our experience, there are five other practical benefits to be derived from the application of 
the object model. 
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First, the use of the object model helps us to exploit the expressive power of object-based and 
object-oriented programming languages. As Stroustrup points out, "lt is not always clear how 
best to take advantage of a language such as C++. Significant improvements in productivity 
and code quality have consistently been achieved using C++ as 'a better C’ with a bit of data 
abstraction thrown in where it is clearly useful. However, further and noticeably larger 
improvements have been achieved by taking advantage of class hierarchies in the design 
process. This is often called object-oriented design and this is where the greatest benefits of 
using C++ have been found" [82]. Our experience has been that, without the application of 
the elements of the object model, the more powerful features of languages such as Smalltalk, 
Object Pascal, C++, CLOS, and Ada are either ignored or greatly misused. 
 
Next, the use of the object model encourages the reuse not only of software but of entire 
designs, leading to the creation of reusable application frame-works [83]. We have found that 
object-oriented systems are often smaller than equivalent non-object-oriented 
implementations. Not only does this mean less code to write and maintain, but greater reuse 
of software also translates into cost and schedule benefits. 
 
Third, the use of the object model produces systems that are built upon stable intermediate 
forms, which are more resilient to change. This also means that such systems can be allowed 
to evolve over time, rather than be abandoned or completely redesigned in response to the 
first major change in requirements. 
 
 

Air traffic control  Investment strategiei 
Animation  Mathematical analysis 
Avionics  Medical electronics 
Banking and insurance software  Music composition 
Business data processing  Office automation 
Chemical process control  Operating systems 
Command and control systems  Petroleum engineering 
Computer aided design  Reusable software components 
Computer aided education  Robotics 
Computer integrated manufacturing  Software development environments 
Databases  Space station software 
Document preparation  Spacecraft and aircraft simulation 
Expert systems Telecommunications 
Film and estage storyboarding  Telemetry systems 
Hipermedia  User interface design 
Image recognition VLSI design 

 
Figure 2-6 
Applications of the Object Model 
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Chapter 7 explains further how the object model reduces the risks inherent in developing 
complex systems, primarily because integration is spread out across the life cycle rather than 
occurring as one major event. The object model’s guidance in designing an intelligent 
separation of concerns also reduces development risk and increases our confidence in the 
correctness of our design. 
 
Finally, the object model appeals to the workings of human cognition, for as Robson suggests, 
"Many people who have no idea how a computer works find the idea of object-oriented 
systems quite natural” [84]. 
 
 
Applications of the Object Model 
 
The object model has proven applicable to a wide variety of problem domains. Figure 2-6 lists 
many of the domains for which systems exist that may properly be called object-oriented. The 
Bibliography provides an extensive list of references to these and other applications. 
 
Object-oriented analysis and design may be the only method we have today that can be 
employed to attack the complexity inherent in very large systems. In all fairness, however, 
the use of object-oriented development may be ill-advised for some domains, not for any 
technical reasons, but for nontechnical ones, such as the absence of a suitably trained staff or a 
good development environment. We will discuss these issues in more detail in Chapter 7. 
 
 
Open Issues 
 
To effectively apply the elements of the object model, we must next address several open 
issues: 
 

• What exactly are classes and objects? 
• How does one properly identify the classes and objects that are relevant to a particular 

application? 
• What is a suitable notation for expressing the design of an object-oriented system? 
• What process can lead us to a weil-structured object-oriented system? 
• What are the management implications of using object-oriented design? 

 
These issues are the themes of the next five chapters. 
 
 
Summary 
 

• The maturation of software engineering has led to the development of object-oriented 
analysis, design, and programming methods, all of which address the issues of 
programming-in-the-large. 
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• There are several different programming paradigms: procedure-oriented, object-

oriented, logic-oriented, rule-oriented, and constraint-oriented. 
• An abstraction denotes the essential characteristics of an object that distinguish it from 

all other kinds of objects and thus provide crisply defined conceptual boundaries, 
relative to the perspective of the viewer. 

• Encapsulation is the process of compartmentalizing the elements of an abstraction that 
constitute its structure and behavior; encapsulation serves to separate the contractual 
interface of an abstraction and its implementation. 

• Modularity is the property of a system that has been decomposed into a set of cohesive 
and loosely coupled modules. 

• Hierarchy is a ranking or ordering of abstractions. 
• Typing is the enforcement of the class of an object, such that objects of different types 

may not be interchanged, or at the most, be interchanged only in very restricted ways. 
• Concurrency is the property that distinguishes an active object from one that is not 

active. 
• Persistence is the property of an object through which its existence transcends time 

and/or space. 
 
 
Further Readings 
 
The concept of the object model was first introduced by Jones [F 1979] and Williams [F 1986]. 
Kay's Ph.D. thesis [F 1969] established the direction for much of the work in object-oriented 
programming that followed. 
 
Shaw [J 1984] provides an excellent summary regarding abstraction mechanisms in highorder 
programming languages. The theoretical foundation of abstraction may be found in the work 
of Liskov and Guttag [H 1986], Guttag [J 1980], and Hilfinger [J 1982]. Parnas [F 1979] is the 
seminal work on information hiding. The meaning and importance of hierarchy are discussed 
in the work edited by Pattee [J 1973]. 
 
There is a wealth of literature regarding object-oriented programming. Cardelli and Wegner 
[J 1985] and Wegner [J 1987] provide an excellent survey of object-based and object-oriented 
programming languages. The tutorial papers of Stefik and Bobrow [G 1986], Stroustrup [G 
1988], Nygaard [G 1986], and Grogono [G 1991] are good starting points on the important 
issues in object-oriented programming. The books by Cox [G 1986], Meyer [F 1988], 
Schmucker [G 1986], and Kim and Lochovsky [F 1989] offer extended coverage of these 
topics. 
 
Object-oriented design methods were first introduced by Booch [F 1981, 1982, 1986, 1987, 
1989]. Object-oriented analysis methods were first introduced by ShIaer and Mellor [B 1988] 
and Bailin [B 1988]. Since then, a variety of object-oriented analysis and design methods have 
been proposed, most notably Rumbaugh [F 1991], Coad and Yourdon [B 1991], Constantine [F 
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1989], ShIaer and Mellor [B 1992], Martin and Odell [B 1992], Wasserman [B 1991], Jacobson 
[F 1992], Rubin and Goldberg [B 1992], Embly [B 1992], Wirfs-Brock [F 1990], Goldstein and 
Alger [C 1992], Henderson-Sellers [F 1992], Firesmith [F 1992], and Fusion [F 1992]. 
 
Case studies of object-oriented applications may be found in Taylor [H 1990, C 1992], Berard 
[H 1993], Love [C 1993], and Pinson and Weiner [C 1990]. 
 
An excellent collection of papers dealing with all topics of object-oriented technology may be 
found in Peterson [G 1987], Schriver and Wegner [G 1987], and Khoshafian and Abnous [Gr 
1990]. The proceedings of several yearly conferences on object-oriented technology are also 
excellent sources of material. Some of the more interesting forums include OOPSLA, ECOOP, 
TOOLS, Object World, and ObjectExpo. 
 
Organizations responsible for establishing standards for object technology include the Object 
Management Group and the ANSI X3J7 committee. 
 
The primary reference for C++ is Ellis and Stroustrup [G 1990]. Other useful references 
include Stroustrup [G 1991], Lippman [G 1991], and Coplien [Gr 1992]. 
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Classes and Objects 
 
 
 
 
Both the engineer and the artist must be intimately familiar with the materials of their trade. 
When we use object-oriented methods to analyze or design a complex software system, our 
basic building blocks are classes and objects. Since we have thus far provided only informal 
definitions of these two elements, in this chapter we turn to a detailed study of the nature of 
classes, objects, and their relationships, and along the way provide several rules of thumb for 
crafting quality abstractions and mechanisms. 
 
 
3.1 The Nature of an Object 
 
What Is and What Isnt an Object 
 
The ability to recognize physical objects is a skill that humans learn at a very early age. A 
brightly colored ball will attract an infant's attention, but typically, if you hide the ball, the 
child will not try to look for it; when the object leaves her field of vision, as far as she can 
determine, it ceases to exist. It is not until near the age of one that a child normally develops 
what is called the object concept, a skill that is of critical importance to future cognitive 
development. Show a ball to a one-year-old and then hide it, and she will usually search for it 
even though it is not visible. Through the object concept, a child comes to realize that objects 
have a permanence and identity apart from any operations upon them [1]. 
 
In the previous chapter, we informally defined an object as a tangible entity that exhibits 
some well-defined behavior. From the perspective of human cognition, an object is any of the 
following: 
 

• A tangible and/or visible thing 
• Something that may be apprehended intellectually 
• Something toward which thought or action is directed 

 
We add to our informal definition the idea that an object models some part of reality and is 
therefore something that exists in time and space. In software, the term object was first 
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formally applied in the Simula language; objects typically existed in Simula programs to 
simulate some aspect of reality [2]. 
 
Real-world objects are not the only kinds of objects that are of interest to us during software 
development. Other important kinds of objects are inventions of the design process whose 
collaborations with other such objects serve as the mechanisms that provide some higher-
level behavior [3]. This leads us to the more refined definition of Smith and Tockey, who 
suggest that “an object represents an individual, identifiable item, unit, or entity, either real or 
abstract, with a well-defined role in the problem domain" [4]. In even more general terms, we 
define an object as anything with a crisply defined boundary [5]. 
 
Consider for a moment a manufacturing plant that processes composite materials for making 
such diverse items as bicycle frames and airplane wings. Manufacturing plants are often 
divided into separate shops: mechanical, chemical, electrical, and so forth. Shops are further 
divided into cells, and in each cell we have some collection of machines, such as die stamps, 
presses, and lathes. Along a manufacturing line, we might find vats containing raw materials, 
which are used in a chemical process to produce blocks of composite materials, and which in 
turn are formed and shaped to produce end items such as bicycle frames and airplane wings. 
Each of the tangible things we have mentioned thus far is an object. A lathe has a crisply 
defined boundary that separates it from the block of composite material it operates upon; a 
bicycle frame has a crisply defined boundary that distinguishes it from the cell of machines 
that produced the frame itself. 
 
Some objects may have crisp conceptual boundaries, yet represent intangible events or 
processes. For example, a chemical process in a manufacturing plant may be treated as an 
object, because it has a crisp conceptual boundary, interacts with certain other objects through 
a wellordered collection of operations that unfolds over time, and exhibits a welldefined 
behavior. Similarly, consider a CAD/CAM system for modeling solids. Where two solids 
such as a sphere and a cube intersect, they may form an irregular line of intersection. 
Although it does not exist apart from the sphere or cube, this line is still an object with crisply 
defined conceptual boundaries. 
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An object has state, exhibits some weii-defined behavior, and has a unique identity. 
 
Some objects may be tangible, yet have fuzzy physical boundaries. Objects such as rivers, fog, 
and crowds of people fit this definition13. Just as the person holding a hammer tends to see 
everything in the world as a nail, so the developer with an object-oriented mindset begins to 
think that everything in the world is an object. This perspective is a little naive, because there 
are some things that are distinctly not objects. For example, attributes such as time, beauty, or 
color are not objects, nor are emotions such as love and anger. On the other hand, these things 
are all potentially properties of other objects. For example, we might say that a man (an 
object) loves his wife (another object), or that a particular cat (yet another object) is gray. 
 
Thus, it is useful to say that an object is something that has crisply defined boundaries, but 
this is not enough to guide us in distinguishing one object from another, nor does it allow us 
to judge the quality of our abstractions. Our experience therefore suggests the following 
definition: 
 

An object has state, behavior, and identity; the structure and behavior of similar objects are defined 
in their common class; the terms instance and object are interchangeable. 

 
 
 

                                                 
13 This is true only at a sufficiently high level of abstraction. To a person walking through a fog bank, it is 
generally futile to distinguish "my fog" from "your fog." However, consider a weather map: a fog bank over San 
Francisco is a distinctly different object than a fog bank over London. 
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State 
 
Semantics Consider a vending machine that dispenses soft drinks. The usual behavior of 
such objects is that when one puts coins in a slot and pushes a button to make a selection, a 
drink emerges from the machine. What happens if a user first makes a selection and then puts 
money in the slot? Most vending machines just sit and do nothing, because the user has 
violated the basic assumptions of their operation. Stated another way, the vending machine 
was playing a role (of waiting for coins) that the user ignored (by making a selection first). 
Similarly, suppose that the user ignores the warning light that says "Correct change only," 
and puts in extra money. Most machines are userhostile; they will happily swallow the excess 
coins. 
 
In each of these circumstances, we see how the behavior of an object is influenced by its 
history: the order in which one operates upon the object is important. The reason for this 
event- and time-dependent behavior is the existence of state within the object. For example, 
one essential state associated with the vending machine is the amount of money currently 
entered by a user but not yet applied to a selection. Other important properties include the 
amount of change available and the quantity of soft drinks on hand. 
 
From this example, we may form the following low-level definition: 
 

The state of an object encompasses all of the (usually static) properties of tbe object plus tbe current 
(usually dynamic) values of each of these properties. 

 
Another property of a vending machine is that it can accept coins. This is a static (that is, 
fixed) property, meaning that it is an essential characteristic of a vending machine. In 
contrast, the actual quantity of coins accepted at any given moment represents the dynamic 
value of this property, and is affected by the order of operations upon the machine. This 
quantity increases as a user inserts coins, and then decreases when a salesperson services the 
machine. We say that values are "usually dynamic" because in some cases values are static. 
For example, the serial number of a vending machine is a static property and value. 
 
A property is an inherent or distinctive characteristic, trait, quality, or feature that contributes 
to making an object uniquely that object. For example, one essential property of an elevator is 
that it is constrained to travel up and down and not horizontally. Properties are usually static, 
because attributes such as these are unchanging and fundamental to the nature of the object. 
We say "usually" static, because in some circumstances the properties of an object may 
change. For example, consider an autonomous robot that can learn about its environment. It 
may first recognize an object that appears to be a fixed barrier, only to learn later that this 
object is in fact a door that can be opened. In this case, the object created by the robot as it 
builds its conceptual model of the world gains new properties as new knowledge is acquired. 
 
All properties have some value. This value might be a simple quantity, or it might denote 
another object. For example, part of the state of an elevator might have the value 3, denoting 
the current floor on which the elevator is located. In the case of the vending machine, the state 
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of the vending machine encompasses many other objects, such as a collection of soft drinks. 
The individual drinks are in fact distinct objects; their properties are different from those of 
the machine (they can be consumed, whereas a vending machine cannot), and they can be 
operated upon in distinctly different ways. Thus, we distinguish between objects and simple 
values: simple quantities such as the number 3 are "a temporal, unchangeable, and non-
instantiated," whereas objects “exist in time, are changeable, have state, are instantiated, and 
can be created, destroyed, and shared" [6]. 
 
The fact that every object has state implies that every object takes up some amount of space, 
be it in the physical world or in computer memory. 
 
Example Consider the structure of a personnel record. In C++ we might write: 
 
struct PersonnelRecord 
{ 
  char  name[100]; 
  int   socialSecurit Number; 
  char  department[10]; 
  float salary; 
} 
 
Each part of this structure denotes a particular property of our abstraction of a personnel 
record. This declaration denotes a class, not an object, because it does not represent a specific 
instance14. To declare objects of this class, we write 
 
PersonnelRecord deb, dave, karen, jim, tom, denise, kaitlyn, krista, elyse; 
 
Here, we have nine distinct objects, each of which takes up some amount of space in memory. 
None of these objects shares its space with any other object, although each of them has the 
same properties; thus their states have a common representation. 
 
It is good engineering practice to encapsulate the state of an object rather than expose it as in 
the preceding declaration. For example, we might rewrite that class declaration as follows: 
 
class PersonnelRecord { 
public: 
  char* employeeName() const;  
  int   employeeSocialSecurityNumber() const;  
  char* employeeDepartment() const;  
protected: 
  char  name[100];  
  int   socialSecurityNumber; 
  char  department[10]; 
  float salary; 
}; 

                                                 
14 To be precise, this declaration denotes a structure, a lower-level C++ record construct whose semantics are the 
same as a class with all public members. Structures thus denote unencapsulated abstractions. 
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This declaration is slightly more complicated than the previous one, but it is superior for a 
number of reasons15. Specifically, we have written this class so that its representation is 
hidden from all other outside clients. lf we change its representation, we will have to 
recompile some code, but semantically, no outside client will be affected by this change (in 
other words, existing code will not break). Also, we have captured certain decisions about the 
problem space by explicifly stating some of the operations that clients may perform upon 
objects of this class. In particular, we grant all clients the right to retrieve the name, social 
security number, and department of an employee. Only special clients (namely, subclasses of 
this class) have permission to modify the values of these properties. Furthermore, only these 
special clients may modify or retrieve the salary of an employee, whereas outside clients may 
not. Another reason why this declaration is better than the previous one has to do with reuse. 
As we will see in a later section, inheritance makes it possible for us to reuse this abstraction, 
and then refine it or specialize it in a variety of ways. 
 
We may say that all objects within a system encapsulate some state, and that all of the state 
within a system is encapsulated by objects. However, encapsulating the state of an object is a 
start, but is not enough to allow us to capture the full intent of the abstractions we discover 
and invent during development. For this reason, we must also consider how objects behave. 
 
 
Behavior 
 
The Meaning of Behavior No object exists in isolation. Rather, objects are acted upon, and 
themselves act upon other objects. Thus, we may say that 
 

Behavior is how an object acts and reacts, in terms of its state changes and message passing. 
 
In other words, the behavior of an object represents its outwardly visible and testable activity. 
 
An operation is some action that one object performs upon another in order to elicit a 
reaction. For example, a client might invoke the operations append and pop to grow and shrink 
a queue object, respectively. A client might also invoke the operation length, which returns a 
value denoting the size of the queue object but does not alter the state of the queue itself. In 
pure object-oriented languages such as Smalltalk, we speak of one object passing a message to 
another. In languages such as C++, which derive from more procedural ancestors, we speak 
of one object invoking the member function of another. Generally, a message is simply an 

                                                 
15 An issue of style: the PersonnelRecord class as we've declared it here is not a tremendously high-quality class, 
according to the metrics we describe later in this chapter - this example only serves to illustrate the semantics of 
a class's state. Having a member function return a value of char* is often dangerous, because this violates a 
memory-safe paradigm: if the method creates storage for which the client does not take responsibility, garbage 
will result. In production systems, we prefer to use a parameterized variable-length string class, as we might 
find in a foundation class library such as described in Chapter 9. Also, classes are more than just C struct 
declarations wrapped up in C++ class syntax; as we explain in Chapter 4, classification requires an deliberate 
focus upon common structure and behavior. 
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operation that one object performs upon another, although the underlying dispatch 
mechanisms are different. For our purposes, the terms operation and message are 
interchangeable. 
 
In most object-oriented programming languages, operations that clients may perform upon 
an object are typically declared as methods, which are part of the class's declaration. C++ uses 
the term member function to denote the same concept; we will use these terms interchangeably. 
 
Message passing is one part of the equation that defines the behavior of an object; our 
definition for behavior also notes that the state of an object affects its behavior as well. 
Consider again the vending machine example. We may invoke some operation to make a 
selection, but the vending machine will behave differently depending upon its state. If we do 
not deposit change sufficient for our selection, then the machine will probably do nothing. If 
we provide sufficient change, the machine will take our change and then give us our selection 
(thereby altering its state). Thus, we may say that the behavior of an object is a function of its 
state as well as the operation performed upon it, with certain operations having the side effect 
of altering the object's state. This concept of side effect thus leads us to refine our definition of 
state: 
 

The state of an object represents the cumulative results of its bebavior. 
 
Most interesting objects do not have state that is static; rather, their state has properties whose 
values are modified and retrieved as the object is acted upon. 
 
Example Consider the following declaration of a queue class in C++: 
 
class Queue {  
public: 
 
  Queue(); 
  Queue(const Queue&); 
  virtual ~Queue(); 
 
  virtual Queue& operator=(const Queue&); 
  virtual int operator=(const Queue&) const; 
  int operator!=(const Queue&) const; 
 
  virtual void clear(); 
  virtual void append(const void*); 
  virtual void pop(); 
  virtual void remove(int at); 
 
  virtual int length() const; 
  virtual int isEmpty() const; 
  virtual const void* front() const; 
  virtual int location(const void*); 
 
protected: 
  … 
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}; 
 
This class uses the cornmon C idiom of setting and getting items via void*, which provides the 
abstraction of a heterogeneous queue, meaning that clients can append objects of any class to 
a queue object. This approach is not particularly type-safe, because the client must remember 
the class of the objects placed in the queue. Also, the use of void* prevents the Queue object 
from “owning" its items, meaning that we cannot rely upon the action of the queue's 
destructor (~Queue()) to destroy the elements in the queue. In a later section we will study 
parameterized types, which mitigate these problems. 
 
Since the declaration Queue represents a class, not an object, we, must declare instances that 
clients can manipulate: 
 
Queue a, b, c, d; 
 
Continuing, we may operate upon these objects as in the following code: 
 
a.append(&deb);  
a.append(&karen);  
a.append(kdenise);  
b = a;  
a.pop(); 
 
After executing these statements, the queue denoted by a contains two items (with a pointer 
to the karen record at its front), and the queue denoted by b contain three items (with the deb 
record at its front). In this manner, each of these queue objects embodies some distinct state, 
and this state affects the future behavior of each object. For example, we may safely pop b 
three more times, but a may be safely popped only two more times. 
 
Operations An operation denotes a service that a class offers to its clients. In practice, we 
have found that a client typically performs five kinds of operations upon an object16. The 
three most common kinds of operations are the following: 
 

• Modifier  An operation that alters the state of an object 
• Selector  An operation that accesses the state of an object, but does not alter the 

   state 
• Iterator  An operation that permits all parts of an object to be accessed in some                          

well-defined order 
 
Because these operations are so logically dissimilar, we have found it useful to apply a coding 
style that highlights their differences. For example, in our declaration of the class Queue, we 
first declare all modifiers as non-const member functions (the operations clear, append, pop, and 
remove), followed by all selectors as const functions (the operations length, isEmpty, front, and 

                                                 
16 Lippman suggests a sfightly different categorization: manager functions, implementor functions, helping 
functions (all kinds of modifiers), and access functions (equivalent to selectors) [7]. 
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location). As we will illustrate in Chapter 9, our style is to define a separate class that acts as 
the agent responsible for iterating across queues. 
 
Two other kinds of operations are common; they represent the infrastructure necessary to 
create and destroy instances of a class: 
 

• Constructor  An operation that creates an object and/or  initializes its state 
• Destructor  An operation that frees the state of an object and/or destroys the  

object itself 
 
In C++, constructors and destructors are declared as part of the definition of a class (the 
members Queue and ~Queue), whereas in Smalltalk and CLOS, such operations are typically 
part of the protocol of a metaclass (that is, the class of a class). 
 
In pure object-oriented programming languages such as Smalltalk, operations may only be 
declared as methods, since the language does not allow us to declare procedures or functions 
separate from any class. In contrast, languages such as Object Pascal, C++, CLOS, and Ada 
allow the developer to write operations as free subprograms; in C++, these are called 
nonmember functions. Free subprograms are procedures or functions that serve as 
nonprimitive operations upon an object or objects of the same or different classes. Free 
subprograms are typically grouped according to the classes upon which they are built; 
therefore, we call such collections of free subprograms class utilities. For example, given the 
preceding declaration of the package Queue, we might write the following nonmember 
function: 
 
void copyUntilFound(Queue& from, Queue& to, void* item) 
{ 
  while ((!from.isEmpty()) && (from.front() != item)) { 
    to.append(from.front()); 
    from.pop(); 
  } 
} 
 
The purpose of this operation is to repeatedly copy and then pop the contents of one queue 
until the given item is found at the front of the queue. This operation is not primitive; it can 
be built from lower-level operations that are already a part of the Queue class. 
 
It is common style in C++ (and Smalltalk) to collect all logically related free subprograms and 
declare them as part of a class that has no state. In particular, in C++, these become static. 
 
Thus, we may say that all methods are operations, but not all operations are methods: some 
operations may be expressed as free subprograms. In practice, we are inclined to declare most 
operations as methods, although as we discuss in a later section, there are sometimes 
compelling reasons to do otherwise, such as when a particular operation affects two or more 
objects of different classes, and there is no particular benefit in declaring that operation in one 
class over the other. 
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Roles and Responsibilities Collectively, all of the methods and free subprograms associated 
with a particular object comprise its protocol. The protocol of an object thus defines the 
envelope of an object's allowable behavior, and so comprises the entire static and dynamic 
view of the object. For most nontrivial abstractions, it is useful to divide this larger protocol 
into logical groupings of behavior. These collections, which thus partition the behavior space 
of an object, denote the roles that an object can play. As Adams suggests, a role is a mask that 
an object wears [8], and so defines a contract between an abstraction and its clients. 
 
Unifying our definitions of state and behavior, Wirfs-Brock defines the responsibilities of an 
object to "include two key items: the knowledge an object maintains and the actions an object 
can perform. Responsibilities are meant to convey a sense of the purpose of an object and its 
place in the system. The responsibilities of an object are all the services it provides for all of 
the contracts it supports" [9]. In other words, we may say that the state and behavior of an 
object collectively define the roles that an object may play in the world, which in turn fulfill 
the abstraction's responsibilities. 
 
Indeed, most interesting objects play many different roles during their lifetime; for example 
[10]: 
 

• A bank account may be in good or bad standing, and which role it is in affects the 
semantics of a withdrawal transaction. 

• To a trader, a share of stock represents an entity with value that may be bought or 
sold; to a lawyer, the same share denotes a legal instrument encompassing certain 
rights. 

• In the course of one day, the same person may play the role of mother, doctor, 
gardener, and movie critic. 

 
In the case of the bank account, the roles that this object can play are dynarnic yet mutually 
exclusive: a bank account can be either in good or bad standing, but not both. In the case of 
the share of stock, its roles overlap slightly, but each role is static relative to the client that 
interacts with the share. In the case of the person, her roles are quite dynamic, and may 
change from moment to moment. 
 
As we will discuss further in Chapters 4 and 6, we often start our analysis of a problem by 
examining the various roles that an object plays. During design, we refine these roles by 
inventing the particular operations that carry out each role's responsibilities. 
 
Objects as Machines The existence of state within an object means that the order in which 
operations are invoked is important. This gives rise to the idea that each object is like a tiny, 
independent machine [11]. Indeed, for some objects, this event- and time-ordering of 
operations is so pervasive that we can best formally characterize the behavior of such objects 
in terms of an equivalent finite state machine. In Chapter 5, we will show a particular 
notation for hierarchical finite state machines that we may use for expressing these semantics. 
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Continuing the machine metaphor, we may classify objects as either active or passive. An 
active object is one that encompasses its own thread of control, whereas a passive object does 
not. Active objects are generally autonomous, meaning that they can exhibit some behavior 
without being operated upon by another object. Passive objects, on the other hand, can only 
undergo a state change when explicitly acted upon. In this manner, the active objects in our 
system serve as the roots of control. If our system involves multiple threads of control, then 
we will usually have multiple active objects. Sequential systems, on the other hand, usually 
have exactly one active object, such as a main window object responsible for managing an 
event loop that dispatches messages. In such architectures, all other objects are passive, and 
their behavior is ultimately triggered by messages from the one active object. In other kinds of 
sequential system architectures (such as transaction processing systems), there is no obvious 
central active object, and so control tends to be distributed throughout the system's passive 
objects. 
 
 
Identity 
 
Semantics Khoshafian and Copeland offer the following definition: 
 

“Identity is that property of an object which distinguishes it from all other objects " [12]. 
 
They go on to note that "most programming and database languages use variable names to 
distinguish temporary objects, mixing addressability and identity. Most database systems use 
identifier keys to distinguish persistent objects, mixing data value and identity." The failure to 
recognize the difference between the name of an object and the object itself is the source of 
many kinds of errors in object-oriented programming. 
 
Example Consider the following declarations in C++. First, we start with a simple structure 
that denotes a point in space: 
 
struct Point { 
  int x;  
  int y;  
  Point() : x(0), y(0) {} 
  Point(int xValue, int yValue) : x(xValue), y(yValue) {} 
}; 
 
Here, we have chosen to declare Point as a structure, not as a full-blown class. The rule of 
thumb we apply to make this distinction is simple. If our abstraction represents a simple 
record of other objects and has no really interesting behavior that applies to the object as a 
whole, make it a structure. However, if our abstraction requires behavior more intense than 
just simple puts and gets of largely independent record items, then make it a class. In the case 
of our Point abstraction, we define a point as representing an (x, y) coordinate in space. For 
convenience, we provide one constructor that provides a default (0, 0) value, and another 
constructor that initializes a point with an explicit (x, y) value. 
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Next, we provide, a class that denotes a display item. A display item is a common abstraction 
in all GUI-centric systems: it represents the base class of all objects that have a visual 
representation on some window, and so captures the structure and behavior common to all 
such objects. Here we have an abstraction that is more than just a simple record of data. 
Clients expect to be able to draw, select, and move display items, as well as query their 
selection state and location. We may capture our abstraction in the following C++ declaration: 
 
class DisplayItem { 
public: 
 
  DisplayItem(); 
  DisplayItem(const Point& location);  
  virtual ~DisplayItem(); 
 
  virtual void draw();  
  virtual void erase();  
  virtual void select();  
  virtual void unselect();  
  virtual void move(const Point& location); 
 
  int isSelected() const;  
  Point location() const;  
  int isUnder(const Point& location) const; 
 
protected: 
     … 
}; 
This declaration is incomplete: we have intentionally omitted all of the constructors and 
operators needed to handle copying, assignment, and tests for equality. We will consider 
these aspects of our abstraction in the next section. 
 
Because we expect clients to declare subclasses of this class, we have declared its destructor 
and all of its modifiers as virtual. In particular, we expect concrete subclasses to redefine draw 
to reflect the behavior of drawing domain specific items in a window. We have not declared 
any of its selectors as virtual, because we do not expect subclasses to refine this behavior. 
Note also that the one selector isUnder involves more than just retrieving a simple state value. 
Here, the semantics of this operation require the object to calculate if the given point falls 
anywhere within the frame of the display item. 
 
To declare instances of this class, we might write the following: 
 
DisplayItem item1;  
DisplayItem* item2 = new DisplayItem(Point(75, 75)); 
DisplayItem* item3 = new DisplayItem(Point(100, 100));  
DisplayItem* item4 = 0; 
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Figure 3-1 
Object ldentity 
 
As Figure 3-1a shows, the elaboration of these declarations creates four names and three 
distinct objects. Specifically, elaboration sets aside four locations in memory whose names are 
item1, item2, item3, and item4, respectively. Also, item1 is the name of a distinct DisplayItem object, 
but the other three names each denote a pointer to a DisplayItem object. Only item2 and item3 
actually point to distinct DisplayItem objects (because only their declarations allocate a new 
DisplayItem object); item4 designates no such object. Furthermore, the names of the objects 
pointed to by item2 and item3 are anonymous: we can only refer to these distinct objects 
indirectly, by dereferencing their pointer value. Thus, we may properly say that item2 points 
to a distinct DisplayItem object, whose name we may refer to indirectly as *item2. The unique 
identity (but not necessarily the name) of each object is preserved over the lifetime of the 
object, even when its state is changed. This is like the Zen question about a river: is a river the 
same river from one day to the next, even though the same water never flows through it? For 
example, consider the results of executing the following statements: 
 
item1.move(item2->location());  
item4 = item3;  
item4->move(Point(38, 100)); 
 
Figure 3-1b illustrates these results. Here we see that item1 and the object designated by item2 
both have the same location state, and that item4 now also designates the same object as does 
item3. Notice that we use the phrase "the object designated by item2" rather than saying "the 
object item2." The first phrase is more precise, although we will sometimes use these phrases 
interchangeably. 
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Although item1 and the object designated by item2 have the same state, they represent distinct 
objects. Also, note that we have changed the state of the object designated by item3 by 
operating upon it through its new indirect name, item4. This is a situation we call structural 
sharing, meaning that a given object can be named in more than one way; in other words, 
there are aliases to the object. Structural sharing is the source of many problems in object-
oriented programming. Failure to recognize the side effects of operating upon an object 
through aliases often leads to memory leaks, memory-access violations, and even worse, 
unexpected state changes. For example, if we destroyed the objec designated by item3 using 
the expression delete item3, then item4’s pointer value would be meaningless: this is a situation 
we call a dangling reference. 
 
Consider also Figure 3-1c, which illustrates the results of executing the following statements: 
 
item2 = &item1;  
item4->move(item2->location()); 
 
The first statement introduces an alias, for now item2 designates the same object as item1; the 
second statement accesses the state of item1 through the new alias. Unfortunately, we have 
introduced a memory leak: the object origin ally designated by item2 can no longer be named, 
either directly or indirectly, and so its identity is lost. In languages such as Smalltalk and 
CLOS, such objects will be garbage-collected and their storage reclaimed automatically, but in 
languages such as C++, their storage will not be reclaimed until the program that created 
them finishes. Especially for long-running programs, memory leaks such as this are either 
bothersome or disastrous17. 
 
Copying, Assignment, and Equality Structural sharing takes place when the identity of an 
object is aliased to a second name. In most interesting object-oriented applications, using 
aliases simply cannot be avoided. For example, consider the following two function 
declarations in C++: 
 
void highlight(DisplayItem& i); 
void drag(DisplayItem i);   // Dangerous 
 
Invoking the first function with the argument item1 creates an alias: the formal parameter i 
denotes a reference to the object designated by the actual parameter, and hence item1 and i will 
name the same object at execution time. On the other hand, invoking the second function 
with the argument item1 makes a copy of the actual parameter, and so there is no alias: i 
denotes a completely different object (but with the same state) as does item1. In languages 
such as C++ where there is a distinction between passing arguments by reference versus by 

                                                 
17 Consider the effects of a memory leak in software controlling a satellite or pacemaker. Restarting the computer 
in a satellite several million miles away from earth is quite inconvenient. Similarly, the unpredictable occurrence 
of automatic garbage collection in a pacemaker's software is likely to be fatal. For these reasons, real-time system 
developers often steer away from the unrestrained allocation of objects on the heap. 
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value, care must be taken to avoid operating upon a copy of an object, when the intent was to 
operate upon the original object itself18. Indeed, as we will discuss in a later section, passing 
objects by reference in C++ is essential to eliciting polymorphic behavior. In general, passing 
objects by reference is the most desirable practice for nonprimitive objects, for its semantics 
only involve copying references, not state, and hence is far more efficient for passing 
anything larger than simple values. 
 
In some circumstances, however, copying is the intended semantics, and in languages such as 
C++, it is possible to control the semantics of copying. In particular, we may introduce a copy 
constructor to a class's declaration, as in the following code fragment, which we would 
declare as part of the declaration for DisplayItem: 
 
DisplayItem(const DisplayItem&); 
 
In C++, a copy constructor may be invoked either explicitly (as part of the declaration of an 
object) or implicitly (as when passing an object by value). Omitting this special constructor 
invokes the default copy constructor, whose semantics are defined as a memberwise copy. 
However, for objects whose state itself involves pointers or references to other objects, default 
memberwise copying is usually dangerous, for copying then implicitly introduces lower-level 
aliases. The rule of thumb we apply, therefore, is that we omit an explicit copy constructor 
only for those abstractions whose state consists of simple, primitive values; in all other cases, 
we usually provide an explicit copy constructor. 
 
This practice distinguishes what some languages call shallow versus deep copying. Smalltalk, 
for example, provides the methods shallowCopy (which copies the object, but shares its state) 
and deepCopy (which copies the object as well as its state, and recursively so). Redefining these 
operations for aggregate classes permits a mixture of semantics: copying a higher-level object 
might copy most of its state, but introduce aliases for certain other lower-level elements. 
 
Assignment is also generally a copying operation, and in languages such as C++, its 
semantics can be controlled as well. For example, we might add the following declaration to 
our declaration of DisplayItem: 
 
virtual DisplayItem& operator=(const DisplayItem&); 
 
We declare this operator as virtual, because we expect a subclass to redefine its 
behavior. As with the copy constructor, we may implement this operation to 
provide either shallow or deep copy semantics. Omitting this explicit 
declaration invokes the default assignment operator, whose semantics are 
defined as a memberwise copy. 
 

                                                 
18 In Smafitalk, the semantics of passing objects as arguments to methods is the moral equivalent to C++'s 
passing of arguments by reference. 
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Closely related to the issue of assignment is that of equality. Although it seems like a simple 
concept, equality can mean one of two things. First, equality can mean that two names 
designate the same object. Second, equality can mean that two names designate distinct 
objects whose states are equal. For example, in Figure 3-1c, both kinds of equality evaluate to 
true between item1 and item2. However, only the second kind of equality evaluates to true 
between item1 and item3. 
 
In C++, there is no default equality operator, thus we must establish our own semantics by 
introducing the explicit operators for equality and inequality as part of the declaration for 
DisplayItem: 
 
virtual int operator==(const DisplayItem&) const;  
int operator!=(const DisplayItem&) const; 
 
Our style is to declare the equality operator as virtual (because we expect subclasses to 
redefine its behavior) and to declare the inequality operator as nonvirtual (we aIways want 
inequality to mean the logical negation of equality: subclasses should not override this 
behavior). 
 
In a similar manner, we may explicitly define the meaning of ordering operators, such as tests 
for less-than or greater-than orderings between two objects. 
 
Object Life Span The lifetime of an object extends from the time it is first created (and thus 
first consumes space) until that space is reclaimed . To explicitly create an object, we must 
either declare it or allocate it. 
 
Declaring an object (such as item1 in our earlier example) creates a new instance on the stack. 
Allocating an object (such as item3) creates a new instance on the heap. In C++, in either case, 
whenever an object is created, its constructor is automatically invoked, whose purpose is to 
allocate space for the object and establish an initial stable state. In languages such as 
Smalltalk, such constructor operations are actually a part of the object's metaclass, not the 
object's class - we will examine metaclass semantics later in this chapter. 
 
Often, objects are created implicitly. For example, in C++ passing an object by value creates a 
new object on the stack that is a copy of the actual parameter. Furthermore, object creation is 
transitive: creating an aggregate object also creates any objects that are physically a part of the 
whole. Overriding the semantics of the copy constructor and assignment operator in C++ 
permits explicit control over when such parts are created and destroyed. Also, in C++ it is 
possible to redefine the semantics of the new operator (which allocates instances on the heap), 
so that each class can provide its own memory management policy. 
 
In languages such as Smalltalk, an object is destroyed automatically as part of garbage 
collection when all references to it have been lost. In languages without garbage collection, 
such as C++, an object continues to exist and consume space even if all references to it are 
lost. Objects created on the stack are implicitly destroyed whenever control passes beyond the 
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block in which the object was declared. Objects created on the heap with the new operator 
must be explicitly destroyed with the delete operator. Failure do to so leads to memory leaks, 
as we discussed earlier. Deallocating an object twice (usually because of an alias) is equally 
bad, and may manifest itself in memory corruption or a complete crash of the system. 
 
In C++, whenever an object is destroyed either implicidy or explicitly, its destructor is 
automatically invoked, whose purpose is to deallocate space assigned to the object and its 
part, and to otherwise clean up after the object (such as, for example, closing files and 
releasing resources)19. 
 
Persistent objects have slightly different semantics regarding destruction. As we discussed in 
the previous chapter, certain objects may be persistent, meaning that their lifetime transcends 
the lifetime of the program that created them. Persistent objects are usually elements of some 
larger, object-oriented database framework, and so the semantics of destruction (and also 
creation) are largely a function of the policies of the particular database system. In such 
systems, the most common approach to providing persistence is the use of a persistent mixin 
class. All objects for which we desire persistence semantics thus have this mixin class as a 
superclass somewhere in their class's inheritance lattice. 
 
 
3.2 Relationships Among Objects 
 
Kinds of Relationships 
 
An object by itself is intensely uninteresting. Objects contribute to the behavior of a system by 
collaborating with one another. As Ingalls suggests, "Instead of a bit-grinding processor 
raping and plundering data structures, we have a universe of well-behaved objects that 
courteously ask each other to carry out their various desires" [13]. For example, consider the 
object structure of an airplane, which has been defined as "a collection of parts having an 
inherent tendency to fall to earth, and requiring constant effort and supervision to stave off 
that outcome" [14]. Only the collaborative efforts of all the component objects of an airplane 
enable it to fly. 
 
The relationship between any two objects encompasses the assumptions that each makes 
about the other, including what operations can be performed and what behavior results. We 
have found that two kinds of object hierarchies are of particular interest in object-oriented 
analysis and design, namely: 
 

• Links 
• Aggregation 

 
Seidewitz and Stark call these seniority and parent/child relationships, respectively [15]. 

                                                 
19 Destructors do not automatically reclaim space allocated by the new operator; programmers must explicitly 
reclaim this space as part of destruction. 
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Figure 3-2  
Links 
 
 
Links 
 
Semantics The term link derives from Rumbaugh, who defines it as a "physical or conceptual 
connection between objects" [16]. An object collaborates with other objects through its links to 
these objects. Stated another way, a link denotes the specific association through which one 
object (the client) applies the services of another object (the supplier), or through which one- 
object may navigate to another. 
 
Figure 3-2 illustrates several different links. In this figure, a line between two object icons 
represents the existence of a link between the two and means that messages may pass along 
this path. Messages are shown as directed lines representing the direction of the message, 
with a label naming the message itself. For example, here we see that the object aController has 
links to two instances of DisplayItem (the objects a and b). Although both a and b probably have 
links to the view in which they are shown, we have chosen to highlight only once such link, 
from a to aView. Only across these links may one object send messages to another. 
 
Message passing between two objects is typically unidirectional, although it may occasionally 
be bidirectional. In our example, the object aController only invokes operations upon the two 
display objects (to move them and query their location), but the display objects do not 
themselves operate upon the controller object. This separation of concerns is quite common in 
well-structured object-oriented systems, as we discuss in Chapter 520. Notice also that 

                                                 
20 In fact, this organization of controller, view, and display item object is so common, we can identify it as a 
design pattern, which we can then reuse. In Smalltalk, this is called an MVC mechanism, for 
model/view/controller. As we discuss in the next chapter, wellstructured object-oriented system usually have 
many such identifiable pattems. 
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although message passing is initiated by the client (such as aController) and is directed toward 
the supplier (such as object a), data may flow in either direction across a link. For example, 
when aController invokes the operation move upon a, data flows from the client to the supplier. 
However, when aController invokes the operation isUnder upon object b, the result passes from 
the supplier to the client.  
 
As a participant in a link, an object may play one of three roles: 
 

• Actor An object that can operate upon other objects but is never operated upon 
by other objects; in some contexts, the terms active object and actor are 
interchangeable 

 
• Server An object that never operates upon other objects; it is only operated upon 

by other objects 
 

• Agent  An object that can both operate upon other objects and be operated upon 
by other objects; an agent is usually created to do some work on behalf of 
an actor or another agent 

 
Restricted to the context of Figure 3-2, aController represents an actor object, aView represents a 
server object, and a represents an agent that carries out the controller’s request to draw the 
item in the view. 
 
Example In many different kinds of industrial processes, certain reactions require a 
temperature ramp, wherein we raise the temperature of some substance, hold it at that 
temperature for a fixed period, and then let it cool to ambient temperature. Different 
processes require different profiles: some objects (such as telescope mirrors) must be cooled 
slowly, whereas other materials (such as steel) must be cooled rapidly. This abstraction of a 
temperature ramp has a sufficiently well-defined behavior that it warrants the creation of a 
class, such as the following. First, we introduce a typedef whose values represent elapsed 
time in minutes: 
 
// Number denoting elapsed minutes 
typedef unsigned int Minute; 
 
This typedef is similar to that for Day and Hour, which we introduced in Chapter 2. Next, we 
provide the class TemperatureRamp, which is conceptually a time/temperature mapping: 
 
class TemperatureRamp { 
public: 
 
  TemperatureRamp();  
  virtual ~TemperatureRamp(); 
 
  virtual void clear();  
  virtual void bind(Temperature, Minute); 
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  Temperature temperatureAt(Minute); 
 
protected: 
    … 
} 
 
In keeping with our style, we have declared a number of operations as virtual, because we 
expect there to be subclasses of this class. 
 
Actually, the behavior of this abstraction is more than just a literal time/temperature 
mapping. For example, we might set a temperature ramp that requires the temperature to be 
250° F at time 60 (one hour into the temperature ramp) and 150° F at time 180 (three hours 
into the process), but then we would like to know what the temperature should be at time 
120. This requires linear interpolation, which is therefore another behavior we expect of this 
abstraction. 
 
One behavior we explicitly do not require of this abstraction is the control of a heater to carry 
out a particular temperature ramp. Rather, we prefer a greater separation of concerns, 
wherein this behavior is achieved through the collaboration of three objects: a temperature 
ramp instance, a heater, and a temperature controller. For example, we might introduce the 
following class: . 
 
class TemperatureController { 
public: 
 
  TemperatureController(Location); 
  ~TemperatureController(); 
 
  void process(const TemperatureRamp&); 
 
  Minute schedule(const TemperatureRamp&) const; 
 
private: 
  … 
} 
 
This class uses the typedef Location introduced in Chapter 2. Notice that we do not expect 
there to be any subclasses of this class, and so have not made any of its operations virtual. 
 
The operation process provides the central behavior of this abstraction; its purpose is to carry 
out the given temperature ramp for the heater at the given location. For example, given the 
following declarations: 
 
TemperatureRamp growingRamp;  
TemperatureController rampController(7); 
 
We might then establish a particular temperature ramp, then tell the controller to carry out 
this profile: 
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growingRamp.bind(250, 60); 
growingRamp.bind(150, 180); 
 
rampController.process(growingRamp); 
 
Consider the relationship between the objects growingRamp and rampController: the object 
rampController is an agent responsible for carrying out a temperature ramp, and so uses the 
object growingRamp as a server. This link manifests itself in the fact that the object rampController 
uses the object growingRamp as an argument to one of its operations. 
 
A comment regarding our style: at first glance, it may appear that we have devised an 
abstraction whose sole purpose is to wrap a functional decomposition inside a class to make it 
appear noble and object-oriented. The operation schedule suggests that this is not the case. 
Objects of the class TemperatureController have sufficient knowledge to determine when a 
particular profile should be scheduled, and so we expose this operation as an additional 
behavior of our abstraction. In some high-energy industrial processes (such as steel making), 
heating a substance is a costly event, and it is important to take into account any lingering 
heat from a previous process, as well as the normal cool-down of an unattended heater. The 
operation schedule exists so that clients can query a TemperatureController object to determine the 
next optimal time to process a particular temperature ramp. 
 
Visibility Consider two objects, A and B, with a link between the two. In order for A to send a 
message to B, B must be visible to A in some manner. During our analysis of a problem, we 
can largely ignore issues of visibility, but once we begin to devise concrete implementations, 
we must consider the visibility across links, because our decisions here dictate the scope and 
access of the objects on each side of a link. 
 
In the previous example, the object rampController has visibility to the object growingRamp, 
because both objects are declared within the same scope, and growingRamp is presented as an 
argument to an operation upon the object rampController. Actually, this is just one of the four 
different ways that one object may have visibility to another: 
 

• The supplier object is global to the client. 
 

• The supplier object is a parameter to some operation of the client. 
 

• The supplier object is a part of the client object. 
 

• The supplier object is a locally declared object in some operation of the client. 
 
How one object is made visible to another is a tactical design issue. 
 
Synchronization Whenever one object passes a message to another across a link, the two 
objects are said to be synchronized. For objects in a completely sequential application, this 
synchronization is usually accomplished by simple method invocation, as described in the 
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sidebar. However, in the presence of multiple threads of control, objects require more 
sophisticated message passing in order to deal with the problems of mutual exclusion that 
can occur in concurrent systems. As we described earlier, active objects embody their own 
thread of control, and so we expect their semantics to be guaranteed in the presence of other 
active objects. However, when one active object has a link to a passive one, we must choose 
one of three approaches to synchronization: 
 

 
Figure 3-3 
Aggregation 
 

• Sequential  The semantics of the passive object are guaranteed only in the 
presence of a single active object at a time. 

• Guarded The semantics of the passive object are guaranteed in the presence of 
multiplethreads of control, but the active clients must collaborate to 
achieve mutual exclusion. 

• Synchronous The semantics of the passive object are guaranteed in the presence of 
multiple threads of control, and the supplier guarantees mutual 
exclusion. 

 
All the objects described thus far in this chapter are sequential. In Chapter 9, we will illustrate 
each of these other forms in greater detail. 
 
 
Aggregation 
 
Semantics Whereas links denote peer-to-peer or client/supplier relationships, aggregation 
denotes a whole/part hierarchy, with the ability to navigate from the whole (also called the 
aggregate) to its parts (also known as its attributes). In this sense, aggregation is a specialized 
kind of association. For example, as shown in Figure 3-3, the object rampController has a link to 
the object growingRamp as well as an attribute h whose class is Heater. The object rampController is 
thus the whole, and h is one of its parts. In other words, h is a part of the state of the object 
rampController. Given the object rampController, it is possible to find its corresponding heater h. 
Given an object such as h, it is possible to navigate to its enclosing object (also called its 
container) if and only if this knowledge is a part of the state of h. 
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Aggregation may or may not denote physical containment. For example, an airplane is 
composed of wings, engines, landing gear, and so on: this is a case of physical containment. 
On the other hand, the relationship between a shareholder and her shares is an aggregation 
relationship that does not require physical containment. The shareholder uniquely owns 
shares, but the shares are by no means a physical part of the shareholder. Rather, this 
whole/part relationship is more conceptual and therefore less direct than the physical 
aggregation of the parts that form an airplane. 
 
There are clear trade-offs between links and aggregation. Aggregation is sometimes better 
because it encapsulates parts as secrets of the whole. Links are sometimes better because they 
permit looser coupling among objects. Intelligent engineering decisions require careful 
weighing of these two factors. 
 
By implication, an object that is an attribute of another has a link to its aggregate. Across this 
link, the aggregate may send messages to its parts. 
 
Example To continue our declaration of the class TemperatureController, we might camplete its 
private part as follows: 
 
Heater h; 
 
This declares h as a part of each instance of TemperatureController. According to our declaration 
of the class Heater in the previous chapter, we must properly create this attribute, because its 
class does not provide a default constructor. Thus, we might write the constructor for the 
TemperatureController as follows: 
 
TemperatureController::TemperatureController(location 1) 
  : h(1) {} 
 
 
3.3 The Nature of a Class 
 
What Is and What lsn't a Class 
 
The concepts of a class and an object are tightly interwoven, for we cannot talk about an 
object without regard for its class. However, there are imiportant differences between these 
two terms. Whereas an object is a concrete entity that exists in time and space, a class 
represents only an abstraction, the “essence" of an object, as it were. Thus, we may speak of 
the class Mammal, which represents the characteristics common to all mammals. To identify a 
particular mammal in this class, we must speak of "this mammal” or "that mammal." 
 
In everyday terms, we may define a class as "a group, set, or kind marked by common 
attributes or a common attribute; a group division, distinction, or rating based on quality, 
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degree of competence, or condition" [17]21. In the context of object-oriented analysis and 
design, we define a class as follows: 
 

A class is a set of objects that share a common structure and a common behavior. 
 
A single object is simply an instance of a class.  
 

 
A class represents a set of objects that share a common structure and a common behavior. 
 
What isn't a class? An object is not a class, although, curiously, as we will describe later, a 
class may be an object. Objects that share no common structure and behavior cannot be 
grouped in a class because, by definition, they are unrelated except by their general nature as 
objects. 
 
It is important to note that the class - as defined by most programming languages - is a 
necessary but insufficient vehicle for decomposition. Sometimes abstractions are so complex 
that they cannot be conveniently expressed in terms of a single class declaration. For example, 
at a sufficiently high level of abstraction, a GUI frarnework, a database, and an entire 
inventory system are all conceptually individual objects, none of which can be expressed as a 

                                                 
21 By permission. From Webster’s Third New International Dictionary © 1986 by MerriamWebster Inc., publisher of 
the Merriam-Webster  ® dictionaries. 
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single class22. Instead, it is far better for us to capture these abstractions as a cluster of classes 
whose instances collaborate to provide the desired structure and behavior. Stroustrup calls 
such a cluster a component [18]. For reasons that we will explain in Chapter 5, we call each 
such cluster a class category. 
 
 
Interface and Implementation 
 
Meyer [19] and Snyder [20] have both suggested that programming is largely a matter of 
"contracting": the various functions of a larger problem are decomposed into smaller 
problems by subcontracting them to different elements of the design. Nowhere is this idea 
more evident than in the design of classes. 
 
Whereas an individual object is a concrete entity that performs some role in the overall 
system, the class captures the structure and behavior common to all related objects. Thus, a 
class serves as a sort of binding contract between an abstraction and all of its clients. By 
capturing these decisions in the interface of a class, a strongly typed programming language 
can detect violations of this contract during compilation. 
 
This view of programming as contracting leads us to distinguish between the outside view 
and the inside view of a class. The interface of a class provides its outside view and therefore 
emphasizes the abstraction while hiding its structure and the secrets of its behavior. This 
interface primarily consists of the declarations of all the operations applicable to instances of 
this class, but it may also include the declaration of other classes, constants, variables, and 
exceptions as needed to complete the abstraction. By contrast, the implementation of a class is 
its inside view, which encompasses the secrets of its behavior. The implementation of a class 
primarily consists of the implementation of all of the operations defined in the interface of the 
class. 
 
We can further divide the interface of a class into three parts: 
 

• Public  A declaration that is accessible to all clients 
• Protected A declaration that is accessible only to the class itself, its 

subclasses, and its friends 
• Private A declaration that is accessible only to the class itself and its friends 

 
Different programming languages provide different mixtures of public, protected, and 
private parts, which developers can choose among to establish specific access rights for each 
part of a class's interface and thereby exercise control over what clients can see and what they 
can't see. 
                                                 
22 One might be tempted to express such abstractions in a single class, but the granularity of reuse and change is 
all wrong. Having a fat interface is bad practice, because most clients will want to reference only a small subset 
of the services provided. Furthermore, changing one part of a huge interface obsolesces every client, even those 
that don't care about the parts that changed. Nesting classes doesn't eliminate these problems; it only defers 
them. 
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In particular, C++ allows a developer to make explicit distinctions among all three of these 
different parts23. The C++ friendship mechanism permits a class to distinguish certain 
privileged classes that are given the rights to see the class's protected and private parts. 
Friendships break a class's encapsulation, and so, as in life, must be chosen carefully. By 
contrast, Ada permits declarations to be public or private, but not protected. In Smalltalk, all 
instance variables are private, and all methods are public. In Object Pascal, both fields and 
operations are public and hence unencapsulated. In CLOS, generic functions are public, and 
slots may be made private, although their access can be broken via the function slot-value. 
 
The state of an object must have some representation in its corresponding class, and so is 
typically expressed as constant and variable declarations placed in the protected or private 
part of a class's interface. In this manner, the representation common to all instances of a class 
is encapsulated, and changes to this representation do not functionally affect any outside 
clients. 
 
The careful reader may wonder why the representation of an object is part of the interface of a 
class (albeit a nonpublic part), not of its implementation. The reason is one of practicality; to 
do otherwise requires either object-oriented hardware or very sophisticated compiler 
technology. Specifically, when a compiler processes an object declaration such as the 
following in C++: 
 
DisplayItem item1; 
 
it must know how much memory to allocate to the object item1. If we defined the 
representation of an object in the implementation of a class, we would have to complete the 
class's implementation before we could use any clients, thus defeating the very purpose of 
separating the class's outside and inside views. 
 
The constants and variables that form the representation of a class are known by various 
terms, depending upon the particular language we use. For example, Smalltalk uses the term 
instance variable, Object Pascal uses the term field, C++ uses the term member object, and CLOS 
uses the term slot. We will use these terms interchangeably to denote the parts of a class that 
serve as the representation of its instance's state. 
 
 
Class Life Cycle 
 
We may come to understand the behavior of a simple class just by understanding the 
semantics of its distinct public operations in isolation. However, the behavior of more 
interesting classes (such as moving an instance of the class DisplayItem, or scheduling an 
instance of the class TemperatureController) involves the interaction of their various operations 
over the lifetime of each of their instances. As described earlier in this chapter, the instances 

                                                 
23 The C++ struct is a special case, in the sense that a struct is a kind of class with all of its elements public. 
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of such classes act as little machines, and since all such instances embody the same behavior, 
we can use the class to capture these common event- and time-ordered semantics. As we 
discuss in Chapter 5, we may describe such dynamic behavior for certain interesting classes 
by using finite state machines. 
 
 
3.4 Relationships Among Classes 
 
Kinds of Relationships 
 
Consider for a moment the similarities and differences among the following classes of objects: 
flowers, daisies, red roses, yellow roses, petals, and ladybugs. We can make the following 
observations: 
 

• A daisy is a kind of flower. 
• A rose is a (different) kind of flower. 
• Red roses and yellow roses are both kinds of roses. 
• A petal is a part of both kinds of flowers. 
• Ladybugs eat certain pests such as aphids, which may be infesting certain kinds of 

flowers. 
 
From this simple example we conclude that classes, like objects, do not exist in isolation. 
Rather, for a particular problem domain, the key abstractions are usually related in a variety 
of interesting ways, forming the class structure of our design [21]. 
 
We establish relationships between two classes for one of two reasons. First, a class 
relationship might indicate some sort of sharing. For example, daisies and roses are both 
kinds of flowers, meaning that both have brightly colored petals, both emit a fragrance, and 
so on. Second, a class relationship might indicate some kind of semantic connection. Thus, we 
say that red roses and yellow roses are more alike than are daisies and roses, and daisies and 
roses are more closely related than are petals and flowers. Similarly, there is a symbiotic 
connection between ladybugs and flowers: ladybugs protect flowers from certain pests, 
which in tum serve as a food source for the ladybug. 
 
In all, there are three basic kinds of class relationships [22]. The first of these is 
generalization/specialization, denoting an "is a" relationship. For instance, a rose is a kind of 
flower, meaning that a rose is a specialized subclass of the more general class, flower. The 
second is whole/part, which denotes a "part of" relationship. Thus, a petal is not a kind of a 
flower; it is a part of a flower. The third is association, which denotes some semantic 
dependency among otherwise unrelated classes, such as between ladybugs and flowers. As 
another example, roses and candles are largely independent classes, but they both represent 
things that we might use to decorate a dinner table. 
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Several common approaches have evolved in programming languages to capture 
generalization/specialization, whole/part, and association relationships. Specifically, most 
object-oriented languages provide direct support for some combination of the following 
relationships: 
 

• Association 
• Inheritance 
• Aggregation 
• Using 
• Instantiation 
• Metaclass 

 
An alternate approach to inheritance involves a language mechanism called delegation, in 
which objects are viewed as prototypes (also called exemplars) that delegate their behavior to 
related objects, thus eliminating the need for classes [23]. 
 
Of these six different kinds of class relationships, associations are the most general but also 
the most semantically weak. As we will discuss further in Chapter 6, the identification of 
associations among classes is often an activity of analysis and early design, at which time we 
begin to discover the general dependencies among our abstractions. As we continue our 
design and implementation, we will often refine these weak associations by turning them into 
one of the other more concrete class relationships. 
 
Inheritance is perhaps the most semantically interesting of these concrete relationships, and 
exists to express generalization/specialization relationships. In our experience, however, 
inheritance is an insufficient means of expressing all of the rich relationships that may exist 
among the key abstractions in a given problem domain. We also need aggregation 
relationships, which provide the whole/part relationships manifested in the class's instances. 
Additionally, we need using relationships, which establish the links among the class's 
instances. For languages such as Ada, C++, and Eiffel, we also need instantiation 
relationships, which, like inheritance, support a kind of generalization, although in an 
entirely different way. Metaclass relationships are quite different and are only explicitly 
supported by languages such as Smalltalk and CLOS. Basically, a metaclass is the class of a 
class, a concept that allows us to treat classes as objects. 
 
 
Association 
 
Example In an automated system for retail point of sale, two of our key abstractions include 
products and sales. As shown in Figure 3-4, we may show a simple association between these 
two classes: the class Product denotes the products sold as part of a sale, and the class Sale 
denotes the transaction through which several products were last sold. By implication, this 
association suggests bidirectional navigation: given an instance of Product, we should be able 
to locate the object denoting its sale, and given an instance of Sale, we should be able to locate 
all the products sold during the transaction. 
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We may capture these semantics in C++ by using what Rumbaugh calls buried pointers [24]. 
For example, consider the highly elided declaration of these two classes: 
 
class Product; 
class Sale; 
 
class Product { 
public: 
  … 
protected: 
  Sale* lastSale; 
}; 
 
 

 
Figure 3-4 
Association 
 
class Sale { 
public: 
  … 
protected: 
  Product** productSold; 
} 
 
Here we show a one-to-many association: each instance of Product may have a pointer to its 
last sale, and cach instance of Sale may have a collection of pointers denoting the products 
sold. 
 
Semantic Dependencies As this example suggests, an association only denotes a semantic 
dependency and does not state the direction of this dependency (unless otherwise stated, an 
association implies bidirectional navigation, as in our example), nor does it state the exact 
way in which one class relates to another (we can only imply these semantics by naming the 
role each class plays in relationship with the other). However, these semantics are sufficient 
during the analysis of a problem, at which time we need only to identily such dependencies. 
Through the creation of associations, we come to capture the participants in a semantic 
relationship, their roles, and, as we will discuss, their cardinality. 
 
Cardinality Our example introduced a one-to-many association, meaning that for each 
instance of the class Sale, there are zero or more instances of the class Product, and for each 
product, there is exactly one sale. This multiplicity denotes the cardinality of the association. 
In practice, there are three common kinds of cardinality across an association: 
 

• One-to-one 
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• One-to-many 
• Many-to-many 

 
A one-to-one relationship denotes a very narrow association. For example, in retail 
telemarketing operations, we would find a one-to-one relationship between the class Sale and 
the class CreditCardTransaction: each sale has exactly one corresponding credit card transaction, 
and each such transaction corresponds to one sale. Many-to-many relationships are also 
common. For example, each instance of the class Customer might initiate a transaction with 
several instances of the class SalesPerson, and each such salesperson might interact with many 
different customers. As we will discuss further in Chapter 5, there are variations upon these 
three basic forms of cardinality. 
 
 
Inheritance 
 
Examples After space probes are launched, they report back to ground stations with 
information regarding the status of important subsystems (such as electrical power and 
propulsion systems) and different sensors (such as radiation sensors, mass spectrometers, 
cameras, micro meteorite collision detectors, and so on). Collectively, this relayed information 
is called telemetry data. Telemetry data is commonly transmitted as a bit stream consisting of a 
header, which includes a time stamp and some keys identifying the kind of information that 
follows, plus several frames of processed data from the various subsystems and sensors. 
Because this appears to be a straightforward aggregation of different kinds of data, we might 
be tempted to define a record type for each kind of telemetry data. For example, in C++, we 
might write 
 
class Time ... 
 
struct ElectricalData { 
  Time timeStamp;  
  int id;  
  float fuelCell1Voltage, fuelCell2Voltage; 
  float fuelCell1Amperes, fuelCell2Amperes;  
  float currentPower; 
}; 
 
There are a number of problems with this declaration. First, the representation of ElectricalData 
is completely unencapsulated. Thus, there is nothing to prevent a client from changing the 
value of important data such as the timeStamp or currentPower (which is a derived attribute, 
directly proportional to the current voltage and amperes drawn from both fuel cells). 
Furthermore, the representation of this structure is exposed, so if we were to change the 
representation (for example, by adding new elements or changing the bit alignment of 
existing ones), every client would be affected. At the very least, we would certainly have to 
recompile every reference to this structure. More importantly, such changes might violate the 
assumptions that clients had made about this exposed representation and cause the logic in 
our program to break. Also, this structure is largely devoid of meaning: a number of 
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operations are applicable to instances of this structure as a whole (such as transmitting the 
data, or calculating a check sum to detect errors during transmission), but there is no way to 
directly associate these operations with this structure. Lastly, suppose our analysis of the 
system's requirements reveals the need for several hundred different kinds of telemetry data, 
including other electrical data that encompassed the preceding information and also included 
voltage readings from various test points throughout the system. We would find that 
declaring these additional structures would create a considerable amount of redundancy, 
both in terms of replicated structures and common functions. 
 

 
 
A subdass may inherit the structure and behavior of its superdass. 
 
A slightly better way to capture our decisions would be to declare one class for each kind of 
telemetry data. In this manner, we could hide the representation of each class and associate 
its behavior with its data. Still, this approach does not address the problem of redundancy. 
 
A far better solution, therefore, is to capture our decisions by building a hierarchy of classes, 
in which specialized classes inherit the structure and behavior defined by more generalized 
classes. For example: 
 
class TelemetryData { 
public: 
 
  TelemetryData();  
  virtual ~TelemetryData(); 
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  virtual void transmit(); 
 
  Time currentTime() const; 
 
protected: 
  int id; 
  Time timeStamp; 
};  
 
This declares a class with a constructor and a virtual destructor (meaning that we expect to 
have subclasses), as well as the functions transmit and currentTime, which are both visible to all 
clients. The protected member objects id and timeStamp are slightly more encapsulated, and so 
are accessible only to the class itself and its subclasses. Note that we have declared the 
function currentTime as a public selector, which makes it possible for a client to access the 
timeStamp, but not change it. 
 
Next, let's rewrite our declaration of the class ElectricalData: 
 
class ElectricalData : public TelemetryData { 
public: 
 
  ElectricalData(float v1, float v2, float a1, float a2); 
  virtual ~ElectricalData(); 
 
  virtual void transmit(); 
 
  float currentPower() const; 
 
protected: 
  float fuelCell1Voltage, fuelCell2Voltage; 
  float fuelCell1Amperes, fuelCell2Amperes; 
}; 
 
This class inherits the structure and behavior of the class TelemetryData, but adds to its structure 
(the four new protected member objects), redefines its behavior (the function transmit), and 
adds to its behavior (the function currentPower). 
 
Single Inheritance Simply stated, inheritance is a relationship among classes wherein one 
class shares the structure and/or behavior defined in one (single inheritance) or more (multiple 
inheritance) other classes. We call the class from which another class inherits its superclass. In 
our example, TelemetryData is a superclass of ElectricalData. Similarly, we call a class that inherits 
from one or more classes a subclass; ElectricalData is a subclass of TelemetryData. Inheritance 
therefore defines an "is a" hierarchy among classes, in which a subclass inherits from one or 
more superclasses. This is in fact the litmus test for inheritance given classes A and B, if A "is 
not a" kind of B, then A should not be a subclass of B. In this sense, ElectricalData is a 
specialized kind of the more generalized class TelemetryData. The ability of a language to 
support this kind of inheritance distinguishes object-oriented from object-based 
programming languages. 
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A subclass typically augments or restricts the existing structure and behavior of its 
superclasses. A subclass that augments its superclasses is said to use inheritance for 
extension. For example, the subclass GuardedQueue might extend the behavior of its superclass 
Queue by providing extra operations that make instances of this class safe in the presence of 
multiple threads of control. In contrast, a subclass that constrains the behavior of its 
superclasses is said to use inheritance for restriction. For example, the subclass 
UnselectableDisplayItem might constrain the behavior of its superclass, DisplayItem, by prohibiting 
clients from selecting its instances in a view. In practice, it is not aIways so clear whether or 
not a subclass augments or restricts its superclass; in fact, it is common for a subclass to do 
both. 
 
Figure 3-5 illustrates the single inheritance relationships deriving from the superclass 
TelemetryData. Each directed line denotes an "is a" relationship. For example, CameraData "is a" 
kind of SensorData, which in turn "is a" kind of TelemetryData. This is identical to the hierarchy 
one finds in a semantic net, a tool often used by researchers in cognitive science and artificial 
intelligence to organize knowledge about the world [25]. Indeed, as we discuss further in 
Chapter 4, designing a suitable inheritance hierarchy among abstractions is largely a matter 
of intelligent classification. 
 
 

 
Figure 3-5 
Single Inheritance 
 
We expect that some of the classes in Figure 3-5 will have instances and some will not. For 
example, we expect to have instances of each of the most specialized classes (also known as 
leaf classes or concrete classes), such as ElectricalData and SpectrometerData. However, we are not 
likely to have any instances of the intermediate, more generalized classes, such as SensorData 
or even TelemetryData. Classes with no instances are called abstract classes. An abstract class is 
written with the expectation that its subclasses will add to its structure and behavior, usually 
by completing the implementation of its (typically) incomplete methods. In fact, in Smalltalk, 
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a developer may force a subclass to redefine the method introduced in an abstract class by 
using the method subclassResponsibility to implement a body for the abstract class's method. If 
the subclass fails to redefine it, then invoking the method results in an execution error. C++ 
similarly allows the developer to assert that an abstract class's method cannot be involced 
direaly by initializing its declaration to zero. Such a method is called a pure virtual function, 
and the language prohibits the creation of instances whose class exports such functions. 
 
The most generalized class in a class structure is called the base class. Most applications have 
many such base classes, which represent the most generalized categories of abstractions 
within the given domain. In fact, especially in C++, well-structured object-oriented 
architectures generally have forests of inheritance trees, rather than one deeply rooted 
inheritance lattice. However, some languages require a topmost base class, which serves as 
the ultimate superclass of all classes. In Smalltalk, this class is called Object. 
 
A given class typically has two kinds of clients [26]: 
 

• Instances 
• Subclasses 

 
It is often useful to define different interfaces for these two kinds of clients [27]. In particular, 
we wish to expose only outwardly visible behaviors to instance clients, but we need to expose 
helping functions and representations only to subclass clients. This is precisely the motivation 
for the public, protected, and private parts of a class definition in C++: a designer can choose 
what members are accessible to instances, to subclasses, or to both clients. As we mentioned 
earlier, in Smalltalk the developer has less control over access: instance variables are visible to 
subclasses but not to instances, and all methods are visible to both instances and subclasses 
(one can mark a method as private, but this hiding is not enforced by the language). 
 
There is a very real tension between inheritance and encapsulation. To a large degree, the use 
of inheritance exposes some of the secrets of an inherited class. Practically, this means that to 
understand the meaning of a particular class, you must often study all of its superclasses, 
sometimes including their inside views. 
 
Inheritance means that subclasses inherit the structure of their superclass. Thus, in our earlier 
example, the instances of the class ElectricalData include the member objects of the superclass 
(such as id and timeStamp), as well as those of the more specialized classes (such as 
fuelCell1Voltage, fuelCell2Voltage, fuelCell1Amperes, and fuelCell2Amperes) 24. 
 
Subclasses also inherit the behavior of their superclasses. Thus, instances of the class 
ElectricalData may be acted upon with the operations currentTime (inherited from its superclass), 
currentPower (defined in the class itself) transmit (redefined in the subclass). Most object-oriented 
programmin languages permit methods from a superclass to be redefined and new methods 

                                                 
24 A few, mostly experimental, object-oriented programming languages allow a subclass to reduce the structure 
of its superclass. 
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to be added. In Smalltalk, for example, any superclass method may be redefined in a subclass. 
In C++, the developer has a bit more control. Member functions that are declared as virtual 
(such as the function transmit) may be redefined in a subclass; members declared otherwise 
(the default) may not be redefined (such as the function currentTime). 
 
Single Polymorphism For the class TelemetryData, we might implement the member function 
transmit as follows: 
 
void TelemetryData::transmit() 
{ 
  //transmit the id 
  //transmit the timestamp 
} 
 
We might implement the same member function for the class ElectricalData as follows: 
 
void ElectricalData::transmit() 
{ 
  TelemetryData::transmito; 
  //transmit the voltages 
  //transmit the amperes 
} 
 
In this implementation, we first invoke the corresponding superclass function (using the fully 
qualified name TelemetryData::transmit), which transmits the data's id and timeStamp, and then we 
transmit the data particular to the ElectricalData subclass. 
 
Suppose that we have an instance of each of these two classes: 
 
TelemetryData telemetry; 
ElectricalData electrical(5.0, -5.0, 3.0, 7.0); 
 
Now, given the following nonmember function, 
 
void transmitFreshData(TelemetryData& d, const Time& t) 
{ 
  if (d.currentTime() >= t) 
    d.transmit(); 
} 
 
what happens when we invoke the following two statements? 
 
transmitFreshData(telemetry, Time(60)); 
transmitFreshData(electrical, Time(120)); 
 
In the first statement, we transmit a bit stream consisting of only an id and a timeStamp. In the 
second statement, we transmit a bit stream consisting of an id, a timeStamp, and four other 
floating-point values. How is this so? Ultimately, the implementation of the function 
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transmitFreshData simply executes the statement d.transmit(), which does not explicidy distinguish 
the class of d. 
 
The answer is that this behavior is due to polymorphism. Basically, polymorphism is a concept 
in type theory wherein a name (such as the parameter d) may denote instances of many 
different classes as long as they are related by some common superclass. Any object denoted 
by this name is thus able to respond to some common set of operations in different ways. 
 
As Cardelli and Wegner note, "Conventional typed languages, such as Pascal, are based on 
the idea that functions and procedures, and hence operands, have a unique type. Such 
languages are said to be monomorphic, in the sense that every value and variable can be 
interpreted to be of one and only one type. Monomorphic programming languages may be 
contrasted with polymorphic languages in which some values and variables may have more 
than one type" [28]. The concept of polymorphism was first described by Strachey [29], who 
spoke of ad hoc polymorphism, by which symbols such as "+" could be defined to mean 
different things. Today, in modem programming languages, we call this concept overloading. 
For example, in C++, one may declare functions having the same names, as long as their 
invocations can be distinguished by their signatures, consisting of the number and types of 
their arguments (in C++, unflke Ada, the type of a function's returned value is not considered 
in overload resolution). Strachey also spoke of parametric polymorphism, which today we 
simply call polymorphism. 
 
Without polymorphism, the developer ends up writing code consisting of large case or switch 
statements25. For example, in a non-object-oriented programming language such as Pascal, we 
cannot create a hierarchy of classes for the various kinds of telemetry data; rather, we have to 
define a single, monolithic variant record encompassing the properties associated with all the 
kinds of data. To distinguish one variant from another, we have to examine the tag associated 
with the record. Thus an equivalent procedure to transmitFreshData might be written in Pascal as 
follows: 
 
const 
  Electrical = 1; 
  Propulsion = 2; 
  Spectrometer = 3; 
… 
procedure Transmit_Fresh_Data(The_Data : Data; The_Time : Time);  
begin 
  if (The_Data.Current_Time >= The_Time) then 
    case The_Data.Kind of 
      Electrical: Transmit_Electrical_Data(The_Data); 
      Propulsion: Transmit_Propulsion_Data(The_Data); 
      … 
  end 

                                                 
25 This is in fact the litmus test for polymorphism. The existence of a switch statement that selects an action 
based upon the type of an object is often an warning sign that the developer has failed to apply polymorphic 
behavior effectively. 
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end; 
 
To add another kind of telemetry data, we would have to modif`y the variant record and add 
it to every case statement that operated upon instances of is record. This is particularly error-
prone, and, furthermore, adds instability to the design. 
 
In the presence of inheritance, there is no need for a monolithic type, since we may separate 
different kinds of abstractions. As Kaplan and Johnson note, "Polymorphism is most useful 
when there are many classes with the same protocols" [30]. With polymorphism, large case 
statements are unnecessary, because each object implicitly knows its own type. 
 
Inheritance without polymorphism is possible, but it is certainly not very useful. This is the 
situation in Ada, in which one can declare derived types, but because the language is 
monomorphic, the actual operation being called is always known at the time of compilation. 
 
Polymorphism and late binding go hand in hand. In the presence of polymorphism, the 
binding of a method to a name is not determined until execution. In C++, the developer may 
control whether a member function uses early or late binding. Specifically, if the method is 
declared as virtual, then late binding is employed, and the function is considered to be 
polymorphic. If this virtual declaration is omitted, then the method uses early binding and 
thus can be resolved at the time of compilation. How an implementation selects a particular 
method for execution is described in the sidebar. 
 
Inheritance and Typing Consider again the redefinition of the member transmit: 
 
void ElectricalData::transmit() 
{ 
  TelemetryData::transmit(); 
  // transmit the voltages 
  // transmit the amperes 
} 
 
Most object-oriented programming languages permit the implementation of a subclass's 
method to directly invoke a method defined by some superclass. As this example shows, it is 
also quite common for the implementation of a redefined method to invoke the method of the 
same name defined by a parent class. In Smalltalk, one may invoke a method starting from 
the immediate ancestor class by using the keyword super; one may also refer to the object for 
which a method was invoked via the special variable self. In C++, one can invoke the method 
of any accessible ancestor by prefixing the method name with the name of the class, thus 
forming a qualified name, and one may refer to the object for which a method was invoked via 
the implicitly declared pointer named this. 
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In practice, a redefined method usually invokes a superclass method either before or after 
doing some other action. In this manner, subclass methods play the role of augmenting the 
behavior defined in the superclass26. 
 
In Figure 3-5, all of the subclasses are also subtypes of their parent class. For example, 
instances of ElectricalData are considered to be subtypes as well as subclasses of TelemetryData. 
The fact that typing parallels inheritance relationships is common to most strongly typed 
object-oriented programming languages, including C++. Because Smalltalk is largely typeless, 
or at most weakly typed, this issue is less of a concern. 
 
The parallel between typing and inheritance is to be expected when we view the 
generalization/specialization hierarchies created through inheritance as the means of 
capturing the semantic connection among abstractions. Again, consider the declarations in 
C++: 
 
TelemetryData telemetry;  
ElectricalData electrical(5.0, -5.0, 3.0, 7.0); 
 
 

Invoking a Method 
 
In traditional programming languages, invoking a subprogram is a completely static activity. 
In Pascal for example, for a statement that calls the subprogram P, a compiler will typically 
generate code that creates a new stack frame, places the proper arguments on the stack, and 
then changes the flow of control to begin executing the code associated with P. However, in 
languages that support some form of polymorphism, such as Smalltalk, and C++, invoking an 
operation may require a dynamic activity, because the class of the object being operated upon 
may not be known until runtime. Matters are even more interesting when we add inheritance 
to the situation. The semantics of invoking an operation in the presence of inheritance 
without polymorphism is largely the same as for a simple static subprogram call, but in the 
presence of polymorphism, we must use a much more sophisticated technique. 
 
Consider the class hierarchy in Figure 3-6, which shows the base class DisplayItem along with 
three subclasses named Circle, Triangle, and Rectangle. Rectangle also has one subclass, named 
SolidRectangle. In the class DisplayItem, suppose that we define the instance variable theCenter 

                                                 
26 In CLOS, these different method roles are made explicit by declaring a method with the qualifiers :before and 
:after, as well as :around. A method without a qualifier is considered a primary method and does the central work 
of the desired behavior. Before methods and after methods augment the behavior of a primary method; they are 
called before and after the primary method, respectively. Around methods form a wrapper around a primary 
method, which may be invoked at some place inside the method by the call-next-method function. 
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(denoting the coordinates for the center of the displayed item), along with the following 
operations as in our earlier example: 

 

• draw  Draw the item. 
• move  Move the item. 
• location Retum the location of the item. 

 
The operation location is common to all subclasses, and therefore need not be redefined, but 
we expect the operations draw and move to be redefined since only the subclasses know how to 
draw and move themselves. 

 
Figure 3-6 
Displayitem Class Diagram 
 
The class Circle must include the instance variable theRadius and appropriate operations to set 
and retrieve its value. For this subclass, the redefined operation draw draws a circle of the 
given radius, centered on theCenter. Similarly, the class Rectangle must include the instance 
variables theHeight and theWidt:h, along with appropriate operations to set and retrieve their 
values. For this subclass, the operation draw draws a rectangle with the given height and 
width, again centered on theCenter. The subclass SolidRectangle inherits all characteristics of the 
class Rectangle, but again redefines the behavior of the operation draw. Specifically, the 
implementation of draw for the class SolidRectangle first calls draw as defined in its superclass 
Rectangle (to draw the outline of the rectangle) and then fills in the shape. 
 
Consider now the following code fragment: 
 
DisplayItem* items[10]; 
… 
for (unsigned index = 0; index < 10; index++) 
  items[index]->draw(); 
 
The invocation of draw demands polymorphic behavior. Here, we find a heterogeneous array 
of items, meaning that the collection may contain pointers to objects of any of the DisplayI•tem 
subclasses. Suppose now that we have some client object that wishes to draw all of the items 
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found in this collection, as in the code fragment. Our approach is to iterate through the array 
and invoke the operation draw upon each object we encounter. In this situation, the compiler 
cannot statically generate code to invoke the proper draw operation, because the class of the 
object being operated upon is not known until runtime. Let's consider how various object-
oriented programming languages deal with this situation. 
 
Because Smalltalk is a typeless language, method dispatch is completely dynamic. When the 
client sends the message draw to an item found in the list, here is what happens: 
 

• The item object looks up the message in its class's message dictionary. 
• If the message is found, the code for that locally defined method is invoked. 
• If the message is not found, the search for the method continues in the superclass. 

 
This process continues up the superclass hierarchy until the message is found, or until we 
reach the topmost base class, Object, without finding the message. In the latter case, Smalltalk 
ultimately passes the message doesNotUnderstand, to signal an error. 
 
The key to this algorithm is the message dictionary, which is part of each class's 
representation and is therefore hidden from the client. This dictionary is created when the 
class is created, and contains all the methods to which instances of this class may respond. 
Searching for the message is time-consuming; method lookup in Smalltalk takes about 1.5 
times as long as a simple subprogram call. All production-quality Smalltalk implementations 
optimize method dispatch by supplying a cached message dictionary, so that commonly 
passed messages may be invoked quickly. Caching typically improves performance by 20%-
30% [31]. 
 
The operation draw defined in the subclass SolidRectangle poses a special case. We said that its 
implementation of draw first calls draw as defined in the superclass Rectangle. In Smalltalk, we 
specify a superclass method by using the keyword super. Then, when we pass the message 
draw to super, SmalItalk uses the same method-dispatch algorithm as above, except that the 
search begins in the superclass of the object instead of its class. 
 
Studies by Deutsch suggest that polymorphism is not needed about 85% of the time, so 
message passing can often be reduced to simple procedure calls [32]. Dulf notes that in such 
cases, the developer often makes implicit assumptions that permit an early binding of the 
object's class [33]. Unfortunately, typeless languages such as Smalltalk have no convenient 
means for communicating these implicit assumptions to the compiler. 
 
More strongly typed languages such as C++ do let the developer assert such information. 
Because we want to avoid method dispatch wherever possible but must still allow for the 
occurrence of polymorphic dispatch, invoking a method in these languages proceeds a litue 
differently than in Smalltalk. 
 
In C++, the developer can decide if a particular operation is to be bound late by declaring it to 
be virtual; all other methods are considered to be bound early, and thus the compiler can 
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statically resolve the method call to a simple subprogram call. In our example, we declared 
draw as a virtual member function, and the method location as nonvirtual, since it need not be 
redefined by any subclass. The developer can also declare nonvirtual methods as inline, 
which avoids the subprogram call, and so trades off space for time. 
 
To handle virtual member functions, most C++ implementations use the concept of a vtable, 
which is defined for each object requiring polymorphic dispatch, when the object is created 
(and thus when the class of the object is fixed). This table typically consists of a list of pointers 
to virtual functions. For example, if we create an object of the class Rectangle, then the vtable 
will have an entry for the virtual function draw, pointing to the closest implementation of draw. 
If, for example, the class DisplayItem included the virtual function Rotate, which was not 
redefined in the class Rectangle, then the vtable entry for Rotate would point to the 
implementation of Rotate in the class DisplayItem. In this manner, runtime searching is 
eliminated: referring to a virtual member function of an object is just an indirect reference 
through the appropriate pointer, which immediately invokes the correct code without 
searching [34], 
 
The implementation of draw for the class SolidRectangle introduces a special case in C++ as well. 
To make the implementation of this method refer to the method draw in the superclass, C++ 
requires the use of the scope operator. Thus, one must write: 
 
Rectangle::draw() ; 
 
Studies by Stroustrup suggest that a virtual function call is just about as efficient as a normal 
function call [35]. In the presence of single inheritance, a virtual function call requires only 
about three or four more memory references than a normal function call; multiple inheritance 
adds only about five or six memory references. 
 
Method dispatch in CLOS is complicated because of the presence of :before, :after, and :around 
methods. The existence of multiple polymorphism also complicates matters. 
 
Method dispatch in CLOS normally uses the following algorithm: 
 

• Determine the types of the arguments. 
• Calculate the set of applicable methods. 
• Sort the methods from most specific to most general, according to the object's class  

precedence list. 
• Call all :before methods. 
• Call the most specific primary method. 
• Call all :after methods. 
• Return the value of the primary method [36]. 
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CLOS also introduces a metaobject protocol, whereby one may redefine the very algorithm 
used for generic dispatch (although in practice, one typically uses the predefined process). As 
Winston and Horn wisely point out, "The CLOS algorithm is complicated, however, and even 
wizard-level CLOS programmers try to get by without thinking about it, just as physicists try 
to get by with Newtonian mechanics rather than dealing with quantum mechanics" [37]. 

 
The following assignment statement is legal: 
 
telemetry = electrical; // electrical is a subtype of telemetry 
 
Although legal, this statement is also dangerous: any additional state defined for an instance 
of the subclass is sliced upon assignment to an instance of the superclass. In this example, the 
four member objects, fuelCell1Voltage, fuelCell2Voltage, fuelCell1Amperes, and fuelCell2Amperes, would 
not be copied, because the object denot by the variable telemetry is an instance of the class 
TelemetryData, which does not have these members as part of its state. 
 
The following statement is not legal: 
 
electrical = telemetry; // Illegal: telemetry is not a subtype of  

electrical 
 
To surmnarize, the assignment of object X to object Y is possible if the type of X is the same as 
the type or a subtype of Y. 
 
Most strongly typed languages permit conversion of the value of an object from one type to 
another, but usually only if there is some superclass/subclass relationship between the two. 
For example, in C++ one can explicitly write conversion operators for a class using what are 
called type casts. Typically, as in our example, one uses implicit type conversion to convert an 
instance of a more specific class for assignment to a more general class. Such conversions are 
said to be type-safe, meaning that they are checked for semantic correctness at compilation 
time. We sometimes need to convert a variable of a more general class to one of a more 
specific class, and so must write an explicit type cast. However, such operations are not type-
safe, because they can fail during execution time if the object being coerced is incompatible 
with the new type27. Such conversions are actually not rare (although they should be avoided 
unless there is compelling reason), since the developer often knows the real types of certain 
objects. For example, in the absence of parameterized types, it is common practice to build 
classes such as sets and bags that represent collections of objects, and because we want to 
permit collections of instances of arbitrary classes, we typically define these collection classes 
to operate upon instances of some base class (a style much safer than the void* idiom used 

                                                 
27 Recent extensions to C++ for run-time type identification will help to mitigate this problem. 
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earlier for the class Queue). Then, iteration operations defined for such a class would only 
know how to retum objects of this base class. However, within a particular application, a 
developer might only place objects of some specific subclass of this base class in the 
collection. To invoke a class-specific operation upon objects visited during iteration, the 
developer would have to explicitly coerce each object visited to the expected type. Again, this 
operation would fail at execution time if an object of some unexpected type appeared in the 
collection. 
 
Most strongly typed languages permit an implementation to better optimize method dispatch 
(lookup), often reducing the message to a simple subprogram call. Such optimizations are 
straightforward if the language's type hierarchy parallels its class hierarchy (as in C++). 
However, there is a dark side to unifying these hierarchies. Specifically, changing the 
structure or behavior of some superclass can affect the correctness of its subclasses. As 
Micallef states, "lf subtyping rules are based on inheritance, then reimplementing a class such 
that its position in the inheritance graph is changed can make clients of that class type-
incorrect, even if the external interface of the class remains the same" [38]. 
 
These issues lead us to the very foundations of inheritance semantics As we noted earlier in 
this chapter, inheritance may be used to indicate sharing or to suggest some semantic 
connection. As stated another way by Snyder, "One can view inheritance as a private decision 
of the designer to 'reuse' code because it is useful to do so; it should be possible to easily 
change such a decision. Alternatively, one can view inheritance as making a public 
declaration that objects of the child class obey the semantics of the parent class, so that the 
child class is merely specializing or refining the parent class” [39]. In languages such as 
Smalltalk, and CLOS, these two views are indistinguishable. However, in C++ the developer 
has greater control over the implications of inheritance. Specifically, if we assert that the 
superclass of a given subclass is public (as in our example of the class ElectricalData), then we 
mean that the subclass is also a subtype of the superclass, since both share the same interface 
(and therefore the same structure and behavior). Alternately, in the declaration of a class, one 
may assert that a superclass is private, meaning that the structure and behavior of the 
superclass are shared but the subclass is not a subtype of the superclass28. This means that for 
private superclasses, the public and protected members of the superclass become private 
members of the subclass, and hence inaccessible to lower subclasses. Furthermore, no subtype 
relationship between the subclass and its private superclass is formed, because the two 
classes no longer present the same interface to other clients. 
 
Consider the following class declaration: 
 
class InternalElectricalData : private ElectricalData { 
public: 
 
  InternalElectricalData(float v1, float v2, float al, float a2); 

                                                 
28 We may also declare a superclass as protected, which has the same semantics as a private superclass, except 
that the public and protected members of the protected superclass are made accessible to lower subclasses. 
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  virtual ~InternalElectricalData(); 
 
  ElectricalData::currentPower; 
}; 
 
In this declaration, methods such as transmit are not visible to any clients of this class, because 
ElectricalData is declared to be private superclass. Because InternalElectricalData is not a subtype of 
ElectricalData, this also means that we cannot assign instances of InternalElectricalData to objects of 
the superclass, as we can for classes using public superclasses. Lastly, note that we have made 
the member function currentPower visible by explicitly naming the function. Without this 
explicit naming, it would be treated as private. As you would expect, the rules of C++ 
prohibit one from making a member in a subclass more visible than it is in its superclass. 
Thus, the member object timeStamp, declared as a protected member in the class TelemetryData, 
could not be made public by explicit naming as done for currentPower. 
 
In languages such as Ada, the equivalent of this distinction can be achieved by using derived 
types versus subtypes. Specifically, a subtype of a type defines no new type, but only a 
constrained subtype, while a derived type defines a new, incompatible type, which shares the 
same representation as its parent type. 
 
As we discuss in a later section, there is great tension between inheritance for reuse and 
aggregation. 
 
Multiple Inheritance With single inheritance, each subclass has exactly one superclass. 
However, as Vlissides and Linton point out, although single inheritance is very useful, "it 
often forces the programmer to derive from one of two equally attractive classes. This limits 
the applicability of predefined classes, often making it necessary to duplicate code. For 
example, there is no way to derive a graphic that is both a circle and a picture; one must 
derive from one or the other and reimplement the functionality of the class that was 
excluded" [40]. Multiple inheritance is supported directly by languages such as C++ and 
CLOS and, to a limited degree, by Smalltalk. The need for multiple inheritance in object-
oriented programming languages is still a topic of great debate. In our experience, we find 
multiple inheritance to be like a parachute: you don't aIways need it, but when you do, you're 
really happy to have it on hand. 
 
Consider for a moment how one might organize various assets such as savings accounts, real 
estate, stocks, and bonds. Savings accounts and checking accounts are both kinds of assets 
typically managed by a bank, so we might classify both of them as kinds of bank accounts, 
which in turn are kinds of assets. Stocks and bonds are managed quite differently than bank 
accounts, so we might classify stocks, bonds, mutual funds, and the like as kinds of 
securities which in turn are also kinds of assets. 
 
However, there are many other equally satisfactory ways to classify savings accounts, real 
estate, stocks, and bonds. For example, in some contexts, it may be useful to distinguish 
insurable items such as real estate and certain bank accounts (which, in the United States, are 
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insured up to certain limits by the Federal Depositors Insurance Corporation). It may also be 
useful to identify assets that return a dividend or interest, such as savings accounts, checking 
accounts, and certain stocks and bonds. 
 
Unfortunately, single inheritance is not expressive enough to capture this lattice of 
relationships, so we must turn to multiple inheritance29. Figure 3-7 illustrates such a class 
structure. Here we see that the class Security is a kind of Asset as well as a kind of 
InterestBearingItem. Similarly, the class BankAccount is a kind of Asset, as well as a kind of 
InsurableItem and InterestBearingItem.  
 
To capture these design decisions in C++, we might write the following (highly elided) 
declarations. First, we start with the base classes: 
 
class Asset …  
class InsurableItem …  
class InterestBearingItem …  
 
Next we have various intermediate classes, each of which has multiple superclasses: 
 
class BankAccount : public Asset, 

    public InsurableItem, 
    public InterestBearingItem …  

class RealEstate : public Asset,  
   public InsurableItem … 

class Security : public Asset,  
 public InterestBearingItem … 

                                                 
29 In fact, this is the litmus test for multiple inheritance. lf we encounter a class lattice wherein the leaf classes can 
be grouped into sets denoting orthogonal behavior (such as insurable and interest-bearing items), and these sets 
overlap, this is an indication that, within a single inheritance lattice, no intermediate classes exist to which we 
can cleanly attach these behaviors without violating our abstraction of certain leaf classes by granting them 
behaviors that they should not have. We can remedy this situation by using multiple inheritance to mix in these 
behaviors only where we want thern. 
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Figure 3-7 
Multiple Inheritance 
 
And finally, we have the remaining leaf classes: 
 
class SavingsAccount : public BankAccount … 
class CheckingAccount : public BankAccount … 
 
class Stock : public Security … 
class Bond : public Security … 
 
Designing a suitable class structure involving inheritance, and especially involving multiple 
inheritance, is a difficult task. As we explain in Chapter 4, this is often an incremental and 
iterative process. Two problems present themselves when we have multiple inheritance: How 
do we deal with name collisions from different superclasses, and how do we handle repeated 
inheritance? 
 
Name collisions are possible when two or more different superclasses use the same name for 
some element of their interfaces, such as instance variables and methods. For example, 
suppose that the classes InsurableItem and Asset both have attributes named presentValue, 
denoting the present value of the item. Since the class RealEstate inherits from both of these 
classes, what does it mean to inherit two operations with the same name? This in fact is the 
key difficulty with multiple inheritance: clashes may introduce ambiguity in the behavior of 
the multiply inherited subclass. 
There are three basic approaches to resolving this kind of clash. First, the language semantics 
might regard such a clash as illegal, and reject the compilation of the class. This is the 
approach taken by languages such as Smalltalk and Eiffel. In Eiffel, however, it is possible to 
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rename items so that there is no ambiguity. Second, the language semantics might regard the 
same name introduced by different classes as referring to the same attribute, which is the 
approach taken by CLOS. Third, the language semantics might permit the clash, but require 
that all references to the name fully qualify the source of its declaration. This is the approach 
taken by C++30. 
 
The second problem is repeated inheritance, which Meyer describes as follows: "One of the 
delicate problems raised by the presence of multiple inheritance is what happens when a 
class is an ancestor of another in more than one way. If you allow multiple inheritance into a 
language, then sooner or later someone is going to write a class D with two parents B and C, 
each of which has a class A as a parent - or some other situation in which D inherits twice (or 
more) from A. This situation is called repeated inheritance and must be dealt with properly" 
[411. As an example, suppose that we define the following (ill-conceived) class: 
 
class MutualFind : public Stock, 
      public Bond … 
 
This class introduces repeated inheritance of the class Security, which is a superclass of both 
Stock and Bond. 
 
There are three approaches to dealing with the problem of repeated inheritance. First, we can 
treat occurrences of repeated inheritance as illegal. This is the approach taken by Smalltalk 
and Eiffel (with Eiffel again permitting renaming to disambiguate the duplicate references). 
Second, we can permit duplication of superclasses, but require the use of fully qualified 
names to refer to members of a specific copy. This is one of the approaches taken by C++. 
Third, we can treat multiple references to the same class as denoting the same class. This is 
the approach taken by C++ when the repeated superclass is introduced as a virtual base class. 
A virtual base class exists when a subclass names another class as its superclass and marks 
that superclass as virtual, to indicate that it is a shared,class. Similarly, in CLOS repeated 
classes are shared, using a mechanism called the class precedence list. This list, calculated 
whenever a new class is introduced, includes the class itself and all of its superclasses, 
without duplication, and is based upon the following rules: 
 

• A class always has precedence over its superclass. 
 

• Each class sets the precedence order of its direct superclasses [42]. 
 
In this approach, the inheritance graph is flattened, duplicates are removed, and the resulting 
hierarchy is resolved using single inheritance [43]. This is akin to the computation of a 
topological sorting of classes. If a total ordering of classes can be calculated, then the class that 
introduces the repeated inheritance is accepted. Note that this total ordering may be unique, 
or there may be several possible orderings (and a deterministic algorithm will aIways select 

                                                 
30 In C++, name collisions among member objects may be resolved by fully qualifying each member narne. 
Member functions with identical names and signatures are semantically considered the same function. 
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one such ordering). lf no ordering can be found (for example, when there are cycles in the 
class dependencies), the class is rejected. 
 
The existence of multiple inheritance gives rise to a style of classes called mixins. Mixins 
derive from the programming culture surrounding the language Flavors: one would combine 
("mix in") little classes to build classes with more sophisticated behavior. As Hendler 
observes, "A mixin is syntactically identical to a regular class, but its intent is different. The 
purpose of such a class is solely to ... [add] functions to other flavors [classes] - one never 
creates an instance of a mixin" [44]. In Figure 3-7, the classes InsurableItem and InterestBearingItem 
are mixins. Neither of these classes can stand alone; rather, they are used to augment the 
meaning of some other class31. Thus, we may define a mixin as a class that embodies a single, 
focused behavior and is used to augment the behavior of some other class via inheritance. 
The behavior of a mixin is usually completely orthogonal to the behavior of the classes with 
which it is combined. A class that is constructed primarily by inheriting from mixins and does 
not add its own structure or behavior is called an aggregate class. 
 
Multiple Polymorphism Consider again the following member function declared for the 
class DisplayItem: 
 
virtual void draw(); 
 
The purpose of this operation is to draw the given object in some context. This operation is 
declared as virtual and is therefore polymorphic, meaning that whenever we invoke this 
operation for a particular object, the proper subclass's implementation of this operation will 
be called, using an algorithm for method dispatch as described in the sidebar. This is an 
example of single polymorphism, meaning that the method is specialized (is polymorphic) on 
exactly one parameter, namely, the object for which the operation is involced. 
 
Suppose now that we need a slightly different behavior, depending upon the exact display 
device we use. In one case, we would want the method draw to display a high-resolution 
graphical representation; in another, we would want it to print a representation quickly, and 
so would draw only a very coarse image. We could declare two distinct although very similar 
operations, such as drawGraphic and drawText. This is not entirely satisfying, however, because 
this solution does not scale very well: introducing yet another drawing context requires us to 
add a new operation to every class in the DisplayItem hierarchy. 
 
In languages such as CLOS, we can write operations called multimethods that are polymorphic 
on more than one parameter (such as the display item and the display device). In languages 
that support only single polymorphism (such as C++), we can fake this multiple polymorphic 
behavior by using an idiom called double dispatching. 
 
First, we might define a hierarchy of display devices, rooted in the class DisplayDevice. Next, we 
would rewrite the DisplayItem operation as follows: 
                                                 
31 In CLOS, it is cornmon practice to build a mixin using only :before and :after methods to augment the 
behavior of existing primary methods. 
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virtual void draw(DisplayDevice&); 
 
In the implementation of this method, we would invoke drawing operations that are 
polymorphic on the given actual DisplayDevice parameter - thus the name double dispatch: draw 
first exhibits polymorphic behavior based upon the object's exactly subclass of DisplayItem, and 
then next exhibits polymorphic behavior based upon the argument's exact subclass of 
DisplayDevice. 
 
This idiom can be extended to any degree of polymorphic dispatch. 
 
 
Aggregation 
 
Example Aggregation relationships among classes have a direct parallel to aggregation 
relationships among the objects corresponding to these classes. For example, consider again 
the declaration of the class TemperatureController: 
 
class TemperatureController { 
public: 
 
  TemperatureController(Location); 
  ~TemperatureController(); 
 
  void process(const TemperatureRamp&); 
 
  Minute schedule(const TemperatureRamp&) const; 
 
private: 
  Heater h; 
}; 
 
As we show in Figure 3-8, the class TemperatureController denotes the whole, and an instance of 
the class Heater is one of its parts. This corresponds exactly to the aggregation relationship 
among the instances of these classes illustrated in Figure 3-3. 
 
Physical Containment In the case of the class TemperatureController, we have aggregation as 
containment by value, a kind of physical containment meaning that the Heater object does not 
exist independently of its enclosing TemperatureController instance. Rather the lifetimes of these 
two objects are intimately connected: when we create an instance of TemperatureController, we 
also create an instance of the class Heater. When we destroy our TemperatureController object, by 
implication we also destroy the corresponding Heater object. 
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Figure 3-8 
Aggregation 
 
A less direct kind of aggregation is also possible, called containment by reference. For example, 
we might replace the private part of the class TemperatureController with the following 
declaration32: 
 
Heater* h; 
 
In this case, the class TemperatureController still denotes the whole, and an instance of the class 
Heater is still one of its parts, although that part must now be accessed indirectly. Hence, the 
lifetimes of these two objects are not so tightly coupled as before: we may create and destroy 
instances of each class independently. Furthermore, because it is possible for the part to be 
structurally shared, we must decide upon some policy whereby its storage is properly created 
and reclaimed by only one agent that shares references to that part. 
 
Aggregation asserts a direction to the whole/part relationship. For example, the Heater object 
is a part of the TemperatureController object, and not vice versa. Containment by value may not 
be cyclic (that is, both objects may not physically be parts of one another), although 
containment by reference may be (each object may hold a pointer to the other)33. 
 
Of course, as we described in an earlier example, aggregation need not require physical 
containment, as implied throulh containment by value or by reference. For example, although 
shareholders own stocks, a shareholder does not physically contain the owned stocks. Rather, 
the lifetimes of these objects may be completely independent, although there is still 
conceptually a whole/part relationship (each share is always a part of the shareholder's 
assets), and thus our representation of this aggregation can be very indirect. For example, we 
might declare the class Shareholder, whose state includes a key to a database table that we may 
use to look up the shares owned by a particular shareholder. This is still aggregation, 
although not physical containment. Ultimately, the litmus test for aggregation is this: If and 
only if there exists a whole/part relationship between two objects, we must have an 
aggregation relationship between their corresponding classes. 
                                                 
32 Alternately, we could have declared h as a reference to a heater object (in C++, Heater&), whose semantics 
regarding initialization and modification are quite different than for pointers. 
33 An association may be often replaced be cyclic aggregation or cyclic "using” relationships. More often than 
not, however, an association (which by definition implies bidirectional navigation) is refined during design to be 
a single aggregation or "using" relationship, thus denoting a constraint upon the direction of the association. 
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Multiple inheritance is often confused with aggregation. In fact, in C++ protected or private 
inheritance can easily be replaced with protected or private aggregation of an instance of the 
superclass, with no loss in semantics. When considering inheritance versus aggregation, 
remember to apply the litmus test for each. If you cannot honestly affirm that there is an "is a" 
relationship between two classes, then aggregation or some other relationship should be used 
instead of inheritance. 
 
 
Using 
 
Example Our carlier example of the rampController and growingRamp objects illustrated a link 
between the two objects, which we represented via a "using" relationship between their 
corresponding classes, TemperatureController and TemperatureRamp: 
 
class TemperatureController { 
public: 
 
  TemperatureController(Location);  
  ~TemperatureController(); 
 
  void process(const TemperatureRamp&); 
 
  Minute schedule(const TemperatureRamp&) const; 
 
private:  
  Heater h; 
}; 
 
The class TemperatureRamp appears as part of the signature in certain member functions, and 
thus we can say that TemperatureController uses the services of the class TemperatureRamp. 
 
Clients and Suppliers "Using" relationships among classes parallel the peer-to-peer links 
among the corresponding instances of these classes. Whereas an association denotes a 
bidirectional semantic connection, a "using" relationship is one possible refinement of an 
association, whereby we assert which abstraction is the client and which is the supplier of 
certain services. We illustrate such a client/supplier "using" relationship in Figure 3-934. 
 
Actually, one class may use another in a variety of ways. In our example, the 
TemperatureController uses the TemperatureRamp in the signature of its interface. The 
TemperatureController might also use another class such as Predictor in its implementation of the 
member function schedule. This is not an assertion of a whole/part relationship: an instance of 
the Predictor class is only used by and is not a part of the TemperatureController instance. Typically, 

                                                 
34 As we stated earlier, a cyclic "using" relationship is equivalent to an association, although the reverse is not 
necessarily true. 
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such a "using" relationship manifests itself by the implementation of some operation 
declaring a local object of the used class. 
 
 

 
Figure 3-9 
The "Using" Relationship 
 
 
Strict "using" relationships are occasionally too confining because they allow the client access 
only to the public interface of the supplier. Sometimes, for tactical reasons, we must break our 
encapsulation of these abstractions, which is the very purpose of the friend concept in C++. 
 
 
Instantiation 
 
Examples Our earlier declaration of the class Queue was not very satisfying because its 
abstraction was not type-safe. We can vastly improve our abstraction by using languages 
such as Ada, C++, and Eiffel that support genericity. 
 
For example, we might rewrite our earlier class declaration using a parameterized class in 
C++: 
 
template<class Item> 
class Queue { 
public: 
 
  Queue();  
  Queue(const Queue<Item>&); 
  virtual ~Queue(); 
 
  virtual Queue<Item>& operator=(const Queue<Item>&); 
  virtual int operator==(const Queue<Item>&) const; 
  int operator!=(const Queue<Item>&) const; 
 
  virtual void clear(); 
  virtual void append(const Item&); 
  virtual void pop(); 
  virtual void remove(int at); 
 
  virtual int length() const;  
  virtual int isEmpty() const;  
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  virtual const Item& front() const; 
  virtual int location(const void*); 
 
protected: 
    … 
} 

 
Figure 3-10 
Instantiation 
 
Note that in this declaration we no longer append and retrieve objects via void* (which is not 
type-safe); we do so via the class Item declared as a template argument. 
 
A parameterized class cannot have instances unless we first instantiate it. For example, we 
might declare two concrete queue objects, a queue of integers, and a queue of display items: 
 
Queue<int> intQueue; 
Queue<DisplayItem*> itemQueue; 
 
The objects intQueue and itemQueue are instances of distinaly different classes, and are not even 
united by any common superclass, although they both derive from the same parameterized 
class. For reasons that we describe further in Chapter 9, we use a pointer to the class 
DisplayItem in the second instantiation, so that objects of a DisplayItem subclass placed in the 
queue will not be sliced, but will preserve their polymorphic behavior. 
 
These instantiations are type-safe. C++'s typing rules will reject any statements that attempt 
to append or retrieve anything other than integers from intQueue and anything but instances of 
DisplayItem or its subclasses from itemQueue. 
 
Figure 3-10 illustrates the relationships among the parameterized class Queue, its instantiation 
for DisplayItem, and its corresponding instance itemQueue. 
 
Genericity There are four basic ways to build classes such as the parameterized class Queue. 
First, we can use macros. This is the style one had to use in earlier versions of C++, but as 
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Stroustrup observes, this "approach does not work weIl except on a small scale" [45] because 
maintaining macros is clumsy and outside the semantics of the language; furthermore, each 
instantiation results in a new copy of the code. Second, we can take the approach used by 
Smalltalk and rely upon inheritance and late binding [46]. With this approach, we may build 
only heterogeneous container classes, because there is no way to assert the specific class of the 
container's elements; every item is treated as if it were an instance of some distant base class. 
Third, we may take an approach commonly used in languages such as Object Pascal, which 
are strongly typed, support inheritance, but do not support any form of parameterized 
classes. Here, we build generalized container classes, as in Smalltalk, but then use explicit 
typechecking code to enforce the convention that the contents are all of the same class, which 
is asserted when the container object is created. This approach has significant runtime 
overhead. Fourth, we may take the approach first introduced by CLU and provide a direct 
mechanism for parameterizing classes, as in our example. A parameterized class (also known as 
a generic class) is one that serves as a template for other classes - a template that may be 
parameterized by other classes, objects, and/or operations. A parameterized class must be 
instantiated (that is, its parameters must be filled in) before objects can be created. C++ and 
Eiffel both support generic class mechanisms. 
 
In Figure 3-10, note that to instantiate the class Queue, we must also use the class DisplayItem. 
Indeed, instantiation relationships almost always require some "using" relationships, which 
make visible the actual classes used to fill in the template. 
 
Meyer has pointed out that inheritance is a more powerful mechanism than genericity and 
that much of the benefit of genericity can be achieved through inheritance, but not vice versa 
[47]. In practice, we find it helpful to use a language that supports both inheritance and 
parameterized classes. 
 
Parameterized classes may be used for much more than building container classes. As 
Stroustrup points out, "Type parameterization will allow arithmetic functions to be 
parameterized over their basic number type so that programmers can (finally) get a uniform 
way of dealing with integers, single-precision floating-point numbers, double-precision 
floating point-numbers, etc." [48]. 
 
From a design perspective, parameterized classes are also useful in capturing certain design 
decisions about the protocol of a class. Whereas a class definition exports the operations that 
one may perform upon instances of that class, the arguments of a template serve to import 
classes (and values) that provide a specific protocol. In C++, this conformance checking is 
done at compilation time, when expanding the instantiation. For example, we might declare 
an ordered queue class that represents collections of objects that are sorted according to some 
criteria. This parameterized class must rely upon some class Item, as before, but also expects 
Item to provide some ordering operation. By parameterizing the class in this manner, we make 
it more loosely coupled: we can match the formal argument Item with any class that provides 
this ordering function. In this sense, we may define a parameterized class as one that denotes 
a family of classes whose structure and behavior are defined independently of their formal 
class parameters. 
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Metaclass 
 
We have said that every object is an instance of some class. What if we treat a class itself as an 
object that can be manipulated? To do so, we must ask, What is the class of a class? The 
answer is simply, a metaclass. To state it another way, a metaclass is a class whose instances 
are themselves classes. Languages such as Smalltalk and CLOS support the concept of a 
metaclass directly; C++ does not. Indeed, the idea of a metaclass takes the idea of the object 
model to its natural completion in pure object-oriented programming languages. 
 
 

 
Figure 3-11 
Metaciasses 
 
Robson motivates the need for metaclasses by noting that "in a system under development, a 
class provides an interface for the programmer to interface with the definition of objects. For 
this use of classes, it is extremely useful for them to be objects, so that they can be 
manipulated in the same way as all other descriptions" [49]. 
 
In languages such as Smalltalk, the primary purpose of a metaclass is to provide class 
variables (which are shared by all instances of the class) and operations for initializing class 
variables and for creating the metaclass's single instance [50]. By convention, a Smalltalk 
metaclass typically contains examples that show the use of the metaclass's class. For example, 
as shown in Figure 3-11, we might in Smalltalk define a class variable nextID for the metaclass 
of TelemetryData, whose purpose is to assist in generating distinct id's upon the creation of each 
instance of TelemetryData. Similarly, we might define an operation for creating new instances of 
the class, which perhaps generates them from some preallocated pool of storage. 
 
Although C++ does not explicitly support metaclasses, its constructor and destructor 
semantics serve the purpose of metaclass creation operations. Also, C++ has provisions for 
class variables and metaclass operations. Specifically, in C++ one may declare a member 



 Chapter 3: Classes and Objects      134 

object or a member function as static, meaning that the member is shared by all instances of 
the class. Static member objects in C++ are equivalent to Smalltalk's class variables, and static 
member functions are equivalent to metaclass operations in Smalltalk. 
 
As we have mentioned, support for metaclasses in CLOS is even more powerful than in 
Smalltalk. Through the use of metaclasses, one may redefine the very semantics of elements 
such as class precedence, generic functions, and methods. The primary benefit of this facility 
is that it permits experimentation alternate object-oriented programming paradigms and 
facilitates the construction of software development tools, such as browsers. 
 
In CLOS, the predefined class named standard-class is the metaclass of all defined via defclass. 
This metaclass defines the method make-instance, which implements the semantics of how 
instances are created. Standard-class also defines the algorithm for computing the class 
precedence list. CLOS allows the behavior of both of these methods to be redefined. 
 
Methods and generic functions may also be treated as objects in CLOS. Because they are 
somewhat different than the usual kinds of objects, class objects, method objects, and generic 
function objects are collectively called metaobjcts. Each method is an instance of the 
predefined class standard-method, and each generic function is treated as an instance of the class 
standard-generic-function. Because the behavior of these predefined classes may be redefined, it is 
possible to change the meanings of methods and generic functions. 
 
 
3.5 The Interplay of Classes and Objects 
 
Relationships Between Classes and Obiects  
 
Clases and object are separate yet intimately related concepts. Specifically, every object is the 
instance of some class, and every class has zero or more instances. For practically all 
applications, classes are static; therefore, their existence, semantics, and relationships are 
fixed prior to the execution of a program. Similarly, the class of most objects is static, meaning 
that once an object is created, its class is fixed. In sharp contrast, however, objects are typically 
created and destroyed at a furious rate during the li time of an application. 
 
For example, consider the classes and objects in the implementation of an traffic control 
system. Some of the more important abstractions include planes, flight plans, runways, and 
air spaces. By their very definition, the meanings of these classes of objects are relatively 
static. They must be static, for otherwise one could not build an application that embodied 
knowIedge of such commonsense facts as that planes can take off, fly, and then land, and that 
two planes should not occupy the same space at the same time. Conversely, the instances of 
these classes are dynamic. At a fairly slow rate, new runways are built, and old ones are 
deactivated. Faster yet, new flight plans are filed, and old ones are filed away. With great 
frequency, new planes enter a particular air space, and old ones leave. 
 
 



 Chapter 3: Classes and Objects      135 

Role of Classes and Objects in Analysis and Design 
 
During analysis and the early stages of design, the developer has two primary tasks: 
 

• Identify the classes and objects that form the vocabulary of the problem domain. 
• Invent the structures whereby sets of objects work together to provide the behaviors 

that satisfy the requirements of the problem. 
 
Collectively, we call such classes and objects the key abstractions of the problem, and we call 
these cooperative structures the mechanisms of the implementation. 
 
During these phases of development, the focus of the developer must be upon the outside 
view of these key abstractions and mechanisms. This view represents the logical framework 
of the system, and therefore encompasses the class structure and object structure of the 
system. In the later stages of design and then moving into implementation, the task of the 
developer changes: the focus is on the inside view of these key abstractions and mechanisms, 
involving their physical representation. We may express these design decisions as part of the 
system's module architecture and process architecture. 
 
 
3.6 On Building Quailty Classes and Objects 
 
Measuring the Quailty of an Abstraction 
 
Ingalls suggests that "a system should be built with a minimum set of unchangeable parts; 
those parts should be as general as possible; and all parts of the system should be held in a 
uniform framework" [51]. With object-oriented development, these parts are the classes and 
objects that make up the key abstractions of the system, and the framework is provided by its 
mechanisms. 
 
In our experience, the design of classes and objects is an incremental, iterative process. 
Frankly, except for the most trivial abstractions, we have never been able to define a class 
exactly right the first time. As Chapters 4 and 7 explain, it takes time to smooth the 
conceptual jagged edges of our initial abstractions. Of course, there is a cost to refining these 
abstractions, in terms of recompilation, understandability, and the integrity of the fabric of 
our system design. Therefore, we want to come as close as we can to being right the first time. 
 
How can one know if a given class or object is well designed? We suggest five meaninful 
metrics: 
 

• Coupling 
• Cohesion 
• Sufficiency 
• Completeness 
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• Primitiveness 
 
Coupling is a notion borrowed from structured design, but with a liberal interpretation it also 
applies to object-oriented design. Stevens, Myers, and Constantine define coupling as "the 
measure of the strength of association established by a connection from one module to 
another. Strong coupling complicates a system since a module is harder to understand, 
change, or correct by itself if it is highly interrelated with other modules. Complexity can be 
reduced by designing systems with the weakest possible coupling between modules" [52]. A 
counterexample to good coupling is given by Page-Jones, in his description of a modular 
stereo system in which the power supply is located in one of the speaker cabinets [53]. 
 
Coupling with regard to modules is still applicable to object-oriented analysis and design, but 
coupling with regard to classes and objects is equally important. However, there is tension 
between the concepts of coupling and inheritance, because inheritance introduces significant 
coupling. On the one hand, weakly coupled classes are desirable; on the other hand, 
inheritance- which tightly couples superclasses and their subclasses- helps us to exploit the 
commonality among abstractions. 
 
The idea of cohesion also comes from structured design. Simply stated, cohesion measures 
the degree of connectivity among the elements of a single module (and for object-oriented 
design, a single class or object). The least desirable form of cohesion is coincidental cohesion, 
in which entirely unrelated abstractions are thrown into the same class or module. For 
example, consider a class comprising the abstractions of dogs and spacecraft, whose 
behaviors are quite unrelated. The most desirable form of cohesion is functional cohesion, in 
which the elements of a class or module all work together to provide some well-bounded 
behavior. Thus, the class Dog is functionally cohesive if its semantics embrace the behavior of 
a dog, the whole dog, and nothing but the dog. 
 
Closely related to the ideas of coupling and cohesion are the criteria that a class or module 
should be sufficient, complete, and primitive. By sufficient, we mean that the class or module 
captures enough characteristics of the abstraction to permit meaningful and efficient 
interaction. To do otherwise renders the component useless. For example, if we are designing 
the class Set, it is wise to include an operation that removes an item from the set, but our 
wisdom is futile if we neglect an operation that adds an item. In practice, violations of this 
characteristic are detected very early; such shortcomings rise up almost every time we build a 
client that must use this abstraction. By complete, we mean that the interface of the class or 
module captures all of the meaningful characteristics of the abstraction. Whereas sufficiency 
implies a minimal interface, a complete interface is one that covers all aspects of the 
abstraction. A complete class or module is thus one whose interface is general enough to be 
commonly usable to any client. Completeness is a subjective matter, and it can be overdone. 
Providing all meaningful operations for a particular abstraction overwhelms the user and is 
generally unnecessary, since many high-level operations can be composed from low-level 
ones. For this reason, we also suggest that classes and modules be primitive. Primitive 
operations are those that can be efficiently implemented only if given access to the underlying 
representation of the abstraction. Thus, adding an item to a set is primitive, because to 
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implement this operation Add, the underlying representation must be visible. On the other 
hand, an operation that adds four items to a set is not primitive, because it can be 
implemented just as efficiently upon the more primitive Add operation, without having access 
to the underlying representation. Of course, efficiency is also a subjective measure. An 
operation is indisputably primitive if we can implement it only through access to the 
underlying representation. An operation that could be implemented on top of existing 
primitive operations, but at the cost of significantly more computational resources, is also a 
candidate for inclusion as a primitive operation. 
 
Choosing Operations 
 
Functional Semantics Crafting the interface of a class or module is plain hard work. 
Typically, we make a first attempt at the design of a class, and then, as we and others create 
clients, we find it necessary to augment, modify, and further refine this interface. Eventually, 
we may discover pattems of operations or patterns of abstractions that lead us to invent new 
classes or to reorganize the relationships among existing ones. 
 
Within a given class, it is our style to keep all operations primitive, so that each exhibits a 
small, well-defined behavior. We call such methods fine-grained. We also tend to separate 
methods that do not communicate with one another. In this manner, it is far easier to 
construct subclasses that can meaningfully redefine the behavior of their superclasses. The 
decision to contract out a behavior to one versus many methods may be made for two 
competing reasons: lumping a particular behavior in one method leads to a simpler interface 
but larger, more complicated methods; spreading a behavior across methods leads to a more 
complicated interface, but simpler methods. As Meyer observes, "A good designer knows 
how to find the appropriate balance between too much contracting, which produces 
fragmentation, and too little, which yields unmanageably large modules" [54]. 
 
It is common in object-oriented development to design the methods of a class as a whole, 
because all these methods cooperate to form the entire protocol of the abstraction. Thus, given 
some desired behavior, we must decide in which class to place it. Halbert and O'Brien offer 
the following criteria to be considered when making such a decision: 
 

• Reusability    Would this behavior be more useful in more than  
one context? 

• Complexity    How difficult is it to implement the behavior? 
• Applicability    How relevant is the behavior to the type in which it  

might be placed? 
• Implementation knowledge Does the behavior's implementation depend upon  

the internal details of a type [55]? 
 
We usually choose to declare the meaningful operations that we may perform upon an object 
as methods in the definition of that object's class (or superclass). In languages such as C++ 
and CLOS, however, we may also declare such operations as free subprograms, which we 
then group in class utilities. In C++ terminology, a free subprogram is a nonmember function. 



 Chapter 3: Classes and Objects      138 

Because free subprograms cannot be redefined as methods can, they are less general. 
However, utilities are helpful in keeping a class primitive and in reducing the coupling 
among classes, especially if these higher-level operations involve objects of many different 
classes. 
 
Time and Space Semantics Once we have established the existence of a particular operation 
and defined its functional semantics, we must decide upon its time and space semantics. This 
means that we must specify our decisions about the amount of time it takes to complete an 
operation and the amount of storage it needs. Such decisions are often expressed in terms of 
best, average, and worst cases, with the worst case specifying an upper limit on what is 
acceptable. 
 
Earlier, we also mentioned that whenever one object passes a message to another across a 
link, the two objects must be synchronized in some manner. In the presence of multiple 
threads of control, this means that message passing is much more than a subprogram-like 
dispatch. In most of the languages we use, synchronization among objects is simply not an 
issue, because our programs contain exactly one thread of control, meaning that all objects are 
sequential. We speak of message passing in such situations as simple, because its semantics 
are most akin to simple subprogram, calls. However, in languages that support concurrency35 
we must concern ourselves with more sophisticated forms of message passing, so as to avoid 
the problems created if two threads of control act upon the same object in unrestrained ways. 
As we described earlier, objects whose semantics are preserved in the presence of multiple 
threads of control are either guarded or synchronized objects. 
 
We have found it useful in some circumstances to express concurrency semantics for each 
individual operation as well as for the object as a whole, since different operations may 
require different kinds of synchronization. Message passing may thus take one of the 
following forms: 
 

• Synchronous  An operation commences only when the sender has initiated the  
action and the receiver is ready to accept the message; the sender 
and receiver will wait indefinitely until both parties are ready to 
proceed. 

• Balking  The same as synchronous, except that the sender will abandon the  
operation if the receiver is not immediately ready. 

• Timeout  The same as synchronous, except that the sender will only wait for  
a specified amount of time for the receiver to be ready. 

• Asynchronous A sender may initiate an action regardless of whether the receiver  
is expecting the message. 

 

                                                 
35 Ada and Smalltalk have direct support for concurrency. Languages such as C++ do not, but they can often 
provide concurrency semantics by extension through platformspecific classes, such as the AT&T task library for 
C++. 
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The form can be selected on an operation-by-operation basis, but only after the functional 
semantics of the operation have been decided upon. 
 
Choosing Relationships 
 
Collaborations Choosing the relationships among classes and among objects is linked to the 
selection of operations. If we decide that object X sends message M to object Y, then either 
directly or indirectly, Y must be accessible to X; otherwise, we could not name the operation M 
in the implementation of X. By accessible, we mean the ability of one abstraction to see another 
and reference resources in its outside view. Abstraction are accessible to one another only 
where their scopes overlap and only where access rights are granted (for example, private 
parts of a class are accessible only to the class itself and its friends). Coupling is thus a 
measure of the degree of accessibility. 
 
One useful guideline in choosing the relationships among objects is called the Law of 
Demeter, which states that "the methods of a class should not depend in any way on the 
structure of any class, except the inmediate (top-level) structure of their own class. Further, 
each method should send messages to objects belonging to a very limited set of classes only" 
[56]. The basic effect of applying this law is the creation of loosely coupled classes, whose 
implementation secrets are encapsulated. Such classes are fairly unencumbered, meaning that 
to understand the meaning of one class, you need not understand the details of many other 
classes. 
 
In looking at the class structure of an entire system, we may find that its inheritance hierarchy 
is either wide and shallow, narrow and deep, or balanced. Class structures that are wide and 
shallow usually represent forests of free-standing classes that can be mixed and matched [57]. 
Class structures that are narrow and deep represent trees of classes that are related by a 
common ancestor [58]. There are advantages and disadvantages to each approach. Forests of 
classes are more loosely coupled, but they may not exploit all the commonality that exists. 
Trees of classes exploit this commonality, so that individual classes are smaller than in forests. 
However, to understand a particular class, it is usually necessary to understand the meaning 
of all the classes it inherits from or uses. The proper shape of a class structure is highly 
problem-dependent. 
 
We must make similar trade-offs among inheritance, aggregation, and using relationships. 
For example, should the class Car inherit, contain, or use the classes named Engine and Wheel? 
In this case, we suggest that an aggregation relationship is more appropriate than an 
inheritance relationship. Meyer states that between the classes A and B, "inheritance is 
appropriate if every instance of B may also be viewed as an instance of A. The client 
relationship is appropriate when every instance of B simply possesses one or more attributes 
of A" [59]. From another perspective, if the behavior of an object is more than the sum of its 
individual parts, then creating an aggregation relationship rather than an inheritance 
relationship between the appropriate classes is probably superior. 
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Mechanisms and Visibility Deciding upon the relationship among objects is mainly a matter 
of designing the mechanisms whereby these objects interact. The question the developer must 
ask is simply, Where does certain knowledge go? For example, in a manufacturing plant, 
materials (called lots) enter manufacturing cells to be processed. As they enter certain cells, 
we must notify the room's manager to take appropriate action. We now have a design choice: 
is the entry of a lot into a room an operation upon the room, an operation upon the lot, or an 
operation upon both? If we decide that it is an operation upon the room, then the room must 
be visible to the lot. If we decide that it is an operation upon the lot, then the lot must be 
visible to the room, because the lot must know what room it is in. Lastly, if we consider this to 
be an operation upon both the room and the lot, then we must arrange for mutual visibility. 
We must also decide on some visibility relationship between the room and the manager (and 
not the lot and the manager); either the manager must know the room it manages, or the 
room must know of its manager. 
 
During the design process, it is occasionally useful to state explicitly how one object is visible 
to another. There are four fundamental ways that object X may be made visible to obiect Y: 
 

• The supplier object is global to the client. 
• The supplier object is a parameter to some operation of the client. 
• The supplier object is a part of the client object. 
• The supplier object is a locally declared object in the scope of the object diagram. 

 
A variation upon each of these is the idea of shared visibility. For example, Y might be a part 
of X, but Y might also be visible to other objects in different ways. In Smalltalk, this kind of 
visibility usually represents a dependency between two objects. Shared visibility involves 
structural sharing, meaning that one object does not have exclusive access to another: the 
shared object's state may be altered via more than one path. 
 
Choosing implementations 
 
Only after we stabilize the outside view of a given class or object do we tum to its inside 
view. This perspective involves two different decisions: a choice of representation for a class 
or object and the placement of the class or object in a module. 
 
Representation The representation of a class or object should almost aIways be one of the 
encapsulated secrets of the abstraction. This makes it possible to change the representation 
(for example, to alter the time and space semantics) without violating any of the functional 
assumptions that clients may have made. As Wirth wisely states, "The choice of 
representation is often a fairly difficult one, and it is not uniquely determined by the facilities 
available. It must aIways be taken in light of the operations that are to be performed upon the 
data" [60]. For example, given a class whose objects denote a set of flight-plan information, do 
we optimize the representation for fast searching or for fast insertion and deletion? We cannot 
optimize for both, so our choice must be based upon the expected use of these objects. 
Sometimes it is not easy to choose, and we end up with families of classes whose interfaces 
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are virtually identical but whose implementations are radically different, in order to provide 
different time and space behavior. 
 
One of the more difficult trade-offs when selecting the implementation of a class is between 
computing the value of an object's state versus storing it as a field. For example, suppose we 
have the class Cone, which includes the method Volume. Invoking this method returns the 
volume of the object. As part of the representation of this class, we are likely to use fields for 
the height of the cone and the radius of its base. Should we have an additional field in which 
we store the volume of the object, or should the method Volume just calculate it every time 
[60]? If we want this method to be fast, we should store the volume as a field. If space 
efficiency is more important to us, we should calculate the value. Which representation is 
better depends entirely upon the particular problem. In any case, we should be able to choose 
an implementation independently of the class's outside view; indeed, we should even be able 
to change this representation without its clients caring. 
 
Packaging Similar issues apply to the declaration of classes and objects within modules. For 
Smalltalk, this is a not an issue, because there is no concept of a module within the language. 
It is a different matter for languages such as Object Pascal, C++, CLOS, and Ada, which 
support the notion of the module as a separate language construct. The competing 
requirements of visibility and information hiding usually guide our design decisions about 
where to declare classes and objects. Generally, we seek to build functionally cohesive, 
loosely coupled modules. Many nontechrtical factors influence these decisions, such as 
matters of reuse, security, and documentation. Like the design of classes and objects, module 
design is not to be taken lightly. As Parnas, Clements, and Weiss note with regard to 
information hiding, "Applying this principle is not always easy. lt attempts to minimize the 
expected cost of software over its period of use and requires that the designer estimate the 
likelihood of changes. Such estimates are based on past experience and usually require 
knowledge of the application area as well as an understanding of hardware and software 
technology" [61]. 
 
 
Summary 
 

• An object has state, behavior, and identity. 
• The structure and behavior of similar objects are defined in their common class. 
• The state of an object encompasses all of the (usually static) properties of the object 

plus the current (usually dynamic) values of each of these properties. 
• Behavior is how an object acts and reacts in terms of its state changes and message 

passing. 
• Identity is the property of an object that distinguishes it from all other objects. 
• The two kinds of object hierarchies include links and aggregation relationships. 
• A class is a set of objects that share a common structure and a common behavior. 
• The six kinds of class hierarchies include association, inheritance, aggregation, "using," 

instantiation, and metaclass relationships. 
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• Key abstractions are the classes and objects that form the vocabulary of the problem 
domain. 

• A mechanism is a structure whereby a set of objects work together to provide a 
behavior that satisfies some requirement of the problem. 

• The quality of an abstraction may be measured by its coupling, cohesion, sufficiency, 
completeness, and primitiveness. 

 
 
Further Readings 
 
MacLerman [G 1982] discusses the distinction between values and objects. The work by 
Meyer [J 1987] proposes the idea of programming as contracting. 
 
Much has been written on the topic of class hierarchies, with particular emphasis upon 
approaches to inheritance and polymorphism. The papers by Albano [G 1983], Allen [A 1982], 
Brachman [J 1983], Hailpern and Nguyen [G 1987], and Wegner and Zdonik [J 1988] provide 
an excellent theoretical foundation for all the important concepts and issues. Cook and 
Palsberg [J 1989] and Touretzky [G 1986] provide formal treatments of the semantics of 
inheritance. Wirth [J 1987] proposes a related approach for record type extensions, as used in 
the language Oberon. Ingalls [G 1986] provides a useful discussion on the topic of multiple 
polymorphism. Grogono [G 1989] studies the interplay of polymorphism and type checking, 
and Ponder and Buch [G 1992] warn of the dangers of unrestrained polymorphism. Practical 
guidance on the effective use of inheritance is offered by Meyer [G 1988] and Halberd and 
O’Brien [G 1988]. LaLonde and Pugh [J 1985] examine the problems of teaching the effective 
use of specialization and generalization. 
 
The nature of an abstraction's roles and responsibilities are further detailed by Rubin and 
Goldberg [B 1992] and Wirfs-Brock, Wilkerson, and Wiener [F 1990]. Measures of goodness 
for class design are also considered by Coad [F 1991]. 
 
Meyer [G 1986] examines the relationships between genericity and inheritance, as viewed by 
the language Eiffel. Stroustrup [G 1988] proposes a mechanism for parameterized types in 
C++. CLOSS metaobject protocol is described in detail by Kiczales, Rivieres, and Bobrow [G 
1991]. 
 
An alternative to class-based hierarchies is provided by delegation, using exemplars. This 
approach is examined in detail by Stein [G 1987]. 
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Classification 
 
 
 
 
Classification is the means whereby we order knowledge. In object-oriented design, 
recognizing the sameness among things allows us to expose the commonality within key 
abstractions and mechanisms, and eventually leads us to smaller and simpler architectures. 
Unfortunately, there is no golden path to classification. To the reader accustomed to finding 
cookbook answers, we unequivocally state that there are no simple recipes for identifying 
classes and objects. There is no such thing as the "perfect" class structure, nor the "right" set of 
objects. As in any engineering discipline, our design choices are a compromise shaped by 
many competing factors. 
 
At a conference on software engineering, several developers were asked what rules they 
applied to identify classes and objects. Stroustrup, the designer of  C++, responded “It's a 
Holy Grail. There is no panacea." Gabriel, one of the designers of CLOS, stated, "That's a 
fundamental question for which there is no easy answer. I try things" [1]. Fortunately, there 
does exist a vast legacy of experience with classification in other disciplines. From more 
classical approaches, techniques of object-oriented analysis have emerged that offer several 
useful recommended practices and rules of thumb for identifying the classes and objects 
relevant to a particular problem. These heuristics are the focus of this chapter. 
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Classification is the means whereby we order knowledge. 
 
 
4.1 The Importance of Proper Classification 
 
Classification and Object-Oriented Development 
 
The identification of classes and objects is the hardest part of object-oriented analysis and 
design. Our experience shows that identification involve both discovery and invention. 
Through discovery, we come to recognize the key abstractions and mechanisms that form the 
vocabulary of our problem domain. Through invention, we devise generalized abstractions as 
well as new mechanisms that specify how objects collaborate. Ultimately, discovery and 
invention are both problems of classification, and classification is fundamentally a problem of 
finding sameness. When we classify, we seek to group things that have a common structure 
or exhibit a common behavior. 
 
Intelligent classification is actually a part of all good science. As Michalski and Stepp observe, 
"An omnipresent problem in science is to construct meaningful classifications of observed 
objects or situations. Such classifications facilitate human comprehension of the observations 
and the subsequent development of a scientific theory" [2]. The same philosophy applies to 
engineering. In the domain of building architecture and city planning, Alexander notes that, 
for the architect, "his act of design, whether humble, or gigantically complex, is governed 
entirely by the patterns he has in his mind at that moment, and his ability to combine these 
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patterns to form a new design" [3]. Not surprisingly, then, classification is relevant to every 
aspect of object-oriented design. Classification helps us to identify generalization, 
specialization, and aggregation hierarchies among classes. By recognizing the common 
pattems of interaction among objects, we come to invent the mechanisms that serve as the 
soul of our implementation. Classification also guides us in making decisions about 
modularization. We may choose to place certain classes and objects together in the same 
module or in different modules, depending upon the sameness we find among these 
declarations; coupling and cohesion are simply measures of this sameness. Classification also 
plays a role in allocating processes to processors. We place certain processes together in the 
same processor or different processors, depending upon packaging, performance, or 
reliability concerns. 
 
The Difficulty of Classification 
 
Examples of Classification In the previous chapter, we defined an object as something that 
has a crisply defined boundary. However, the boundaries that distinguish one object from 
another are often quite fuzzy. For example, look at your leg. Where does your knee begin, 
and where does it end? In recognizing human speech, how do we know that certain sounds 
connect to form a word, and are not instead a part of any surrounding words? Consider also 
the design of a word processing system. Do characters constitute a class, or are whole words a 
better choice? How do we treat arbitrary, noncontiguous selections of text? Also, what about 
sentences, paragraphs, or even whole documents: are these classes of objects relevant to our 
problem? 
 
The fact that intelligent classification is difficult is hardly new information. Since there are 
parallels to the same problems in object-oriented design, consider for a moment the problems 
of classification in two other scientific disciplines: biology and chemistry. 
 
Until the eighteenth century, the prevailing scientific thought was that all living organisms 
could be arranged from the most simple to the most complex, with the measure of complexity 
being highly subjective (not surprisingly, humans were usually placed at the top of this list). 
In the mid-1700s, however, the Swedish botanist Carolus Lirmaeus suggested a more detailed 
taxonomy for categorizing organisms, according to what he called genus and species. A 
century later, Darwin proposed the theory that natural selection was the mechanism of 
evolution, whereby present-day species evolved from older ones. Darwin's theory depended 
upon an intelligent classification of species. As Darwin himself states, naturalists "try to 
arrange the species, genera, and families in each class, on what is called the natural system. 
But what is meant by this system? Some authors look at it merely as a scheme for arranging 
together those living objects which are most alike, and for separating those which are most 
unlike" [4]. In contemporary biology, classification denotes "the establishment of a 
hierarchical system of categories on the basis of presumed natural relationships among 
organisms" [5]. The most general category in a biological taxonomy is the kingdom, followed 
in order of increasing specialization, by phylum, subphylum, class, order, family, genus, and, 
finally, species. Historically, a particular organism is placed in a specific category according 
to its body structure, internal structural characteristics, and evolutionary relationships. More 
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recently, classification has been approached by grouping organisms that share a common 
generic heritage: organisms that have similar DNA are grouped together. Classification by 
DNA is useful in distinguishing organisms that are structurally similar, but genetically very 
different. For example, contemporary research suggests that the lungfish and the cow are 
more closely related than the lungfish and the trout [6]. 
 
To a computer scientist, biology may seem to be a stodgily mature discipline, with well-
defined criteria for classifying organisms. This is simply not the case. As the biologist May 
reports, "At the purely factual level, we do not know to within an order of magnitude how 
many species of plants and animals we share the globe with: fewer than 2 million are 
currently classified, and estimates of the total number range from under 5 million to more 
than 50 million" [7]. Furthermore, different criteria for classifying the same organisms yield 
different results. Martin suggests that "it all depends on what you want classification to do. If 
you want it to reflect precisely the genetic relatedness among species, that will give you, one 
answer. But if you want it instead to say something about levels of adaptation, then you, will 
get another" [8]. The moral here is that even in scientifically rigorous disciplines, classification 
is highly dependent upon the reason for the classification. 
 
Similar lessons may be learned from chemistry [9]. In, ancient times, all substances were 
thought to be some combination of earth, air, fire, and water. By today's standards (unless 
you are an alchemist), these do not represent very good classifications. In the mid-1600s, the 
chemist Robert Boyle proposed that elements were the primitive abstractions of chemistry, 
from which more complex compounds could be made. It wasn't until over a century later, in 
1789, that the chemist Lavoisier published the first list of elements, contaming some twenty-
three items, some of which were later discovered not to be elements at all. The discovery of 
new elements continued and the list grew, but finally, in 1869, the chemist Mendeleyev 
proposed the periodic law that gave a precise criteria for organizing all known elements, and 
could predict the properties of those yet undiscovered. The periodic law was not the final 
story in the classification of the elements. In the early 1900s, elements with similar chemical 
properties but different atomic weights were discovered, leading to the idea of isotopes of 
elements. 
 
The lesson here is simple: as Descartes states, "The discovery of an order is no easy task.... yet 
once the order has been discovered there is no difficulty at all in knowing it" [10]. The best 
software designs look simple, but as experience shows, it takes a lot of hard work to design a 
simple architecture. 
 
The Incremental and lterative Nature of Classification We have not said all this to defend 
lengthy software development schedules, although to the manager or end user, it does 
sometimes seem that software engineers need centuries to complete their work. Rather, we 
have told these stories to point out that intelligent classification is intellectually hard work, 
and that it best comes about through an incremental and iterative process. This incremental 
and iterative nature is evident in the development of such diverse software technologies as 
graphical user interfaces, database standards, and even fourth-generation languages. As 
Shaw has observed in software engineering, "The development of individual abstractions 
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often follows a common pattern. First, problems are solved ad hoc. As experience 
accumulates, some solutions turn out to work better than others, and a sort of folklore is 
passed informally from person to person. Eventually, the useful solutions are understood 
more systematically, and they are codified and analyzed. This enables the development of 
models that support automatic implementation and theories that allow the generalization of 
the solution. This in turn enables a more sophisticated level of practice and allows us to tackle 
harder problems - which we often approach ad hoc, starting the cycle over again" [11]. 
 
 

 
Different observers will classify the same object in different ways. 
 
The incremental and iterative nature of classification directly impacts the construction of class 
and object hierarchies in the design of a complex software system. In practice, it is common to 
assert a certain class structure early in a design and then revise this structure over time. Only 
at later stages in the design, once clients have been built that use this structure, can we 
meaningfully evaluate the quality of our classification. On the basis of this experience, we 
may decide to create new subclasses from existing ones (derivation). We may split a large 
class into several smaller ones (factorization), or create one larger class by uniting smaller 
ones (composition). Occasionally, we may even discover previously unrecognized 
commonality, and proceed to devise a new class (abstraction) [12]. 
 
Why then, is classification so hard? We suggest that there are two important reasons. First, 
there is no such thing as a "perfect" classification, although certainly some classifications are 
better than others. As Coombs, Raffia, and Thrall state, "There are potentially at least as many 
ways of dividing up the world into object systems as there are scientists to undertake the 
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task" [13]. Any classification is relative to the perspective of the observer doing the 
classification. Flood and Carson give the example that the United Kingdom "could be seen as 
an economy by economists, a society by sociologists, a threatened chunk of nature by 
conservationists, a tourist attraction by some Americans, a military threat by rulers of the 
Soviet Union, and the green, green grass of home to the more romantic of us Britons" [14]. 
Second, intelligent classification requires a tremendous amount of creative insight. Birtwistle, 
Dahl, Myhrhaug, and Nygard observe that "sometimes the answer is evident, sometimes it is 
a matter of taste, and at other times, the selection of suitable components is a crucial point in 
the analysis" [15]. This fact recalls the riddle, "Why is a laser beam like a goldfish? ... because 
neither one can whistle” [16]. Only a creative mind can find sameness among such otherwise 
unrelated things. 
 
 
4.2 ldentifying Classes and Objects 
 
Classical and Modern Approaches 
 
The problem of classification has been the concern of countless philosophers, linguists, 
cognitive scientists, and mathematicians, even since before the time of Plato. It is reasonable 
to study their experiences and apply what we learn to object-oriented design. Historically, 
there have only been three general approaches to classification: 
 

• Classical categorization 
• Conceptual clustering 
• Prototype theory [17] 

 
Classical Categorization In the classical approach to categorization, "All the entities that 
have a given property or collection of properties in common form a category. Such properties 
are necessary and sufficient to define the category" [18]. For example, married people 
constitute a category: one is either married or not, and the value of this property is sufficient 
to decide to which group a particular person belongs. On the other hand, tall people do not 
form a category, unless we can agree to some absolute criteria for what distinguishes the 
property of tall from short. 
 
 
A Problem of Classification 
 
Figure 4-1 contains ten items, labeled A to J, each of which represents a train. Each train 
includes an engine (on the right) and from two to four cars, each shaped differently and 
holding different loads. Before reading further, spend the next few minutes arranging these 
trains into any number of groups you deem meaningful. For example, you might create three 
groups: one for trains whose engines have all black wheels, one for trains whose engines have 
all white wheels, and one for trains whose engines have black and white wheels. 
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This problem comes from the work by Stepp and Michalski on conceptual clustering [19]. As 
in real life, there is no "right" answer. In their experiments, subjects came up with some 
ninety-three different classifications. The most popular classification was by the length of the 
train, forming three groups (trains with two, three, and four cars). The second most popular 
classification was by engine wheel color, as we suggested. Of these ninety-three 
classifications, some forty of them were totally unique. 
 
Our use of this example confirms Stepp and Michalski's study. Most of our subjects have used 
the two most popular classifications, although we have encountered some rather creative 
groupings. For example, one subject arranged these trains into two groups: one group 
represented trains labeled by letters containing straight lines (A, E, F, H, and I) and the other 
group representing trains labeled by letters containing curved lines. This is truly an example 
of nonlinear thinking: creative, albeit bizarre. 
 
Once you have completed this task, let's change the requirements (again, as in real life). 
Suppose that circles represent toxic chemicals, rectangles represent lumber, and all other 
shapes of loads represent passengers. Try classifying the trains again, and see how this new 
knowledge changes your classification. 
 
Among our subjects, the clustering of trains changed significantly. Most subjects classified 
trains according to whether or not they carried toxic loads. We conclude from this simple 
experiment that more knowledge about a domain, up to a point, makes it easier to achieve an 
intelligent classification. 
 
 
Classical categorization comes to us first from Plato, and then from Aristotle through his 
classification of plants and animals, in which he uses a technique much akin to the 
contemporary children's game of Twenty Questions (Is it an animal, mineral, or vegetable? 
Does it have fur or feathers? Can it fly? Does is smell?) [20]. Later philosophers, most notably 
Aquinas, Descartes, and Locke, adopted this approach. As Aquinas stated, "We can name a 
thing according to the knowledge we have of its nature from its properties and effects" [21]. 
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Figure 4-1 
A Problem of Classification 
 
The classical approach to categorization is also reflected in modern theories of child 
development. Piaget observed that around the age of one, a child typically develops the 
concept of object permanence; shortly thereafter, the child acquires skills in classifying these 
objects, first using basic categories such as dogs, cats, and toys [22]. Later, the child discovers 
more general categories (such as animals) and more specific ones (such as beagles) [23]. 
 
To summarize, the classical approach uses related properties as the criteria for sameness 
among objects. Specifically, one can divide objects into disjoint sets depending upon the 
presence or absence of a particular property. Minsky suggests that "the most useful sets of 
properties are those whose members do not interact too much. This explains the universal 
popularity of that particular combination of properties: size, color, shape, and substance. 
Because these attributes scarcely interact at all with one another, you can put them together in 
any combination whatsoever to make an object that is either large or small, red or green, 
wooden or glass, and having the shape of a sphere or a cube" [24]. In a general sense, 
properties may denote more than just measurable characteristics; they may also encompass 
observable behaviors. For example, the fact that a bird can fly but a fish cannot is one 
property that distinguishes an eagle from a salmon. 
 
The particular properties that should be considered in a given situation are highly domain-
specific. For instance, the color of a car may be important for the purposes of inventory 
control in an automobile manufacturing plant, but it is not at all relevant to the software that 
controls the traffic lights within a metropolitan area. This is in fact why we say that there are 
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no absolute measures of classification, although a given class structure may be better suited to 
one application than another. As James suggests, “No one scheme of classification, more than 
any other, represents the real structure or order of nature. Nature indifferently submits to any 
and all divisions which we wish to make among existing things. Some classifications may be 
more significant than others, but only by reference to our interests, not because they represent 
reality more accurately or adequately" [25]. 
 
Classical categorization permeates much of contemporary Western thought, but, as our 
earlier example of classifying tall and short people suggests, this approach is not always 
satisfactory. Kosok observes that "natural categories tend to be messy: Most birds fly, but 
some do not. Chairs can consist of wood, plastic, or metal and can have almost any number of 
legs, depending on the whim of the designer. It seems practically impossible to come up with 
a property list for any natural category that excludes all examples that are not in the category 
and includes all examples that are in the category" [26]. These are indeed fundamental 
problems for classical categorization, which conceptual clustering and prototyping theory 
attempt to resolve. 
 
Conceptual Clustering Conceptual clustering is a more modern variation of the classical 
approach, and largely derives from attempts to explain how knowledge is represented. As 
Stepp and Michalski state, "In this approach, classes (clusters of entities) are generated by first 
formulating conceptual descriptions of these classes and then classifying the entities 
according to the descriptions" [27]. For example, we may state a concept such as "a love song." 
This is a concept more than a property, for the "love songness" of any song is not something 
that may be measured empirically. However, if we decide that a certain song is more of a love 
song than not, we place it in this category. Thus, conceptual clustering represents more of a 
probabilistic clustering of objects. 
 
Conceptual clustering is closely related to fuzzy (multivalue) set theory, in which objects may 
belong to one or more groups, in varying degrees of fitness. Conceptual clustering makes 
absolute judgments of classification by focusing upon the "best fit." 
 
Prototype Theory Classical categorization and conceptual clustering are sufficiently 
expressive to account for most of the classifications we ever need in the design of complex 
software systems. However, there are still some situations in which these approaches are 
inadequate. This leads us to the more recent approach to classification, called prototype theory, 
which derives primarily from the work of Rosch and her colleagues in the field of cognitive 
psychology [28]. 
 
There are some abstractions that have neither clearly bounded properties nor concepts. As 
Lakoff explains the problem, "Wittgenstein pointed out that a category like game does not fit 
the classical mold, since there are no common properties shared by all games. . . . Though 
there is no single collection of properties that all games share, the category of games is united 
by what Wingenstein calls family resemblances. . . . Wingenstein also observed that there was 
no fixed boundary to the category game. The category could be extended and new kinds of 
games introduced, provided that they resembled previous games in appropriate ways" [29]. 
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This is why the approach is called prototype theory: a class of objects is represented by a 
prototypical object, and an object is considered to be a member of this class if and only if it 
resembles this prototype in significant ways. 
 
Lakeoff and Johnson apply prototype theory to the earlier problem of classifying chairs. They 
observe that "we understand beanbag chairs, barber chairs, and contour chairs as being 
chairs, not because they share some fixed set of defining properties with the prototype, but 
rather because they bear a sufficient family resemblance to the prototype. . . . There need be 
no fixed core of properties of prototypical chairs that are shared by both beanbag and barber 
chairs, yet they are both chairs because each, in its different way, is sufficiently close to the 
prototype. Interactional properties are prominent among the kinds of properties that count in 
determining sufficient family resemblance" [30]. 
 
This notion of interactional properties is central to the idea of prototype theory. In conceptual 
clustering, we group things according to distinct concepts. In prototype theory, we group 
things according to the degree of their relationship to concrete prototypes. 
 
Applying Classical and Modern Theories To the developer in the trenches fighting 
changing requirements amidst limited resources and tight schedules, our discussion may 
seem to be far removed from the battlefields of reality. Actually, these three approaches to 
classification have direct application to object-oriented design. 
 
In our experience, we identify classes and objects first according to the properties relevant to 
our particular domain. Here, we focus upon identifying the structures and behavior that are 
part of the vocabulary of our problem space. Many such abstractions are usually available for 
the picking [31]. If this approach fails to yield a satisfactory class structure, then we next 
consider clustering objects by concepts. Here, we focus our attention upon the behavior of 
collaborating objects. If either of these two approaches fails to capture our understanding of 
the problem domain, then we consider classification by association, through which clusters of 
objects are defined according to how closely each resembles some prototypical object. 
 
More directly, these three approaches to classification provide the theoretical foundation of 
object-oriented analysis, which offers a number of pragmatic practices and rules of thumb 
that we may apply to identify classes and objects in the design of a complex software system. 
 
Object-Oriented Analysis 
 
The boundaries between analysis and design are fuzzy, although the focus of each is quite 
distinct. In analysis, we seek to model the world by discovering the classes and objects that 
form the vocabulary of the problem domain, and in design, we invent the abstractions and 
mechanisms that provide the behavior that this model requires.36 

                                                 
36 The notation and process described in this book are equally applicable to the traditional 
development phases of analysis and design, as we discuss further in Chapter 6. Indeed, it is 
for this reason that we renamed this second edition to be Object-Oriented Analysis and Design. 
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In the following sections, we examine a number of proven approaches for analysis that are 
relevant to object-oriented systems. 
 
Classical Approaches A number of methodologists have proposed various sources of 
classes and objects, derived from the requirements of the problem domain. We call these 
approaches classical because they derive primarily from the principles of classical 
categorization. 
 
For example, Shlaer and Mellor suegest that candidate classes and objects usually come from 
one of the following sources [32]: 
 

• Tangible things  Cars, telemetry data, pressure sensors 
• Roles    Mother, teacher, politician 
• Events    Landing, interrupt, request 
• Interactions   Loan, meeting, intersection 

 
From the perspective of database modeling, Ross offers a similar list [33]: 
 

• People   Humans who carry out some function 
• Places     Areas set aside for people or things 
• Things   Physical objects, or groups of objects, that are tangible 
• Organizations  Formally organized collections of people, resources,  

facilities, and capabilities having a defined mission, whose 
existence is largely independent of individuals 

• Concepts   Principles or ideas not tangible per se; used to organize or  
keep track of business activities and/or communications 

• Events    Things that happen, usually to something elsen at a given  
date and time, or as steps in an ordered sequence 

 
Coad and Yourdon suggest yet another set of sources of potential objects [34]: 
 

• Structure   "ls a" and "part of" relationships 
• Other systems  External systems with which the application interacts 
• Devices   Devices with which the application interacts 
• Events remembered  An historical event that must be recorded 
• Roles played   The different roles users play in interacting with the  

application 
• Locations   Physical locations, offices, and sites important to the  

application 
• Organizational units Groups to which users belong 

 
At a higher level of abstraction, Coad introduces the idea of subject areas, which are basically 
logical groups of classes that relate to some higher-level system function. 
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Behavior Analysis Whereas these classical approaches focus upon tangible things in the 
problem domain, another school of thought in object-oriented analysis focuses upon dynamic 
behavior as the primary source of classes and objects.37 These approaches are more akin to 
conceptual clustering: we form classes based upon groups of objects that exhibit similar 
behavior. 
 
Wirfs-Brock, for example, emphasizes responsibilities, which denote "the knowledge an 
object maintains and the actions an object can perform. Responsibilities are meant to convey a 
sense of the purpose of an object and its place in the system. The responsibilities of an object 
are all the services it provides for all of the contracts it supports" [36]. In this manner, we 
group things that have common responsibilities, and form hierarchies of classes involving 
superclasses that embody general responsibilities and subclasses that specialize their 
behavior. 
 
Rubin and Goldberg offer an approach to identifying classes and objects derived from system 
functions. As they suggest, "the approach we use emphasizes first understanding what takes 
place in the system. These are the system behaviors. We next assign these behaviors to parts 
of the system, and try to understand who initiates and who participates in these behaviors. . . 
Initiators and participants that play significant roles are recognized as objects, and are 
assigned the behavioral responsibilities for these roles" [37]. 
 
Rubin's concept of system behavior is closely related to the idea of function points, first 
suggested in 1979 by Albrech. A function point is "defined as one end-user business function" 
[38]. A business function represents some kind of output, inquiry, input, file, or interface. 
Although the information-system roots of this definition show through, the idea of a function 
point generalizes to all kinds of automated systems: A function point is any relevant 
outwardly-visible and testable behavior of the system. 
 
Domain Analysis The principles we have dis'cussed thus far are typically applied to the 
development of single, specific applications. Domain analysis, on the other hand, seeks to 
identify the classes and objects that are common to all applications within a given domain, 
such as patient record tracking, bond trading, compilers, or missile avionics systems. If you 
are in the midst of a design and stuck for ideas as to the key abstractions that exist, a narrow 
domain analysis can help by pointing you to the key abstractions that have proven useful in 
other related systems. Domain analysis works well because, except for special situations, 
there are very few truly unique kinds of software systems. 
 
The idea of domain analysis was first suggested by Neighbors. We define domain analysis as 
“an attempt to identify the objects, operations, and relationships [thatl domain experts 

                                                 
37 ShIaer and Mellor have extended their earlier work to focus on behavior as well. In particular, they study the 
life cycle of each object as a means of understanding the boundaries [35]. 
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perceive to be important about the domain" [39]. Moore and Bailin suggest the following 
steps in domain analysis: 
 

• "Construct a strawman generic model of the domain by consulting with domain 
experts. 

• Examine existing systems within the domain and represent this understanding in a 
common format. 

• Identify similarities and differences between the systems by consulting with domain 
experts. 

• Refine the generic model to accommodate existing systems" [40]. 
 
Domain analysis may be applied across similar applications (vertical domain analysis), as 
well as to related parts of the same application (horizontal domain analysis). For example, 
when starting to design a new patient-monitoring system, it is reasonable to survey the 
architecture of existing systems to understand what key abstractions and mechanisms were 
previously employed and to evaluate which were useful and which were not. Similarly, an 
accounting system must provide many different kinds of reports. By considering these 
reports within the same application as a single domain, a domain analysis can lead the 
developer to an understanding of the key abstractions and mechanisms that serve all the 
different kinds of reports. The resulting classes and objects reflect a set of key abstractions 
and mechanisms generalized to the immediate report-generation problem; therefore, the 
resulting design is likely to be simpler than if each report had been analyzed and designed 
separately. 
 
Who exactly is a domain expert? Often, a domain expert is simply a user, such as a train 
engineer or dispatcher in a railway system, or a nurse or doctor in a hospital. A domain 
expert need not be a software engineer; more commonly, he or she is simply a person who is 
intimately familiar with all the elements of a particular problem. A domain expert speaks the 
vocabulary of the problem domain. 
 
Some managers may be concerned with the idea of direct communication between developers 
and end users (for some, even more frightening is the prospect of letting an end user see a 
developer!). For highly complex systems, domain analysis may involve a formal process, 
using the resources of multiple domain experts and developers over a period of many 
months. In practice, such a formal analysis is rarely necessary. Often, all it takes to clear up a 
design problem is a brief meeting between a domain expert and a developer. It is truly 
amazing to see what a little bit of domain knowledge can do to assist a developer in making 
intelligent design decisions. Indeed, we find it highly useful to have many such meetings 
throughout the design of a system. Domain analysis is rarely a monolithic activity; it is better 
focused if we consciously choose to analyze a little, then design a little. 
 
Use-Case Analysis In isolation, the practices of classical analysis, behavior analysis, and 
domain analysis all depend upon a large measure of personal experience on the part of the 
analyst. For the majority of development projects, this is unacceptable, because such a process 
is neither deterministic nor predictably successful. 
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However, there is one practice that can be coupled with all three of these earlier approaches, 
to drive the process of analysis in a meaningful way. That practice is use-case analysis, first 
formalized by Jacobson. Jacobson defines a use case as "a particular form or pattern or 
exemplar of usage, a scenario that begins with some user of the system initiating some 
transaction or sequence of interrelated events" [41]. 
 
Briefly, we can apply use-case analysis as early as requirements analysis, at which time end 
users, other domain experts, and the development team enumerate the scenarios that are 
fundamental to the system's operation (we need not elaborate upon these scenarios at first, 
we can simply enumerate them). These scenarios collectively describe the system functions of 
the application. Analysis then proceeds by a study of each scenario, using storyboarding 
techniques similar to practices in the television and movie industry [42]. As the team walks 
through each scenario, they must identify the objects that participate in the scenario, the 
responsibilities of each object, and how those objects collaborate with other objects, in terms 
of the operations each invokes upon the other. In this manner, the team is forced to craft a 
clear separation of concerns among all abstractions. As the development process continues, 
these initial scenarios are expanded to consider exceptional conditions as well as secondary 
system behaviors (what Goldstein and Alger speak of as peripheral topics [43]). The results 
from these secondary scenarios either introduce new abstractions or add, modify, or reassign 
the responsibilities of existing abstractions. As we will discuss further in Chapter 6, scenarios 
also serve as the basis of system tests. 
 
CRC Cards CRC cards have emerged as a simple yet marvelously effective way to analyze 
scenarios.38 First proposed by Beck and Cunningham as a tool for teaching object-oriented 
programming [44], CRC cards have proven to be a useful development tool that facilitates 
brainstorming and enhances communication among developers. A CRC card is nothing more 
than a 3x5 index card,39 upon which the analyst writes - in pencil - the name of a class (at the 
top of the card), its responsibilities (on one half of the card) and its collaborators (on the other 
half of the card). One card is created for each class identified as relevant to the scenario. As 
the team walks through the scenario, they may assign new responsibilities to an existing 
class, group certain responsibilities to form a new class, or (most commonly) divide the 
responsibilities of one class into more fine-grained ones, and perhaps distribute these 
responsibilities to a different class. 
 
CRC cards can be spatially arranged to represent patterns of collaboration. As viewed from 
the dynamic semantics of the scenario, the cards are arranged to show the flow of messages 
among prototypical instances of each class; as viewed from the static semantics of the 
scenario, the cards are arranged to represent generalization/specialization or aggregation 
hierarchies among the classes. 

                                                 
38 CRC stands for Class/Responsibilities/Collaborators  
39 lf your software development budget can handle it, buy 5x7 cards. Cards with lines are nice, a sprinkling of 
colored cards shows that you are a very cool developer. 
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Informal English Description A radical alternative to classical object-oriented analysis was 
first proposed by Abbott, who suggests writing an English description of the problem (or a 
part of a problem) and then underlining the nouns and verbs [45]. The nouns represent 
candidate objects, and the verbs represent candidate operations upon them. This technique 
lends itself to automation, and such a system has been built at the Tokyo Institute of 
Technology and at Fujitsu [46]. 
 
Abbott's approach is useful because it is simple and because it forces the developer to work in 
the vocabulary of the problem space. However, it is by no means a rigorous approach, and it 
definitely does not scale well to anything beyond fairly trivial problems. Human language is 
a terribly imprecise vehicle of expression, so the quality of the resulting list of objects and 
operations depends upon the writing skill of its author. Furthermore, any noun can be 
verbed, and any verb can be nouned; therefore, it is easy to skew the candidate list to 
emphasize either objects or operations. 
 
Structured Analysis A second alternative to classical object-oriented analysis uses the 
products of structured analysis as a front end to object-oriented design. This technique is 
appealing only because a large number of analysts are skilled in structured analysis, and 
many CASE tools exist that support the automation of these methods. Personally, we 
discourage the use of structured analysis as a front end to object-oriented design, but for 
some organizations, it is the only pragmatic alternative. 
 
In this approach, we start with an essential model of the system, as described by data flow 
diagrams and the other products of structured analysis. These diagrams provide us with a 
reasonably formal model of the problem. From this model, we may proceed to identify the 
meaningful classes and objects in our problem domain in three different ways. 
 
McMenamin and Palmer suggest starting with an analysis of the data dictionary and 
proceeding to analyze the model’s context diagram. As they state, "With your list of essential 
data elements, think about what they tell you or what they describe. lf they were adjectives in 
a sentence, for instance, what nouns would they modify? The answers to this question make 
up the list of candidate objects" [47]. These candidate objects typically derive from the 
surrounding environment, from the essential inputs and outputs, and from the products, 
services, and other resources managed by the system. 
 
The next two techniques involve analyzing individual data flow diagrams. Given a particular 
data flow diagram (using the terminology of Ward/Mellor [48]), candidate objects may be 
derived from the following: 
 

• External entities 
• Data stores 
• Control stores 
• Control transformations 

 
Candidate classes derive from two sources: 
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• Data flows 
• Control flows 

 
This leaves us with data transformations, which we assign either as operations upon existing 
objects or as the behavior of an object we invent to serve as the agent responsible for this 
transformation. 
 
Seidewitz and Stark suggest another technique, which they call abstraction analysis. 
Abstraction analysis focuses upon the identification of central entities, which are similar in 
nature to central transforms in structured design. As they state, "In structured analysis, input 
and output data are examined and followed inwards until they reach the highest level of 
abstraction. The processes between the inputs and the outputs form the central transform. In 
abstraction analysis a designer does the same, but also examines the central transform to 
determine which processes and states represent the best abstract model of what the system 
does" [49]. After identifying the central entity in a particular data flow diagram, abstraction 
analysis proceeds to identify all the supporting entities by following the afferent and efferent 
data flows from the central entity, and grouping the processes and states encountered along 
the way. In practice, Seidewitz and Stark have found abstraction analysis a difficult technique 
to apply successfully, and as an alternative recommend object-oriented analysis methods [50]. 
 
We must emphasize that structured design, as normally coupled with structured analysis, is 
entirely orthogonal to the principles of object-oriented design. Our experience indicates that 
using structured analysis as a front end to object-oriented design often fails when the 
developer is unable to resist the urge of falling back into the abyss of the structured design 
mindset. Another very real danger is the fact that many analysts tend to write data flow 
diagrams that reflect a design rather than an essential model of the problem. It is 
tremendously difficult to build an object-oriented system from a model that is so obviously 
biased towards algorithmic decomposition. This is why we prefer object-oriented analysis as 
the front end to object-oriented design: there is simply less danger of polluting the design 
with preconceived algorithmic notions. 
 
If you must use structured analysis as a front end, for whatever honorable reasons,40 we 
suggest that you stop writing data flow diagrams as soon as they start to smell of a design 
instead of an essential model. Also, it is a healthy practice to walk away from the products of 
structured analysis once the design is fully underway. Remember that the products of 
development, including data flow diagrams, are not ends in themselves; they should be 
viewed simply as tools along the way that aid the developer's intellectual comprehension of 
the problem and its implementation. One typically writes a data flow diagram and then 
invents the mechanisms that implement the desired behavior. Practically speaking, the very 
act of design changes the developer's understanding of the problem, making the original 
model somewhat obsolete. Keeping the original model up to date with the design is terribly 
labor intensive, is not amenable to automation, and, frankly, doesn't add a lot of value. Thus, 

                                                 
40 Political and historical reasons are distinctly not honorable. 
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only the products of structured analysis that are at a sufficiendy high level of abstraction 
should be retained. They capture an essential model of the problem, and so lend themselves 
to any number of different designs. 
 
 
4.3 Key Abstractions and Mechanisms 
 
Identifying Key Abstractions 
 
Finding Key Abstractions A key abstraction is a class or object that forms part of the 
vocabulary of the problem domain. The primary value of identifying such abstractions is that 
they give boundaries to our problem; they highlight the things that are in the system and 
therefore relevant to our design, and suppress the things that are outside the system and 
therefore superfluous. The identification of key abstractions is highly domain-specific. As 
Goldberg states, the "appropriate choice of objects depends, of course, on the purposes to 
which the application will be put and the granularity of information to be manipulated" [51]. 
 
As we mentioned earlier, the identification of key abstractions involves two processes: 
discovery and invention. Through discovery, we come to recognize the abstractions used by 
domain experts; if the domain expert talks about it, then the abstraction is usually important 
[52]. Through invention, we create new classes and objects that are not necessarily part of the 
problem domain, but are useful artifacts in the design or implementation. For example, a 
customer using an automated teller speaks in terms of accounts, deposits, and withdrawals; 
these words are part of the vocabulary of the problem domain. A developer of such a system 
uses these same abstractions, but must also introduce new ones, such as databases, screen 
managers, lists, queues, and so on. These key abstractions are artifacts of the particular 
design, not of the problem domain. 
 
Perhaps the most powerful way to identify key abstractions is to look at the problem or 
design and see if there are any abstractions that are similar to the classes and objects that 
already exist. As we will discuss further in Chapter 6, in the absence of such reusable 
abstractions, we recommend the use of scenarios to drive the process of identifying classes 
and objects. 
 
Refining Key Abstractions Once we identify a certain key abstraction as a candidate, we 
must evaluate it according to the metrics described in the previous chapter. As Stroustrup 
suggests, "Often this means that the programmer must focus on the questions: how are 
objects of this class created? can objects of this class be copied and/or destroyed? what 
operations can be done on such objects? If there are no good answers to such questions, the 
concept probably wasn't 'clean' in the first place, and it might be a good idea to think a bit 
more about the problem and the proposed solution instead of immediately starting to 'code 
around' the problems" [53]. 
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Given a new abstraction, we must place it in the context of the existing class and object 
hierarchies we have designed. Practically speaking, this is  
 

 
Classes and objects should be at the right level of abstraction: neither too high nor too low. 
 
neither a top-down nor a bottom-up activity. As Halbert and O'Brien observe, "You do not 
always design types in a type hierarchy by starting with a supertype and then creating the 
subtypes. Frequently, you create several seemingly disparate types, realize they are related, 
and then factor out their common characteristics into one or more supertypes . . . several 
passes up and down are usually required to produce a complete and correct program design" 
[54]. This is not a license to hack, but an observation, based upon experience, that object-
oriented design is both incremental and iterative. Stroustrup makes a similar observation 
when he notes that "the most common reorganizations of a class hierarchy are factoring the 
common part of two classes into a new class and splitting a class into two new ones" [55]. 
 
Placing classes and objects at the right levels of abstraction is difficult. Sometimes we may 
find a general subclass, and so may choose to move it up in the class structure, thus 
increasing the degree of sharing. This is called class promotion [56]. Similarly, we may find a 
class to be too general, thus making inheritance by a subclass difficult because of the large 
semantic gap. This is called a grainsize conflict [57]. In either case, we strive to identify 
cohesive and loosely coupled abstractions, so as to mitigate these two situations. 
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Naming things properly - so that they reflect their semantics - is often treated lightly by most 
developers, yet is important in capturing the essence of the abstractions we are describing. 
Software should be written as carefully as English prose, with consideration given to the 
reader as well as to the computer [58]. Consider for a moment all the names we may need just 
to identify a single object: we have the name of the object itself, the name of its class, and the 
name of the module in which that class is declared. Multiply this by thousands of objects and 
possibly hundreds of classes, and you have a very real problem. 
 
We offer the following suggestions: 
 

• Objects should be named with proper noun phrases, such as theSensor or just simply 
shape. 

• Classes should be named with common noun phrases, such as Sensors or Shapes. 
• Modifier operations should be named with active verb phrases, such as draw or moveLeft. 
• Selector operations should imply a query or be named with verbs the form "to be," 

such as extentOf or is0pen. 
• The use of underscores and styles of capitalization are largely matters of personal taste. 

No matter which cosmetic style you use, at least have your programs be self-
consistent. 

 
Identifying Mechanisms 
 
Finding Mechanisms In the previous chapter, we used the term mechanism to describe any 
structure whereby objects collaborate to provide some behavior that satisfies a requirement of 
the problem. Whereas the design of a class embodies the knowledge of how individual 
objects behave, a mechanism is a design decision about how collections of objects cooperate. 
Mechanisms thus represent patterns of behavior. 
  
For example, consider a system requirement for an automobile: pushing the accelerator 
should cause the engine to run faster, and releasing the accelerator should cause the engine to 
run slower. How this actually comes about is absolutely immaterial to the driver. Any 
mechanism may be employed as long as it delivers the required behavior, and thus which 
mechanism is selected is largely a matter of design choice. More specifically, any of the 
following designs might be considered: 
 

• A mechanical linkage from the accelerator to the carburetor (the most common 
mechanism). 

 
• An electronic linkage from a pressure sensor below the accelerator to a computer that 

controls the carburetor (a drive-by-wire mechanism). 
 

• No linkage exists; the gas tank is placed on the roof of the car, and gravity causes fuel 
to flow to the engine. Its rate of flow is regulated by a clip around the fuel line; 
pushing on the accelerator pedal eases tension on the clip, causing the fuel to flow 
faster (a low-cost mechanism). 
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Mechanisms are the means whereby objects collaborate to provide some higher-level behavior. 
 
 
Which mechanism a developer chooses from a set of alternatives is most often a result of 
other factors, such as cost, reliability, manufacturability, and safety. 
 
Just as it is rude for a client to violate the interface of another object, so it is socially 
unacceptable for objects to step outside the boundaries of the rules of behavior dictated by a 
particular mechanism. Indeed, it would be surprising for a driver if stepping -on-an 
accelerator turned on the car's lights instead of causing the engine to run faster. 
 
Whereas key abstractions-reflect the vocabulary of the problem domain, mechanisms are the 
soul of the design. During the design process, the developer must consider not only the 
design of individual classes, but also how instances of these classes work together. Again, the 
use of scenarios drives this analysis process. Once a developer decides upon a particular 
pattern of collaboration, the work is distributed among many objects by defining suitable 
methods in the appropriate classes. Ultimately, the protocol of an individual class 
encompasses all the operations required to implement all the behavior and all the 
mechanisms associated with each of its instances. 
 
Mechanisms thus represent strategic design decisions, as does the design of a class structure. 
In contrast, however, the interface of an individual class is more of a tactical design decision. 
These strategic decisions must be made explicitly; otherwise we will end up with a mob of 
relatively uncooperative objects, all pushing and shoving to do their work with little regard 
for other objects. The most elegant, lean, and fast programs embody carefully engineered 
mechanisms. 
 
Mechanisms are actually one in a spectrum of patterns we find in well-structured software 
systems. At the low end of the food chain, we have idioms. An idiom is an expression peculiar 
to a certain programming language or application culture, representing a generally accepted 
convention for use of the language41. For example, in CLOS, no programmer would use 
underscores in function or variable names, although this is common practice in Ada [59]. Part 
of the effort in learning a programming language is learning its idioms, which are usually 
passed down as folklore from programmer to programmer. However, as Coplien points out, 
idioms play an important role in codifying low-level patterns. He notes that, "many common 
programming tasks [are] idiomatic and therefore identifying such idioms allows "using C++ 
constructs to express functionality outside the language proper, while giving the illusion of 
being part of the language" [60]. 
 
At the high end of the food chain, we have frameworks. A framework is collection of classes 
that provide a set of services for a particular domain; a frame---work thus exports a number 
                                                 
41 One defining characteristic of an idiom is that ignoring or violating the idiom has immediate social 
consequences: you are branded as a yahoo or, worse, an outsider, unworthy of respect. 
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of individual classes and mechanisms, which clients can use or adapt. As we will discuss in 
Chapter 9, frameworks represent reuse in the large. 
 
Whereas idioms are part of a programming culture, frameworks are often the product of 
commercial ventures. For example, Apple's MacApp (and its successor, Bedrock) are both 
application frameworks, written in C++, for building applications that conform to Macintosh 
user interface standards. Similarly, the Microsoft Foundation Library and Borland's 
ObjectWindows library are frameworks for building applications that conform to the 
Windows user interface standards. 
 
Examples of Mechanisms Consider the drawing mechanism commonly used in graphical 
user interfaces. Several objects must collaborate to present an image to a user: a window, a 
view, the model being viewed, and some client that knows when (but not how) to display this 
model. The client first tells the window to draw itself. Since it may encompass several 
subviews, the window next tells each of its subviews to draw themselves. Each subview in 
turn tells its model to draw itself, ultimately resulting in an image shown to the user. In this 
mechanism, the model is entirely decoupled from the window and view in which it is 
presented views can send messages to models, but models cannot send messages to views. 
Smalltalk uses a variation of this mechanism, and calls it the model-view-controller (MVC) 
paradigm [61]. A similar mechanism is employed in almost every object-oriented graphical 
user interface framework. 
 
Mechanisms thus represent a level of reuse that is higher than the reuse of individual classes. 
For example, the MVC paradigm is used extensively in the smalltalk user interface. The MVC 
paradigm in turn builds on another mechanism, the dependency mechanism, which is 
embodied in the behavior of the- Smalltalk base class Model, and thus pervades much of the 
Smalltalk class library. 
 
Examples of mechanisms may be found in virtually every domain. For example, the structure 
of an operating system may be described at the highest level of abstraction according to the 
mechanism used to dispatch programs. A particular design might be monolithic (such as MS-
DOS), or it may employ a kernel (such as UNIX) or a process hierarchy (as in the THE 
operating system) [62]. In artificial intelligence, a variety of mechanisms have been explored 
for the design o reasoning systems. One of the most widely used paradigms is the blackboard 
mechanism, in which individual knowledge sources independently update a blackboard. 
There is no central control in such a mechanism, but any change to the blackboard may 
trigger an agent to explore some new problem-solving path [63]. Coad has similarly identified 
a number of common mechanisms in object-oriented systems, including patterns of time 
association, event logging, and broadcasting [64]. In each case, these mechanisms manifest 
themselves not as individual classes, but as the structure of collaborating classes. 
 
This completes our study of classification and of the concepts that serve as the foundation of 
object-oriented design. The next three chapters focus on the method itself, including its 
notation, process, and pragmatics. 
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Summary 
 

• The identification of classes and objects is the fundamental issue in object oriented 
design; identification involves both discovery and invention. 

• Classification is fundamentally a problem of clustering. 
• Classification is an incremental and iterative process, made difficult because a given 

set of objects may be classified in many equally proper ways. 
• The three approaches to classification include classical categorization (classification by 

properties), conceptual clustering (classification by concepts), and prototype theory 
(classification by association with a prototype). 

• Scenarios are a powerful tool of object-oriented analysis; and can be used to drive the 
process of classical analysis, behavior analysis, and domain analysis. 

• Key abstractions reflect the vocabulary of the problem domain and may either be 
discovered from the problem domain, or invented as part of the design. 

• Mechanisms denote strategic design decisions regarding the collaborative activity of 
many different kinds of objects. 

 
 
Further Readings 
 
The problem of classification is timeless. in his work tifled Statesman, Plato introduces the 

classical approach to categorization, through which objects with similar properties are 
grouped. In Categories Aristotle picks up this theme and analyzes the differences between 
classes and objects. Several centuries later, Aquinas, in Summa Theologica, and then 
Descartes, in Rules for the Direction of the Mind, ponder the philosophy of classification. 
Contemporary objectivist philosophers include Rand [1 1979]. 

 
Alternatives to the objectivist view of the world are discussed in Lakoff [1 1980] and 

Go1dstein and Alger [C 1992] 
 
Classification is an essential human skill. Theories regarding its acquisition during early 

childhood development were pioneered by Piaget, and are summarized by Maier [A 
1969]. Lefrancois [A 1977] offers a very readable introduction to these ideas and provides 
an excellent discourse on children's acquisition of the object concept. 

 
Cognitive scientists have explored the problems of classification in great detail. Newell and 

Simon [A 1972] provide an unmatched source of material regarding human classification 
skills. More general information may be found in Simon [A 1982], Hol`stad.ter [1 1979], 
Siegler and Richards [A 1982], and Stillings, Feinstein, Garfield, Rissland, Rosenbaum, 
Weisler, and. Baker~Ward [A 1987]. Lakoff [A 1987], a linguist, offers insights into the 
ways different human languages have evolved to cope with the problems of classification 
and what this reveals about the mind. Minksy [A 1986] approaches this subject from the 
opposite direction, starting with a theory regarding the structure of the mind. 
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Conceptual clustering, an approach to knowledge representation through classification, is 
described in detail by Michalski and Stepp [A 1983, 1986], Peckham and Maryanski U 
1988], and Sowa [A 1984]. Domain analysis, an approach to finding key abstractions and 
mechanisms by examining the vocabulary of the problem domain, is described in the 
comprehensive collection of papers by Prieto-Diaz and Arango [A 1991]. Iscoe [B 1988] has 
made several important contributions to this field. Additional infonnation may be found 
in iscoe, Browne, and Weth [13 1989], Moore and Bailin [13 1988], and Arango [B 1989]. 

 
Intelligent classification often requires looking at the world in innovative ways, and these 

skills can be taught (or, at least, encouraged). Von0ech [1 1990] suggests some paths to 
creativity. Coad [A 1993] has a developed a board game (the Object Game) that fosters 
skills in class and object identification. 

 
Although the field. is still in its infancy, some very promising work is being carried out in the 

cataloging of patterns in software systems, giving rise to a taxonomy of idioms, 
mechanisms, and frameworks. Interesting references include Coplien [G 1992], Coad [A 
1992], johnson [A 1992], Shaw [A 1989, 1990, 1991], Wirfs-Brock [C 1991]. Alexander's 
influential work [1 1979] applies patterns to the field of building architecture and city 
planning. 

 
Mathematicians have attempted to devise empirical approaches to classification, leading to 

what is called measurement tileory. Stevens [A 1946] and Coombs, Raiffa, and Thrall [A 
1954] provide the seminal work on this topie. 

 
The Classification Society of North America publishes a jurnal twice a year, containing a 

variety of papers on the problems of classification. 



THE SECOND SECTION 

 

 
 
 
 

THE METHOD 
 
 
 

Which innovation leads to a successful design and which to a 
failure is not completely predictable. Each opportunity to design 

something new, either bridge or airplane or skyscraper, presents 
the engineer with choices that may appear countless. The 

engineer may decide to copy as many seemingly good features as 
he can from existing designs that have successfully withstood the 

forces of man and nature, but he may also decide to improve upon 
those aspects of prior designs that appear to be wanting. 

 
 HENRY PETROSKI 

To Engineer is Human
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The Notation 
 
 
 
The act of drawing a diagram does not constitute analysis or design. A diagram simply 
captures a statement of a system's behavior (for analysis), or the vision and details of an 
architecture (for design). lf you follow the work of any engineer - software, civil, mechanical, 
chemical, architectural, or whatever - you will soon realize that the one and only place that a 
system is conceived is in the mind of the designer. As this design unfolds over time, it is often 
captured on such high-tech media as white boards, napkins, and the backs of envelopes [1]. 
 
Still, having a well-defined and expressive notation is important to the process of software 
development. First, a standard notation makes it possible for an analyst or developer to 
describe a scenario or formulate an architecture and then unambiguously communicate those 
decisions to others. Draw an electrical circuit, and the symbol for a transistor will be 
understood by virtually every electrical engineer in the world. Similarly, if an architect in New 
York City drafts the plans for a house, a builder in San Francisco will have little trouble 
understanding where to place doors, windows, and electrical outlets from the details of the 
blueprints. Second, as Whitehead states in his seminal work on mathematics, “By relieving 
the brain of all unnecessary work, a good notation sets it free to concentrate on more 
advanced problems" [2]. Third, an expressive notation makes it possible to eliminate much of 
the tedium of checking the consistency and correctness of these decisions by using 
automated tools. As a report by the Defense Science Board states, "Software development is 
and always will be a labor-intensive technology.... Although our machines can do the dog-
work and can help us keep track of our edifices, concept development is the quintessentially 
human activity.... The part of software development that will not go away is the crafting of 
conceptual structures; the part that can go away is the labor of expressing them" [3]. 
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Figure 5-1  
The Models of Object-Oriented Development 
 
 
5.1 Elements of the Notation 
 
The Need for Multiple Views 
It is impossible to capture all the subtle details of a complex software system in just one view. 
As Kleyn and Gingrich observe, "One must understand both the structure and the function of 
the objects involved. One must understand the taxonomic structure of the class objects, the 
inheritance mechanisms used, the individual behaviors of objects, and the dynamic behavior 
of the system as a whole. The problem is somewhat analogous to that of viewing a sports 
event such as tennis or a football game. Many different camera angles are required to provide 
an understanding of the action taking place. Each camera reveals particular aspects of the 
action that could not be conveyed by one camera alone" [4]. 
 
First introduced in Chapter 1, Figure 5-1 indicates the different models we have found to be 
important in object-oriented development. For a given project, the products of analysis and 
design are expressed through these models. Collectively, these different models are 
semantically rich: they are expressive enough to allow a developer to capture all of the 
interesting strategic and tactical decisions one must make during the analysis of a system as 
well as during the formulation of its architecture, and they are complete enough to serve as 
blueprints for implementation in almost any object-oriented programming language. 
 
The fact that this notation is detailed does not mean that every aspect of it must be used at all 
times. In fact, a proper subset of this notation is sufficient to express the semantics of a large 
percentage of analysis and design issues; one of our colleagues refers to this subset as the 
Booch Lite notation. We will highlight this subset during our presentation of the notation in 
this chapter. Why then bother with the detail beyond this subset? Quite simply, such detail is 
necessary to express certain important tactical decisions; additionally, some detail exists to 
facilitate the creation of forward-engineering and reverse-engineering tools, which provide 
integration of front-end CASE tools that support this notation together with software 
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development environments that focus upon manipulating the products of the object-oriented 
programming language. 
 
As Weinberg notes, "In other design fields, such as architecture, the rough sketch is the most 
frequently used graphic device, and precise detailed drawings are rarely used at all until the 
creative part of the design work is finished" [5]. Remember, a notation is only a vehicle for 
capturing the reasoning about the behavior and architecture of a system; a notation is not an 
end in itself. Therefore, one should apply only those elements of the notation that are 
necessary to convey the intended meaning, and nothing more. Just as it is dangerous to 
overspecify a set of requirements, so it is dangerous to overspecify a solution to a problem. 
For example, on a blueprint, an architect may show the general location of a light switch in a 
room, but its exact location will not be established until the construction manager and owner 
do an electrical walk-through, after the house has been framed. It would be foolish to specify 
the precise three-dimensional coordinates of the light switch on the blueprint (unless, of 
course, this was a detail that was functionally important to the owner: perhaps the owner's 
family is significantly taller or shorter than average). Thus, if the analysts, designers, and 
implementors of a software intensive system are highly skilled and have already established a 
close -working relationship, then rough sketches may suffice (although it will still be 
necessary to leave a legacy of the architectural vision for the sake of the system's maintainers). 
If, on the other hand, the implementors are not quite so skilled, or if the developers are 
separated geographically, in time, or by contract, then more detail will be required during the 
development process. The notation we present in this chapter covers each of these situations. 
 
Different programming languages sometimes use different terms to express the same concept. 
The notation we present in this chapter is largely language-independent, as any good 
development notation should be. Of course, some elements of the notation have no parallel in 
certain languages and thus should be avoided if that language is to be used for 
implementation. For example, free subprograms cannot be declared in Smalltalk, and 
therefore class utilities will not in general be used in a system implemented in Smalltalk. 
Similarly, C++ does not support metaclasses, and therefore this element of the notation may 
be ignored. Also, there is nothing wrong with tailoring this notation in language-specific 
ways. For example, the qualification associated with an operation might be tailored for CLOS 
to identify primary methods, as well as :before, :after, and :around methods. Similarly, a tool for 
C++ might ignore the notation's class specification, and use C++ header files directly. 
 
The only purpose of this chapter is to describe the syntax and semantics of our notation for 
object-oriented analysis and design. We will provide a few small examples of this notation, 
using the problem of the hydroponics gardening system that we introduced in Chapter 2. 
This current chapter does not explain the process by which we derived these figures; that is 
the topic of Chapter 6. In Chapter 7, we discuss the pragmatics of this process, and in 
Chapters 8 through 12, we demonstrate the practical application of this notation through a 
series of extended application examples. 
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Models and Views 
In Chapter 3, we explained the meaning of classes and objects and their relationships. As 
Figure 5-1 suggests, we may capture our analysis and design decisions regarding these 
classes and objects and their collaborations according to two dimensions: their 
logical/physical view, and their static/dynamic view. Both dimensions are necessary to 
specify the structure and behavior of an object-oriented system. 
 
For each dimension, we define a number of diagrams that denote a view of a system's 
models. In this sense, the system's models denote the "whole truth" about its classes, 
relationships, and other entities, and each diagram represents a projection of these models. In 
the steady state, all such diagrams must be consistent with the model and therefore among 
themselves. 
 
For example, consider an application comprising several hundred classes; the classes form 
part of the application's model. It is impossible and in fact unnecessary to produce a single 
diagram that shows all of these classes and all of their relationships. Rather, we might view 
this model through several class diagrams, each of which presents one view of the model. 
One diagram might show the inheritance lattice of certain key classes; another might show 
the transitive closure of all classes used by one particular class. At times when the model is 
stable (what we speak of as a steady state), all such diagrams remain semantically consistent 
with one another and with the model. For example, if in a given scenario (which we describe 
in an object diagram), object A passes the message M to object B, then M must be defined for 
B's class either directly or indirectly. In a corresponding class diagram, there must be an 
appropriate relationship between the classes of A and B, such that instances of A’s class can in 
fact invoke message M. 
 
For simplicity, across all diagrams, all entities with the same name and within the same scope 
are considered to be references to the same model item. For example, if class C appears in two 
different diagrams for the same system, both are references to the same class C. The exception 
to this rule is for operations, whose names may be overloaded. 
 
To distinguish one diagram from another, we must provide a name whose purpose is to 
indicate the focus or intent of the diagram. Other labels and notes may be attached to a 
diagram to further elucidate its contents, as we will describe in a later section; such notes in 
general have no additional semantics. 
 
 
Logical Versus Physical Models 
The logical view of a system serves to describe the existence and meaning of the key 
abstractions and mechanisms that form the problem space or that define the system's 
architecture. The physical model of a system describes the concrete software and hardware 
composition of the system's context or implementation. 
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During analysis, we must address the following central questions: 
 
• What is the desired behavior of the system? 
• What are the roles and responsibilities of the objects that carry out this behavior? 
 
As we described in the previous chapter, we use scenarios to express our decisions about the 
behavior of a system. In the logical model, object diagrams serve as the primary vehicles for 
describing scenarios. During analysis, we may also use class diagrams to capture our 
abstraction of these objects in terms of their common roles and responsibilities. 
 
During design, we must address the following central questions relative to the system's 
architecture: 
 
• What classes exist, and how are those classes related? 
 
• What mechanisms are used to regulate how objects collaborate? 
 
• Where should each class and object be declared? 
 
• To what processor should a process be allocated, and for a given processor, how should its 

multiple processes be scheduled? 
 
We use the following diagrams, respectively, to answer to these questions: 
 
• Class diagrams 
 
• Object diagrams 
 
• Module diagrams 
 
• Process diagrams 
 
 
Static Versus Dynamic Semantics 
The four diagrams we have introduced thus far are largely static. However, events happen 
dynamically in all software-intensive systems: objects are created and destroyed, objects send 
messages to one another in an orderly fashion, and in some systems, external events trigger 
operations upon certain objects. Not surprisingly, describing a dynamic event in a static 
medium such as a sheet of paper is a difficult problem, but it confronts virtually every 
scientific discipline. In object-oriented development, we express the dynamic semantics of a 
problem or its implementation through two additional diagrams: 
 
• State transition diagrams 
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• Interaction diagram 
 
Each class may have an associated state transition diagram that indicates the event-ordered 
behavior of the class's instances. Similarly, in conjunction with an object diagram representing 
a scenario, we may provide a script or interaction diagram to show the time or event-ordering 
of messages as they are evaluated. 
 
 
The Role of Tools 
Given automated support for any notation, one of the things that tools can do is help bad 
designers create ghastly designs much more quickly than they ever could in the past. Great 
designs come from great designers, not from great tools. Tools simply empower the 
individual, freeing him or her to concentrate upon the truly creative aspects of analysis or 
design. Thus, there are some things that tools can do well and some things that tools cannot 
do at all. For example, when we use an object diagram to show a scenario with a message 
being passed from one object to another, a tool can ensure that the message is in fact part of 
the object's protocol; this is an example of consistency checking. When we state invariants, 
such as "there are no more than three instances of this class," we expect that a tool can enforce 
these conventions; this is an example of constraint checking. Similarly, a tool can tell us if 
certain classes or methods of a given class are never used; this is an example of completeness 
checking. Additionally, a sophisticated tool might tell us how long it takes to complete a 
certain operation, or whether or not a certain state in a state transition diagram is reachable; 
this is an example of analysis. On the other hand, a tool cannot tell us that we ought to invent 
a new class so as to simplify our class structure; that takes human insight. We might consider 
trying to use some expert system as such a tool, but this requires (1) a person who is an expert 
both in object-oriented development and in the problem domain and (2) the ability to 
articulate classification heuristics, as well as a great deal of common-sense knowledge. We 
don't expect such tools to emerge in the near future; in the meantime, we have real systems to 
create. 
 
 
5.2 Class Diagrams 
 
 
Essentials: Classes and Their Relationships 
A class diagram is used to show the existence of classes and their relationships in the logical 
view of a system. A single class diagram represents a view of the 
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Figure 5-2 
Class Icon 
 
class structure of a system. During analysis, we use class diagrams to indicate the common 
roles and responsibilities of the entities that provide the system's behavior. During design, we 
use class diagrams to capture the structure of the classes that form the system's architecture. 
 
The two essential elements of a class diagram are classes and their basic relationships. 
 
Classes Figure 5-2 shows the icon we use to represent a class in a class diagram. Its shape is 
that of a cloud; some call it an amorphous blob.42 
 
A name is required for each class; if the name is particularly long, it can either be elided or the 
icon magnified. Every class name must be unique to its enclosing class category. For certain 

                                                 
42 The selection of icons for any notation is a difficult task, and is not to be taken lightly. Indeed, icon design is 
largely an art, not a science, and requires a careful balance berween the demands for expressiveness and 
simplicity. Our choice of the cloud icon derives from work by Intel in documenting their original object-oriented 
architecture, the iAPX432 [6]. The intent of this icon is to suggest the boundaries of an abstraction, a concept that 
does not necessarily have plain or simple edges. The dashed lines that: form the outline of the class icon indicate 
that clients generally only operate upon instances of a class, not the class itself. An acceptable alternative to this 
shape is a rectangle: 
 

 
 
This follows the practice of Rumbaugh [7]. Although simpler to sketch by hand, rectangles are intensely 
overused symbols and hence do not intuitively denote anything. Additionally, Rumbaugh's choices of rectangles 
for classes and rounded rectangles for objects clash with other symbols in his notation (rectangles are used for 
actors in data flow diagrams, and rounded rectangles are used for states in state transition diagrams). In 
practice, the cloud icon lends itself more to adornments such as those required for abstract classes or for 
parameterized classes, which we discuss later in this chapter. For these reasons, the cloud is the preferred shape 
for use in class and object diagrams. Especially in the presence of automated support for the notation, the 
argument for the simplicity of drawing rectangles is moot. However, to facilitate drawing diagrams by hand, 
and to offer a bridge to Rumbaugh's work, we do allow the rectangle as an acceptable alternative for 
representing classes and the rounded rectangle for representing object. 
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languages, most notably C++ and Smalltalk, we may further constrain these semantics to 
require that: every class name be unique to the system. 
 
For certain class diagrams, it is useful to expose some of the attributes and operations 
associated with a class. We say "some" because for all but the most trivial class, it is clumsy 
and indeed unnecessary to show all such members in a diagram, even when using a 
rectangular icon. In this sense, the attributes and operations that we show represent an elided 
view of the class’ s entire specification, which serves as the single point of declaration for all 
of its members. If we need to show many such members, we may magnify the class icon; if we 
choose to show no such members at all, we may drop the separating line and show only the 
class name. 
 
As we described in Chapter 3, an attribute denotes a part of an aggregate object, and so is 
used during analysis as well as design to express a singular property of the class.43 Using the 
following language-independent syntax, an attribute may have a name, a class, or both, and 
optionally a default value: 
 
• A Attribute name only 
 
• : C Attribute class only 
 
• A : C Attribute name and class 
 
• A : C = E Attribute name, class, and default expression 
 
An attribute name must be unambiguous in the context of the class. 
 
As we also described in Chapter 3, an operation denotes some service provided by the class. 
Operations are usually just named when shown inside a class icon, and are distinguished 
from attributes by appending parentheses or, where necessary for the purposes of the 
diagram, by providing the operation's complete signature: 
 
• N() Operation name only 
 
• R N(Arguments) Operation return class, name, and formal arguments (if any) 
 
Operation names must be unambiguous in the context of the class, according to the rules for 
overloading in the chosen implementation language. 
 
As a general principle for the notation, the syntax for items such as attributes and operations 
may be tailored to use the syntax for the chosen implementation language. This simplifies the 
notation by isolating the peculiarities of various languages. For example, in C++, we may 

                                                 
43 To be precise, an attribute is equivalent to an aggregation association with physical containment, whose label 
is the attribute name and whose cardinality is exactly one. 
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wish to declare certain attributes as static or certain operations as virtual or pure virtual;44 in 
CLOS, we may wish to designate certain operations as :around methods. In  
 

 
Figure 5-3. Figure 5-4. 
Abstract Class Adornment Class Relationship Icons 
 
 
either case, we use the specific syntax of the given language to show these details. As we 
described in Chapter 3, an abstract class is one for which no instances may be created. 
Because such classes are so important to engineering good class lattices, we introduce a 
special adornment to designate a class as abstract, as shown in Figure 5-3. Specifically, we 
adorn the class icon with the letter A (for abstract) placed inside a triangle anywhere inside 
the class icon. This adornment follows a general principle for the notation: adornments are 
secondary pieces of information about some entity in a system's model. All similar kinds of 
adornments use the same triangle icon consistently. 
 
Class Relationships Classes rarely stand alone; instead, as Chapter 3 explained, they 
collaborate with other classes in a variety of ways. The essential connections among classes 
include association, inheritance, "has," and "using" relationships, whose icons we summarize 
in Figure 5-4. Each such relationship may include a textual label that documents the name of 
the relationship or suggests its purpose. Relationship names need not be global, but must be 
unique within their context. 
 
The association icon connects two classes and denotes a semantic connection. Associations are 
often labeled with noun phrases, such as Employment, denoting the nature of the relationship. A 
class may have an association to itself (called a reflexive association). It is also possible to have 
more than one association between the same pair ~of classes. Associations may be further 
adorned with their cardinality, as described in Chapter 3, using the syntax in the following 
examples: 
 
• 1 Exactly one 
 
• N Unlimited number (zero or more) 
 
• 0 .. N Zero or more 
 
                                                 
44 In C++, static: denotes a class member; virtual denotes a polymorphic operation, and Pure virtual denotes an 
operation whose implementation is a subclass responsibility 
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• 1 .. N One or more 
 
• 0 .. 1 Zero or one 
 
• 3 .. 7 Specified range 
 
• 1 .. 3, 7 Specified range or exact number 
 
 
The cardinality adornment is applied to the target end of an association, and denotes the 
number of links between each instance of the source class and instances of the target class. 
Unless explicitly adorned, the cardinality of a relationship is considered unspecified. 
 
The remaining three essential class relationships are drawn as refinements of the more 
general association icon. Indeed, during development, this is exactly how relationships tend 
to evolve. We first assert the existence of a semantic connection between two classes and then, 
as we make tactical decisions about the exact nature of their relationship, often refine them 
into inheritance, has, or using relationships. 
 
The inheritance icon denotes a generalization/specialization relationship (the "is a" 
relationship, described in Chapter 3), and appears as an association with an arrowhead. The 
arrowhead points to the superclass, and the opposite end of the association designates the 
subclass. According to the rules of the chosen implementation language, the subclass inherits 
the structure and behavior of its superclass. Also according to these rules, a class may have 
one (single inheritance) or more (multiple inheritance) superclasses; name clashes among the 
superclasses are also resolved according to the rules of the chosen language. In general, there 
may be no cycles among inheritance relationships. Also, inheritance relationships may not 
have cardinality adornments. 
 
The "has" icon denotes a whole/part relationship (the "has a" relationship, also known as 
aggregation.), and appears as an association with a filled circle at the end denoting the 
aggregate. The class at the other end denotes the part whose instances are contained by the 
aggregate object. Reflexive and cyclic aggregation is possible; aggregation does not require 
physical containment. 
 
The "using" icon denotes a client/supplier relationship, and appears as an association with an 
open circle at the end denoting the client. As described in Chapter 3, this relationship 
indicates that the client in some manner depends upon the supplier to provide certain 
services. ft is typically used to indicate the decision that operations of the client class invoke 
operations of the supplier class, or have signatures whose return class or arguments are 
instances of the supplier class. 
 
Example The icons described thus far constitute the essential elements of all class diagrams. 
Collectively, they provide the developer with a notation sufficient to describe the 
fundamentals of a system's class structure. 
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In Figure 5-5, we provide an example of this notation, drawn from the problem of the 
hydroponics gardening system. This diagram describes only a small part of the hydroponics 
system class structure. Here we see the class GardeningPlan, which includes an attribute named 
crop together with one modifier operation, execute, and one selector operation, canHarvest. 
There is an association between this class and the class EnvironmentControlier, wherein instances 
of the plan define the climate that: instances of the controller monitor and modify. 
 
This diagram also indicates that: the class EnvironmentController is an aggregate, whose instances 
contain exactly one heater, one cooler, and any number of lights. The Heater and Cooler classes 
in turn are both subclasses of the abstract 
 

 
Figure 5-5 
Hydroponics Gardening System Class Diagram 
 
class Actuator, which provides the protocol startUp and shutDown, and which uses the class 
Temperature. 
 
 
Essentials: Class Categories 
As we explained in Chapter 3, the class is a necessary but insufficient vehicle for 
decomposition. Once our system grows to include more than a dozen or so abstractions, we 
may begin to identify clusters of classes that are themselves cohesive, but are loosely coupled 
relative to other clusters. We represent these clusters as class categories. 
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Most object-oriented programming languages do not have any linguistic support for class 
categories. Therefore, providing a notation for class categories allows us to express an 
important architectural element that cannot otherwise be expressed directly in our 
implementation language.45 
 
Classes and class categories may appear in the same diagram. More commonly, to represent 
the high-level logical architecture of our system, we provide some class diagrams that: 
contain only class categories. 
 
Class Categories Class categories serve to partition the logical model of a system. A class 
category is an aggregate containing classes and other class 
 

 
Figure 5-6 
Class Category icon 
 
categories, in the same sense that a class is an aggregate containing operations and other 
classes. Each class in the system must live in a single class category or at the top level of the 
system. Unlike a class, a class category does not directly contribute state or operations to the 
model; it does so only indirectly, through its contained classes. 
 
Figure 5-6 shows the icon we use to represent a class category. As for a class, a name is 
required for each class category; if the name is particularly long, it can either be elided or the 
icon magnified. As in the C++ rules for naming classes, every class category name in the 
logical model must be unique and distinct from all other class names. 
 
For certain class diagrams, it is useful to expose some of the classes contained in a particular 
class category. Again, we say "some" because most class categories contain more than a 
handful of classes, and so it would be clumsy to enumerate all of their classes. Thus, as with 
the attributes and operations shown in the class icon, we may list the names of interesting 
classes contained in a class category. In this sense, this list of classes represents an elided view 
of the class category's specification, which serves as the single point of declaration of all of its 
classes. If we need to show many such classes, we may magnify the class category icon; if we 
choose to show no such classes at all, we may drop the separating line and show only the 
class category name. 
 
A class category represents an encapsulated name space. As in C++ name qualification, we 
may use the name of a class category to unambiguously qualify the name of any class 
                                                 
45 The Smalltalk programming environment does support the concept of class categories. In fact, this was one of 
the inspirations for introducing categories into the notation. However, in Smalltalk, class categories have no 
semantic content: they exist solely as a convenience for organizing the Smalltalk class library. In C++, class 
categories are related to Stroustrup's concept of components, which are not yet a feature of the language, 
although namespace semantics are being considered for adoption [8]. 
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contained in a category. For example, given the class C contained in class category A, its fully 
qualified name is A::C. Since classes and class categories may be nested, as we will discuss 
later, we may extend this qualification to whatever depth necessary. 
 
Some of the classes enclosed by a class category may be public, meaning that they are 
exported from the class category and hence usable outside the class category. Other classes 
may be part of the implementation, meaning that they are not usable by any other class 
outside of the class category. During analysis and architectural design, this distinction is quite 
important, because it lets us specify a clear separation of concerns between the exported 
classes that provide the services of the class category and those classes that implement these 
services. In fact, during analysis, we may typically ignore the private details of a class 
category. By convention, every class in a class category is considered public, unless explicitly 
defined otherwise. Restricting access is an advanced concept, which we discuss in a later 
section. 
 
A class category can use another non-nested class category or class, and a class can use a class 
category. For consistency, we apply the same "using" 
 

 
Figure 5-7 
Hydroponics Gardening System Top-Level Class Diagram 
 
relationship icon shown in Figure 5-4 to indicate such importing connections among class 
categories. For example, consider a "using" relationship from class category A to B. This 
relationship means that the classes contained in A can inherit from, contain instances of, use, 
and otherwise associate with only the classes exported from B. 
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A practical problem arises when a class category contains a number of common classes, such 
as foundation container classes or other pervasive base classes, such as the class Object in 
Smalltalk. Such classes end up being used by virtually every other class category in the 
system, and therefore cause top-level class diagrams to become cluttered. To deal with this 
problem, we permit a class category to be adorned with the-key word global placed in its 
lower left comer, indicating that all others may use this category. 
 
Top-level class diagrams containing only class categories represent the high-level architecture 
of our system. Such diagrams are extremely useful in visualizing the layers and partitions of 
our system. A layer denotes the collection of class categories at the same level of abstraction. 
Thus, layers represent groupings of class categories, just as class categories represent clusters 
of classes. A common use of layers is to insulate higher layers from lower layer details. in 
contrast, a partition denotes each of the peer class categories that live at the same level of 
abstraction. In this regard, layers represent horizontal slices through the architecture, and 
partitions represent vertical slices. 
 
Example Figure 5-7 shows an example of a top-level class diagram for the hydroponics 
gardening system. This is a typical layered system in which 
 

 
Figure 5-8 
Parameterized Classes 
 
 abstractions that are close to the boundaries of the physical system (namely, the climate and 
nutrient sensors and actuators) are at the lowest levels, and user~ centric abstractions are 
closest to the top. The class category named CropTypes is global, indicating that its services are 
available to all other class categories. Note also that the class category Planning exposes two of 
its interesting classes, GardeningPlan (which we saw in Figure 5-5) and PlanAnalyst If we zoom in 
to any of the eight class categories shown here, we will find all of their corresponding classes. 
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Advanced Concepts 
The elements we have presented thus far constitute the essential parts of the notation.46 
However, there are often a number of strategic and tactical decisions that we must capture 
that require us to extend this basic notation. As a general rule, stick to the essential elements 
of the notation, and apply only those advanced concepts necessary to express analysis or 
design details that are essential to visualizing or understanding the system. 
 
Parameterized Classes Some object-oriented programming languages, most notably C++, 
Eiffel, and Ada, provide parameterized classes. As we discussed in Chapter 3, a 
parameterized class denotes a family of classes whose structure and behavior are defined 
independent of its formal class parameters. We must match these formal parameters with 
actual ones (the process of instantiation) to form a concrete class in this family; by concrete 
class, we mean one that may have instances. 
 
Parameterized classes are sufficiently different than plain classes to warrant a special 
adornment. As the example in Figure 5-8 shows, a parameterized class is visualized as a 
simple class, but with a dashed-line box in the upper right comer denoting its formal 
parameters. An instantiated class is adorned with a 
 

 
Figure 5-9 
Metaclasses 
 
solid-line box denoting its actual parameters, matched positionally to the corresponding 
formal parameters. In either case, we may optionally supply the formal and actual parameters 
as text inside the box. 
 
The instantiation relationship between -a parameterized class and its instantiated class is 
shown as a dashed line, pointing to the parameterized class. Most often, the instantiated class 
requires a "using" relation to other concrete classes (such as GardeningPlan in this example) for 
use as an actual parameter. 
 

                                                 
46 Collectively, all essential elements form the "Booch Lite" form of the notation. 
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A parameterized class may not have any instances and may not itself be used as a parameter. 
An instantiated class defines a new class distinct from all other concrete classes in the same 
family whose actual parameters differ. 
 
Metaclasses Languages such as Smalltalk and CLOS provide metaclasses. As we discussed 
in Chapter 3, a metaclass is the class of a class. In Smalltalk, the most common use of 
metaclasses is to provide class instance variables and operations, similar to the C++ practice 
of static members, or to define factory operations that generate instances of the corresponding 
class. In CLOS, metaclasses play an important role in the ability to tailor that language's 
semantics [9]. 
 
Metaclasses are also sufficiently different than plain classes to warrant a special adornment. 
As we show in Figure 5-9, a metaclass is visualized as a simple class, but with a gray-filled 
icon. The meta relationship is shown as a directed thick gray line, and points from a class to 
its metaclass. In this example, the metaclass provides the factory operations new and default for 
generating new instances of the class GardeningPlan. 
 
A metaclass may not itself have any instances, but may inherit from, contain instances of, use, 
and otherwise associate with other classes. 
 
Meta relationships have one other use. On certain class diagrams, it is useful to show an 
object that serves as a static member for some class. To show the class of this object, we may 
draw a meta relationship from the object to its class. This is consistent with the earlier use: a 
meta relationship shows the connection between some entity (either an object or a class) and 
its class. 
 

 
Figure 5-10 
Class Utilities 
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Class Utilities Due to their heritage, hybrid languages such as C++, Object Pascal, and CLOS 
permit the developer to apply a procedural as well as an object-oriented style of 
programming. This is in contrast to Smalltalk, where everything in the language is ultimately 
organized around classes. In hybrid languages, it is possible to write nonmember functions, 
also known as free subprograms. Free subprograms often show up during analysis and design 
at the boundary of the object-oriented system with its procedural interfaces to real world 
entities. 
 
Class utilities manifest themselves in one of two ways. First, a class utility may denote one or 
more free subprograms; the name of the class utility then has no semantic content other than 
to provide a convenient way to name a logical group of such nonmember functions. Second, a 
class utility may name a class that only has class instance variables and operations; in C++, 
this would denote a class with only static members.47 Such classes have no meaningful 
instances, mainly because there can be no state associated with any instances in a sense, the 
class itself acts as the sole instance that can be operated upon. 
 
As shown in Figure 5-10, a class utility is represented as an icon for a plain class and adorned 
with a shadow. In this example, the class utility PlanMetrics provides two interesting 
operations, expectedYield and timeToHarvest. The class utility constructs these two operations 
upon the services of the lower-level classes GardeningPlan and CropDatabase. As the diagram 
indicates, PlanMetrics depends upon CropDatabase for retrieving historical information on certain 
interesting crops. In turn, the class PlanAnalyst uses the services of PlanMetrics. 
 
Figure 5-10 illustrates a common motivation for class utilities: here we have a class utility that 
provides some common algorithmic services built upon two disparate lower-level 
abstractions. Rather than associating these operations with 
 

 
Figure 5-11 Nesting 

                                                 
47 This idiom is also commonly used by Smalltalk programmers to achieve the same effect as in C++. 
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a higher-level class such as PlanAnalyst, we choose to collect them in a class utility so that there 
is a clear separation of concerns between these simpler procedural utilities and the more 
complicated abstraction of the analyst. In addition, collecting these free subprograms into one 
logical structure increases their chance of reuse, because this provides a finer granularity of 
abstraction. 
 
As the example shows, classes may associate with and use but not inherit from or contain an 
instance of a class utility. Similarly, a class utility may associate with, use, or contain static 
instances of other classes, but not inherit from them. 
 
Just as for plain classes, class utilities may be parameterized and in turn instantiated. To 
denote such class utilities, we may apply the same adornments for parameterized and 
instantiated classes as shown in Figure 5-8. We may also use the same instantiation 
relationship shown in that figure to denote the relationship between a parameterized class 
utility and its instantiation. 
 
Nesting Classes may be physically nested in other classes, and categories may be nested in 
other categories as well, to any depth of nesting, typically to achieve some control over the 
namespace. In each case, this nesting corresponds to the declaration of the nested entity 
occurring in the enclosing context. As shown in Figure 5-11, we indicate nesting by 
physically- nesting icons; the qualified name of the nested class isNutritionist::NutrientProfile. 
According to the rules of the chosen implementation language, classes may contain instances 
of or use a nested class. Typically, languages do not permit inheritance from the nested class. 
 
The nesting of classes tends to be a tactical design decision. The nesting of class categories, 
however, is typically a strategic architectural decision. In either case, there is rarely a 
compelling reason to nest classes or class categories to depths much greater than one or two 
levels. 
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Figure 5-12 
Export Control 
 
Export Control All interesting object-oriented programming languages provide a clear 
separation between the interface and implementation of a class. As we described in Chapter 
3, most also permit the developer to specify finer-grained access to the interface as well. For 
example, in C++, members may be public (accessible to all clients), protected (accessible only 
to subclasses, friends, or the class itself), or private (accessible only to the class itself or its 
friends). Certain elements might also be a part of a class's implementation, and thus 
inaccessible even to friends of the class.48 Similarly, in Ada, elements of a class may be either 
public or private. In Smalltalk, all instance variables are private by default, and all operations 
are public. Access is granted explicitly by the class itself, not taken forcibly by the client. 
 
We may specify access by adorning the appropriate relationship with the following symbols: 
 
• <no adornment>  Public access (the default) 
 
• | Protected access 
 
• || Private access 
 
• ||| Implementation access 
 

                                                 
48 For example, consider an object or a class declared in a cpp file, and thus accessible only to the member 
functions implemented therein. 
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We place these hash marks at the source end of a relationship. For example, in Figure 5-12, we 
note that the class GrainCrop multiply inherits from the class Crop (a public superclass) and the 
abstract class FoodItem (a protected superclass). 
 
FoodItem in turn contains from 1 to 23 private instances of the class VitaminContent, and one 
public instance of the class CaloricEquivalent. Note that CaloricEquivalent could have been written 
as an attribute to the class FoodItem, because attributes are equivalent to aggregation whose 
cardinality is exactly 1:1. Continuing, we see that the class GrainCrop uses the class 
GrainYieldPredictor as part of its implementation. This typically means that some method of the 
class GrainCrop uses the services of GrainYieldPredictor in its implementation. 
 
In addition to the cases shown in this example, plain associations may also be adorned with 
access symbols. Instantiation and metaclass relationships may not be so adorned. 
 
These access symbols also apply to nested entities in all their forms. Specifically, in a class 
icon we may indicate the accessibility of attributes, operations, and nested classes by 
prefixing one of the access symbols to the name of the nested item. For example, in Figure 5-
12, we see that the class Crop has one public attribute (scientificName), one protected attribute 
(yield), and one private attribute (nutrientValue). This same notation applies to classes and class 
categories nested inside other class categories. By default, all such nested classes and class 
categories are public, but we may indicate restricted access by attaching the adornment 
denoting implementation access. 
 
Properties For certain languages, some relationship qualifications are so pervasive and their 
semantics so fundamental, that they warrant the use of special symbols. In C++ for example, 
there are three such properties: 
 
• static The designation of a class member object or function 
 
• virtual The designation of a shared base class in a diamond-shaped

 inheritance lattice 
 
• friend The designation of a class that grants rights to another to 

 access its nonpublic parts 
 
For consistency we draw these adornments using the same triangle-shaped icon used for the 
abstract class adornment, but with the symbols S, V, and F, respectively. 
 
Consider the example in Figure 5-13, which provides a different view of the classes shown in 
the previous figure. Here, we see that the base class OrganicItem contains one instance of the 
class ItemDictionary, and that this instance is owned by the class itself, not by its individual 
instances. In general, we may apply the static adornment to either end of an association or to 
the part end of a "has" relationship. 
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Observing the class GrainCrop, we see that its inheritance lattice takes on a diamond (fork-join) 
shape. By default in C++, a diamond lattice generates for the leaf class duplicates of the state 
from the shared base class. In order to have the class GrainCrop share a single copy of the 
multiply-inherited state from 
 

 
Figure 5-13 
Properties 
 
OrganicItem, we must specify virtual inheritance, as shown in the figure. We may apply the 
virtual adornment only to an inheritance relationship. 
 
Friendship may be applied to the supplier of any relationship, denoting that the supplier has 
granted the right of friendship to the client. For example, in Figure 5-13, we see that the class 
PlanAnalyst is a friend of the class Crop, and therefore has access to its nonpublic members, 
including both the attributes yield and scientificName. 
 
Physical Containment As noted in Chapter 3, aggregation, as manifested in the "has" 
relationship, is a constrained form of the more general association relationship. Aggregation 
denotes a whole/part hierarchy, and also implies the ability to navigate from the aggregate to 
its parts. This whole/part hierarchy does not necessarily mean physical containment: a 
professional society has a number of members, but by no means does the society "own" its 
members. On the other hand, an individual record of crop history does physically contain 
subordinate information, such as crop name, yield, and as-applied nutrient schedules. 
 
The choice of aggregation is usually an analysis or architectural design decision; the choice of 
aggregation as physical containment is usually a detailed, tactical issue. However, 
distinguishing physical containment is important for two reasons: first, physical containment 
has semantics that play a role in the construction and destruction of an aggregate's parts, and 
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second, the specification of physical containment is necessary for meaningful code generation 
from the design and reverse-engineering from the implementation. 
 
 

Figure 5-14 
Physical Containment 
 
Physical containment is indicated as an adornment on the part end of a "has" relationship; the 
absence of this adornment means that the decision regarding physical containment is 
unspecified. In hybrid languages, we distinguish between two types of physical containment: 
 
• By value  Denotes physical containment of a value of the part 
 
• By reference Denotes physical containment of a pointer or   

 a reference to the part 
 
In pure object-oriented programming languages, most notably Smalltalk, all containment is 
by reference. 
 
Because physical containment and its corresponding notions of structural sharing are 
sufficiently different from the semantics of properties discussed earlier, we choose a slightly 
different style of adornment. Specifically, we use a filled box to denote aggregation by value 
and an open box to denote aggregation by reference. As we will discuss in a later section, this 
style of adornment is consistent with adornments representing similar physical semantics in 
object diagrams. 
 
Consider the example in Figure 5-14. Here we see the class CropHistory, whose instances 
physically contain N instances of the class NutrientSchedule and N instances of the class 
ClimateEvent. Containment by value implies that the construction and destruction of these parts 
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occurs as a consequence of the construction and destruction of the aggregate. Specifically, 
containment by value ensures that the lifetimes of the aggregate and its parts are equal. By 
contrast, each instance of CropHistory physically contains only a reference or pointer to one 
instance of Crop. This means that the lifetimes of the two objects 
 
 

 
Figure 5-15 
Roles and Keys 
 
are independent, although the one is still considered physically a part of the other. This is also 
in contrast with the aggregation relationship shown between the classes CropEncyclopedia and 
CropHistory. Here, we have not specified physical containment. The semantics of this part of the 
diagram tells us that these two classes do indeed participate in a whole/part relationship, and 
that it is possible to navigate from an instance of CropEncyclopedia to an instance of CropHistory, 
although this may not be the result of physical containment. Instead, there may be some 
much more elaborate mechanism that implements this association; for example, it may be 
necessary for the CropEncyclopedia to initiate a search upon some other agent, such as a 
database actor, to look up the appropriate instance of CropHistory and return a shared reference 
to it. 
 
Roles and Keys In the previous chapter, we described the importance of identifying the 
various roles an object plays in its collaboration with other objects; in the next chapter, we 
will study how role identification helps drive the process of analysis. 
 
Briefly, the role of an abstraction is the face it presents to the world at a given moment. A role 
denotes the purpose or capacity wherein one class associates with another. As the example in 
Figure 5-15 shows, we name the role of a class as a textual adornment to any association, 
placed adjacent to the class offering the role. Here we see that instances of the class PlanAnalyst 
and Nutritionist are both contributors to the CropEncyclopedia object (meaning that they both add 
information to the encyclopedia), and that PlanAnalyst objects are users as well (meaning that 
they look up information in the encyclopedia). In each case, the clients role identifies the 
particular behavior and protocol that it uses with its supplier while acting in that role. Note 
also the reflexive association for the class PlanAnalyst: here we show that multiple instances of 
this class may collaborate with one another, and that they have a particular protocol they use 
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when collaborating, which is distinguished from their behavior in their association with, for 
instance, CropEncyclopedia. 
 
 

 
Figure 5-16  
Constraints 
 
Our example also shows an association between the classes CropEncyclopedia and Crop, but 
with a different kind of adornment, this one representing a key, shown as an identifier 
surrounded by brackets. A key is an attribute whose value uniquely identifies a single target 
object. In this example, the class CropEncyclopedia uses the attribute scientificName as a key to 
navigate to individual entries in the set of items managed by instances of CropEncyclopedia. In 
general, a key must be an attribute of the object that is a part of the aggregate object at the 
target end of the association. Multiple keys are possible, but key values must be unique. 
 
Constraints As we discussed in Chapter 3, a constraint is the expression of some semantic 
condition that must be preserved. Stated another way, a constraint is an invariant of a class or 
relationship that must be preserved while the system is in a steady state. We emphasize steady 
state because there may be transitory circumstances wherein the state of the system is 
changing (and thus is temporarily in a self-inconsistent state), during which time it is 
impossible to preserve all the system's constraints. Constraints are guarantees that apply only 
when the state of the system is stable. 
 
Notationally, we use an adornment for constraints similar to that for roles and keys: 
specifically, we place an expression, surrounded by braces, adjacent to the class or 
relationship for which the constraint applies. As the example in Figure 5-16 indicates, we may 
apply constraints to individual classes, whole associations, and participants in an association. 
 
In this diagram, we see a cardinality constraint upon the class EnvironmentalController, stating 
that there may be no more than 7 instances of this class in the system. In the absence of a 
cardinality constraint, a class may have Zero or more instances. The abstract class adornment 
described earlier is a special case (denoting a cardinality of zero), but because it occurs so 
often in class lattices, it is given a special symbol (the triangular adornment). 
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The class Heater has a different kind of constraint. Here we see a statement of hysteresis in the 
heater's operation: a heater may not be restarted sooner than five minutes after it was last 
shut down. We attach this constraint to the class Heater, because we mean this to be an 
invariant preserved by instances of the class themselves. 
 
In this diagram we also find two different kinds of association constraints. In the association 
between the classes EnvironmentalController and Light, we require that individual lights be 
uniquely indexed with respect to one another in the context of this association. We also have 
a constraint that spans the controller's association with the Heater and Cooler classes, stating the 
invariant that the EnvironmentalController may not activate the heater and the cooler at the same 
time. We place this as a constraint upon the association rather than as a constraint upon the 
class Heater or the class Cooler, because it is an invariant that cannot be preserved by heaters or 
coolers themselves. 
 
If necessary, we may write constraint expressions that name other associations, using the 
syntax for qualified names used elsewhere in the notation. For example, Cooler:::Activates 
uniquely names one of the controller's associations. In the notation, such expressions are often 
used in circumstances wherein one class has an association (such as aggregation) with two or 
more other classes, but its instances may associate with only one of these target instances at 
any given time. 
 
Constraints are also useful for the expression of secondary classes, attributes, and 
associations.49 For example, consider the classes Adult and Child, both of which might be 
subclasses of the abstract class Person. For the class Person, we might provide the attribute 
dateoftbirth, and we might also include an attribute named age, perhaps because age is 
important in our model of the real world. However, the age attribute is secondary: it can be 
computed from dateofbirth. Thus, in our model, we might include both attributes, but include 
an attribute constraint that states this derivation. It is a tactical decision as to which attribute 
derives from the other, but our constraint can record whatever decision we make. 
 
Similarly, we might have an association between the Adult and Child classes named Parent. We 
might also include another association named Caretaker, because it suits the purposes of our 
model (perhaps we are modeling the legal relationships between parent and child in the 
analysis of a social welfare system). Caretaker is secondary; it derives from the consequences 
of the Parent association, and we might state this invariant as a constraint upon the Caretaker 
association. 
 

                                                 
49 In Rumbaugh's terms, these are called derived entities, for which he supplies a unique adornment. Our 
general approach to constraints is sufficient for expressing the semantics of derived elasses, attributes, and 
associations, and has the advantages of reusing an existing notational element, as well as unambiguously 
identifying the entity from which the derivation occurs. 
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Figure 5-17 
Attributed Associations and Notes 
 
Attributed Associations and Notes The final advanced concept specific to class diagrams 
concerns itself with the problem of modeling properties of associations; the notational 
solution to this specific problem generalizes to a diagram element that may be applied to 
every diagram in the notation. 
 
Consider the example in Figure 5-17. Here we see a many-to-many association between Crop 
and Nutrient, meaning that every crop depends upon N nutrients, and each nutrient may be 
applied to N different: crops. The class NutrientSchedule is really a property of this many-to-
many relationship, whose instances denote a specific mapping of a crop and its nutrients. To 
indicate this semantic fact, we draw a dashed line from the Crop/Nutrient association (the 
attributed association) to its property, the class NutrientSchedule (the association's attribute). A 
given unique association may have at most one such attribute, and the name of such an 
association must match the name of the class used as its attribute. 
 
The very idea of attributing associations has a generalization. Specifically, during analysis 
and design, there are a myriad of seemingly random options and decisions that each 
developer may collect; these insights are often lost, because there is usually no convenient 
place to collect them, save for keeping them in the head of the developer - a decidedly 
unreliable practice. Thus, it is useful to add arbitrary notes to any element of any diagram, 
whose text captures these assumptions and decisions. In Figure 5~17, we have two such 
notes. One note attached to the class NutrientSchedule tells us something about the expected 
uniqueness of its instances. The other note attached to a specific operation of the class Nutrient 
captures our expectation of how this operation will be implemented. 
 
For such notes we use a distinctive note-shaped icon and connect it to the element it affects 
using a dashed line as before. Largely a tool issue, notes may contain any information, 
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including plain text, fragments of code, or references to other documents. A note may be 
unconnected, meaning that it applies to the diagram as a whole.50 
 
 
Specifications 
A specification is a nongraphical form used to provide the complete definition of an entity in 
the notation, such as a class, an association, an individual operation, or even an entire 
diagram. Browsing through class diagrams lets the reader visualize a large system with 
relative ease; however, this graphical view alone is not enough: we must have some substance 
behind the pictures, and this is the motivation for specifications in general. 
 
As we stated earlier, a diagram is simply a view into a model of the system under 
development. A specification thus serves as the nongraphical foundation model for each 
entity in the notation. The set of syntactic and semantic facts stated in each diagram is 
therefore a subset of, yet must be consistent with, the facts stated in the model’s 
specifications. Obviously, tools that support the notation can play an important role in 
keeping diagrams and specifications in sync with one another. 
 
In this section, we will first examine the essential elements of the two important specifications 
in the notation, and then consider their advanced properties. We will not concern ourselves 
with the exact presentation of each specification - that is a matter of the look and feel of 
particular tools that support the notation - nor need we present the specification of every 
element, such as the specifications for metaclasses or for individual kinds of relationships. 
Most such specifications are obvious subsets of the more central specifications, such as those 
for classes, or add no information beyond what we have already described in their graphical 
counterparts. What is particularly important in the following paragraphs is the exposition of 
those specification elements that have no analog in the diagrams; specifications contain some 
information that is best expressed textually, and so have no graphical representation. 
 
Common Elenlents All specifications have at least the following entries: 
 
Name: identifier 
Definition: text 
 
The meaning of the entity's name is obvious; its uniqueness depends upon the semantics of 
the item itself. For example, class names must at least be unique to their enclosing class 
category, whereas operation names have a scope that is local to their enclosing class. 
 
A definition is text that identifies the concept or function represented by the entity, and is 
appropriate for inclusion in the data dictionary, as we will discuss in the next chapter. 
 

                                                 
50 The icon we use is similar to the note icon used in a variety of windowing systems, especially those including 
the Macintosh look and feel. Our specific inspiration for this notational element derives from the suggestions of 
Gamma, Help, johnson, and Vlissides [10]. 
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There are the minimal entries for every specification. Tools may certainly define their own 
entries, to meet the needs of their particular computing environment. Also, it is important to 
state that although certain specifications may have a number of different entries, there is no 
obligation for developers to use every entry, or to follow the foolish rule that development 
cannot proceed to the next phase until all parts of a specification are filled in. Notations are an 
aid to development, not an end in themselves, and so must be used only when they add value 
to the activities of analysis and design. 
 
Class Specifiations Each class in the model has exactly one class specification that provides 
at least the following entries: 
 
Responsibilities: text 
Auributes: list of attributes 
Operations: list of operations 
Constraints:  list of constraints 
 
As we discussed in the previous chapter, the responsibilities of a class are its statements of 
obligation to provide certain behavior. The next chapter explains how we use this entry as a 
placeholder for a class's responsibilities, which we discover or invent during development. 
 
The various attribute, operation, and constraint entries parallel their graphical counterparts. 
Individual operations are sufficiently interesting to warrant their own specifications, which 
we present in the next section. 
 
These first essential elements may be provided in terms of the given implementation 
language. In particular, it may be sufficient to write C++ class declarations or Ada package 
specifications to capture this information. 
 
As we discussed in Chapter 3, the behavior of certain interesting classes is often best 
expressed using state machines, and so we add another essential entry to such classes: 
 
State machine:  reference to state machine 
 
Advanced uses of the notation require the following additional entries to class specifications: 
 
Export control: public | implementation 
Cardinality:  expression 
 
These items parallel their advanced graphical counterparts. 
 
Parameterized classes and instantiated classes must include the following entry: 
 
Parameters:  list of formal or actual generic parameters 
 
The following very advanced entries have no graphical counterparts; they serve to capture 
certain functional aspects of a class: 
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Persistence: transient | persistent 
Concurrency: sequential | guarded | synchronous | active 
Space complexity: expression 
 
The first of these three elements captures the property denoting whether or not the class's 
instances are persistent. As we discussed in Chapter 2, a persistent entity is one whose state 
transcends the lifetime of the enclosing object, whereas a transitory entity is one whose state 
and lifetime are identical. 
 
As we also noted in Chapter 2, the concurrency of a class is a statement about its semantics in 
the presence of multiple threads of control. A sequential object is the default, and denotes a 
class whose semantics are guaranteed only in the presence of a single thread of control. A 
guarded class is one whose semantics are guaranteed in the presence of multiple threads of 
control, but that requires collaboration among all client threads to achieve mutual exclusion. 
A synchronized class is the same, except that the class provides mutual exclusion itself. 
Finally, an active class embodies its own thread of control. 
 
The space complexity of a class is a statement about the relative or absolute storage consumed 
by each object of the class. We may use this entry to budget a size for each class, or to record 
the as-built space complexity of the class's instances. 
 
Operation Specifications For each operation that is a member of a class, and for all free 
subprograms, we define one operation specification that provides at least the following 
entries: 
 
Return class: reference to class 
Arguments:  list of formal arguments 
 
These elements may be written in the given implementation language. Depending upon the 
tailoring of the notation to specific languages, we may also include the following essential 
element: 
 
Qualification:  text 
 
In C++, for example, qualification would include a statement of the operation's static, virtual, 
pure virtual, and const properties. 
 
Advanced uses of the notation require the following additional entry for operation 
specifications: 
 
Export control: public | protected | private | implementation 
 
The values that are meaningful for export control are language-dependent. In Object Pascal, 
for example, attributes and operations are always public; in Ada, operations may be public or 
private, but in C++, all four values may apply. 
 
Advanced use of the notation also includes the following element: 
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Protocol:  text 
 
This element follows the practice in Smalltalk: the protocol of an operation has no semantic 
impact, but simply serves to name a logical grouping of operations, such as initialize-release or 
model access. 
 
The following very advanced entries have no graphical counterparts, and serve to formally 
capture the semantics of an operation: 
 
Preconditions:  text | reference to source code | reference to object diagram 
Semantics:  text | reference to source code | reference to object diagram 
Postconditions:  text | reference to source code | reference to object diagram 
Exceptions  list of exceptions 
 
The preconditions, semantics, and postconditions of an operation may be stated in any of a 
number of forms, including text (comprising either informal or formal expressions), 
references to potentially executable source code or assertion statements, or references to 
object diagrams that serve as scenarios of the given semantics. The exceptions entry lists the 
exceptions that can be raised (thrown in C++ terms) by the operation; each element in this list 
is the name of a class naming the exception. 
 
The final very advanced entries serve to capture certain functional aspects of an operation: 
 
Concurrency: sequential | guarded | synchronous 
Space complexity: expression 
Time complexity: expression 
 
The first two elements are the same as for class specifications. The time complexity of an 
operation is a statement about the relative or absolute time required to complete an operation. 
We may use this entry to budget a time for each operation or to record the as-built time 
complexity in terms of actual, average, and/or worst case performance. 
 
 
5.3 State Transition Diagrams 
 
Essentials: States and State Transitions 
A state transition diagram is used to show the state space of a given class, the events that cause 
a transition from one state to another, and the actions that result from a state change. We have 
adopted the notation used by Harel [11] for state transition diagrams; his work provides a 
simple yet highly expressive approach that is far superior to conventional flat finite state 
machines51. A single state transition diagram represents a view of the dynamic model of a 
single class or of the entire system. Not every class has significant event-ordered behavior, 

                                                 
51 We supplement his work with the contributions by Rumbaugh [12] and Bear, Allen, Coleman, and Hayes [13], 
who all adapt HarePs work to the domain of object-oriented computing. 
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and so we supply state transition diagrams only for those classes that exhibit such behavior; 
we may also provide state transition diagrams that show 
 

 
Figure 5-18 
State Icon 
 
the event-ordered behavior of the system as a whole. During analysis, we use state transition 
diagrams to indicate the dynamic behavior of the system. During design, we use state 
transition diagrams to capture the dynamic behavior of individual classes or of collaborations 
of classes. 
 
The two essential elements of a state transition diagram are states and state transitions. 
 
States The state of an object represents the cumulative results of its behavior. For example, 
when a telephone is first installed, it is in the idle state, meaning that no previous behavior is 
of great interest and that the phone is ready to initiate or receive calls. When someone picks 
up the handset, we say that the phone is now off-hook and in the dialing state; in this state, 
we do not expect the phone to ring; we expect to be able to initiate a conversation with a 
party or parties on other telephones. When the phone is on-hook, if it rings and then we pick 
up the handset, the phone is now in the receiving state, and we expect to be able to converse 
with the party that initiated the conversation. 
 
At any given point in time, the state of an object encompasses all of its (usually static) 
properties, together with the current (usually dynamic) values of each of these properties. By 
properties, we mean the totality of the object's attributes and relationships with other objects. 
We can generalize the concept of an individual object's state to apply to the object's class, 
because all instances of the same class live in the same state space, which encompasses an 
indefinite yet finite number of possible (although not always desirable nor expected) states. 
Figure 5-18 shows the icon we use to represent a specific state. 
 
A name is required for each state; if the name is particularly long, it can either be elided or the 
icon magnified. Every state name must be unique to its enclosing scope, namely, the 
enclosing class. States associated with the system as a whole have a global scope, and the 
scope of a nested state (an advanced concept) extends to its enclosing state. All state icons 
with the same name in a given diagram are considered to refer to the same state. 
 
For certain states, it is useful to expose the actions associated with a state. As shown in the 
figure, for consistency we use same notation as for viewing the attributes and operations 
associated with a class. lf necessary, we may 



 Chapter 5: The Notation      198 

 
Figure 5-19 
State Transition icon 
 
magnify the state icon; if there are no actions at all, we may drop the separating line.52 
Associating actions with a state is an advanced concept, which we will discuss in a later 
section. 
 
State Transitions An event is some occurrence that may cause the state of a system to 
change. This change of state is called a state transition, which we draw using the icon shown in 
Figure 5-19. Each state transition connects two states. A state may have a state transition to 
itself, and it is common to have many different state transitions from the same state, although 
each such transition must be unique, meaning that there will never be any circumstances that 
would trigger more than one state transition from the same state. 
 
For example, in the hydroponics gardening system, the following events play a role in the 
system's behavior: 
 
• A new crop is planted. 
 
• A crop becomes ready to harvest. 
 
• The temperature in a greenhouse drops because of inclement weather. 
 
• A cooler fails. 
 
• Time passes. 
 
As we will discuss in the next chapter, the identification of events such as these helps us to 
define the boundaries of a system's behavior and to assign responsibilities to individual 
classes that carry out the system's behavior. 
 
Each of the first four events above is likely to trigger some action, such as starting or stopping 
the execution of a specific gardening plan, turning on a heater, or sounding an alarm to the 
gardener. The passage of time is another issue: although the passing of seconds or minutes 
may not be significant to our system (observable plant growth is generally on much longer 
scales of time), the passage of hours or days may be a signal to our system to turn lights on or 
off or to change the temperature in the greenhouse, in order to create an artificial day 
necessary for plant growth. 
 
An action is an operation that, for all practical purposes, takes zero, time. For example, 
sounding an alarm to the gardener is an action. An action typically denotes the invocation of 

                                                 
52 For consistency with Hare’s notation, the separating line may be dropped altogether. 
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a method, the triggering of another event, or the starting or stopping of an activity. An 
activity, on the other hand, is some operation that takes some time to complete. For example, 
heating the greenhouse is an activity, triggered by turning on the heater which may stay on 
for some indefinite time until explicitly turned off. 
 
Although conceptually pure, Hare’s model of broadcasting events must be tailored to fit into 
the object model. During analysis, we may name events and actions broadly, in order to 
capture our understanding of the problem space. However, once we begin to map these 
concepts to classes, we must impose a particular strategy for their implementation. 
 
An event may be a symbolic name (or a named object), a class, or the name of some operation. 
For example, the event cooler failure might denote either a literal or the name of an object. We 
may take the strategy that all events are just symbolic names and that each class with 
interesting event-ordered behavior provides an operation that can consume such names and 
carry out the appropriate action. This is the strategy often taken in Smalltalk model-view-
controller architectures, where events are symbolic names that are processed by update 
methods. For more generality, we may treat events as objects, and so define a hierarchy of 
event classes that provide our abstraction of specific events. For example, we might define a 
general class of events called DeviceFailure and specialized subclasses such as CoolerFailure and 
HeaterFailure. When we then post an event, we might post an instance of a leaf class (such as 
CoolerFailure) or a more general superclass (such as DeviceFailure). If we then specify the action of 
our system only in the presence of a CoolerFailure event, then we would intentionally ignore all 
other kinds of device failures. On the other hand, if we specify the action of our system in the 
presence of a DeviceFailure event, then we would trigger the same action no matter what 
specific device failure was posted. In this manner, we can make state transitions exhibit 
polymorphic behavior upon the class of the event that triggered the transition. Lastly, we 
might define an event simply as an operation, such as GardeningPlan::execute(). This approach is 
similar to that of treating events as symbolic names, except that we no longer require an 
explicit event-dispatching operation. 
 
Which of these three strategies we choose is immaterial to the method, as long as one is 
chosen and used consistently in each part of the system. Typically, we use a note to indicate 
which strategy each finite state machine applies. 
 
An action may be written using the syntax shown in the following examples: 
 
• heater.startUp() An operation 
 
• DeviceFailure Triggering of an event 
 
• start Heating Begin some activity 
 
• stop Heating Terminate some activity 
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In the case of an operation or event, the name must be in the scope of the diagram and, where 
necessary, may be qualified with the appropriate class or object name. In the case of starting 
and stopping an activity, an activity may 
 

 
Figure 5-20 
Environmental Controller State Transition Diagram 
 
denote an operation (such as Actuator::shutDown()) or a symbolic name (as for events). We 
typically use symbolic names when the activity corresponds to some system function, such as 
harvest crop. 
 
In every state transition diagram, there must be exactly one default start state, which we 
designate by writing an unlabeled transition to the state from a special icon, shown as a filled 
circle. Less often, we need to designate a stop state. Usually, a state machine associated with a 
class or the system as a whole never reaches a stop state; the state machine just goes out of 
existence when the enclosing object is destroyed. We designate a stop state by drawing an 
unlabeled state transition from the state to a special icon, shown as a filled circle inside a 
slightly larger unfilled circle. 
 
Example The icons described thus far constitute the essential elements of all state transition 
diagrams. Collectively, they provide the developer with a notation sufficient to describe 
simple, flat, finite state machines, suitable for applications with a limited number of states. 
Systems that have a large number of states or that exhibit particularly complicated event-
ordered behavior involving conditional transitions or transitions based upon previously 
entered states require the use of the more advanced concepts for state transition diagrams. 
 
In Figure 5-20, we provide an example of this essential notation, again drawn from the 
problem of the hydroponics gardening system. Here, we see a state transition diagram for the 
class EnvironmentalController, first introduced in Figure 5-5. 
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In this diagram, we have chosen a strategy in which events are designated as symbolic 
names. Here, we see that objects of this class start in the Idle state; then they change state 
upon receipt of the event Define climate, for which there is no explicit action (for the 
purposes of this diagram, we have made the simplifying assumption that this event will 
occur only during daytime). The dynamic behavior of this class then toggles between the 
states Daytime and Nighttime, triggered by the events Sunset and Sunrise, respectively, whose 
action is to change the lighting accordingly. In either state, a drop or rise in temperature event 
invokes an action to adjust the temperature (the operation adjustTemperature(), which is local to 
this class). We return to the Idle state whenever we receive a Terminate climate event. 
 
Advanced Concepts 
The elements of state transition diagrams we have described thus far are insufficient for many 
kinds of complex systems, and for this reason we expand our notation to include the 
semantics of Harel’s statecharts. 
 
State Actions and Conditional State Transitions As shown in Figure 5-18, actions may be 
associated with states. In particular, we may specify some action that is to be carried out upon 
entry or exit of a state, using the syntax in the following examples: 
 
• entry start Alarm  Start an activity upon entry. 
 
• exit shutDowno  Invoke an operation upon exit. 
 
As for state transitions, we may specify any action after the keywords entry and exit. 
 
Activities may be associated with a state, using the syntax in the following example: 
 
• do Cooling Carry out an activity while in the state. 
 
This syntax is largely a shorthand for explicitly starting the activity upon entry 
to the state and explicitly stopping the activity upon exit. 
 
In Figure 5-21, we see an example of this advanced concept. Here we see that upon entering 
the Cooling state, we invoke the operation Cooler::startUp(), and upon exiting this state, we invoke 
the operation Cooler::shutDown(). In the case of entering and exiting the state Failure, we start and 
stop an alarm, respectively. 
 
Consider also the state transition front Idle to Heating. Here, we transition if the temperature is 
too cool, but only if it: has been more than five minutes since we last shut down the heater. 
This is an example of a conditional (or guarded) state transition; we represent a condition as a 
Boolean expression placed inside brackets. 
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Generally, a given state transition will either have an event or an event and a condition. We 
also permit a state transition to have no associated event. In such a case, the transition is 
triggered immediately after the action of the source state has completed; exit actions are a 
also carried out as a consequence. If the   
 

 
Figure 5-21 
Actions, Conditional Transitions, and Nested States 
 
state transition is conditional, then the transition will be triggered only if the expression 
evaluates true. 
 
The order of evaluation in conditional state transitions is important. Given state S with 
transition T upon event E with condition C and action A, the following order applies: 
 
• Event E occurs 
 
• Condition C is evaluated 
 
• If C evaluates true, then T is triggered and action A is invoked 
 
This means that if a condition evaluates false, the state transition may not be triggered until 
the event occurs again and the condition is re-evaluated. Side effects in evaluating the 
condition or in carrying out an exit action will not affect the triggering of a state transition. 
For example, suppose that event E occurs, condition C evaluates true, and then the execution 
of the exit action changes the world so that C no longer evaluates true: the state transition will 
still be triggered. 
 
We may include expressions that: use the following syntax: 
 
• in Cooling Expression of current state 
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Here, we provide a state name (which may be qualified); this expression evaluates true if and 
only if the system is in the current state. This kind of expression is especially useful when an 
outer state needs to trigger a state transition conditionally based upon some lower-level 
nested state. 
 
We may also write conditional expressions denoting time restrictions, as in the following 
example: 
 
• timeout(Heating, 30) Expression of time restriction 
 
This condition evaluates true if the system was in the Heating state and had been in that state 
for more than 30 seconds. This kind of expression is common with eventless state transitions 
in many real-time systems, because it protects against settling in one state for too long. We 
can also use this expression to establish a lower bound for the time in a state. lf we attach the 
same time restriction to every state transition with an event leading out of the state, then this 
is tantamount to requiring that the system be in the given state for at least the time specified 
by the time restriction.53 
 
What happens if an event arrives but the current state has no transitions that lead to a new 
state, either because no such transition exists for the given event, or none of the proper 
conditions evaluate true? By default, this should be considered a failure: silently ignoring 
events is usually an indication of an incomplete analysis of the problem. In general, a state 
should document the events that it intentionally ignores. 
 
Nested States The ability to nest states gives depth to state transition diagrams; this is the 
key feature of Harel's statecharts that mitigates the combinatorial explosion of states and state 
transitions that often occurs in complex systems. 
 
In Figure 5-21, we have expanded the Cooling state to reveal its nested states; for simplicity, we 
have omitted all of its actions, including the state's entry and exit actions. 
 
Enclosing states such as Cooling are called superstates, and its nested states, such as Running, are 
called substates. Nesting may be to any depth, and thus substates may be superstates to other 
lower-level substates. Given the superstate Cooling with its three substates, the semantics of 
nesting implies an xor (exclusive or) relationship: if the system is in the Cooling state (the 
superstate), then it must also be in exactly one of the three substates, Startup, Ready, or Running. 
 
For simplicity in drawing state transition diagrams with depth, we may zoom in or zoom out 
relative to a particular state. Zooming out elides substates, and zooming in reveals substates. 

                                                 
53 Harel suggests a generalized "squiggle" notation for expressing both upper and lower bounds on time 
restrictions, but we will not discuss his generalization here, because timeout expressions are sufficiently 
expressive. 
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When we zoom out, state transitions to and from substates are shown with a stubbed arrow, 
as in the case of the state transition to the substate Ready.54 
 
State transitions are allowed to originate and terminate at any level. Consider then the 
different forms of state transition:  
 
• Transitioning from one state to a peer state (such as from Failure to Idle or from Ready to 

Running) is the simplest form of transition; it follows the semantics described in the 
previous section on state actions and conditional state transitions. 

 
 

 
Figure 5-22 
History 
 
• One may transition directly to a substate (such as from Idle to Startup) or directly from a 

substate (such as the transition from Running to Idle) or both. 
 
• Specifying a transition directly from a superstate (such as from Cooling to Failure via the 

Failure event) means that the state transition applies to every substate of the superstate. The 
transition is passed through all levels, until overridden. These semantics greatly reduce 
the clutter of common state transitions from substates. 

 
• Specifying a transition directly to a state with substates (such as perhaps to Failure) indeed 

moves to the new state, but also implies moving to this superstate's default substate. 
 
History Often when transitioning directly to a state with substates, we wish to return to the 
most recently visited state; these semantics may be indicated by the history icon, shown as the 
letter H inside a circle and placed anywhere directly inside the state. For example, in Figure 5-
22, we have expanded the Failure state to reveal its substates. The very first time we transition 
into this state, we also move to its default start state Create log, indicated by the unlabeled 

                                                 
54 In Figure 5-21, to be precise, the state transitions for Too hot and Ok relative to the Cooling state should be 
shown with stubs as well, because they transition to and from substates. 



 Chapter 5: The Notation      205 

transition from the filled circle; ultimately, the log is created, and we move into the Log ready 
state. After posting the failure, we return to this state. The next time we transition to the Failure 
state, we don't want to create the log again; rather, we want to begin in the Log ready state. 
Since this was the last state visited, and since we included the history icon, these are precisely 
the semantics we will get at all subsequent times when we enter the Failure state. 
 
History applies only to the given level in which it appears. It may be made to apply all the 
way down to the lowest depth of nested states by attaching an asterisk to the history icon. It is 
possible to achieve intermediate kinds of history transition by applying history only to 
individual substates.  
 
Orthogonal States Harel's statecharts introduce the concept of orthogonal states, which 
represent an "and" decomposition of states. Given a system in state A with orthogonal 
substates B and C, this means that the system is in state A as well as in both states B and C. 
 
These semantics are largely unnecessary once we have mapped statecharts to the object 
model, as we have already done in this section. Specifically, peer objects whose classes have 
event-ordered behavior implicitly represent an “and" decomposition: the system is in the 
state denoted by both objects simultaneously. For this reason, we omit Harel’s notion of 
orthogonal states. 
 
Specifications 
As for class diagrams, each entity in a state transition diagram may have a specification that 
provides its complete definition. Unlike the specification for classes, however, specifications 
for states and state transitions add no information beyond what we have already described in 
this section, and so we need not discuss their textual specification. 
 
 
5.4 Object Diagrams 
 
Essentials: Objects and Their Relationships 
 
An object diagram is used to show the existence of objects and their relationships in the logical 
design of a system. Stated another way, an object diagram represents a snapshot in time of an 
otherwise transitory stream of events over a certain configuration of objects. Object diagrams 
are thus prototypical: each one represents the interactions or structural relationships that may 
occur among a given set of class instances, no matter what specifically named objects 
participate in the collaboration. In this sense, a single object diagram represents a view of the 
object structure of a system. During analysis, we use object diagrams to indicate the semantics 
of primary and secondary scenarios that provide a trace of the system's behavior. During 
design, we use object diagrams to illustrate the semantics of mechanisms in the logical design 
of a system. 
 
The two essential elements of an object diagram are objects and their relationships. 
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Objects Figure 5-23 shows the icon we use to represent an object in an object diagram. As is 
our practice in class diagrams, we may optionally draw a horizontal line to partition the text: 
inside the icon into two regions, one denoting the object's name, and another providing an 
optional view of the object's attributes. 
 

 
Figure 5-23  
Object icon 
 
The name of an object follows the syntax for attributes, and may be written in any of the three 
following forms, or using the syntax of the chosen implementation language: 
 
• A Object name only 
 
• : C Object class only 
 
• A : C Object name and class 
 
If this text is particularly long, it can either be elided or the icon magnified. If several object 
icons in the same diagram use the same unqualified object name, then they all denote the 
same object; otherwise, each object icon denotes a distinct object occurrence.55 If several object 
icons in different diagrams use the same name, then they denote different objects, unless their 
name is explicitly qualified. 
 
The meaning of unqualified names depends upon the context of the object diagram. 
Specifically, object diagrams defined at the highest level of the system have a global scope; 
other object diagrams may be defined for class categories, individual classes, or individual 
methods, and so have the corresponding scope. Qualification may also be used as necessary 
to explicitly refer to global objects, class instance variables (in C++, static member objects), 
method parameters, attributes, and locally defined objects in the same scope. 
 
If we never specify the class of an object, either explicitly using the above syntax, or implicitly 
through the object's specification, then the object's class is considered anonymous, and there 
can be no semantic checks as to the meaning of operations performed upon or by the object, 
nor of the object's relationship to any other objects in the diagram. If we only specify a class 

                                                 
55 Object icons with the same unqualified name but with different classes may appear on e same diagram, as 
long as these classes are related through some common superclass ancestor. This makes it possible to represent 
the propagation of operations from a subclass to a superclass and vice versa. 
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name, the object is said to be anonymous; each such icon without an object name denotes a 
distinct anonymous object. 
 
In any case, the name given for an object's class must be that of the actual class (or any of its 
superclasses) in the scope of the diagram used to instantiate the object, even if such classes 
happen to be abstract. These rules make it 
 

 
Figure 5-24 
Object Relationship icon 
 
possible to write scenarios that refer to objects without knowing the precise subclass in 
question. 
 
For some objects, it is useful to expose some of their attributes. Again we say "some" because 
object icons only represent a view of the object's structure. The syntax for attributes follows 
that described in the earlier section on classes and their attributes, and includes the ability to 
specify a default expression for each attribute. Attribute names must refer to an attribute 
defined in the object's class or any of its superclasses. The syntax for items may be tailored to 
use the syntax for the chosen implementation language. 
 
An object diagram may also include icons that denote class utilities and metaclasses, since 
both of these entities denote object-like things that may be operated upon and that operate 
upon other objects. 
 
Object Relationships As explained in Chapter 3, objects interact through their links to other 
objects, represented by the icon in Figure 5-24. A link is an instance of an association, 
analogous to an object being an instance of a class. 
 
A link may exist between two objects (including class utilities and metaclasses) if and only if 
there is an association between their corresponding classes. This class association may 
manifest itself in any way, meaning that the class relationship could be a plain association, an 
inheritance relationship, or a "has" relationship, for example. The existence of an association 
between two classes therefore denotes a path of communication (that is, a link) between 
instances of the classes, whereby one object may send messages to another. All classes 
implicitly have an association to themselves, and hence it is possible for an object to send a 
message to itself. 
 
Given object A with a link L to object B, A may invoke any operation that is applicable to B's 
class and that is accessible to A; the reverse is true for operations invoked by B upon A. 
Whichever object invokes the operation is known as the client; whichever object provides the 
operation is known as the supplier. In general, the sender of a message knows the receiver, but 
the receiver does not necessarily know the sender. 
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In the steady state, there must be consistency between the class structure and the object 
structure of a system. If we show an operation m being invoked across link L upon object B, 
then B's specification (or the specification of an appropriate superclass) must: contain the 
declaration of M. 
 
As we show in Figure 5-24, we may adorn a link with a collection of messages. Each message 
consists of the following three elements: 
 
• D A synchronization symbol denoting the direction of the

 invocation 
 
• M An operation invocation or event dispatch  
 
• S Optionally, a sequence number 
 
We indicate the direction of a message by adorning it with a directed line, pointing to the 
supplier object. This particular symbol denotes the simplest form of message passing, whose 
semantics are guaranteed only in the presence of a single thread of control. As we will discuss 
in a later section, there are more advanced forms of synchronization that are appropriate to 
multiple threads of control. 
 
An operation invocation is the most common kind of message. An operation invocation 
follows the syntax for operations as defined earlier, except that we may include actual 
parameters that match the signature of the operation: 
 
• N() Operation name only 
 
• R N(arguments) Operation return object, name, and actual arguments 
 
Matching actual arguments to formal arguments is done by position. If the operation return 
object and actual arguments use unqualified names that match other unqualified names in the 
object diagram, they are meant to denote the same object, and so their respective classes must 
be appropriate to the signature of the operation. In this manner, we can represent interactions 
that involve objects passed by parameter to or returned by certain operations. 
 
A message denoting the dispatch of an event is also possible. An event dispatch follows the 
syntax for events as defined earlier, and so may represent a symbolic name, an object, or the 
name of some operation. In each case, the event name must be defined for the state transition 
diagrams appropriate to the class of the supplier object. Event dispatches as operations may 
include actual parameters as above. 
 
In the absence of an explicit sequence number, messages may be passed at any time relative 
to all other messages represented in a particular object diagram. To show an explicit ordering 
of events, we may optionally prefix a sequence number (starting at one) to an operation 
invocation or event dispatch. This sequence number is used to indicate the relative ordering 



 Chapter 5: The Notation      209 

of messages. Messages with the same sequence number are unordered relative to each other; 
messages with lower sequence numbers are dispatched before messages with higher 
sequence numbers. Duplicate sequence numbers and missing sequence numbers allow a 
partial ordering of messages. 
 
Example Figure 5-25 shows an example of an object diagram for the hydroponics gardening 
system, whose context is the class category Planning, first described in Figure 5-7. The intent of 
this diagram is to illustrate a scenario that 
 

 
Figure 5-25 
Hydroponics Gardening System Object Diagram 
 
traces the execution of a common system function, namely, the determination of a predicted 
net cost-to-harvest for a specific crop. 
 
Carrying out this system function requires the collaboration of several different objects. We 
see from this diagram that the action of the scenario begins with some PlanAnalyst object 
invoking the operation timeToHarvest() upon the class utility PlanMetrics. Note that the object C is 
passed as an actual argument to this operation. Subsequently, the PlanMetrics class utility calls 
status() upon a certain unnamed GardeningPlan object; our diagram includes a development note 
indicating that we must check that the given plan is in fact executing. The GardeningPlan object 
in turn invokes the operation maturationTime() upon the selected GrainCrop object, asking for the 
time the crop is expected to mature. After this selector operation completes, control then 
returns to the PlanAnalyst object, which then calls C.yield() directly, which in turn propagates this 
operation to the crop's superclass (the operation Crop::yield()). Control again returns to the 
PlanAnalyst object, which completes the scenario by invoking the operation netCost() upon itself. 
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This diagram indicates a link between the PlanAnalyst and GardeningPlan objects. Although no 
messages are passed, the presence of this link serves to highlight the existence of a semantic 
dependency between the two objects. 
 
Advanced Concepts 
The elements we have presented thus far constitute the essential parts of the notation for 
object diagrams. However, a number of particularly knotty development issues require that 
we extend this basic notation slightly. As we warned in our discussion on class diagrams, we 
must again emphasize that 
 

 
Figure 5-26 
Roles 
 
these advanced features should be applied only as necessary to capture the intended 
semantics of a scenario. 
 
Roles, Keys, and Constraints In an earlier section, we noted that associations in a class 
diagram may be adorned with a role denoting the purpose or capacity wherein one class 
associates with another. For certain object diagrams, it is useful to restate this role on the 
corresponding link between two objects. Often, this adornment helps to explain why one 
object is operating upon another. 
 
Figure 5-26 provides an example of this advanced feature. Here we see that some PlanAnalyst 
object inserts a specific crop into an anonymous CropEncyclopedia object, and does so while 
acting in the role of Contributor. 
 
Using the same notation we introduced in class diagrams, we may indicates the keys or 
constraints associated with an object or a link. 
 
Data Flow As we described in Chapter 3, data may flow with or against the direction of a 
message. Occasionally, explicitly showing the direction of a data flow helps to explain the 
semantics of a particular scenario. Borrowing from the notation for structured design, we use 
the icon shown in Figure 5-26 to show that the value succeeded returns upon completion of the 
message insert. 
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We may use either an object or a value in a data flow. 
  
Visibility In certain complicated scenarios, it is useful to keep track of exactly how one object 
has visibility to another. Although associations in class diagrams denote the semantic 
dependencies that may exist among the classes of two objects, they do not dictate exactly how 
those instances can see one another. For this reason, we may adorn the links in our object 
diagrams with icons that represent the visibility of one object to another. This adornment is 
also important for tools that support forward code generation and reverse engineering. 
 
Figure 5-27 is a refinement of Figure 5-25, and includes some of these adornments, which are 
similar to the icons we used to represent physical 
 

 
Figure 5-27  
Visibility 
 
containment in class diagrams, but with the addition of a letter designating the kind of 
visibility. For example, the G adornment shown on the link from the PlanAnalyst object to the 
PlanMetrics class utility denotes that the class utility is global to the declaration of the analyst 
object. The object C is visible to the PlanAnalyst object and the GardeningPlan object through two 
different paths. From the perspective of the PlanAnalyst object, the GrainCrop object C is visible as 
a parameter to some analyst operation, (the P adornment); from the perspective of the 
GardeningPlan object, the  object C is visible as a field (that is, as a part of the plan aggregate 
object). 
 
To generalize, the following adornments may be used to indicate visibility: 
 
• G  The supplier object is global to the client.  
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• P The supplier object is a parameter to some operation of  
 the client.  

• F The supplier object is a part of the client object.  
• L The supplier object is a locally declared object in the scope of 

 the object diagram. 
 
Consistent with the adornments for physical containment in class diagrams, these 
adornments may be written as an open box with a letter (representing that the object's 
identity is shared) or as a filled box wit that the object's identity is not structurally shared). 
 
The absence of a visibility adornment means that the precise visibility between the two 
objects is left unspecified. In practice, it is common to adorn 
 

 
Figure 5-28 
Active Objects and Synchronization 
 
only a few key links in an object diagram with these visibility symbols. The most common use 
of these symbols is to represent whole/part (aggregation) relationships between two objects; 
the second most common use is to represent transitory objects that are passed into the object 
diagram's scenario as parameters. 
 
Active Objects and Synchronization As noted in Chapter 3, certain objects may be active, 
meaning that they embody their own thread of control. Other objects may have only purely 
sequential semantics, while yet others might not be active, yet still guarantee their semantics 
in the presence of multiple threads of control. 
 
In each of these circumstances, we must address two issues: how to signify the active objects 
that denote roots of control in a scenario, and how to represent different forms of 
synchronization among such objects. 
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In our earlier discussion on the advanced features of class specifications, we noted that classes 
may have one of four concurrency semantics: sequential, guarded, synchronous, and active. 
By implication, all instances of a class take on the concurrency semantics of their class; all 
objects are sequential unless otherwise stated. We may explicitly reveal the concurrency 
semantics of an object in an object diagram by adorning its object icon with the names 
sequential, guarded, synchronous, or active, placed in the lower left of the icon. For example, in 
Figure 5-28, we see that H, C, and the anonymous instance of the EnviommentalController class are 
all active objects and thus embody their own thread of control. Unadorned objects (such as L) 
are assumed to be sequential. 
 
The message synchronization symbol we introduced earlier (the simple directed line) 
represents simple sequential message passing. In the presence of multiple threads of control, 
however, we must specify other forms of synchronization. 
 

 
Figure 5-29 
Time Budgets 
 
 
Albeit slightly contrived, the example in Figure 5-28 illustrates the different kinds of message 
synchronization that: may appear in an object diagram. The message turnOn() is an example of 
simple message passing, and is represented with the directed line. The semantics of simple 
message passing are guaranteed only in the presence of a single thread of control, in contrast, 
all the other messages involve some form of process synchronization; all such advanced 
forms of synchronization apply only to suppliers that are non-sequential. 
 
For example, the message startUp() is synchronous, meaning that the client will wait forever 
until the supplier accepts the message. Synchronous message passing is equivalent to Ada's 
rendezvous mechanism among tasks. The isReady() message denotes balking message passing, 
meaning that the client will abandon the message if the supplier cannot immediately service 
the message. The restart() message denotes a timeout synchronization: the client will abandon 
the message if the supplier cannot service the message within a specified amount of time. 
 
In each of these last three cases, the client must wait for the supplier to completely process the 
message (or abandon the message) before control can resume. In the case of the message 
failure(), the semantics are different. This is an example of an asynchronous message, which 
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means that the client sends the event to the supplier for processing, the supplier queues the 
message, and the client then proceeds without waiting for the supplier. Asynchronous 
message passing is akin to interrupt handling. 
 
Time Budgets For certain time-critical applications, it is important to trace scenarios in terms 
of exact time relative to the start of the scenario. To designate relative time, we use sequence 
numbers that denote time (in seconds), prefixed by the plus symbol. For example, in Figure 5-
29, we see that the message startUp() is first invoked 5 seconds after the start of the scenario, 
followed by the message ready() 6.5 seconds after the start of the scenario, and then followed 
by the message turnOn() after 7 seconds. 
 
Specifications 
As for class diagrams, each entity in an object diagram may have a specification, which 
provides us complete definition. Because the specifications for objects and object relationships 
add no information beyond what we have already described in this section, we need not 
discuss their textual specification here. 
 
On the other hand, the specifications for object diagrams as a whole do have one significant 
piece of nongraphical information that we must consider. As we described at the beginning of 
this section, every object diagram must designate a context. We do so in the diagram's 
specification, as follows: 
 
Context:   global | category | class | operation 
 
In particular, the scope of an object diagram may be global, or in the context of a named class 
category, class, or operation (including both methods and free subprograms). 
 
 
5.5 Interaction Diagrams 
 
Essentials: Objects and Interactions 
An interaction diagram is used to trace the execution of a scenario in the same context as an 
object diagram.56 Indeed, to a large degree, an interaction diagram is simply another way of 
representing an object diagram. For example, in Figure 5-30, we provide an interaction 
diagram that duplicates most of the semantics of the object diagram shown in Figure 5-25. 
The advantage of using an interaction diagram is that it is easier to read the passing of 
messages in relative order. The advantage of using an object diagram is that it scales well to 
many objects with complex invocations, and permits the inclusion of other information, such 
as links, attribute values, roles, data flow, and visibility. Because each diagram has 
compelling benefit we include both of them in the method.57 

                                                 
56 These diagrams are generalizations of Rumbaugh's event trace diagrams [14] and Jacobson's interaction 
diagrams [15]. 
57 Object diagrams and interaction diagrams are sufficiently close in terms of their semantics that it is possible 
for tools to generate one diagram from the other, with minimal loss of information. 
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Interaction diagrams introduce no new concepts or icons; rather, they take most of the 
essential elements of object diagrams and restructure them. As Figure 5-30 indicates, an 
interaction diagram appears in tabular form. The entities of interest (which are the same as 
for object diagrams) are written horizontally across the top of the diagram. A dashed vertical 
line is drawn below each object. Messages (which may denote events or the invocation of 
operations) are shown horizontally using the same syntax and synchronization symbols as for 
object diagrams. The endpoints of the message icons connect 
 

 
Figure 5-30 
Hydroponies Gardening System Interaction Diagram 
 
with the vertical lines that connect with the entities at the top of the diagram and are drawn 
from the client to the supplier. Ordering is indicated by vertical position, with the first 
message shown at the top of the diagram, and the last message shown at the bottom. As a 
result, it is unnecessary to use sequence numbers. 
 
Interaction diagrams are often better than object diagrams for capturing the semantics of 
scenarios early in the development life cycle, before the protocols of individual classes have 
been identified. As we explain in the next chapter, early interaction diagrams tend to focus on 
events as opposed to operations, because events he1p to define the boundaries of a system 
under development. As development proceeds and the system's class structure is refined, the 
emphasis tends to migrate to object diagrams, whose semantics are more expressive. 
 
Advanced Concepts 
Interaction diagrams are conceptually very simple; however, there are two straightforward 
elements that can be added to make them more expressive in the presence of certain 
complicated patterns of interaction. 
 
Scripts For complex scenarios that involve conditions or iterations, interaction diagrams can 
be enhanced by the use of scripts. As we see in the example in Figure 5-31, a script may be 
written to the left of an interaction diagram, with the steps of the script aligning with the 
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message invocations. Scripts may be written using free form or structured English text, or 
using the syntax of the chosen implementation language. 
 
Focus of Control Neither simple object diagrams nor interaction diagrams indicate the focus 
of control as messages are passed. For example, if object A sends messages X and Y to other 
objects, it is not clear if X and Y are independent messages from A or if they have been invoked 
as part of the same  
 

 
Figure 5-31 
Scripts and Focus of Control 
 
enclosing message Z. As we show in Figure 5-31, we may adorn the vertical lines descending 
from each object in an interaction diagram with a box representing the relative time that the 
flow of control is focused in that object. For example, here we see that the anonymous 
instance of the GardeningPlan is the ultimate focus of control, and its behavior of carrying out a 
climatic plan invokes other methods, which in turn call other methods that eventually return 
control back to the GardeningPlan object. 
 
 
5.6 Module Diagrams 
 
Essentials: Modules and Their Dependencies 
A module diagram is used to show the allocation of classes and objects to modules in the 
physical design of a system. A single module diagram represents a view of the module 
structure of a system. During development, we use module diagrams to indicate the physical 
layering and partitioning of our architecture. 
 
Certain languages, most notably Smalltalk, have no concept of a physical architecture formed 
of modules; in such cases, module diagrams are unnecessary. 
 
The two essential elements of a module diagram are modules and their dependencies. 
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Modules Figure 5-32 shows the icons we use to represent various kinds of modules. The first 
three icons denote files, distinguished by their function. The main program icon denotes a file 
that contains the root: of a program. In C++ for example, this would likely be some cpp file 
that contains the definition of the privileged nonmember function called main. Typically, 
there is exactly one such module per program. The specification icon and the body icon 
denote files that contain the declaration and definition of entities, respectively. In C++, 
 

 
Figure 5-32 
Module and Subsystem lcons 
 
for example, specification modules denote h files, and body modules denote cpp files. 
 
We will explain the meaning of the subsystem icon in a later section. 
 
A name is required for each module; this name typically denotes the simple name of the 
corresponding physical file in the development directory. We usually write such names 
without their suffixes, which would be redundant when associated with a particular module 
icon. If the name is particularly long, it can either be elided or the icon magnified. Every full 
file name must be unique according to its enclosing subsystem. Depending upon the needs of 
our particular development environments, we may impose other constraints upon names, 
such as requiring distinctive prefixes or requiring unique names across the entire system. 
 
Each module encompasses the declaration or definition of classes, objects, and other language 
details. Conceptually, we can zoom in to a module to see the physical contents of its 
corresponding file. 
 
Dependencies The only relationship we may have between two modules is a compilation 
dependency, represented by a directed line pointing to the module upon which the 
dependency exists. In C++ for example, we indicate a compilation dependency by #include 
directives. Similarly in Ada, compilation dependencies are indicated by with clauses. In 
general, there may be no cycles within a set of compilation dependencies. Performing a 
topological sort upon all the dependencies of a system's module structure is sufficient to 
calculate a partial ordering of compilation. 
 
Example In Figure 5-33, we provide an example of this notation, drawn from the physical 
architecture of the hydroponics gardening system. Here we see six modules. Two of them, 
climatedefs and cropdefs, are only specifications, and serve to provide corm-non types and 
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constants. The remaining four modules are shown with their specification and bodies 
grouped together: this is a typical style of drawing module diagrams, since the specification 
and body of a module are so intimately related. Because we have overlaid the two parts, the 
dependency of the body upon the corresponding specification is hidden, although it in fact 
exists. Similarly, the name of the body is hidden, which is not a problem because our 
convention is to name specifications and bodies the same except for a distinguishing suffix 
(such as .h and .cpp, respectively). 
 

 
Figure 5-33 
Hydroponics Gardening System Module Diagram 
 
The dependencies in this diagram suggest a partial ordering of compilation. For example, the 
body of climate depends upon the specification of heater, which in turn depends upon the 
specification of climatedefs. 
 
Essentials: Subsystems 
As explained in Chapter 2, a large system may be decomposed into many hundreds, if not a 
few thousand, modules. Trying to comprehend the physical architecture of such a system is 
impossible without further chunking. In practice, developers tend to use informal 
conventions to collect related modules in directory structures. For similar reasons, we 
introduce the notion of a subsystem for module diagrams, which parallels the role played by 
the class category for class diagrams. Specifically, subsystems represent clusters of logically 
related modules. 
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Subsystems Subsystems serve to partition the physical model of a system. A subsystem is an 
aggregate containing other modules and other subsystems. Each module in the system must 
live in a single subsystem or at the top level of the system. 
 
Figure 5-32 shows the icon we use to represent a subsystem. As for a module, a name is 
required for each subsystem. The rules for naming subsystems follow the rules for naming 
individual modules, although full subsystem names do not typically include distinctive 
suffixes. 
 
Some of the modules enclosed by a subsystem may be public, meaning that they are exported 
from the subsystem and hence usable outside the 
 

 
Figure 5-34 
Hydroponics Gardening System Top-Level Module Diagram 
 
subsystem. Other modules may be part of the subsystem's implementation, meaning that 
they are not intended to be used by any other module outside of the subsystem. By 
convention, every module in a subsystem is considered public, unless explicitly defined 
otherwise. Restricting access to implementation modules is achieved by using the same 
advanced concepts as for restricting access in class categories. 
 
A subsystem can have dependencies upon other subsystems or modules, and a module can 
have dependencies upon a subsystem. For consistency, we apply the same dependency icon 
as described earlier. 
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In practice, a large system has one top-level module diagram, consisting of the subsystems at 
the highest level of abstraction. Through this diagram a developer comes to understand the 
general physical architecture of a system. 
 
Example Figure 5-34 shows an example of a top-level module diagram for the hydroponics 
gardening system. If we zoom into any of the seven subsystems shown here, we will find all 
of their corresponding modules. 
 
Notice how this physical architecture maps to the logical architecture of the hydroponics 
gardening system shown in Figure 5-7. These structures are largely isomorphic, although 
there are small differences. In particular, we have made the decision to separate the low-level 
device classes from the Climate and Nutrients class categories and place their corresponding 
modules into one subsystem called Devices. We have also split the Greenhouse class category 
into the two subsystems called ClimateControl and Nutritionist. 
 
Advanced Concepts 
Language Tailoring Certain languages, most notably Ada, define other kinds of modules 
than the simple ones provided for by Figure 5-32. In particular, Ada defines generic packages, 
generic subprograms, and tasks as separate Compilation units. It is therefore reasonable to 
augment the essential icons of module diagrams to include icons that represent language-
specific kinds of modules. 
 
Segmentation Especially for platforms that have severely constrained memory models, the 
decision to generate code in different segments, or even to produce a scheme for overlays, is 
an important one. Module diagrams can be extended to he1p visualize this segmentation by 
including language-specific adornments to each module in a module diagram that denote its 
corresponding code or data segment. 
 
Specifications 
As with class and object diagrams, each entity in a module diagram may have a specification, 
which provides its complete definition. Because the specifications for modules and their 
dependencies add no information beyond what we have already described in this section, we 
need not discuss their textual specification here. 
 
Given some degree of integration between tools that support: this notation and tools for 
programming environments, it is reasonable to use module diagrams as a means of 
visualizing the modules managed by the programming environment. Zooming into a specific 
module or subsystem in a module diagram is therefore equivalent to navigating to the 
corresponding physical file or directory, and vice versa. 
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5.7 Process Diagrams 
 
Essentials: Processors, Devices, and Connections 
A process diagram is used to show the allocation of processes to processors in the physical 
design of a system. A single process diagram represents a view into the process structure of a 
system. During development, we use process diagrams to indicate the physical collection of 
processors and devices that serve as the platform for execution of our system. 
 
The three essential elements of a process diagram are processors, devices, and their 
connections. 
 
Processors Figure 5-35 shows the icon we use to represent a processor. A processor is a 
piece of hardware capable of executing programs. A name is 
 

 
Figure 5-35 
Processor and Device icons 
 
required for each processor; there are no particular constraints upon processor names, 
because they denote hardware, not software, entities. 
 
We may adorn a processor icon with a list of processes. A process in this list denotes the root 
of a main program (from a module diagram) or the name of an active object (from an object 
diagram). 
 
Devices Figure 5-35 shows the icon we use to represent a device. A device is a piece of 
hardware incapable of executing programs (as least as far as our logical model is concerned). 
As for processors, a name is required for each device. There are no particular constraints 
upon device names, and in fact, their names may be quite generic, such as modem or terminal. 
 
Connections Processors and devices must communicate with one another. Using an 
undirected line, we may indicate the connection between a device and a processor, a 
processor and a processor, or a device and a device. A connection usually represents some 
direct hardware coupling, such as an RS232 cable, an Ethernet connection, or perhaps even a 
path to shared memory. A connection may also represent more indirect couplings, such as 
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satellite-to-ground communications. Connections are usually considered to be bi-directional, 
although if a particular connection is unidirectional, an arrow may be added to show the 
direction. Each connection may include an optional label that names the connection. 
 
Example In Figure 5-36, we provide an example of this notation, drawn from the physical 
architecture of the hydroponics gardening system. Here we see that our system architects 
have decided to decompose our system into a network of four computers, one assigned to a 
gardener workstation, and the others allocated to individual greenhouses. Processes running 
on the greenhouse computers cannot communicate directly with one another, although they 
can communicate with processes running on the gardener workstation. For simplicity, we 
have chosen not to show any devices in this diagram, although we expect there to be quite a 
few actuators and sensors in the system. 
 

 
Figure 5-36 
Hydroponics Gardening System Process Diagram 
 
Advanced Concepts 
 
Tailoring Figure 5-35 shows the standard icons we use to represent processors and devices, 
but it is reasonable and in fact desirable to allow alternate representations. For example, we 
might define specific icons to graphically represent an embedded microcomputer (a 
processor), a disk, a terminal, and an A/D converter (all devices), and then use these icons in 
a process diagram instead of the standard icons. By doing so, we offer a visualization of the 
physical platform of our implementation that speaks directly to our hardware and systems 
architects, as well as to the end users of the system, who are probably not experts in software 
development. 
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Nesting The hardware configuration of a system is sometimes very complex, and may 
involve complex hierarchies of processors and devices. In some circumstances, therefore, it is 
useful to be able to represent groups of processors, devices, and connections, much as class 
categories represent logical groupings of classes and objects. We may indicate such hardware 
groups with a named icon shaped as a rounded rectangle with dashed lines. Each such icon 
denotes a distinct group of processors, devices, and connections, and so zooming into a group 
reveals these nested entities. We may define connections between groups, as well as among 
processors, devices, and groups. 
 
Process Scheduling We must have some policy for how to schedule the execution of 
processes within a processor. There are basically five general approaches to scheduling, and 
we may document which of these is used by adorning each processor icon with one of the 
names: 
 
• Preemptive Higher-priority processes that are ready to execute may preempt

 lower-priority ones that are currently executing; typically,
 processes with equal priority are given a time slice in which to
 execute, so that computational resources are fairly distributed. 

 
• Nonpreemptive The current process continues to execute until it relinquishes

 control. 
 
• Cyclic Control passes from one process to another, and each process is

 given a fixed amount of processing time, usually called a frame,
 processes may be allocated time in frames or subframes. 

 
• Executive Some algorithm controls process scheduling. 
 
• Manual Processes are scheduled by a user outside of the system. 
 
To further explain the scheduling used by a specific processor, it is sometimes useful to 
include an object diagram or an interaction diagram, particularly if executive scheduling is 
used. 
 
Specifications 
As with all other diagrams, each processor, device, and connection may have a specification, 
which provides its complete definition. Because the specifications for these entities add no 
information beyond what we have already described in this section, we need not discuss their 
textual specification here. 
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5.8 Applying the Notation 
 
The Products of Object-Oriented Development 
Typically, the analysis of a system will include sets of object diagrams (to express the 
behavior of the system through scenarios), class diagrams (to express the roles and 
responsibilities of agents that provide the system's behavior), and state transition diagrams 
(to show the event-ordered behavior of these agents). Similarly, the design of a system, 
encompassing its architecture and implementation, will include sets of class diagrams, object 
diagrams, module diagrams, and process diagrams, as well as their corresponding dynamic 
views. 
 
End-to-end connectivity exists among these diagrams, permitting us to trace requirements 
from implementation back to specification. Starting with a process diagram, a processor may 
designate a main program, which is defined in some module diagram. This module diagram 
may encompass the definition of a collection of classes and objects, whose definitions we will 
find in the appropriate class or object diagrams. Finally, the definitions of individual classes 
point to our requirements, because these classes in general directly reflect the vocabulary of 
the problem space. 
 
The notation described in this chapter can be used manually, although for larger applications 
it cries out for automated tool support. Tools can provide consistency checking, constraint 
checking, completeness checking, and analysis, and they can he1p a developer browse 
through the products of analysis and design in unconstrained ways. For example, while 
looking at a module diagram, a developer might want to study a particular mechanism; he or 
she can use a tool to locate all the classes allocated to a particular module. While looking at an 
object diagram describing a scenario that uses one of these classes, the developer might want 
to see its place in the inheritance lattice. Lastly, if this scenario involved an active object, the 
developer might use a tool to find the processor to which this thread of control is allocated, 
and then view an animation of its class's state machine on that processor. Using tools in this 
manner frees developers from the tedium of keeping all the details of the analysis and design 
consistent, allowing them to focus upon the creative aspects of the development process. 
 
Scaling Up and Scaling Down 
We have found this notation and its variants applicable both to small systems consisting of 
just a dozen or so classes, to ones consisting of a several thousand classes. As we will see in 
the next two chapters, this notation is particularly applicable to an incremental, iterative 
approach to development. One does not create a diagram and then walk away from it, 
treating it as some sacred, immutable artifact. Rather, these diagrams evolve during the 
design process as new design decisions are made and more detail is established. 
 
We have also found this notation to be largely language-independent. It is applicable to any- 
of a wide spectrum of object-oriented programming languages. 
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This chapter has described the essential products of object-oriented development, including 
their syntax and semantics. The next two chapters will describe the process that leads us to 
these products. The remaining five chapters demonstrate the practical application of this 
notation and process to a variety of problems. 
 
Summary 
• Designing is not the act of drawing a diagram; a diagram simply captures a design. 

 
• In the design of a complex system, it is important to view the design from multiple 

perspectives: namely, its logical and physical structure, and its static and dynamic 
semantics. 
 

• The notation for object-oriented development includes four basic diagrams (class 
diagrams, object diagrams, module diagrams, and process diagrams) and two 
supplementary diagrams (state transition diagrams and interaction diagrams). 
 

• A class diagram is used to show the existence of classes and their relationships in the 
logical design of a system. A single class diagram represents a view of the class structure 
of a system. 
 

• An object diagram is used to show the existence of objects and their relationships in the 
logical design of a system. A single object diagram is typically used to represent a 
scenario. 
 

• A module diagram is used to show the allocation of classes and objects to modules in the 
physical design of a system. A single module diagram represents a view of the module 
architecture of a system. 
 

• A process diagram is used to show the allocation of processes to processors in the 
physical design of a system. A single process diagram represents a view of the process 
architecture of a system. 
 

• A state transition diagram is used to show the state space of an instance of a given class, 
the events that cause a transition from one state to another, and the actions that result 
from a state change. 
 

• An interaction diagram is used to trace the execution of a scenario in the same context as 
an object diagram. 

 
Further Readings 
Since the publication of the first edition of this book, I have unilaterally tried to incorporate 

the best notational elements from many other methodologists, especially Rumbaugh and 
Jacobson, into the Booch method, and have cast away or simplified elements of the 
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original Booch notation that proved to be clumsy, inconsistent, or of marginal utility, 
while at the same time striving to maintain a conceptual integrity in the notation. This 
chapter is the culmination of this unification effort. 

 
A tremendous amount has been written about notations for software analysis and design; the 

book by Martin and McClure [H 1988] is a general reference to many of the more 
traditional approaches. Graham [F 1991] surveys a number of notations specific to object-
oriented methods. 

 
An early form of the notation described in this chapter was first documented by Booch [F 

19811. This notation later evolved to incorporate the expressive power of semantic nets 
(Stillings et al. [A 1987] and Barr and Feigenbaum [j 1981]), entity-relationship diagrams 
(Chen [E 1976]), entity models (Ross [F 1987]), Petri nets (Peterson [J 1977], Sahraoui [F 
1987], and Bruon and Balsamo [F 1986]), associations (Rumbaugh [F 1991]) and statecharts 
(Harel [F 1987]). Rumbaugh's work is particularly interesting, for as he observes, our 
methods are more similar than they are different. 

 
The icons representing objects and packages were inspired by the iAPX 432 [D 1981]. The 

notation for object diagrams derives from Seidewitz [F 1985]. The notation for concurrency 
semantics is adapted from the work of Buhr [F 1988, 1989]. 

 
Chang [G 1990] provides a good survey on the more general topic of visual languages.
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The Process 
 
 
 
The amateur software engineer is always in search of magic, some sensational method or 
tool whose application promises to render software development trivial. it is the mark of the 
professional software engineer to know that no such panacea exists. Amateurs often want to 
follow cookbook steps; professionals know that right approaches to development usually lead 
to inept design products, born of a progression of lies, and behind which developers can 
shield themselves from accepting responsibility for earlier misguided decisions. The amateur 
software engineer either ignores documentation all together, or follows a process that is 
documentation-driven, worrying more about how these paper products look to the customer 
than about the substance they contain. The professional acknowledges the importance of 
creating certain documents, but never does so at the expense of making sensible 
architectural innovations. 
 
The process of object-oriented analysis and design cannot be described in a cookbook, yet it 
is sufficiently well-defined as to offer a predictable and repeatable process for the mature 
software development organization. In this chapter, we examine this incremental, iterative 
process in detail, and consider the purpose, products, activities, and measures of its various 
phases. 
 
 
6.1 First Principles 
 
Traits of Successful Projects 
A successful software project is one whose deliverables -satisfy and possibly exceed the 
customer's expectations, was developed in a timely and economical fashion, and is resilient to 
change and adaptation. By this measure, we have observed two traits that are common to 
virtually all of the successful object-oriented systems we have encountered, and noticeably 
absent from the ones that we count as failures: 
 
• The existence of a Strong architectural vision 
 
• The application of a well-managed iterative and incremental development life cycle 
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Architectural Vision A system that has a sound architecture is one that has conceptual 
integrity and, as Brooks firmly states, "conceptual integrity is the most important 
consideration in system design" [1]. As we described in Chapters 1 and 5, the architecture of 
an object-oriented software system encompasses its class and object structure, organized in 
terms of distinct layers and partitions. In some ways, the architecture of a system is largely 
irrelevant to its end users. However, as Stroustrup points out, having a "clean internal 
structure" is essential to constructing a system that is understandable, can be extended and 
reorganized, and is maintainable and testable [2]. Furthermore, it is only through having a 
clear sense of a system's architecture that it becomes possible to discover common 
abstractions and mechanisms. Exploiting this commonality ultimately leads to the 
construction of systems that are simpler, and therefore smaller and more reliable. 
 
Just as there is no "right” way to classify abstractions, there is no "right” way to craft the 
architecture of a given system. For any application domain, there are certainly some 
profoundly stupid ways, and occasionally some very elegant ways, to design the architecture 
of a, solution. How then do we distinguish a good architecture from a bad one? 
 
Fundamentally, good architectures tend to be object-oriented. This is not to say that all object-
oriented architectures are good, or that only object-oriented architectures are good. However, 
as we discussed in Chapters 1 and 2, it can be shown that the application of the principles that 
underlie object-oriented decomposition tend to yield architectures that exhibit the desirable 
properties of organized complexity. 
 
Good software architectures tend to have several attributes in common: 
 
• They are constructed in well-defined layers of abstraction, each layer representing a 

coherent abstraction, provided through a well-defined and controlled interface, and built 
upon equally well-defined and controlled facilities at lower levels of abstraction. 

 
• There is a clear separation of concerns between the interface and implementation of each 

layer, making it possible to change the implementation of a layer without violating the 
assumptions made by its clients. 

 
• The architecture is simple: common behavior is achieved through common abstractions 

and common mechanisms. 
 
We make a distinction between strategic and tactical architectural decisions. A strategic 
decision is one that has sweeping architectural implications, and so involves the organization 
of the architecture’s higher-level structures. Mechanisms for error detection and recovery, 
user interface paradigms, policies for memory management and object persistence, and 
approaches to process synchronization in real-time applications all represent strategic 
architectural decisions. In contrast, a tactical decision has only local architectural implications, 
and so usually only involves the details of an abstraction's interface and implementation. The 
protocol of a class, the signature of a method, and the choice of a particular algorithm to 
implement a method all represent tactical decisions. 
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A fundamental part of holding on to a strong architectural vision is maintaining a balance 
between these strategic and tactical decisions. In the absence of good strategic decisions, even 
the most cunningly designed class will never fit in quite right. A collection of the most 
profoundly engineered strategic decisions will be ruined by not paying careful attention to 
the design of individual classes. In either case, neglecting an architectural vision leaves us 
with the software equivalent of sludge. 
 
Iterative and Incremental Life Cycle Consider two extremes: an organization that has no 
well-defined development life cycle, and one that has very rigid and strictly-enforced policies 
that dictate every aspect of development. In the former case, we have anarchy: through the 
hard work and individual contributions of a few developers, the team may eventually 
produce something of value, but we can never reliably predict anything: not progress to date, 
not work remaining, and certainly not quality. The team is likely to be very inefficient and, in 
the extreme, may never reach closure and so never deliver a software product that satisfies its 
customer's current or future expectations. This is an example of a project in free fall.58 in the 
second case, we have a dictatorship, in which creativity is punished, experimentation that 
could yic1d a more elegant architecture is discouraged, and the customer's real expectations 
are never correctly communicated to the lowly developer who is hidden behind a veritable 
paper wall erected by the organization’s bureaucracy. 
 
The successful object-oriented projects we have encountered follow neither anarchic nor 
draconian development life cycles. Rather, we find that the process that leads to the 
successful construction of object-oriented architectures tends to be both iterative and 
incremental. Such a process is iterative in the sense that it involves the successive refinement 
of an object-oriented architecture, from which we apply the experience and results of each 
release to the next iteration of analysis and design. The process is incremental in the sense 
that each pass through an analysis/design/evolution cycle leads us to gradually refine our 
strategic and tactical decisions, ultimately converging upon a solution that meets the end 
user's real (and usually unstated) requirements, and yet is simple, reliable, and adaptable. 
 
An iterative and incremental development life cycle is the antithesis of the traditional 
waterfall life cycle, and so represents neither a strictly top-down nor a bottom-up process. It 
is reassuring to note that there are precedents in the hardware and software communities for 
this style of development [3, 4]. For example, assume that: we are faced with the problem of 
staffing an organization to design and implement a fairly complex multiboard device or some 
custom VLSI chip. We might use traditional horizontal staffing, in which we have a waterfall 
progression of products, with systems architects feeding logic designers feeding circuit 
designers. This is an example of top-down design, and requires designers who are "tall, 
skinny men" because of the narrow yet deep skills that each must possess [5]. Alternately, we 
might use vertical staffing, in which we have good all-around designers who take slices of the 
entire project, from architectural conception through circuit design. This style of development 

                                                 
58 There is an outside chance that a project in free fall will eventually land intact, but you would not want to bet 
your company's future on it. 
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is much more iterative and incremental, and the skills that these designers must have leads us 
to call them "short, fat men" because of the broad architectural vision that each must possess. 
 
Our experience indicates that object-oriented development is neither strictly top-down, nor 
strictly bottom-up. Instead, as Druke suggests, well-structured complex systems are best 
created through the use of "round-trip gestalt design.' This style of design emphasizes the 
incremental and iterative development of a system through the refinement of different yet 
consistent logical and physical views of the system as a whole. Round-trip gestalt design is 
the foundation of the process of object-oriented design. 
 
For a few limited application domains, the problem being solved may already be well-
defined, with many different implementations currently fielded. Here, it is possible to almost 
completely codify the development process: the designers of a new system in such a domain 
already understand what the important abstractions are; they already know what 
mechanisms ought to be employed, and they generally know the range of behavior that is 
expected of such a system. Creativity is still important in such a process, but here the problem 
is sufficiently constrained as to already address most of the system's strategic decisions. In 
such circumstances, it is possible to achieve radically high rates of productivity, because most 
of the development risk has been eliminated [6]. The more we know about the problem to be 
solved, the easier it is to solve. 
 
Most industrial-strength software problems are not like this: most involve the balancing of a 
unique set of functional and performance requirements, and this task demands the full 
creative energies of the development team. 
 
Furthermore, any human activity that requires creativity- and innovation demands an 
iterative and incremental process that relies upon the experience, team member.59 It is 
therefore impossible to provide any cookbook recipes. 
 
Towards a Rational Design Process 
Clearly, however, we desire to be prescriptive; otherwise, we will never secure development 
process for any organization. It is for this reason that we spoke earlier of having a well-
managed incremental and iterative life cycle: well-managed in the sense that the process can 
be controlled and measured, yet not so rigid that it fails to provide sufficient degrees of 
freedom to encourage creativity and innovation. 
 
Having a prescriptive process is fundamental to the maturity of a software organization. As 
described by Humphrey, there are five distinct levels of process maturity [7]: 

                                                 
59 The experiments by Curtis and his colleagues reinforce these observations. Curtis Studied the work of 
professional software developers by videotaping them in action and then analyzing the different activities they 
undertook (analysis, design, implementation, etc.) and when they applied them. From these studies, he 
concluded that "software design appears to be a collection of interleaved, iterative, loosely ordered processes 
under opportunistic control.... Top-down balanced development appears to be a special case occurring when a 
relevant design schema is available or the problem is small.... Good designers work at multiple levels of 
abstraction and detail simultaneously" [8]. 
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• Initial  The development process is ad hoc and often chaotic. Organizations can

 progress by introducing basic project controls. 
 
• Repeatable  The organization has reasonable control over its plans and commitments.

 Organizations can progress by institutionalizing a well-defined process. 
 
• Defined  The development process is reasonably well-defined, understood, and

 practiced; it serves as a stable foundation for calibrating the team and
 predicting progress. Organizations can progress their development
 practices. 

 
• Managed  The organization has quantitative measures of its process. Organizations

 can progress by lowering the cost of gathering this data, and instituting
 practices that permit this data to influence the process. 

 
• Optimizing  The organization has in place a well-tuned process that consistently yields

 products of high quality in a predictable, timely, and cost-effective 
manner. 

 
Unfortunately, as Parnas and Clements observe, "we will never find a process that allows us 
to design software in a perfectly rational way," because of the need for creativity and 
innovation during the development process. However, as they go on to say, "the good news is 
that we can fake it....  [Becausel designers need guidance, we will come closer to a rational 
process if we try to follow the process rather than proceed on an ad hoc basis. When an 
organization undertakes many software projects, there are advantages to having a standard 
procedure. ... If we agree on an ideal process, it becomes much easier to measure the progress 
that the project is making" [9]. 
 
As we move our development organizations to higher levels of maturity, how then do we 
reconcile the need for creativity and innovation with the requirement for more controlled 
management practices? The answer appears to lie in distinguishing the micro and macro 
elements of the development process. The micro process is more closely related to Boehm's 
spiral model of development, and serves as the framework for an iterative and incremental 
approach to development [10]. The macro process is more closely related to the traditional 
waterfall life cycle, and serves as the controlling framework for the micro process. By 
reconciling these two disparate processes, we end up 'faking" a fully rational development 
process, and so have a foundation for the defined level of software process maturity. 
 
We must emphasize that every project is unique, and hence developers must strike a balance 
between the informality of the micro process and the formality of the macro process. For 
exploratory applications, developed by a tightly knit team of highly experienced developers, 
too much formality would stifle innovation; for very complex projects, developed by a large 
team of developers who are likely to be distributed geographically as well as in time, too little 
formality will lead to chaos. 
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The remainder of this chapter provides an overview and then a detailed description of the 
purpose, products, activities, and measures that make up the micro and macro development 
processes. In the next chapter, we examine the practical implications of this process, primarily 
from the perspective of managers who must supervise object-oriented projects. 
 
 
6.2 The Micro Development Process 
 
Overview 
The micro process of object-oriented development is largely driven by the stream of scenarios 
and architectural products that emerge from and that are successively refined by the macro 
process. To a large extent, the micro process represents the daily activities of the individual 
developer or a small team of developers. 
 
The micro process applies equally to the software engineer and the software architect. From 
the perspective of the engineer, the micro process offers guidance in making the myriad 
tactical decisions that are part of the daily 
 

 
Figure 6-1 
The Micro Development Process 
 
fabrication and adaptation of the architecture; from the perspective of the architect, the micro 
process offers a framework for evolving the architecture and exploring alternative designs. 
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In the micro process, the traditional phases of analysis and design are intentionally blurred, 
and the process is under opportunistic control. As Stroustrup observes, "There are no 
'cookbook' methods that can replace intelligence, experience, and good taste in design and 
programming.... The different phases of a software project, such as design, programming, and 
testing, cannot be strictly separated [11]. 
 
As Figure 6-1 illustrates, the micro process tends to track the following activities: 
 
• Identify the classes and objects at a given level of abstraction.  
• Identify the semantics of these classes and objects.  
• Identify the relationships among these classes and objects.  
• Specify the interface and then the implementation of these classes and objects. 
 
Let's examine each of these activities in detail. 
 
Identifying Classes and Objects 
 
Purpose The purpose of identifying classes and objects is to establish the boundaries of the 
problem at hand. Additionally, this activity is the first step in devising an object-oriented 
decomposition of the system under development. 
 
As part of analysis, we apply this step to discover those abstractions that form the vocabulary 
of the problem domain, and by so doing, we begin to constrain our problem by deciding what 
is and what is not of interest. As part of design, we apply this step to invent new abstractions 
that form elements of the solution. As implementation proeeds, we apply this step in order to 
invent lower-level abstractions that we can use to construct higher-level ones, and to discover 
commonality among existing abstractions, which we can then exploit in order to simplify the 
system's architecture. 
 
Products The central product of this step is a data dictionary that is updated as development 
proceeds. Initially, it may be sufficient to accumulate a "list of things" consisting of all 
significant classes and objects, using meaningful names that imply their semantics [121. As 
development proceeds, and especially as the dictionary grows, it becomes necessary to 
formalize the repository, perhaps by using a simple ad hoc database to manage the list, or a 
more focused tool that supports the method directly.60 In its more formal variations, a data 
dictionary serves as an index into all the other products of the development process, 
including the various diagrams and specifications of the object-oriented development 
notation. 
 
The data dictionary thus serves as a central repository for the abstractions relevant to the 
system. Initially, it: is permissible to keep the dictionary open-ended: some things in this 
repository might turn out to be classes, some objects, and others simply attributes of or 

                                                 
60 Formally, a data dictionary for object-oriented development encompasses the specification of each element in 
the architecture. 
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synonyms for other abstractions. Over time, this dictionary will be refined by adding new 
abstractions, eliminating irrelevant ones, and consolidating similar ones. 
 
There are three essential benefits to creating a data dictionary as part of this activity. First, 
maintaining a dictionary helps to establish a common and consistent vocabulary that can be 
used throughout the project. Second, a dictionary can serve as an efficient vehicle for 
browsing through all the elements of a project in arbitrary ways. This feature is particularly 
useful as new members are added to the development team, who must quickly orient 
themselves to the solution already under development. Third, a data dictionary permits 
architects to take a global view of the project, which may lead to the discovery of 
commonalities that otherwise might be missed. 
 
Activities As we described in Chapter 4, the identification of classes and objects involves two 
activities: discovery and invention. 
 
Not every developer has to be skilled in these activities. Analysts, usually working in 
conjunction with domain experts, must be good at discovering abstractions, capable of 
looking at the problem domain and finding meaningful classes and objects. Similarly, 
architects and the more senior developers must be skilled in crafting new classes and objects 
that derive front the solution domain. We will discuss the nature of this work breakdown in 
more detail in the next chapter. 
 
In each case, we carry out these activities by applying any of the various approaches to 
classification described in Chanter 4. A typical order of events might be the following: 
 
• Apply the classical approach to object-oriented analysis (page 155) to generate a set of 

candidate classes and objects. Early in the life cycle, tangible things and the roles they play 
are good starting points. Later in the life cycle, following events will yield other first- and 
second- order abstractions: for each event, we must have some object that is ultimately 
responsible for detecting and/or reacting to the event. 

 
• Apply the techniques of behavior analysis (page 156) to identify abstractions that: are 

directly related to system function points. The system's function points, as we will discuss 
later in this chapter, fall out from the macro process, and represent distinct, outwardly 
visible and testable behaviors. As with events, for each behavior, we must have entities 
that initiate and participate in each behavior. 

 
• From the relevant scenarios generated as part of the macro process, apply the techniques 

of use-case analysis (page 158). Early in the life cycle, we follow initial scenarios that 
describe broad behaviors of the system. As development proceeds, we examine more 
detailed scenarios as well as peripheral scenarios in order to explore the dark comers of 
the system's desired behavior. 
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For each of these approaches, the use of CRC cards is an effective catalyst for brainstorming 
process, and has the added benefit of helping to jell the team by encouraging them to 
communicate.61 
 
Some of the classes and objects we identify early in the life cycle will be wrong, but that: is not 
necessarily a bad thing. Many of the tangible things and roles that we encounter early in the 
life cycle will carry through all the way to implementation, because they are so fundamental 
to our conceptual model of the problem. As we learn more about the problem, we will 
probably change the boundaries of certain abstractions by reallocating responsibilities, 
combining similar abstractions, and - quite often - dividing larger abstractions into groups of 
collaborating ones, thus forming some of the mechanisms of our solution. 
 
Milestones and Measures We successfully complete this phase when we have a reasonably 
stable data dictionary. Because of the iterative and incremental nature of the micro, process, 
we don't expect to complete or freeze this dictionary until very late in the development 
process. Rather, it is sufficient that we have a dictionary containing an ample set of 
abstractions, consistently named and with a sensible separation of responsibilities. 
 
A measure of goodness, therefore, is that the dictionary is not changing wildly each time we 
iterate through the micro process. A rapidly changing dictionary is a sign either that the 
development team has not yet achieved focus, or that the architecture is in some way flawed. 
As development proceeds, we can track stability in lower-level parts of the architecture by 
following the local changes in collaborative abstractions. 
 
Identifying the Semantics of Classes and Objects 
Purpose The purpose of identifying the semantics of classes and objects is to establish the 
behavior and attributes of each abstraction identified in the previous phase. Here we refine 
our candidate abstractions through an intelligent and measurable distribution of 
responsibilities. 
 
As part of analysis, we apply this step to allocate the responsibilities for different system 
behaviors. As part of design, we apply this step to achieve a clear separation of concerns 
among the parts of our solution. As implementation proceeds, we move from free-form 
descriptions of roles and responsibilities to specifying a concrete protocol for each abstraction, 
eventually culminating in a precise signature for each operation. 
 
Products There are several products that flow from this step. The first is a refinement of the 
data dictionary, whereby we initially attach responsibilities to each abstraction. As 
development proceeds, we may create specifications for each abstraction (as described in 
Chapter 5) which state the named operations that form the protocol of each class. As soon as 
possible, we will want to formally capture these decisions by writing the interface for each 
class in our particular implementation language. For C++, this means delivering b files; for 
Ada, this means delivering package specifications; for CLOS, this means writing the generic 

                                                 
61 It’s a terrible stereotype, but some software developers are not particularly known for communicators. 
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functions for each class; for Smalltalk, this means declaring but not implementing the 
methods of each class. If we are dealing with the database elements of our problem, and 
especially if we are using an object-oriented database, we can produce the rudiments of our 
schema. 
 
In addition to these products, which are more tactical in nature, we may also produce object 
diagrams and interaction diagrams that begin to capture the semantics of the scenarios that 
derive from the macro process. These diagrams serve to formally capture our storyboarding 
of each scenario, and so reflect an explicit distribution of responsibilities among collaborating 
objects. At this point, we may also begin to introduce finite state machines for certain 
abstractions. 
 
As in the previous step, we may use an ad hoc database or a method-specific tool to keep track 
of each abstraction's responsibilities, so that the team can evolve a consistent language of 
expression. Once we produce formal class interfaces, we can begin to use our programming 
tools to test and enforce our design decisions. 
 
The primary benefit of the more formal products of this step is that they force the developer 
to consider the pragmatics of each abstraction's protocol. 
 
The inability to specify clear semantics is a si9n that the abstractions themselves are flawed. 
 
Activities There are three activities associated with this step: storyboarding, isolated class 
design, and pattern scavenging. 
 
The primary and peripheral scenarios generated by the macro process are the main drivers of 
storyboarding. This activity represents a top-down identification of semantics and, where it 
concerns system function points, addresses strategic issues. A typical order of events might 
be the following: 
 
• Select one scenario or a set of scenarios related to a single function point; from the 

previous step, identify those abstractions relevant to the scenario. 
 
• Walk though the activity of the scenario, assigning responsibilities to each abstraction 

sufficient to accomplish the desired behavior. As needed, assign attributes that represent 
structural elements required to carry out certain responsibilities. 

 
• As the storyboarding proceeds, reallocate responsibilities so that there is a reasonably 

balanced distribution of behavior. Where possible, reuse or adapt existing responsibilities. 
Splitting large responsibilities into smaller ones is a very common action; less often, but 
still not rarely, trivial responsibilities are assembled into larger behaviors. 

 
Informally, we may use CRC cards for storyboarding. More formally, the development team 
may write object diagrams or interaction diagrams. During analysis, this storyboarding is 
typically accomplished by a team including, but not limited to, the analyst, the domain 
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expert, the architect, and a quality assurance person. During design and later into 
implementation, storyboarding is accomplished by the architects and senior developers for 
the purpose of refining strategic decisions, and by individual developers for refining tactical 
decisions. Having additional team members participate in storyboarding is a highly effective 
way of teaching more junior developers, and of communicating 
 
Early in the development process, we may specify the semantics of classes and objects by 
writing the responsibilities for each abstraction in free-form text. Usually a phrase or a single 
sentence is sufficient; anything more suggests that a given responsibility is overly complex 
and ought to be divided into smaller ones. Later in the development process, as we begin to 
refine the protocol of individual abstractions, we may name specific operations, ignoring their 
full signatures. As soon as practical, we may attach full signatures for each operation. In this 
manner, we have tractability: a specific responsibility is satisfied by a set of cooperative 
operations, and each operation contributes in some way to an abstraction's responsibilities. At 
this point, we may introduce finite state machines for certain classes, especially those whose 
responsibilities involve event-driven or static-ordered behavior, so as to capture the dynamic 
semantics of their protocols.62 
 
It is important to focus upon behavior, not structure, in this step. Attributes represent 
structural elements, and so there is a danger, especially early in analysis, of binding 
implementation decisions too early by requiring the presence of certain attributes. Attributes 
should be identified at this point only insofar as they are essential to building a conceptual 
model of the scenario. 
 
Isolated class design represents a bottom-up identification of semantics. Here, we focus out 
attention upon a single abstraction and, applying the heuristics for class design described in 
Chapter 3, consider the operations that complete our abstraction. This activity is more tactical 
in nature, because here we are concerned about good class design, not architectural design. A 
typical order of events might be the following: 
 
• Select one abstraction and enumerate its roles and responsibilities. 
 
• Devise a sufficient set of operations that satisfy these responsibilities. Where possible, try 

to reuse operations for conceptually similar roles and responsibilities. 
 
• Consider each operation in turn, and ensure that it is primitive. If not, isolate and expose 

its more primitive operations. Composite operations may be retained in the class itself (if 
it is sufficiently common, or for reasons of efficiency) or be migrated to a class utility 
(especially if it is likely to change often). Where possible, consider a minimal set of 
primitive operations. 

 

                                                 
62 As we described in Chapter 3, a protocol specifies that certain operations are to be invoked in a specific order. 
For all but the most trivial classes, operations rarely stand-alone; each has preconditions that must be satisfied, 
often by invoking other operations. 
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• Particularly later in the development cycle, consider the needs for construction, copying, 
and destruction [13]. It is better to have a common strategic policy for these behaviors, 
rather than allowing individual classes to follow their own idiom, unless there is 
compelling reason to do so. 

 
• Consider the need for completeness: add other primitive operations that are not 

necessarily required for the immediate clients, but whose presence rounds out the 
abstraction, and therefore would probably be used by future clients. Realizing that it is 
impossible to have perfect completeness, lean more toward simplicity than complexity. 

 
It is important to avoid looking for inheritance relationships too introducing inheritance 
prematurely often leads to loss of type integrity. 
 
In the early stages of development, class design is indeed isolated. However, once we have in 
place inheritance lattices, this step must address placement of operations in the hierarchy. As 
we consider the operations associated with a given abstraction, sve must then decide at what 
level of abstraction it is best placed. Operations that may be used by a set of peer classes 
should be migrated to a common superclass, possibly by introducing a new intermediate 
abstract class. Operations that may be used by a disjoint set of classes should be encapsulated 
in a mixin class. 
 
The third activity, pattern scavenging, recognizes the importance of commonality. As we 
identify the semantics of our classes and objects, we must be sensitive to patterns of behavior, 
which represent opportunities for reuse. A typical order of events might be the following: 
 
• Given the complete set of scenarios at this level of abstraction, look for patterns of 

interaction among abstractions. Such collaborations may represent implicit idioms or 
mechanisms, which should be examined to ensure that there are no gratuitous differences 
among each invocation. Patterns of collaboration that are nontrivial should be explicitly 
documented as a strategic decision, so that they can be reused rather than reinvented. This 
activity preserves the integrity of the architectural vision. 

 
• Given the set of responsibilities generated at this level of abstraction, look for patterns of 

behavior. Common roles and responsibilities should be unified in the form of common 
base, abstract, or mixin classes. 

 
• Particularly later in the life cycle, as concrete operations are being specified, look for 

patterns within operation signatures. Remove any gratuitous differences, and introduce 
mixin classes or utility classes when such signatures are found to be repetitious. 

 
Please realize that the activities of identifying and specifying the semantics of classes and 
objects apply to individual classes as well as to class categories. The semantics of a class as 
well, as a class category encompass its roles and responsibilities as well as its operations. In 
the case of an individual class, these operations may eventually be expressed as concrete 
member functions; in the case of a class category, these operations represent the services 
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exported from the category, and are ultimately provided by a collaborative set of classes, not 
'just a single class. In this manner, the activities described above apply equally well to class 
design and architectural design. 
 
Milestones and Measures We successfully complete this phase when we have a reasonably 
sufficient, primitive, and complete set of responsibilities and/or operations for each 
abstraction. Early in the development process, it is sufficient to have an informal statement of 
responsibilities. As development proceeds, we must have more precisely stated semantics. 
 
Measures of goodness include all of the class heuristics described in Chapter 3, 
responsibilities and operations that are neither simple nor clear given abstraction is not yet 
well defined. An inability to express a concrete header file or other kinds of formal class 
interfaces also suggests that the abstraction is ill formed, or that the wrong person is doing 
the abstracting.63 
 
During the walkthroughs of each scenario, expect there to be lively debates. Such activities 
he1p to communicate the architectural vision, and he1p to develop skills in abstraction. The 
unexamined abstraction is not worth writing. 
 
Identifying the Relationships Among Classes and Objects 
Purpose The purpose of identifying the relationships among classes and objects is to solidify 
the boundaries of and to recognize the collaborators with each abstraction identified earlier in 
the micro process. This activity formalizes the conceptual as well as physical separations of 
concern among abstractions begun in the previous step. 
 
As part of analysis, we apply this step to specify the associations among classes and objects 
(including certain important inheritance and aggregation relationships). Expressing the 
existence of an association identifies some semantic dependency between two abstractions, as 
well as some ability to navigate from one entity to another. As part of design, we apply this 
step to specify the collaborations that: form the mechanisms of our architecture, as well as the 
higher-level clustering of classes into categories and modules into subsystems. As 
implementation proceeds, we refine relationships such as associations into more 
implementation-oriented relationships, including instantiation and use. 
 
Products Class diagrams, object diagrams, and module diagrams are the primary products 
of this step. Although we must ultimately express our analysis and design decisions 
concerning relationships in a concrete form (namely, through our programming languages), 
diagrams offer a broader view of the architecture, and additionally let us express 
relationships that are not enforced by the linguistics of our programming systems. 
 
During analysis, we produce class diagrams that state the associations among abstractions, 
and add detai1s from the previous step (the operations and attributes for certain abstractions) 

                                                 
63 Beware of analysts or architects who are unwilling or unable to concretely express the semantics of their 
abstractions: this is a sign of arrogance or ineptness. 
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as needed to capture the important subtleties of our decisions. During design, we refine these 
diagrams to show the tactical decisions we have made about inheritance, aggregation, 
instantiation, and use. 
 
It is not desirable, nor is it possible, to produce a comprehensive set of diagrams that express 
every conceivable view of the relationships among our abstractions. Rather, we must focus on 
the "interesting" ones, where our measure of interesting encompasses any set of related 
abstractions whose relationships are an expression of some fundamental architectural 
decision, or that express a detail necessary to complete a blueprint for implementation. 
 
As architectural design proceeds, we also generate class diagrams containing class categories 
that identify the clustering of abstractions into layers and partitions. These products serve to 
document our architectural framework. 
 
During analysis, we also produce object diagrams that complete the walkthrough of scenarios 
begun in the previous step. What is different here is that we can now consider the interplay 
between classes and objects, and so may discover previously hidden patterns of interaction, 
which we would seek to exploit. This typically leads to a local tweaking of the inheritance 
lattice. During design, we use object diagrams together with more detailed finite state 
machines to show the dynamic action of our mechanisms. Indeed, an explicit product of this 
step is a set of diagrams that identify the collaborations that serve as the mechanisms of our 
design. 
 
As implementation proceeds, we must make decisions about the physical packaging of our 
system into modules, and the allocation of processes to processors. These are both decisions 
of relationships, which we can express in module and process diagrams. 
 
Our data dictionary is updated as part of this step as well, to reflect the allocation of classes 
and objects to categories and modules to subsystems. 
 
The primary benefit of these products is that they he1p us visualize and reason about 
relationships that may cross entities that are conceptually and physically distant. 
 
Activities There are three activities associated with this step: the specification of associations, 
the identification of various collaborations, and the refinement of associations. 
 
The identification of associations is primarily an analysis and early design activity. As we 
explained in Chapter 3, associations are semantically weak: they only represent some sort of 
semantic dependency, the role and cardinality of each participant in the relationship, and 
possibly a statement of navigability. However, during analysis and early design, this is often 
sufficient, for it captures enough interesting details about the relationship between two 
abstractions, yet prevents us from making premature statements of detailed design. A typical 
order of events for this activity might be the following: 
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• Collect a set of classes at a given level of abstraction, or associated with a particular family 
of scenarios; populate the diagram with each abstraction's important operations and 
attributes as needed to illustrate the significant properties of the problem being modeled. 

 
• Consider the presence of a semantic dependency between any two classes, and establish 

an association if such a dependency exists. The need for navigation from one object to 
another and the need to elicit some behavior from an object are both causes for 
introducing associations. Indirect dependencies are cause for introducing new 
abstractions that serve as agents or intermediaries. Some associations may immediately be 
identified as specialization/generalization or aggregation relationships. 

 
• For each association, specify the role of each participant, as well as any relevant 

cardinality or other kind of constraint. 
 
• Validate these decisions by walking through scenarios and ensuring that associations are 

in place that are necessary and sufficient to provide the navigation and behavior among 
abstractions required by each scenario. 

 
Class diagrams are the primary model generated by this activity. 
 
The identification of collaborations is primarily a design activity, and it is also largely a 
problem of classification, as described in Chapter 4. As such, this step requires creativity and 
insight. Depending upon where we are in the macro process, there are a number of different 
kinds of collaborations that we must consider: 
 
• As part of the formulation of our strategic decisions, we must specify the mechanisms 

identified in the previous step by producing an object diagram for each, illustrating its 
dynamic semantics. Validate each mechanism by walking through primary and peripheral 
scenarios. Where there are opportunities for concurrency, specify the actors, agents, and 
servers, and the means of synchronization among them. Along the way, we may discover 
the need to introduce new paths among objects, as well as to eliminate or consolidate 
unused or redundant ones. 

 
• As we encounter commonality among classes, we must place these classes in a 

generalization/specialization hierarchy. As described in Chapter 3, it is usually best to 
create forests of classes rather than a single tree of classes. From the previous step, we will 
have already identified candidate base, abstract, and mixin classes, which we may now 
place in an inheritance lattice. Attach significant concrete classes to the resulting class 
diagram, and review it to consider its goodness, according to the heuristics in Chapter 3. 
In particular, be sensitive to balance (the lattice should not be too tall or too short, and 
neither too wide nor too skinny). Where patterns of structure or behavior appear among 
these classes, reorganize the lattice to maximize commonality (but not at the expense of 
simplicity). 
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• As part of architectural design, we must consider the clustering of classes into categories 
and the organization of modules into subsystems. These decisions have strategic 
implications. Architects may use class diagrams to specify the hierarchy of class categories 
that form the layers and partitions of the system under development. Typically, this is 
done from the top down, by taking a global view of the system and partitioning it into 
abstractions that denote major system services that: are logically cohesive and/or likely to 
change independently. This architecture may also be refined from the bottom up, as 
clusters of classes that: are semantically close are identified in each pass through the micro 
process. As development proceeds, we must also make decisions about the allocation of 
each class to a category. As existing categories become bloated, or as new clusters become 
evident, we may choose to introduce new class categories or reorganize the allocation of 
existing ones. The organization of modules to subsystems follows a similar set of 
activities, except that here we are focused upon elements of the physical model, and so 
generate module diagrams to capture our decisions. 

 
• The allocation of classes and objects to modules is somewhat of a local decision, and is 

most often a reflection of the visibility relationships among abstractions. As we described 
in Chapter 5, mapping from the logical to the physical model offers opportunity for the 
developer to either open or restrict the access of each abstraction, as well as to package 
logically related abstractions that are likely to change together. As we will discuss in the 
next chapter, the work breakdown structure of the development team will also color these 
logical to physical mappings. In any case, we may capture our decisions in the form of 
module diagrams. 

 
The third activity of this phase of the micro process, the refinement of associations, is both an 
analysis and a design activity. During analysis, we may evolve certain associations into other 
more semantically precise relationships to reflect our increasing understanding of the 
problem domain. During design, we similarly transform associations as well as add new 
concrete relationships in order to provide a blueprint for implementation. 
 
Inheritance, containment, instantiation, and use are the main kinds of relationships of 
interest, together with other properties such as labels, roles, cardinality, and so on. A typical 
order of events for this activity might be the following: 
 
• Given a collection of classes already clustered by some set of associations, look for 

patterns of behavior that represent opportunities for specialization/generalization. Place 
the classes in the context of an existing inheritance lattice, or fabricate a lattice if an 
appropriate one does not already exist. 

 
• If there are patterns of structure, consider creating new classes that capture this common 

structure, and introduce them either through inheritance as mixin classes or through 
aggregation. 
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• Look for behaviorally similar classes that are either disjoint peers in an inheritance lattice 
or not yet part of an inheritance lattice, and consider the possibility of introducing 
common parameterized classes. 

 
• Consider the navigability of existing associations, and constrain them as possible. Replace 

with simple using relationships if bidirectional navigation is not a desired property. 
 
• As development proceeds, introduce tactical details such as statements of role, keys, 

cardinality, friendship, stances, and so on. It is not desirable to state every detail: just 
include information that represents an important analysis or design position, or that is 
necessary for implementation. 

 
Milestones and Measures We successfully complete this phase when we have specified the 
semantics and relationships among certain interesting abstractions sufficiently to serve as a 
blueprint for their implementation. 
 
Measures of goodness include cohesion, coupling, and completeness. In reviewing the 
relationships we discover or invent during this phase, we seek to have logically cohesive and 
loosely coupled abstractions. In addition, we seek to identify all of the important 
relationships at a given level of abstraction, so that implementation does not require us to 
introduce new significant relationships, or perform unnatural acts to use the ones we have 
already specified. In the next step, finding that our abstractions are awkward to implement is 
an indication that we have not yet devised a meaningful set of relationships among our 
abstractions. 
 
Implementing Classes and Objects 
 
Purpose During analysis, the purpose of implementing classes and objects is to provide a 
refinement of existing abstractions sufficient to unveil new classes and objects at the next 
level of abstraction, which we then feed into the following iteration of the micro process. 
During design, the purpose of this activity is to create tangible representations of our 
abstractions in support of the successive refinement of the executable releases in the macro 
process. 
 
The ordering of this step is intentional: the micro process focuses first upon behavior, and 
defers decisions about representation until as late as possible. This strategy avoids premature 
implementation decisions that can ruin opportunities for smaller, simpler architectures, and 
also allows for the freedom to change representations as needed for reasons of efficiency, 
while limiting the disruption to the existing architecture. 
 
Products Decisions about the representation of each abstraction and the mapping of these 
representations to the physical model drive the products from this step. Early in the 
development process, we may capture these tactical representation decisions in the form of 
refined class specifications. Where these decisions are of general interest or represent 
opportunities for reuse, we also document them in class diagrams (showing their static 
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semantics) and finite state machines or interaction diagrams (showing their dynamic 
semantics). As development proceeds, and as we make further bindings to the given 
implementation language, we begin to deliver pseudo- or executable code. 
 
To show the logical to physical bindings in our implementation, we also deliver module 
diagrams, which we can then use to visualize the mapping of our architecture on to its 
realization in code. As development proceeds, we may use method-specific tools that 
automatically forward-engineer code from these diagrams, or reverse engineer them from the 
implementation. 
 
As part of this step, we also update our data dictionary, including the new classes and objects 
that we discovered or invented in formulating the implementation of existing abstractions. 
These new abstractions are part of the next round of the micro process. 
 
Activities There is one primary activity associated with this step: the selection of the 
structures and algorithms that provide the semantics of the abstractions we identified earlier 
in the micro process. Whereas the first three phases of the micro process focus upon the 
outside view of our abstractions, this step focuses upon their inside view. 
 
During analysis, the results of this activity are relatively abstract: we are not concerned about 
making representation decisions; rather, we are more interested in discovering the new 
abstractions to which we can delegate responsibility. During design, and especially in later 
stages of class design, we must increasingly make concrete decisions. 
 
A typical order of events for this activity might be the following: 
 
• For each class, consider again its protocol. Identify the patterns of use among clients, in 

order to determine which operations are central, and hence should be optimized. As 
implementation proceeds, develop, precise signatures for all significant operations. 

 
• Before choosing a representation from scratch, consider the use of protected or private 

inheritance for implementation, or the use of parameterized classes. Select the appropriate 
abstract or mixin classes (or create new ones, if the problem is sufficiently general), and 
adjust the inheritance lattice as required. 

 
• Consider the objects to which we might delegate responsibility. For an optimal fit, this 

may require a minor readjustment of the responsibilities and/or protocol of the lower-
level abstraction. 

 
• lf the abstraction's semantics cannot be provided through inheritance, instantiation, or 

delegation, consider a suitable representation from primitives in the language. Keep in 
mind the importance of operations from the perspective of the abstraction's clients, and 
select a representation that optimizes for the expected patterns of use. Remember that it is 
not possible to optimize for every use, however. As we gain empirical information from 
successive releases, we can identify which abstractions are not time- and/or space-
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efficient, and alter their implementation locally, with little concern that we will violate the 
assumptions clients make of our abstraction. 

 
• Select a suitable algorithm for each operation. Introduce helper operations to divide 

complex algorithms into less complicated, reusable parts. Consider the trade-offs of 
storing versus calculating certain states of an abstraction. 

 
Milestones and Measures During analysis, we successfully complete this phase once we 
have identified all the interesting abstractions necessary to satisfy the responsibilities of 
higher-level abstractions identified during this pass through the micro process. During 
design, we successfully complete this phase when we have an executable or near-executable 
model of our abstractions. 
 
The primary measure of goodness for this phase is simplicity. Implementations that are 
complex, awkward, or inefficient are an indication that the abstraction itself is lacking, or that 
we have chosen a poor representation. 
 
 
6.3 The Macro Development Process 
 
Overview 
The macro process serves as the controlling framework for the micro process. This broader 
procedure dictates a number of measurable products and activities that permit the 
development team to meaningfully assess risk and make early corrections to the micro 
process, so as to better focus the team's analysis and design activities. The macro process 
represents the activities of the entire development team on the scale of weeks to months at a 
time. 
 
Many elements of the macro process are simply sound software management practice, and so 
apply equally to object-oriented as well as non-object-oriented systems. These include basic 
practices such as configuration management, quality assurance, code walkthroughs, and 
documentation. In the next chapter, we will address a number of these pragmatic issues in the 
context of object-oriented software development. Our focus in this chapter will be to describe 
a core process that is tuned to the construction of object-oriented systems. Using Parna's 
terms, this is how we shall fake a rational design process for building object-oriented systems. 
 
The macro process is primarily the concern of the development team's technical management, 
whose focus is subtly different than that of the individual developer. Both are interested in 
delivering quality software that satisfies the customer's needs.64 However, end users could 
generally care less about the fact that the developers used parameterized classes and 

                                                 
64 Well, most of them. Unfortunately, some managers are more interested in building empires than in building 
software. See also the footnote on page 242: I expect Dante might propose a place for both these groups of 
people. 
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polymorphic functions in clever ways; customers are much more concerned about schedules, 
quality, and completeness, and rightfully so. For this reason, the macro process 
 

 
Figure 6-2 
The Macro Development Process 
 
focuses upon risk and architectural vision, the two manageable elements that have the 
greatest impact upon schedules, quality, and completeness. 
 
In the macro process, the traditional phases of analysis and design are to a large extent 
retained, and the process is reasonably well ordered. As Figure 6-2 illustrates, the macro 
process tends to track the following activities: 
 
• Establish the core requirements for the software (conceptualization). 
 
• Develop a model of the system's desired behavior (analysis). 
 
• Create an architecture for the implementation (design). 
 
• Evolve the implementation through successive refinement (evolution). 
 
• Manage postdelivery evolution (maintenance). 
 
For all interesting software, the macro process repeats itself after major product releases. This 
is particularly true for organizations that focus upon building families of programs, which 
often represent a significant capital investment. 
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The basic philosophy of the macro process is that of incremental development. As Vonk 
defines it, "in the case of incremental development, the system as a whole is built up step by 
step, and each successive version consists of the previous version unchanged plus a number 
of new functions" [141. This approach is extremely well-suited to the object-oriented 
paradigm, and offers a number of benefits relative to risk management. As Gilb so aptly 
states, 'evolutionary delivery is devised to give us early warning signals to impending 
unpleasant realities" [15] 
 
Let's examine each of the activities of the macro process in detail. Of course, one of the 
characteristics of a mature development organization is knowing when to break these rules, 
and so we will point out these degrees of freedom along the way. 
 
Conceptualization 
 
Purpose Conceptualization seeks to establish the core requirements for the system. For any 
truly new piece of software, or even for the novel adaptation of an existing system, there 
exists some moment in time where, in the mind of the developer, the architect, the analyst, or 
the end user, there springs forth an idea for some application. This idea may represent a new 
business venture, a new complementary product in an existing product line, or perhaps a 
new set of features for an existing software system. It is not the purpose of conceptualization 
to completely define these ideas. Rather, the purpose of conceptualization is to establish the 
vision for the idea and validate its assumptions. 
 
Products Prototypes are the primary products of conceptualization. Specifically, for every 
significant new system, there should be some proof of concept, manifesting itself in the form 
of a quick-and-dirty prototype. Such prototypes are by their very nature incomplete and only 
marginally engineered. However, by keeping around the interesting (although perhaps 
rejected) prototypes, the organization maintains a corporate memory of its original visions, 
and thus preserves the assumptions that were made when applications were first conceived. 
As development of production systems proceeds, this repository provides a place for 
unrestricted experimentation, to which analysts and architects may return to try out new 
ideas. 
 
Obviously, for applications on a massive scale (such as ones of national significance, or ones 
that have multinational implications), the prototyping effort itself may be a large 
undertaking. That is to be expected, and in fact encouraged. It is far better to discover during 
proof of concept that assumptions of functionality, performance, size, or complexity were 
wrong, rather than later, where abandoning the current development path would prove to be 
financially or socially disastrous. 
 
It must be emphasized that all such prototypes are meant to be thrown away. Prototypes 
should not be allowed to directly evolve into the production system, unless there is a strongly 
compelling reason. Convenience for the sake of meeting a short-term schedule is distinctly 
not a compelling reason: this decision represents a false economy that optimizes for short-
term development, and ignores the cost of ownership of the software. 
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Activities Conceptualization is by its very nature an intensely creative activity, and therefore 
should not be fettered by rigid development rules. What is perhaps most important is for the 
development organization to set in place a structure that provides sufficient resources for 
new ideas to be explored.65 New ideas can spring from virtually any source: end users, user 
groups, developers, analysts, the marketing team, and so on. It is wise for management to 
maintain a log of such new ideas, so that they can be prioritized, and scarce resources 
intelligently allocated to explore the more promising ones. Once a particular avenue has been 
selected for exploration, a typical order of events is the following:  
 
• Establish a set of goals for the proof of concept, including criteria for when the effort is to 

be finished. 
 
• Assemble an appropriate team to develop the prototype. Often, this may be a team of one 

(who is usually the original visionary). The best thing the development organization can 
do to facilitate the team's efforts is to stay out of its way. 

 
• Evaluate the resulting prototype, and make an explicit decision for product development 

or further exploration. A decision to develop a product should be made with a reasonable 
assessment of the potential risks, which the proof of concept should uncover. 

 
There is nothing inherently object-oriented about conceptualization. Any and all 
programming paradigms should be allowed to develop proofs of concept. However, it is 
often the case that, in the presence of a reasonably rich object-oriented application 
framework, developing prototypes is often faster than alternatives. 
 
It is not unusual to see proofs of concept developed in one language (such as Smalltalk, for 
example) and product development to proceed in another(such as C++). 
 
Milestones and Measures It is important that explicit criteria be established for completion 
of a prototype. Proofs of concept are often schedule-driven (meaning that the prototype must 
be delivered on a certain date) rather than feature-driven. This is not necessarily bad, for it 
artificially limits the prototyping effort, and discoura2es the tendency to deliver a production 
system prematurely. 
 
Upper management can often measure the health of the software development organization 
by measuring its response to new ideas. Any organization that is not itself producing new 
ideas is dead, or in a moribund business. The most prudent action is usually to diversify or 
abandon the business. In contrast, any organization that is overwhelmed with new ideas and 
Yet is unable to make any intelligent prioritization of them is out of control. Such 
organizations often waste significant development resources by jumping to product 

                                                 
65 If the organization itself does not, then individual developers will do so anyway, in spite of the company they 
work for. This is how new software companies get started. This is often great for the industry as a whole, but 
usually represents a net loss for the organization. 
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development too early, without exploring the risks of the effort though a proof of concept. 
The most prudent action here is to formalize the production process, and. make explicit the 
leap from concept to product. 
 
Analysis 
 
Purpose As Mellor states, "the purpose of analysis is to provide a description of a problem. 
The description must be complete, consistent, readable, and reviewable by diverse interested 
parties, [and1 testable against reality" [16]. In our terms, the purpose of analysis is to provide 
a model of the system's behavior. 
 
We must emphasize that analysis focuses upon behavior, not form. It is inappropriate to 
pursue issues of class design, representation, or other tactical decisions during this phase. 
Rather, analysis must yield a statement of what the system does, not how it does it. Any 
intentional statements of "how" during analysis should be viewed as useful only for the 
purpose of exposing the behavior of the system, and not as testable requirements of the 
design. 
 
In this regard, the purposes of analysis and design are quite different. In analysis, we seek to 
model the world by identifying the classes and objects (and their roles, responsibilities, and 
collaborations) that: form the vocabulary of the problem domain. In design, we invent the 
artifacts that provide the behavior that the analysis model requires. In this sense, analysis is 
the phase that first brings together the users and developers of a system, uniting them with a 
common vocabulary drawn from the problem domain. 
 
By focusing upon behavior, we come to identify the function points of a system. Function 
points, first described by Allan Albrecht, denote the outwardly observable and testable 
behaviors of a system [17]. From the perspective of the end user, a function point represents 
some primary activity of a system in response to some event.66 Function points often (but not 
always) denote the mapping of inputs to outputs, and so represent the transformations the 
system makes to its environment. From the perspective of the analyst, a function point 
represents a distinct quantum of behavior. Indeed, function points provide a measure of 
complexity: the greater the number of function points, the more complex the system. During 
analysis, we capture the semantics of a system's function points through scenarios. 
 
Analysis never stands alone. During this phase, we do not expect to devise an exhaustive 
understanding of the system's behavior. Indeed, we claim that it is neither possible nor 
desirable to carry out a complete analysis before allowing design to commence. The very act 
of building a system raises questions of behavior that no reasonable amount of analysis can 
efficiently uncover. It is sufficient that we accomplish an analysis of all the primary behaviors 
of the system, with a sprinkling of secondary behaviors considered as well to ensure that no 
essential patterns of behavior are missed. 

                                                 
66 In the domain of management information systems, Dreger notes that a function point represents one end-
user business function [18]. 
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A reasonably complete and formal analysis is essential to serve the needs of traceability. 
Traceabiliry is largely a problem of accountability, through which we ensure that no function 
points are neglected. Traceabilty is also essential to risk management. As development 
proceeds in any nontrivial system, management will have to make difficult trade-offs in 
allocating resources, or in resolving some unpleasant tactical issue. By having traceability 
from function points to the implementation, it is far easier to assess the impact of disturbing 
the architecture when such knotty problems arise. 
 
Products DeChampeaux suggests that the output of analysis is a description of the function 
of the system, along with statements about performance and resources required [191. In 
object-oriented development, we capture these descriptions through scenarios, where each 
scenario denotes some particular function point. We use primary scenarios to illustrate key 
behaviors, and secondary scenarios to show behavior under exceptional conditions. 
 
As we described in previous chapters, we use CRC-card techniques to storyboard scenarios, 
then use object diagrams to illustrate the semantics of each scenario more precisely. Such 
diagrams must show the objects that collaborate to achieve the function, as well as the process 
of collaboration (that is, the well-ordered way in which the objects interact by passing 
messages). In addition to object diagrams, we will also include class diagrams (to show the 
associations among the object's classes) and finite state machines (to show the life cycle of 
certain important objects). 
 
Often, these analysis products will be assembled into a formal requirements analysis 
document, which states the system's behavioral requirements as illustrated by the diagrams, 
plus an analysis of all the nonbehavioral aspects of the system, such as efficiency, reliability, 
security, and portability [201. 
 
A secondary product of analysis is a risk assessment that identifies the known areas of 
technical risk that may impact the design process. Facing up to the presence of risks early in 
the development process makes it far easier to make pragmatic architectural trade-offs later 
in the development process. 
 
Activities Two primary activities are associated with analysis: domain analysis and scenario 
planning. 
 
As we described in Chapter 4, domain analysis seeks to identify the classes and objects that 
are common to a particular problem domain. Before setting out to implement an entirely new 
system, it is often wise to study existing ones. In this way, we benefit from the experience of 
other projects that had to make similar development decisions. In the best case, the results of 
a domain analysis may lead us to discover that we do not need to develop any new software, 
but can reuse or adapt existing frameworks. 
 
Scenario planning is the central activity of analysis. Interestingly, there appears to be a 
confluence of thought about this activity among other methodologists, especially Rubin and 
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Goldberg, Adams, Wirfs-Brock, Coad, and Jacobson. A typical order of events for this activity 
follows: 
 
• Identify all the primary function points of the system and, if possible, group them into 

clusters of functionally related behaviors. Consider also clustering according to 
hierarchies of functions, wherein certain high-level functions build upon more primitive 
ones. 

 
• For each interesting set of function points, storyboard a scenario, using the techniques of 

use-case and behavior analysis described in Chapter 4.67 CRC card techniques are effective 
in brainstorming about each scenario. As the semantics of each scenario become clearer, 
document them using object diagrams that illustrate the objects that are initiators or 
contributors of behavior, and that collaborate to carry out the activities of the scenario. 
Include a script that shows the events that trigger the scenario and the resulting ordering 
of actions. In addition, document any assumptions, constraints, or performance issues for 
each scenario [21]. 

 
• As needed, generate secondary scenarios that illustrate behavior under exceptional 

conditions. 
 
• Where the life cycle of certain objects is significant or essential to a scenario, develop a 

finite state machine for the class of objects. 
 
• Scavenge for patterns among scenarios, and express these patterns in terms of more 

abstract, generalized scenarios, or in terms of class diagrams showing the associations 
among key abstractions. 

 
• Update the evolving data dictionary to include the new classes and objects identified for 

each scenario, along with their roles and responsibilities. 
 
As described further in the next chapter, scenario planning is carried out by analysts, in 
conjunction with the domain expert and architect. Additionally, quality-assurance personnel 
should participate in scenario planning, since scenarios represent behaviors that can be 
tested. Involving quality-assurance personnel early in the process helps to institutionalize a 
commitment to quality. Involving other development team members during scenario 
planning is also an effective way to get them invested in the development process, and to 
foster their understanding of the system's vision. 
 
Milestones and Measures We successfully complete this phase when we have developed 
and signed off on scenarios for all fundamental system behaviors. By signed off we mean that 
the resulting analysis products have been validated by the domain expert, end user, analyst, 
and architect; by fundamental we refer to behaviors that are central to the application's 

                                                 
67 Jacobson [22] and Rubin and Goldberg [23] provide comprehensive treatments of this subject. 
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purpose. Again, we neither expect nor desire a complete analysis. It is sufficient that only 
primary and some secondary behaviors be considered. 
 
Measures of goodness include completeness and simplicity. A good analysis will cover all 
primary activities and a statistically interesting set of secondary ones. A good analysis will 
also carry out walkthroughs of all strategically important scenarios, so as to he1p 
communicate a vision of the system to the entire development team. In addition, a good 
analysis will also discover patterns of behavior, yielding a simple class structure that exploits 
all that is common among different scenarios. 
 
Another important milestone of analysis is delivery of a risk assessment, which helps the 
team to manage future strategic and tactical tradeoffs. 
 
Design 
 
Purpose The purpose of design is to create an architecture for the evolving implementation, 
and to establish the common tactical policies that must be used by disparate elements of the 
system. We begin the design process as soon as we have some reasonably complete model of 
the behavior of the system. It is important to avoid premature designs, wherein development 
begins before analysis reaches closure. It is equally important to avoid delayed designing, 
wherein the organization thrashes while trying to complete a perfect and hence unachievable 
analysis model.68 
 
Products There are two primary products of design: a description of the architecture, and 
descriptions of common tactical policies. 
 
We may describe an architecture through diagrams as well as architectural releases of the 
system. As described in earlier chapters, the architecture of an object-oriented system 
encompasses its class and object structure, and so we may use class and object diagrams to 
show these strategic organizations. At the architectural level, it is most important to show the 
clustering of classes into class categories (for the logical architecture) and the clustering of 
modules into subsystems (for the physical architecture). We may deliver these diagrams as 
part of a formal architecture document, which should be reviewed with the entire team and 
updated as the architecture evolves. 
 
We use architectural releases as tangible manifestations of the architecture design itse1f. An 
architectural release denotes a vertical slice through the entire architecture, capturing 
important (but incomplete) semantics of all Significant categories and subsystems. An 
architectural release should be executable, thus allowing the architecture to be instrumented, 
studied, and evaluated precisely. As we will discuss in the next section, these architectural 
releases become the foundation of the evolving production system. 
 

                                                 
68 This condition is commonly diagnosed as analysis paralysis. 



 Chapter 6: The Proccess      253 

Common tactical policies include localized mechanisms that appear throughout the system. 
These encompass design artifacts such as policies for error detection and handling, memory 
management, data storage management, and generalized approaches to control. It is 
important to explicitly design these policies; otherwise we will see developers invent ad hoc 
solutions to common problems, thus ruining our strategic architecture through software rot. 
 
We capture descriptions of common policies through scenarios and executable releases of 
each mechanism. 
 
Activities There are three activities associated with design: architectural planning, tactical 
design, and release planning. 
 
Architectural planning involves devising the layers and partitions of the overall system. 
Architectural planning encompasses a logical decomposition, representing a clustering of 
classes, as well as a physical decomposition, representing a clustering of modules and the 
allocation of functions to different processors. A typical order of events for this activity is as 
follows: 
 
• Consider the clustering of function points from the products of analysis, and allocate these 

to layers and partitions of the architecture. Functions that build upon one another should 
fall into different layers; functions that collaborate to yield behaviors at a similar level of 
abstraction should fall into partitions, which represent peer services. 

 
• Validate the architecture by creating an executable release that partially satisfies the 

semantics of a few interesting system scenarios as derived from analysis. 
 
• Instrument that architecture and assess its weakness and strengths. Identify the risk of 

each key architectural interface so that resources can be meaningfully allocated as 
evolution commences. 

 
The focus of architectural planning is to create very early in the life cycle a domain-specific 
application framework that we may successively refine. 
 
Tactical design involves making decisions about the myriad of common policies. As we 
describe earlier in this chapter, poor tactical design can ruin even the most profound 
architecture, and so we mitigate this risk by explicitly identifying tactical policies, and putting 
in place incentives to adhere to these policies. A typical order of events for this activity is as 
follows: 
 
• Relative to the given application domain, enumerate the common policies that must be 

addressed by disparate elements of the architecture. Some such policies are foundational, 
meaning that they address domain-independent issues such as memory management, 
error handling, and so on. Other policies are domain-specific, and include idioms and 
mechanisms that are germane to that domain, such as control policies in real-time 
systems, or transaction and database management in information systems. 
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• For each common policy, develop a scenario that describes the semantics of that policy. 

Further capture its semantics in the form of an executable prototype that can be 
instrumented and refined. 

 
• Document each policy and carry out a peer walkthrough, so as to broadcast its 

architectural vision. 
 
Release planning sets the stage for architectural evolution. Taking the required function 
points and risk assessment generated during analysis, release planning serves to identify a 
controlled series of architectural releases, each growing in its functionality, ultimately 
encompassing the requirements of the complete production system. A typical order of events 
for this activity is as follows: 
 
• Given the scenarios identified during analysis, organize them in order of foundational to 

peripheral behaviors. Prioritizing scenarios can best be accomplished with a team 
including a domain expert, analysis, architect, and quality-assurance personnel. 

 
• Allocate the related function points to a series of architectural releases whose final 

delivery represents the production system. 
 
• Adjust the goals and schedules of this stream of releases so that delivery dates are 

sufficiently separated to allow adequate development time, and so that releases are 
synchronized with other development activities, such as documentation and field testing. 

 
• Begin task planning, wherein a work breakdown structure is identified, and development 

resources are identified that are necessary to achieve each architectural release. 
 
A natural by-product of release planning is a formal development plan, which identifies the 
stream of architectural releases, team tasks, and risk assessments 
 
Milestones and Measures We successfully complete this phase when we have validated the 
architecture through a prototype and through formal review. In addition, we must have sign-
off on the design of all primary tactical policies, and a plan for successive releases.. 
 
The primary measure of goodness is simplicity. A good architecture is one that embodies the 
characteristics of organized complex systems, as described in Chapter 1. 
 
The main benefits of this activity is the early identification of architectural flaws and the 
establishment of common policies that yield a simpler architecture. 
 
Evolution 
 
Purpose The purpose of the evolutionary phase is to grow and change the implementation 
through successive refinement, ultimately leading to the production system. 



 Chapter 6: The Proccess      255 

 
The evolution of an architecture is largely a matter of trying to satisfy a number of competing 
constraints, including functionality, time, and space: one is always limited by the largest 
constraint. For example, if the weight of the computer is a critical factor (as it is in spacecraft 
design), then the weight of individual memory chips must be considered, and in turn the 
amount of memory permitted by the weight allowance limits the size of the program that 
may be loaded. Relax any given constraint, and other design alternatives become possible; 
tighten any constraint, and certain designs become intractable. By evolving the 
implementation of a software system rather than taking a more monolithic approach to 
development, we can identify which constraints are really important and which are 
delusions. For this reason, evolutionary development focuses upon designing for 
functionality first and for local performance second. Early in the design, we typically do not 
know enough to understand where the performance bottlenecks will arise in the system. By 
analyzing the behavior of incremental releases via histogramming or other such techniques, 
the development team can better understand how to tune the system over time. 
 
• Evolution is thus essentially the process of product development. As Andert observes, 

design Is a time of innovation, improvement, and unrestricted freedom to modify code to 
achieve the product goals. Production is a controlled methodological process of raising 
product quality to the point where the product can be shipped" [24]. 

 
• Pages-jones suggests a number of advantages to this kind of incremental development: 
 
• "important feedback to the users is provided when it's most needed, most useful, and 

most meaningful. 
 
• Users can use several skeleton system versions to allow them to make a smooth transition 

from their old system to their new- system. 
 
• The project is less likely to be axed if it falls behind schedule. 
 
• Major system interfaces are tested first and most often. 
 
• Testing resources are distributed more evenly. 
 
• Implementors can see early results from a working system, so their morale is improved. 
 
• If time is short, coding and testing can begin before the design is finished" [25]. 
 
Products The primary product of evolution is a stream of executable releases representing 
successive refinements to the initial architectural release. Secondary products include 
behavioral prototypes that are used to explore alternative designs or to further analyze the 
dark corners of the systems' functionality. 
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These executable releases follow the schedule established in the earlier activity of release 
planning. For a modest sized project involving 12-18 months of end-to-end development 
time, this might mean a release every two to three months. For more complex projects that 
require much greater development effort, this might mean a release every six months or so. 
More extended release schedules are suspect, because they do not force closure of the micro 
process, and may hide arcas of risk that are being intentionally or unintentionally ignored. 
 
To whom is an executable release delivered? Early in the development process, major 
executable releases are turned over by the development team to quality-assurance personnel, 
who can begin to test the release against the scenarios established during analysis, and in so 
doing gather information on the completeness, correctness, and robustness of the release. This 
early data-gathering aids in identifying problems of quality, which are more easily addressed 
during evolution of the subsequent release. Later in the development process, executable 
releases are turned over to select end users (the alpha and beta customers) in a controlled 
manner. By controlled, we mean that the development team carefully sets expectations for 
each release, and identifies aspects that it wishes to have evaluated. 
 
The needs of the micro process dictate that many more internal releases to the development 
team will be accomplished, with only a few executable releases turned over to external 
parties. These internal releases represent a sort of continuous integration of the system, and 
exist to force closure of the micro process. 
 
Between each successive external release, the development team may also produce behavioral 
prototypes. A behavioral prototype serves to explore some isolated element of the system, 
such as a new algorithm, a user interface model, or a database schema. Its purpose is the 
rapid exploration of design alternatives, so that areas of risk can be resolved early without 
endangering the production releases. Behavioral prototypes are indeed prototypes, and so are 
meant to be thrown away after they have served their purposes. Typically, a team will use 
behavioral prototypes to storyboard, user interface semantics and present them to end users 
for early feedback, or to do performance trade-offs for the implementation of tactical policies. 
 
By implication, the documentation of the system evolves along with the architectural releases. 
Rather than treating the production of documentation as a major milestone, it is generally 
better to have it as a natural, semiautomatically generated artifact of the evolutionary process. 
 
Activities Two activities are associated with evolution: application of the micro process, and 
change management. 
 
The work that is carried out between executable releases represents a compressed 
development process, and so is essentially one spin of the micro process. This activity begins 
with an analysis of the requirements for the next release, proceeds to the design of an 
architecture, and continues with the invention of classes and objects necessary to implement 
this design. A typical order of events for this activity is as follows: 
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• Identify the function points to be satisfied by this executable release, as well as the areas of 
highest risk, especially those identified through evaluation of the previous release. 

 
• Assign tasks to the team to carry out this release, and initiate one spin of the micro 

process. Supervise the micro process by establishing appropriate reviews of the design, 
and by managing against intermediate milestones that take on the order of a few days or a 
week or two to accomplish. 

 
• As needed to understand the semantics of the system's desired behavior, assign 

developers to produce behavioral prototypes. Establish clear criteria for the goals and 
completion of each prototype. Upon completion, decide upon an approach to integrate the 
results of the prototyping effort into this or subsequent releases. 

 
• Force closure of the micro process by integrating and releasing the executable release. 
 
Alter each release, it is important to revisit the original release plan, and adjust the 
requirements and schedules for subsequent releases as necessary. Often, this involves small 
adjustments to dates, or migration of functionality from one release to another. 
 
Change management exists in recognition of the incremental and iterative nature of object-
oriented systems. It is tempting to allow undisciplined change to class hierarchies, class 
protocols, or mechanisms, but unrestrained change tends to rot the strategic architecture and 
leads to thrashing of the development team. 
 
In practice, we find that the following kinds of changes are to be expected during the 
evolution of a system: 
 
• Adding a new class or a new collaboration of classes 
 
• Changing the implementation of a class 
 
• Changing the representation of a class 
 
• Reorganizing the class structure 
 
• Changing the interface of a class 
 
Each kind of change comes about for different reasons, and each has a different cost. 
 
A developer will add new classes as new key abstractions are discovered or new mechanisms 
are invented. The cost of making such changes is usually inconsequential in terms of 
computing resources and management overhead. When a new class is added, consideration 
must be given to where it fits in the existing class structure. When a new collaboration is 
invented, a small domain analysis should be conducted to see if this is actually one of a 
pattern of collaborations. 
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Changing the implementation of a class is also generally not costly. In object-oriented design, 
we usually create the interface of a class first and then stub out its implementation (that is to 
say, the implementation of its member functions). Once the interface stabilizes to a reasonable 
extent, we can choose a representation for that class and complete the implementation of its 
methods. The implementation of a particular method may be changed later, usually to fix a 
bug or improve its performance. We might also change the implementation of a method to 
take advantage of new methods defined in an existing or newly-added superclass. In any 
case, changing the implementation of a method is not generally costly, especially if one has 
previously encapsulated the class's implementation. 
 
In a similar vein, one might alter the representation of a class (in C++, the protected and 
private members of a class). Usually, this is done to make instances of the class more space-
efficient or to create more time-efficient methods. If the representation of the class is 
encapsulated, as is possible in Smalltalk, C++, CLOS, and Ada, then a change in 
representation will not logically disrupt how clients interact with instances of that class 
(unless, of course, this new representation does not provide the behavior expected of the 
class). On the other hand, if the representation of the class is not encapsulated, as is also 
possible in any language, then a change in representation is much more dangerous, because 
clients may have been written that depend upon a particular representation. This is especially 
true in the case of subclasses: changing the representation of a superclass affects the 
representation of all of its; subclasses. in any case, changing the representation of a class 
incurs a cost: one must recompile its interface, its implementation, all of its clients (namely, its 
subclasses and instances), all of its client's clients, and so on. 
 
Reorganizing the class structure of a system is common, although less so than the other kinds 
of changes we have mentioned. As Stefik and Bobrow observe, programmers often create 
new classes and reorganize their classes as they understand the opportunities for factoring 
parts of their programs" [26]. The reorganization of a class structure usually takes the form of 
changing inheritance relationships, adding new abstract classes, and shifting the 
responsibilities and implementation of common methods to classes higher in the class 
structure. In practice, reorganizing the class structure of a system usually happens frequently 
at first, and then stabilizes over time as its developers better understand how all the key 
abstractions work together. Reorganizing the class structure is to be encouraged in early 
stages of design because it can result in great economy of expression, meaning that we have 
smaller implementations and fewer classes to comprehend and maintain. However, 
reorganization of the class structure does not come without a cost. Typically, changing the 
location of a class high in the hierarchy makes all the classes below it obsolete and requires 
their recompilation (and thus the recompilation of the classes that: depend on them, and so 
on). 
 
An equally important kind of change that occurs during the evolution of a system is a change 
to the interface of a class. A developer usually changes the interface of a class either to add 
some new behavior, to satisfy the semantics of some new role for its objects, or to add an 
operation that was always part of the abstraction but was initially not exported and is now 
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needed by some client. In practice, using the heuristics for building quality classes that we 
discussed in Chapter 3 (specifically, the concepts of building primitive, sufficient and 
complete interfaces) reduces the like1ihood of such changes. However, our experience is that 
such changes are inevitable. We have never written a nontrivial class whose interface was 
exactly right the first time. 
 
It is rare but not unthinkable to remove an existing method; this is typically done only to 
better encapsulate an abstraction. More commonly, we add a new method or override a 
method defined in some superclass. In all three cases, the change is costly, because it logically 
affects all clients, making them obsolete and forcing their recompilation. Fortunately, these 
latter kinds of changes adding and overriding methods - are upwardly compatible. In fact, we 
find in practice that the majority of all interface changes made to well-defined classes during 
the evolution of a system are upwardly compatible. This makes it possible to apply 
sophisticated compiler technology, such as incremental compilation, to reduce the impact of 
these changes. Incremental compilation allows us to recompile single declarations and 
statements one at a time, instead of entire modules, meaning that the recompilation of most 
clients can be optimized away. 
 
Why is recompilation cost even an issue? For small systems, it is not an issue, because 
recompiling an entire program might take only a few minutes. However, for large systems, it 
is an entirely different matter. Recompiling a hundred-thousand line program might take as 
much as a half a day of computer time. Can you imagine making a change to the software for 
a shipboard computer system and then telling the captain that she cannot put to sea because 
you are still recompiling? In the extreme, recompilation costs may be so high as to inhibit 
developers from making changes that are reasonable improvements. Recompilation is a 
particularly important issue with object-oriented programming languages, because 
inheritance introduces compilation dependencies [27]. For strongly typed object-oriented 
programming languages, recompilation costs may be even higher; in such languages, one 
trades off compilation time for safety. 
 
The kinds of changes we have discussed thus far are the easy ones: the greatest risk is major 
architectural change, which can sink a project. Often, this change results from bright 
engineers with too many good ideas [28]. 
 
Milestones and Measures We successfully complete this phase when the functionality and 
quality of the releases are sufficient to ship the product. The releases of intermediate 
executable forms are the major milestones we use to manage the development of the final 
product. The primary measure of goodness is therefore to what degree we satisfy the function 
points allocated to each intermediate release, and how well we met the schedules established 
during release planning. 
 
Two other essential measures of goodness include tracking defect discovery rates, and 
measuring the rate of change of key architectural interfaces and tactical policies. 
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Briefly, defect-discovery rate is a measure of how rapidly new errors are being detected [29]. 
By investing in quality assurance early in the development process, it is possible to establish 
measures for quality for each release, which the management team can use to identify areas of 
risk and also to calibrate the development team. After each release, the defect-discovery rate 
generally surges. A stagnant defect-discovery rate usually indicates undiscovered errors. 
 
An off-scale defect-discovery rate is an indication that the architecture has not yet stabilized, 
or that there are new elements in a given release that are incorrectly designed or 
implemented. These measures are used to adjust the focus of subsequent releases. 
 
Measuring the rate of change of architectural interfaces and tactical policies is the primary 
measure of architectural stability [30]. Localized changes are to be expected during evolution, 
but if inheritance lattices or the boundaries between class categories or subsystems are being 
changed often, this is an indication of architectural problems, and so should be recognized as 
an area of risk when planning the next release. 
 
Maintenance 
 
Products Maintenance is the activity of managing postdelivery evolution. This phase is 
largely a continuation of the previous phase, except that architectural innovation is less of an 
issue. Instead, more localized changes are made to the system as new requirements are added 
and lingering bugs stamped out. 
 
Lehman and Belady have made a number of cogent observations regarding the maturation of 
a deployed software system: 
 
• “A program that is used in a real-world environment necessarily must change or become 

less and less useful in that environment (the law of continuing change). 
 
• As an evolving program changes, its structure becomes more complex unless active efforts 

are made to avoid this phenomenon (the law of increasing complexity)” [31]. 
 
We distinguish the preservation of a software system from its maintenance. During 
maintenance, developers will be asked to make continual improvements to an existing 
system; these maintainers are often a different group of people than the original developers. 
Preservation, on the other hand, involves using excessive development resources to shore up 
an aging system that often has a poorly designed architecture and is therefore hard to 
understand and modify. A business decision must be made: if the cost of ownership of this 
software is greater than the cost of developing a new system, the most merciful course of 
action is to metaphorically put the aging system out to pasture or, if conditions dictate, 
abandon it or shoot it. 
 
Products Since maintenance is in a sense the continued evolution of a system, its products 
are similar to those of the previous phase. In addition, maintenance involves managing a 
punch list of new tasks. Immediately upon release of the production system, its developers 
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and end users will probably already have a set of improvements or modifications they would 
like to carry out in subsequent production releases, which for business reasons did not make 
it into the initial production release. Additionally, as more users exercise the system, new- 
bugs and patterns of use will be uncovered that quality assurance could not anticipate.69 A 
punch list serves as the vehicle for collecting bugs and enhancement requirements, so that 
they can be prioritized for future releases. 
 
Activities Maintenance involves activities that are little different than those required during 
the evolution of a system. Especially if we have done a good job in the original architecture, 
adding new functionality or modifying some existing behavior will come naturally. 
 
In addition to the usual activities of evolution, maintenance involves a planning activity that 
prioritizes tasks on the punch list. A typical order of events for this activity is as follows: 
• Prioritize requests for major enhancement or bug reports that denote systemic problems, 

and assess the cost of redevelopment. 
 
• Establish a meaningful collection of these changes and treat them as function points for 

the next evolution. 
 
• If resources allow it, add less intense, more localized enhancements (the so-called low-

hanging fruit) to the next release. 
 
• Manage the next evolutionary release. 
 
Milestones and Measures The milestones of maintenance involve continued production 
releases, plus intermediate bug releases. 
 
We know that we are still maintaining a system if the architecture remains resilient to change; 
we know we have entered the stage of preservation when responding to new enhancements 
begins to require excessive development resources. 
 
 
Summary 
• Successful projects are usually characterized by a strong architectural vision and a well-

managed iterative and incremental development life cyc1e. 
 
• A completely rational design process is not possible, but can be faked by reconciling the 

micro and macro process of development. 
 
• The micro process of object-oriented development is driven by the stream of scenarios and 

architectural products that emerge from the macro process; the micro process represents 
daily activities of the development team. 

 
                                                 
69 Users are amazingly creative when it comes to exercising a system in unexpected ways. 
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• The first step in the micro, process involves identifying the classes and objects at a given 
level of abstraction; primary activities include discovery and invention. 

 
• The second step in the micro process involves identifying the semantics of these classes 

and objects; primary activities include storyboarding, isolated class design, and pattern 
scavenging. 

 
• The third step in the micro process involves identifying the relationships among these 

classes and objects; primary activities include the specification of associations, the 
identification of collaborations, and the refinement of associations. 

 
• The fourth step in the micro process involves the implementation of these classes and 

objects; the primary activity is the selection of data structures and algorithms. 
 
• The macro process of object-oriented development serves as the controlling framework for 

the micro process and defines a number of measurable products and activities for 
managing risk. 

 
• The first step in the macro process is conceptualization, which establishes the core 

requirements for the system; its activity serves as a proof of concept, and so is largely 
uncontrolled, so as to allow unrestrained innovation. 

 
• The second step in the macro process is analysis, which provides a model of the system's 

behavior; primary activities include domain analysis and scenario planning. 
 
• The third step in the macro process is design, which creates an architecture for the 

implementation and establishes common tactical policies; primary activities include 
architectural planning, tactical design, and release planning. 

 
• The fourth step in the macro process is evolution, which uses successive refinement to 

ultimately lead to the production system; primary activities include application of the 
micro-process and change management. 

 
• The fifth step in the macro process is maintenance, which is essentially the management of 

postdelivery evolution; primary activities are similar to those of the fourth step, with the 
addition of managing a punch list. 

 
 
Further Readings 
An early form of the process described in this chapter was first documented by Booch [F 
1982]. Berard later elaborated upon this work in [F 1986]. Related approaches include GOOD 
(General Object-Oriented Design) by Seidewitz and Stark [F 1985, 1986, 1987], SOOD 
(Structured Object-Oriented Design) by Lockheed [C 1988], MOOD (Multiple-view Object-
Oriented Design) by Kerth [F 1988], and HOOD (Hierarchical Object Oriented Design) by 
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CISI Ingenierie and Matra for the European Space Station [F 1987]. More recent related works 
include Stroustrup [G 1991] and Microsoft [G 1992], who suggest substantially similar 
processes. 
 
In addition to the works cited in the further readings for Chapter 2, a number of other 
methodologists have proposed specific object-oriented development processes, for which the 
bibliography provides an extensive set of references. Some of the more interesting 
contributions come from Alabios [F 1988], Boyd [F 1987], Buhr [F 1984], Cherry [F 1987, 1990], 
deChampeaux [F 1992], Felsinger [F 1987], Firesmith [F 1986, 1993], Hines and Unger [G 
1986], Jacobson [F 1985], Jamsa [F 1984], Kadie [F 1986], Masiero and Germano [F 1988], 
Nielsen [F 1988], Nies [F 1986], Railich and Silva [F 1987], and Shumate [F 1987]. 
 
Comparisons of various object-oriented development processes may be found in Amold [F 
1991], Boehm-Davis and Ross [H 1984], deChampeaux [B 1991], Cribbs, Moon and Roe [F 
1992], Fowler [F 1992], Kelly [F 1986], Mannino [F 1987], Song [F 1992], and Webster [F 1988]. 
Brookman [F 1991] and Fichman [F 1992] provide a comparison of structured and object-
oriented methods. 
 
Empirical studies of software processes may be found in Curtis [H 1992] as well as the 
Software Process Workshop [H 1988]. Another interesting reference is Guindon [H 1987], who 
studies the exploratory processes used by developers early in the development process. 
Rechun [H 1992] offers pragmatic guidance to the software architect who must drive the 
development process. 
 
Humphrey [H 1989] is the seminal reference on software process maturity. Pamas [H 1986] is 
the classical reference on how to fake such a mature process. 
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Pragmatics 
 
 
Software development today remains a very labor-intensive business; to a large extent, it is 
still best characterized as a cottage industry [1]. A report by Kishida, Teramoto, Torri, and 
Urano notes that, even in Japan, the software industry "still relies mainly on the informal 
paper-and-pencil approach in the upstream development phases" [2]. 
 
Compounding matters is the fact that designing is not an exact science. Consider the design 
of a complex database using entity-relationship modeling, one of the foundations of object-
oriented design. As Hawryszkiewycz observes, "Although this sounds fairly straightforward, 
it does involve a certain amount of personal perception of the importance of various objects in 
the enterprise. The result is that the design process is not deterministic: different designers 
can produce different enterprise models of the same enterprise" [3]. 
 
We may reasonably conclude that no matter how sophisticated the development method, no 
matter how well-founded its theoretical basis, we cannot ignore the practical aspects of 
designing systems for the real world. This means that we must consider sound management 
practices with regard to such issues as staffing, release management, and quality assurance. 
To the technologist, these are intensely dull topics; to the professional software engineer, 
these are realities that must be faced if one wants to be successful in building complex 
software systems. Thus, this chapter focuses upon the pragmatics of object-oriented 
development, and examines the impact of the object-model on various management practices. 
 
 
7.1 Management and Planning 
 
In the presence of an iterative and incremental life cycle, it is of paramount importance to 
have strong project leadership that actively manages and directs a project's activities. Too 
many projects go astray because of a lack of focus, and the presence of a strong management 
team mitigates this problem. 
 
 
Risk Management 
 
Ultimately, the responsibility of the software development manager is to manage technical as 
well as nontechnical risk. Technical risks in object-oriented systems include problems such as 
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the selection of an inheritance lattice that offers the best compromise between usability and 
flexibility, or the choice of mechanisms that yield acceptable performance while simplifying 
the system's architecture. Nontechnical risks encompass issues such as supervising the timely 
delivery of software from a third-party vendor, or managing the relationship between the 
customer and the development team, so as to facilitate the discovery of the system's real 
requirements during analysis. 
 
As we described in the previous chapter, the micro process of object-oriented development is 
inherently unstable, and requires active management to force closure. Fortunately, the macro 
process of object-oriented development is designed to lead to closure by providing a number 
of tangible products that management can study to ascertain the health of the project, 
together with controls that permit management to redirect the team's resources as necessary. 
The macro process's evolutionary approach to development means that there are 
opportunities to identify problems early in the life cycle and meaningfully respond to these 
risks before they jeopardize the success of the project. 
 
Many of the basic practices of software development management, such as task planning and 
walkthroughs, are unaffected by object-oriented technology. What is different about 
managing an object-oriented project, however, is that the tasks being scheduled and the 
products being reviewed are subtly different than for non-object-oriented systems. 
 
 
Task Planning 
 
In any modest- to large-sized project, it is reasonable to have weekly team meetings to discuss 
work completed and activities for the coming week. Some minimal frequency of meetings is 
necessary to foster communication among team members; too many meetings destroy 
productivity, and in fact are a sign that the project has lost its way. Object-oriented software 
development requires that individual developers have unscheduled critical masses of time in 
which they can think, innovate, and develop, and meet informally with other team members 
as necessary to discuss detailed technical issues. The management team must plan for this 
unstructured time. 
 
Such meetings provide a simple yet effective vehicle for fine-tuning schedules in the micro 
process, as well as for gaining insight into risks looming on the horizon. These meetings may 
result in small adjustments to work assignments, so as to ensure steady progress: no project 
can afford for any of its developers to sit idle while waiting for other team members to 
stabilize their part of the architecture. This is particularly true for object-oriented systems, 
wherein class and mechanism design pervades the architecture. Development can come to a 
standstill if certain key classes are in flux. 
 
On a broader scale, task planning involves scheduling the deliverables of the macro process. 
Between evolutionary releases, the management team must assess the imminent risks to the 
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project, focus development resources as necessary to attack those risks,70 and then manage the 
next iteration of the micro process that yields a stable system satisfying the required scenarios 
scheduled for that release. Task planning at this level most often fails because of overly 
optimistic schedules [4]. Development that was viewed as a "simple matter of programming" 
expands to days of work; schedules are thrown out the window when developers working on 
one part of the system assume certain protocols from other parts of the system, but are then 
blindsided by delivery of incompletely or incorrectly fabricated classes. Even more insidious, 
schedules may be mortally wounded by the appearance of performance problems or compiler 
bugs, both of which must be worked around, often by corrupting certain tactical design 
decisions. 
 
The key to not being at the mercy of overly optimistic planning is the calibration of the 
development team and its tools. Typically, task planning goes like this. First, the management 
team directs the energies of a developer to a specific part of the system, say, for example, the 
design of a set of classes for interfacing to a relational database. The developer considers the 
scope of the effort, and returns with an estimate of time to complete, which management then 
relies upon to schedule other developer's activities. The problem is that these estimates are 
not always reliable, because they usually represent best-case conditions. One developer might 
quote a week of effort for some task, whereas another developer might quote one month for 
the same task. When the work is actually carried out, it might take both developers three 
weeks: the first developer having underestimated the effort (the common problem of most 
developers), and the second developer having set much more realistic estimates (usually 
because he or she understood the difference between actual work time versus calendar time, 
which often gets filled with a multitude of nonfunctional activities). In order to develop 
schedules in which the team can have confidence, it is therefore necessary for the 
management team to devise multiplicative factors for each developer's estimates. This is not 
an indication of management not trusting its developers: it is a simple acknowledgment of the 
reality that most developers are focused upon technical issues, not planning issues. 
Management must he1p its developers learn to do effective planning, a skill that is only 
acquired through battlefield experience. 
 
The process of object-oriented development explicitly helps to develop these calibration 
factors. Its iterative and incremental life cycle means that there are many intermediate 
milestones established early in the project, which management can use to gather data on each 
developer's track record for setting and meeting schedules. As evolutionary development 
proceeds, this means that management over time will gain a better understanding of the real 
productivity of each of its developers, and individual developers can gain experience in 
estimating their own work more accurately. The same lesson applies to tools: with the 
emphasis upon early delivery of architectural releases, the process of object-oriented 
development encourages the early use of tools, which leads to the identification of their 
limitations before it is too late to change course. 
 
 

                                                 
70 Gilb notes that "if you do not actively attack the risks, they will actively attack you" [5]. 
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Walkthroughs 
 
Walkthroughs are another well-established practice that every development team should 
employ. As with task planning, the conduct of software reviews is largely unaffected by 
object-oriented technology. However, relative to non-object-oriented systems, what is 
reviewed is a different matter. 
 
Management must take steps to strike a balance between too many and too few 
walkthroughs. In all but the most human-critical systems, it is simply not economical to 
review every line of code. Therefore, management must direct the scarce resources of its team 
to review those aspects of the system that represent strategic development issues. For object-
oriented systems, this suggests conducting formal reviews upon scenarios as well as the 
system's architecture, with many more informal reviews focused upon smaller tactical issues. 
 
As described in the previous chapter, scenarios are a primary product of the analysis phase of 
object-oriented development, and serve to capture the desired behavior of the system in terms 
of its function points. Formal reviews of scenarios are led by the team's analysts, together 
with domain experts or other end users, and are witnessed by other developers. Such reviews 
are best conducted throughout the analysis phase, rather than waiting to carry out one 
massive review at the end of analysis, when it is already too late to do anything useful to 
redirect the analysis effort. Experience with the method shows that even nonprogrammers 
can understand scenarios presented through scripts or the formalisms of object diagrams.71 
Ultimately, such reviews he1p to establish a common vocabulary among a system's 
developers and its users. Letting other members of the development team witness these 
reviews exposes them to the real requirements of the system early in the development 
process. 
 
Architectural reviews should focus upon the overall structure of the system, including its 
class structure and mechanisms. As with scenario reviews, architectural reviews should be 
conducted throughout the project, led by the project's architect or other designers. Early 
reviews will focus upon sweeping architectural issues, whereas later reviews may focus upon 
a certain class category or specific pervasive mechanisms. The central purpose of such 
reviews is to validate designs early in the life cycle. In so doing, we also help, to communicate 
the vision of the architecture. A secondary purpose of such reviews is to increase the visibility 
of the architecture so as to create Opportunities for discovering patterns of classes or 
collaborations of objects, which may then be exploited over time to simplify the architecture. 
 
Informal reviews should be carried out weekly, and generally involve the peer review of 
certain clusters of classes or lower-level mechanisms. The purpose of such reviews is to 
validate these tactical decisions; their secondary purpose is to provide a vehicle for more 
senior developers to instruct junior members of the team. 
 

                                                 
71 We have encountered use of the notation in reviews involving such diverse nonprogrammer groups as 
astronomers, biologists, meteorologists, physicists, and bankers. 
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7.2 Staffing 
 
Resource Allocation 
 
One of the more delightful aspects of managing object-oriented projects is that, in the steady 
state, there is usually a reduction in the total amount of resources needed and a shift in the 
timing of their deployment: relative to more traditional methods. The operative phrase here is 
“in the steady state.” Generally speaking, the first object-oriented project undertaken by an 
organization will require slightly more resources than for non-object-oriented methods, 
primarily because of the learning curve inherent in adopting any new technology. The 
essential resource benefits of the object model will not show themselves until the second or 
third project, at which time the development team is more adept at class design and 
harvesting common abstractions and mechanisms, and the management team is more 
comfortable with driving the iterative and incremental development process. 
 
For analysis, resource requirements do not typically change much when employing object-
oriented methods. However, because the object-oriented process places an emphasis upon 
architectural design, we tend to accelerate the deployment of architects and other designers to 
much earlier in the development process, sometimes even engaging them during later phases 
of analysis to begin architectural exploration. During evolution, fewer resources are typically 
required, mainly because the ongoing work tends to leverage off of common abstractions and 
mechanisms invented earlier during architectural design or previous evolutionary releases. 
Testing may also require fewer resources, primarily because adding new functionality to a 
class or mechanism is achieved mainly by modifying a structure that is known to behave 
correctly in the first place. Thus, testing tends to begin earlier in the life cycle, and manifests 
itself as a cumulative rather than a monolithic activity. Integration usually requires vastly 
fewer resources as compared with traditional methods, mainly because integration happens 
incrementally throughout the development life cycle, rather than occurring in one big bang 
event. Thus, in the steady state, the net of all the human resources required for object-oriented 
development is typically less than that required for traditional approaches. Furthermore, 
when we consider the cost of ownership of object-oriented software, the total life cycle costs 
are often less, because the resulting product tends to be of far better quality, and so is much 
more resilient to change. 
 
 
Development Team Roles 
 
It is important to remember that software development is ultimately a human endeavor. 
Developers are not interchangeable parts, and the successful deployment of any complex 
system requires the unique and varied skills of a focused team of people. 
 
Experience suggests that the object-oriented development process requires a subtly different 
partitioning of skills as compared with traditional methods. We have found the following 
three roles to be central to an object-oriented project: 
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• Project architect 
• Subsystem lead 
• Application engineer 

 
The project architect is the visionary, and is responsible for evolving and maintaining the 
system's architecture. For small- to medium-sized systems, architectural design is typically 
the responsibility of one or two particularly insightful individuals. For larger projects, this 
may be the shared responsibility of a larger team. The project architect is not necessarily the 
most senior developer, but rather is the one best qualified to make strategic decisions, usually 
as a result of his or her extensive experience in building similar kinds of systems. Because of 
this experience, such developers intuitively know the common architectural patterns that are 
relevant to a given domain, and what performance issues apply to certain architectural 
variants. Architects are not necessarily the best programmers either, although they should 
have adequate programming skills. Just as a building architect should be skilled in aspects of 
construction, it is generally unwise to employ a software architect who is not also a 
reasonably decent programmer. Project architects should also be well-versed in the notation 
and process of object-oriented development, because they must ultimately express their 
architectural vision in terms of clusters of classes and collaborations of objects. 
 
It is generally bad practice to hire an outside architect who, metaphorically speaking, storms 
in on a white horse, proclaims some architectural vision, then rides away while others suffer 
the consequences of these decisions. It is far better to actively engage an architect during the 
analysis process and then retain that architect throughout most if not all of the system's 
evolution. Thus, the architect will become more familiar with the actual needs of the system, 
and over time will be subject to the implications of his or her architectural decisions. In 
addition, by keeping responsibility for architectural integrity in the hands of one person or a 
small team of developers, we increase our chances of developing a small and more resilient 
architecture. 
 
Subsystem leads are the primary abstractionists of the project. A subsystem lead is 
responsible for the design of an entire class category or subsystem. In conjunction with the 
project architect, each lead must devise, defend, and negotiate the interface of a specific class 
category or subsystem, and then direct its implementation. A subsystem lead is therefore the 
ultimate owner of a cluster of classes and its associated mechanisms, and is also responsible 
for its testing and release during the evolution of the system. 
 
Subsystem leads must be well-versed in the notation and process of object-oriented 
development. They are usually faster and better programmers than the project architect, but 
lack the architect's broad experience. On the average, subsystem leads constitute about a third 
to a half of the development team. 
 
Application engineers are the less senior developers in a project, and carry out one of two 
responsibilities. Certain application engineers are responsible for the implementation of a 
category or subsystem, under the supervision of its subsystem lead. This activity may involve 
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some class design, but generally involves implementing and then unit testing the classes and 
mechanisms invented by other designers on the team. Other application engineers are then 
responsible for taking the classes designed by the architect and subsystem leads and 
assembling them to carry out the function points of the system. in a sense, these engineers are 
responsible for writing small programs in the domain-specific language defined by the 
classes and mechanisms of the architecture. 
 
Application engineers are familiar with but not necessarily experts in the notation and 
process of object-oriented development; however, application engineers are very good 
programmers who understand the idioms and idiosyncrasies of the given programming 
languages. On the average, half or more of the development team consists of application 
engineers. 
 
This breakdown of skills addresses the staffing problem faced by most software development 
organizations, which usually have only a handful of really good designers and many more 
less experienced ones. The social benefit of this approach to staffing is «that it offers a career 
path to the more junior people on the team: specifically, junior developers work under the 
guidance of more senior developers in a mentor/apprentice relationship. As they gain 
experience in using well-designed classes, over time they learn to design their own quality 
classes. The corollary to this arrangement is that not every developer needs to be an expert 
abstractionist, but can grow in those skills over time. 
 
In larger projects, there may be a number of other distinct development roles required to 
carry out the work of the project. Most of these roles (such as the toolsmith) are indifferent to 
the use of object-oriented technology, although some of them are especially relevant to the 
object model (such as the reuse engineer): 
 

• Project manager Responsible for the active management of the project's 
deliverables, tasks, resources, and schedules 

 
• Analyst Responsible for evolving and interpreting the end user's 

requirements; must be an expert in the problem domain, yet 
must not be isolated from the rest of the development team 

 
• Reuse engineer Responsible for managing the project's repository of 

components and designs; through participation in reviews 
and other activities, actively seeks opportunities for 
commonality, and causes them to be exploited; acquires, 
produces, and adapts components for general use within the 
project or the entire organization 

 
• Quality assurance Responsible for measuring the products of the development 

process; generally directs system-level testing of all 
prototypes and production releases 
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• Integration manager Responsible for assembling compatible versions of released 
categories and subsystems in order to form a deliverable 
release; responsible for maintaining the configurations of 
released products 

 
• Documenter Responsible for producing end-user documentation of the 

product and its architecture 
 
• Toolsmith Responsible for creating and adapting software tools that 

facilitate the production of the project's deliverables, 
especially with regard to generated code 

 
• System administrator Responsible for managing the physical computing resources 

used by the project 
 
Of course, not every project requires all of these roles. For small projects, many of these 
responsibilities may be shared by the same person; for larger projects, each role may 
represent an entire organization. 
 
Experience indicates that object-oriented development makes it possible to use smaller 
development teams as compared with traditional methods. Indeed, it is not impossible for a 
team of roughly 30-40 developers to produce several hundred thousand lines of production-
quality code in a single year. However, we agree with Boehm, who observes that "the best 
results occur with fewer and better people" [6]. Unfortunately, trying to staff a project with 
fewer people than traditional folklore suggests are needed may produce resistance. As we 
suggested in the previous chapter, such an approach infringes upon the attempts of some 
managers to build empires. Other managers like to hide the large numbers of employees, 
because more people represent more power. Furthermore, if a project fails, there are more 
subordinates upon whom to heap the blame. 
 
Just because a project applies the most sophisticated design method or the latest fancy tool 
doesn't mean a manager has the right to abdicate responsibility for hiring designers who can 
think or to let a project run on autopilot [7]. 
 
 
7.3 Release Management 
 
Integration 
 
Industrial-strength projects require the development of families of programs. At any given 
time in the development process, there will be multiple prototypes and production releases, 
as well as development and test scaffolding. Most often, each developer will have his or her 
own executable view of the system under development. 
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As explained in the previous chapter, the nature of the interactive and incremental process of 
object-oriented development means that there should rarely if ever be a single "big bang" 
integration event. Instead, there will smaller integration events, each marking the creation of 
or architectural release. Each such release is generally incremental in nature, having evolved 
from an earlier stable release. As Davis et al. observe, "when using incremental development, 
software is deliberately built to satisfy fewer requirements initially, but is constructed in such 
a way as to facilitate the incorporation of new requirements and thus achieve higher 
adaptability" [8]. From the perspective of the ultimate user of the system, the macro process 
generates a stream of executable releases, each with increasing functionality, eventually 
evolving into the final production system. From the perspective of those inside the 
organization, many more releases are actually constructed, and only some are frozen and 
baselined to stabilize important system interfaces. This strategy tends to reduce development 
risk, because it accelerates the discovery of architectural and performance problems early in 
the development process. 
 
For larger projects, an organization may produce an internal release of the system every few 
weeks and then release a running version to its customers for review every few months, 
according to the needs of the project. In the steady state, a release consists of a set of 
compatible subsystems along with their associated documentation. Building a release is 
possible whenever the major subsystems of a project are stable enough and work together 
well enough to provide some new level of functionality. 
 
 
Configuration Management and Version Control 
 
Consider this stream of releases from the perspective of an individual developer, who might 
be responsible for implementing a particular subsystem. He or she must have a working 
version of that subsystem, that is, a version under development. In order to proceed with 
further development, at least the interfaces of all imported subsystems must be available. As 
this working version becomes stable, it is released to an integration team, responsible for 
collecting a set of compatible subsystems for the entire system. Eventually, this collection of 
subsystems is frozen and baselined, and made part of an internal release. This internal release 
thus becomes the current operational release, visible to all active developers who need to 
further refine their particular part of its implementation. In the meantime, the individual 
developer can work on a newer version of his or her subsystem. Thus, development can 
proceed in parallel, with stability possible because of well-defined and well-guarded 
subsystem interfaces. 
 
Implicit in this model is the idea that a cluster of classes, not the individual class, is the unit of 
version control. Experience suggests that managing versions of classes is too fine a 
granularity, since no class tends to stand alone. Rather, it is better to version related groups of 
classes. Practically speaking, this means versioning subsystems, since groups of classes 
(forming class categories in the logical view of the system) map to subsystems (in the physical 
view of the system). 
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At any given point in the evolution of a system, multiple versions of a particular subsystem 
may exist: there might be a version for the current release under development, one for the 
current internal release, and one for the latest customer release. This intensifies the need for 
reasonably powerful configuration management and version-control tools. 
 
Source code is not the only development product that should be placed under configuration 
management. The same concepts apply to all the other products of object-oriented 
development, such as requirements, class diagrams, object diagrams, module diagrams, and 
process diagrams. 
 
 
Testing 
 
The principle of continuous integration applies as well to testing, which should also be a 
continuous activity during the development process. In the context of object-oriented 
architectures, testing must encompass at least three dimensions: 
 

• Unit testing Involves testing individual classes and mechanisms; is the 
responsibility of the application engineer who implemented 
the structure 

 
• Subsystem testing Involves testing a complete category or subsystem; is the 

responsibility of the subsystem lead; subsystem tests can be 
used as regression tests for each newly released version of the 
subsystem 

 
• System testing Involves testing the system as a whole; is the responsibility of 

the quality-assurance team; system tests are also typically 
used as regression tests by the integration team when 
assembling new releases 

 
Testing should focus upon the system's external behavior; a secondary purpose of testing is to 
push the limits of the system in order to understand how it fails under certain conditions. 
 
 
7.4 Reuse 
 
Elements of Reuse 
 
Any artifact of software development can be reused, including code, designs, scenarios, and 
documentation. As noted in Chapter 3, in object-oriented programming languages, classes 
serve as the primary linguistic vehicle for reuse: classes may be subclassed to specialize or 
extend the base class. Also, as explained in Chapter 4, we can reuse patterns of classes, 
objects, and designs form of idioms, mechanisms, and frameworks. Pattern reuse is at a level 
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of abstraction than the reuse of individual classes, and so provides greater leverage (but is 
harder to achieve). 
 
It is dangerous and misleading to quote figures for levels of reuse [9]. In projects, we have 
encountered reuse factors as high as 70% (meaning that almost three-fourths of the software 
in the system was taken intact from some other source) and as low as 0%. The degree of reuse 
should not be viewed as a quota to achieve, because potential reuse appears to vary wildly by 
domain and is affected by many nontechnical factors, including schedule pressure, the nature 
of subcontractor relationships, and security considerations. 
 
Ultimately, any amount of reuse is better that none, because reuse represents a savings of 
resources that would otherwise be needed to reinvent some previously solved problem in 
abstraction. 
 
 
Institutionalizing Reuse 
 
Reuse within a project or even an entire organization doesn't just happen, it must be 
institutionalized. This means that opportunities for reuse must be actively sought out and 
rewarded. Indeed, this is why we include pattern, scavenging as an explicit activity in the 
macro process. 
 
An effective reuse program is best achieved by making specific individuals responsible for 
the reuse activity. As we described in the previous chapter, this activity identifying 
opportunities for commonality, usually discovered through architectural reviews, and 
exploiting these opportunities, usually by producing new components or adapting existing 
ones, and championing their reuse among developers. This approach requires the explicit 
rewarding of reuse. Even simple rewards are highly effective in fostering reuse: for example, 
peer recognition of the author or reuser is often useful. For something more tangible, it may 
be effective to offer a free dinner or weekend away to the developer (and his or her significant 
other) whose code was most often reused, or who reused the most code within a certain time 
period.72 
 
Ultimately, reuse costs resources in the short term, but pays off in the long term. A reuse 
activity will only be successful in an organization that takes a long-term view of software 
development and optimizes resources for more than just the current project. 
 
 
7.5 Quality Assurance and Metrics 
 
Software Quality 
 

                                                 
72 This is often a welcome reward to the developer's significant other, who has likely not seen much of him or 
her during the final throes of software development. 
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Schulmeyer and McManus define software quality as “the fitness for use of the total software 
product” [10]. Software quality doesn't just happen: it must be engineering into the system. 
Indeed, the use of object-oriented technology doesn't automatically lead to quality software: it 
is still possible to write very bad software using object-oriented programming languages. 
 
This is why we place such an emphasis upon software architecture in the process of object-
oriented development. A simple, adaptable architecture is central to any quality software; its 
quality is made complete by carrying out simple and consistent tactical design decisions. 
 
Software quality assurance involves "the systematic activities providing evidence of the 
fitness for use of the total software product" [11]. Quality assurance seeks to give us 
quantifiable measures of goodness for the quality of a software system. Many such traditional 
measures are directly applicable to object-oriented systems. 
 
As we described earlier, walkthroughs and other kinds of inspections are important practices 
even in object-oriented systems, and provide insights into the software's quality. Perhaps the 
most important quantifiable measure of goodness is the defect-discovery rate. During the 
evolution of the system, we track software defects according to their severity and location. 
The defect-discovery rate is thereby a measure of how quickly errors are being discovered, 
which we plot against time. As Dobbins observes, "the actual number of errors is less 
important than the slope of the line" [12]. A project that is under control will have a bell-
shaped curve, with the defect-discovery rate peaking at around the midpoint of the test 
period and then falling off to zero. A project that is out of control will have a curve that tails 
off very slowly, or not at all. 
 
One of the reasons that the macro process of object-oriented development works so well is 
that it permits the early and continuous collection of data about the defect-discovery rate. For 
each incremental release, we can perform a system test and plot the defect-discovery rate 
versus time. Even though early releases will have less functionality, we still expect to see a 
bell-shaped curve for every release in a healthy project. 
 
Defect density is another relevant quality measure. Measuring defects per thousand source 
lines of code (KSLOC) is the traditional approach, and is still generally applicable to object-
oriented systems. In healthy projects, defect density tends to "reach a stable value after 
approximately 10,000 lines of code have been inspected and will remain almost unchanged no 
matter how large the code volume is thereafter” [13]. 
 
In object-oriented systems, we have also found it useful to measure defect density in terms of 
the numbers of defects per class category or per class. With this measure, the 80/20 rule 
seems to apply: 80% of the software defects will be found in 20% of the system’s classes [14]. 
 
In addition to the more formal approaches to gathering defect information through system 
testing, we have also found it useful to institute project- or company-wide "bug hunts" during 
which anyone may exercise a release over a given limited period of time. Prizes are then 
awarded to the person who finds the most defects, as well as to the person who finds the 
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most obscure defect. Prizes need not be extravagant: coffee mugs, certificates for dinner or 
movies, or even T-shirts are appropriate to reward the fearless bug hunter. 
 
 
Object-Oriented Metrics 
 
Perhaps the most dreadful way for a manager to measure progress is to measure the lines of 
code produced. The number of line feeds in a fragment of source code has absolutely no 
correlation to its completeness or complexity. Contributing to the shortcomings of this 
Neanderthal approach is the ease of playing games with the numbers, resulting in 
productivity figures that may differ from one another by as much as two orders of 
magnitude. For example, what exactly is a line of code (especially in Smalltalk)? Does one 
count physical lines, or semicolons? What about counting multiple statements that appear on 
one line or statements that cross line boundaries? Similarly, how does one measure the labor 
involved? Are all personnel counted, or perhaps just the programmers? Is the workday 
measured as an eight-hour day, or is the time a programmer spends working in the wee 
hours of the morning also counted? Traditional complexity measures, better suited to early 
generation programming languages, also have minimal correlation with completeness and 
complexity in object-oriented systems, and are therefore largely useless when applied to the 
system as a whole. 
 
For example, the McCabe Cyclomatic metric, when applied to an object-oriented system as a 
whole, does not give a very meaningful measure of complexity, because it is blind to the 
system's class structure and mechanisms. However, we have found it useful to generate a 
cyclomatic metric per class. 
 
This gives some indication of the relative complexity of individual classes, and can then be 
used to direct inspections to the most complex classes, which are most likely to contain the 
greatest numbers of defects. 
 
We tend to measure progress by counting the classes in the logical design, or the modules in 
the physical design, that are completed and working. As we described in the previous 
chapter, another measure of progress is the stability of key interfaces (that is, how often they 
change). At first, the interfaces of all key abstractions will change daily, if not hourly. Over 
time, the most important interfaces will stabilize first, the next most important interfaces will 
stabilize second, and so on. Towards the end of the development life cycle, only a few 
insignificant interfaces will need to be changed, since most of the emphasis is on getting the 
already designed classes and modules to work together. Occasionally, a few changes may be 
needed in a critical interface, but such changes are usually upwardly compatible. Even so, 
such changes are made only after careful thought about their impact. These changes can then 
be incrementally introduced into the production system as part of the usual release cycle. 
 
Chidamber and Kemerer suggest a number of metrics that are directly applicable to object-
oriented systems [15]: 
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• Weighted methods per class 
• Depth of inheritance tree 
• Number of children 
• Coupling between objects 
• Response for a class 
• Lack of cohesion in methods 

 
Weighted methods per class gives a relative measure of the complexity of an individual class; 
if all methods are considered to be equally complex, this becomes a measure of the number of 
methods per class. In general, a class with significantly more methods than its peers is more 
complex, tends to be more application-specific, and often hosts a greater number of defects. 
 
The depth of the inheritance tree and number of children are measures of the shape and size 
of the class structure. As we described in Chapter 3, well-structured object-oriented systems 
tend to be architected as forests of classes, rather than as one very large inheritance lattice. As 
a rule of thumb, we tend to build lattices that are balanced and that are generally no deeper 
than 7±2 classes and no wider than 7±2 classes. 
 
Coupling between objects is a measure of their connectedness to other objects, and thus is a 
measure of its class's encumbrance. As with traditional measures of coupling, we seek to 
design loosely coupled objects, which have a greater potential for reuse. 
 
Response for a class is a measure of the methods that its instances can call; cohesion in 
methods is a measure of the unity of the class's abstraction. In general, a class that can invoke 
significantly more methods than its peers is more complex. A class with low cohesion among 
its methods suggests an accidental or inappropriate abstraction: such a class should generally 
be re-abstracted into more than one class, or its responsibilities delegated to other existing 
classes. 
 
 
7.6 Documentation 
 
Development Legacy 
 
The development of a software system involves much more than the writing of its raw source 
code. Certain products of development offer ways to give its management team and users 
insight into the progress of the project. We also seek to leave behind a legacy of analysis and 
design decisions for the eventual maintainers of the system. As noted in Chapter 5, the 
products of object-oriented development in general include sets of class diagrams, object 
diagrams, module diagrams, and process diagrams. Collectively, these diagrams offer 
traceability back to the system's requirements. Process diagrams denote programs, which are 
the root modules found in module diagrams. Each module represents the implementation of 
some combination of classes and objects, which are in turn found in class diagrams and object 
diagrams, respectively. Finally, object diagrams denote scenarios specified by the 
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requirements, and class diagrams represent key abstractions that form the vocabulary of the 
problem domain. 
 
 
Documentation Contents 
 
The documentation of a system's architecture and implementation is important, but the 
production of such documents should never drive the development process: documentation 
is an essential, albeit secondary, product of the development process. It is also important to 
remember that documents are living products that should be allowed to evolve together with 
the iterative and incremental evolution of the project's releases. Together with the generated 
code, delivered documents serve as the basis of most formal and informal reviews. 
 
What must be documented? Obviously, end-user documentation must be produced, 
instructing the user on the operation and installation of each release.73 In addition, analysis 
documentation must be produced to capture the semantics of the system's function points as 
viewed through scenarios. We must also generate architectural and implementation 
documentation, to communicate the vision and details of the architecture to the development 
team and to preserve information about all relevant strategic decisions, so that the system can 
readily be adapted and evolved over time. 
 
In general, the essential documentation of a system's architecture and implementation should 
include the following: 
 

• Documentation of the high-level system architecture 
• Documentation of the key abstractions and mechanisms in the architecture 
• Documentation of scenarios that illustrate the as-built behavior of key aspects of the 

system 
 
The worst possible documentation to create for an object-oriented system is a stand-alone 
description of the semantics of each method on a class-by-class basis. This approach tends to 
generate a great deal of useless documentation that no one reads or trusts, and fails to 
document the more important architectural issues that transcend individual classes, namely, 
the collaborations among classes and objects. It is far better to document these higher-level 
structures, which can be expressed in diagrams of the notation but have no direct linguistic 
expression in the programming language, and then refer developers to the interfaces of 
certain important classes for tactical details. 
 
 
7.7 Tools 
 

                                                 
73 It is an unwritten rule that for personal productivity software, a system that requires a user to constantly refer 
to a manual is user-hostile. Object-oriented user interfaces in particular should be designed so that their use is 
intuitive and self-consistent, in order to minimize or eliminate the need for end-user documentation. 
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With early generation languages, it was enough for a development team to have a minimal 
tool set: an editor, a compiler, a linker, and a loader were often all that were needed (and 
often all that existed). If the team were particularly lucky, they might even get a source-level 
debugger. Complex systems change the picture entirely: trying to build a large software 
system with a minimal tool set is equivalent to building a multistory building with stone 
hand tools. 
 
Object-oriented development practices change the picture as well. Traditional software 
development tools embody knowledge only about source code, but since object-oriented 
analysis and design highlight key abstractions and mechanisms, we need tools that can focus 
on richer semantics. In addition, the rapid development of releases defined by the macro 
process of object-oriented development requires tools that offer rapid turnaround, especially 
for the edit/compile/execute/debug cycle. 
 
It is important to choose tools that scale well. A tool that works for one developer writing a 
small stand-alone application will not necessarily scale to production releases of more 
complex applications. Indeed, for every tool, there will be a threshold beyond which the tool's 
capacity is exceeded, causing its benefits to be greatly outweighed by its liabilities and 
clumsiness. 
 
 
Kinds of Tools 
 
We have identified at least seven different kinds of tools that are applicable to object-oriented 
development. The first tool is a graphics-based system supporting the object-oriented 
notation presented in Chapter 5. Such a tool can be used during analysis to capture the 
semantics of scenarios, as well as early in the development process to capture strategic and 
tactical design decisions, maintain control over the design products, and coordinate the 
design activities of a team of developers. Indeed, such a tool can be used throughout the life 
cycle, as the design evolves into a production implementation. Such tools are also useful 
during systems maintenance. Specifically, we have found it possible to reverse-engineer 
many of the interesting aspects of an object-oriented system, producing at least the class 
structure and module architecture of the system as built. This feature is quite important: with 
traditional CASE tools, developers may generate marvelous pictures, only to find that these 
pictures are out of date once the implementation proceeds, because programmers fiddle with 
the implementation without updating the design. Reverse engineering makes it less likely 
that design documentation will ever get out of step with the actual implementation. 
 
The next tool we, have found important for object-oriented development is a browser that 
knows about the class structure and module architecture of a system.74 Class hierarchies can 
become so complex that it is difficult even to find all of the abstractions that are part of the 
design or are candidates for reuse [16]. While examining a program fragment, a developer 

                                                 
74 By integrating the first kind of tool with the host's software development environment, browsing between the 
design and its implementation becomes possible. 
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may want to see the definition of the class of some object. Upon finding this class, he or she 
might wish to visit some of its superclasses. While viewing a particular superclass, the 
developer might want to browse through all uses of that: class before installing a change to its 
interface. This kind of browsing is extremely clumsy if one has to worry about files, which are 
an artifact of the physical, not the logical, design decisions. For this reason, browsers are an 
important tool for object-oriented analysis and design. For example, the standard Smalltalk 
environment allows one to browse all the classes of a system in the ways we have described. 
Similar facilities exist in environments for other object-oriented programming languages, 
although to different degrees of sophistication. 
 
Another tool we have found to be important, if not absolutely essential, is an incremental 
compiler. The kind of evolutionary development that goes on in object-oriented development 
cries out for an incremental compiler that can compile single declarations and statements. 
Meyrowitz notes that "UNIX as it stands, with its orientation towards the batch compilation 
of large program files into libraries that are later linked with other code fragments, does not 
provide the support that is necessary for object-oriented programming. It is largely 
unacceptable to require a ten-minute compile and link cycle simply to change the 
implementation of a method and to require a one hour compile and link cycle simply to add a 
field to a high-level superclass! Incrementally compiled methods and incrementally 
compiled… field definitions are a must for quick debugging" [17]. Incremental compilers exist 
for many of the languages described in the appendix; unfortunately, most implementations 
consist of traditional, batch-oriented compilers. 
 
Next, we have found that nontrivial projects need debuggers that know about class and object 
semantics. When debugging a program, we often need to examine the instance variables and 
class variables associated with an object. Traditional debuggers for non-object-oriented 
programming languages do not embody knowledge about classes and objects. Thus, trying to 
use a standard C debugger for C++ programs, while possible, doesn't permit the developer to 
find the really important information needed to debug an object-oriented program. The 
situation is especially critical for object-oriented programming languages that support 
multiple threads of control. At any given moment during the execution of such a program, 
there may be several active processes. These circumstances require a debugger that permits 
the developer to exert control over all the individual threads of control, usually on an object-
by-object basis. 
 
Also in the category of debugging tools, we include tools such as stress testers, which stress 
the capacity of the software, usually in terms of resource utilization, and memory-analysis 
tools, which identify violations of memory access, such as writing to deallocated memory, 
reading from uninitialized memory, or reading and writing beyond the boundaries of an 
array. 
 
Next, especially for larger projects, one must have configuration management and version-
control tools. As mentioned earlier, the category or subsystem is the best unit of configuration 
management. 
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Another tool we have found important with object-oriented development is a class librarian. 
Most of the languages mentioned in this book have predefined class libraries, or 
commercially available class libraries. As a project matures, this library grows as domain-
specific reusable software components are added over time. It does not take long for such a 
library to grow to enormous proportions, which makes it difficult for a developer to find a 
class or module that meets his or her needs. One reason that a library can become so large is 
that a given class commonly has multiple implementations, each of which has different time 
and space semantics. lf the perceived cost (usually inflated) of finding a certain component is 
higher then the perceived cost (usually underestimated) of creating that component from 
scratch, then all hope of reuse is lost. For this reason, it is important to have at least some 
minimal librarian tool that allows developers to locate classes and modules according to 
different criteria and add useful classes and modules to the library as they are developed. 
 
The last kind of tool we have found useful for certain object-oriented systems is a GUI 
builder. For systems that involve a large amount of user interaction, it is far better to use such 
a tool to interactively create dialogs and other windows than to create these artifacts from the 
bottom up in code. Code generated by such tools can then be connected to the rest of the 
object-oriented system and, where necessary, fine-tuned by hand. 
 
 
Organizational Implications 
 
This need for powerful tools creates a demand for two specific roles within the development 
organization: a reuse engineer and a toolsmith. Among other things, the duties of the reuse 
engineer are to maintain the class library for a project, Without active effort, such a library can 
become a vast wasteland of junk classes that no developer would ever want to walk through. 
Also, it is often necessary to be proactive to encourage reuse, and the reuse engineer can 
facilitate this process by scavenging the products of current design efforts. The duties of a 
toolsmith are to create domain-specific tools and tailor existing ones for the needs of a project. 
For example, a project might need common test scaffolding to test certain aspects of a user 
interface, or it might need a customized class browser. A toolsmith is in the best position to 
craft these tools, usually from components already in the class library. Such tools can also be 
used for later developmental efforts. 
 
A manager already faced with scarce human resources may lament that powerful tools, as 
well as designated reuse engineers and toolsmiths, are an unaffordable luxury. We do not 
deny this reality for some resource-constrained projects. However, in many other projects, we 
have found that these activities go on anyway, usually in an ad hoc fashion. We advocate 
explicit investments in tools and people to make these ad hoc activities more focused and 
efficient, which adds real value to the overall development effort. 
 
 
7.8 Special Topics 
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Domain-Specific issues 
 
We have found that certain application domains warrant special architectural consideration. 
 
The design of an effective user interface is still much more of an art than a science. For this 
domain, the use of prototyping is absolutely essential. Feedback must be gathered early and 
often from end users, so as to evaluate the gestures, error behavior, and other paradigms of 
user interaction. The generation of scenarios is highly effective in driving the analysis of the 
user interface. 
 
Some applications involve a major database component; other applications may require 
integration with databases whose schemas cannot be changed, usually because large amounts 
of data already populate the database (the problem of legacy data). For such domains, the 
principle of separation of concerns is directly applicable: it is best to encapsulate the access to 
all such databases inside the confines of well-defined class interfaces. This principle is 
particularly important when mixing object-oriented decomposition with relational database 
technology. In the presence of an object-oriented database, the interface between the database 
and the rest of the application can be much more seamless, but we must remember that 
object-oriented databases are more effective for object persistence and less so for massive data 
stores. 
 
Consider also real-time systems. Real-time means different things in different contexts: real-
time might denote sub-second response is user-centered systems, and sub-microsecond 
response in data acquisition and control applications. It is important to realize that even for 
hard-real-time systems, not every component of the system must (or can) be optimized. 
Indeed, for most complex systems, the greater risk is whether or not the, system can be 
completed, not whether it will perform within its performance requirements. For this reason, 
we warn against premature optimization. Focus upon producing simple architectures, and 
the evolutionary generation of releases will illuminate the performance bottlenecks of the 
system early enough to take corrective action. 
 
The term legacy systems refers to applications for which there is a large capital investment in 
software that cannot economically or safely be abandoned. However, such systems may have 
intolerable maintenance costs, which require that they be replaced over time. Fortunately, 
coping with legacy systems is much like coping with databases: we encapsulate access to the 
facilities of the legacy system within the context of well-defined class interfaces, and over 
time, migrate the coverage of the object-oriented architecture to replace certain functionality 
currently provided by the legacy system. Of course, it is essential to begin with an 
architectural vision of what the final system will look like, so that the incremental 
replacement of the legacy system will not end up as an inconsistent patchwork of software. 
 
 
Technology Transfer 
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As Kempf reports, “Learning object-oriented programming may well be a more difficult task 
than learning ‘just’ another programming language. This may be the case because a different 
style of programming is involved rather than a different syntax within the same framework. 
That means that not a new language but a new way of thinking about programming is 
involved” [18]. 
 
How do we develop this object-oriented mindset? We recommend the following: 
 

• Provide formal training to both developers and managers in the elements of the object 
model. 

• Use object-oriented development in a low-risk project first, and allow the team to make 
mistakes; use these team members to seed other projects and act as mentors for the 
object-oriented approach. 

• Expose the developers and managers to examples of well-structured object-oriented 
systems. 

 
Good candidate projects include software development tools or domain-specific class 
libraries, which can then be used as resources in later projects. 
 
In our experience, it takes only a few weeks for a professional developer to master the syntax 
and semantics of a new programming language. It may take several more weeks for the same 
developer to begin to appreciate the importance and power of classes and objects. Finally, it 
may take as many as six months of experience for that developer to mature into a competent 
class designer. This is not necessarily a bad thing, for in any discipline, it takes time to master 
the art. 
 
We have found that learning by example is often an efficient and effective approach. Once an 
organization has accumulated a critical mass of applications written in an object-oriented 
style, introducing new developers and managers to object-oriented development is far easier. 
Developers start as application engineers, using the well-structured abstractions that already 
exist. Over time, developers who have studied and used these components under the 
supervision of a more experienced person gain sufficient experience to develop a meaningful 
conceptual framework of the object model and become effective class designers. 
 
 
7.8 The Benefits and Risks of Object-Oriented Development 
 
The Benefits of Object-Oriented Development 
 
The adopters of object-oriented technology usually embrace these practices for one of two 
reasons. First, they seek a competitive advantage, such as reduced time to market, greater 
product flexibility, or schedule predictability. Second, they may have problems that are so 
complex that don't seem to have any other solution. 
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In Chapter 2, we suggested that the use of the object model leads us to construct systems that 
embody the five attributes of well-structured complex systems. The object model forms the 
conceptual framework for the notation and process of object-oriented development, and thus 
these benefits are true of the method itself. In that chapter, we also noted the benefits that 
flow from the following characteristics of the object model (and thus from object-oriented 
development): 
 

• Exploits the expressive power of all object-oriented programming languages 
• Encourages the reuse of software components 
• Leads to systems that are more resilient to change 
• Reduces development risk 
• Appeals to the working of human cognition 

 
A number of case studies reinforce these findings; in particular, they point out that the object-
oriented approach can reduce development time and the size of the resulting source code [19, 
20, 21]. 
 
 
The Risks of Object-Oriented Development 
 
On the darker side of object-oriented design, we find that two areas of risk must be 
considered: performance and start-up costs 
 
Relative to procedural languages, there is definitely a performance cost for sending a message 
from one object to another in an object-oriented programming language. As we pointed out in 
Chapter 3, for method invocations that cannot be resolved statically, an implementation must 
do a dynamic lookup in order to find the method defined for the class of the receiving object. 
Studies indicate that in the worst case, a method invocation may take from 1.75 to 2.5 times as 
long as a simple subprogram call [22, 23]. On the positive side, let's focus on the operative 
phrase, “cannot be resolved statically.” Experience indicates that dynamic lookup is really 
needed in only about 20 percent of most method invocations. With a strongly typed language, 
a compiler can often determine which invocations can be statically resolved and then 
generate code for a subprogram call rather than a method lookup. 
 
Another source of performance overhead comes not so much from the nature of object-
oriented programming languages as from the way they are used in conjunction with object-
oriented development. As we have stated many times, object-oriented development leads to 
the creation of systems whose components are built in layers of abstraction. One implication 
of this layering is that individual methods are generally very small, since they build on lower-
level methods. Another implication of this layering is that sometimes methods must be 
written to gain protected access to the otherwise encapsulated fields of an object. This 
plethora of methods means that we can end up with a glut of method invocations. Invoking a 
method at a high level of abstraction usually results in a cascade of method invocations; high-
level methods usually invoke lower-level ones, and so on. For applications in which time is a 
limited resource, so many method invocations may be unacceptable. On the positive side 
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again, such layering is essential for the comprehension of a system; it may be impossible ever 
to get a complex system working without starting with a layered design. Our 
recommendation is to design for functionality first, and then instrument the running system 
to determine where the timing bottlenecks actually exist. These bottlenecks can often be 
removed by declaring the appropriate methods as inline (thus trading off space for time), 
flattening the class hierarchy, or breaking the encapsulation of a class's attributes. 
 
A related performance risk derives from the encumbrance of classes: a class deep in an 
inheritance lattice may have many superclasses, whose code must be included when linking 
in the most specific class. For small object-oriented applications, this may practically mean 
that deep class hierarchies are to be avoided, because they require an excessive amount of 
object code. This problem can be mitigated somewhat by using, a mature compiler and linker 
that can eliminate all dead code. 
 
Yet another source of performance bottlenecks in the context of object-oriented programming 
languages derives from the paging behavior of running applications. Most compilers allocate 
object code in segments, with the code for each compilation unit (often a single file) placed in 
one or more segments. This model presumes a high locality of reference: subprograms within 
one segment call subprograms in the same segment. However, in object-oriented systems, 
there is rarely such locality of reference. For large systems, classes are usually declared in 
separate files, and since the methods of one class usually build upon those of other classes, a 
single method invocation may involve code from many different segments. This violates the 
assumptions that most computers make about the runtime behavior of programs, particularly 
for computers with pipelined CPUs and paging memory systems. Again on the positive side, 
this is why we separate logical and physical design decisions. If a running system thrashes 
during execution owing to excessive segment swapping, then fixing the problem is largely a 
matter of changing the physical allocation of classes to modules. This is a design decision in 
the physical model of the system, which has no effect upon its logical design. 
 
One remaining performance risk with object-oriented systems comes from the dynamic 
allocation and destruction of objects. Allocating an object on a heap is a dynamic action as 
opposed to statically allocating an object cither globally or on a stack frame, and heap 
allocation usually costs more computing resources. For many kinds of systems, this property 
does not cause any real problems, but for time-critical applications, one cannot afford the 
cycles needed to complete a heap allocation. There are simple solutions for this problem: 
either preallocate such objects during elaboration of the program, instead of during any time-
critical algorithms, or replace the system's default memory allocator with one tuned to the 
behavior of the specific system 
 
One other positive note: certain properties of object-oriented systems often overshadow all 
these sources of performance overhead. For example, Russo and Kaplan report that the 
execution time of a C++ program is often faster than that of its functionally equivalent C 
program [24]. They attribute this difference to the use of virtual functions, which eliminate 
the need for some kinds of explicit type checking and control structures. Indeed, in our 
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experience, the code sizes of object-oriented systems are commonly smaller than their 
functionally equivalent non-object-oriented implementations. 
 
For some projects, the start-up costs associated with object-oriented development may prove 
to be a very real barrier to adopting the technology. Using any such new technology requires 
the capitalization of software development tools. Also, if a development organization is using 
a particular object-oriented programming language for the first time, they usually have no 
established base of domain-specific software to reuse. In short, they must start from scratch or 
at least figure out how to interface their object-oriented applications with existing non-object-
oriented ones. Finally, a first attempt to use object-oriented development will surely fail 
without the appropriate training. An object-oriented programming language is not 'just 
another programming language" that can be learned in a three-day course or by reading a 
book. As we have noted, it takes time to develop the proper mindset for object-oriented 
design, and this new way of thinking must be embraced by both developers and their 
managers alike. 
 
 
Summary 
 

• The successful development and deployment of a complex software system involves 
much more than just generating code. 

• Many of the basic practices of software development management, such as 
walkthroughs, are unaffected by object-oriented technology. 

• In the steady state, object-oriented projects typically require a reduction in resources 
during development; the roles required of these resources are subtly different than for 
non-object-oriented systems. 

• In object-oriented analysis and design, there is never a single “big-bang” integration 
event; the unit of configuration management for releases should be the category or 
subsystem, not the individual file or class. 

• Reuse must be institutionalized to be successful. 
• Defect-discovery rate and defect density are useful measures for the quality of an 

object-oriented system. Other useful measures include various class-oriented metrics. 
• Documentation should never drive the development process. 
• Object-oriented development requires subtly different tools than do non-object-

oriented systems. 
• The transition by an organization to the use of the object model requires a change in 

mindset; learning an object-oriented programming language is more than learning 
“just another programming language.” 

• There are many benefits to object-oriented technology as well as some risks; experience 
indicates that the benefits far outweigh the risks. 

 
 
Further Readings 
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van Genuchten [H 1991] and Jones [H 1992] examine common software risks. To understand 
the mind of the individual programmer, see Weinberg [J 1971, H 1988]. Abdel-Hamid and 
Madnick [H 1991] study the dynamics of development teams. 

Gilb [H 1988] and Charette [H 1989] are primary references for software engineering 
management practices. The work by Aron [H 1974] offers a comprehensive look at 
managing the individual programmer and teams of programmers. For a realistic study of 
what really goes on during the development, when pragmatics chases theory out the 
window, see the works by Glass [G 1982], Lammers [H 1986], and Humphrey [H 1989]. 
DeMarco and Lister [H 1987], Yourdon [H 1989], Rettig [H 1990], and Thorasett [H 1990] 
offer a number of recommendations to the development manager. 

Details on how to conduct software walkthroughs may be found in Weinberg and Freedman 
[H 1990] and Yourdon [H 1989a]. 

Schulmeyer and McManus [H 1992] provide an excellent general reference on software 
quality assurance. Chidamber and Kernerer [H 1991] and Walsh [H 1992, 1993] study 
quality assurance and metrics in the context of object-oriented systems. 

Suggestions on how to transition individuals and organizations to the object model are 
described by Goldberg [C 1978], Goldberg and Kay [G 1977], and Kempf [G 1987].
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APPLICATIONS 
 
 
 

  To build a theory, one needs to know a lot about the basic 
  phenomena of the subject matter. We simply do not know 

  enough about these, in the theory of computation, to teach 
 the subject very abstractly. Instead, we ought to, teach more 

about the particular examples we now understand thoroughly, 
  and hope that from this we will be able to guess and prove 

  more general principies. 
 

 MARVIN MINSKY 
Form and Content in Computer Science



CHAPTER 8 

289 

 
Data Acquisition: 
Weather Monitoring Station 
 
 
 
Methods are a wonderful thing, but from the perspective of the practicing engineer, the most 
elegant notation or process ever devised is entirely useless if it does not help us build 
systems for the real world. The last seven chapters have been but a prelude to this section of 
the book, in which we now apply object-oriented analysis and design to the pragmatic 
construction of software systems. In this and the remaining four chapters, we start with a set 
of system requirements and then use the notation and process of object-oriented 
development to lead us to an implementation. We have chosen a set of applications from 
widely varying domains, encompassing data acquisition, frameworks, information 
management systems, artificial intelligence, and command and control, each of which 
involves its own unique set of problems. Because our focus is on analysis and design rather 
than programming, we do not present the complete implementation of any one problem, 
although we will supply enough details to show the mapping from analysis through design to 
implementation, and to highlight particularly interesting aspects of the system's architecture. 
 
 
Weather Monitoring Station Requirements 
 
This system shall provide automatic monitoring of various weather conditions. Specifically, it 
must measure: 
 
• Wind speed and direction 
• Temperature 
• Barometric pressure 
• Humidity 
 
The system shall also provide the following derived measurements: 
 
• Wind chill 
• Dew point temperature 
• Temperature trend 
• Barometric pressure trend 
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The system shall have a means of determining the current time and date, so that it can report 
the highest and lowest values of any of the four primary measurements during the previous 
24 hour period. 
 
The system shall have a display that continuously indicates all eight primary and derived 
measurements, as well as the current time and date. Through the use of a keypad, the user 
may direct the system to display the 24-hour high or low value of any one primary 
measurement, together with the time of the reported value. 
 
The system shall allow the user to calibrate its sensors against known values, and to set the 
current time and date. 
 
 
8.1 Analysis 
 
Defining the Boundaries of the Problem 
 
The sidebar provides the requirements for a weather monitoring system. This is a simple 
application, encompassing only a handful of classes. Indeed, at first glance, the object-
oriented novice might be tempted to tackle this problem in an inherently non-object-oriented 
manner, by considering the flow of data and the various input/output mappings involved. 
However, as we shall see, even a system as small as this one lends itself well to an object-
oriented architecture, and in so doing exposes some of the basic principles of the object-
oriented development process. 
 
We begin our analysis by considering the hardware on which our software must execute. This 
is inherently a problem of systems analysis, involving manufacturability and cost issues that 
are far beyond the scope of this text. To bound our problem and thus allow us to expose the 
issues of its software analysis and design, we will make the following strategic assumptions: 
 

• We will use a single-board computer (SBC) with a 486-class processor75. 
• Time and date are supplied by an on-board clock, accessible via memory-mapped I/O. 
• Temperature, barometric pressure, and humidity are measured by on-board circuits 

(with remote sensors), also accessible via memory-mapped I/O. Wind direction and 
speed are measured from a boom encompassing a wind vane (capable of sensing wind 
from any of 16 directions) and cups (which advance a counter for each revolution). 

• User input is provided through an off-the-shelf telephone keypad, managed by an on-
board circuit supplying audible feedback for each key press. Last user input is 
accessible via memory-mapped I/O. The display is an off-the-shelf LCD graphic 
device, managed by an on-board circuit capable of processing a simple set of graphics 

                                                 
75 This may seem like overkill, but the economies of scale are such that a 486-based SBC is only modestly more 
expensive than a computer based upon an earlier-generation processor. Specifying hardware with excess 
capacity means that we can manufacture a family of systems that use the same hardware, and whose family 
members are distinguished largely by their software. 
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primitives, including messages for drawing lines and arcs, filling regions, and 
displaying text. 

• An on-board timer interrupts the computer every 1/60 second. 
 
Figure 8-1 provides a process diagram that illustrates this hardware platform. 
 
We have chosen to throw some hardware at this problem, so that we might better focus upon 
the system's software. Obviously, we could require more of our software by doing less in 
hardware (such as by eliminating some of the hardware for the user input and LCD device), 
but as it turns out, changing the hardware/software boundary is largely immaterial to our 
object-oriented architecture. Indeed, one of the characteristics of an object-oriented system is 
that it tends to speak in the vocabulary of its problem space, and so represents a virtual 
machine that parallels our abstraction of the problem's key entities. Changing the details of 
the system's hardware only impacts our abstraction of the lower layers of the system. 
 
The use of memory-mapped I/O is quite common for embedded systems such as this one, 
but obviously, we'd like to hide the secrets of this particular system decision, because these 
details are so implementation-dependent and therefore subject to change. We can easily 
insulate our software abstractions from these gnarly details by wrapping a class around each 
such interface. For example, we might devise a simple class for accessing the current time and 
 

 
 
Figure 8-1 
Weather Monitoring System Hardware 
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date: we begin by doing a little isolated class analysis, in which we consider what roles and 
responsibilities this abstraction should encompass76. Thus, we might decide that this class is 
responsible for keeping track of the current time in hours, minutes, and seconds, as well as 
the current month, day, and year. Our analysis might decide to turn these responsibilities into 
two services, denoted by the operations currentTime and currentDate, respectively. The operation 
currentTime returns a string in the following format: 
 
13:56:42 
 
showing the current hour, minute, and second. The operation currentDate retums a string in the 
following format: 
 
6-10-93 
 
showing the current month, day, and year. 
 
Further analysis suggests that a more complete abstraction would allow a client to chose 
either a 12- or 24-hour format for the time, which we may provide in the form of an 
additional modifier named setFormat. 
 
By specifying the behavior of this abstraction from the perspective of its public clients, we 
have devised a clear separation between its interface and implementation. The basic idea here 
is to build the outside view of each class 
 

 
Figure 8-2 
TimeDate Life Cycle 
 
as if we had complete control over its underlying platform, then implement the class as a 
bridge to its real inside view. Thus, the implementation of a class at the system's 

                                                 
76 Actually, instead of first setting out to design a new class from scratch, we should start by looking for an 
existing class that already satisfies our needs. A time and data class is certainly a good candidate for reuse: the 
abstraction is so common, it is likely that someone has already developed and tested such a class. For the 
purposes of this chapter, we will assume that no such class could be found. 
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hardware/software boundary serves to bolt the outside view of the abstraction to its 
underlying platform, which is often constrained by system decisions that are out of the hands 
of the software engineer. Of course, the gap between an abstraction's outside and inside 
views must not be so wide as to require a thick and inefficient implementation to glue the two 
views together. 
 
Out memory-mapped I/O model might only provide access to the time and date as a 16-bit 
integer, representing the number of seconds since the system was powered on.77 One 
responsibility of our time and date class must therefore include translating this raw data to 
some meaningful value. Carrying out this responsibility requires a new set of services to set 
the time and date, which we provide via the operations setHour, setMinute, setSecond, setDay, 
setMonth, and setYear. 
 
We may summarize our abstraction of a time/date class as follows: 
 
Name:  
 TimeDate  
Responsibilities:  
 Keep track of the current time and date.  
Operations:  
 currentTime  
 currentDate 
 setFormat  
 setHour 
 setMinute 
 setSecond  
 setMonth  
 setDay  
 setYear  
Attributes:  
 time  
 date 
 
Instances of this class have a dynamic life cycle, which we can express in the state transition 
diagram shown in Figure 8-2. Here we see that upon initialization, an instance of this class 
resets its time and date attributes, and then unconditionally enters the Running state, where it 
begins in 24-hour mode. Once in the Running state, receipt of the operation setFormat might toggle 
the object between 12- and 24-hour mode. No matter what its nested state, however, setting the 
time or date causes the object to renormalize its attributes. Similarly, requesting its time or 
date causes the object to calculate a new string value. 
 

                                                 
77 A simple implementation might use a hardware timer that advances a counter every second. A more 
sophisticated implementation might use a time/date chip with a battery backup. In either case, the outside view 
of our class presents the same contract to its clients. Our implementation is then responsible for tying this 
contract to the hardware. 
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We have specified the behavior of this abstraction in enough detail so that we can offer it for 
use in scenarios with other clients we might discover during analysis. Before we consider 
these scenarios, let's specify the behavior of the other tangible objects in our system. 
 
The class TemperatureSensor serves as an analog to the hardware temperature sensors in our 
system. Isolated class analysis yields the following first cut at this abstraction's outside view: 
 
Name:  
 TemperatureSensor  
Responsibilities:  
 Keep track of the current temperature.  
Operations:  
 currentTemperature  
 setLowTemperature  
 setHighTemperature  
Attributes:  
 temperature 
 
The operation currentTemperature is self-explanatory. The other two operations derive directly 
from our requirements, which obligate us to provide a mechanism for calibrating each sensor. 
For the moment, we will assume that each temperature sensor value is represented by a fixed-
point number, whose low and high points can be calibrated to fit known actual values. We 
translate intermediate numbers to their actual temperatures by simple linear interpolation 
between these two points, as we illustrate in Figure 8-3. 
 
The careful reader may wonder why we have proposed a class for this abstraction, when our 
requirements imply that there is exactly one temperature sensor in the system, That is indeed 
true, but in anticipation of reusing this abstraction, we choose to capture it as a class, thereby 
decoupling it from the particulars of this one system. In fact, the number of temperature 
sensors monitored by a particular system is largely immaterial to our architecture, and by 
devising a class, we make it simple for other programs in this family of systems to manipulate 
any number of sensors. 
 
We can express our abstraction of the barometric pressure sensor in the following 
specification: 
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Figure 8-3 
TemperatureSensor Calibration 
 
Name: 
 PressureSensor 
Responsibilities:  
 Keep track of the current barometric pressure. 
Operations:  
 currentPressure  
 setLowPressure  
 setHighPressure 
Attributes:  
 pressure 
 
 
A review of the system's requirements reveals that we may have missed one important 
behavior for this and the previous class, TemperatureSensor. Specifically, our requirements 
compel us to provide a means for reporting the temperature and pressure trends. For the 
moment (because we are doing analysis, not design), we will be content to focus on the nature 
of this behavior and, most important, on deciding which abstraction we should make 
responsible for this behavior. 
 
For both the TemperatureSensor and the PressureSensor, we can express the trends as floating 
point numbers between -1 and 1, representing the slope of a line fitting a number of values 
over some interval of time78. Thus, we may add the following responsibility and its 
corresponding operation to both these classes: 
 
                                                 
78 A value of 0 means that the temperature or pressure is stable. A value of 0.1 denotes a modest rise; a value of -
0.3 denotes rapidly declining values. A value approaching -1 or 1 suggests an environmental cataclysm, which is 
beyond the scope of the scenarios our system is expected to handle properly. 
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Responsibilities:  
 Report the temperature or pressure trend as the slope of a line fitting 

the past values over the given interval.  
Operations:  
 trend 
 
Because this behavior is common to both the temperature and pressure sensor classes, our 
analysis suggests the invention of a common superclass, which we will call TrendSensor, 
responsible for providing this common behavior. 
 
For completeness, we should point out that there is an alternative view of the world that we 
might have chosen in out analysis. Our decision was to make this common behavior a 
responsibility of the sensor class itself. We could have decided to make this behavior a part of 
some external agent that periodically queried the particular sensor and calculated its trend, 
but we rejected this approach, because it was unnecessarily complex. Our original 
specification of the temperature and pressure sensor classes suggested that each abstraction 
had sufficient knowledge to carry out this trend-reporting behavior, and by combining 
responsibilities (albeit in the form of a superclass), we end up with a simple and conceptually 
cohesive abstraction. 
 
Our abstraction of the humidity sensor can be expressed in the following specification: 
 
Name: 
 HumiditySensor  
Responsibilities:  
 Keep track of the current humidity, expressed as a percentage of 

saturation from 0% to 100%. 
Operations:  
 currentHumidity 
 setLowHumidity 
 setHighHumidity 
Attributes: 
 pressure 
 
The HumiditySensor has no responsibility for calculating its trend and is therefore not a subclass 
of TrendSensor. 
 
A review of the system's requirements suggests some behavior common to the classes 
TemperatureSensor, PressureSensor, and HumiditySensor. In particular, out requirements compel us 
to provide a means of reporting the highest and lowest values of each of these sensors during 
a 24-hour period. We might capture this behavior in the following specification, common to 
all three classes: 
 
Responsibilities: 
 Report the highest and lowest value over a 24-hour period.  
Operations:  
 highValue  
 lowValue  
 timeOfHighValue  
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 timeOfLowValue 
 
We defer deciding how to carry out this responsibility, because that is an issue of design, not 
analysis. However, because this behavior is common to all three sensor classes, our analysis 
suggests the invention of a common superclass, which we call HistorySensor, responsible for 
providing this common behavior. HumiditySensor is a direct subclass of HistorySensor, as is 
TrendSensor, which serves as an intermediate abstract class, bridging out abstractions of 
HistorySensor and the concrete classes TemperatureSensor and PressureSensor. 
 
Our abstraction of the wind-speed sensor can be expressed in the following specification: 
 
Name: 
 WindSpeedSensor 
Responsibilities: 
 Keep track of the current wind speed. 
Operations: 
 currentSpeed 
 setLowSpeed 
 setHighSpeed 
Attributes: 
 speed 
 
Our requirements suggest that we cannot detect the current wind speed directly; rather, we 
must calculate its value by taking the number of revolutions of the cups on the boom, 
dividing by the interval over which those revolutions were counted, and then applying a 
scaling value appropriate to the particular boom assembly. Needless to say, this calculation is 
one of the secrets of this class; clients could care less how currentSpeed is calculated, as long as 
this operation satisfies its contract and delivers meaningful values. 
 
A quick domain analysis of the last four concrete classes (TemperatureSensor, PressureSensor, 
HumiditySensor, and WindSpeedSensor) reveals yet another behavior in common: each of these 
classes knows how to calibrate itself by providing a linear interpolation against two known 
data points. Rather than replicating this behavior in all four classes, we instead choose to 
make this behavior the responsibility of an even higher superclass, which we call 
CalibratingSensor, whose specification includes the following: 
 
Responsibilities: 
 Provide a linear interpolation of values, given two known data points. 
Operations: 
 currentValue 
 setHighValue 
 setLowValue 
 
CalibratingSensor is an immediate superclass of HistoricalSensor79. 
 
                                                 
79 This hierarchy passes our litmus test for inheritance: a TemperatureSensor is a kind of TrendSensor, which is 
also a kind of HistoricalSensor, which in turn is a kind of CalibratingSensor. 
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Our final concrete sensor for wind direction is a bit different, because it requires neither 
calibration nor history. We may express our abstraction of this entity in the following 
specification: 
 
Name: 
 WindDirectionSensor 
Responsibilities: 
 Keep track of the current wind direction, in terms of points along a 

compass rose. 
Operations: 
 currentDirection 
Attributes: 
 direction 
 

 
Figure 8-4 
Sensor Class Hierarchy 
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To unify our sensor abstractions, we generate the abstract base class Sensor, which serves as 
the immediate superclass to both the classes WindDirectionSensor and CalibratingSensor. Figure 8-4 
illustrates this complete hierarchy. 
 
Although not part of the sensor hierarchy, our abstraction of the keypad for user input has a 
simple specification: 
 
Name: 
 Keypad 
Pesponsibilities: 
 Keep track of the last user input. 
Operations: 
 lastKeyPress 
Attributes: 
 key 
 
Notice that this class has no knowledge of the meaning of any particular key: instances of this 
class only know that one of several keys was pressed. We delegate responsibility for 
interpreting the meaning of these keys to a different   

 
 
Figure 8-5 
Weather Monitoring System Display 
 
class, which we will identify when we apply these concrete boundary classes to our scenarios. 
 
Our abstraction of an LCDDevice class serves to insulate our software from the particular 
hardware we might use. For workstations and personal computers, there have emerged 
widespread (albeit conflicting) standards for graphics programming, such as programmatic 
interfaces for Motif and Microsoft Windows. Unfortunately, for embedded controllers, no 
such common standards prevail. To decouple our software from the particular graphics 
hardware we might use, our analysis leads us to prototype some common displays for the 
weather monitoring system, and then determine our interface needs. 
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Figure 8-5 provides such a prototype. Here, we have omitted the display of wind chill and 
dew point as our requirements demand, as well as details such as how to display the 24-hour 
high or low value of primary measurements. Nonetheless, some patterns emerge: we only 
need to display text (in two different sizes and two different styles), circles, and lines (of 
varying thickness). Additionally, we note that some elements of our display are static (such as 
the label TEMPERATURE), while others are dynamic (such as the wind direction). We choose to 
display both static and dynamic elements via software. In this manner, we lessen the burden 
on our hardware by eliminating the need for special labels on the LCI) itself, but require 
slightly more of our software. 
 
We can translate these requirements into the following class specification: 
 
Name: 
 LCDDevice 
Responsibilities: 
 Manage the LCD device and provide services for displaying certain 

graphics elements. 
Operations: 
 drawText 
 drawLine 
 drawCircle 
 setTextSize 
 setTextStyle 
 setPenSize 
 
 

 
Figure 8-6 
Timer Interaction Diagram 
 
As with the class Keypad, the class LCDDevice has no knowledge of the meaning of the 
elements it manipulates. Instances of this class know only how to display text and lines, but 
do not know what these figures represent. This separation of concerns leaves us with loosely 
coupled abstractions (which is what we desire), but it does require that we find some agent 
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responsible for mediating between the raw sensors and the display. We defer the invention of 
this new abstraction until we study some scenarios applicable to this system. 
 
The final boundary class we need to consider is that of the timer. We will make the 
simplifying assumption that there is exactly one timer per system, whose behavior is to 
interrupt the computer ever 1/60 of a second and in so doing, invoke an interrupt service 
routine. Now, this is a particularly grungy detail, and it would be best if we could hide this 
implementation detail from the rest of our software abstractions. We can do so by devising a 
class that uses a callback function and that exports only static members (so that we constrain 
our system to have exactly one timer). 
 
Figure 8-6 provides an interaction diagram that illustrates a use case for this abstraction. Here 
we see how the timer and its client collaborate: the client begins by supplying a callback 
function, and every 0.1 second, the timer calls that function. In this manner, we decouple the 
client from knowing about how to intercept timed events, and decouple the timer from 
knowing what to do when such an event occurs. The primary responsibility that this protocol 
places upon the client is simply that the execution of its callback function must always take 
less then 0.1 second, otherwise, the timer will miss an event. 
 
By intercepting time events, the Timer class serves as an active abstraction, meaning that it is at 
the root of a thread of control. We may express our abstraction of this class in the following 
specification: 
 
Name: 
 Timer 
Responsibilities: 
 Intercept all timed events and dispatch a callback function accordingly. 
Operations: 
 setCallback() 
 
 
Scenarios 
 
Now that we have established the abstractions at the boundaries of our system, we continue 
our analysis by studying several scenarios of its use. We begin by enumerating a number of 
primary use cases, as viewed from the clients of this system: 
 

• Monitoring basic weather measurements including wind speed and direction, 
temperature, barometric pressure, and humidity. 

• Monitoring derived measurements including wind chill, dew point, temperature trend, 
and barometric pressure trend. 

• Displaying the highest and lowest value of a selected measurement. 
• Setting the time and date. 
• Calibration of a selected sensor. 
• Powering up the system. 

We add to this list two secondary use cases: 
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• Power failure. 
• Sensor failure. 

 
Let's examine a number of these scenarios in order to illuminate the behavior but not the 
design – of the system. 
 
Monitoring basic weather measurements is the principle function point of the weather 
monitoring system. One of our system constraints is that we cannot take measurements any 
faster than 60 times a second. Fortunately, most interesting weather conditions change much 
more slowly. Our analysis suggests that the following sampling rates are sufficient to capture 
changing conditions: 
 

• Every 0.1 second wind direction 
• Every 0.5 seconds wind speed 
• Every 5 minutes temperature, barometric pressure, and humidity 

 
Earlier, we decided that the classes representing each primary sensor should have no 
responsibility for dealing with timed events. Our analysis therefore requires that we devise 
an external agent that collaborates with these sensors to carry out this scenario. For the 
moment, we will defer our specification of the behavior of this agent (how it knows when to 
initiate a sample is an issue of design, not analysis). The interaction diagram in Figure 8-7 
illustrates this scenario. Here, we see that when the agent begins sampling, it polls each 
sensor in turn, but intentionally skips certain sensors in order to sample them at a slower rate. 
By polling each sensor rather than letting each sensor act as a 
 

 
Figure 8-7  
Scenario for Monitoring Basic Measurements 
 
thread of control, the execution of our system is more predictable, because our agent can 
control the flow of events. Because this name reflects its place in the behavior of the system, 
we will make this agent an instance of the class Sampler. 
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We must continue this scenario by asking which of these objects in the interaction diagram is 
then responsible for displaying the sampled values on the one instance of our LCDDevice class. 
Ultimately, we have one of two choices: we can have each sensor be responsible for 
displaying itself (the common pattern used in MVC-like architectures), or we can have a 
separate object be responsible for this behavior. For this particular problem, we choose the 
latter, because it allows us to encapsulate all our design decisions about the layout of our 
display in one class.80 Thus, we add the following class specification to our products of 
analysis: 
 
Name: 
 DisplayManager 
Responsibilities: 
 Manage layout or items on the LCD device. 
Operations: 
 drawStaticItems 
 displayTime 
 displayDate 
 displayTemperature 
 displayHumidity 
 displayPressure 
 displayWindChill 
 displayDewPoint 
 displayWindSpeed 
 displayWindDirection 
 displayHighLow 

                                                 
80 The dominant problem here is where we display each item, not how each item looks. Because this is a decision 
that is likely to change (and we do not assume the existence of any general resource management mechanism as 
is common for GUIs such as Motif and Windows), it is best for us to encapsulate in one class all the knowledge 
about where to display each item on the LCI) device. Changing our assumptions about front panel layout 
therefore requires that we only touch one class instead of many. 
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Figure 8-8 
Sample and Display Classes 
 
The operation drawStaticItems exists to draw the unchangeable parts of the display, such as the 
compass rose used for indicating the wind direction. We will also assume that the operations 
displayTemperature and displayPressure are responsible for displaying their corresponding trends 
(therefore, as we move into implementation, we must provide a suitable signature for these 
operations). 
 
Figure 8-8 provides a class diagram illustrating the abstractions that must collaborate to carry 
out this scenario. Note that we also indicate the role that each abstraction plays in its 
association with other classes. 
 
There is one important side effect from our decision to include the class DisplayManager.81 
Specifically, internationalizing our software, that is, adapting it to different countries and 
languages, becomes much easier given this design decision, because the knowledge about 
how elements are named (such as TEMPERATURE or SPEED) is part of the secrets of this one 
class. 
 
Internationalization leads us to consider an issue about which the requirements are silent: 
should the system display temperature in Centigrade or Fahrenheit? Similarly, should the 
system display wind speed in kilometers per hour (KPH) or miles per hour (MPH)? 

                                                 
81 Is this an analysis decision or a design decision? The question can be argued in either direction, although such 
arguments are largely academic in the face of having to deliver production software. lf a decision advances our 
understanding of the system's desired behavior and in addition leads us to an elegant architecture, then we 
don't really care what it is called. 
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Ultimately, our software should not constrain us. Because we seek end-user flexibility, we 
must add an operation setMode to both the classes TemperatureSensor and WindSpeedSensor. We 
must also add a new responsibility to each of these classes, which makes their instances 
construct themselves in a known stable state. Finally, we must modify the signature of the 
operation DisplayManager::drawStaticItems accordingly, so that when 
 

 
 
Figure 8-9 
Derived Measurements 
 
we change units of measurement, the display manager can update the front panel display if 
need be. 
 
This discovery leads us to add one more scenario for consideration in our analysis, namely: 
 

• Setting the unit of measurement for temperature and wind speed. 
 
We will defer considering this scenario until we study the other use cases that deal with user 
interaction. 
 
Monitoring the derived measurements for temperature and pressure trends can be achieved 
through the protocol we have already established for the classes TemperatureSensor and 
PressureSensor. However, to complete this scenario for all derived measurements, we are now 
led to discover two new classes, which we call WindChill and DewPoint, responsible for 
calculating their respective values. Neither of these abstractions represent sensors, because 
they do not denote any tangible device in the system. Rather, each one acts as an agent that 
collaborates with two other classes to carry out its responsibilities. Specifically, the class 
WindChill conspires with the classes TemperatureSensor and WindSpeedSensor, and the class DewPoint 
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conspires with the classes TemperatureSensor and HumiditySensor. In turn, the classes WindChill 
and DewPoint collaborate with the class Sampler, using the same mechanism as Sampler uses to 
monitor all the primary weather measurements. Figure 8-9 illustrates the classes involved in 
this scenario; basically, this class diagram is just a slightly different view of the system than 
the one shown in Figure 8-8. 
 
Why do we define WindChill and DewPoint as classes, instead of just carrying out their 
calculation through a simple nonmember function? The answer is that this situation passes 
our litmus test for object-oriented abstractions: instances of both WindChill and DewPoint provide 
some behavior (namely, the calculation of their respective values), encapsulate some state 
(each must maintain an association with a particular instance of two different concrete 
sensors), and each has a unique identity (each particular wind-speed sensor/temperature 
sensor association must have its own WindChill object). By “objectifying” these seemingly 
algorithmic abstractions, we also end up with a more reusable architecture: both WindChill and 
DewPoint can be lifted from this particular application, because each presents a clear contract to 
its clients, and each offers a clear separation of concerns relative to all the other abstractions. 
 
Moving on, we next consider the various scenarios that relate to user interaction with the 
weather monitoring system. Deciding upon the proper user gestures for interacting with an 
embedded controller such as this one is still as much of an art as is designing a graphical user 
interface. A full treatment of how to devise such user interfaces is beyond the scope of this 
text, but the basic message for the software analyst is that prototyping works, and indeed is 
fundamental in helping to mitigate the risks involved in user-interface design. Furthermore, 
by implementing our decisions in terms of an object-oriented architecture, we make it 
relatively easy to change these user-interface decisions without rending the fabric of our 
design. 
 
Consider some possible scripts that storyboard scenarios of user interaction: 
 
Displaying the highest and lowest value of a selected measurement. 

1. User presses the SELECT key. 
2. System displays SELECTING. 
3. User presses any one of the keys WIND SPEED, TEMPERATURE, PRESSURE 

or HUMIDITY; any other key press (except Run) is ignored. 
4. System flashes the corresponding label. 
5. User presses the UP or DOWN key to select display of the highest or 

lowest 24-hour value, respectively; any other key press (except RUN) 
is ignored. 

6. System displays the selected value, together with its time of 
occurrence. 

7. Control passes back to step 3 or 5. 
Note: the user may press the RUN key to commit or abandon the operation, 

at which time the flashing display, the selected value, and the 
SELECTING message are removed. 

 
This scenario leads us to enhance the class DisplayManager by adeling the both the operations 
flashLabel (which causes the identified label to flash or stop flashing, according to an 
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appropriate operation argument) and displayMode (which displays a text message on the LCD 
device). 
 
Setting the time and date follows a similar scenario: 
 
Setting the time and date. 

1. User presses the SELECT key. 
2. System displays SELECTING. 
3. User presses any one of the keys TIME or DATE; any other key press 

(except RUN and the keys listed in step 3 of the previous scenario) 
is ignored. 

4. System flashes the corresponding label; display also flashes the first 
field of the selected item (namely, the hours field for the time and 
the month field for the date). 

5. User presses the LEFT or RIGHT keys to select another field 
(selection wraps around); user presses the UP or DOWN keys to raise 
or lower the value of the selected field. 

6. Control passes back to step 3 or 5. 
Note the user may press the RUN key to commit or abandon the operation, 

at which time the flashing display and the SELECTING message are 
removed, and the time or date are reset. 

 

 
 
Figure 8-10 
Weather Monitoring System User Keypad 
 
Calibrating a particular sensor follows a related pattern of user gestures: 
 
Calibrating a sensor. 

1. User presses the CALIBRATE key. 
2. System displays CALIBRATING. 
3. User presses any one of the keys WIND SPEED, TEMPERATURE, PRESSURE 

or HUMIDITY; any other key press (except RUN) is ignored. 
4. System flashes the corresponding label. 
5. User presses the UP or DOWN keys to select the high or low 

calibration point. 
6. Display flashes the corresponding value. 
7. User presses the UP or DOWN keys to adjust the selected value. 
8. Control passes back to step 3 or 8. 
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Note: the user may press the RUN key to commit or abandon the operation, 
at which time the flashing display and the CALIBRATING message are 
removed, and the calibration function is reset. 

 
While calibrating, instances of the class Sampler must be told to not sample the selected item, 
otherwise, erroneous information would be displayed to the user. This scenario therefore 
requires that we introduce two new operations for the class Sampler, namely inhibitSample and 
resumeSample, both of which have a signature that specifies a particular measurement. 
 
Our last primary scenario involving the user interface concerns setting units of measurement: 
 
Setting the unit of measurement for temperature and wind speed. 

1. User presses the MODE key. 
2. System displays MODE. 
3. User presses any one of the keys WIND SPEED or TEMPERATURE; any 

other key press (except RUN) is ignored. 
4. System flashes the corresponding label. 
5. User presses the UP or DOWN keys to toggle the current unit of 

measurement. 
6. System updates the unit of measurement for the selected item. 
7. Control passes back to step 3 or 5. 
Note: the user may press the RUN key to commit or abandon the operation, 

at which time the flashing display and the MODE message are 
removed, and the current unit of measurement for the item is set. 

 
A study of these scenarios leads us to decide upon an arrangement for buttons on the keypad 
(a system decision), which we illustrate in Figure 8-10. 
 
Each of these user interface scenarios involves some form of modality or event-ordered 
behavior, and so is well suited to expression through the use of state transition diagrams. 
Because these scenarios are so tightly coupled, we 
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Figure 8-11 
InputManager State Transition Diagram 
 
choose to devise a new class, InputManager, which is responsible for carrying out the following 
contractual specification: 
 
Name: 
 InputManager 
Responsibilities: 
 Manage and dispatch user input. 
Operations: 
 processKeyPress 
 
The sole operation, processKeyPress, animates the state machine that lives behind instances of 
this class. 
 
As we see in Figure 8-11, the outermost state transition diagram for this class encompasses 
four states: Running, Calibrating, Selecting, and Mode. These states correspond directly to the earlier 
scenarios. We transition to the respective states based upon the first key press intercepted 
while Running, and we retum to the Running state when the last key press is again Run. Each 
time we enter Running, we clear the message on the display. 
 
We have expanded the Mode state to show how we might more formally express the dynamic 
semantics of our scenario. As we first enter this state, our entry action is to display an 
appropriate message on the display. We begin in the Waiting state, and transition out of this 
state if we intercept a user key press of the Temperature or Wind Speed keys, which causes us to 
enter a nested state of Processing, or a user key press of Run, which transitions us back to the 



 Chapter 8: Data Acquisition 310 

outermost Running state. Each time we enter Processing, we flash the appropriate item; in 
subsequent entries to this state, we enter the previously entered nested state, Temp or Wind. 
 
While in the Temp or Wind state, we may intercept one of five key presses: Up or Down (which 
toggles the corresponding mode), Temp or Wind (which reenters the appropriate nested state) 
or Run (which ejects us from the outer Mode state). 
 
The Selecting and Calibrating states similarly expand out to reveal more nested states. We will 
not show their expanded state transition diagrams here, because their presentation does not 
reveal anything particularly interesting about the problem at hand.82 
 
Our final primary scenario involves powering up the system, which requires that we bring all 
of its objects to life in an orderly fashion, ensuring that each one starts in a stable initial state. 
We may write a script for our analysis of this scenario as follows: 
 
Powering up the system 

1. Power is applied. 
2. Each sensor is constructed; historical sensors clear their history, 

and trend sensors prime their slope-calculating algorithms. 
3. The user input buffer is initialized, causing garbage key presses (due 

to noise upon power up) to be discarded. 
4. The static elements of the display are drawn. 
5. The sampling process is initiated. 

Postconditions: The past high/low values of each primary measurement is set 
to the value and time of their first sample. 

The temperature and pressure trends are flat. 
The InputManager is in the Running state. 

 
Notice the use of postconditions in out script to specify the expected state of the system after 
this scenario completes. As we shall see, there is no one agent in the system that carries out 
this scenario; rather, this behavior results from the collaboration of a number of objects, each 
of which is given the responsibility to bring itself to a stable initial state. 
 
This completes our study of the weather monitoring system's primary scenarios. To be utterly 
complete, we might want to walk through the various secondary scenarios. At this point, 
however, we have exposed a sufficient number of the system's function points, and we want 
to proceed with architectural design, so that we might begin to validate out strategic 
decisions. 
 
 
8.2 Design 
 

                                                 
82 Of course, for a production product, a comprehensive analysis would complete the exposition of this state 
transition diagram. We can defer this task here, because it is more tedious than not, and in fact does not reveal 
anything we do not already know about the system under construction. 
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Architectural Framework 
 
Every software system needs to have a simple yet powerful organizational philosophy (think 
of it as the software equivalent of a sound bite that describes the system's architecture), and 
the weather monitoring system is no exception. The next step in our development process is 
to articulate this architectural framework, so that we might have a stable foundation upon 
which to evolve the system's function points. 
 

 
Figure 8-12 
Time-Frame Processing 
 
In data acquisition and process-control domains, there are many possible architectural 
patterns we might follow, but the two most common alternatives involve either the 
synchronization of autonomous actors or time-frame-based processing. 
 
In the first pattern, our architecture encompasses a number of relatively independent objects, 
each of which serves as a thread of control. For example, we might invent several new sensor 
objects that build upon more primitive hardware/software abstractions, with each such 
object responsible for taking its own sample and reporting back to some central agent that 
processes these samples. This architecture has its merits; it is about the only meaningful 
framework if we have a distributed system in which we must collect samples from many 
remote locations. This architecture also allows for more local optimization of the sampling 
process (each sampling actor has the knowledge to adjust itself to changing conditions, 
perhaps by increasing or decreasing its sampling rate as conditions warrant). 
 
However, this architectural pattern is generally not well suited to hard-real-time systems, 
wherein we must have complete predictability over when events take place. Now, the 
weather monitoring system is not hard-real-time, but it does require some modicum of 
predictable, ordered behavior. For this reason, we turn to an alternative pattern, that of time-
frame-based processing. 
 
As we illustrate in Figure 8-12, this model takes time and divides it into several (usually 
fixed-length) frames, which we further divide into subframes, each of which encompasses 
some functional behavior. The activity from one frame to another may be different. For 
example, we might sample the wind direction every 10 frames, but sample the wind speed 
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only every 30 frames.83 The primary merit of this architectural pattern is that we can more 
rigorously control the order of events. 
 
Figure 8-13 provides a class diagram that expresses this architecture for the weather 
monitoring system. Here we find most of the classes we discovered earlier during analysis, 
the main difference here being that we now show how all the key abstractions collaborate 
with one another. As is typical in class diagrams for production systems, we do not (and 
cannot) show every class and 
 

 
 
Figure 8-13 
Weather Monitoring System Architecture 
 
every relationship. For example, we have omitted the class hierarchy regarding all of the 
sensors. 
 
We have invented one new class in this architecture, namely the class Sensors, whose 
responsibility is to serve as the collection of all the physical sensors in the system. Because at 
least two other agents in the system (Sampler and InputManager) must associate with the entire 

                                                 
83 For example, if each frame is allocated to be 1/60 second, 30 frames represents 0.5 second. 
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collection of sensors, bundling them in one container class allows us to treat our system's 
sensors as a logical whole. 
 
 
Frame Mechanism 
 
The central behavior of this architecture is carried out by a collaboration of the Sampler and 
Timer classes, and so we would be wise during architectural design to concretely prototype 
these classes, so that we might validate our assumptions. 
 
We begin by refining the interface of the class Timer which dispatches a callback function. We 
may express these design decisions in the following C++ class declarations. First, we 
introduce a typedef that allows us to name clock ticks in the vocabulary of our problem space: 
 
// Clock ticks, measures in 1/60 second 
typedef unsigned int Tick; 
 
Next, we present the Timer class: 
 
class Timer { 
public: 
 
 static setCallback(void (*)(Tick)); 
 static startTiming(); 
 
 static Tick numberOfTicks(); 
 
private: 
 ... 
}; 
 
This is an unusual class, but remember that it holds; some unusual secrets. We use the first 
member function setCallback to attach a callback function to the timer. We launch the timer's 
behavior by invoking startTiming, after which time the one Timer entity dispatches the callback 
function every 1/60 of a second. Notice that we introduce an explicit starting operation, 
because we cannot rely upon any particular implementation-dependent ordering in the 
elaboration of declarations. 
 
Before we turn to the Sampler class, we introduce a new declaration that serves to name the 
various sensors in this particular system: 
 
// Enumeration of sensor names 
enum SensorName {Direction, Speed, WindChill, Temperature, DewPoint, 

Humidity, Pressure}; 
 
We may express the interface of the Sampler class as follows: 
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class Sampler { 
public: 
 
 Sampler(); 
 ~Sampler(); 
 
 void setSamplingRate(SensorName, Tick); 
 void sample(Tick); 
 
 Tick samplingRate() const; 
 
protected: 
 ... 
}; 
 
We have introduced the modifier setSamplingRate and its selector samplingRate so that clients can 
dynamically alter the behavior of the sampling objects. 
 
To tie the Timer and Sampler classes together, we just need a little bit of glue code. First we 
declare an instance of Sampler and a nonmember function: 
 
Sampler sampler; 
 
void acquire(Tick t) 
{ 
 sampler.sample(t); 
} 
 
And now we can write a fragment of our main function, which simply attaches the callback 
function to the timer and starts the sampling process: 
 
main() { 
 
 Timer::setCallback(acquire); 
 Timer::startTiming(); 
 
 while(1) { 
  ; 
 } 
 
 return 0; 
 
} 
 
This is a fairly typical main program for object-oriented systems: it is short (because the real 
work is delegated to key objects in the system), and it involves a dispatch loop (which in this 
case does nothing, because we have no background processing to complete).84 
 
                                                 
84 This is yet another common architectural pattern: dispatch loops appear in most GUI systems, wherein the 
loop serves to intercept external or internal events and then dispatch them to the appropriate agents. 
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To continue this thread of the system's architecture, we next provide an interface for the class 
Sensors. For the moment, various concrete sensor classes: 
 
class Sensors : protected Collection { 
public: 
 
 Sensors(); 
 virtual –Sensors(); 
 
 void addSensor(const Sensor& SensorName, unsigned int id = 0); 
 
 unsigned int numberOfSensors() const; 
 unsigned int numberOfSensors(SensorName);  
 Sensor& sensor(SensorName, unsigned int id = 0); 
 
protected: 
 ... 
}; 
 
This is basically a collection class, and for this reason we make Sensors a subclass of the 
foundation class Collection.85 We make Collection a protected superclass, because we don't want 
to expose most of its operations to clients of the Sensors class. Our declaration of Sensors 
provides only a sparse set of operations, because our problem is sufficiently constrained that 
we know sensors are only added and never removed from the collection. 
 
We have invented a generalized sensor collection class that can hold multiple instances of the 
same kind of sensor, with each instance within its class distinguished by a unique id, 
numbered starting at zero. 
 
We must revise our specification of the Sampler class in order to carry out its association with 
the Sensors and DisplayManager classes: 
 
class Sampler { 
public: 
 
 Sampler(Sensors&, DisplayManager&); 
 
 ... 
protected: 
 Sensors& repSensors; 
 DisplayManager& repDisplayManager; 
}; 
 
We must also revise our declaration of the one instance of the Sampler class: 
 
Sensors sensors; 
DisplayManager display; 
 

                                                 
85 Foundation classes are discussed in detail in the following chapter. 
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Sampler sampler(sensors, display); 
 
The construction of the sampler object connects this agent with the specific collection of sensors 
and the particular display manager used in the system. 
 
Now, we can implement the Sampler class's key operation, sample: 
 
void Sampler::sample(Tick t) 
{ 
 for (SensorName name = Direction; name <= Pressure; name++) 
  for (unsigned int id = 0; id < repSensors.numberOfSensors(name); 
id++) 
   if (!(t % samplingRate(name))) 
   

 repDisplayManager.display(repSensors.sensor(name, 
id).currentValue(), name, id); 

} 
 
The action of this member function is to iterate through each kind of sensor and, in turn, each 
unique sensor of that kind in the collection. For each sensor it encounters, sample checks to see 
if it is time to sample its value and if so, references the sensor from the collection, takes its 
current value, and delivers this value to the display manager associated with the Sampler 
instance.86 
 
The semantics of this operation relies upon the polymorphic behavior of one operation, 
namely: 
 
virtual float currentValue(); 
 
defined for the base class Sensor. This operation also relies upon the following operation: 
 
void display(float, SensorName, unsigned int id = 0); 
 
defined for the class DisplayManager. 
 

                                                 
86 An alternate approach would be to have each sensor provide a member function that returns its sampling rate 
and another member function that draws the sensor on the LCD. This design would make the implementation of 
the Sampler class simpler and more extensible, although it would shift more responsibilities to the sensor classes. 
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Figure 8-14 
Frame Mechanism 
 
Now that we have refined this element of our architecture, we present a new class diagram in 
Figure 8-14 that highlights this frame mechanism. 
 
 
8.3 Evolution 
 
Release Planning 
 
Now that we have validated our architecture by walking through several scenarios, we can 
proceed with the incremental development of the system's function points. We start this 
process by proposing a sequence of releases, each of which builds upon the previous release: 
 

• Develop a minimal functionality release, which monitors just one sensor. 
• Complete the sensor hierarchy. 
• Complete the classes responsible for managing the display. 
• Complete the classes responsible for managing the user interface. 

 
We could have ordered these releases in just about any manner, but we choose this one in 
order of highest to lowest risk, thereby forcing our development process to directly attack the 
hard problems first. 
 
Developing the minimal functionality release forces us to take a vertical slice through our 
architecture, and implement small parts of just about every key abstraction. This activity 
addresses the highest risk in the project, namely, whether we have the right abstractions with 
the right roles and responsibilities. This activity also gives us early feedback, because we can 
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now play with an executable system. Indeed, as we discussed in Chapter 7, forcing early 
closure like this has a number of technical and social benefits. On the technical side, it forces 
us to begin to bolt the hardware and software parts of our system together, thereby 
identifying any impedance mismatches early. On the social side, it allows us to get early 
feedback about the look and feel of the system, from the perspective of real users. 
 
Because completing this release is largely a manner of tactical implementation (the so-called 
daily blocking and tackling that every development team must do), we will not bother with 
exposing any more of its structure. However, we will now turn to elements of later releases, 
because they reveal some interesting insights about the development process. 
 
 
Sensor Mechanism 
 
In inventing the architecture for this system, we have already seen how we had to iteratively 
and incrementally evolve our abstraction of the sensor classes, which we began during 
analysis. In this evolutionary release, we expect to build upon the earlier completion of a 
minimal functional system, and finish the details of this class hierarchy. 
 
At this point in our development cycle, the class hierarchy we first presented in Figure 8-4 
remains stable, although, not surprisingly, we had to adjust the location of certain 
polymorphic operations, in order to extract greater commonality. Specifically, in an earlier 
section we noted the requirement for the currentValue operation, declared in the abstract base 
class Sensor. We may complete our design of this class by writing the following C++ 
declaration: 
 
class Sensor { 
public: 
 
 Sensor(SensorName, unsigned int id = 0); 
 virtual ~Sensor(); 
 
 virtual float currentValue() = 0; 
 virtual float rawValue() = 0; 
 
 SensorName name() const; 
 unsigned int id() const; 
 
protected: 
 ... 
}; 
 
This is an abstract class because it includes pure virtual member functions. 
 
Notice that through the class constructor, we gave the instances of this class knowledge of 
their name and id. This is essentially a kind of runtime type identification, but providing this 
information in unavoidable here, because per the requirements, each sensor instance must 



 Chapter 8: Data Acquisition 319 

have a mapping to a particular memory-mapped I/O address. We can hide the secrets of this 
mapping by making this address a function of a sensor name and id. 
 
Now that we have added this new responsibility, we can now go back and simplify the 
signature of DisplayManager::display to take only a single argument, namely, a reference to a 
Sensor object. We can eliminate the other arguments to this member function, because the 
display manager can now ask the sensor object its name and id. 
 
Making this change is advisable, because it simplifies certain cross-class interfaces. Indeed, if 
we fail to keep up with small, rippling changes such as this one, then our architecture will 
eventually suffer software rot, wherein the protocols among collaborating classes becomes 
inconsistently applied. 
 
The declaration of the immediate subclass CalibratingSensor builds upon this base class: 
 
class CalibratingSensor : public Sensor { 
public: 
 CalibratingSensor(SensorName, unsigned int id = 0); 
 virtual ~CalibratingSensor(); 
 
 void setHighValue(float, float); 
 void setLowValue(float, float); 
 
 virtual float currentValue(); 
 
 virtual float rawValue() = 0; 
 
protected: 
 ... 
}; 
 
This class introduces two new operations (setHighValue and setLowValue), and implements the 
previously declared pure function currentValue. 
 
Next, consider the declaration of the subclass HistoricalSensor, which builds upon the class 
CalibratingSensor: 
 
class HistoricalSensor : public CalibratingSensor { 
public: 
 
 HistoricalSensor(SensorName, unsigned int id = 0); 
 virtual ~HistoricalSensor(); 
 
 float highValue() const; 
 float lowValue() const; 
 
 const char* timeOfHighValue() const; 
 const char* timeOfLowValue() const; 
 
protected: 
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 ...  
}; 
 
This class introduces four new operations, whose implementation requires collaboration with 
the TimeDate class. Note that HistoricalSensor is still an abstract class, because we have not yet 
completed the definition of the pure virtual function rawValue, which we defer to be a concrete 
subclass responsibility. 
 
The class TrendSensor inherits from HistoricalSensor, and adds one new responsibility: 
 
class TrendSensor : public HistoricalSensor { 
public: 
 
 TrendSensor(SensorName, unsigned int id = 0); 
 virtual ~TrendSensor(); 
 
 float trend() const; 
 
protected: 
 ... 
}; 
 
This class introduces one new member function. As with some of the other new operations 
that certain intermediate classes have added, we declare trend as non-virtual, because we do 
not desire that subclasses change their behavior. 
 
Ultimately, we reach concrete subclasses such as TemperatureSensor: 
 
class TemperatureSensor : public TrendSensor { 
public: 
 TemperatureSensor(unsigned int id = 0); 
 virtual ~TemperatureSensor(); 
 
 virtual float rawValue(); 
 float currentTemperature(); 
 
protected: 
 ... 
}; 
 
Notice that the signature of this class's constructor is slightly different than its superclasses, 
simply because at this level of abstraction, we know the  specific name of the class. Also,  
notice that we have introduced the operation currentTemperature, which follows from our earlier 
analysis. This operation is semantically the same as the polymorphic function currentValue, but 
we choose to include both of them, because the operation currentTemperature is slightly more 
type-safe. 
 



 Chapter 8: Data Acquisition 321 

Once we have successfully completed the implementation of all classes in this hierarchy and 
integrated them with the previous release, we may proceed to the next level of the system's 
functionality. 
 
 
Display Mechanism 
 
Implementing the next release, which completes the functionality of the classes DisplayManager 
and LCDDevice, requires virtually no new design work, just some tactical decisions about the 
signature and semantics of certain member functions. Combining the decisions we made 
during analysis with our first architectural prototype, wherein we made some important 
decisions about the protocol for displaying sensor values, we derive the following concrete 
interface in C++: 
 
class DisplayManager {  
public: 
 DisplayManager(); 
 ~DisplayManager(); 
 
 void clear(); 
 void refresh(); 
 void display(Sensor&); 
 void drawStaticItems(TemperatureScale, SpeedScale); 
 void displayTime(const char*); 
 void displayDate(const char*); 
 void displayTemperature(float, unsigned int id = 0); 
 void displayHumidity(float, unsigned int id = 0); 
 void displayPressure(float, unsigned int id = 0); 
 void displayWindChill(float, unsigned int id = 0); 
 void displayDewPoint(float, unsigned int id = 0); 
 void displayWindSpeed(float, unsigned int id = 0); 
 void displayWindDirection(unsigned int, unsigned int id =  0); 
 void displayHighLow(float, const char*, SensorName, unsigned int id = 
0); 
 void setTemperatureScale(TemperatureScale); 
 void setSpeedScale(SpeedScale); 
 
protected: 
 // ... 
}; 
 
None of these operations are virtual, because we neither expect nor desire any subclasses. 
 
Notice that this class exports several primitive operations (such as displayTime and refresh), but 
also exposes the composite operation display, whose presence greatly simplifies the action of 
clients who must interact with instances of the DisplayManager. 
 
The DisplayManager ultimately uses the resources of the class LCDDevice, which as we described 
earlier, serves as a skin over the underlying hardware. In this manner, the DisplayManager 
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raises our level of abstraction by providing a protocol that speaks more directly to the nature 
of the problem space. 
 
 
User-Interface Mechanism 
 
The focus of our last major release is the tactical design and implementation of the classes 
Keypad and InputManager. Similar to the LCDDevice class, the class KeyPad serves as a skin over the 
underlying hardware, which thereby relieves the InputManager of the nasty details of talking 
directly to the hardware. Decoupling these two abstractions also makes it far easier to replace 
the physical input device without destabilizing our architecture. 
 
We start with a declaration that names the physical keys in the vocabulary of our problem 
space: 
 
enum Key {kRun, kSelect, kCalibrate, kMode,  
    kUp, kDown, kLeft, kRight, 
    kTemperature, kPressure, kHumidity, kWind, kTime, 

kDate, kUnassigned}; 
 
We use the k prefix to avoid name clashes with literals defined in SensorName. 
 
Continuing, we may capture our abstraction of the Keypad class as follows: 
 
class Keypad { 
public: 
 
 Keypad(); 
 ~Keypad(); 
 
 int inputPending() const; 
 Key lastKeyPress() const; 
 
protected: 
 ... 
}; 
 
The protocol of this class derives from our earlier analysis. We have added the operation 
inputPending so that clients can query if user input exists that has not yet been processed. 
 
The class InputManager has a similarly sparse interface: 
 
class InputManager { 
public: 
 InputManager(Keypad&); 
 ~InputManager(); 
 
 void processKeyPress(); 
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protected: 
 Keypad& repKeypad; 
}; 
 
As we will see, most of the interesting work of this class is carried out in the implementation 
of its finite state machine. 
 
As we illustrated in Figure 8-13, instances of the class Sampler, InputManager, and Keypad 
collaborate to respond to user input. To integrate these three abstractions, we must subtly 
modify the interface of the class Sampler to include a new member object, repInputManager: 
 
class Sampler { 
public: 
 
 Sampler(Sensors&, DisplayManager&, InputManager&); 
 
 ... 
 
protected: 
 Sensors& repSensors; 
 DisplayManager& repDisplayManager; 
 InputManager& repInputManager; 
}; 
 
Through this design decision, we establish an association among instances of the classes 
Sensors, DisplayManager, and InputManager at the time we construct an instance of Sampler. By using 
references, we assert that instances of Sampler must always have a collection of sensors, a 
display manager, and an input manager. 
 
An alternate representation that used pointers would provide a looser association by 
allowing a Sampler to omit one or more of its components. 
 
We must also incrementally modify the implementation of the key member function 
Sampler::sample 
 
void Sampler::sample(Tick t) 
{ 
 repInputManager.processKeyPress(); 
 for (SensorName name = Direction; name <= Pressure; name++) 
  for (unsigned int id = 0; id < repSensors.numberOfSensors(name); 
id++) 
   if (!(t % samplingRate(name))) 
    repDisplayManager.display(repSensors.sensor(name, 
id)); 
} 
 
Here we have added an invocation to processKeyPress at the beginning of every time frame. 
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The operation processKeyPress is the entry point to the finite state machine that drives the 
instances of this class. Ultimately, there are two, approaches we can take to implement this or 
any other finite state machine: we can explicitly represent states as objects (and thereby 
depend upon their polymorphic behavior), or we can use enumeration literals to denote each 
distinct state. 
 
For modest-sized finite state machines such as the one embodied by the class InputManager, it is 
sufficient for us to use the latter approach. Thus, we might first introduce the names of the 
class's outermost states: 
 
enum InputState {Running, Selecting, Calibrating, Mode}; 
 
Next, we introduce some protected helper functions: 
 
class InputManager { 
public: 
 ... 
protected: 
 Keypad& repKeypad; 
 InputState repState; 
 
 void enterSelecting(); 
 void enterCalibrating(); 
 void enterMode(); 
}; 
 
Finally, we can begin to implement the state transitions we first introduced in Figure 8-11: 
 
void InputManager::processKeyPress() 
{ 
 if (repKeypad.inputPending()) { 
  Key key = repKeypad.lastKeyPress(); 
  switch (repState) { 
   case Running: 
    if (key = kSelect) 
     enterSelecting(); 
    else if (key == kCalibrate) 
     enterCalibrating(); 
    else if (key == kMode) 
     enterMode(); 
    break; 
   case Selecting: 
    ... 
    break; 
   case Calibrating: 
    ... 
    break; 
   case Mode: 
    ... 
    break; 
  } 
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 } 
} 
 
The implementation of this member function and its associated helper functions thus 
parallels the state transition diagram in Figure 8-11. 
 
8.4 Maintenance 
 
The complete implementation of this basic weather monitoring system is of modest size, 
encompassing only about 20 classes. However, for any truly useful piece of software, change 
is inevitable. Let's consider the impact of two enhancements to the architecture of this system. 
 
Our system thus far provides for the monitoring of many interesting weather conditions, but 
we may soon discover that users want to measure rainfall as well. What is the impact of 
adding a rain gauge? 
 
Happily, we do not have to radically alter our architecture; we must merely augment it. 
Using the architectural view of the system from Figure 8-13 as a baseline, to implement this 
new feature, we must 
 

• Create a new class RainFallSensor and insert it in the proper place in the sensor class 
hierarchy (a RainFallSensor is a kind of HistoricalSensor). 

• Update the enumeration SensorName. 
• Update the DisplayManager so that it knows how to display values of this sensor. 
• Update the InputManager so that it knows how to evaluate the newly-defined key RainFall. 
• Properly add instances of this class to the system's Sensors collection. 

 
We must deal with a few other small tactical issues needed to graft in this new abstraction, 
but ultimately, we need not disrupt the system's architecture nor its key mechanisms. 
 
Let's consider a totally different kind of functionality: suppose we desire the ability to 
download a day's record of weather conditions to a remote computer. To implement this 
feature, we must make the following changes: 
 

• Create a new class SerialPort, responsible for managing an RS232 port used for serial 
communication. 

• Invent a new class ReportManager responsible for collecting the information required for 
the download. Basically, this class must use the resources of the collection class Sensors 
together with its associated concrete sensors. 

• Modify the implementation of Sampler::sample to periodically service the serial port. 
 
It is the mark of a well-engineered object-oriented system that making this change does not 
rend our existing architecture, but rather, reuses and then augments its existing mechanisms. 
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Further Readings 
 
The problems of process synchronization, deadlock, livelock, and race conditions are 

discussed in detail in Hansen [H 1977], Ben-Ari [H 1982], and Holt et al. [H 1978]. 
Mellichamp [H 1983], Glass [H 1983], and Foster [H 1981] offer general references on the 
issues of developing real-time applications. Concurrency as viewed by the interplay of 
hardware and software may be found in Lorin [H 1972]. 
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Frameworks: 
Foundation Class Library 
 
 
 
 
A major benefit of object-oriented programming languages such as C++ and Smalltalk is the 
degree of reuse that can be achieved in well-engineered systems. A high degree of reuse 
means that far less code must be written for each new application; consequently, that is far 
less code to maintain. 
 
Ultimately, software reuse can take on many forms: we can reuse individual lines of code, 
specific classes, or logically related societies of classes. Reusing individual lines of code is 
the simplest form of reuse (what programmer has not used an editor to copy the 
implementation of some algorithm and paste it into another application?) but offers the fewest 
benefits (because the code must be replicated across applications). We can do far better 
when using object-oriented programming languages by taking existing classes and 
specializing or augmenting them through inheritance. We can achieve even greater leverage 
by reusing whole groups of classes organized into a framework. As we discussed in Chapter 
4, a framework is a collection of classes that provide a set of services for a particular domain; 
a framework thus exports a number of individual classes and mechanisms that clients can 
use or adapt. 
 
Frameworks may actually be domain-neutral, meaning that they apply to a wide variety of 
applications. General foundation class libraries, math libraries, and libraries for graphical user 
interfaces fall into this category. Frameworks may also be specific to a particular vertical 
application domain, as for hospital patient records, securities and bonds trading, general 
business management, and telephone switching systems. Wherever there exists a family of 
programs that all solve substantially similar problems, there is an opportunity for an 
application framework. 
 
In this chapter, we apply object-oriented technology to the creation of a foundation class 
library.87 In the previous chapter, the heart of the problem turned out to involve the issues of 
real-time control and the intelligent distribution of behavior among several autonomous and 
relatively static objects. In the current problem, two very different issues dominate: the desire 
for an adaptable architecture that offers a range of time and space alternatives, and the need 
for general mechanisms for storage management, and synchronization. 

                                                 
87 The framework architecture described in this chapter is that of the C++ Booch Components [1]. 
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9.1 Analysis 
 
Defining the Boundaries of the Problem 
 
The sidebar provides the detailed requirements for this foundation class library. 
Unfortunately, these requirements are rather open-ended: a library that provides abstractions 
for all the foundation classes required by all possible applications would be huge. The task of 
the analyst, therefore, requires judicious pruning of the problem space, so as to leave a 
problem that is solvable. A problem such as this one could easily suffer from analysis 
paralysis, and so we must focus upon providing library abstractions and services that are of 
the most general use, rather than trying to make this a framework that is everything for 
everybody (which would likely turn out to provide nothing useful for anyone). We begin 
with a domain analysis, first surveying the theory of data structures and algorithms, and then 
harvesting abstractions found in production programs. 
 
To pursue its theoretical underpinnings, we can seek out domain expertise, such as that 
reflected in the seminal work by Knuth [2], as well as by other practitioners in the field, most 
notably Aho, Hopcroft, and Ullman [3], Kernighan and Plauger [4], Sedgewick [5], Stubbs 
and Webre [6], Tenenbaum and Augenstein [7], and Wirth [8]. As we continue our study, we 
can collect specific instances of foundational abstractions, such as queues, stacks, and graphs, 
as well as algorithms for quick sorting, regular expression pattern matching, and in-order tree 
searching. 
 
One discovery we make in this analysis is the clear separation of structural abstractions (such 
as queues, stacks, and graphs) versus algorithmic abstractions (such as sorting, pattern 
matching, and searching). The first category of entities are obvious candidates for classes. The 
second category may not at first glance seem amenable to an object-oriented decomposition. 
However, with the proper mind-set, we can objectify these algorithms: we will 
 
Foundation Class Library Requirements 
 
This class library must provide a collection of domain-independent data structures and 
algorithms sufficient to cover the needs of most production quality C++ applications. In 
addition, this library must be 
 
 • Complete The library must provide a family of classes, united by a shared 

interface but each employing a different representation, so that 
developers can select the ones with the time and space semantics 
most appropriate to their given application. 

 • Adaptable All platform-specific aspects must be clearly identified and 
isolated, so that: local substitutions may be made. In particular, 
developers must have control over storage management policies, 
as well as the semantics of process synchronization. 
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 • Efficient Components must be easily assembled (efficient in terms of 
compilation resources), must impose minimal run-time and 
memory overhead (efficient in execution resources), and must be 
more reliable than hand-built mechanisms (efficient in developer 
resources). 

 • Safe Each abstraction must be type-safe, so that static assumptions 
about the behavior of a class may be enforced by the compilation 
system. Exceptions should be used to identify conditions under 
which a class's dynamic semantics are violated; raising an 
exception must not corrupt the state of the object that threw the 
exception. 

 • Simple The library must use a clear and consistent organization that 
makes it easy to identity and select appropriate concrete classes. 

 • Extensible Developers must be able to add new classes independently, 
while at the same time preserving the architectural integrity of 
the framework. 

 
This library must also be small; all things being equal, developers are much more likely to 
build their own class rather than reuse one that is hard to understand. 
 
We assume the existence of C++ compilers that support both parameterized classes and 
exceptions. For reasons of portability, this library must not depend upon any operating 
system services. 
 
devise classes whose instances are agents responsible for carrying out these actions. As we 
will discuss later in this chapter, by objectifying these algorithmic abstractions, we can reap 
the benefits of commonality by forming a generalization/specialization hierarchy. 
 
As our first analysis decision, therefore, we choose to bound our problem by organizing our 
abstractions into one of two major categories: 
 

• Structures Contains all structural abstractions 
• Tools Contains all algorithmic abstractions 

 
As we will see shortly, there is a “using” relationship between these two categories: certain 
tools build upon the more primitive services provided by some of the structures. 
 
For the second phase of our domain analysis, we study the foundation classes used by 
production systems in a variety of application areas (the wider the spectrum the better). 
Along the way, we may discover common abstractions that overlap with that we encountered 
in the first phase of analysis: this is a good indication that we have discovered truly general 
abstractions, so we will definitely keep these within the boundary of our problem. We may 
also find certain domain-biased abstractions, such as currency, astronomical coordinates, and 
measures of mass and size. We choose to reject these abstractions for our library, because they 
are either difficult to generalize (such as currency), highly domain-specific (such as 
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astronomical coordinates), or so primitive that it is hard to find compelling reason to turn 
them into first-class citizens (such as measures of mass and size). 
 
On the basis of this analysis, we may settle upon the following kinds of structures: 
 

• Bags Collection of (possibly duplicate) items 
• Collections Indexable collection of items 
• Deques Sequence of items in which items may be added and removed 

from either end 
• Graphs Unrooted collection of nodes and arcs, which may contain 

cycles and cross-references; structural sharing is permitted 
• Lists Rooted sequence of items; structural sharing is permitted 
• Maps Dictionary of item/value pairs 
• Queues Sequence of items in which items may be added from one 

end and removed from the opposite end 
• Rings Sequence of items in which items may be added and removed 

from the top of a circular structure 
• Sets Collection of (unduplicated) items 
• Stacks Sequence of items in which items may be added and removed 

from the same end 
• Strings Indexable sequence of items, with behaviors involving the 

manipulation of substrings 
• Trees Rooted collection of nodes and arcs, which may not contain 

cycles or cross-references; structural sharing is permitted. 
 
As we discussed in Chapter 4, organizing the abstractions represented by this list is a 
problem of classification. We choose this particular organization because it offers a clear 
separation of behavior among each category of abstractions. 
 
Notice the patterns of behavior we find spanning this decomposition: some structures behave 
like collections (such as bags and sets), while others behave like sequences (such as deques 
and stacks). Also, some structures permit structural sharing (such as graphs, lists, and trees), 
whereas others are more monolithic, and so do not permit the structural sharing of their 
parts. As we will see, we can take advantage of these patterns in order to form a simpler 
architecture during design. 
 
Our analysis also reveals some desirable functional variations for certain of these classes. in 
particular, we find the need for ordered collections, deques, and queues (the latter are often 
called priority queues).88 Additionally, we may distinguish between directed and undirected 
graphs, singly and doubly linked lists, as well as binary, multiway, and AVL trees. These 
specialized abstractions are similar enough to one another that we choose to make them 

                                                 
88 Simple queues are ordered according to the order in which items are added to the queue; priority queues are 
ordered according to some ordering function of the items themselves. 
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further refinements of the categorization we listed above, rather than make them separate 
categories of abstractions. 
 
Although we have discovered significant patterns of common behaviors, we explicitly choose 
not to organize these classes into an inheritance lattice at this time. It is sufficient during 
analysis to articulate the roles of each of these various abstractions; deciding upon inheritance 
relationships at this point would be premature, so we defer this issue to architectural design. 
 
We may also settle upon the following kinds of tools, based upon our domain analysis: 
 

• Date/Time Operations for manipulating date and time 
• Filters Input, process, and output transformations 
• Pattern matching Operations for searching for sequences within other 

sequences 
• Searching Operations for searching for items within structures 
• Sorting Operations for ordering structures 
• Utilities Common composite operations that build upon more 

primitive structural operations 
 
There are obvious functional variations for many of these abstractions. For example, we may 
distinguish among many different kinds of sorting agents (such as agents responsible for 
quick sorting, bubble sorting, heap sorting, and so on), as well as among different kinds of 
searching agents (such as agents responsible for sequential searching, binary searching, and 
pre-, in-, and post-order tree searching. As before, we choose to defer our decisions about 
inheritance lattices among these abstractions. 
 
 
Patterns 
 
We have now identified the major functional elements of this library, but a heap of isolated 
abstractions does not constitute a framework. As Wirfs-Brock suggests, “A framework 
provides a model of interaction among several objects belonging to classes defined by the 
framework.... To use a framework, you first study the collaborations and responsibilities of 
several classes” [9]. This then is the litmus test for distinguishing frameworks from simple 
class lattices: a framework consists of a collection of classes together with a number of 
patterns of collaboration among instances of these classes. 
 
Analysis reveals that there are a number of important patterns essential to this foundation 
class library, encompassing the following issues: 
 

• Time and space semantics 
• Storage management policies 
• Response to exceptional conditions 
• Idioms for iteration 
• Synchronization in the presence of multiple threads of control 
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As this list suggests, the design of this foundation class library demands the delicate balance 
of competing technical requirements.89 If we try to tackle these issues in complete isolation 
from one another, we will surely end. up with little sharing of protocols, policies, or 
implementation. Such a naive approach will in fact lead to an abundance of concepts that will 
intimidate the eventual clients of this library, and so inhibit its reuse. 
 
Consider the perspective of the developer who must use this library. What do its classes 
represent? How do they work together? How can they be tailored to meet domain-specific 
needs? Which classes are really important, and which can be ignored? These are the questions 
that we must answer before we can expect developers to use this library for any nontrivial 
application. Fortunately, it is not necessary for the developer to comprehend the entire 
subtlety of a library as large as this one, just as it is not necessary to understand how a 
microprocessor works in order to program a computer in a high-order language. In both 
cases, however, the raw power of the underlying implementation can be exposed if necessary, 
but only if the developer is willing to absorb the additional complexity. 
 
Consider the protocol of each abstraction in this library from the perspective of its two kinds 
of clients: the clients that use an abstraction by declaring instances of it and then 
manipulating those instances, and clients that subclass an abstraction to specialize or 
augment its behavior. Designing in favor of the first client leads us to hide implementation 
details and focus upon the responsibilities of the abstraction in the real world; designing in 
favor of the second client requires us to expose certain implementation details, but not so 
many that we allow the fundamental semantics of the abstraction to be violated. This 
represents a very real tension of competing requirements in the design of such a library. 
 
The truly hard part of living with any large, integrated class library is learning what 
mechanisms it embodies. The patterns we have enumerated above serve as the soul of this 
library's architecture; the more one knows about these mechanisms, the easier it is to discover 
innovative ways to use existing components rather than fabricate new ones from scratch. In 
practice, we observe that developers generally start by using the most obvious classes in a 
library. As they grow to trust certain abstractions, they move incrementally to the use of more 
sophisticated classes. Eventually, developers may discover a pattern in their own tailoring of 
a predefined class, and so add it to the library as a primitive abstraction. Similarly, a team of 
developers may realize that certain domain-specific classes keep showing up across systems; 
these too get introduced into the class library. This is precisely how class libraries grow over 
time: not overnight, but from smaller, stable, intermediate forms. 
 
Indeed, this is precisely how we will expand this library: we will first invent an architecture 
that addresses each of the five patterns above, and then we will populate the library by 
evolving its implementation. 
 

                                                 
89 Indeed, as Stroustrup observes, “designing a general library is much harder than designing an ordinary 
program” [10]. 
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9.2 Design 
 
Tactical issues 
 
Coggins's Law of Software Engineering states that “pragmatics must take precedence over 
elegance, for Nature cannot be impressed” [11]. A corollary of this law is that design can 
never be entirely language-independent. The particular features and semantics of a given 
language influence our architectural decisions, and to ignore these influences would leave us 
with abstractions that do not take advantage of the language’s unique facilities, or with 
mechanisms that cannot be efficiently implemented in any language. 
 
As we discussed in Chapter 3, object-oriented programming languages offer three basic 
facilities for organizing a rich collection of classes: inheritance, aggregation, and 
parameterization. Inheritance is certainly the most visible (and most popular) aspect of object-
oriented technology; however, it is not the only structuring principle that we should consider. 
indeed, as we will see, parameterization combined with inheritance and aggregation can lead 
us to a very powerful yet small architecture. 
 
Consider this elided declaration of a domain-specific queue class in C++: 
 
class NetworkEvent ... 
 
class EventQueue { 
public: 
 EventQueue(); 
 virtual ~EventQueue (); 
 
 virtual void clear(); 
 virtual void add(const NetworkEvent&); 
 virtual void pop(); 
 
 virtual const NetworkEvent& front() const; 
 ... 
}; 
 
Here we have the concrete realization of the abstraction of a queue of events: a structure in 
which we can add event objects to the tail of the queue, and remove them from the front of 
the queue. C++ encourages our abstraction by allowing us to state the intended public 
behavior of a queue (expressed via the operations clear, add, pop, and front), while hiding its 
exact representation. 
 
Certain uses of this abstraction may demand slightly different semantics; specifically, we may 
need a priority queue, in which events are added to the queue in order of their urgency. We 
can take advantage of the work we have already done by subclassing the base queue class 
and specializing its behavior: 
 
class PriorityEventQueue : public EventQueue { 
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public: 
 
 PriorityEventQueue (); 
 virtual ~PriorityEventQueue (); 
 
 virtual void add(const NetworkEvent&); 
 ... 
}; 
 
Virtual functions encourage abstraction by allowing us to redefine the semantics of concrete 
operations (such as add) from a more generalized abstraction. 
 
In combination with parameterized classes, we can craft even more general abstractions. The 
semantics of queues are the same, no matter if we have a queue of cabbages or a queue of 
kings. Using template classes, we may restate our original base class as follows: 
 
template<class Item> 
class Queue { 
public: 
 
 Queue(); 
 virtual ~Queue(); 
 
 virtual void clear(); 
 virtual void add(const Item&); 
 virtual void pop(); 
 
 virtual const Item& front() const; 
 
 ... 
}; 
 
This is a very common strategy when applying parameterized classes: take an existing 
concrete class, identify the ways in which its semantics are invariant according to the items it 
manipulates, and extract these items as template arguments. 
 
Note that we can combine inheritance and parameterization in some very powerful ways. For 
example, we may restate our original subclass as follows: 
 
template<class Item> 
class PriorityQueue : public Queue<Item> { 
public: 
 
 PriorityQueue (); 
 virtual ~PriorityQueue (); 
 
 virtual void add(const Item&); 
 ... 
}; 
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Type safety is the key advantage offered by this approach. We may instantiate any number of 
concrete queue classes, such as the following: 
 
Queue<char> characterQueue; 
typedef Queue<NetworkEvent> EventQueue; 
typedef PriorityQueue<NetworkEvent> PriorityEventQueue; 
 
The language will enforce our abstractions, so that we cannot add events to the character 
queue, nor floating-point values to the event queue. 
 
Figure 9-1 illustrates this design by showing the relationships among a parameterized class 
(Queue), its subclass (PriorityQueue), one of its instantiations (PriorityEventQueue), and one of its 
instances (mailQueue). 
 
This example leads us to assert our first architectural principle for this library: Except for a 
few cases, the classes we provide should be parameterized. This decision supports the 
library's requirement for safety. 
 
 
Macro Organization 
 
As we discussed in earlier chapters, the class is a necessary but insufficient vehicle for 
decomposition. This observation certainly applies to this class library. One of the worst  
 

 
 

Figure 9-1 
Inheritance and Parameterization 
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organizations we could devise would be to form a flat collection of classes, through which 
developers would have to navigate to find the classes needed. We can do far better by placing 
each cluster of classes into its own category, as shown in Figure 9-2. This decision helps to 
satisfy the library's requirement for simplicity. 
 
A quick domain analysis suggests that there is an opportunity for exploiting the 
representations common among the classes in this library. For this reason, we assert the 
existence of the globally accessible category named Support, whose purpose is to organize such 
lower-level abstractions. We will also use this category to collect the classes needed in 
support of the library's common mechanisms. 
 
This leads us to state our second architectural principle for this library: We choose to make a 
clear distinction between policy and implementation. In a sense, abstractions such as queues, 
sets, and rings represent particular policies for using lower-level structures such as linked 
lists or arrays. For example, a queue defines the policy whereby items can only be added to 
one end of a structure, and removed from the other. A set, on the other hand, enforces no 
such policy requiring an ordering of items. A ring does enforce an ordering, but sets the 
policy that the front and the back of its items are connected. We will therefore use the support 
category for those more primitive abstractions upon which we can formulate different 
policies. 
 
By exposing this category to library builders, we support the library's requirement for 
extensibility. In general, application developers need only concern themselves with the 
classes found in the categories for structures and tools. Library developers and power users, 
however, may wish to make use of the more primitive abstractions found in Support, from 
which new classes may be constructed, or through which the behavior of existing classes may 
be modified. 
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Figure 9-2 
Foundation Class Library Class Categories 
 
As Figure 9-2 suggests, we organize this library as a forest of classes, rather than as a tree; 
there exists no single base class, as we would find with languages such as Smalltalk. 
 
Although not shown in this figure, the classes in the Graphs, Lists, and Trees categories are 
subtly different from the other structural classes. Earlier, we noted that abstractions such as 
deques and stacks are monolithic. A monolithic structure is one that is always treated as a 
single unit: there are no identifiable, distinct components, and thus referential integrity is 
guaranteed. Alternatively, a polylithic structure (such as a graph) is one in which structural 
sharing is permitted. For example, we may have objects that denote a sublist of a longer list, a 
branch of a larger tree, or individual vertices and arcs of a graph. The fundamental distinction 
between monolithic and polylithic structures is that, in monolithic structures, the semantics of 
copying, assignment, and equality are deep, whereas in polylithic structures, copying, 
assignment, and equality are all shallow operations (meaning that aliases may share a 
reference to a part of a larger structure). 
 
 
Class Families 
 
A third principle central to the design of this library is the concept of building families of 
classes, related by lines of inheritance. For each kind of structure, we will provide several 
different classes, united by a shared interface (such as the abstract base class Queue), but with 
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several concrete subclasses, each having a slightly different representation, and therefore 
having different time and space semantics. In this manner, we thus support: the library’s 
requirement for completeness. A developer can select the one concrete class whose time and 
space semantics best fit the needs of a given application, yet still be confident that, no matter 
which concrete class is selected, it will be functionally the same as any other concrete class in 
the family. This intentional and clear separation of concerns between an abstract base class 
and its concrete classes allows a developer to initially select one concrete class and later, as 
the application is being tuned, replace it with a sibling concrete class with minimal effort (the 
only real cost is the recompilation of all uses of the new class). The developer can be confident 
that the application will still work, because all sibling concrete classes share the same 
interface and the same central behavior. Another implication of this organization is that it 
makes it possible to copy, assign, and test for equality among objects of the same family of 
classes, even if each object has a radically different representation. 
 
In a very simple sense, an abstract base class thus serves to capture all of the relevant public 
design decisions about the abstraction. Another important use of abstract base classes is to 
cache common state that might otherwise be expensive to compute. This can convert an O(n) 
computation to an O(1) retrieval. The cost of this style is the required cooperation between the 
abstract base class and its subclasses, to keep the cached result up to date. 
 
The various concrete members of a family of classes represent the forms of an abstraction. In 
our experience, there are two fundamental forms of most abstractions that every developer 
must consider when building a serious application. The first of these is the form of 
representation, which establishes the concrete implementation of an abstract base class. 
Ultimately, there are only two meaningful choices for in-memory structures: the structure is 
stored on the stack, or it is stored on the heap. We call these variations the bounded and 
unbounded forms of an abstraction, respectively: 
 

• Bounded The structure is stored on the stack and thus has a static size 
at the time the object is constructed. 

• Unbounded The structure is stored on the heap, and thus may grow to the 
limits of available memory. 

 
Because the bounded and unbounded forms of an abstraction share a common interface and 
behavior, we choose to make them- direct subclasses of the abstract base class for each 
structure. We will discuss these and other variations in more detail in later sections. 
 
The second important variation concerns synchronization. As we discussed in Chapter 2, 
many useful applications involve only a single process. We call them sequential systems, 
because they involve only a single thread of control. Certain applications, especially those 
involving real-time control, may require the synchronization of several simultaneous threads 
of control within the same system. We call such systems concurrent. The synchronization of 
multiple threads of control is important because of the issues of mutual exclusion. Simply 
stated, it is improper to allow two or more threads of control to directly act upon the same 
object at the same time, because they may interfere with the 
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Figure 9-3 
Class Families 
 
state of the object, and ultimately corrupt its state. For example, consider two active agents 
that both try to add an item to the same Queue object. The first agent might start to add the 
new item, be preempted, and so leave the object in an inconsistent state for the second agent. 
 
As we described in Chapter 3, there are fundamentally only three design alternatives 
possible, requiring different degrees of cooperation among the agents that interact with a 
shared object: 
 

• Sequential 
• Guarded 
• Synchronous 

 
We will discuss these variations in more detail in a later section. 
 
The interactions among the abstract base class, the representation forms, and the 
synchronization forms yield the same family of classes for every structure as shown in Figure 
9-3. This architecture explains why we have chosen to organize our library as a family of 
classes rather than having a singly rooted tree: 
 

• It accurately reflects the regular structure of the various component forms. 
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• It involves less complexity and overhead when selecting one component from the 
library. 

• It avoids the endless ontological debates engendered by a “pure object-oriented” 
approach. 

• It simplifies integrating the library with other libraries. 
 
 
Micro Organization 
 
In support of the library's requirement for simplicity, we choose to follow a consistent style 
for every structure and tool in the library: 
 
template<...> 
class Name : public Superclass { 
public: 
 
 //constructors 
 //virtual destructor 
 
 // operators 
 
 // modifiers 
 
 // selectors 
 
protected: 
 
 // member objects 
 
 // helper functions 
 
private: 
 
 // friends 
 
}; 
 
For example, the definition of the abstract base class Queue begins as follows: 
 
template<class Item>  
class Queue { 
 
The template signature serves to state the arguments whereby the class may be 
parameterized. Note that in C++, templates are deliberately underspecified, which leaves a 
degree of flexibility (and responsibility) in the hands of the developers who instantiate 
templates. 
 
Next, we provide the usual set of constructors and destructors: 
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Queue(); 
Queue(const Queue<Item>&); 
virtual ~Queue(); 
 
Notice that we have declared the destructor to be virtual, since we want polymorphic 
behavior when an object of this class is destroyed. Next, we have the declaration of all 
operators: 
 
virtual Queue<Item>& operator=(const Queue<Item>&); 
virtual int operator==(const Queue<Item>&) const; 
int operator!=(const Queue<Item>&) const; 
 
We define operator= (assignment) and operator== (the test for equality) as virtual for reasons of 
type safety. It is the responsibility of subclasses to overload these two member functions, 
using functions whose signature takes an argument of its own specialized class. In this 
manner, subclasses can take advantage of their knowledge of their instances’ representation 
to provide a very efficient implementation. When the exact, concrete subclass of a queue is 
not known (such as when we pass an object by reference to the base class), then the base 
class's operations are invoked, using slightly less efficient but more general algorithms. This 
idiom has the side effect of permitting queue objects with different representations to be 
assigned and tested without a type clash. 
 
If we wish to restrict certain objects from being copied, assigned, or tested, we may declare 
these operators as protected or private. 
 
We next provide all modifiers, which are operations that may alter the state of the object: 
 
virtual void clear() = 0; 
virtual void append(const Item&) = 0; 
virtual void pop() = 0; 
virtual void remove(unsigned int at) = 0; 
 
We declare these operations as pure virtual, meaning that it is the responsibility of subclasses 
to provide for their real implementation. By virtue of these pure. virtual functions, the class 
Queue is defined to be abstract. 
 
We use the const qualifier to indicate (and let the language enforce) the use of selector 
functions that observe, but do not modify, the state of an object. 
 
virtual unsigned int length() const = 0; 
virtual int isEmpty() const = 0; 
virtual const Item& front() const = 0; 
virtual int location(const Item&) const = 0; 
 
These operations are also declared as pure virtual, because the class Queue has insufficient 
authority to carry out these particular responsibilities. 
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In our style, the protected part of every class begins with those member objects that form its 
representation and. that we wish to make accessible to subclasses.90 The abstract base class 
Queue has no such members, although its concrete subclasses do, as we will see in a later 
section. 
 
We follow any such member objects with. those helper functions required by the base class 
and polymorphically implemented by all concrete subclasses. The class Queue provides a 
typical set of these member functions: 
 
virtual void purge() = 0; 
virtual void add(const Item&) = 0; 
virtual unsigned int cardinality() const = 0; 
virtual const Item& itemAt(unsigned int) const = 0; 
 
virtual void lock(); 
virtual void unlock(); 
 
The reason we supply these particular helper functions will become clear in a later section. 
 
Lastly, we provide a private part, which typically contains only friend declarations and the 
declaration of those member objects that we wish to make inaccessible to subclasses. In the 
case of the class Queue, we have only friend declarations: 
 
friend class QueueActiveIterator<Item>; 
friend class QueuePassiveIterator<Item>; 
 
As we will describe in a later section, these friend declarations are needed in support of our 
iterator idioms. 
 
 
Time and Space Semantics 
 
Of the five patterns that permeate the architecture of this framework, perhaps the most 
important is the mechanism that provides the client with alternative time and space 
semantics within each family of classes. 
 
Consider the range of semantics that a general library such as this one must cover. On a 
workstation that provides a large virtual address space, clients will often sacrifice space for 
faster abstractions. On the other hand, in certain embedded systems, such as deep space 
satellites or automobile engines, memory resources are often at a premium, and so clients 
must choose abstractions that conserve scarce memory resources (for example, by using 
stack-based rather than heap-based representations). Earlier, we distinguished these two 
alternatives as unbounded, and bounded, respectively. 
 
                                                 
90 Unless there is compelling reason to do otherwise, we typically declare all member objects as private. Here, 
however, there is compelling reason to make them protected: subclasses need access to these members. 
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Unbounded forms are applicable in those cases where the ultimate size of the structure 
cannot be predicted, and where allocating and deallocating storage from the heap is neither 
too costly nor unsafe (as it may be in certain time-critical applications).91 Alternatively, 
bounded forms are better suited to smaller structures, whose average and maximum sizes are 
predictable, and where heap usage is deemed insecure. 
 
All of the structures in this library require this range of alternatives, and for this reason we 
invent two lower-level support classes, Unbounded and Bounded, to provide this behavior. The 
responsibility of the class Unbounded is to provide a 
 
 
 
 
 

 
 

Figure 9-4 
Bounded and Unbounded Forms 
 
very efficient linked-list structure that uses items allocated from the heap; this representation 
is time-efficient, but less space-efficient, because for each item, we must also save storage for a 
pointer to the next item. The responsibility of the class Bounded is to provide a very efficient, 
optimally packed array-array-base class; this representation is space-efficient, but less time-
efficient, because when adding new items in the middle of the container, items at one end 
must be moved down by copying. 
 

                                                 
91 Certain critical requirements may ban the use of heap-based storage altogether. Consider software for a 
pacemaker, and the potentially fatal results if garbage collection took place at an inopportune time. Consider 
also a long-running reservation system, where even a tiny memory leak could have serious cumulative effects; 
having to reboot the system because of out-of-memory conditions might result in an unacceptable loss of service. 
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As shown in Figure 9-4, we use aggregation to place these lower-level classes in our family of 
classes. Specifically, the diagram shows that we use physical containment by value with 
protected access, meaning that this lower-level representation is accessible only to subclasses 
and friends. In an earlier design, we tried a mixin style, whereby the Unbounded and Bounded 
classes were introduced as protected superclasses. We ultimately rejected this design, because 
it proved to be conceptually difficult for clients, and also violated our litmus test for 
inheritance: a BoundedQueue is not a kind of Bounded, in the sense that we desire to treat them as 
the same type. 
 
Notice that these various forms introduce a second template argument. The bounded form 
requires an unsigned integer Size, denoting the static size of each instance. In contrast, the 
unbounded form requires a StorageManager class, whose responsibility is to provide a particular 
storage management policy, as we will discuss in the next section. 
 
The protocol provided by both of the lower-level classes must be sufficient to implement the 
responsibilities of the concrete queue classes in particular, and complete enough to 
implement the responsibilities of all the other structures in the library. For reasons of 
efficiency, we choose to use no virtual functions in either of these classes. This has two 
implications: we cannot meaningfully unify Unbounded and Bounded with a common superclass, 
although they do have a common protocol; and we cannot properly create any subclasses. In 
a sense, we have chosen to trade off flexibility for blinding speed and reasonable memory 
use. As part of this trade-off, we also choose to inline certain functions for speed; selectors are 
usually good candidates for inlining, especially when they only involve returning a simple 
value. 
 
For example, consider the declaration of the class Bounded: 
 
template<class Item, unsigned int Size> 
class Bounded { 
public: 
 
 Bounded(); 
 Bounded(const Bounded<Item, Size>&); 
 ~Bounded(); 
 
 Bounded<Item, Size>& operator=(const Bounded<Item, Size>&); 
 int operator==(const Bounded<Item, Size>&) const; 
 int operator!=(const Bounded<Item, Size>&) const; 
 const Item& operator[](unsigned int index) const; 
 Item& operator[](unsigned int index); 
 
 void clear(); 
 void insert(const Item&); 
 void insert(const Item&, unsigned int before); 
 void append(const Item&); 
 void append(const Item&, unsigned int after); 
 void remove(unsigned int at); 
 void replace(unsigned int at, const Item&); 
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 unsigned int available() const; 
 unsigned int length() const; 
 const Item& first() const; 
 const Item& last() const; 
 const Item& itemAt(unsigned int) const; 
 Item& itemAt(unsigned int); 
 int location(const Item&) const; 
 
 static void* operator new(size-t); 
 static void operator delete(void*, size-t); 
 
protected: 
 
 Item rep[Size]; 
 unsigned int start; 
 unsigned int stop; 
 
 unsigned int expandLeft(unsigned int from); 
 unsigned int expandRight(unsigned int from); 
 void shrinkLeft(unsigned int from); 
 void shrinkRight(unsigned int from); 
 
}; 
 
This class declaration follows the style we described earlier. How exactly did we come to 
choose this particular interface? The honest answer is that isolated class design, as we 
explained in Chapter 6, got us to an 80% solution, but then we evolved this interface to the 
final form shown above, after having used this class to implement three or four of the 
structural families of classes. The hard part of this evolution was identifying suitably 
primitive operations that could be used to carry out all the different policies required of all 
the structures. 
 
Notice the ultimate representation of this class, namely, the protected member object rep, 
declared to be an array of items with a static length Size. Consider the following declaration: 
 
Bounded<char, 100U> charSequence; 
 
Elaboration of this declaration creates a fixed-size, 100-element array on the stack. The 
protected member objects start and stop are used as indices into this array, denoting the 
beginning and the ending of the sequence, respectively. In this manner, we implement our 
abstraction by using a circular buffer. Adding items to the front and back of a sequence does 
not require any movement of items already in the sequence; adding items in the middle of the 
sequence only requires on average the copying of half of the existing items. 
 
The design of both the unbounded and bounded support classes raises some subtle issues 
concerning the use of references, which we alluded to in Chapter 3. We explore these issues 
further here, not only because they impact the interface of every template class in the library, 
but also because they are fundamental issues that must be faced by the architect of any 
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nontrivial class library. Indeed, this is a classic example of how particular language semantics 
can affect architectural decisions. 
 
In C++, references provide an aliasing mechanism that can improve performance. However, 
references must be used carefully to avoid creating unsafe situations at runtime. In this 
library, we use references to improve the performance of passing arguments to member 
functions. Note, for example, the declaration of Bounded, in which we pass instances of Bounded 
and Item by reference. As a general rule, we do not pass primitive objects (such as integers, in 
the declaration of the member function itemAt) by reference, because it is likely to make the 
code slower, and additionally, C++ semantics introduce some potentially dangerous 
problems when temporary objects are used. 
 
However, we do choose to have all structures store values, not references, in their respective 
concrete forms. This style prevents creating references to transient objects on the runtime 
stack. For the same reason, we rejected an alternative design involving storing pointers to 
items, because this approach exhibits very undesirable behavior when instantiating a 
template with built-in types. These issues are significant when designing the interface to a 
framework involving template classes, since clients can instantiate the templates with 
arbitrary types. There are three cases to consider, and we must design the library so that it 
strikes a balance among all three. 
 
First, built-in types can be passed by reference and copied into concrete representations with 
no difficulty. Declaring the argument types as constant references avoids warnings due to 
temporaries involved in type conversion [12]. 
 
Second, user-defined types can be passed by reference and copied, but only if they provide 
copy constructors and the assignment operator. Although the references permit polymorphic 
operations (passing an object of a derived class instead of the declared class supplied in the 
instantiation), the copying will not be polymorphic. Assigning the object of the representation 
will “slice” the object to an instance of the base class [13]. 
 
Third, polymorphic uses of the library will have to instantiate the templates with pointers to 
the base classes involved. Although passing the pointers by reference does not necessarily 
improve performance, copying pointers into the representation preserves the polymorphism 
of the derived objects involved. 
 
For example, given the class BoundedQueue, we can write the following: 
 
class Event ... 
typedef Event* EventPtr; 
 
BoundedQueue<int, 1OU> intQueue; 
BoundedQueue<Event, 50U> eventQueue1; 
BoundedQueue<EventPtr, 100U> eventQueue2; 
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With the object eventQueue1, clients may safely build queues of events, although adding 
instances of any Event subclasses will introduce slicing, and hence the polymorphic behavior 
of such items will be lost. On the other hand, the object eventQueue2 contains pointers to objects 
of class Event, and so we may store and retrieve objects of class Event or its subclasses without 
the danger of slicing. 
 
Our decision to store values instead of references or pointers to items places certain 
responsibilities on the construction and destruction of items in a structure. In particular, the 
item classes used to instantiate a structure must provide at least a default constructor, a copy 
constructor, and an assignment operator. Additionally, items may not be destroyed 
immediately upon removal from a structure. For example, in bounded forms, items (which 
are ultimately stored in arrays) are not destroyed until the structure itself is destroyed. 
 
Consider now how we use the class Bounded to form a concrete class such as BoundedQueue. As 
we see in the following declaration, BoundedQueue has a protected member object rep of the 
class Bounded: 
 
template<class Item, unsigned int Size> 
class BoundedQueue : public Queue<Item> { 
public: 
 BoundedQueue(); 
 BoundedQueue(const BoundedQueue<Item, Size>&); 
 virtual ~BoundedQueue(); 
 
 virtual Queue<Item>& operator=(const Queue<Item>&); 
 virtual Queue<Item>& operator=(const BoundedQueue<Item, Size>&); 
 virtual int operator==(const Queue<Item>&) const; 
 virtual int operator==(const BoundedQueue<Item, Size>&) const; 
 int operator!=(const BoundedQueue<Item, Size>&) const; 
 
 virtual void clear(); 
 virtual void append(const Item&); 
 virtual void pop(); 
 virtual void remove(unsigned int at); 
 
 virtual unsigned int available() const; 
 virtual unsigned int length() const; 
 virtual int isEmpty() const; 
 virtual const Item& front() const; 
 virtual int location(const Item&) const; 
 
protected: 
 
 Bounded<Item, Size> rep; 
 
 virtual void purge(); 
 virtual void add(const Item&); 
 virtual unsigned int cardinality() const; 
 virtual const Item& itemAt(unsigned int) const; 
 
 static void* operator new(size_t); 
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 static void operator delete(void*, size_t); 
 
}; 
 
The primary responsibility of this class is to complete the protocol defined in the base class. 
Often, this involves little more than delegating the responsibility to the lower-level Bounded 
class, as suggested by the following implementation: 
 
template<class Item, unsigned int Size> 
unsigned int BoundedQueue<Item, Size>::length() const  
{ 
 return rep.length() 
} 
 
Notice that the class BoundedQueue introduces some additional operations over those defined 
in its superclass. In particular, we add the selector available, which returns the number of free 
items in the structure (calculated as Size – length()). We did not include this operation in the 
base class, primarily because calculating the amount of available space on the heap is not so 
clear an operation. We also overloaded the operators for assignment and test for equality. As 
we mentioned earlier, this idiom permits subclasses to provide more efficient 
implementations of these operations than can the base class, because the subclasses have 
detailed knowledge of their own representation. Lastly, we added the operators new and 
delete, but declared them as protected members, which effectively prevents clients from 
allocating instances of BoundedQueue (which is consistent with the static storage semantics of 
this concrete form). 
 
The class Unbounded, has substantially the same protocol as the class Bounded, although its 
implementation is radically different. 
 
template<class Item, class StorageManager> 
class Unbounded { 
public: 
 ... 
protected: 
 
 Node<Item, StorageManager>* rep; 
 Node<Item, StorageManager>* last; 
 unsigned int size; 
 
 Node<Item, StorageManager>* cache; 
 unsigned int cacheIndex; 
 
}; 
 
The Unbounded form provides the implementation of a linked list of nodes, where Node is 
declared as follows: 
 
template<class Item, class StorageManager> 
class Node { 
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public: 
 
 Node(const Item& i, 
  Node<Item, StorageManager>* previous, 
  Node<Item, StorageManager>* next); 
 
 Item item; 
 Node<Item, StorageManager>* previous; 
 Node<Item, StorageManager>* next; 
 
 static void* operator new(size_t); 
 static void operator delete(void*, size_t); 
 
}; 
 
The main responsibility of this class is to manage a single item together with pointers to the 
next and previous nodes. Because this is a support class and hence is not used by clients 
outside of the library, we have decided to relax our usual strict rules of encapsulation and 
expose all of its state as public members, thus trading off safety for efficiency. 
 
Because the classes Bounded and Unbounded supply virtually the same public protocol, we know 
that they are functionally the same, and hence the implementation of all the bounded and 
unbounded concrete structures will look very much the same as well. However, the 
representation of these two support classes is what leads to radically different time and space 
semantics. In particular, for the linked-list representation, manipulating nodes is very fast, 
but finding particular items can be slow (on the order of O(n)). For this reason, our 
implementation caches the last referenced node, in the expectation that it or its neighbors are 
likely to be touched next. For the array-based implementation, manipulating items is can be 
slow, the worst case being O(n/2), when inserting or deleting in the middle of a sequence, 
whereas finding a particular items is very fast (on the order of O(1)). 
 
 
Storage Management 
 
Storage management is an issue for all unbounded forms, because the library designer must 
consider specific policies for allocating and deallocating nodes from the heap. A naive 
approach will simply use the global new and delete functions, but this strategy will often 
exhibit very poor runtime performance. Furthermore, storage management on certain 
platforms can be quite complex (as with segmented address spaces under certain personal 
computer operating systems), and so requires that all of our classes use a policy tailored to 
the platform, rather than using a general one assumed by the library designer to work for all 
circumstances. By clearly isolating these patterns of storage management, we can construct a 
robust yet adaptable library. 
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Figure 9-5 
Storage Management Mechanism 
 
Figure 9-5 illustrates the mechanism we have chosen to provide storage management for this 
library.92 Let's walk through the scenario described in this object diagram: 
 

• aClient invokes the operation append upon an instance of UnboundedQueue (more precisely, 
upon an instance of an instantiation of UnboundedQueue). 

• The UnboundedQueue object in turn delegates responsibility for this operation to its 
member object rep, an instance of the class Unbounded. 

• Unbounded allocates a new instance of Node by invoking its static member function new. 
• The Node instance in turn delegates the responsibility of allocation to its storage 

manager, which is made visible to the class UnboundedQueue (and in turn to the classes 
Unbounded and Node) as a template argument. This storage manager is shared by all 
instances of the class, and so serves to provide a consistent class-wide storage 
management policy. 

 
By treating the storage manager as an argument to all the unbounded concrete structures, we 
effectively decouple storage management policy from its implementation, and make it 
possible for library users to insert their own storage management policy without changing 
the library. This is a classic example of extensibility through instantiation instead of 
inheritance. 
 
                                                 
92 An historical note: it took about four iterations of the library's architecture to evolve to this mechanism, which 
- not surprisingly - turned out to be the simplest of the lot. Earlier alternatives, which we ultimately rejected, 
proved to be not as adaptable as well as hard to explain, because they tended to expose the bones of our 
implementation to uncaring clients. 
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The only requirement we place upon our storage managers is that they provide the same 
well-defined protocol. Specifically, we require that all storage managers export the member 
functions allocate and deallocate, which dispense and release memory, respectively. For 
example, consider the simplest (and most naive) storage management policy: 
 
class Unmanaged { 
public: 
 
 static void* allocate(size_t s) 
  {return ::operator new(s);} 
 static void deallocate(void* p, size_t) 
  {::operator delete(p);} 
 
private: 
 
 Unmanaged() {} 
 Unmanaged(Unmanaged&) {} 
 void operator=(Unmanaged&) {} 
 void operator==(Unmanaged&) {} 
 void operator!=(Unmanaged&) {} 
 
}; 
 
Notice the idiom we use to prevent clients from copying, assigning, or testing instances of this 
class. 
 
We implement the protocol for the class Unmanaged by inline calls to the global operators new 
and delete. We call this policy unmanaged, because it effectively does nothing beyond the 
default policy provided by the language. A far better policy is called managed. Under this 
policy, nodes are allocated and deallocated from a common pool of memory. Unused nodes 
of any kind are returned to a free list, and allocation takes nodes from this free list unless it is 
empty, in which case another chunk of free memory is allocated from the heap. In this 
manner, we vastly reduce the number of times we must reach out to the operating system's 
storage management services: allocation now involves manipulating some pointers, which is 
far faster.93 
 
With a little thought about its semantics, we can make our pool abstraction even better. For 
example, we might provide operations that permit a client to preallocate a chunk of memory, 
in advance of its use. Similarly, we might permit a client to defragment its chunks, and 
possibly return unused chunks back to the heap. We might also provide operations that 
permit a client to choose the chunk size, so as to tune storage allocation to the needs of the 
implementation (for example, to set a chunk size optimal for the size, of the classes being 
allocated, and to make chunks align with word boundaries). 
 

                                                 
93 In C++, the global operator new ultimately invokes some kind of malloc service, which is a relatively expensive 
operation. 



 Chapter 9: Frameworks      352 

Given these design decisions, we might express our pool abstraction in the following 
nontemplate support class: 
 
class Pool { 
public: 
 
 Pool(size_t chunkSize); 
 ~Pool(); 
 
 void* allocate(size_t); 
 void deallocate(void*, size_t); 
 
 void preallocate(unsigned int numberOfChunks); 
 void reclaimUnusedChunks(); 
 void purgeUnusedChunks(); 
 
 size_t chunkSize() const; 
 unsigned int totalChunks() const; 
 unsigned int numberOfDirtyChunks() const; 
 unsigned int numberOfUnusedChunks() const; 
 
protected: 
 
 struct Element ... 
 struct Chunk ... 
 
 Chunk* head; 
 Chunk* unusedChunks; 
 size_t repChunkSize; 
 size_t usableChunkSize; 
 
 Chunk* getChunk(size_t s); 
 
}; 
 
This class uses two nested classes Element and Chunk. Each instance of the class Pool manages a 
linked list of Chunk objects which are actually raw chunks of memory, but are treated as if they 
were themselves linked lists of Element instances (this is one of the important secrets managed 
by the Pool class). Each chunk may manage elements of a different size, and so for efficiency, 
we sort our list of chunks from. smallest to largest. 
 
Our managed storage management class can now be written as follows: 
 
class Managed { 
public: 
 
 static Pool& pool; 
 
 static void* allocate(size_t s) 
  {return pool.allocate(s);} 
 static void deallocate(void* p, size_t s) 
  {pool.deallocate(p, s);} 
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private: 
 
 Managed() {} 
 Managed(Managed&) {} 
 void operator=(Managed&) {} 
 void operator==(Managed&) {} 
 void operator!=(Managed&) {} 
 
}; 
 

 
 
Figure 9-6 
Storage Management Classes 
 
 
This class provides the same public protocol as the class Unmanaged. Because of C++’s 
intentional underspecification of template semantics, conformance with this protocol is only 
checked when we compile an instantiation of a class such as UnboundedQueue, at which time we 
match a concrete class with the formal template argument StorageManager. 
 
Notice that the class Managed has a static member object of the class Pool. In this manner, it is 
possible to have several unmanaged concrete structures share the same pool of storage. 
Different unmanaged structures can of course define their storage manager and hence their 
own pool, thus giving the developer complete control over storage management policy. 
 
Figure 9-6 provides a class diagram illustrating the various classes that collaborate to provide 
a managed storage policy. We show only an association between the classes Managed and its 
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clients Unbounded and UnboundedQueue, because this association will only be manifested in a 
specific instantiation of the classes. 
 
Part of our architectural decisions must involve the physical packaging of these support 
classes. In Figure 9-7, we illustrate the module architecture of these classes. The particular 
partitioning we chose isolates those classes that are most likely to change. 
 
 
Exceptional Conditions 
 
Although we may use the C++ language itself to enforce most static assumptions about an 
abstraction (violations of these assumptions may be detected at compilation time), we must 
use some other mechanism for reporting any dynamic violations, such as trying to add an 
item to an already full bounded queue, or removing an item from an empty queue. in this 
library, we chose to apply C++’s exception facilities [14]. Our architecture uses a  

 
 
Figure 9-7 
Storage Management Modules 
 
hierarchy of exception classes, and separates them from the mechanisms involved in 
reporting them. 
 
We start with a base exception class, whose protocol is straightforward: 
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class Exception {  
public: 
 
 Exception(const char* name, const char* who, const char* what); 
 
 void display() const; 
 
 const char* name() const; 
 const char* who() const; 
 const char* what() const; 
 
protected: 
 
 ... 
 
}; 
 
For every exceptional condition, we may attach its name, who threw it, and why it was 
thrown. Additionally, we provide a means for displaying an exception on some output 
stream hidden from the client. 
 
A domain analysis of the various classes in the library reveals the following exceptional 
conditions, which we declare as subclasses to the base class Exception: 
 
ContainerError 
Duplicate 
IllegalPattern 
IsNull 
LexicalError 
MathError 
NotFound 
NotNull 
NotRoot 
Overflow 
RangeError 
StorageError 
Underflow 
 
For example, the declaration of the exception Overflow appears as follows: 
 
class Overflow : public Exception { 
public: 
 
 Overflow(const char* who, const char* what) 
  : Exception(“Overflow”, who, what) {} 
}; 
 
The responsibility of this class only requires that it knows its name, which it passes on to its 
superclass’s constructor. 
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Under this mechanism, member functions in library classes only throw exceptions; none of 
them catch exceptions, mainly because there is nothing that any of them can do to respond 
meaningfully to an exceptional condition. By convention, we only throw exceptions as part of 
an assertion about some condition. An assertion is simply a Boolean expression of some 
condition whose truth must be preserved. To simplify the library's implementation, we thus 
introduce the following nonmember function: 
 
inline void _assert(int expression, const Exception& exception) 
{ 
 if (!expression) 
  throw(exception); 
} 
 
We declare this function as inline for efficiency. 
 
The advantage of providing this function is that it localizes all throws (in C++, throw has the 
syntax of a function call). Thus, for compilers that do not yet support exceptions, we can use a 
compiler directive (-D for most C++ compilers) to redefine this one mention of throw to be a call 
to some other nonmember function that displays the exception and then terminates the 
program: 
 
void _catch(const Exception& e) 
{ 
 cerr << “EXCEPTION: ”; 
 e.display(); 
 exit(1); 
} 
 
Now, consider the implementation of the Bounded member function insert: 
 
template<class Item, unsigned int Size> 
void Bounded<Item, Size>::insert(const Item& item) 
{ 
 unsigned int count = length(); 
 _assert((count < Size), Overflow(“Bounded::Insert”, “structure is 
full”)); 
 if (!count) 
  start = stop = 1; 
 else { 
  start--; 
  if (!start) 
   start = Size; 
 } 
 rep[start – 1] = item; 
} 
 
In this implementation, we assert that: the current length of the structure must be less than its 
bounded size. If this condition evaluates false, then we throw the exception Overflow. 
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One very important aspect of our use of exceptions is that they are guaranteed not to corrupt 
the state of any object that throws an exception, except in the case of out-of-memory 
conditions (in which case all bets are usually off, anyway). In our design, member functions 
always make an assertion before any changes to the state of the object are made. For example, 
in the implementation of the member function insert above, we first call a selector (which by 
design is guaranteed to preserve the state of the object), then we check that all preconditions 
to the function are satisfied, and only then do we alter the state of the object. This is a style 
that we follow carefully and consistently, and should be preserved by any subclasses derived 
from this library. 
 
Figure 9-8 illustrates the classes that collaborate to form this mechanism. 
 
 
Iteration 
 
Iteration is another architectural pattern found in this library. As we defined it in Chapter 3, 
an iterator is an operation that permits all parts of an object to be accessed in some well-
defined order. As it turns out, not only do clients of the library need this behavior, but we 
also need iterators in the implementation of the library itself, to carry out certain 
responsibilities of each base class. 
 
When introducing iterators, we have two design choices: we can define iteration as part of an 
object's protocol, or we can invent separate objects that act as agents responsible for iterating 
across a structure. We choose the second alternative for two compelling reasons: 
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Figure 9-8 
Exception Classes 
 

• By providing separate iterator classes, we make it possible to have several iterator 
objects working upon the same object. 

• Iteration slightly breaks the encapsulation of an object's state; by separating the 
behavior of iteration from the rest of an abstraction's protocol, we provide a much 
clearer separation of concerns. 

 
For each structure, we provide two forms of iteration. Specifically, an active iterator requires 
that clients explicitly advance the iterator; in one logical expression, a passive iterator applies a 
client-supplied function, and so requires less collaboration on the part of the client.94 For 
reasons of type safety, we define different iterators for each kind of structure. 
 
For example, consider the active iterator for the class Queue: 
 
template <class Item> 
class QueueActiveIterator { 
public: 
 
 QueueActiveIterator(const Queue<Item>&); 
 ~QueueActiveIterator(); 
 
 void reset(); 
 int next(); 
 
 int isDone() const; 
 const Item* currentItem() const; 
 
 

 
 

                                                 
94 Passive iterators implement an “apply” function, an idiom commonly used in functional programming 
languages. 
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Figure 9-9 
Iteration Mechanism 
 
protected: 
 
 const Queue<Item>& queue; 
 int index; 
 
}; 
 
At the time of its construction, every iterator is bound to a particular object. Iteration begins at 
the “top” of a structure, whatever that might mean for the given abstraction. 
 
A client obtains a pointer to the current item through the member function currentItem; the 
pointer is null if iteration is complete or if the structure is empty. A client advances the 
iterator to the next successive item through the member function next (which returns 0 if the 
iterator could not be advanced, perhaps because iteration had already been completed). The 
selector isDone allows the client to query the progress of iteration, and returns 0 if the iteration 
is complete or if the structure is empty. The reset member function allows multiple traversals 
over the same object. 
 
As an example, given the following declarations: 
 
 
BoundedQueue<NetworkEvent> eventQueue; 
 
the following code fragment uses an active iterator to visit each item in the queue, from front 
to back: 
 
QueueActiveIterator<NetworkEvent> iter(eventQueue); 
 
while (!iter.isDone()) { 
 iter.currentItem()->dispatch(); 
 iter.next(); 
} 
 
The interaction diagram in Figure 9-9 illustrates this scenario, and in addition, reveals some 
of the secrets of the iterator’s implementation. In fact, let’s consider the implementation of 
this mechanism in more detail. 
 
The constructor for the class QueueActiveIterator binds itself to the given queue and calls the 
protected member function cardinality to determine how many items are in the queue. Thus, we 
may write: 
 
template<class Item> 
QueueActiveIterator<Item>::QueueActiveIterator(const Queue<Item>& q) 
 : queue(q), 
  index(q.cardinality0 ? 0 : -1) {} 
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The class QueueActiveIterator is a friend of the class Queue, which is why the iterator can invoke 
the protected member function cardinality. 
 
The iterator operation isDone checks that its index is currently within the extent of the queue 
object to which it is bound: 
 
template<class Item> 
int QueueActiveIterator<Item>::isDone() const 
{ 
 return ((index < 0) || (index >= queue.cardinality())); 
} 
 
currentItem returns a pointer to the item upon which the iterator is focused. By implementing 
the iterator class as an index into a queue object, it is possible to safely add and delete items 
from the queue during iteration. 
 
template<class Item> 
const Item* QueueActiveIterator<Item>::currentItem() const 
{ 
 return isDone() ? 0 : &queue.itemAt(index); 
} 
 
Here again, the iterator class invokes a protected member function exported from the queue. 
Notice that this operation is efficient when used either with a bounded or an unbounded 
queue. For bounded queues, itemAt is simply an indexing operation. For unbounded queues, 
itemAt in the worst case could involve traversing its entire linked-list representation. 
Remember, moreover, that our design of the class Unbounded caches the last referenced item, 
which means that finding the next item (which happens when the iterator advances) is a 
simple pointer operation. 
 
The iterator operation next, in fact, just advances its index and then checks to see if it has fallen 
off the end of the queue: 
 
template<class Item> 
int QueueActiveIterator<Item>::next() 
{ 
 index++; 
 return !isDone(); 
} 
 
The design of the iterator class thus motivates two of the protected member functions we 
provided for the abstract base class Queue, namely, cardinality and itemAt. By making these 
members pure virtual, we make it the responsibility of each concrete queue class to provide 
an implementation consistent with and optimal for its representation. 
 
Earlier, we indicated that one important implication of our architectural decisions is that a 
client may copy, assign, and test for equality among instances of the same abstract base class, 
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even though each has a different representation. We achieve this capability through an 
elegant use of iterators and helper functions. This style allows us, in the abstract base class, to 
traverse any structure in a representation-independent manner. For example, in the class 
Queue we find: 
 
template<class Item> 
Queue<Item>& Queue<Item>::operator=(const Queue<Item>& q) 
{ 
 if (this == &q) 
  return *this; 
 ((Queue<Item>&)q).lock(); 
 purge(); 
 QueueActiveIterator<Item> iter(q); 
 while (!iter.isDone()) { 
  add(*iter.currentItem()); 
  iter.next(); 
 } 
 ((Queue<Item>&)q).unlock(); 
 return *this; 
} 
 
This algorithm uses an idiom for locking and unlocking the queue object, which we will 
explain in the next section. 
 
Assignment proceeds by traversing the structure of the argument q, using an active queue 
iterator. We apply the protected helper function purge to initially clear the queue, and then we 
add new items to the structure via the protected helper function add. The fact that iteration 
depends upon the polymorphic behavior of the base class's helper functions is what makes it 
possible for structures to copy, assign, and test for equality among objects that have the same 
structure, but with different representations. 
 
A passive iterator is an applicator, meaning that it applies some function to every item in the 
structure. The following declaration provides the iterator for the class Queue: 
 
template <c1ass Item> 
class QueuePassiveIterator  { 
public: 
 
 QueuePassiveIterator(const Queue<Item>&); 
 ~QueuePassiveIterator(); 
 
 int apply(int  (*)(const Item&)); 
 
protected: 
 
 const Queue<Item>& queue; 
 
}; 
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Passive iterators operate on all items in a structure in a (logically) single operation. The apply 
function visits each item in the structure and invokes the supplied function on each. It 
continues until it reaches the last item, or until the supplied function returns a result of 0 (in 
which case apply itself returns 0, indicating that the iteration was incomplete). 
 
 
Synchronization 
 
Any general framework must consider the problems of concurrency. Under operating 
systems such as UNIX, OS/2, and Windows/NT, for example, applications may be formed 
using multiple lightweight processes.95 Unless special consideration is given, most classes 
will simply not work in such an environment: when two more tasks interact with the same 
object, active objects must in some manner cooperate to avoid corrupting the state of the 
shared object. As we described earlier, there are basically two approaches to process 
management, as represented by the guarded and synchronized forms of a class. 
 
The design. of this library makes the following assumption: Developers that care about 
concurrency will have ported or implemented at least a Semaphore class for synchronizing 
lightweight processes. Other clients won't care, and won't miss not having the guarded or 
synchronized forms of structures (and will appreciate not having to pay the overhead). The 
guarded and synchronized forms are thus an independent, layered part of the library, and 
rely upon local implementations of this concurrency mechanism. The library's only 
dependencies upon the local implementation are intentionally isolated in the implementation 
of the class Semaphore, whose interface appears as follows: 
 
class Semaphore { 
public: 
 
 Semaphore (); 
 Semaphore (const Semaphore &); 
 Semaphore (unsigned int count); 
 ~Semaphore (); 
 
 void seize(); 
 void release(); 
 unsigned int nonePending() const; 
 
protected: 
 
 ... 
 
}; 
 
                                                 
95 A lightweight process is one that executes in the same address space as its peers. In contrast, the UNIX fork 
function produces heavyweight processes that require special operating system services for interprocess 
communication. For C++, the AT&T task library provides a semiportable abstraction of lightweight processes 
under UNIX. Lightweight processes are also directly available under OS/2 and Windows/NT. The Smalltalk 
class library provides the class Process in support of its model for lightweight processes. 
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Just as we, did for storage management, we choose to separate the policies of process 
synchronization from its implementation. For this reason, the template 
 
 
 

 
 
Figure 9-10 
Guarded Process Mechanism 
 
signature of every guarded form imports a guard, which is responsible for providing a 
binding to the local implementation of a semaphore or its equivalent. Similarly, the template 
signature of every synchronized form imports a monitor, which is similar to a semaphore but, 
as we will discuss, permits a higher degree of concurrency. 
 
As we illustrated in Figure 9-3, a guarded class is a direct subclass of its concrete bounded or 
unbounded class; a guarded class contains a guard as a member object. All guarded classes 
introduce the member functions seize and release, which allow an active agent to gain 
exclusive access to the object. For example, consider the class GuardedUnboundedQueue, which is 
a kind of UnboundedQueue: 
 
template<class Item, class StorageManager, class Guard> 
class GuardedUnboundedQueue : public UnboundedQueue<Item, StorageManager> { 
public: 
 
 GuardedUnboundedQueue (); 
 virtual ~GuardedUnboundedQueue (); 
 
 virtual void seize(); 
 virtual void release(); 
 
protected: 
 
 Guard guard; 
}; 
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For this library, we provide the interface of one predefined guard: the class Semaphore. Users 
of this library must complete the implementation of this class, according to the needs of the 
local definition of lightweight processes. 
 
As we illustrate in Figure 9-10, clients who use guarded objects must follow the simple 
protocol of first seizing the object, operating upon it, and then releasing it (especially in the 
face of any exceptions thrown). To do otherwise is considered socially inappropriate, because 
aberrant behavior on the part of one agent denies the fair use by other agents. Seizing a 
guarded object and then failing to release it blocks the object indefinitely; releasing an object 
never first seized by the agent is subversive. Lastly, ignoring the seize/release protocol 
altogether is simply irresponsible, because interleaved tasks may corrupt the state of the 
shared object. 
 
The primary benefit offered by the guarded form is its simplicity, although it does require the 
fair collective action of all agents that manipulate the same object. Another key feature of the 
guarded form is that it permits agents to form critical regions, in which several operations 
performed upon the same object are guaranteed to be treated as an atomic transaction. 
 
Similar to the mechanism of storage management, the template signature of guarded forms 
imports the guard rather than making it an immutable feature. This makes it possible for 
library developers to introduce new synchronization policies. Using the predefined class 
Semaphore as a guard, the library’s default policy is to give every object of the class its own 
semaphore. This policy is acceptable only up to the point where the total number of processes 
reaches some practical limit set by the local implementation. 
 
An alternate policy involves having several guarded objects share the same semaphore. A 
developer need only produce a new guard class that provides the same protocol as Semaphore 
(but is not necessarily a subclass of Semaphore). This new guard might then contain a Semaphore 
as a static member object, meaning that the semaphore is shared by all its instances. By 
instantiating a guarded form with this new guard, the library developer introduces a different 
policy, whereby all objects of that instantiated class share the same guard, rather than there 
being one guard per object. The power of this policy comes about when the new guard class 
is used to instantiate other structures: all such objects ultimately share the same guard. The 
policy shift is subtle, but very powerful: not only does it reduce the number of processes in 
the application, but it also permits a client to globally lock a group of otherwise unrelated 
objects. Seizing one such object blocks all other objects that share this new guard, even if 
those objects are entirely different types. 
 
A synchronized class is also a direct subclass of its concrete bounded or unbounded class. A 
synchronized class contains a monitor as a member object, whose protocol is defined by the 
following abstract base class: 
 
class Monitor { 
public: 
 
 Monitor(); 
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 Monitor(const Monitor&); 
 
 virtual ~Monitor(); 
 virtual void seizeForReading() = 0; 
 virtual void seizeForWriting() = 0; 
 virtual void releaseFromReading() = 0; 
 virtual void releaseFromWriting() = 0; 
 
protected: 
 
 ... 
 
}; 
 
 

 
 
Figure 9-11 
Synchronized Process Mechanism 
 
There exist two basic kinds of process synchronization via monitors of this sort: 
 

• Single Guarantees the semantics of a structure in the presence of 
multiple threads of control, with a single reader or writer. 

• Multiple Guarantees the semantics of a structure in the presence of 
multiple threads of control, with multiple simultaneous 
readers or a single writer. 

 
A writer is an agent that alters the state of an object; writers are those agents that invoke 
modifier member functions. A reader is an agent that operates upon an object, yet preserves its 
state; readers are those objects that only invoke selector functions. The multiple form 
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therefore provides the greatest amount of real parallelism. We can implement these two 
policies as subclasses of the abstract base class Monitor. Both the single and multiple forms may 
be built upon the Semaphore class. 
 
Unlike the guarded form, synchronized classes do not introduce-any new member functions; 
rather, they redefine every virtual member function inherited from. their superclass. The 
semantics added by a synchronized class cause every member function to be treated as an 
atomic transaction. Whereas clients of guarded forms must explicitly seize and release an 
object to achieve exclusive access, synchronized forms provide this exclusivity without 
requiring any special action on the part of their clients. 
 
We achieve this exclusivity by means of a locking mechanism, as illustrated in Figure 9-11. 
Monitors collaborate with instances of the predefined classes ReadLock and WriteLock to achieve 
exclusive invocation of each individual member function. In this mechanism, a lock contains 
a semaphore or a monitor as the agent responsible for process synchronization, and the lock 
is responsible for seizing this agent upon construction and releasing it upon destruction. For 
example, consider the declaration of the class ReadLock: 
 
class ReadLock { 
public: 
 
 ReadLock (const Monitor& m) 
  : monitor(m) {monitor.seizeForReading();} 
 ~ReadLock () 
  {monitor.releaseFromReading();} 
 
private: 
 
 Monitor& monitor; 
 
}; 
 
By separating the abstractions of the lock and its monitor, our design permits a client to attach 
a different policy to the mechanism of locking. The declaration of the class WriteLock is just as 
simple, except that uses the monitor's protocol for reading. 
 
The definition of each member function in a synchronized form uses locks to wrap around 
the corresponding operation inherited from its superclass. For example, consider the 
implementation of the member function length for the synchronized and unbounded queue: 
 
template<class Item, class StorageManager, class Monitor> 
unsigned int SynchronizedUnboundedQueue<Item, StorageManager, 
Monitor>::length() const 
{ 
 ReadLock lock(monitor); 
 return UnboundedQueue<Item, StorageManager>::length(); 
} 
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This code directly implements the mechanism described in Figure 9-11. In general, we use 
instances of the class ReadLock for all synchronized selectors, and we use instances of the class 
WriteLock for all synchronized modifiers. The simple elegance of this design is that it 
guarantees that every member function represents an atomic action, even in the face of 
exceptions and without any explicit action on the part of a reader or writer. 
 
Indeed, clients who use synchronized objects need not follow any special protocol, because 
the mechanism of process synchronization is handled implicitly, and so is less prone to the 
deadlocks and livelocks that may result from incorrect usage of guarded forms. A developer 
should choose a guarded form. instead of a synchronized form, however, if it is necessary to 
invoke several member functions together as one atomic transaction; the synchronized form 
only guarantees that: individual member functions are atomic. 
 
Our architecture renders synchronized forms relatively free of any circumstances that might 
lead to a deadly embrace. For example, assigning an object to itself or testing an object for 
equality with itself is potentially dangerous because in concept it requires locking the left and 
right elements of such expressions, which in these cases is the same object. Once constructed, 
an object cannot change its identity, thus, these tests for self-identify are performed first, 
before either object is locked. This is precisely why our earlier implementation of the operator= 
included a test for self-identity, as the following elided version indicates: 
 
template<class Item> 
Queue<Item>& Queue<Item>::operator=(const Queue<Item>& q) 
{ 
 if (this == &q) 
  return *this; 
 ... 
} 
 
Even then, member functions that have instances of the class itself as arguments must be 
carefully designed to ensure that such arguments are properly locked. Our solution relies 
upon the polymorphic behavior of two helper functions, lock and unlock defined in every 
abstract base class. Each abstract base class provides a default implementation of these two 
functions that does nothing; synchronized forms provide an implementation that seizes and 
releases the argument. This is precisely why our earlier implementation of the operator= 
included calls to these two functions, as the following elided version indicates: 
 
template<class Item> 
Queue<Item>& Queue<Item>::operator=(const Queue<Item>& q) 
{ 
 ... 
 ((Queue<Item>&)q).lock(); 
 ... 
 ((Queue<Item>&)q).unlock(); 
 return *this; 
} 
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Here we use the idiom of applying an explicit type cast to cast away the const property of the 
argument. 
 
 
9.3 Evolution 
 
Class Interface Design 
 
In a framework such as this one, once we have selected the patterns that make up its 
architecture, the remaining work is relatively simple, although perhaps tedious. Our next step 
is to take three or four families of classes (such as the queue, set, and tree), implement them 
against this architecture, and then test them against real client applications.96 
 
The hard part of this activity is deciding upon a suitable interface for each base class. This 
involves isolated class design, as we described in Chapter 6, but it also requires that the 
designer keep a global perspective to ensure consistency. For example, we might select the 
following protocol for Set: 
 

• setHashFunction Sets a hash function for the set’s items. 
• clear Empties the set. 
• add Adds an item to the set. 
• remove Removes an item from the set. 
• setUnion Performs a set union. 
• intersection Takes the intersection with the given set. 
• difference Removes the items in the given set. 
• extent Returns the number of items in the set. 
• isEmpty Returns 1 if there are no items in the set. 
• isMember Returns 1 if the given item is in the set. 
• isSubset Returns 1 if the set is a subset of the given set. 
• isProperSubset Returns 1 if the set is a proper subset of the given set. 

 
Similarly, we might select the following protocol for the class BinaryTree: 
 

• clear Destroys the tree and its children. 
• insert Adds a node to the top of the tree. 
• append Adds a child to the tree. 
• remove Removes a child from the tree. 
• share Structurally shares the given tree. 
• swapChild Swaps the child with the given tree. 
• child Returns the given child. 
• leftChild Returns the left child. 
• rightChild Returns the right child. 

                                                 
96 Wirfs-Brock has observed that it takes at least three applications of a framework to validate its strategic and 
tactical decisions [15]. 
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• parent Returns the parent of the tree. 
• setItem Sets the item associated with the tree. 
• hasChildren Returns 1 if the tree has children. 
• isNull Returns 1 if the tree is null. 
• isShared Returns 1 if the tree is structurally shared. 
• isRoot Returns 1 if the tree is rooted. 
• itemAt Returns the item associated with the tree. 

 
Notice that we use similar names for similar kinds of operations. We also use the quality 
measures of sufficiency, completeness, and primitiveness (as described in Chapter 3) to guide 
our design of each family's interface. 
 
 
Support Classes 
 
Our implementation of the string class reveals that the range of time and space semantics 
offered by the support classes Bounded and Unbounded is insufficient for our purposes. 
Specifically, the bounded form is space-inefficient for strings, because we must instantiate 
this form for the longest expected string, thereby wasting a tremendous amount of storage in 
all shorter strings. Similarly, the unbounded form is time-inefficient for strings, because 
searching for an item or inserting an item in the middle of the string may require traversing 
its entire underlying linked-fist structure. For this reason, we introduce a third form of 
representation, which we call dynamic, with the following responsibilities: 
 

• Dynamic  The structure is stored on the heap as an array whose length 
may shrink or grow. 

 
In this manner, the support class Dynamic offers a middle ground between the time efficiency 
of the bounded form (since items may be indexed directly) and the space efficiency of the 
unbounded form (since we only allocate storage for as many items as necessary). 
 
Because the protocol of this class is identical to that of the classes Bounded and Unbounded, it is 
trivial to add this new behavior to the library. Specifically, we must add three new classes to 
each family (for example, DynamicString, GuardedDynamicString, and SynchronizedDynamicString). We 
thus include the support class Dynamic, whose elided declaration appears as follows: 
 
template<class Item, class StorageManager> 
class Dynamic { 
public: 
 
 Dynamic(unsigned int chunkSize); 
 
 ... 
 
protected: 
 
 Item* rep; 
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 unsigned int size; 
 unsigned int totalChunks; 
 unsigned int chunkSize; 
 unsigned int start; 
 unsigned int stop; 
 
 void resize(unsigned int currentLength, unsigned int newLength, int 
preserve = 1); 
 
 unsigned int expandLeft(unsigned int from); 
 unsigned int expandRight(unsigned int from); 
 void shrinkLeft(unsigned int from); 
 void shrinkRight(unsigned int from); 
 
}; 
 
Sequences are sized in multiples of the constructor argument chunkSize. In this manner, a client 
can tailor each instance of this class to a size optimal to its use. 
 
As this declaration suggests, the implementation of the class Dynamic shares many of the same 
characteristics as that of the Bounded and Unbounded classes. In fact, because all three of these 
classes have substantially the same public protocol, the implementation of each of the 
concrete classes in a family is largely the same as well. 
 
Our implementation of the map class also reveals that the bounded, dynamic, and 
unbounded forms need tuning to satisfy the map's semantics. Specifically, searching for an 
item's membership in a map is unacceptably expensive if we have to search a long sequence 
sequentially . We can vastly improve performance it we use an open hash table instead. 
 
The abstraction of an open hash table is straightforward. Basically, such a table consists of an 
array of sequences; each sequence is called a bucket. When we place an item in the table, we 
first generate a hash value from the item itself, which we then use to select a specific bucket. 
We enter the item in that: bucket, just as with the bounded, dynamic, and unbounded forms. 
In this manner, an open hash table divides a long sequence into several smaller ones, thereby 
greatly accelerating searches. 
 
We can capture these semantics in the following elided declaration: 
 
template<class Item, class Value, unsigned int Buckets, class Container> 
class Table { 
public: 
 
 Table(unsigned int (*hash)(const Item&)) 
 
 ... 
 
 void setHashFunction(unsigned int (*hash)(const Item&)); 
 void clear(); int bind(const Item&, const Value&); 
 int rebind(const Item&, const Value&); 
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 int unbind(const Item&); 
 Container* bucket(unsigned int bucket); 
 
 unsigned int extent() const; 
 int isBound(const Item&) const; 
 const Value* valueOf(const Item&) const; 
 const Container *const bucket(unsigned int bucket) const; 
 
protected: 
 
 Container rep[Buckets]; 
 
 ... 
 
}; 
 
Notice the use of Container as a template argument, which allows us to define our abstraction 
of an open hash table independently of the particular concrete sequence we use. For example, 
consider the highly elided declaration of the unbounded map, which builds upon the classes 
Table and Unbounded: 
 

 
 
Figure 9-12 
Support Classes 
 
template<class Item, class Value, unsigned int Buckets, class 
StorageManage> 
class UnboundedMap : public Map<Item, Value> { 
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public: 
 
 UnboundedMap(); 
 
 ... 
 
 virtual int bind(const Item&, const Value&); 
 virtual int rebind(const Item&, const Value&); 
 virtual int unbind(const Item&); 
 
 ... 
 
protected: 
 
 Table<Item, Value, Buckets, Unbounded<Pair<Item, Value>, 
StorageManager> > rep; 
 
 ... 
 
}; 
 
Here, we instantiate the class Table with an Unbounded container. Figure 9-12 illustrates the 
collaboration of these classes. 
 
As a measure of the general applicability of this abstraction, we may apply the class Table to 
our implementation of the Set and Bag classes as well. 
 
 
Tools 
 
In this library, the primary use of templates is to parameterize each structure with the kind of 
item it contains; this is why such structures are often called container classes. As the 
declaration of the class Table illustrates, templates may also be used to provide certain 
implementation information to a class. 
 
An even more sophisticated situation involves tools that operate upon other structures. As we 
explained earlier, we can objectify algorithms by inventing classes whose instances act as 
agents responsible for carrying out the algorithm. This approach follows Jacobson’s idea of a 
control object, whose behavior provides the glue whereby other objects collaborate within a 
use-case [16]. The advantage of this approach is that it lets us take advantage of patterns 
within certain families of algorithms, by forming inheritance lattices. This not only simplifies 
their implementation, but provides a way to conceptually unify similar algorithms from the 
perspective of their clients. 
 
For example, consider the algorithms that search for patterns within a sequence. A number of 
such algorithms exist, with varying time semantics: 
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• Simple The structure is searched sequentially for the given pattern; 
in the worst case, this algorithm has a time complexity on the 
order of O(pn), where p is the length of the pattern, and n is 
the length of the sequence. 

• Knuth-Morris-Pratt The structure is searched for the given pattern, with a time 
complexity of O(p + n); searching requires no backup, which 
makes this algorithm suitable for streams. 

• Boyer-Moore The structure is searched for the given pattern, with a 
sublinear time complexity of O(c * (p + n)), where c < 1 and is 
inversely proportional to p. 

• Regular expression The structure is searched for the given regular expression 
pattern. 

 
There are at least three common features of these algorithms: they all operate upon sequences 
(and hence expect certain protocols from the objects they are searching), they all require the 
existence of an equality function for the items being searched (because the default equality 
operation may be insufficient), and they all have substantially the same signature for their 
invocation (they require a target, a pattern, and a starting index). 
 
The need for an equality operation requires some explanation. Suppose, for example, we have 
an ordered collection of personnel records. We might wish to search this sequence for a 
certain pattern of records, such as groups of three records all from the same department. 
Using the operator== for the class PersonnelRecord won't work, because this operator probably 
tests for equality based upon some unique id. Instead, we must supply a special test for 
equality to our algorithm that queries the department of each person (by invoking a suitable 
selector). Because each pattern-matching agent requires an equality function, we can provide 
a common protocol for setting the function as part of some abstract base class. For example, 
we might use the following declaration: 
 
template<class Item, class Sequence> 
class PatternMatch { 
public: 
 
 PatternMatch(); 
 PatternMatch(int (*isEqual)(const Item& x, const Item& y)); 
 virtual ~PatternMatch(); 
 
 virtual void setIsEqualFunction(int (*)(const Item& x, const Item& 
y)); 
 virtual int 
  match(const Sequence& target, const Sequence& pattern, unsigned 
int start = 0) = 0; 
 virtual int 
  match(const Sequence& target, unsigned int start = 0) = 0; 
 
protected: 
 
 Sequence rep; 
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 int (*isEqual)(const Item& x, const Item& y); 
 
private: 
 
 void operator=(const PatternMatch&) {} 
 void operator==(const PatternMatch&) {} 
 void operator!=(const PatternMatch&) {} 
 
}; 
 
Notice that we again use the idiom for assignment and test for equality, which prevents 
objects of this class or its subclasses from being assigned or compared to one another. We do 
so because these operations have no real meaning when applied to such agent abstractions. 
 
We can next devise concrete subclasses such as for the Boyer-Moore algorithm: 
 
template<class Item, class Sequence> 
class BMPatternMatch : public PatternMatch<Item, Sequence> { 
public: 
 
 BMPatternMatch(); 
 BMPatternMatch(int (*isEqual)(const Item& x, const Item& y)); 
 virtual ~BMPatternMatch(); 
 
 virtual int 
  match(const Sequence& target, const Sequence& pattern, unsigned 
int start = 0); 
 virtual int 
  match(const Sequence& target, unsigned int start = 0); 
 
protected: 
 
 unsigned int length; 
 unsigned int* skipTable; 
 
 void preprocess(const Sequence& pattern); 
 unsigned int itemsSkip(const Sequence& pattern, const Item& item); 
 
}; 
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Figure 9-13 
Pattern Matching Classes 
 
The public protocol of this class implements that of its superclass. In addition, we provide 
two member objects and two member helper functions. One of the secrets of this class is the 
creation of a temporary table that it uses to skip over long, unmatched sequences; these 
members serve to implement this secret. 
 
As figure 9-13 illustrates, we may build a hierarchy of pattern matching classes. In fact, this 
kind of hierarchy applies to all of the tools in our library, giving it a regular structure that 
makes it far easier for clients to find the abstractions that best fit their time and space 
semantics. 
 
 
9.4 Maintenance 
 
One fascinating characteristic of frameworks is that - if well-engineered - they tend to reach a 
sort of a critical mass of functionality and adaptability. In other words, if we have selected the 
right abstractions, and if we have populated the library with a set of mechanisms that work 
together well, then we will find that clients soon discover means to build upon the library in 
ways its designers never imagined or expected. As we discover patterns in the ways that 
clients use our framework, then it makes sense to codify these patterns by formally making 
them a part of the library. A sign of a well-designed framework is that we can introduce these 
new patterns during maintenance by reusing existing mechanisms and thus preserving its 
design integrity. 
 
One such pattern of use for this library involves the problem of persistence. We might find 
clients who don't want or need the full power of an object-oriented database, but who from 
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time to time need to save the state of structures such as queues and sets, and then reconstruct 
these objects in a later invocation of the program, or perhaps from a different program 
altogether. Because this pattern of use is so common, it makes sense for us to augment our 
library with a simple persistence mechanism. 
 

 
 
Figure 9-14 
Persistence Classes 
 
We will make two assumptions about this facility. First, clients are made responsible for 
providing a stream to which items are put and from which items are restored. Second, clients 
are responsible for ensuring that: items have the behavior necessary for them to be streamed. 
 
Two alternate designs for this facility come to mind. We could devise a mixin class that 
supplied persistence semantics; this is the approach used by many object-oriented databases. 
Alternately, we could devise a class whose instances act as agents responsible for streaming 
various structures. As part of our exploration, we might try both approaches, to see which is a 
better fit. 
 
As it turns out, the mixin style doesn't work well for this particular simple form of persistence 
(although it is well suited for full-functioned object-oriented databases). Using a mixing style 
requires that clients who mix in an abstraction plug it together with weir user-defined class, 
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often by redefining certain mixin helper functions For such a simple agent, however, clients 
would end up writing more code than if they crafted the mechanism by hand. This is clearly 
not acceptable, and so we turn to the second approach, which requires little more than an 
instantiation on the part of the client. 
 
Figure 9-14 illustrates our design for this mechanism, in which we provide persistence 
through the behavior of a separate agent. The class Persist is a friend of the class Queue, but we 
can defer this association by introducing the following friend declaration in the Queue class: 
 
friend class Persist<Item, Queue<Item> >; 
 
In this manner, friendship is established only at the time we instantiate the Queue class. In fact, 
by introducing a similar friend declaration in every abstract base class, we can reuse the class 
Persist for every structure in the library. 
 
The parameterized class Persist provides the operations put and get, as well as operations for 
setting its input and output streams. We may capture this abstraction in the following 
declaration: 
 
template<class Item, class Structure> 
class Persist { 
public: 
 
 Persist(); 
 Persist(iostream& input, iostream& output); 
 virtual ~Persist(); 
 
 virtual void setInputStream(iostream&); 
 virtual void setOutputStream(iostream&); 
 virtual void put(Structure&); 
 virtual void get(Structure&); 
 
protected: 
 
 iostream* inStream; 
 iostream* outStream; 
 
 ... 
}; 
 
The implementation of this class depends upon its friendship with the class Structure, which is 
imported as a template argument. Specifically, Persist depends upon the existence of the 
structure’s helper functions: purge, cardinality, itemAt, lock, and unlock. Here the regularity of our 
library pays off: since every Structure base class provides these helper functions, we can use the 
class Persist without any change to the library’s existing architecture. 
 
Consider for example, the implementation of Persist::put: 
 
template<class Item, class Structure> 
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void Persist<Item, Structure>::put(Structure& s) 
{ 
 s.lock(); 
 unsigned int count = s.cardinality(); 
 (*outStream) << count << endl; 
 for (unsigned int index = 0; index < count; index++) 
  (*outStream) << s.itemAt(index); 
 s.unlock(); 
} 
 
This operation uses our earlier locking mechanism, so that its semantics work for both the 
guarded and synchronized forms. The algorithm proceeds by streaming out the size of the 
structure and then its individual elements in order. Similarly, the implementation of 
Persist::get reverses this action: 
 
template<class Item, class Structure> 
void Persist<Item, Structure>::get(Structure& s) 
{ 
 s.lock(); 
 unsigned int count; 
 Item item; 
 if (!inStream->eof()) { 
  (*inStream) >> count; 
  s.purge(); 
  for (unsigned int index = 0; (index < count) && (!inStream-
>eof()); index++) { 
   (*inStream) >> item; 
   s.add(item); 
  } 
 } 
 s.unlock(); 
} 
 
To use this simple form of persistence consistency across the library, the client thus has only 
to instantiate one additional class per structure. 
 
Building frameworks is hard. In crafting general class libraries, one must balance the needs 
for functionality, flexibility, and simplicity. Strive to build flexible libraries, because you can 
never know exactly how programmers will use your abstractions. Furthermore, it is wise to 
build libraries that make as few assumptions about their environment as possible, so that 
programmers can easily combine them with other class libraries. The architect must also 
devise simple abstractions, so that they are efficient, and so that programmers can 
understand them. The most profoundly elegant framework will never be reused, unless the 
cost of understanding it and then using its abstractions is lower than the programmer’s 
perceived cost of writing them from scratch. The real payoff comes when these classes and 
mechanisms get reused over and over again, indicating that others are gaining leverage from 
the developer’s hard work, allowing them to focus on the unique parts of their own particular 
problem. 
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Further Readings 
 
Biggerstaff and Perlis [H 1989] provide a comprehensive treatment of software reuse. Wirfs-

Brock [C 1988] offers a good introduction to object-oriented frameworks. Johnson [G 1992] 
examines approaches to documenting the architecture of frameworks through the 
recognition of their patterns. 

MacApp [G 1989] offers an example of one specific, well-engineered, object-oriented 
application framework for the Macintosh. An introduction to an early version of this class 
library may be found in Schmucker [G 1986]. In a more recent work, Goldstein and Alger 
[C 1992] discuss the activities of developing object-oriented software for the Macintosh. 

Other examples of frameworks abound, covering a variety of problem domains, including 
hypermedia (Meyrowitz [C 1986]), pattern recognition (Yoshida [C 1988]), interactive 
graphics (Young [C 1987]), and desktop publishing (Ferrel [K 1989]). General application 
frarneworks include ET++ (Weinand, [K 1989]) and event-driven MVC architectures (Shan 
[G 1989]). Coggins [C 1990] studies the issues concerning the development of C++ libraries 
in particular. 

An empirical study of object-oriented architectures and their effects upon reuse may be found 
in Lewis [C 1992]. 
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Client/Server Computing: 
Inventory Tracking 
 
 
 
 
For many business applications, a company will use an off-the-shelf database management 
system (DBMS) to furnish a generic solution to the problems of persistent data storage, 
concurrent database access, data integrity, security, and backups. Of course, any DBMS 
must be adapted to the given business enterprise, and organizations have traditionally 
approached this problem by separating it into two different ones: the design of the data is 
given over to database experts, and the design of the software for processing transactions 
against the database is given over to application developers. This technique has certain 
advantages, but it does involve some very real problems. Frankly, there are cultural 
differences between database designers and programmers, which reflect their different 
technologies and skills. Database designers tend to see the world in terms of persistent, 
monolithic tables of information, whereas application developers tend to se he world in terms 
of its flow of control. 
 
It is impossible to achieve integrity of design in a complex system unless the concerns of 
these two groups are reconciled. In a system in which data issues dominate, we must be able 
to make intelligent trade-offs between a database and its applications. A database schema 
designed without regard for its use is both inefficient and clumsy. Similarly, applications 
developed in isolation place unreasonable demands upon the database and often result in 
serious problems of data integrity due to the redundancy of data. 
 
In the past, traditional mainframe computing raised some very real walls around a company's 
database assets. However, given the advent of low-cost computing, which places personal 
productivity tools in the hands of a multitude of workers, together with networks that serve to 
link the ubiquitous personal computer across offices as well as across nations, the face of 
information management systems has been irreversibly changed. Clearly a major part of this 
fundamental change is the application of client/server architectures. As Mimno points out, 
“The rapid movement toward downsizing and client-server computing is being driven by 
business imperatives. In the face of rapidly increasing competition and shrinking product 
cycles, business managers are looking for ways to get products to market faster, increase 
services to customers, respond faster to competitive challenges, and cut costs” [1]. In this 
chapter, we tackle a management information system (MIS) application and show how object-
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oriented technology can address the issues of database and application design in a unified 
manner, in the context of a client/server architecture. 
 
 
10.1 Analysis 
 
Defining the Boundaries of the Problem 
 
The sidebar provides the requirements for an inventory-tracking system. This is a highly 
complex application whose use touches virtually every aspect of the workflow within a 
warehouse. The physical. warehouse exists to store products, but it is this software that serves 
as the warehouse’s soul, for without it, the warehouse would cease to function as an efficient 
distribution center. 
 
Part of the challenge in developing such a comprehensive system is that it requires planners 
to rethink their entire business process, yet balance this with the capital investment they 
already have in legacy code, as we discussed in Chapter 7. While productivity gains can 
sometimes be made simply by automating existing manual processes, radical gains are 
usually only achieved when we challenge some of our basic assumptions about how the 
business should be run. How we reengineer this business is a system-planning activity, and 
so is outside the scope of this text. However, just as our software architecture bounds our 
implementation problem, so too does our business vision bound our entire software problem. 
We therefore begin by considering an operational plan for running the warehouse. Systems 
analysis suggests that there are seven major functional activities in this business: 
 

• Order entry Responsible for taking customer orders and for responding to 
customer queries about the status of an order 

 
Inventory-Tracking System Requirements 
 
As part of its expansion into several new and specialized markets, a mail-order catalog 
company has decided to establish a number of relatively autonomous regional warehouses. 
Each such warehouse retains local responsibility for inventory management and order 
processing. To target niche markets efficiently, each warehouse is tasked with maintaining 
inventory that is best suited to the local market. The specific product line that each warehouse 
manages may differ from region to region; furthermore, the product line managed by any one 
region tends to be updated almost yearly to keep up with changing consumer tastes. For 
reasons of economies of scale, the parent company desires to have a common inventory- and 
order-tracking system across all its warehouses. 
 
The key functions of this system include: 
 
 • Tracking inventory as it enters the warehouse, shipped from a variety of suppliers. 
 • Tracking orders as they are received from a central but remote telemarketing 

organization; orders may also be received by mail, and are processed locally. 
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 • Generating packing slips, used to direct warehouse personnel in assembling and then 
shipping an order. 

 • Generating invoices and tracking accounts receivable. 
 • Generating supply requests and tracking accounts payable. 
 
In addition to automating much of the warehouse’s daily workflow, the system must provide 
a general and open-ended reporting facility, so that the management team can track sales 
trends, identify valued and problem customers and suppliers, and carry out special 
promotional programs. 
 

• Accounting Responsible for sending invoices and tracking customer 
payments (accounts receivable) as well as for paying 
suppliers for orders from purchasing (accounts payable) 

• Shipping Responsible for assembling packages for shipment in support 
of filling customer orders 

• Stocking Responsible for placing new inventory in stock as well as for 
retrieving inventory in support of filling customer orders 

• Purchasing Responsible for ordering stock front suppliers and tracking 
supplier shipments 

• Receiving Responsible for accepting stock from suppliers 
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Figure 10-1 
Inventory-Tracking System Network 
 

• Planning Responsible for generating reports to management and 
studying trends in inventory levels and customer activity 

 
Not surprisingly, our system architecture is isomorphic to these functional units. Figure 10-1 
provides a process diagram that illustrates all of the major computational elements in our 
network. This network is actually quite a common MIS structure: banks of personal 
computers feed a central database server, which in turn. serves as a central repository for all 
of the enterprise’s interesting data. 
 
A few details about this network are in order. First, although we show a number of distinct 
PCs each tied to a particular functional unit, this is merely an operational consideration. 
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There should be nothing in our software architecture that constrains a specific PC to only one 
activity: the accounting team should be able to perform general queries, and the purchasing 
department should be able to query accounting records concerning supplier payments. In this 
manner, as changing business conditions dictate, management can add or reallocate 
computing resources as needed to balance the daily workflow. Of course, security 
requirements dictate that some management discipline is needed: a stockperson should not 
be allowed to send out checks. We delegate responsibility for these kinds of constraints as an 
operational consideration, carried out by general network access-control mechanisms that 
either constrain or grant rights to certain data and applications. 
 
As part of this system architecture, we also assume the existence of a local area network 
(LAN) that ties all of our computing resources together, and serves to provide common 
network services such as electronic mail, shared directory access, printing, and 
communications. From the perspective of our inventory tracking system software, the choice 
of a particular LAN is largely immaterial, as long as it provides these services reliably and 
efficiently. 
 
The presence of the handheld PCs as part of the stocking function adds a novel wrinkle to this 
network. The economies of notepad and specialized PCs carried on a belt together with 
wireless communications, make it possible to consider an operational plan that takes 
advantage of these technologies to increase productivity. Basically, our plan will be to give 
each stockperson a handheld PC. As new inventory is placed in the warehouse, they use these 
devices to report the fact that the stock is now in place, and also notify the system where it is 
located; as orders for the day are assigned to be filled, packing orders are transmitted to these 
devices, directing workers where to find certain stock, as well as how many of each to 
retrieve to pass on to shipping. 
 
Now, none of this technology is exactly rocket science - everything in our network is 
essentially off-the-shelf hardware. Indeed, we expect to use more than a little off-the-shelf 
software as well. It makes considerable business sense to buy rather than build commercial 
spreadsheets, groupware products, and accounting packages. However, what brings this 
system to life is its inventory tracking software, which serves as the glue to operationally tie 
everything together. 
 
Applications such as this one perform very little computational work. Instead, large volumes 
of data must be stored, retrieved, and moved about. Most of our architectural work therefore 
will involve decisions about declarative knowledge (what entities exist, what they mean, and 
where they are located) rather than procedural knowledge (how things happen). The soul of 
our design will be found in the central concerns of object-oriented development: the key 
abstractions that form the vocabulary of the problem domain and the mechanisms that 
manipulate them. 
 
Business demands require that our inventory-tracking system must be, by its very nature, 
open-ended. During analysis, we will come to understand the key abstractions that are 
important to the enterprise at that time: we will identify the kinds of data that must be stored, 
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the reports to be generated, the queries to be processed, and all the other transactions, 
demanded by the business procedures of the company. The operative phrase here is at that 
time, because businesses are not static entities. They must act and react to a changing 
marketplace, and their information management systems must keep pace with these changes. 
An obsolete software system can result in lost business or a squandering of precious human 
resources. Therefore, we must design the inventory-tracking system expecting that it will 
change over time. Our observation shows that: two elements are most likely to change over 
the lifetime of this system: 
 

• The kinds of data to be stored 
• The hardware upon which the application executes 

 
Over time, new product lines will be managed by each warehouse, new customers and 
suppliers will be added, and old ones removed. Operational use of this system may reveal the 
unanticipated need to capture additional information about a customer.97 Also, hardware 
technology is still changing at a rate faster than software technology, and computers still 
become obsolete within a matter of a few years. However, it is simply neither affordable nor 
wise to frequently replace a large, complex software system. It is not affordable because the 
time and cost of developing the software can often outweigh the time and cost of procuring 
the hardware. It is not wise because introducing a new system every time an old one begins 
to look jaded adds risk to the business; stability and maturity are valuable features of the 
software that plays such an important role in the day-to-day activities of an organization. 
 
A corollary to this second factor is the likelihood that the user interface of our application will 
need to change over time. In the past for many MIS applications, simple line- or screen-
oriented interfaces proved to be adequate. However, falling hardware costs and stunning 
improvements in graphic user interfaces have made it practical and desirable to incorporate 
more sophisticated technology. To put things in perspective, the user interface of the 
inventory management system is only a small (albeit critical) part of the application. The core 
of this system involves its database; its user interface is largely a skin around this core. In fact, 
it is possible (and highly desirable) to permit a variety of user interfaces for this system. For 
example, a simple, interactive, menu-oriented interface is most likely adequate for customers 
who submit their own orders. Modern, window-based interfaces are likely best for the 
planning, purchasing, and accounting functions. Hardcopy reports may best be generated in 
a batch environment, although some managers may wish to use a graphic interface to view 
                                                 
97 Consider, for example, the impact of emerging technologies that will bring interactive video services to each 
household. It would not be unreasonable to think that in the future, customers would be able to electronically 
place orders to the mail-order company, and debit their bank accounts directly. Because standards for these 
domains are changing almost daily as companies position themselves to become the dominant purveyors of 
such services, it is impossible for the end-user application developer to accurately predict the protocol for 
interacting with such systems. The best we can hope to do as systems architects is to make intelligent 
assumptions and encapsulate these decisions in our software so that we can adapt when the dust finally settles 
in the battle for information highway domination - a battle in which the individual application developer is 
largely a pawn with minimal influence. This indeed leads us to a primary motivation for using object-oriented 
technology: as we have seen, object-oriented development helps us craft resilient, adaptable architectures, 
features that are essential to our survival in this marketplace. 
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trends interactively. Stockpersons need an interface that: is simple; mouse-driven windowing 
systems don't work well in the industrial environment of a warehouse, and furthermore, 
training costs are an issue to consider. For the purposes of out application, we will not dwell 
upon the nature of the user interface; just about any kind of interface may be employed 
without altering the fundamental architecture of the inventory tracking system. 
 
On the basis of this discussion, we choose to make two strategic system decisions. First, we 
choose to use an off-the-shelf relational database (RDBMS) around which to build our 
application. Designing an ad hoc database doesn't make any sense in this situation; the nature 
of our application would lead us to implement most of the functionality of a commercial 
DBMS at a vastly greater cost and with much less flexibility in the resulting product. An off-
the-shelf RDBMS also has the advantage of being reasonably portable. Most popular RDBMS 
have implementations that run on a spectrum of hardware platforms, from personal 
computers to mainframes, thus transferring from the developer to the vendor the 
responsibility of porting the generic RDBMSs. Second, as we have shown in Figure 10-1, we 
choose to have the inventory tracking execute on a distributed network. For simplicity, we 
will plan for a centralized database that resides on one machine. However, we will allow 
applications to be targeted to a variety of machines from which they can access this database. 
This design represents a client/server model; the machine dedicated to the database acts as 
the server, and it may have many clients. The particular machine on which a client executes 
(even if it is the local database machine itself) is entirely immaterial to the server. Thus, our 
application can operate upon a heterogeneous network and allow new hardware technology 
to be incorporated with minimal impact upon the operation of the system. 
 
 
Client/Server Computing 
 
Although it is not the purpose of this chapter to provide a comprehensive survey of 
client/server computing, some observations are in order, because they influence our 
architectural decisions. 
 
What client/server computing is and is not is a hotly debated topic.98 For our purposes, it is 
sufficient to state that client/server computing encompasses “a decentralized architecture 
that enables end users to gain access to information transparently within a multivendor 
environment. Client-server applications couple a GUI to a server-based RDBMS” [2]. The 
very nature of client/server applications suggests a form of cooperative processing, wherein 
the responsibility for carrying out the system's functions is distributed among various nearly 
independent computational elements that exist as part of an open system. Berson further 
notes that each client/server application can typically be divided into one of four 
components: 
 
 
 

                                                 
98 Not unlike the question of what is and what isn't object-oriented. 
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• Presentation logic The part of an application that interacts with an end-user 

device such as a terminal, a bar cede reader, or a handheld 
computer. Functions include “screen formatting, reading, and 
writing of the screen information, window management, 
keyboard, and mouse handling.” 

• Business logic The part of an application that uses information from the user 
and from the database to carry out transactions as 
constrained by the rules of the business. 

• Database logic The part of an application that “manipulates data within the 
application.... Data manipulation in relational DBMSs is done 
using some dialect of the Structured Query Language (SQL).” 

• Database processing The “actual processing of the database data that is performed 
by the DBMS.... Ideally, the DBMS processing is transparent 
to the business logic of the application.” [3]. 

 
The fundamental issue for the architect is how and where to distribute these computational 
elements across an open network. Greatly complicating the decision process is the fact that 
client/server standards and tools are evolving at a dizzying pace. The architect must find his 
or her way through an array of proposals such as POSIX (Portable Operating System 
Interface), the Open Systems Interconnection (OSI) reference model, the Object Management 
Group common object request broker (CORBA), and object-oriented extensions to SQL 
(SQL3), as well as vendor-specific solutions such as Microsoft’s object linking and embedding 
(OLE) mechanism.99 
 
Not only do standards impact the architect's decisions, but issues such as security, 
performance, and capacity must be weighed as well. Berson goes en to suggest some rules of 
thumb for the client/server architect: 
 

• In general, a presentation logic component with its screen input-output facilities is 
placed on a client system. 

• Given the available power of the client workstations, and the fact that the presentation 
logic resides en the client system, it makes sense to also place some part of the business 
logic en a client system. 

• If the database processing logic is embedded into the business logic, and if clients 
maintain some low-interaction, quasi-static data, then the database processing logic 
can be placed on the client system. 

• Given the fact that a typical LAN connects clients within a common purpose 
workgroup, and assuming that the workgroup shares a database, all common, shared 
fragments of the business and database processing logic and DBMS itself should be 
placed on the server. [4]. 

 
                                                 
99 It is for this reason that good information systems architects tend to be paid vast sums of money for their 
skills, or alternately, at least get to have a lot of fun trying to piece together so many disparate technologies to 
form a coherent whole. 
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If we make the right architectural decisions and succeed in carrying out the tactical details of 
its implementation, the client/server model offers a number of benefits, as Berson observes: 
 

• It allows corporations to leverage emerging desktop computing technology better. 
• It allows the processing to reside close to the source of data being processed.... 

Therefore, network traffic (and response time) can be greatly reduced. 
• It facilitates the use of graphical user interfaces available on powerful workstations. 
• It allows for and encourages the acceptance of open systems [5]. 

 
Of course, there are risks: 
 

• If a significant portion of application logic is moved to a server, the server may become 
a bottleneck in the same fashion as a mainframe in a master-slave architecture. 

• Distributed applications are more complex than nondistributed applications [6]. 
 
We mitigate these risks through the use of an object-oriented architecture and development 
process. 
 
Scenarios 
 
Now that we have established the scope of our system, we continue our analysis by studying 
several scenarios of its use. We begin by enumerating a number of primary use cases, as 
viewed from the various functional elements of the system: 
 

• A customer phones the remote telemarketing organization to place an order. 
• A customer mails in an order. 
• A customer calls to find out about the status of an order. 
• A customer calls to add items to or remove items from an existing order.  
• A stockperson receives a packing order to retrieve stock for a customer order.  
• Shipping receives an assembled order and prepares it for mailing.  
• Accounting prepares a customer invoice.  
• Purchasing places an order for new inventory.  
• Purchasing adds or removes a new supplier.  
• Purchasing queries the status of an existing supplier order.  
• Receiving accepts a shipment from a supplier, placed against a standing purchase 

order.  
• A stockperson places new stock into inventory.  
• Accounting cuts a check against a purchase order for new inventory.  
• The planning department generates a trend report, showing the sales activity for 

various products.  
• For tax-reporting purposes, the planning department generates a summary showing 

current inventory levels. 
 
For each of these primary scenarios, we can envision a number of secondary ones: 
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• An item a customer requested is out of stock or on backorder.  
• A customer's order is incomplete, or mentions incorrect or obsolete product numbers.  
• A customer calls to query about or change an order, but can't remember what exactly 

was ordered, by whom, or when. 
• A stockperson receives a packing order to retrieve stock, but the item cannot be found. 

Shipping receives an incompletely assembled order.  
• A customer fails to pay an invoice.  
• Purchasing places an order for new inventory, but the supplier has gone out of 

business or no longer carries the item.  
• Receiving accepts an incomplete shipment from a supplier.  
• Receiving accepts a shipment from a supplier for which no purchase order can be 

found.  
• A stockperson places new stock into inventory, only to discover that there is no space 

for the item.  
• Business tax code changes, requiring the planning department to generate a number of 

new inventory reports. 
 
For a system of this complexity, we would expect to identify dozens of primary scenarios and 
many more secondary ones. In fact, this part of the analysis 
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Figure 10-2 
Order Scenario 
 
Process would probably take several weeks to complete to any reasonable level of detail100. 
For this reason, we strongly suggest applying the 80% rule of thumb: don't wait to generate a 
complete list of scenarios (no amount of time will be sufficient), but rather, study some 80% of 
the interesting ones, and if possible, try a quick-and-dirty proof of concept to see if this part of 
analysis is en the right track. For the purposes of this chapter, let's elaborate upon two of the 
system's primary scenarios. 
 
Figure 10-2 provides a primary use case for a customer placing an order with the remote 
telemarketing organization. Here we see that a number of different objects collaborate to 
carry out this system function. Although control centers around the customer/agent 
interaction, three other key objects (namely, aCustomerRecord, the inventory Database, and 
aPackingorder, all of which are artifacts of the inventory tracking system) play a pivotal role. We 
add these abstractions to our "list of things" that fall out of the scenario planning process. 
 

                                                 
100 But beware of analysis paralysis: if the software analysis cycle takes longer than the window of opportunity 
for the business, then abandon hope, all ye who follow this path, for you will eventually be out of business. 
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Figure 10-3 continues this scenario with an elaboration upon the packing order/stockperson 
interaction, another critical system behavior. Here we see that the stockperson is at the center 
of this scenario's activity, and collaborates with other objects, namely, shipping, which did not 
play a role in the previous 
 
 

 
Figure 10-3 
Packing Order Scenario 
 
scenario. In fact, most of the objects that collaborate in Figure 10-3 are the same ones that 
showed up in Figure 10-2, although it is important to realize that these common objects play 
very different roles. For example, in the order scenario, we use anOrder to track a customer's 
requests, but in the packing scenario, we use anOrder as a check and balance against our 
packing orders. 
 
As we walk through each of these scenarios, we must continually ask ourselves a number of 
questions. What object should be responsible for a certain action? Does an object have 
sufficient knowledge to carry out an operation directed to it, or must it delegate the behavior? 
Is the object trying to do too much? What could go wrong? That is to say, what happens if 
certain preconditions are violated, or if post conditions cannot be satisfied? 
 
By anthropomorphizing our abstractions in this manner, for each of the system's function 
points we eventually come to discover many of the interesting high-level objects within out 
system. Specifically, our analysis leads us to discover the following abstractions. First, we list 
the various people that interact with the system: 
 

• Customer 
• Supplier 
• OrderAgent 
• Accountant 
• ShippingAgent 
• Stoffierson 
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• PurchasingAgent 
• ReceivingAgent 
• Planner 

 
It is important for us to identify these classes of people, because they represent the different 
roles that people play when interacting with the system. lf we desire to track the who, when, 
and why of certain events that took place within our system, then we must formalize these 
roles. For example, when resolving a complaint, we might like to identify what people within 
the company had recently interacted with the unhappy customer, and only by making this a 
part of our enterprise model do we retain enough information to make an intelligent analysis. 
in addition to serving an outwardly visible role, it is important for us to distinguish among 
these classes of people for the purpose of operationally restricting or granting access to parts 
of the system's functionality. With an open network, this form of centralized control is a 
reasonably effective way to control accidental or malicious misuse. 
 
Our analysis also reveals the following key abstractions, each of which represents some 
information manipulated by the system: 
 

• CustomerRecord 
• ProductRecord 
• SupplierRecord 
• Order 
• PurchaseOrder 
• Invoice 
• PackingOrder 
• StockingOrder 
• ShippingLabel 

 
The classes CustomerRecord, ProductRecord, and SupplierRecord parallel the abstractions Customer, 
Product, and Supplier, respectively. We retain both sets of abstractions because, as we will see, 
each plays a subtly different role in the system. 
 
Note that there may be two kinds of invoices: those sent by the company to customers 
seeking payment for an order, and those received by the company for inventory ordered from 
suppliers. Both are materially the same kind of thing, although each plays a very different 
role in the system. 
 
Our abstraction of the classes PackingOrder and StockingOrder require a bit more explanation. As 
our discussion concerning the first two scenarios described, the next action an OrderAgent takes 
after accepting an Order from a Customer is to schedule a Stockperson to carry out the Order. Our 
system decision is to formally capture this transaction as an instance of the class PackingOrder. 
The responsibility of this class is to collect all the information necessary to direct a stock 
person to fill a customer's order. Operationally, this means that our system schedules and 
then transmits this order to the handheld computer of the next available stockperson. Such 
information would, as a minimum, include the identification of some order number and the 
items to be retrieved from inventory. It is not difficult to think how we could vastly improve 
upon this simple scenario: our enterprise contains sufficient information for us to transmit the 
location of each 
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Figure 10-4 
Key Classes for Taking and Filling Orders 
 
such item to the stockperson, and perhaps even offer suggestions as to the order in which the 
stockperson should travel through the warehouse to retrieve these items most efficiently101. 
Sufficient information is also available in our system even to provide help to the newly hired 
stock person, perhaps by projecting a picture of the item to be retrieved on the display of the 
handheld computer. This general help facility would also be of use to the experienced stock 
person, in the face of a changing product line. 
 
Figure 10-4 provides a class diagram that captures our understanding of the associations 
among certain of these abstractions, relative to the system function for taking and filling 
orders. We have further adorned this diagram with some of the attributes that are relevant to 
each class. 
 

                                                 
101 Of course, in the most general case, this is akin to the traveling salesperson problem, which is np-complete. 
However, it is possible to sufficiently constrain the problem so that a reasonable solution can be calculated. For 
example, business rules might dictate a partial ordering: we pack all heav-y items first, and then the lighter ones. 
Also, we might retrieve related items together: pants go with shirts, hammers go with nails, tires go with 
hubcaps (we did say that this is a general-purpose inventory-tracking system!) 
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Much of what drives the particular concerns of this class structure is the requirement for 
navigating among instances of these classes. Given an order, we'd like to generate a shipping 
label for the associated customer; to do so, we navigate from the order back to the customer. 
Given a packing order, we'd like to navigate back to the customer and ordering agent, to 
report the fact that some items are on backorder; this requires that we navigate from the 
packing order back to the order and then back to the customer and ordering agent. Given a 
customer, we'd like to determine what products that customer most commonly orders during 
certain times of the year. This query requires that we navigate from the customer back to all 
pending and previous orders. 
 
A few cither details of this diagram are worth explaining. Why do we have a l:N relationship 
between the classes Order and PackingOrder?. Our business rules state that each packing order is 
unique to a given order (the 1 part of the cardinality expression). However, suppose that the 
warehouse is out of stock for certain items referenced in the original order: we have to 
schedule a second packing order once these items are back in stock. 
 
Notice also the constraint upon the association of a StockPerson and a PackingOrder: for reasons 
of quality control, our business rules dictate that a stock person may fill only one order at a 
time. 
 
To complete this phase of our analysis, we introduce two final key- classes: 
 

• Report 
• Transaction 

 
We include the abstraction Report to denote the base class of all the various kinds of hardcopy 
and online queries users might generate. Our detailed analysis by scenario will probably 
discover many of the concrete kinds of reports that our workflow demands, but because of 
the open-ended nature of our system, we are best advised to develop a more general 
reporting mechanism, so that new reports can be added in a consistent fashion. Indeed, by 
identifying the commonality among reports, we make it possible for all such reports to share 
common behavior and structure, thereby simplifying our architecture as well as allowing our 
system to present a homogeneous look and feel to its users. 
 
Our list of things in the system is by no means complete, but we have sufficient information 
at this point to begin to move on to architectural design. Before we proceed, however, we 
must consider some principles that will influence our design decisions about the structure of 
data within our system. 
 
 
Database Models 
 
As described by Date, a database "is a repository for stored data. In general, it is both 
integrated and shared. By 'integrated' we mean that the database may be thought of as a 
unification of several otherwise distinct data files, with any redundancy among those files 
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partially or wholly eliminated.... By 'shared' we mean that individual pieces of data in the 
database may be shared among several different users" [7]. With centralized control over a 
database, "inconsistency can be reduced, standards can be enforced, security restrictions can 
be applied, and database integrity can be maintained" [8]. 
 
Designing an effective database is a difficult task because there are so many- competing 
requirements. The database designer must not only satisfy the functional requirements of the 
application, but must also address time and space factors. A time-inefficient database that 
retrieves data long after it is needed is pretty much useless. Similarly, a database that requires 
a building full of computers and a swarm of people to support it is not very cost-effective. 
 
Database design has many parallels with object-oriented development. In database 
technology, design is often viewed as an incremental and iterative process involving both 
logical and physical decisions [9]. As Wiorkowski and Kull point out, "Objects that describe a 
database in the way that users and developers think about it are called logical objects. Those 
that refer to the way data are actually stored in the system are called physical objects" [10]. In 
a process not unlike that of object-oriented design, database designers bounce between logical 
and physical design throughout the development of the database. Additionally, the ways in 
which we describe the elements of a database are very similar to the ways in which we 
describe the key abstractions in an application using object-oriented design. Database 
designers often use notations such as entity-relationship diagrams to aid them in analyzing 
their problem. As we have seen, class diagrams can be written that map directly to entity-
relationship diagrams, but have even greater expressive power. 
 
As Date suggests, every kind of generalized database must address the following question: 
"What data structures and associated operators should the system support?" [11]. The 
different answers to this question bring us to three distinctly different database models: 
 

• Hierarchical 
• Network 
• Relational 

 
Recently, a fourth kind of database model has emerged, namely, object-oriented databases 
(OODBMS). An OODBMS represents a merging of traditional database technology and the 
object model. OODBMSs have proven to be particularly useful in domains such as computer-
aided engineering (CAE) and computer-aided software engineering (CASE) applications, for 
which we must manipulate significant amounts of data with a rich semantic content. For 
certain applications, object-oriented databases can offer significant performance 
improvements over traditional relational databases. Specifically, in those circumstances 
where we must perform multiple joins over many distinct tables, object-oriented databases 
can be much faster than comparable relational databases. Furthermore, object-oriented 
databases provide a coherent, nearly seamless model for integrating data with business rules. 
To achieve much the same semantics, RDBMS usually require complex triggering functions, 
generated through a combination of third- and fourth-generation languages not a very clean 
model at all. 
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However, for a variety of reasons, many companies may find that sticking with an RDBMS in 
the context of an object-oriented architecture reduces our development risk. Relational 
database technology is much more mature, available across a wider variety of platforms, and 
often more complete, offering solutions to the issues of security, versioning, and referential 
integrity. Furthermore, a company may have significant capital investment in people and 
tools supporting the relational model, and so for next-generation systems, simply cannot 
afford to transform their entire organization overnight. 
 
The relational database model has indeed proven to be very popular. Because its use is so 
widespread, because an extensive infrastructure of products and standards support it, and 
because it satisfies the functional requirements of the inventory-tracking system, we choose to 
employ a relational database in our architecture; this is a strategic system decision. Thus, we 
have selected a hybrid architecture: we shall build an object-oriented skin over a traditional 
relational database, thereby deriving the benefits from both paradigms. Briefly, let's consider 
some general principles for relational database design, which will guide us in crafting this 
object-oriented skin. 
 
The basic elements of a relational database "are tables in which columns represent things and 
the attributes that describe them and rows represent specific instances of the things described 
. . . . The model also provides for operators for generating new tables from old, which is the 
way users manipulate the database and retrieve information from it" [12]. 
 
Consider for a moment a database of products for a version of the inventory-tracking system 
tailored to manage a warehouse of electronic parts such as resistors, capacitors, and 
integrated circuits. In accordance with our previous class diagram, we have products 
uniquely identified by a product id, along with a descriptive part name. An example follows: 
 

 
Here we have a table with two columns, each representing a different attribute. In a relation 
such as this, the order of rows and columns is insignificant; there may be any number of 
rows, but no duplicate rows. The heading productID represents a primary key, meaning that we 
may use its value to uniquely identify a particular part. 
 
Products come from suppliers, so for each supplier we must maintain a unique id, a company 
name, an address, and perhaps a telephone number. Thus, we may write the following: 
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Figure 10-5 
Attributed Association 
 
supplierID is a primary key, meaning that its value may be used to uniquely identify a supplier. 
Notice that each row in this table is unique, although two rows have the same supplier name. 
 
Different suppliers provide various products at different prices, and so we might also keep a 
table of prices. For a given product/supplier combination, this table includes the current 
price: 
 

 
 
This table has no single primary key. Rather, we must use a combination of the keys productID 
and supplierID to uniquely identify a row in this table. A key formed by combining column 
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values is called a composite key. Notice that we do not include part and supplier names 
because they would be redundant; this information can be found by tracing from productID or 
supplierID back to the part therefore called foreign keys, because their values represent the 
primary keys of other tables. 
 
Figure 10-5 illustrates the class structure that corresponds to this table. Here we use an 
attributed association to denote records that have meaning only in association with instances 
of two other records. Note that we also use our notation's key adornment to indicate the 
primary key of each class. 
 
Continuing, we can track inventory via a table containing the quantity of all products 
currently on hand: 
 

 
 
This table illustrates the fact that our object-oriented view of the system's data may differ 
from its database view. Whereas our schema in Figure 10-4 placed quantity as an attribute of 
the class ProductRecord, here we have chosen to keep quantity in a separate table, for 
performance reasons. Specifically, the description of a product tends to change very rarely, but 
we expect the quantity of a product to change constantly, as orders are filled and new stock is 
placed in the warehouse. Operationally, these are very different concepts, and we can 
optimize for quantity access and update by generating a separate table. 
 
In the presence of an object-oriented schema such as we show in Figure 10-4, this 
implementation secret is hidden from all application clients. It therefore becomes the 
responsibility of the ProductRecord class to provide the illusion of quantity as being an integral 
part of the abstraction. 
 
The simplest yet most important goal in database design is the concept that each fact should 
be stored in exactly one place. This eliminates redundancy, simplifies the process of updating 
the database, facilitates the maintenance of database integrity (that is, self-consistency and 
correctness), and reduces storage requirements. Achieving this goal is not particularly easy 
(and, as it turns out, not always important). Nevertheless, it is the most desirable 
characteristic we seek in our design. 
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Normalization theory has evolved as a technique for achieving this goal (although it is not the 
only relevant principle [13] ). Normalization is a property of a table; we say that a particular 
table is in normal form if it satisfies certain properties. There are several levels of normal forms, 
each of which builds upon the other [14]: 
 
• First normal form (1NF) Each attribute represents an atomic value 

(nondecomposible attributes). 
• Second normal form (2NF) Table is in 1NF, and each attribute depends 

entirely upon the key (functionally independent 
attributes). 
 

• Third normal form (3NF) Table is in 2NF, and no attribute represents a 
fact about another attribute (mutually 
independent attributes). 

 
 

Tables in 3NF "consist of 'properties of the key, the whole key, and nothing but the key' " [15]. 
 
The tables we have shown as examples are all in 3NF. There are higher forms of 
normalization, mainly relating to multivalued facts, but these are not of great importance to 
us here. 
 
In bridging the semantic gap from object-oriented schema to a relational view, sometimes we 
may intentionally denormalize tables, meaning that we explicitly design them with some 
redundancy. This requires more effort to keep the redundant data in synch, but is worth the 
computational expense if access performance is a dominant issue. 
 
SQL 
 
Especially given our object-oriented view of the world, wherein we unite the data and 
behavioral aspects of our abstractions, a user might wish to perform a variety of common 
transactions upon these tables. For example, we might want to add new suppliers, delete 
products, or update quantities in the inventory. We also might want to query these tables in a 
variety of ways. For instance, we might want a report that lists all the products that we can 
order from a particular supplier. We might also want a report listing the products whose 
inventory is either too low or too high, according to some criteria we give it. Finally, we 
might want a comprehensive report giving us the cost to restock the inventory to certain 
levels, using the most inexpensive sources of products. These kinds of transactions are 
common to almost every application of an RDBMS, and so a standard language called SQL 
(Structured Query Language) has emerged for interacting with relational databases. SQL may 
be used either interactively or programmatically. 
 
The most important construct in SQL is the select clause, which takes the following form: 
 
SELECT <attribute> 
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FROM <relation> 
WHERE <condition> 
 
For example, to retrieve product numbers for which inventory is less than 100 items, we 
might write 
 
SELECT PRODUCTID, QUANTITY 
FROM INVENTORY 
WHERE QUANTITY < 100 
 
Much more complicated selection is possible, For example, we might want the same report to 
include the part name instead of the part number: 
 
SELECT NAME, QUANTITY 
FROM INVENTORY, PRODUCTS 
WHERE QUANTITY < 100 
AND INVENTORY.PRODUCTID = PRODUCTS.PRODUCTID 
 
This clause represents a join, whereby we combine two or more relations into a single 
relation. The select clause above doesn't generate a new table, but return a set of rows. Since a 
single selection might return some arbitrarily large number of rows, we must have some 
means of visiting each row at a time. The mechanism SQL uses is the cursor, whose semantics 
are similar to the iteration operations we spoke of in Chapter 3. For example, one might 
declare a cursor as follows: 
 
DECLARE C CURSOR 
 FOR SELECT NAME, QUANTITY 
  FROM INVENTORY, PRODUCTS 
  WHERE QUANTITY < 100 
  AND  INVENTORY.PRODUCTID = PRODUCTS.PRODUCTID 
 
To cause evaluation of this join, we write 
 
OPEN C 
 
Then, to visit each row from the join, we write 
 
FETCH C INTO NAME, AMOUNT 
 
Finally, when we are done, we close the cursor by executing 
 
CLOSE C 
 
Instead of using a cursor, we may generate a virtual table that holds the result of the selection. 
Such a virtual table is called a view, and we may operate upon it just as if it were a real table. 
For example, to create a view containing the part name, supplier name, and cost, we might 
write: 
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CREATE VIEW V (NAME, COMPANY, COST) 
AS SELECT PRODUCTS.NAME, SUPPLIERS.COMPANY, PRICES.PRICE 
  FROM PRODUCTS, SUPPLIERS, PRICES 
  WHERE PRODUCTS.PRODUCTID = PRICES.PRODUCTID 
  AND  SUPPLIERS.SUPPLIERID = PRICES.SUPPLIERID 
 
Views are particularly important, because they make it possible for different users to have 
different views upon the database. Views may be quite different from the underlying 
relations in the database, and so permit a degree of data independence. Access rights may 
also be granted to users on a view-by-view basis, thus permitting the writing of secure 
transactions. Views are a little different from base tables, however, in that views representing 
joins may not be updated directly. 
 
For our purposes, SQL represents a low level of abstraction. We don't expect end users to be 
SQL-literate; SQL is not directly a part of the vocabulary of the problem domain. Instead, we 
will use SQL within the implementation of our application, exposing it only to sophisticated 
tool builders, but hiding it from the mere mortals who must interact with the system on a 
daily basis. 
 
Consider the following problem: Given an order, we'd like to determine the company name 
of the customer that placed the order. From the perspective of its implementation, carrying 
out this thread requires a modest amount of SQL; from the outside perspective, the 
application client would prefer to stay in the context of C++, and write expressions such as 
the following: 
 
currentOrder.customerO.name0 
 
From our object-oriented perspective of the world, this expression invokes the selector 
customer to reference the order's customer; we then invoke the selector name to return the name 
of that customer. No great surprises here for the outside client, except that what is really 
happening is a database query, such as: 
 
SELECT NAME 
FROM ORDERS, CUSTOMERS 
WHERE ORDERS.CUSTOMERID = CURRENTORDER.CUSTOMERID 
AND ORDERS.CUSTOMERID = CUSTOMERS.CUSTOMERID 
 
Hiding this secret from the application client allows us to hide all the nasty details of working 
with SQL. 
 
Mapping an object-oriented view of the world into a relational one is conceptually 
straightforward, although it in practice involves a lot of tedious details102. As Rumbaugh 

                                                 
102 Much of the value of an object-oriented database derives from the fact that it hides these nasty detafis of SQL 
from the developer. The mapping of classes to tables is sufficiendy codifiable that an alternate approach to using 
an OODBMS is possible: tools exist that take C++ class declarations and automatically generate the RD13MS 
scherna and SQL code needed to bridge this sernantic gap. Then, for example, as an application tries to access 
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observes, "Mapping an object model into a relational database is simple except for the 
handling of generalization" [16]. Rumbaugh continues by offering some rules of thumb for 
mapping classes and associations (including aggregation relationships) to tables: 
 

• Each class maps to one or more tables. 
• Each many-to-many association maps to a distinct table. 
• Each one-to-many association maps to a distinct table or may be buried as a foreign 

key [17]. 
 
He further suggests one of three altematives for mapping superclass/subclass hierarchies to 
tables: 
 

• The superclass and each subclass map to a table. 
• Superclass attributes are replicated for each table (and each subclass maps to a distinct 

table). 
• Bring all subclass attributes up to the superclass level (and have one table for the entire 

superclass/subclass hierarchy) [18]. 
 
Not surprisingly, there are limitations to using SQL in the underlying implementation103. In 
particular, SQL defines only a very limited set of data types, namely, characters, fixed-length 
strings, integers, and fixed- and floatingpoint numbers. Implementations occasionally extend 
this set of types; nonetheless, the representation of data such as pictures or long fragments of 
text is not supported directly. 
 
 
 
Schema Analysis 
 
As Date asks, "Given a body of data to be represented in a database, how do we decide on a 
suitable logical structure for that data? In other words, how do we decide what relations are 
needed and what their attributes should be? This is the database design problem" [19]. As it 
turns out, identifying the key abstractions of a database is much like the process of 
identifying classes and objects in object-oriented development. For this reason, in data-
intensive applications such as the inventory-tracking system, we start with an object oriented 
analysis and use its process to drive our design of the database, rather then the reverse of 

                                                                                                                                                                        
the attribute of a given object, this generated code transparently issues the necessary SQL staternents to the off-
the-shelf RD13MS, scrapes out the important data, and delivers it back to the client in a form consistent with the 
C++ interface. 
 
103 Recently, the SQL3 standard has been proposed, which offers object-oriented extensions. These extensions 
greatly reduce the semantie gap between an object oriented view of the world and the relational view; these 
extensions also he1p to mitigate many of SQL's other limitations. 
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focusing upon the database schema first and deriving an object-oriented architecture from 
that. 
 
The "list of things" we have assembled thus far in our analysis is a start. Taking this list and 
applying Rumbaugh's rules of thumb, we provide the following tables for our application's 
database. First we have tables that parallel the roles of various groups that interact with the 
system: 
 
• CustomerTable 
• SupplierTable 
• OrderAgentTable 
• AccountantTable 
• ShippingAgentTable 
• StockPersonTable 
• ReceivingAgentTable 
• PlannerTable 
 
Next, we have some tables that deal with products and inventory: 
 
• ProductTable 
• InventoryTable 
 
Finally, we have some tables that deal with the warehouse's workflow artifacts: 
 
• OrderTable 
• PurchaseOrderTable 
• InvoiceTable 
• packingOrderTable 
• StockingOrderTable 
• ShippinglabelTable 
   
We do not include tables for the classes Report or Transaction, because our analysis reveals that 
their instances are transitory, meaning that there is no requirement for making them 
Persistent. 
 
The next phase in our analysis would be to decide upon the attributes applicable to each of 
the above tables. We will not discuss these issues here, because we have already exposed 
some of the more interesting attributes of these abstractions (as, for example, in Figure io-4), 
and the remaining attributes offer us no architectural insight into the system. 
 
10.2 Design 
 
In formulating the architecture of the inventory-tracking system, we must address three 
organizational elements: the split in client/server functionality, a mechanism for controlling 
transactions, and a strategy for building client applications. 
 
Client/Server Architecture 
 
The interesting issue here is not so much exactly wbere we draw the line between client and 
server responsibilities, but rather, how we intelligently make such a decision. Returning to 
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first principles gives us the answer as to how: focus upon the behavior of each abstraction 
first, as derived from a use-case analysis of each entity, and only then decide where to allocate 
each abstraction's behavior. Once we have done this for a few interesting objects, some 
patterns of behavior will emerge, and we can, then codify these patterns to guide us in 
allocating functionality for all the remaining abstractions. 
 
For example, let's consider the behavior of the two classes Order and ProductRecord. Further 
analysis of the first class, together with some isolated class design, suggests that the following 
operations are applicable: 
 

• construct 
• setCustomer 
• setorderAgent 
• addItem 
• removeItefn 
• orderID 
• customer 
• orderAgent 
• numberOfItems 
• itemAt 
• quantity0f 
• totalvalue 

 
These services can be mapped directly to a C++ class declaration, such as the following. We 
start with two typedefs that bring in our vocabulary of the problem space: 
 
// ID types  
typedef unsigned int OrderID; 
 
// Type denoting money in local currency  
typedef float Money; 
 
Next we provide a declaration for the Order class: 
 
class Order {  
public: 
 

Order();  
Order(OrderID);  
Order(const Order&); 
~Order(); 
 
Order& operator=(const Order&); 
int operator==(const Order&) const;  
int operator=!=(const Order&) const; 
 
void setCustomer(Customer&);  
void setOrderAgent(OrderAgent&);  
void addItem(ProductID, unsigned int quantity = 1); 
void removeItem(unsigned int index, unsigned int quantity = 1); 
 
OrderID orderIDO const;  
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Custumer& customer() const;  
OrderAgent& orderAgent0 const;  
unsigned int numberOfItems() const; 
Product& itemAt(unsigned int) const;  
unsigned int quantity0f(unsigned int) const;  
Money totalvalue() const; 

 
Protected: 
 … 
}; 
 
Notice the various constructors we provide, each with subtly different semantics. The default 
constructor (Order()) creates a new order object and assigns it a new unique OrderID value. The 
copy constructor also creates a new order object with a new OrderID value, but in addition 
copies the rest of its state from the given argument. 
 
The remaining constructor takes an OrderID argument denoting an existing order object, and 
then retrieves the given uniquely numbered object. In other words, this particular constructor 
causes us to reach into the order database and 

 
 
Figure 10-6 
SQL Mechanism 
 
(transparently) rematerialize the corresponding object. This of course requires a like bit of 
work below the surface: if some earlier activity in the same or another application had 
previously reconstructed the same order object, then our underlying SQL mechanism would 
have to make certain that these two objects either shared the same underlying state, or at least 
kept their states synchronized. This detail is, of course, a secret of the class's implementation, 
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and therefore of like concern to clients who actually use the object from the perspective of its 
object-oriented interface. 
 
Fortunately, implementing this strategy is not as bad as it sounds. lf we define the class Order 
so that its only interesting state is a value of OrderID, then all operations largely involve 
dispatching SQL statements that read or write through to the database. Copies of the same 
object stay in synchronization, because the corresponding database table serves as the one 
repository of state for all views into the same object. 
 
The object diagram in Figure 10-6 illustrates this SQL mechanism, with a scenario showing a 
client setting the customer for an order. Our scenario follows this order of events: 
 

• aClient invokes setCustomer upon some instance of Order; an instance of the class Customer 
is provided as a parameter to this method function. 

• The order object invokes the selector customerID upon the customer parameter, to 
retrieve its corresponding primary key. 

• The order object dispatches an SQL UPDATE statement to set the customer id in the 
order database. 

 
This mechanism also means that we can rely upon existing database mechanisms for locking 
and mutual exclusion (for example, consider two applications simultaneously trying to 
update an order's customer). lf we need to make these locking mechanisms visible to clients, 
we can expose similar idioms for process synchronization as we use in the foundation class 
library in Chapter 9. As we will see later, our transaction strategy offers a unified way of 
updating a number of database objects at once, so as to preserve the database's self-
consistency. 
 
With this mechanism in place, it largely becomes a tactical issue of deciding where to place 
the logic that enforces our business rules for the application. This situation is no different than 
if we were to have used a nonobject-oriented architecture, but by wrapping up our 
abstractions into classes, we make it possible to defer these decisions and, when we do make 
them, hide their details from clients. In this manner, clients are made insensitive to any 
changes we might make as we tune our system. 
 
Let's consider two separate cases. First, adding or removing a product from the product 
database is clearly an action that requires significant rule checking, and thus we'd probably 
allocate most of the business-rule enforcement to the server. Adding a new product requires 
checking that we have uniquely defined and described this item; we might also have to 
broadcast the existence of the new product to various clients, so that they might update any 
cached tables they retain for reasons of performance. Similarly, removing an existing product 
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requires checking that we don't invalidate any pending orders, and if we do, broadcasting the 
change to the appropriate clients who would be made obsolete by this action104. 
 
in contrast, the rules surrounding the calculation of the total value of a new order apply to a 
much more local activity, and therefore are perhaps best allocated to enforcement by the 
client. With this action, we must query the current price of each item in the order, make 
conversions to local currency as necessary, and check against local rules for discounts, credit 
limits, and the like. 
 
To summarize, we apply two rules of thumb in choosing the allocation of client/server 
responsibilities: first, place the enforcement of business rules according to which part of the 
system has the most knowledge regarding the impact of those rules, and second, hide these 
decisions below an object oriented layer, so that if we change our mind, it doesn't matter. 
 
Continuing our example, let's turn to our abstraction of a different class, namely Product. 
Further analysis, together with some isolated class design, suggests that the following 
operations are applicable: 
 

• construct 
• setDescription 
• setQuantity 
• setLocation 
• setSupplier 
• productID 
• description 
• quantity 
• location 
• supplier 

 
These operations are common to every kind of product. However, use-case analysis reveals 
that these semantics are not sufficient for certain kinds of products. For example, given the 
open-ended nature of our inventory-tracking system together with the fact that product lines 
may change, our application may have to deal with the following kinds of products, which 
have their own unique behavior: 
 

• Plants and food products that are perishable and therefore require special handling 
and shipping. 

• Chemical products that also require special handling because they are caustic or toxic. 
• Distinct products, such as radio transmitters and receivers, that should be shipped in 

matched sets and are therefore dependent upon one another. 
• High-tech components, whose shipping is constrained by the local country's export 

laws. 
 

                                                 
104 These kinds of semantics are exactly what triggers are all about: they represent the attachment of an action to 
some significant database event. By taking an object-oriented view of the world, we formalize this convention of 
using triggers by encapsulating them as part of the semantics of operating upon a database object. 
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These variations suggest the need for a hierarchy of product classes. However, as it turns out, 
the properties represented by the examples above are orthogonal, and therefore do not lend 
themselves to a strict hierarchy. Instead, as we show in Figure 10-7, a far more flexible 
strategy is to use a mixin style of design. Note that in this diagram we have used our 
notation's constraint adornment to capture our understanding of the particular semantics of 
each abstraction. 
 
What value does an inheritance lattice offer for classes that in effect are higher-level 
abstractions of relational database entities? There is a tremendous amount of value: by 
formulating such hierarchies, we extract common behavior and elevate it to common 
superclasses, which are then responsible for providing this behavior consistently for all 
instances, unless those instances specialize that behavior (through an intermediate superclass) 
or augment that behavior (through a mixin superclass). This strategy simplifies our 
architecture and makes it more resilient to change, because it reduces redundancy and 
localizes common structure and behavior. 
 

 
Figure 10-7 
Product Classes 
 
Transaction Mechanism 
 
Client/server computing implies a collaboration between client and server, and so we must 
have some common mechanism whereby disparate parts of the system communicate with 
one another. As Berson notes, "There are three basic types of cooperative processing 
communications techniques that a client/server architecture can use" [20]: 
 

• Pipes 
• Remote procedure calls 
• Client/server SQL interactions 
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Thus far, we have implied the use only of the third pattern, namely all SQL interactions. 
However, for a system as diverse as this one, it is likely that we will need to use all of these 
three patterns at one time or another for reasons of performance or, more pragmatically, 
because that is the convention that certain third-party software that we purchase requires us 
to use. For the sake of maintaining a clear and consistent architectural vision, we would be 
better served by devising a higher-level abstraction that hides our choice of communications 
patterns. 
 
Earlier, we introduced the concept of a transaction class, but didn't elaborate upon its 
semantics. As Berson defines it, a transaction is "a unit of processing and information 
exchange between a local and a remote program that accomplishes a particular action or 
result" [21]. This is precisely the abstraction we need: a transaction object serves as the agent 
responsible for carrying out some remote action, and in so doing provides a clear separation 
of concerns between the action itself and the mechanisms for delivering that action. 
 
Indeed, transactions are the central high-level communications pattern between client and 
server and among clients. Transactions tend to fall out of a use-case analysis. Each major 
business function in the inventory-tracking system can, in general, be abstracted as a 
transaction against the system. For example, placing an order, acknowledging receipt of new 
inventory, and updating supplier information are all transactions applicable to the system. 
 
From the outside, we observe that the following operations capture our core abstraction of a 
transaction's behavior: 
 

• attach0peration 
• dispatch 
• Commit 
• rollback 
• status 

 
For each transaction, we identify a complete set of operations it is to perform. 
Programmatically, this means that we must provide member functions such as attach0peration 
for the class Transaction that allow other objects to package a collection of SQL statements for 
execution as a single unit. 
 
It is pleasing to note that this object-oriented view of the world is conceptually in harmony 
with the way the database worldviews transactions. As Date states, "A transaction is a 
sequence of SQL (and possibly other) operations that is guaranteed to be atomic for the 
purposes of recovery and concurrency control" [22]. 
 
The concept of atomicity is an important part of a transaction's semantics. If the action of a 
particular transaction requires that we manipulate several rows of a table, then we must: 
lump these operations together; otherwise we may leave the database in an inconsistent state. 
Therefore, when we dispatch a transaction, we mean to execute its associated operations as one 
mutually exclusive whole. 
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If a transaction completes normally, we must then commit it, causing all of its updates to take 
effect. However, dispatching a transaction may fail for a variety of reasons, perhaps because 
of a network failure that made it impossible to open a particular database, or perhaps because 
another client had locked certain critical records needed for updating. Under these 
conditions, we rollback the transaction, causing it to abandon any updates that the transaction 
began. The selector status returns a value reporting whether or not a dispatch completed 
normally. 
 
Dispatching a transaction is far more complicated in the presence of distributed databases. 
The simple commit/rollback protocol works well if we have to update just one local database, 
but what if we have to update several databases on distinct servers? The general solution is to 
use what is called a two-phase commit protocol [23]. Under this protocol, an agent (in our 
design, an instance of the class Transaction) first: assigns the various parts of the transaction's 
operations to their appropriate distributed servers; this is the prepare phase. If all these 
participants report that they are ready to commit, then the central transaction that: started 
this action broadcasts a commit action; this is called the 
 

 
 
Figure 10-8 
Transaction Classes 
 
commit phase. If instead any one server reports back after the prepare phase that it was not 
ready to commit, then we broadcast a rollback so as to back out of the entire distributed 
transaction. This is largely possible because each instance of Transaction encapsulates enough 
knowledge of its behavior to be able to turn back its original action. 
 
Figure 10-8 shows a class diagram that illustrates our abstraction of transactions. Here we 
find a hierarchy of transactions. The base class Transaction above captures the structure and 
behavior common to all transactions, whereas the subclasses carry out the semantics of 
certain specialized transactions. We distinguish between UpdateTransaction and QueryAction, for 
example, because each provides very disjoint semantics: the former class modifies the state of 
the server, whereas the second class does not. By distinguishing among these and other kinds 
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of transactions, we elevate common behavior to common classes, and in addition bring in 
more of our problem's vocabulary. 
 
As we continue the development of our system, we are likely to find other patterns of 
transactions that make for suitable subclasses. For example, if we find that adding and 
removing items from certain databases have substantially the same semantics, we might want 
to invent both an AddTransaction and DeleteTransaction operation, so as to capture this common 
behavior. 
 
Ultimately, the existence of the base class Transaction provides us an openended way of 
constructing and dispatching any kind of atomic action. For example, in C++ we might write: 
 
class Transaction {  
public: 
 

Transaction();  
virtual ~Transaction(); 
 
virtual void setOperation(const UnboundedCollection<SQLStatement>&);  
virtual int dispatch();  
virtual void commit();  
virtual void rollback(); 
 
virtual int status() const; 

 
Protected: 

… 
}; 
 
Notice how this class builds upon one of the foundation classes we discussed in Chapter 9. 
Here, our abstraction views a transaction as responsible for managing an indexable collection 
of statements. Operations for manipulating this collection are delegated to the parameterized 
class UnboundedCollection. 
 
Ultimately, this architectural pattern allows sophisticated client applications to dispatch raw 
SQL statements. Transaction subclasses hide this power (and its associated complexity) from 
simpler clients who only need to perform certain common transactions. 
 
Building Client Applications 
 
To a large degree, building a client application is a problem of building a GUI~ intensive 
program. Building an intuitive and friendly user interface is, however, as much an art as it is 
a science. In client/server applications such as this one, it is often the look and feel of the user 
interface that makes the difference between a wildly popular system and one that is quickly 
discarded. Human factors, technical constraints, historical reasons, and the personal 
preferences of the development team conspire to make crafting a useful, expressive, and 
selfconsistent human/machine interface a very difficult task indeed. 
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As architects of the inventory-tracking system, we thus have two key development risks that 
confront us when crafting client applications. First, how do we evolve the "right" user 
interface?. Second, what: common architecture can we use to build a family of client 
applications? 
 
The first question has a simple answer, although its execution is tedious and requires active 
management direction: prototype, prototype, and prototype. This means using whatever 
facilities are available to get early releases of executable user-interface prototypes in the 
hands of real users, so that the development team can get quality feedback as to the look and 
feel of the system. Our object-oriented process helps us gready in this matter, because it 
encourages this kind of incremental and iterative development. Using an object~ oriented 
architecture also goes a long way in facilitating this kind of prototyping, because it allows us 
to tune our user interface without rending the fabric of our system. 
 
The second question, that of devising a common client architecture, is ultimately a strategic 
design decision, but fortunately, it is one for which we can leverage off of GUI frameworks. 
Commercially, there exist products such as MITS X Window System, Open Look, Microsoft's 
Windows, Apple's MacApp, Next's NextStep, and IBM's Presentation Manager. Each of these 
windowing systems is different: some are network-based, and others are kernel-based; some 
treat individual pixels as the most primitive graphical element, and others manipulate higher-
level abstractions, such as rectangles, ovals, and arcs. In any case, all of these products have a 
common objective: they exist to simplify the task of implementing that part of an application 
that forms the human/machine interface. We should point out that none of these products 
sprang up overnight. Rather, the most useful windowing systems evolved over time, from 
proven, smaller systems. It has taken years of failures and successes for sufficient consensus 
to emerge in the industry on a meaningful set of abstractions for the problem of building user 
interfaces. We see many different windowing models because there is no single right answer 
to the problem of user interface design. 
 
As we discuss in Chapter 9, the truly hard part of living with any large, integrated class 
library especially those for user interfaces, is learning what mechanisms it embodies. Perhaps 
the most important mechanisms we must understand, at least in the context of cooperative 
client/server computing, are how a GUI application responds to events. As Berson notes, GUI 
clients have to contend with the following kinds of events [24]: 
 

• Mouse events 
• KeyboardUevents 
• Menu events 
• Window update events 
• Resizing events 
• Activation/deactivation events 
• Initialize/terminate events 
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We add to this list netwqrk events105. This last: category is central in our approach. to 
cooperative processing: client applications may receive network events from other 
applications, either as1d'ng them to take some action or providing them with some data. 
These semantics 1 integrate well with our earlier invention of the Transaction class, for now 
we can view transactions as agents that: send events from one application to another. In the 
context of each client application, the  beauty of treating a network event as just another kind 
of event is that it permits us to use a consistent mechanism for reacting to any kind of event. 
 
Berson goes on to observe that there are several architectural models for dealing with events 
[25]: 
 
 

• Event-loop model The event loop checks for pending events and 
dispatches an appropriate event-handling 
routine. 

• Event-callback model The application registers a callback function 
for each GUI widget that knows how to 
respond to a certain event; the callback is 
invoked when the widget detects an event. 

• Hybrid model A combination of the event loop and event 
callback models. 

 
Although it is a bit of a simplification to say so, we observe that in general, MacApp uses the 
event loop model, Motif follows the event callback model, and Microsoft Windows applies 
the hybrid model. 
 
In addition to this primary mechanism, we must follow a number of other common GUI 
mechanisms, including those for drawing, scrolling, tracking and responding to a mouse 
action, responding to a menu command, saving and restoring the state of an application, 
printing, editing (including cutting, copying, clearing, and pasting), dialog management, 
failure recovery, and memory management. Obviously, a complete discussion of each of 
these mechanisms is far beyond the scope of this text, for each GUI framework has its own 
conventions for these mechanisms. 
 
A rule of thumb we offer to the developer of client applications is to select an appropriate 
GUI framework, learn its patterns, and apply them consistently. 
 

                                                 
105 For example, Microsoft's DDE (Dynamic Data Exchange) and OLE (Object Linking and Embedding) are both 
Peer-to-Peer message-based protocols that provide Windows applications with a means of exchanging 
inforrnation. 
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10.3 Evolution 
 
Release Management 
 
Now that we have established an architectural frameworks for the inventory tracking . 
system, we can proceed with the system's incremental development. We start this process by 
first selecting a small number of interesting transactions, taking a vertical slice through our 
architecture, and then implementing enough of the system to produce an executable product 
that at least simulates the execution of these transactions. 
 
For example, we might select just three simple transactions: adding a customer, adding a 
product, and taking an order. Together, the implementation of these three transactions 
requires us to touch almost every- critical architectural interface, thereby forcing us to 
validate our strategic assumptions. Once we successfully pass this milestone, we might then 
generate a stream of new releases, according to the following sequence: 
 

• Modify or delete a customer; modify or delete a product; modify an order; query a 
customer, order, and product. 

• Integrate all similar supplier transactions, create a stocking order, and create an 
invoice. 

• Integrate remaining stocking transactions, create a report, and create a shipment. 
• Integrate remaining accounting transactions, create a receiving order. 
• Integrate remaining shipping transactions. 
• Complete remaining planning transactions. 

 
For a 12-18 month development cycle, this probably means generating a reasonably stable 
release every 3 months or so, each building upon the functionality of the other. When we are 
done, we will have covered every transaction in the system. 
 
As we discussed in Chapter 6, the key to success in this strategy is risk management, whereby 
for each release we identify the highest development risks and attack them directly. For 
client/sever applications such as this one, this means introducing capacity testing early in the 
evolutionary cycle (so that we identify any system bottlenecks early enough that we can do 
something about them). As our sequence of releases above suggests, this also means broadly 
selecting transactions for each release from across the functional elements of the system, so 
that we are not blindsided by unforeseen gaps in our analysis. 
 
Application Generators 
 
Domains such as the inventory-tracking system often include many different kinds of screen 
templates and hard.copy reports that must be generated. For large systems, these parts of the 
application are not technically difficult to write, just horribly tedious. This is precisely why 
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application generators (or 4GLs, for foutlh-generation languages) are so popular for business 
enterprises. The use of 4GLs is not inconsistent with an object-oriented architecture. Indeed, 
the controlled use of 4GLs can eliminate writing a considerable amount of code. 
 
Typically, we use 4GLS to automatically create screens and reports. Given the specification of 
a screen or report layout, a 4GI, can generate the code necessary to produce the actual screen 
or report. We integr4te this code with the remainder of our system by manually wrapping it 
in a Very thin object oriented layer. The products of the 4GI, thus become class utilitis, that 
the rest of our application can build upon without knowing how they were created. 
 
In this manner, we leverage off the benefits of the 4GL, yet still retain the illusion of a 
completely object-oriented architecture. The other advantage this strategy offers is that, as 
4GLs become increasingly- object-oriented and offer application programmatic interfaces 
(APIs) to object-oriented languages such as C++, the semantic gap across this particular seam 
in the system shrinks. 
 
We can apply this same strategy to deal with all the various dialogs we might find in our 
client applications. Writing code for modal and modeless dialogs is tedious, because we' have 
to deal with all sorts of detailed layout issues. Rather than writing raw code for dialogs106, a 
far better solution is to use a GUI builder that lets us "paint" our dialogs. As with a report 
application generator, we place a thin object-oriented skin over the products of our GUI 
builder, thereby giving us a clear separation of concerns. 
 
10.4 Maintenance 
 
A useful client/server system is rarely ever finished. This is not to say that we never get to the 
point where we have a stable system. Rather, the reality is that: for applications that are 
central to a business, the software must adapt as the rules of the business change, otherwise 
our software becomes a liability rather than a competitive asset. 
 
For the inventory-tracking system, we can envision several enhancements that changing 
business conditions may require us to address: 
 

• Allow customers to electronically post their own orders and query the state of pending 
orders. 

• Automatically generate personalized catalogs from our inventory database, tailored to 
target specific customer groups, or even individual customers. 

• Completely automate all warehouse functions, thereby eliminating the human 
stockperson, as well as most receiving and shipping personnel. 

                                                 
106 Writing object-oriented software may be fun, but it is far more important to focus on satisfying the 
requirements of the problem at hand. This means avoiding having to write new code whenever possible. 
Application generators and GUI builders are but two ways of doing this. Frameworks, such as we describe in 
Chapter 9, are another essential element along this same path. 
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Actually, the dominant risk in each of these particular changes is not technical, but social and 
political. By having a resilient object-oriented architecture, the development organization at 
least offers the company many degrees of freedom in being able to adapt nimbly to the 
changing marketplace. 
 
Further Readings 
 
More has been written about client/server computing than most mortals would care to read 
in a lifetime. Two particularly useful references are by Dewire [H 1992] and Berson [H 1992], 
who both offer a comprehensive and readable survey regarding a spectrum of client/server 
technologies. Bloom [H 1993] provides a short but lucid account of the basic concepts and 
issues of client/server architectures. 
 
Downsizing is the not same thing as client/server computing, although downsizing a 
corporate management information system often involves the use of a client/server 
architecture. A study of the motivations for and risks surrounding downsizing may be found 
in Guengerich [H 1992]. 
 
A comprehensive treatment of relational database technology may be found in Date [E 1981, 
1983; 1986]. Additionally, Date [E 1987] offers a description of the SQL standard. Various 
approaches to data analysis may be found in Veryard [B 1984], Hawryszkiewycz [E 1984], 
and Ross [F 1987]. 
 
Object-oriented databases represent the merging of conventional database technology and the 
object model. Reports of work in this field may be found in Cattell (E 1991], Atwood [E 1991], 
Davis et al. [H 1983], Kim and Lochovsky [E 1989], and Zdonik and Maier [E 1990]. 
 
The bibliography offers several references to various windowing systems and objectoriented 
user interfaces (see section K, "Tools and Environments"). Details about the Microsoft 
Windows API may be found in Windows [G 992]. A similar reference for Apple's MacApp 
may be found in Macapp [G 1992]. 
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Artificial Intelligence:  
Cryptanalysis 
 
 
 
 
Sentient creatures exhibit vastly complex set of behaviors that: spring from the mind through 
mechanisms that: we only poorly understand. For example, think about how you solve the 
problem of planning a route through a city to run a set of errands. Consider also how, when 
walking through a dimly lit room, you are able to recognize the boundaries of objects and 
avoid stumbling. Furthermore'~ think about how you can focus on one conversation at a party 
while dozens of people are talking simultaneously. None of these kinds of problems lends it ' 
self to a straightforward algorithmic solution. Optimal route planning is known to be an np-
complete problem. Navigating through dark terrain involves deriving understanding from 
visual input that is (very literally) fuzzy and incomplete. Identifying a single speaker from 
dozens of sources requires that: the listener distinguishes meaningful data from noise and 
then filter out all unwanted conversation from the remaining cacophony. 
 
Researchers in the field of artificial intelligence have pursued these and similar problems to 
improve our understanding of human cognitive processes. Activity in this field often involves 
the construction of intelligent systems that mimic certain aspects of human behavior. Erman, 
Lark, and Hayes-Roth point out that: Intelligent systems differ from conventional systems by a 
number of attributes, not all of which are always present: 
 

• They pursue goals which vary over time. 
• They incorporate, use, and maintain knowledge. 
• They exploit diverse, ad hoc subsystems embodying a variety of selected methods. 
• They interact intelligently with users and other systems. 
• They allocate their own resources and attention" [1]. 

 
Any one of these properties is sufficiently demanding to make the crafting of intelligent 
systems a very difficult task. When we consider that intelligent systems are being developed 
for a variety of domains that affect both life and property, such as for medical diagnosis or 
aircraft routing, the task becomes even more demanding because we must design these 
systems so that they are never actively dangerous: artificial intelligences rarely embody any 
kind of commonsense knowledge. 
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Although the field has at times been oversold by an overly enthusiastic press, the study of 
artificial intelligence has given us some very sound and practical ideas, among which we 
count approaches to knowledge representation and the evolution of common problem-
solving architectures for intelligent systems, including rule-based expert systems and the 
blackboard model [2]. In this chapter, we turn to the design of an intelligent system that 
solves cryptograms using a blackboard framework in a manner that parallels the way a 
human would solve the same problem. As we will see, the use of object-oriented 
development is very well suited to this domain. 
 
11.1 Analysis 
 
Defining the Boundaries of the Problem 
 
As outlined in the sidebar, our problem is one of cryptanalysis, the process of transforming 
ciphertext back to plaintext. In its most general form, deciphering cryptograms is an 
intractable problem that defies even the most sophisticated of techniques. For example, DES 
(the data encryption standard, a private-key encryption algorithm that uses multiple 
applications of substitution and transposition ciphers) appears to be free of any mathematical 
weaknesses and thus is sale against all currently known kinds of attack. Happily, our 
problem is much simpler, because we limit ourselves to single substitution ciphers. 
 
As part of our analysis, let's walk through a scenario of solving a simple cryptogram. Spend 
the next few minutes solving the following problem, and as you proceed, record how you did 
it (no fair reading ahead!): 
 

Q AZWS DSSC KAS DXZNN DASNN 
 
As a hint, we note that the letter w represents the plaintext V. 
 
Trying an exhaustive search is pretty much senseless. Assuming that the plaintext alphabet 
encompasses only the 26 uppercase English characters, there 
 
 
Cryptanalysis Requirements 
 
Cryptography "embraces methods for rendering data unintelligible to unauthorized parties" 
131. Using cryptographic algorithms, messages (plaintext) may be transformed into 
cryptograms (ciphertext) and back again. 
 
One of the most basic kinds of cryptographic algorithms, employed since the time of the 
Romans, is called a substitution cipher. With this cipher, every letter of the plaintext alphabet is 
mapped to a different letter. For example, we might shift every letter to its successor: A 
becomes B, B becomes C, Z wraps around to become A, and so on. Thus, the plaintext 
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CLOS is an object-oriented programming language 
 
may be enciphered to the cryptogram 
 

DMPT jt bo pckfdu-psjfoufe qsphsbnnjoh mbohvbhf 
 
Most often, the substitution of letters is jumbled. For example, A becomes G, B becomes J, and 
so on. As an example, consider the following cryptogram: 
 

PDG TBCER CQ TCK AL S NGELCH QZBBR SBAJG 
 
Hint: the letter  C represents the plaintext letter O. 
 
It is a vastly simplifying assumption to know that only a substitution cipher was employed to 
encode a plaintext message; nevertheless, deciphering the resulting cryptogram is not an 
algorithmically trivial task. Deciphering sometimes requires trial and error, -wherein w e 
make assumptions about a particular substitution and then evaluate their implications. For 
example, we may start with the one-and two-letter words in the cryptogram and hypothesize 
that they stand for common words such as I and a, or it, in, is, of, or, and on. By substituting the 
other occurrences of these ciphered letters, we may End hints for deciphering other words. 
For instance, it there is a three-letter word that starts with o, the word might reasonably be 
one, our, or off. 
 
We can also use our knowledge of spelling and grammar to attack a substitution cipher. For 
example, an occurrence of double letters is not likely to represent the sequence qq. Similarly, 
we might try to expand a word ending with the letter g to the suffix ing. At a higher level of 
abstraction, we might assume that the sequence of words it is is more likely to occur than the 
sequence if is. Also, we might assume that the structure of a sentence typically includes a 
noun and a verb. Thus, if our analysis has identified a verb but no actor or agent, we might 
start a search for adjectives and nouns. 
 
Sometimes we may have to backtrack. For example, we might have assumed that: a certain 
two-letter word was or, but it the substitution for the letter r causes contradictions or blind 
alleys in other words, then we might have to try the word of or on instead, and consequently 
undo other assumptions we had based upon this earlier substitution. 
 
 
This leads us to the requirement of our problem: devise a system that, given a cryptogram, 
transforms it back to its original plaintext, assuming that only a simple substitution cipher 
was employed. 
 
are 26 (approximately 4.03 x1026) possible combinations. Thus, we must try something other 
than a brute force attack. An alternate technique is to make an assumption based upon our 
knowledge of sentence, word, and letter structure, and then follow this assumption to its 
natural conclusions. Once we can go no further, we choose the next most promising 
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assumption that builds upon the first one, and so on, as long as each succeeding assumption 
brings us closer to a solution. If we find that we are stuck, or we reach a conclusion that 
contradicts a previous one, we must backtrack and alter an earlier assumption. Here is our 
solution, showing the results at each step: 
 
1. According to the hint, we may directly substitute V for W. 
 

Q AZVS DSSC KAS DXZNN DASNN 
 
2. The first word is small, so it is probably either an A or an I; let's assume that it is an A. 
 

A AZVE DSSC KAS DXZNN DASNN 
 
3. The third word needs a vowel, and it is likely to be the double letters. It is probably neither 
II nor UU, and it can't be AA because we have already used an A. Thus, we might try EE. 
 

A AZVE DEEC KAE DXZNN DAENN 
 
4. The fourth word is three letters long, and ends in an E; it is likely to be the word THE. 
 

A HZVE DEEC THE DXINN DHENN 
 
5. The second word needs a vowel, but only an I, O, or U (we've already used A). Only the I 
gives us a meaningful word.  
    

A HIVE DEEC THE DXINN DHENN 
    
6. There are few four-letter words that have a double E, including DEER, BEER, and SEEN. Our 
knowledge of grammar suggests that the third word should be a verb, and so we select SEEN.
  
    

A HIVE SEEN THE SXINN SHENN 
 
7. This sentence is not making any sense (hives cannot see), and so we probably made a bad 
assumption somewhere along the way. The problem seems to lie with the vowel in the 
second word, and so we might consider reversing our initial assumption. 
 

I HAVE SEEN THE SXINN SHENN 
 
8. Let's attack the last word. The double letters can't be SS (we've used an S, and besides, 
SHESS doesn't make any sense), but LL forms a meaningful word. 
 

I HAVE SEEN THE SXINN SHELL 
 
9. The final word is part of a noun phrase, and so is probably an adjective (STALL, for example, 
is rejected on this, account). Searching for words that fit the pattern. S?ALL yields SMALL. 
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I HAVE SEEN THE SMALL SHELL 

 
Thus, we have reached a solution. 
 
We may make the following three observations about this problem-solving process: 
 

• We applied many different sources of knowledge, such as knowledge about grammar, 
spelling, and vowels. 

• We recorded our assumptions in one central place and applied our sources of 
knowledge to these assumptions to reason about their consequences. 

• We reasoned opportunistically. At times, we reasoned from general to specific rules (if 
the word is three letters long and ends in E, it is probably THE), and at other times, we 
reasoned from the specific to the general (?EE? might be DEER, BEER, or SEEN; but since 
the word must be a verb and not noun, only SEEN satisfies our hypothesis). 

 
What we have described is a problem-solving approach known as a blackboard model The 
blackboard model was first proposed by Newell in 1962, and later incorporated by Reddy and 
Erman into the Hearsay and Hearsay II projects, both of which dealt with the problems of 
speech recognition [4].  The blackboard model proved to be useful this domain, and the 
framework was soon applied successfully to other domains, including signal interpretation, 
the modeling of three-dimensional molecular structures, image understanding, and planning 
[5]. Blackboard frameworks have proven to be particularly noteworthy with regard to the 
representation of declarative knowledge, and are space- and time-efficient when compared 
with alternate approaches [6]. 
 
A blackboard framework satisfies our definition for a framework, as described in Chapter 9. 
We can therefore codify its architecture in terms of a set of classes and mechanisms that 
describe how instances of those classes collaborate. 
 
Architecture of the B1ackboard Framework 
 
Englemore and Morgan explain the blackboard model by analogy to the problem of a group 
of people solving a jigsaw puzzle: 
 

Imagine a room with a large blackboard and around it a group of people each 
holding over-size jigsaw pieces. We start with volunteers who put on the 
blackboard (assume it's sticky) their most 'promising' pieces. Each member of 
the group looks at his pieces and sees if any of them fit into the pieces already 
on the blackboard. Those with the appropriate pieces go up to the blackboard. 
And update the evolving solution. The new updates cause other pieces to fall 
into place, and other people go to the blackboard to add their pieces. It does 
not matter whether one person holds more pieces than another. The whole 
puzzle can be solved in complete silence; that is, there need be no direct 
communication among the group. Each person is self-activating, knowing 
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when his pieces will contribute to the solution. No a priori established order 
exists for people to go up to the blackboard. The apparent cooperative 
behavior is mediated by the state of the solution on the blackboard. If one 
watches the task being performed, the solution is built incrementally (one 
piece at a time) and opportunistically (as an opportunity for adding a piece 
arises), as opposed to starting, say, systematically from. The left top corner 
and trying each piece [7]. 

 
As Figure 11-1 indicates, the blackboard frameworks consist of three elements: a blackboard, 
multiple knowledge sources, and a controller that mediates among these knowledge sources 
[8]. Notice how the following description parallels the principles of the object model. 
According to Nii, "the purpose of the blackboard is to hold computational and solution-state 
data needed by and produced by the knowledge sources. The blackboard consists of objects 
from the solution space. The objects on the blackboard are hierarchically organized into levels 
of analysis. The objects and their properties define the vocabulary of the solution space" [9]. 
 
As Englemore and Morgan explain, "The domain knowledge needed to solve a problem is 
partitioned into knowledge sources that are kept separate and independent. The objective of 
each knowledge source is to contribute information that will lead to a solution to the problem. 
A knowledge source takes a set of current information on the blackboard and updates it as 
encoded in its specialized knowledge. The knowledge sources are represented as procedures, 
sets of rules, or logic assertions" [10]. 
 
Knowledge sources, or KSs for short, are domain-specific. In speech recognition systems, 
knowledge sources might include agents that can reason about phonemes, words, and 
sentences. In image-recognition systems, knowledge sources would include agents that know 
about simple picture elements, such. As edges and regions of similar texture, as well as 
higher-level abstractions representing the objects of interest in each scene, such as houses, 
roads, fields, cars, and people. 
 
Generally speaking, knowledge sources parallel the hierarchic structure of objects on the 
blackboard. Furthermore, each knowledge source uses objects at one level as its input and 
then generates and/or modifies objects at another level as its output. For instance, in a 
speech-recognition system, a knowledge source that embodies knowledge about words might 
look at a stream of phonemes (at a low level of abstraction) to form a new word (at-a higher 
level of abstraction). Alternately, a knowledge source that embodies knowledge about 
sentence structure might hypothesize the need for a verb (at a high level of abstraction); by 
filtering a list of possible words (at a lower level of abstraction), this knowledge source can 
verify the hypothesis. 
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Figure 11 -1 
A Blackboard Framework 
 
These two approaches to reasoning represent forward-chaining and backward-chaining, 
respectively. Forward-chaining involves reasoning from specific assertions to a general 
assertion, and backward-chaining starts with a hypothesis, then tries to verify the hypothesis 
from existing assertions. This is why we say that control in the blackboard model is 
opportunistic: depending upon the circumstances, a knowledge source might be selected for 
activation that uses either forward or backward chaining. 
 
Knowledge sources usually embody two elements, namely, preconditions and actions. The 
preconditions of a knowledge source represent the state of the blackboard in which the 
knowledge source shows an interest. For example, a precondition for a knowledge source in 
an image-recognition system might be the discovery of a relatively linear region of picture 
elements (perhaps representing a road). Triggering a precondition causes the knowledge 
source to focus its attention on this part of the blackboard and then take action by processing 
its rules or procedural knowledge. 
 
Under these circumstances, polling is unnecessary: when a knowledge source thinks it has 
something interesting to contribute, it notifies the blackboard controller. Figuratively 
speaking, it is as if each knowledge source raises its hand to indicate that it has something 
useful to do; then, from among eager knowledge sources, the controller calls on the one that 
looks the most promising. 
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Analysis of Knowledge Sources 
 
Let's return to our specific problem, and consider the knowledge sources that can contribute 
to a solution. As is typical with most knowledge-engineering applications, the best strategy is 
to sit down with. An expert in the domain and record the heuristics that this person applies to 
solve the problems in the domain. For our present problem, this might involve trying to solve 
a number of cryptograms and recording our thinking process along the way. 
 
Our analysis suggests that thirteen knowledge sources are relevant; they appear with the 
knowledge they embody in the following list: 
 

• Common prefixes Common word beginnings such as re, ant, and 
un 

• Common suffixes  Common word endings such as ly, ing, es, and 
ed 

• Consonants Nonvowel letters 
• Direct substitution Hints given as part of the problem statement 
• Double letters Common double letters, such as tt, ll, and ss 
• Letter frequency Probability of the appearance of each letter 
• Legal strings Legal and illegal combination if letters, such 

as qu and zg, respective 
• Pattern matching Words that match a specified pattern of 

letters 
• Sentence structure Grammar, including the meanings of noun 

and verb, phrases 
• Small words Possible matches for one-, two-, three-, and 

four-letter words 
• Solved 
 

Whether or not the problem is solved, or if no 
further progress can be made 

• Vowels Nonconsonant letters 
• Word structure The location of vowels and the common 

structure of nouns, verbs, adjectives, adverbs, 
articles, conjunctives, and so on. 

 
 
From an object-oriented perspective, each of these thirteen knowledge sources represents a 
candidate class in our architecture: each instance embodies some state (its knowledge), each 
exhibits certain class-specific behavior (a suffix knowledge source can react to words 
suspected of having a common ending), and each is uniquely identifiable (a small-word 
knowledge source exists independent of the pattern-matching knowledge source). 
 
We may also arrange these knowledge sources in a hierarchy. Specifically, some knowledge 
sources operate upon sentences, others upon letters, still others on contiguous groups of 
letters, and the lowest-level ones on individual letters. Indeed, this hierarchy reflects the 
objects that may appear on the blackboard: sentences, words, strings of letters, and letters. 
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11.2 Design 
 
Architecture of the Blackboard 
 
We are now ready to design a solution to the cryptanalysis problem using the blackboard 
framework we have described. This is a classic example of reuse-in-the-large, in that we are 
able to reuse a proven architectural pattern as the foundation of our design. The structure of 
the blackboard frameworks suggests that among the highest-level objects in our system are a 
blackboard, several knowledge sources, and a controller. Our next task is to identity the 
domain~ specific classes and objects that specialize these general abstractions. 
 
Blackboard Objects the objects that appear on a blackboard exist in a structural hierarchy that 
parallels the different levels of abstraction of our knowledge sources. Thus, we have the 
following three classes: 
 
 

• Sentence A complete cryptogram 
• Word A single word in the cryptogram 
• CipherLetter A single letter of a word 

 
Knowledge sources must also share knowledge about the assumptions each makes, so we 
include the following class of blackboard objects: 
 

• Assumption An assumption made by a knowledge source 
 
Finally, it is important to know what plaintext and ciphertext letters in the alphabet have 
been used in assumptions made by the knowledge sources, so we include the following class: 
 

• Alphabet The plaintext alphabet, the ciphertext 
alphabet, and the mapping between the two 

 
Is there anything in common among these five classes? We answer with a resounding yes: 
each one of these classes represents objects that may be placed on a blackboard, and that very 
property distinguishes them from, for example, knowledge sources and controllers. Thus, we 
invent the following class as the superclass of every object that may appear on a blackboard: 
 
class BlackboardObject ... 
 
Looking at this class from its outside view, we may define two applicable operations: 
 

• register Add the object to the blackboard 
• resign Remove the object from the blackboard 
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Why do we define register and resign as operations upon instances of BlackboardObject, instead of 
upon the blackboard itself? his situation is not unlike telling an object to draw itself in a 
window. The litmus test for deciding where to place these kinds of operations is whether or 
not the class itself has sufficient knowledge or responsibility to carry out the operation. In the 
case of register and resign, this is indeed the case: the blackboard object is the only abstraction 
with detailed knowledge of how to attach or remove itself from the blackboard (although it 
certainly does require collaboration with the blackboard object). In fact, it is an important 
responsibility of this abstraction that each blackboard object be self-aware it is attached to the 
blackboard, because only then can it begin to participate in opportunistically solving the 
problem on the blackboard. 
 
Dependencies and Affirmations Individual sentences, words, and cipher-letters have 
another thing in common: each has certain knowledge sources that depend on it. A given 
knowledge source may express an interest in one or more of these objects, and therefore, a 
sentence, word, or cipher-letter must maintain a reference to each such knowledge source, so 
that when an assumption about the object changes, the appropriate knowledge sources can be 
notified that something interesting has happened. This mechanism is similar to the Smalltalk 
dependency mechanism that we mentioned in Chapter 4. To provide this mechanism, we 
introduce a simple mixin class: 
 
class Dependent {  
public: 

Dependent();  
Dependent(const Dependent&);  
vitual ~Dependent(); 
… 

 
protected: 
 

UnboundedCollection<KnowledgeSource*>  references; 
 
}; 
 
We have leapt ahead to the implementation of this class, to show that it builds upon the 
foundation class library we describe in Chapter 9. Here, we see that the class Dependent has a 
single member object, that represents a collection of pointers to knowledge sources107. 
 
We define the following operations for this class: 
 

• Add Add a reference to the knowledge source 
• Remove Remove a reference to the knowledge 

source 

                                                 
107 In the architecture of the foundation classes from Chapter 9, wie~"noted that unbounded structures require a 
storage manager. For simplicity, we omit,this template argument in this and similar deciarations in this chapter. 
Of course, a'complete implementation would have to abide by the mechanisms of the foundation framework. 
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• NumberOfDependents Return the number of dependents 
• Notify  Broadcast an operation of each 

dependent 
 
The operation notify has the semantics of a passive iterator, meaning that when we invoke it, 
we can supply an operation that we wish to perform upon every dependent in the collection. 
 
Dependency is an independent property that can be "mixed in" with other classes. For 
example, a cipher-letter is a blackboard object as well as a dependent, so we can combine 
these two abstractions to achieve the desired behavior. Using mixins in this way increases the 
reusability and separation of concerns in our architecture. 
 
Cipher-letters and alphabets have another property in common: instances of both of these 
classes may have assumptions made about them (and remember that an assertion is also a 
kind of BlackboardObject). For example, a certain knowledge source might assume that the 
ciphertext letter K represents the plaintext letter P. As we get closer to solving our problem, 
we might make the unchangeable assertion that G represents J. Thus, we include the 
following class: 
 
class Affirmation ... 
 
The responsibilities of this class are to maintain the assumptions or assertions about the 
associated object. We do not use Affirmation as a mixin class, but rather use it for aggregation. 
Letters have affirmations made about them, they are not kinds of affirmations 
 
In our architecture, we will only make affirmations about individual letters as in cipher-
letters and alphabets. As our earlier scenario implied, cipher-letters represent single letters 
about which statements might be made, and alphabets comprise many letters, each of which 
might have different statements made about them. Defining Affirmation as an independent class 
thus serves to capture the common behavior across these two disparate classes. 
 
We define the following operations for instances of this class: 
 
 

• make Make a statement. 
• retract Retract a statement. 
• ciphertext Given a plaintext letter, return its ciphertext 

equivalent. 
• plaintext Given a ciphertext letter, return its plaintext 

equivalent. 
 
Further analysis suggests that we should clearly distinguish between the two roles played by 
a statement: an assumption, which represents a temporary mapping between a ciphertext 
letter and its plaintext equivalent, and an assertion, which is a permanent mapping, meaning 
that the mapping is defined and therefore not changeable. During the solution of a 
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cryptogram, knowledge sources will make many Assumptions, and as we move closer to a final 
solution, these mappings eventually become Assertions. To model these changing roles, we will 
refine the previously identified class Affirmation, and introduce a new subclass named 
Assertion both of whose instances are managed by instances of the class Affirmation as well 
as placed on the blackboard. We begin by completing the signature of the operations make and 
retract to include an Assumption or Assertion argument, and then add the following selectors: 
 

• isPlainLetterAsserted selector: is the plaintext letter defined? 
• isCipherLetterAsserted selector: is the ciphertext letter defined? 
• plainLetterHasAssumption selector: is there an assumption about the 

plaintext letter? 
• cipherLetterHasAssumption A selector: is there an assumption about the 

ciphertext letter? 
 
Next, we define the class Assumption. Because this abstraction is largely a structural 
abstraction, we make some of its state unencapsulated: 
 
class Assumption : public BlackboardObject { 
public: 
 
 … 
 

BlackboardObject* target;  
KnowledgeSource* creator;  
String<char> reason;  
char plainLetter;  
char cipherLetter; 

 
}; 
 
Notice that we reuse another class from the frameworks described in Chapter 9, the template 
class String. 
 
Assumptions are kinds of blackboard objects because they represent state that is of general 
interest to all knowledge sources. The various member objects represent the following 
properties: 
 

• target The blackboard object about which the 
assumption was made 

• creator The knowledge source that created the 
assumption 

• reason The reason the knowledge source made the 
assumption 

• plainLetter The plaintext letter about which the 
assumption is being made 

• cipherLetter The assumed value of the plaintext letter 
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The need for each of these properties is largely derived from the very nature of an 
assumption: a particular knowledge source makes an assumption about a 
plaintext/ciphertext mapping, and does so for a certain reason (usually because some rule 
was triggered). The need for the first member, target, is less obvious. We include it because of 
the problem of backtracking. If we ever have to reverse an assumption, we must notify all 
blackboard objects for which the assumption was originally made, so that they in turn can 
alert the knowledge sources they depend upon (via the dependency mechanism) that their 
meaning has changed. 
 
Next, we have the subclass named Assertion: 
 
class Assertion : public Assumption … 
 
The classes assumption and assertion share the following operation, among others:  
 

• isRetractable A selector: is the mapping temporary? 
 
All assumption objects answer true to the predicate isRetractable, whereas all assertion objects 
answer false. Additionally, once made, an assertion can neither be restated nor retracted. 
 

 
Figure 11-2 
Dependency and Affirmation Classes 
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Figure 11-2 provides a class diagram that illustrates the collaboration of the dependency and 
affirmation classes. Pay particular attention to the roles each abstraction plays in the various 
associations. For example, a KnowledgeSource is the creator of an Assumption, and is also the 
referencer of a Cipherletter. Because a role represents a different view than an abstraction 
presents to the world, we would expect to see a different protocol between knowledge 
sources and assumptions than between knowledge sources and letters. 
 
Design of the Blackboard Objects Let's complete our design of the Sentence, Word, and 
CipherLetter classes, followed by the Alphabet class, by doing a little isolated class design. A 
sentence is quite simple: it is a blackboard. object as well as a dependent, and it denotes a list 
of words that compose the sentence. Thus, we may write 
 
class Sentence : public BlackboardObject, 
   virtual public Dependent { 
 
public: 

… 
protected: 
 

List<Word*> words; 
 
}; 
 
We make the superclass Dependent virtual, because we expect there may be other Sentence 
subclasses that try to inherit from Dependent as well. By marking this inheritance relationship 
virtual, we cause such subclasses to share a single Dependent superclass. 
 
In addition to the operations register and resign defined by its superclass BlackboardObject, plus 
the four operations defined in Dependent, we add the following two sentence-specific 
operations: 
 

• value Return the current value of the sentence. 
• isSolved Return true if there is an assertion for all 

words in the sentence. 
 
At the start of the problem, value returns a string representing the original cryptogram. Once 
isSolved evaluates as true, the operation value may be used to retrieve the plaintext solution. 
Accessing value before isSolved is true will yield partial solutions. 
 
Just like the sentence class, a word is a kind of blackboard object as well as a kind of 
dependent. Furthermore, a word denotes a list of letters. To assist the knowledge sources that 
manipulate words, we include a reference from a word to its sentence, as well as from a word 
to the previous and next word in the sentence. Thus, we may write the following: 
 
class Word : public BlackboardObject, 
   virtual public Dependent { 
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public: 
… 

 
Sentencek sentence() const;  
Word* Previous() const;  
Word* next() const; 

 
Protected: 
 

List<CipherLetter*> letters; 
 
}; 
 
As we did for the sentence operations, we define the following two operations for the class 
Word: 

• value Return the current value of the word. 
• isSolved Return true if there is an assertion for every 

letter in the word. 
 
We may next define the class CipherLetter. An instance of this class is a kind of blackboard 
object and a kind of dependent. In addition to its inherited behaviors, each cipher-letter object 
has a value (such as the ciphertext letter H) together with a collection of assumptions and 
assertions regarding its corresponding plaintext letter. We can use the class Affirmation to 
collect these statements. Thus, we may write the following: 
 
class CipherLetter : public BlackboardObject, 
    virtual public Dependent { 
 
public: 
 

char value() const;  
int isSolved() const; ... 

 
protected: 
 

char letter;  
Affirmation affirmations; 

 
}; 
 
Notice that we include the selectors value and isSolved, similar to our design of Sentence and 
Word. We must also eventually provide operations for the clients of CipherLetter to access its 
assumptions and assertions in a safe manner. 
 
One comment about the member object affirmations: we expect this to be a collection of 
assumptions and assertions ordered according to their time of creation, with the most recent 
statement in this collection representing the current assumption or assertion. The reason we 
choose to keep a history of all assumptions is to permit knowledge sources to look at earlier 
assumptions that were rejected, so that they can learn from earlier mistakes. This decision 
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influences our design decisions about the class Affirmation, to which we add the following 
operations: 
 

• mostRecent A selector: returns the most recent 
assumption or assertion 

• statementAt A selector: returns the ntb statement 
 
Now that we have refined its behavior, we can next make a reasonable implementation 
decision about the class Affirmation. Specifically, we can include the following protected 
member object: 
 
UnboundedOrderedCollection<Assumption*> statements; 
 
UnboundedOrderedCollection is another reusable class from the foundation class frameworks in 
Chapter 9. 
 
Consider next the class named Alphabet. This class represents the entire plaintext and 
ciphertext alphabet, plus the mappings between the two. This information is important 
because each knowledge source can use it to determine which mappings have been made and 
which are yet to be done. For example, if we already have an assertion that the ciphertext 
letter C is really the letter M, then an alphabet object records this mapping so that no other 
knowledge source can apply the plaintext letter M. For efficiency, we need to query about the 
mapping both ways: given a ciphertext letter, return its plaintext mapping, and given a 
plaintext letter, return its ciphertext mapping. We may define the Alphabet class as follows: 
 
class Alphabet : public BlackboardObject { 
public: 

… 
char plaintext(char) const;  
char ciphertext(char) const;  
int isBound(char) const; 

 
}; 
 
Just as for the class CipherLetter, we also include a protected member object affirmations, and 
provide suitable operations to access its state. 
 
Now we are ready to define the class Blackboard. This class has the simple responsibility of 
collecting instances of the class Blackboardobject and its subclasses. Thus we may write: 
 
class Blackboard : public DynamicCollection<Blackboardubject*> ... 
 
We have chosen to inherit from rather than contain an instance of the class DynamicCollection, 
because Blackboard passes our test for inheritance: a blackboard is indeed a kind of collection. 
 
The Blackboard class provides operations such add and remove, which it inherits from the 
Collection class. Our design includes five operations specific to the blackboard. 
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• reset Clean the blackboard. 
• assertProblem Place an initial problem on the blackboard. 
• connect Attach the knowledge source to the 

blackboard. 
• isSolved Return true if the sentence is solved. 
• retrieveSolution Return the solved plaintext sentence. 

 
The second operation is needed to create a dependency between a blackboard and its 
knowledge sources. 
 
In Figure 11-3, we summarize our design of the classes that collaborate with Blackboard. This 
diagram primarily shows inheritance relationships; for simplicity, it omits "using" 
relationships, such as that between an assumption and a blackboard object. 
 
In this diagram, notice that we show the class Blackboard as both instantiating and inheriting 
from the template class DynamicCollection. This diagram also clearly shows why introducing the 
class Dependent as a mixin was a good design decision. Specifically, Dependent represents a 
behavior that encompasses only a partial set of BlackboardObject subclasses. We could have 
introduced Dependent as an intermediate superclass, but by making it a mixin rather than tying 
it to the BlackboardObject hierarchy, we increase its chances of being reused. 
 
Design of the Knowledge Sources 
 
In a previous section, we identified thirteen knowledge sources relevant to this problem. just 
as we did for the blackboard objects, we may design a class structure encompassing these 
knowledge sources and thereby elevate all common characteristics to more abstract classes. 
 
Design of Specialized Knowledge Sources Assume for the moment the existence of an 
abstract class called KnowledgeSource, whose purpose is much like that of the class 
BlackboardObject. Rather than treat each of the thirteen knowledge sources as a direct subclass 
of this more general class, it is useful to first perform a domain analysis and see if there are 
any clusters of knowledge sources. Indeed, there are such groups: some knowledge sources 
operate on whole sentences, others upon whole words, others upon contiguous strings of 
letters, and still others on individual letters. We may capture these design decisions by 
writing the following: 
 
class SentenceKnowledgeSource : public KnowledgeSource ...  
class WordKnowledgeSource : public KnowledgeSource ...  
class LetterKnowledgeSource : public KnowledgeSource ... 
 
For each of these abstract classes, we may provide specific subclasses. For example, the 
subclasses of the abstract class SentenceKnowledgeSource include 
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Figure 11-3 
Blackboard Class Diagram 
 
 
 
class SentenceStructureKnowledgeSource : public SentenceKnowledgeSource ...  
class SolvedKnowledgeSource : public SentenceKnowledgeSource ... 
 
Similarly, the subclasses of the intermediate class WordKnowledgeSource include 
 
class WordStructureKnowledgeSource : public WordKnowledgeSource ...  
class SmallWordKnowledgeSource : public WordKnowledgeSource ...  
class PatternMatchingKnowledgeSource : public WordKnowledgeSource ... 
 
The last class requires some explanation. Earlier, we said that the purpose of this class was to 
propose words that fit a certain pattern. We can use regular expression pattern-matching 
symbols similar to those used by UNIX's grep tool: 
 

• Any item ? 
• Not item ~ 
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• Closure item * 
• Start group { 
• Stop group } 

 
With these symbols, we might give an instance of this class the pattern ?E~{ A E I 0 U}, thereby 
asking it to give us from its dictionary all the three-letter words starting with any letter, 
followed by an E, and ending with any letter except a vowel. 
 
Pattern matching is a generally useful facility, so it is no surprise that scavenging for similar 
classes leads us to the pattern-matching classes we describe as part of our foundation library 
in Chapter 9. Thus, we may sketch out our pattern-matching knowledge source as follows, by 
borrowing from some existing classes: 
 
class PatternMatchingKnowledgeSource : public WordKnowledgeSource  
public: 
 … 
 
Protected: 
 

static BoundedCollection<Word*> words; 
 
REPatternMatching patternMatcher; 

 
}; 
 
All instances of this class share a dictionary of words, and each instance has its own regular 
expression pattern-matching agent. 
 
The detailed behavior of this class is not important to us at this point in our design, so we will 
defer the invention of the remainder of its interface and implementation. 
 
Continuing, we may declare the subclasses of the class StringKnowledgeSource as follows: 
 
class CommonPrefixKnowledgeSource public StringKnowledgeSource ...  
class CommonSuffixKnowledgeSource public StringKnowledgeSource ...  
class DoubleletterKnowledgeSource public StringKnowledgeSource ...  
class LegalStringKnowledgeSource public StringKnowledgeSource ... 
 
Lastly, we can introduce the subclasses of the abstract class letterKnowledgeSource: 
 
class DirectSubstitutionKnowledgeSource : public LetterKnowledgeSource ...  
class VowelKnowledgeSource : public letterKnowledgeSource ...  
class ConsonantKnowledgeSource : public LetterKnowledgeSource ...  
class LetterFrequencyKnowledgeSource : public LetterKnowledgeSource ... 
 
Generalizing the Knowledge Sources Analysis suggests that there are only two primary 
operations that apply to all these specialized classes: 
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• reset Restart the knowledge source. 
• evaluate Evaluate the state of the blackboard. 

 
The reason for this simple interface is that knowledge sources are relatively autonomous 
entities: we point one to an interesting blackboard object, and then tell it to evaluate its rules 
according to the current global state of the blackboard. As part of the evaluation of its rules, a 
given knowledge source might do any one of several things: 
 

• Propose an assumption about the substitution cipher. 
• Discover a contradiction among previous assumptions, and cause the offending 

assumption to be retracted. 
• Propose an assertion about the substitution cipher. 
• Tell the controller that it has some interesting knowledge to contribute. 

 
These are all general actions that are independent of the specific kind of knowledge source. 
To generalize even further, these actions represent the behavior of an inference engine. 
Simply stated, an inference engine is an object that, given a set of rules, evaluates those rules 
either to generate new rules (forward-chaining) or to prove some hypothesis (backward-
chaining). Thus, we propose the following class: 
 
class InferenceEngine { 
public: 
 

InferenceEngine(DynamicSet<Rules*>); 
… 

}; 
 
 

 
 
Figure 11-4 
Scenario for Evaluating Knowledge Source Rules 
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The basic responsibility of the constructor is to create an instance of this class and populate it 
with a set of rules, which it then uses for evaluation. 
 
In fact this class has only one critical operation that it makes visible to knowledge sources: 

• evaluate Evaluate the rules of the inference engine 
 
This then is how knowledge sources collaborate: each specialized knowledge source defines 
its own knowledge-specific rules, and delegates responsibility for evaluating these rules to 
the class InferenceEngine. More precisely, we may say that the operation KnowledgeSource::evaluate 
ultimately involves the operation InferenceEngine::evaluate, the results of which are used to carry 
out any of the four actions we discussed earlier. In Figure 11-4, we illustrate a common 
scenario of this collaboration. 
 
What exactly is a rule? Using a Lisp-Like format, we might compose the following rule for the 
common suffix knowledge source: 
 
(( * I ? ?) 
 (* I N G) 
 (* I E S) 
 (* I E D)) 
 
This rule means that, given a string of letters matching the regular expression pattern *I?? (the 
antecedent), the candidate suffixes include ING, IES, and IED (the consequents). In C++, we 
might define a class that represents a rule as follows: 
 
class Rule {  
public: 
 

int bind(String<char>& antecedent, String<char>& consequent);  
int remove(String<char>& antecedent);  
int remove(String<char>& antecedent, StringChar>& consequent); 
 
int hasConflict(const String<char>& antecedent) const; 

 
protected: 
 

String<char> antecedent;  
List<String<char> > consequents; 

}; 
 
The intended semantics of these operations follow their names. Again, we reuse some of the 
classes described in Chapter 9. 
 
In terms of its class structure, we may thus say that a knowledge source is a kind of inference 
engine. Additionally, each knowledge source must have some association with a blackboard 
object, for that is where it finds the objects upon which it operates. Finally, each knowledge 
source must have an association to a controller, with which it collaborates by sending hints of 
solutions; in turn, the controller might trigger the knowledge source from time to time. 
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We may express these design decisions as follows: 
 
class KnowledgeSource : public InferenceEngine, 
     public Dependent { 
 
public: 
 

KnowledgeSource(Blackboard*, Controller*); 
 
… 
 
void reset();  
void evaluate(); 

 
Protected: 
 
Blackboard*  blackboard; 
Controller*  controller;  
UnboundedOrderedCollection<Assumption*> pastAssumptions; 
 
}; 
 
We also introduce the protected object pastAssumptions, so that the knowledge source can keep 
track of all the assumptions and assertions it has ever made, in order to learn from its 
mistakes. 
 
Instances of the class Blackboard serve as a repository of blackboard objects. For a similar 
reason, we need a KnowledgeSources class, denoting the entire collection of knowledge sources 
for a particular problem. Thus, we may write 
 
class KnowledgeSources : public DynamicCollection<KnowledgeSource*> ... 
 
One of the responsibilities of this class is that when we create an instance of KnowledgeSources, 
we also create the thirteen individual knowledge source objects. We may perform three 
operations upon instances of this class: 
 

• restart Restart the knowledge sources. 
• startKnowledgeSource Give a specific knowledge source its initial 

conditions. 
• connect Attach the knowledge source to the 

blackboard or to the controller. 
 
Figure 11-5 provides the class structure of the KnowledgeSource classes, according to these 
design decisions. 
 
Design of the Controller 
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Consider for a moment how the controller and individual knowledge sources interact. At 
each stage in the solution of a cryptogram, a particular knowledge source might discover that 
it has a useful contribution to make, and so gives a hint to the controller. Conversely, the 
knowledge source might decide that its earlier hint no longer applies, and so may remove the 
hint. Once all knowledge sources have been given a chance, the controller selects the most 
promising hint and activates the appropriate knowledge source by invoking its evaluate 
operation. 
 
How does the controller decide which knowledge source to activate? We may devise a few 
suitable rules: 
 

• An assertion has a higher priority than an assumption. 
• The solver knowledge source provides the most useful hints.  
• The pattern-matcher knowledge source provides higher-priority hints than the 

sentence-structure knowledge source. 
 
A controller thus acts an agent responsible for mediating among the various knowledge 
sources that operate upon a blackboard. 
 
The controller must have an association to its; knowledge sources, which it can access 
through the appropriately-named class KnowledgeSources. Additionally, the controller must 
have as one of its properties a collection of hints, ordered according to its priority. In this 
manner, the controller can easily select for activation the knowledge source with the most 
interesting hint to offer. 
 
Engaging in a little more isolated class design, we offer the following operations for the 
Controller class: 
 

• reset Restart the controller. 
• addHint Add a knowledge source hint. 
• removeHint Remove a knowledge source hint. 
• processNextHint Evaluate the next highest: priority hint. 
• isSolved selector: return true if the problem is solved. 
• unableToProceed selector: return true if the knowledge. sources 

are stuck. 
• connect Attach the controller to the knowledge 

source. 
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Figure 11-5 
Knowledge Sources Class Diagram 
 
 
 
We may capture these decisions in the following declaration: 
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Figure 11-6 
Controller Finite State Machine 
 
class Controller {  
public: 
 
void reset();  
void connect(KnowledgeSource&);  
void addHint(KnowledgeSource&);  
void removeHint(KnowledgeSource&);  
void processNextHint(); 
 
int isSolved() const;  
int unableToProceed() const; 
 
}; 
 
The controller is in a sense driven by the hints it receives from various knowledge sources. As 
such, finite state machines are well suited for capturing the dynamic behavior of this class. 
 
For example, consider the state transition diagram shown in Figure 11-6. Here we see that a 
controller may be in one of five major states: Initializing, Selecting, Evaluating, Stuck, and Solved. The 
controller's most interesting activity occurs between the Selecting and Evaluating states. While 
selecting, the controller naturally transitions from the state CreatingStrategy to ProcessingHint to 
and eventually to SelectingKS. If a knowledge source is in fact selected, then the controller 
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transitions to the Evaluating state, wherein it first: is in UpdatingBlackboard. It transitions to 
Connecting if objects are added, and to Backtracking if assumptions are retracted, at which time 
it also notifies all dependents. 
 

 
Figure 11-7 
Cryptanalysis Object Diagram 
 
The controller unconditionally transitions to Stuck if it cannot proceed, and to Solved if it 
finds a solved blackboard problem. 
 
11.3 Evolution 
 
Integrating the Blackboard Framework 
 
Now that we have defined the key abstractions for our domain, we may continue by putting 
them together to form a complete application. We will proceed by implementing and testing a 
vertical slice through the architecture, and then by completing the system one mechanism at a 
time. 
 
Integrating the Topmost Objects Figure 11-7 is an object diagram that captures our design 
of the topmost object in the system, paralleling the structure of the generic blackboard 
framework in Figure 11-1. In Figure 11-7, we show the physical containment of blackboard 
objects by the collection theBlackboard and knowledge sources by the collection 
theKnowledgeSources, using a shorthand style identical to that for showing nested classes. 
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In this diagram, we introduce an instance of a new class that we call Cryptographer. The intent 
of this class is to serve as an aggregate encompassing the blackboard, the knowledge sources, 
and the controller. In this manner, our application might provide several instances of this 
class, and thus have several blackboards running simultaneously. 
 
We define two primary operations for this class: 
 

• reset Restart the blackboard. 
• decipher Solve the given cryptogram. 

 
The behavior we require as part of this class's constructor is to create the dependencies 
between the blackboard and its knowledge sources, as well as between the knowledge 
sources and the controller. The reset method is similar, in that it simply resets these 
connections and returns the blackboard, the knowledge sources, and the controller back to a 
stable initial state. 
 
Although we will not show its details here, the signature of the operation decipher includes a 
string, through which we provide the ciphertext to be solved. In this manner, the root of our 
main program becomes embarrassingly simple, as is common in well-designed object-
oriented systems: 
 
char* solveProblem(char* ciphertext) 
  { 

Cryptographer theCryptographer;  
return theCryptographer.decipher(ciphertext); 

  }; 
 
The implementation of the decipher operation is, not surprisingly, slightly more complicated. 
Basically, we must first invoke the operation assertProblem to set up the problem on the 
blackboard. Next, we must start the knowledge sources by bringing their attention to this 
new problem. Finally, we must loop, telling the controller to process the next hint at each new 
pass, either until the problem is solved or until all the knowledge sources are unable to 
proceed. We could use an interaction diagram or object diagram to show this flow of control, 
although C++ code fragments work equally well for so simple an algorithm: 
 
theBlackboard.assertProblem();  
theKnowledgeSources.reset();  
while  (!theController.isSolved() ||theController.unableToProceed()) 
    theController.processNextHinto;  
if (theBlackboard.isSolved())  
    return theBlackboard.retrieveSolution(); 
 
As part of our evolution, we would be best: advised to complete enough of the relevant 
architectural interfaces so that we could complete this algorithm and execute it. Although at 
this point it would have minimal functionality, its implementation as a vertical slice through 
the architecture would force us to validate certain key architectural decisions. 
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Continuing, let's look at two of the key operations used in decipher, namely, assertProblem and 
retrieveSolution. The assertProblem operation is particularly interesting, because it must generate 
an entire set of blackboard objects. in the form of a simple script, our algorithm is as follows: 
 

 
Figure 11-8 
Assumption Mechanism 
 
trim all leading and trailing blanks from the string  
return if the resulting string is empty  
create a sentence object  
add the sentence to the blackboard  
create a word object (this will be the leftmost word in the sentence)  
add the word to the blackboard  
add the word to the sentence  
for each character in the string, from left to right  
    if the character is a space 

make the current word the previous word  
create a word object  
add the word to the blackboard  
add the word to the sentence 

    else  
create a cipher-letter object  
add the letter to the blackboard  
add the letter to the word 

 
As we described in Chapter 6, the purpose of design is simply to provide a blueprint for 
implementation. This script supplies a sufficiently detailed algorithm, so we need not show 
its complete implementation in C++. 
 
The operation retrieveSolution is far simpler; we simply return the value of the sentence on the 
blackboard: Calling retrieveSolution before isSolved evaluates true will yield partial solutions. 
 



 Chapter 11: Artificial Intelligence      445 

Implementing the Assumption Mechanism At this point, we have implemented the 
mechanisms that allow us to set and retrieve values for blackboard objects. The next major 
function point involves the mechanism for making assumptions about blackboard objects. 
This is a particularly significant issue, because assumptions are dynamic (meaning that they 
are routinely created and destroyed during the process of forming a solution) and their 
creation or retraction triggers controller events. 
 
Figure 11-8 illustrates the primary scenario of when a knowledge source states an 
assumption. As this diagram shows, once the knowledge source creates an assumption, it 
notifies the blackboard, which in turn makes the assumption for its alphabet and then for 
each blackboard object to which the assumption applies. Using the dependency mechanism, 
the affected blackboard object in turn. might notify its dependent knowledge sources. 
 
In its most naive implementation, retracting an assumption simply undoes the work of this 
mechanism. For example, to retract an assumption about a cipher letter, we just pop its 
collection of assumptions, up to and including the assumption we are retracting. In this 
manner, the given assumption and all assumptions that built upon it are undone. 
 
A more sophisticated mechanism is possible. For example, suppose that we made an 
assumption that a certain one-letter word is really just the letter I (assuming we need a 
vowel). We might make a later assumption that a certain double-letter word is NN (assuming 
we need a consonant). If we then find we must retract the first assumption, we probably don't 
have to retract the second one. This approach requires us to add a new behavior to the class 
Assumption, so that it can keep track of what assumptions are dependent upon others. We can 
reasonably defer this enhancement until much later in the evolution of this system, because 
adding this behavior has no architectural impact. 
 
Adding New Knowledge Sources 
 
Now that we have the key abstractions of the blackboard framework in place, and once the 
mechanisms for stating and retracting assumptions are working, our next step is to 
implement the InferenceEngine class, since all knowledge sources depend upon it. As we 
mentioned earlier, this class has only one really interesting operation, namely, evaluateRules. 
We will not show its details here, because this particular method reveals no new important 
design issues. 
 
Once we are confident that our inference engine works properly, we may incrementally add 
each knowledge source. We emphasize the use of an incremental process for two reasons: 
 

• For a given knowledge source, it is not clear what rules are really important until we 
apply them to real problems. 

• Debugging the knowledge base is far easier if we implement and test smaller related 
sets of rules, rather than trying to test them all at once. 
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Fundamentally, implementing each knowledge source is largely a problem of knowledge 
engineering. For a given knowledge source, we must confer with an expert (perhaps a 
cryptologist) to decide what rules are meaningful. As we test each knowledge source, our 
analysis may reveal that certain rules are useless, others are either too specific or too general, 
and perhaps some are missing. We may then choose to alter the rules of a given knowledge 
source or even add new sources of knowledge. 
 
As we implement each knowledge source, we may discover the existence of common rules as 
well as common behavior. For example, we might notice hat the WordStructureKnowledgeSource 
and the SentenceStructureKnowledgeSource share a common behavior, in that both must know how 
to evaluate rules regarding the legal ordering of certain constructs. The former knowledge 
source is interested in the arrangement of letters; the latter is interested in the arrangement of 
words. In either case, the processing is the same; thus it is reasonable for us to alter the 
knowledge source class structure by developing a new mixin class, called 
StructureKnowledgeSource, in which we place this common behavior. 
 
This new knowledge source class hierarchy highlights the fact that evaluating a set of rules is 
dependent upon both the kind of knowledge source as well as the kind of blackboard object. 
For example, given a specific knowledge source, it might use forward-chaining on one kind of 
blackboard object, and backward-chaining on another. Furthermore, given a specific 
blackboard object, how it is evaluated will depend upon which knowledge source is applied. 
 
 
11.4 Maintenance 
 
Adding New Functionality 
 
In this section, we consider an improvement to the functionality of the cryptanalysis system 
and observe how our design weathers the change. 
 
In any intelligent system, it is important to know what the final answer is to a problem, but it 
is often equally important to know how the system arrived at this solution. Thus, we desire 
our application to be introspective: it should keep track of when knowledge sources were 
activated, what assumptions were made and why, and so on, so that we can later question it, 
for example, about why it made an assumption, how it arrived at another assumption, and 
when a particular knowledge source was activated. 
 
To add this new functionality, we need to do two things. First, we must devise a mechanism 
for keeping track of the work that the controller and each knowledge source perform, and 
second, we must modify the appropriate operations so that they record this information. 
Basically, the design calls for the knowledge sources and the controller to register what they 
did in some central repository. 
 
Let's start by inventing the classes needed to support this mechanism. First, we might define 
the class Action, which serves to record what a particular knowledge source or controller did: 
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class Action { 
public: 
 

Action(KnowledgeSource* who, Blackboardubject* what, char* why); 
Action(Controller* who, KnowledgeSource* what, char* why); 

 
}; 
 
For example, if the controller selected a particular knowledge source for activation, it would 
create an instance of this class, set the who argument to itself, set the what argument to the 
knowledge source, and set the why argument to some explanation (perhaps including the 
current priority of the hint). 
 
The first part of our task is done, and the second part is almost as easy. Consider for a 
moment where important events take place in our application. As it turns out, there are five 
primary kinds of operations that are affected: 
 

• Methods that state an assumption 
• Methods that: retract an assumption 
• Methods that activate a knowledge source 
• Methods that cause rules to be evaluated 
• Methods that register hints from a knowledge source 

 
Actually, these events are largely constrained to two places in the architecture: as part of the 
controller's finite state machine, and as part of the assumption mechanism. Our maintenance 
task, therefore, involves touching all the methods that play a role in these two places, a task 
which is tedious but by no means rocket science. Indeed, the most important discovery is that 
adding this new behavior requires no significant architectural change. 
 
To complete our work here, we must also implement a class that can answer who, what, 
when, and why questions from the user. The design of such an object is not terribly difficult, 
because all the information it needs to know may be found as the state of instances of the 
class actions. 
 
 
Changing the Requirements 
 
Once we have a stable implementation in place, many new requirements can be incorporated 
with minimal change to our design. Let's consider three kinds of new requirements: 
 

• The ability to decipher languages other than English 
• The ability to decipher using transposition ciphers as well as single-substitution 

ciphers 
• The ability to learn from experience 
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The first change is fairly easy, because the fact that our application uses English is largely 
immaterial to our design. Assuming the same character set is used, it is mainly a matter of 
changing the rules associated with each knowledge source. Actually, changing the character 
set is not that difficult either, because even the alphabet class is not dependent upon what 
characters it manipulates. 
 
The second change is much harder, but it is still possible in the context of the blackboard 
framework. Basically, our approach is to add new sources of knowledge that embody 
information about transposition ciphers. Again, this change does not alter any existing key 
abstraction or mechanism in our design; rather, it involves the addition of new classes that 
use existing facilities, such as the InferenceEngine class and the assumption mechanism. 
 
The third change is the hardest of all, mainly because machine learning is on the fringes of 
our knowledge in artificial intelligence. As one approach, when the controller discovers it can 
no longer proceed, it might ask the user for a hint. By recording this hint, along with the 
actions that led up to the system being stuck, the blackboard application can avoid a similar 
problem in the future. We can incorporate this simplistic learning mechanism without vastly 
altering any of our existing classes; as with all the other changes, this one can build on 
existing facilities. 
 
Further Readings 
 
In the context of architectural patterns, Shaw [A 1991] discusses blackboard frameworks as 
well as other kinds of application frameworks. 
 
Englemore and Morgan [C 1988] furnish a comprehensive treatment of blackboard systems, 
including their evolution, theory, design, and application. Among other topics, there are 
descriptions of two object-oriented blackboard systems, B131 from Stanford, and BLOB, 
developed for the British Ministry of Defense. Other useful sources of information regarding 
blackboard systems may be found in Hayes-Roth[J 1985] and Nii [J 1986]. 
 
Detailed discussions concerning forward- and backward-chaining in rule-based systems may 
be found in Barr and Feigenbaum U 19811; Brachman and Levesque U 19851; Hayes--Roth, 
Waterman, and Lenat U 19831; and Winston and Hom [G 19891. 
 
Meyer and Maryas [1 1982] cover the strengths and weaknesses of various kinds of ciphers, 
along with algorithimic approaches to breaking them. 
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Command and Control:  
Traffic Management 
 
 
 
 
 
The economics of software development have progressed to the point where it is now 
feasible to automate many more kinds of applications than ever before, ranging from 
embedded microcomputers that control automobile engines to tools that eliminate much of 
the drudgery associated with producing an animated film, to systems that manage the 
distribution of interactive video services to millions of consumers. The distinguishing 
characteristic of all these larger systems is that they are extremely complex. Building 
systems so that their implementation is small is certainly an honorable task, but reality 
tells us that certain large problems demand large implementations. For some massive 
applications, it is not unusual to find software development organizations that employ 
several hundred programmers who must collaborate to produce a million or more lines of 
code against a set of requirements that are guaranteed to be unstable during development. 
Such projects rarely involve the development of single programs; they more often 
encompass multiple, cooperative programs that must execute across a distributed target 
system consisting of many computers connected to one another in a variety of ways. To 
reduce development risk, such projects usually involve a central organization that is 
responsible for systems architecture and integration; the remaining work is subcontracted 
to other companies. Thus, the development team as a whole never assembles as one; it is 
typically distributed over space and - because of the personnel turnover common in large 
projects - over time. 
 
Developers who are content with writing small, stand-alone, single-user, window-based 
tools may find the problems associated with building massive applications staggering - so 
much so that they view it as folly even to try. However, the actuality of the business and 
scientific world is such that complex software systems must be built. Indeed, in some 
cases, it is folly not to try. Imagine using a manual system to control air traffic around a 
major metropolitan center or to manage the life-support system of a manned spacecraft or 
the accounting activities of a multinational bank. Successfully automating such systems 
not only addresses the very real problems at hand, but also leads to a number of tangible 
and intangible benefits, such as lower operational costs, greater safety, and increased 



 Chapter 12: Command and Control      450 

functionality. Of course, the operative word here is successfully. Building complex systems 
is plain hard work, and requires the application of the best engineering practices we know, 
along with the creative insight of a few great designers. 
 
This chapter tackles such a problem, to demonstrate that the notation and process of 
object-oriented development scale up to programming-in-thecolossal. 
 
 
12.1 Analysis 
 
 
Defining the Boundaries of the Problem 
 
To most people living in the United States, trains are an artifact of an era long past; in Europe 
and in many parts of the Orient, the situation is entirely the opposite. Unlike the United 
States, for example, Europe has few national and international highways, and gasoline and 
automobile prices are comparatively very high. Thus, trains are an essential part of the 
continent's transportation network; tens of thousands of kilometers of track carry people and 
goods; daily, both within cities and across national borders. In all fairness, trains do still 
provide an important and economical means of transporting goods within the United States. 
Additionally, as major metropolitan centers grow more crowded, light rail transport is 
increasingly viewed as an attractive option to easing congestion and addressing the problems 
of pollution from internal combustion engines. 
 
Still, railroads are a business and consequently must be profitable. Railroad companies must 
delicately balance the demands of frugality and safety and the pressures to increase traffic 
against efficient and predictable train scheduling. These conflicting needs suggest an 
automated solution to train traffic management, including computerized train routing and 
monitoring of all elements of the train system. 
 
Such automated and semiautomated train systems exist today in Sweden, Great Britain, West 
Germany, France, and Japan [1]. A similar system, called the Advanced Train Control System, 
has been under development in Canada and the United States, with participation by Amtrak, 
Burlington, the Canadian National Railway Company, CP Rail, CSX Transportation, the 
NorfoIk and Western Railway Company, the Southern Railway Company, and Union Pacific. 
The motivation for each of these systems is largely economic and social: lower operating costs 
and more efficient utilization of resources are the goals, with improved safety as an integral 
by-product. 
 
The sidebar provides the basic requirements for a train traffic management system. 
Obviously, this is a highly simplified statement of requirements. In practice, detailed 
requirements for an application as large as this come about only after the viability of an 
automated solution is demonstrated, and then only after many hundreds of person/months 
of analysis involving the participation of numerous domain experts and the eventual users 
and clients of the system, Ultimately, the requirements for a large system may encompass 
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thousands of pages of documentation, specifying not only the general behavior of the system, 
but intricate details such as the screen layouts to be used for human/machine interaction. 
 
Even from these highly elided system requirements, we can make two observations about the 
process of developing a traffic management system: 
 

• The architecture must be allowed to evolve over time. 
• The implementation must rely upon existing standards to the largest extent practical. 

 
Our experience with developing large systems has been that an initial statement of 
requirements is never complete, often vague, and always self-contradictory. For these 
reasons, we must consciously concern ourselves with the management of uncertainty during 
development, and therefore we strongly suggest that the development of such a system be 
deliberately allowed to evolve over time in an incremental and iterative fashion. As we 
pointed out in Chapter 7, the very process of development gives both users and developers 
better insight into what requirements are really important - far better than any paper exercise 
in writing requirements documents in the absence of an existing implementation or 
prototype. Also, since developing the software for a large system may take several years, 
software requirements must be allowed to change to take advantage of the rapidly changing 
hardware technology108. It is undeniably futile to craft an elegant software architecture 
targeted to a hardware technology that is guaranteed to be obsolete by the time the system is 
fielded. This is why- we suggest that, whatever mechanisms we craft as part of our software 
architecture, we should rely upon existing standards for communications, graphics, 
networking, and sensors. For truly novel systems, it 
 
Traffic Management System Requirements 
 
The traffic management system has two primary functions: train routing and train-systems 
monitoring. Related functions include traffic planning, trainlocation tracking, traffic 
monitoring, collision avoidance, failure prediction, and maintenance logging. Figure 12-1 
provides a block diagram for the major elements of the traffic management system [2]. 
 
The locomotive analysis and reporting system includes several discrete and analog sensors 
for monitoring elements such as oil temperature, oil pressure, fuel quantity, alternator volts 
and amperes, throttle setting, engine RPM, water temperature, and drawbar force. Sensor 
values are presented to the train engineer via the on-board display system and to dispatchers 
and maintenance personnel elsewhere on the network. Warning or alarm conditions are 

                                                 
108 In fact, for many such systems of this complexity, it is common to have to deal with many different kinds of 
computers. Having a weIl-thought out and stable architecture mitigates much of the risk of changing hardware 
in the middle of development, an event that happens all too often in the face of the rapid1y changing hardware 
business. Hardware products come and go, and therefore it is important to manage the hardware/software 
boundary of a system so that new products can be introduced that reduce the system's cost or improve its; 
performance, while at the same time preserving the integrity of the system's architecture. 
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registered whenever certain sensor values fall outside of normal operating range. A log of 
sensor values is maintained to support maintenance and fuel management. 
 
The energy management system advises the train engineer in real time as to the most efficient 
throttle and brake settings. Inputs to this system include track profile and grade, speed limits, 
schedules, train load, and power available, from which the system can determine fuel-
efficient throttle and brake settings that are consistent with the desired schedule and safety 
concerns. Suggested throttle and brake settings, track profile and grade, and train position 
and speeds are made available for display on the on-board display system. 
 
,The on-board display system provides the human/machine interface for the train engineer. 
information from the locomotive analysis and reporting system, the energy management 
system, and the data management unit are made available for display. Soft keys exist to 
permit the engineer to select different displays. 
 
The data management unit serves as the communications gateway between all on-board 
systems and the rest of the network, to which all trains, dispatchers, and other users are 
connected. 
 
Train-location tracking is achieved via two devices on the network: location transponders and 
the Navistar global positioning system (GPS). The locomotive analysis and reporting system 
can determine the general location of a train via dead reckoning, simply by counting wheel 
revolutions. This information is augmented by information from location transponders, 
which are placed every kilometer along a track and at critical track junctions. These 
transponders relay their identity to passing trains via their data management units, from 
which a more exact train location may be determined. Trains may also be equipped with GPS 
receivers, from which train location may be determined to within 1 meter. 
 
A wayside interface unit is placed wherever there is some controllable device (such as a 
switch) or a sensor (such as an infrared sensor for detecting overheated wheel bearings). Each 
wayside interface unit may receive commands from a local ground-terminal controller (for 
example, to turn a signal on or off). Devices may be overridden by local manual control. Each 
unit can also report its current setting. A ground-terminal control serves to relay information 
to and from passing trains and to and from wayside interface units. Ground-terminal 
controllers are placed along a track, spaced close enough so that every train is always within 
range of at least one terminal. 
 
Every ground-terminal controller relays its information to a common network control system. 
Connections between the network-control system and each ground-terminal controller may 
be made via microwave link, landlines, or fiber optics, depending upon the remoteness of 
each ground~ terminal controller. The network control system monitors the health of the 
entire network and can automatically route information in alternate ways in the event of 
equipment failure. 
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Figure 12-1 
Traffic Management System 
 
The network control system is ultimately connected to one or more dispatch centers, which 
comprise the rail-operations control system and other users. At the rail-operations control 
system, dispatchers can establish train routes and track the progress of individual trains. 
Individual dispatchers control different territories; each dispatcher's control console may be 
set up to control one or more territories. Train routes include instructions for automatically 
switching trains from track to track, setting speed restrictions, setting out or picking up cars, 
and allowing or denying train clearance to a specific track section. Dispatchers may note the 
location of track work along train routes for display to train engineers. Trains may be stopped 
from the rail-operations control system (manually by dispatchers or automatically) when 
hazardous conditions are detected (such as a runaway train, track failure, or a potential 
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collision condition). Dispatchers can also call up any information available to individual train 
engineers, as well as send movement authority, wayside device settings, and plan revisions. 
 
Track layouts and wayside equipment may change over time. The numbers of trains and their 
routes may change daily. The system must be designed to permit incorporation of new 
sensor, network, and processor technology. 
 
is sometimes necessary to pioneer new hardware or software technology. This adds risk to a 
large project, however, which already involves a customarily high risk. Software 
development clearly remains the technology of highest risk in the successful deployment of 
any large automated application, and our goal is to limit this risk to a manageable level, not 
to increase it. 
 
Obviously, we cannot carry out a complete analysis or design of this problem in a single 
chapter, much less a single book. Since our intent here is to explore how our notation and 
process scale up, we will focus upon the problem of building a resilient architecture for this 
domain. 
 
System Requirements Versus Software Requirements 
 
Large projects such as this one are usually organized around some small, centrally located 
team responsible for establishing the overall system architecture, with the actual 
development work subcontracted out to other companies or different teams within the same 
company. Even during analysis, system architects usually have in mind some conceptual 
model that divides the hardware and software elements of the implementation. One may 
argue that this is design, not analysis, but we counter by saying that one must start 
constraining the design space at some point. Indeed, it is difficult to ascertain if the block 
diagram in Figure 12-1 represents system requirements or a system design. Regardless of this 
issue, the block diagram clearly suggests that the system. architecture at this stage of 
development is principally object-oriented. For example, it shows complex objects such as the 
energy management system and the rail-operations control system, each of which performs a 
major function in the system. This is just as we discussed in Chapter 4: in large systems, the 
objects at the highest levels of abstraction tend to be clustered along the lines of major system 
functions. How we identify and refine these objects during analysis is little different than how 
we do so during design. 
 
Once we have a straw-man architecture at the level of a block diagram like the one in Figure 
12-1, we can begin our analysis by working with domain experts to articulate the primary 
scenarios that cover the system's desired behavior, just as we described in Chapter 6. For 
more detail, we might use interaction diagrams, object diagrams, simple scripts, or prototypes 
to illustrate the expected behavior of the system. For example, in Figure 12-2, we provide an 
interaction diagram that captures one simple scenario for processing a daily train order. At 
this level of analysis, it is sufficient for us to capture only the major events and interactions 
that must occur to carry out each behavior. Details such as operation signatures and the 



 Chapter 12: Command and Control      455 

representation of associations are tactical issues that should be deferred until later phases of 
design. 
 

 
Figure 12-2 
Scenario for Processing Daily Train Orders 
 
For a system of this magnitude, it would not be unusual for us to identify a few hundred 
primary scenarios109. As we also suggested in Chapter 6, the 80% rule applies here: it is 
sufficient for us to capture 80% of a system's scenarios before we move on to architectural 
design. Trying to "finish" analysis before proceeding is both futile and misleading. 
 
Eventually, we must translate these system requirements into requirements for the hardware 
and software segments of the system, so that different organizations, each with different 
skills, can proceed in parallel to attack their particular part of the problem (but always with 
some central group promoting and preserving the systems architectural vision). Making these 
hardware and software trade-offs is a difficult task, particularly if the hardware and software 
organizations are loosely coupled, and especially if they are parts of entirely different 
companies. Sometimes it is intuitively obvious that certain hardware should be employed. 
For example, one might use off-the-shelf terminals or workstations for both. The on-board 
display system and for the displays in the rail-operations control centers. Similarly, it may be 
obvious, for example, that software is the right implementation vehicle for describing train 
schedules. The decisions about which platform to use for everything else, either a hardware 
or software implementation, depends as much on the personal preferences of the system 
architects as on anything else. One might throw special hardware at the problem where 
performance needs are critical, or use software where flexibility is more important. 
 
For the purposes of our problem, we assume that an initial hardware architecture has been 
chosen by the system architects. This choice need not be considered irreversible, but at least it 
gives us a starting point in terms of where to allocate software requirements. As we proceed 
                                                 
109 We have encountered software projects whose products of analysis alone consumed more than 8,000 pages 
of documentation, a sign of overzealous analysts. Projects that start off in this manner are rarely successful. 
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with our analysis and then design, we need the freedom to trade off hardware and software: 
we might later decide that additional hardware is needed to satisfy some requirement, or that 
certain functions can be performed better through software than hardware. 
 
Figure 12-3 illustrates the target hardware for the traffic management system, using our 
notation for process diagrams. This process architecture parallels the block diagram of the 
system in Figure 12-1. Specifically, there is one computer on board each train, encompassing 
the locomotive analysis and reporting system, the energy management system, the on-board 
display system, and the data management unit. We expect that some of the on-board devices, 
such as the display, are intelligent, but we assume that these devices are not necessarily 
programmable. Continuing, each location transponder is connected to a transmitter, through 
which messages may be sent to passing trains; no computer is associated with a location 
transponder. On the other hand, each collection of wayside devices(each of which 
encompasses a wayside interface unit and its switches) is controlled by a computer that may 
communicate via its transmitter and receiver with a passing train or a ground-terminal 
controller. Each ground-terminal controller ultimately connects to a local area network, one 
for each dispatch center (encompassing the rail-operations control system). Because of the 
need for uninterrupted service, we have chosen to place two computers at each dispatch 
center: a primary computer and a backup computer that we expect will be brought on-line 
whenever the primary computer fails. During idle periods, the backup computer can be used 
to service the computational needs of other, lower priority users. 
 
When operational, the traffic management system may involve hundreds of computers, 
including one for each train, one for each wayside interface unit, and two at each dispatch 
center. The process diagram only shows the presence of a few of these computers, since the 
configurations of similar computers are completely redundant. 
 
As we discussed in Chapters 6 and 7, the key to maintaining sanity during the development 
of any complex project is to engineer sound and explicit interfaces among the key parts of the 
system. This is particularly important when defining hardware and software interfaces. At 
the start, interfaces can be loosely defined, but they must quickly be formalized so that 
different parts of 
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Figure 12-3 
Traffic Management System Process Diagram 
 
the system can be developed, tested, and released in parallel. Well-defined interfaces also 
make it far easier to make hardware/software trade-offs as opportunities arise, without 
disrupting already completed parts of the system. Furthermore, we cannot expect all of the 
developers in a large development organization to be programming athletes. We, must 
therefore leave the specification of these key abstractions and mechanisms to our best 
architects. 
 
Key Abstractions and Mechanisms 
 
A study of the requirements for the traffic management system suggests that we really have 
four different subproblems to solve: 
 

• Networking 
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• Database 
• Human/machine interface 
• Real-time analog device control 

 
How did we come to identify these problems as those involving the greatest development 
risk? 
 
The thread that ties this system together is a distributed communications network. Messages 
pass by radio from transponders to trains, between trains and ground-terminal controllers, 
between trains and wayside interface units, and between ground-terminal controllers and 
wayside interface units. Messages must also pass between dispatch centers and individual 
ground-terminal controllers. The safe operation of this entire system depends upon the timely 
and reliable transmission and reception of messages. 
 
Additionally, this system must keep track of the current locations and planned routes of 
many different trains simultaneously. We must keep this information current and self-
consistent, even in the presence of concurrent updates and queries from around the network. 
This is basically a distributed database problem. 
 
The engineering of the human/machine interfaces poses a different set of problems. 
Specifically, the users of this system are principally train engineers and dispatchers, none of 
whom are necessarily skilled in using computers. The user interface of an operating system 
such as UNIX or Windows might be marginally acceptable to a professional software 
engineer, but it is often regarded as user-hostile by end users of applications such as the 
traffic management system. All forms of user interaction must therefore be carefully 
engineered to suit this domain-specific group of users. 
 
Lastly, the traffic management system must interact with a variety of sensors and actuators. 
No matter what the device, the problems of sensing and controlling the environment are 
similar, and so should be dealt with in a consistent manner by the system. 
 
Each of these four subproblems involves largely independent issues. Our system architects 
need to identify the key abstractions and mechanisms involved in each, so that we can assign 
experts in each domain to tackle their particular subproblem in parallel with the others. Note 
that this is not a problem of analysis or design: our analysis of each problem will impact our 
architecture, and our designs will uncover new aspects of the problem that require further 
analysis. Development is thus unavoidably iterative and incremental. 
 
If we do a brief domain analysis across these four problem areas, we find that there are three 
common high-level key abstractions: 
 

• Trains Including locomotives and cars 
• Tracks Encompassing profile, grade, and wayside 

devices 
• Plans Including schedules, orders, clearances, 
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authority, and crew assignments 
 
Every train has a current location on the tracks, and each train has exactly one active plan. 
Similarly, the number of trains at each point on the tracks may be zero or one; for each plan, 
there is exactly one train, involving many points on the tracks. 
 
Continuing, we may devise a key- mechanism for each of these four nearly independent 
subproblems: 
 

• Message passing 
• Train-schedule planning 
• Displaying 
• Sensor data acquisition 

 
These four mechanisms form the soul of our system. They represent approaches to what we 
have identified as the areas of highest development risk. It is therefore essential that we 
deploy our best system architects here to experiment with alternative approaches and 
eventually settle upon a framework from. Which more junior developers may compose the 
rest of the system. 
 
12.2 Design 
 
As we discussed in Chapter 6, architectural design involves the establishment of the central 
class structure of the system, plus a specification of the common collaborations that animate 
these classes. Focusing upon these mechanisms early directly attacks the elements of highest 
risk in the system, and serves to concretely capture the vision of the system's architects. 
Ultimately, the products of this phase serve as the frameworks of classes and collaborations 
upon which the other functional elements of the final system build. 
 
In this section, we will examine the semantics of each of this system's four key mechanisms. 
 
Message Passing 
 
By message, we do not mean to imply method invocation, as in an object oriented 
programming language; rather, we are referring to a concept in the vocabulary of the problem 
domain, at a much higher level of abstraction. For example, typical messages in the traffic 
management system include signals to activate wayside devices, indications of trains passing 
specific locations, and orders from dispatchers to train engineers. In general, these kinds of 
messages are passed at two different levels within the traffic management system: 
 

• Between computers and devices 
• Among computers 
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Our interest is in the second level of message passing. Because our problem involves a 
geographically distributed communications network, we must consider issues such as noise, 
equipment failure, and security. 
 
We can make a first cut at identifying these messages by examining each pair of 
communicating computers, as shown in our process diagram in Figure 12-3. For each pair, we 
must ask three questions: (1) what information does each computer manage? (2) What 
information should be passed from one computer to the other? (3) At what: level of 
abstraction should this information be? There is no empirical solution for these questions. 
Rather, we must use an iterative approach until we are satisfied that the right messages have 
been defined and that there are no communications bottlenecks in the system (perhaps 
because of too, many messages over one path, or messages being too large or too small). 
 
It is absolutely critical at this level of design to focus upon the substance, not the form, of 
these messages. Too often, we have seen system architects start off by selecting a bit-level 
representation for messages. The real problem with prematurely choosing such a low-level 
representation is that it is guaranteed to change and thus disrupt every client that depends 
upon a particular representation. Furthermore, at this point in the design process, we cannot 
know enough about how these messages will be used to make intelligent decisions about 
time- and space-efficient representations. 
 
By focusing upon the substance of these messages, we mean to urge a focus upon the outside 
view of each class of messages. in other words, we must decide upon the roles and 
responsibilities of each message, and what operations we can meaningfully perform upon 
each message. 
 
The class diagram in Figure 12-4 captures our design decisions regarding some of the most 
important messages in the traffic management system. Note that all messages are ultimately 
instances of a generalized abstract class named Message, which encompasses the behavior 
common to all messages. Three lowerlevel classes represent the major categories of messages, 
namely, train status messages, train plan messages, and wayside device messages. Each of 
these classes is further specialized. Indeed, our final design might include dozens of such 
specialized classes, at which time the existence of these intermediate classes becomes even 
more important; without them, we would end up with many unrelated - and therefore 
difficult to maintain - modules representing each distinct specialized class. As our design 
unfolds, we are likely to discover other important groupings of messages and so invent other 
intermediate classes. Fortunately, reorganizing our class lattice in this manner tends to have 
minimal semantic impact upon the clients that ultimately use the leaf classes. 
 
As part of architectural design, we would be wise to stabilize the interface of the key message 
classes early. We might start with a domain analysis of the more interesting leaf classes in this 
hierarchy, in order to formulate the roles and responsibilities of all such classes, which we 
could then capture concretely in C++ class declarations. We begin with the invention of two 
typedefs: 
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// Number denoting a unique packet number  
typedef unsigned int PacketId; 
 
// Number denoting a unique network id 
typedef unsigned int NodeId; 
 

 
 
Figure 12-4 
Message Class Diagram 
 
We follow this with the declaration of the abstract base class Message: 
 
class Message {  
public: 
 

Message();  
Message(NodeId sender);  
Message(const Message&);  
virtual ~Message(); 
 
virtual Message& operator=(const Message&);  
virtual Boolean operator=(const Message&);  
Boolean operator!=(const Message&); 
 
PacketId id() const;  
Time timestamp() const;  
NodeId sendero const;  
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virtual Boolean isIntact() const = 0; 
 
}; 
 
The responsibilities of this class include managing a unique message id, time stamp, and 
sender id, as well as ensuring message integrity (namely, knowing whether or not a message 
is a syntactically or semantically legal message in the system). This latter behavior is what 
makes messages more than just simple records of data. As usual, messages are also 
responsible for knowing how to copy, assign, and test (for equality) themselves. 
 

 
Figure 12-5 
Message Passing 
 
[Crosses node boundaries 
Once we have designed the interface of the more important messages, we can write programs 
that build upon these classes to simulate the creation and reception of streams of messages. 
We can use these programs as a temporary scaffolding to test different parts of the system 
during development and before the pieces with which they interface are completed. 
 
The class diagram in Figure 12-4 is unquestionably incomplete. In practice, we find that: we 
can identify the most important messages first and let all others evolve as we uncover the less 
common forms of communication. Using an object-oriented architecture allows us to add 
these messages incrementally without disrupting the existing design of the system, because 
such changes are generally upwardly compatible. 
 
Once we are satisfied with this class structure, we can begin to design the message passing 
mechanism itself. Here we have two competing goals: to devise a mechanism that provides 
for the reliable delivery of messages, and that does so at a high enough level of abstraction so 
that clients need not worry about how message delivery takes place. Such a message passing 
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mechanism allows its clients to make simplifying assumptions about how messages are sent 
and received. 
 
Figure 12-5 provides a scenario that captures our design of the message passing mechanism. 
As this diagram indicates, to send a message, a client first creates a new message M, and then 
broadcasts it to its node's message manager, whose responsibility is to queue the message for 
eventual transmission. Notice that our design allows the client to time out if the message 
manager cannot carry out the broadcast in a timely fashion. Notice also that the message 
manager receives the message to be broadcast as a parameter and then uses the services of a 
Transporter object to reduce the message to its canonical form and broadcast it across the 
network. 
 
 
As this diagram suggests, we choose to make this an asynchronous  operation because we 
don't want to make the client wait for the message to be sent across a radio link, which 
requires time for encoding, decoding, and perhaps retransmission because of noise. 
Eventually, some Listener object on the other side of the network receives this message, and 
presents it in a canonical form to its node's message manager, which in turn creates a parallel 
message and queues it. A receiver can block at the head of the message manager’s queue, 
waiting for the next message to arrive, which is delivered as a parameter to the operation 
nextMessage, a synchronous operation. 
 
Our design of the message manager places it at the application layer in the ISO OSI model for 
networks [4]. This allows all message-sending clients and message-receiving clients to operate 
at the highest level of abstraction, namely, in terms of application-specific messages. 
 
We expect the final implementation of this mechanism to be a bit more complex. For example, 
we might want to add behaviors for encryption and decryption and introduce codes to detect 
and correct errors, so as to ensure reliable communication in the presence of noise or 
equipment failures. 
 
Train-Schedule Planning 
 
As we noted earlier, the concept of a train plan is central to the operation of the traffic 
management system. Each train has exactly one active plan, and each plan is assigned to 
exactly one train and may involve many different orders and locations on the track. 
 
Our first step is to decide exactly what parts constitute a train plan. To do so, we need to 
consider all the potential clients of a plan and how we expect each of them to use that plan. 
For example, some clients might be allowed to create plans, others might be allowed to 
modify plans, and still others might be allowed only to read plans. in this sense, a train plan 
acts as a repository for all the pertinent information associated with the route of one 
particular train and the actions that take place along the way, such as picking up or setting 
out cars. 
 



 Chapter 12: Command and Control      464 

Figure 12-6 captures our strategic decisions regarding the structure of the TrainPlan class. As in 
Chapter 10, we use a class diagram to show the parts that compose a train plan (much as a 
traditional entity-relationship diagram would do). Thus, we see that each train plan has 
exactly one crew and may have many general orders and many actions. We expect these 
actions to be time-ordered, with each action composed of information such as time, a location, 
speed, authority, and orders. For example, a specific train plan might consist of the following 
actions: 
 

 
 
 

 
Figure 12-6 
TrainPlan Class Diagram 
 
 
As this diagram indicates, the class TrainPlan has one static member object, of the type UniqueId, 
whose purpose is to provide a so-called magic number for uniquely identifying each TrainPlan 
instance. 
 
As we did for the Message class and its subclasses, we can design the most important elements 
of a train plan early in the development process; its details will evolve over time, as we 
actually apply plans to various kinds of clients. 
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The fact that we may have a plethora of active, and inactive train plans at any one time 
confronts us with the database problem we spoke of earlier. The class diagram in Figure 12-6 
can serve as an outline for the logical schema of this database. The next question we might 
therefore ask is simply, where are train plans kept?. 
 
In a more perfect world, with no communication noise or delays and infinite computing 
resources, our solution would be to place all train plans in a single, centralized database. This 
approach would yield exactly one instance of each train plan. However, the real world is 
much more perverse, and so this solution is not practical. We must expect communication 
delays, and we don't have unlimited processor cycles. Thus, having to access a plan located in 
the dispatch center from a train would not at all satisfy our real-time and near-real-time 
requirements however, we can create the illusion of a single, centralized database in our 
software. Basically, our solution is to have a database of train plans located on the computers 
at the dispatch center, with copies of individual plans distributed as needed at sites around 
the network. For efficiency, then, each train computer could retain a copy of its current plan. 
Thus, on-board software could query this plan with negligible delay. If the plan 
 

 
Figure 12-7 
Train-Schedule Planning 
 
changed, either as a result of dispatcher action or (less likely) by the decision of the train 
engineer, our software would have to ensure that all copies of that plan were updated in a 
timely fashion. 
 
The way this scenario plays out is a function of our train-schedule planning mechanism, 
shown in Figure 12-7. The primary version of each train plan resides in a centralized database 
at a dispatch center, with zero or more mirror-image copies scattered about the network. 
Whenever some client requests a copy of a particular train plan (via the operation get, invoked 
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with a value of UniqueId as an argument), the state of this primary version is cloned and 
delivered to the client as a parameter. The location of the copy in the network is recorded in 
the database, and the copy of the plan retains a link back to the database. Now, suppose that a 
client on a train needed to make a change to a particular plan, perhaps as a result of some 
action by the train engineer. Ultimately, this client would invoke operations upon its copy of 
the train plan and so modify its state. These operations would also send messages to the 
centralized database, to modify the state of the primary version of the plan in the same way. 
Since we record the location in the network of each copy of a train plan, we can also broadcast 
messages to the centralized repository that force a corresponding update to the state of all 
remaining copies. To ensure that changes are made consistently across the network, we could 
employ a record-locking mechanism, so that train-plan changes would not be committed 
until all copies and the primary version were updated. 
 
This mechanism applies equally well if some client at the dispatch center initiates the change, 
perhaps as a result of some dispatcher action. First, the primary version of the plan would be 
updated, and then changes to all copies would be broadcast throughout the network, using 
the same mechanism. In either case, how exactly do we broadcast these changes? The answer 
is that we use the message passing mechanism devised earlier. Specifically, we would need to 
add to our design some new train-plan messages and then build our train-plan mechanism 
upon this lower-level message passing mechanism. 
 
Using commercial, off-the-shelf database management systems on the dispatch computers 
allows us to address any requirements for database backup, recovery, audit trails, and 
security. 
 
Displaying 
 
Using off-the-shelf technology for our database needs helps us to focus upon the domain-
specific parts of our problem. We can achieve similar leverage for our display needs by using 
standard graphics facilities, such as Microsoft Windows, or X Windows. Using off-the-shelf 
graphics software effectively raises the level of abstraction in our system, so that developers 
never need to worry about manipulating the visual representation of displayable objects at 
the pixel level. Still, it is important to encapsulate our design decisions regarding how various 
objects are represented visually. 
 
For example, consider displaying the profile and grade of a specific section of track. Our 
requirements dictate that such a display may appear in two different places: at a dispatch 
center and on board a train (with the display focusing only upon the track that lies ahead of 
the train). Assuming that we have some class whose instances represent sections of track, we 
might take two approaches to representing the state of such objects visually. First, we might 
have some display-manager object that builds a visual representation by querying the state of 
the object to be displayed. Alternately, we could eliminate this external object and have each 
displayable object encapsulate the knowledge of how to display itself. We prefer this second 
approach, because it is simpler and more in the spirit of the object model. 
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There is a potential disadvantage to this approach, however. Ultimately, we might have many 
different kinds of displayable objects, each implemented by different groups of developers. If 
we let the implementation of each displayable object proceed independently, we are likely to 
end up with redundant code, different implementation styles, and a generally 
unmaintainable mess. A far better solution is to do a domain analysis of all the kinds of 
displayable objects, determine what visual elements they have in common, and devise an 
intermediate set of class utilities that provide display routines for these common picture 
elements. These class utilities in turn can build upon lower level, off~ the-shelf graphics 
packages. 
 
Figure 12-8 illustrates this design, showing that the implementation of all displayable objects 
shares common class utilities. These utilities in turn build upon lower-level Windows 
interfaces, which are hidden from all of the higher-level classes. Pragmatically, interfaces such 
as the Windows API cannot easily be expressed in a single class or a class utility. Therefore, 
our diagram is a bit of a simplification: it is more likely that our implementation will require a 
set of peer class utilities for the Windows API as well as for the train display utilities. 
 

 
Figure 12-8  
Displaying 
 
The principle advantage of this approach is that it limits the impact of any lower-level 
changes resulting from hardware/software trade-offs. For example, if we find that we need to 
replace our display hardware with more or less powerful devices, then we need only 
reimplement the routines in the class TrainDisplayUtilities. Without this collection of routines, 
low-level changes would require us to modify the implementation of every displayable 
object. 
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Sensor Data Acquisition 
 
As our requirements suggest, the traffic management system includes many different kinds of 
sensors. For example, sensors on each train monitor the oil temperature, fuel quantity, throttle 
setting, water temperature, drawbar load, and so on. Similarly, active sensors in some of the 
wayside devices report among other things the current positions of switches and signals. The 
kinds of values returned by the various sensors are all different, but the processing of 
different sensor data is all very much the same. For example, assuming that our computers 
use memory-mapped VO, each sensor value is ultimately read as a set of bits from a specific 
place in memory and then converted to some sensor specific value. Furthermore, most 
sensors must be sampled periodically. If a value is within a certain range, then nothing 
special happens other than notifying some client of the new value. If this value exceeds 
certain preset limits, then a different client might be warned. Finally, if this value goes far 
beyond its limits, then we might need to sound some sort of alarm, and notify yet another 
client to take drastic action (for example, when locomotive oil pressure drops to dangerous 
levels). 
 
Replicating this behavior for every kind of sensor is not only tedious and error-prone, it also 
usually results in redundant code. Unless we exploit this commonality, different developers 
will end up inventing multiple solutions to the same problem, leading to the proliferation of 
slightly different sensor mechanisms and, in turn, a system that is more difficult to maintain. 
It is highly desirable, therefore, to do a domain analysis of all periodic, nondiscrete sensors, 
so that we might invent a common sensor mechanism for all kinds of sensors. 
 
We have encountered this problem before, introduced in Chapter 8 as part of the architecture 
of the weather monitoring system. There we found an architecture that encompassed a 
hierarchy of sensor classes, and a frame-based mechanism that periodically acquired data 
front these sensors. Rather than reinventing this architecture, it makes sense for us to 
plagiarize the architecture from this earlier chapter, and apply it to our traffic management 
system. 
 
This is an example of cross-domain reuse of patterns. 
 
12.3 Evolution 
 
Module Architecture 
 
As we have discussed, the module is a necessary but insufficient means of decomposition; 
and thus, for a problem of the size of the traffic management system, we must: focus upon a 
subsystem-level decomposition. Two important factors suggest that an early activity of 
evolution should include devising the module architecture of the traffic management system, 
representing its physical software structure. 
 
The software design for very large systems must often commence before the target hardware 
is completed. Software design frequently takes far longer than hardware design, and in any 
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case, trade-offs must be made against each along the way. This implies that hardware 
dependencies in the software must be isolated to the greatest extent possible, so that software 
design can proceed in the absence of a stable target environment. It also implies that the 
software must be designed with the idea of replaceable subsystems in mind. In a command 
and control system such as the traffic management system, we might wish to take advantage 
of new hardware technology that has matured during the development of the system's 
software. 
 
We must also have an early and intelligent physical decomposition of the system's software, 
so that subcontractors working on different parts of the system (perhaps even using different 
programming languages) can work in parallel. As we explained in Chapter 7, there are often 
many nontechnical reasons that drive the physical decomposition of a large system. Perhaps 
the most important of these concerns the assignment of work to independent teams of 
developers. Subcontractor relationships are usually established early in the life of a complex 
system, often before there is enough information to make sound technical decisions regarding 
proper subsystem. decomposition. 
 

 
Figure f2-9 
Traffic Management System Top-Level Module Diagram 
 
We recommend that system architects be given the opportunity to experiment with 
alternative subsystem. decompositions, so that we can have a fairly high level, of confidence 
that our global physical design decisions are sound. This may involve prototyping on a very 
large scale (but with all subsystem implementations stubbed out) and simulations of 
processor loading, message traffic, and external events. These prototypes and simulations can 
then be carried on through the maturation of this system, as vehicles for regression testing. 
 
How do we select a suitable subsystem decomposition? As we suggested in Chapter 4, the 
highest-level objects are often clustered around functional lines. Again, this is not orthogonal 
to the object model, because by the term functional, we do not mean algorithmic abstractions, 
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embodying simple input/output mappings. We are speaking of system function points that 
represent outwardly visible and testable behaviors, resulting from the cooperative action of 
logical collections of objects. Thus, the highest-level abstractions and mechanisms that we 
first: identify are good candidates around which to organize our subsystems. We may assert 
the existence of such subsystems first, and then evolve their interfaces over time. 
 
The module diagram in Figure 12-9 represents our design decisions regarding the top-level 
module architecture of the traffic management system. Here we see a highly layered 
architecture, with each level encompassing the functions of the four subproblems we 
identified earlier, namely, networking, database, real-time analog device control, and the 
human/machine interface. 
 
Subsystem Specification 
 
If we focus upon the outside view of any of these subsystems, we find that it has all the 
characteristics of an object. It has a unique, albeit static, identity; it embodies a significant 
amount of state and it exhibits very complex behavior. 
 
Subsystems serve as the repositories of other classes, class utilities, and objects; thus, they are 
best characterized by the resources they export. Practically, with the use of C++, these 
subsystems are captured as directories, denoting logical collections of modules and nested 
subsystems. 
 
The module diagram in Figure 12-9 is useful but incomplete, because each subsystem in this 
diagram is far too large to be developed by a small team of developers. We must zoom inside 
each of the top-level subsystems, and further decompose them into their nested modules and 
subsystems. 
 
For example, consider the subsystem NetworkFacilities. We choose to decompose this subsystem 
into two other subsystems, one private (which we name RadioComunication) and one public 
(which we name Messages). The private subsystem hides the details of software control of the 
physical radio devices, while the exported subsystem provides the functionality of the 
message passing mechanism we designed earlier. 
 
The subsystem named Databases builds upon the resources of the subsystem NetworkFacilities 
and serves to implement the train-plan mechanism we created earlier. We choose to further 
decompose this subsystem into two exported subsystems, representing the major database 
elements in the system. We name these nested subsystems TrainPlanDatabase and TrackDatabase, 
respectively. We also expect to have one private subsystem, DatabaseManager, whose purpose is 
to provide all the services common to the two domain-specific databases. 
 
The Devices subsystem also decomposes naturally into several smaller subsystems. We choose 
to group the software related to all wayside devices into one subsystem and the software 
associated with all on-board locomotive actuators and sensors into another. These two 
subsystems are available to clients of the Devices subsystem, and both are built upon the 
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resources of the TrainPlanDatabase and Messages. Thus, we have designed the Devices subsystem 
to implement the sensor mechanism we described earlier. 
 
Finally, we choose to decompose the top-level UserApplications subsystem into several smaller 
ones, including the subsystems EngineerApplications and DispatcherApplications, to reflect the 
different roles of the two main users of the traffic: management system. The subsystem 
EngineerApplications includes resources that provide all the train-engineer/machine interaction 
specified in the requirements, including the functionality of the locomotive analysis and 
reporting system and the energy management system. We include the subsystem 
DispatcherApplications to encompass the software that provides the functionality of all 
dispatcher/machine interactions. Both EngineerApplications and DispatcherApplications share 
common private resources, as exported from the subsystem Displays, which embodies the 
display mechanism we described earlier. 
 
This design. leaves us with four top-level subsystems, encompassing several smaller ones, to 
which we have allocated all of the key abstractions and mechanisms we invented earlier. 
Equally important, as we discussed in Chapter 7, these lower-level subsystems form the units 
for work assignments as well as the units for configuration management and version control. 
As we also suggested, each subsystem should be owned by one person, yet may be 
implemented by many more. The subsystem owner directs the detailed design and 
implementation of the subsystem and manages its interface relative to other subsystems at 
the same level of abstraction. Thus, the management of a very large development project is 
made possible by taking a very complex problem and decomposing it into several smaller 
ones. 
 
As we discussed in Chapter 7, this strategy also makes it possible to have several different 
simultaneous views of the system under development. A set of compatible versions of each 
subsystem forms a release, and we may have many such releases: one for each developer, one 
for our quality-assurance team, and perhaps one for early customer use. Individual 
developers can create their own stable release into which they integrate new- versions of the 
software for which they are responsible, before releasing it to the rest of the team. In this 
manner, we have a platform for continuous integration of new code. 
 
The key to making this work is the careful engineering of subsystem interfaces. Once 
engineered, these interfaces must be rigorously guarded. How do we determine the outside 
view of each subsystem? We do so by looking at each subsystem as an object. Thus, we ask 
the same questions we did in Chapter 4 for much more primitive objects: What state does this 
object embody, what operations can clients meaningfully perform upon it, and what 
operations does it require of other objects? 
 
For example, consider the subsystem TrainPlanDatabase. It builds upon three other subsystems 
(Messages, TrainDatabase, and Traffiatabase) and has several important clients, namely, the four 
subsystems WaysideDevices, LocomotiveDevices, EngineerApplications, and DispatcherApplications. The 
TrainPlanDatabase embodies a relatively straightforward state, specifically, the state of all train 
plans. Of course, the twist is that this subsystem must support the behavior of the distributed 
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train-plan mechanisms. Thus, from the outside, clients see a monolithic database, but from 
the inside, we know that this database is really distributed and must therefore be constructed 
on top of the message passing mechanism found in the subsystem Messages. 
 
What services does the TrainPlanDatabase provide? All the usual database operations seem to 
apply: adding records, deleting records, modifying records, and querying records. As we did 
for our database problem in Chapter 10, we would eventually capture all of these design 
decisions that make up this subsystem in the form of C++ classes that provide the 
declarations of all these operations. 
 
At this stage in the design, we would continue the design process for each subsystem. Again, 
we expect that these interfaces will not be exactly right at first; we must allow them to evolve 
over time. Happily, as for smaller objects, our experience suggests that most of the changes 
we will need to make to these interfaces will be upwardly compatible, assuming that we did a 
good job up front in characterizing the behavior of each subsystem in an object-oriented 
manner. 
 
12.4 Maintenance 
 
Adding New Functionality 
 
Old software never dies, it just gets maintained or preserved, especially for systems as large 
as this one. This is the reason we still find software in production use that was developed 
over twenty years ago (which is absolutely ancient in software years). As more users apply 
the traffic management system, and as we adapt this design to new implementations, clients 
will discover new, unanticipated uses for existing mechanisms, creating pressure to add new 
functionality to the system. 
 
Let's consider a significant addition to our requirements, namely, payroll processing. 
Specifically, suppose that our analysis shows that train-company payroll is currently being 
supported by a piece of hardware that is no longer being manufactured and that we are at 
great risk of losing our payroll processing capability because a single serious hardware failure 
would put our accounting system out of action forever. For this reason, we might choose to 
integrate payroll processing with the traffic management system. At first, it is not difficult to 
conceive how these two seemingly unrelated problems could coexist; we could simply view 
them as separate applications, with payroll processing running as a background activity. 
 
Further examination shows that there is actually tremendous value to be gained from 
integrating payroll processing. You may recall from our earlier discussion that, among other 
things, train plans contain information about crew assignments. Thus, it is possible for us to 
track actual versus planned crew assignments, and from this we can calculate hours worked, 
amount of overtime, and so on. By getting this information directly, our payroll calculations 
will be more precise and certainly more timely. 
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What does adding this functionality do to our existing design? very little. Our approach 
would be to add one more subsystem inside the UserApplications subsystem, representing the 
functionality of payroll processing. At this location in the architecture, such a subsystem 
would have visibility to all the important mechanisms upon which it could build. This is 
indeed quite common in well structured object-oriented systems: a significant addition in the 
requirements for the system can be dealt with fairly easily by building new applications upon 
existing mechanisms. 
 
Let's consider an even more radical change. Suppose we wanted to introduce expert system 
technology into our system by building a dispatcher's assistant that could advise about traffic 
routing and emergency responses. How would this new requirement affect our architecture? 
 
Again, the answer is very little. Our solution would be to add a new subsystem between the 
subsystems TrainPlanDatabase and DispatcherApplications, because the knowledge base embodied 
by this expert system parallels the contents of the TrainPlanDatabase; furthermore, the subsystem 
DispatcherApplications is the sole client of this expert system. We would need to invent some new 
mechanisms to establish the manner in which advice is presented to the ultimate user. For 
example, we might use a blackboard architecture, as we did in Chapter 11. 
 
Changing the Target Hardware 
 
As we mentioned earlier, hardware technology is still moving at a faster pace than our ability 
to generate software. Furthermore, it is likely that a number of political and historical reasons 
will have caused us to make certain hardware and software choices early in the development 
process that we may later regret.* For this reason, the target hardware for large systems 
becomes obsolete far earlier than does its software. For example, after several years of 
operational use, we might decide it was necessary to replace the displays on each train and at 
each dispatch center. How might this affect our existing architecture? lf we have kept our 
subsystem interfaces at a high level of abstraction during the evolution of our system, this 
hardware change would affect our software in only minimal ways. Since we chose to 
encapsulate all design decisions regarding specific displays, no other subsystem was ever 
written to depend upon the specific characteristics of a given workstation; the system 
encapsulates all such hardware secrets. This means that the behavior of workstations was 
hidden in the subsystem named Displays. Thus, this subsystem acts as an abstraction firewall, 
which shields all other clients from the intricacies of our particular display technology. 
 
In a similar fashion, a radical change in telecommunications standards would affect our 
implementation, but only in limited ways. Specifically, our design ensures that only the 
subsystem named Messages knows about network communications. Thus, even a fundamental 
change in networking would never affect any higher-level client; the subsystem Messages 
shields them from the perversity of the real world. 
 
None of the changes we have introduced rends the fabric of our existing architecture. This is 
indeed the ultimate mark of a well-designed, object-oriented system. 
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Further Readings 
 
The requirements for the traffic management system are based upon those for the Advanced 
Train Control System, as described by Murphy [C 1988]. 
 
xxx 
 
For example, our project might have chosen a particular hardware or software product from. 
a third-party vendor, only to later find out that the product didn't live up to its promises. 
Even worse, we might find that the only supplier of a critical product went out of business. In 
such cases, the project manager usually has one of two choices: (1) run screaming into the 
night, or (2) choose another product, and hope that the system's architecture is resilient 
enough to accommodate the change. The use of object-oriented analysis and design helps us 
to achieve (2), although it is sometimes still very satisfying to carry out (1). Message 
translation and verification occur in virtually all command and control systems. Plinta, Lee, 
and Rissman [C 1989] provide an excellent discourse on the issues, and offer the design of a 
mechanism for passing messages in a type-safe way across processors in a distributed system.
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For books are only partly from the minds and the guts of their authors. A large part of 
them comes from somewhere else, and we the authors sit at our typewriters waiting for 

books to happen. 
 

GUY LEFRANCOIS 
 Of Children 

 
Object-oriented development is a proven technology. Our method has been used to 
successfully build and deliver a multitude of complex systems in a variety of problem 
domains. 
 
Still, the demand for complex software continues to rise at a staggering rate. The ever-
growing capabilities of our hardware and an increasing social awareness of the utility of 
computers create tremendous pressure to automate more and more applications of even 
greater complexity. The fundamental value of object-oriented development, with its well-
defined notation and process, is that it releases the human spirit so that it can focus its 
creative energies upon the truly demanding parts in the crafting of a complex system.
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Object-Oriented 
Programming Languages 
 
 
 
 
The use of object-oriented technology is not restricted to any particular language; 
rather, it is applicable to a wide spectrum of object-based and object-oriented 
programming languages. As important as analysis and design are, however, we cannot 
ignore the details of coding, for ultimately our software architectures must be 
expressed in some programming language. Indeed, as Wulf has suggested, a 
programming language serves three purposes: 
 

• It is a design tool 
• It is a vehicle for human consumption 
• It is a vehicle for instructing a computer [1] 

 
This appendix is for the reader who may not be familiar with certain of the object-
oriented programming languages we mention in this book. Herein we provide a 
summary description of a number of the more important languages, together with a 
common example that provides a basis for comparing the syntax, semantics, and 
idioms of two of the more interesting object-oriented programming languages, namely 
C++ and Smalltalk. 
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Figure A-1 
A Genealogy of Object-Based and Object-Oriented Programming Languages 
 
A.1 Concepts 
 
Currently, there are over 2,000 different high-order programming languages. We see so many 
different languages because each was shaped by the particular requirements of its perceived 
problem domain. Furthermore, the existence of each new language enabled developers to 
move on to more and more complex problems. With each previously unexplored application, 
language designers learned new lessons that changed their basic assumptions about what 
was important in a language and what was not. This evolution of languages was also heavily 
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influenced by progress in the theory of computing, which has led to a formal understanding 
of the semantics of statements, modules, abstract data types, and processes. 
 
As we discussed in Chapter 2, programming languages may be grouped into four 
generations, according to whether they support mathematic, algorithmic, data, or object-
oriented abstractions. The most recent advances in programming languages have been due to 
the influence of the object model. By our count, there are currently over 100 different object-
based and object-oriented programming languages today. As we also discussed in Chapter 2, 
a language is considered object-based if it directly supports data abstraction and classes. An 
object-oriented language is one that is object-based, but also provides support for inheritance 
and polymorphism. 
 
The common ancestor of almost every contemporary object-based and object-oriented 
programming language is Simula, developed in the 1960s by Dahl, Myhrhaug, and Nygard 
[2]. Simula built upon the ideas of ALGOL, but added the concepts of encapsulation and 
inheritance. Perhaps even more important, Simula - as a language for describing systems and 
for developing simulations - introduced the discipline of writing programs that mirror the 
vocabulary of their problem domain. 
 
Figure A-1 is derived from Schmucker [3] and shows the genealogy of the most influential 
and widely used object-based and object-oriented programming languages. In the next 
several sections, we examine several of these languages relative to the support they offer to 
the elements of the object model. 
 
A.2 Smalltalk 
 
Background 
 
Smalltalk was created by the members of the Xerox Palo Alto Research Center Learning 
Research Group as the software element of the Dynabook, a visionary project of Alan Kay. 
Simula was its primary influence, although Smalltalk also took some ideas from the language 
FLEX and the work of Seymore Papert and Wallace Feurzeig. Smalltalk represents both a 
language and a software development environment. It is a pure object-oriented programming 
language, in that everything is viewed as object even integers are classes. Next to Simula, 
Smalltalk is perhaps the most important object-oriented programming language, because its 
concepts have influenced not only the design of almost every subsequent object-oriented 
programming language, but also the look and feel of graphic user interfaces such as the 
Macintosh user interface, Windows, and Motif, all of which are now largely taken for 
granted. 
 
Smalltalk evolved over almost a decade of work, and was the product of synergistic group 
activity. Dan Ingalls was the lead architect during most of Smalltalk's development, but there 
were also seminal contributions by Peter Deutsch, Glenn Krasner, and Kim McCall, In 
parallel, the elements of the Smalltalk environment were developed by James Althoff, Robert 
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Flegal, Ted Kaehler, Diana Merry, and Steve Putz. Among other important roles that they 
played, Adele Goldberg and David Robson served as chroniclers of the Smalltalk project. 
 
 

 
Table A-1 
Smalltalk 
 
There are five identifiable releases of Smalltalk, indicated by their year of release: Smalltalk-
72, -74, -76, -78, and the most current incarnation, SmalItalk80. SmalItalk-72 and -74 did not 
provide support for inheritance, but they did lay much of the conceptual foundation of the 
language, including the ideas of message passing and polymorphism. Later releases of the 
language turned classes into first-class citizens, thus completing the view that everything in 
the environment could be treated as an object. Smalltalk-80 has been ported to a variety of 
machine architectures. 
 
There is also an important dialect of SmalItalk provided by Digitalk, Smalltalk/V, that is very 
similar to SmalItalk-80 and is available on the IBM PC (Windows and OS/2) and Macintosh. 
Except for the user interface classes, the class libraries are quite similar to each other. Also like 
SmalItalk-80, there is a development environment and development tools that are similar in 
capability, but different in structure and function [4]. 
 
Overview 
 
Ingalls states that "the purpose of the Smalltalk project is to support children of all ages in the 
world of information. The challenge is to identify and harness metaphors of sufficient 
simplicity and power to allow a single person to, have access to, and creative control over, 
information which ranges from number and text through sounds and images" [5]. To this end, 
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SmalItalk is built around two simple concepts: everything is treated as an object, and objects 
communicate by passing messages. 
 
Table A-1 summarizes Smalltalk's features, relative to, the seven elements of the object model. 
Although the table does not indicate it, multiple inheritance is possible by the redefinition of 
certain primitive methods [6]. 
 
Example 
 
Consider the problem in which we have a heterogeneous list of shapes, in which each 
particular shape object might be a circle, a rectangle, or a solid rectangle (this is similar to the 
problem we introduced in Chapter 3). Smalltalk has an extensive class library that already 
contains classes for circles and rectangles, and so our solution in this language would be 
almost trivial; this demonstrates the importance of reuse. However, for the sake of 
comparison, lets assume that we only have primitive classes for drawing lines and arcs. 
Therefore, we might define the class AShape as follows: 
 
Object subclass: *AShape 

instanceVariableNames: 'theCenter'  
classVariableNames:  ‘’ 
poolDictionaries: ‘’ 
category: 'Appendix' 

 
Initialize 
 "Initialize the shape" 

 
theCenter := Point new 

 
setCenter: aPoint 

"Set the center of the shape" 
 
 theCenter := aPoint 
 
center 
 “Retun the center of the shape" 
 
 ^theCenter 
 
draw 
 «Draw the shape" 
 
 self subclassResponsibility 
 
We may next define the subclass ACircle as follows: 
 
AShape subclass: #ACircle 

instanceVariableNames: 'theRadius'  
classVariableNames: ‘’ 
poolDictionaries: ‘’ 
category: 'Appendix' 
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setRadius: anInteger 
 "Set the radius of the circle" 
 

theRadius := anInteger 
 
radius 
 “Return the radius of the circle" 
 

^theRadius 
 
 
draw 

“Draw the circle” 
 

|anArc index | 
anArc Arc new. 
index := 1. 
[index <= 41] 
 whileTrue: 

   [anArc  
center: theCenter  
radius: theRadius  
quadrant: index.  
anArc display.  
index := index+ 1] 

 
Continuing, the subclass ARectangle may be defined as follows: 
 
AShape subclass: #ARectangle 

instanceVariableNames: 'theNeight theWidth'  
classVariableNames: ‘’ 
poolDictionaries: ‘’ 
category: 'Appendix 

 
draw 

“Draw the rectangle" 
 |aLine upperLeftCorner | 

aLine := Line new. 
upperLeftComer := theCenter x - (theWidth / 2) 0 (theCenter y - 

(theHeight 12). 
aLine beginPoint: upperLeftCorner. 
aLine endPoint: upperLeftCorner x + theWidth 0 upperLeftComer y. 
aLine display. 
aLine beginPoint: aLine endPoint. 
aLine endPoint: upperLeftCorner x + theWidth 0 (upperLeftCorner y + 

theHeight). 
aLine display. 
aLine beginPoint: aLine endPoint. 
aLine endPoint: upperLeftCorner x 0 (upperLeftCorner y + theHeight). 
aLine display. 
aLine beginPoint: aLine endPoint. 
aLine endPoint: upperLeftCorner. 



 Object-Oriented Programming Languajes      482 

aLine display 
 
setHeight: anInteger 

"Set the height of the rectangle” 
 

theHeight := anInteger 
 
setWidth: anInteger 

"Set the width of the rectangle" 
 

theWidth := anInteger 
 
height 

"Return the height of the rectanglel" 
 

^theHeight 
 
width 

"Return the width of the rectangle" 
 

^theWidth 
 
Lastly, the subclass ASolidRectangle may be defined as: 
 
ARectangle subclass: #ASolidRectangle 
instanceVariableNames: ‘’ 
classVariableNames: ‘’ 
poolDictionaries: ‘’ 
category: 'Appendix' 
 
draw 

“Draw the solid rectangle” 
 

| upperLeftCorner lowerRightCorner | 
super draw.  
upperLeftCorner := theCenter x - (theWidth quo: 2) + 1 @ 

(theCenter y - (theHeight quo: 2) + l).  
lowerRightCorner :=(:pperLeftCorner x + theWidth - 1 @ 

(upperLeftCorner y + theHeight - l). 
 

Display 
fill: (upperLeftCorner corner: lowerRightCorner)  
mask: Form gray 

 

 
 
References 
 
The primary references for Smalltalk are Smalltalk-80. The Language, by Goldberg and Robson 
[7]; Smalltalk-80. The Interactive Programming Environment, by Goldberg [8]; and Smalltalk-80. 
Bits of History, Words of Advice, by Krasner [9]. LaLonde and Pugh [10] explore Smalltalk-80 in 
great depth, including both the class libraries and application development. 
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A.3 Object Pascal 
 
Background 
 
Object Pascal was created by developers from Apple Computer (some of whom were 
involved in the development of Smalltalk), in conjunction with Nalaus Wirth, the designer of 
Pascal. Object PascaPs immediate ancestor is Clascal, an object-oriented version of Pascal for 
the Lisa. Object Pascal was made publicly available in 1986 and is the first object-oriented 
programming language supported by the Macintosh Programmer's Workshop (MPW), the 
development environment for Apple's family of Macintosh computers. The class library for 
MPW, called MacApp, provides the frameworks for constructing applications that conform to 
the Macintosh user interface guidelines. 
 
 

 
 
Table A-2 
Object Pascal 
 
Overview 
 
As Schmucker states, "Object Pascal is a 'bare bones' object-oriented language. It makes no 
provision for class methods, class variables, multiple inheritance, or metaclasses. These 
concepts were specifically excluded in an attempt to streamline the learning curve 
encountered by most novice object-oriented programmers" [11]. 
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We summarize the features of Object Pascal in Table A-2, relative to the seven elements of the 
object model. 
 
References 
 
The primary reference for Object Pascal is the MPW Object Pascal Reference from Apple [12] 
 
A.4 C++ 
 
Background 
 
C++ was designed by Bjarne Stroustrup of AT&T Bell Laboratories. The immediate ancestor 
of C++ is a language called C with Classes, also developed by Stroustrup in 1980. In turn, C 
with Classes was heavily influenced by the languages C and Simula. C++ is largely a superset 
of C. However, in one sense, C++ is simply a better C, in that it provides type checking, 
overloaded functions, and many other improvements. Most importantly, however, C++ adds 
object-oriented programming features to C. 
 
 
 

 
 
Table A-3 
C++ 
 
There have been several major releases of the C++ language. Version 1.0 and its minor 
releases added basic object-oriented programming features to C, such as single inheritance 
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and polymorphism, plus type checking and overloading. Version 2.0, released in 1989, 
improved upon the previous versions in a variety of ways (such as the introduction of 
multiple inheritance), based upon extensive experience with the language by a relatively 
large user community. Version 3.0, released in 1990, introduced templates (parameterized 
classes) and exception handling. The ANSI X3jl6 C++ committee has recently adopted 
proposals for namespace control (consistent with our notion of class categories) and run-time 
type identification. 
 
Early translator technology for C++ involved the use of a preprocessor for C, called cfront. 
Because this translator emitted C code as an intermediate representation, it was possible to 
port C++ to virtually every UNIX architecture quite quickly. Now, C++ translators and native 
compilers are available commercially for almost every kind of instruction-set architecture. 
 
 
Overview 
 
Stroustrup states that "C++ was primarily designed so that the author and his friends would 
not have to program in assembler, C, or various modern high-order languages. Its main 
purpose is to make writing good programs easier and more pleasant for the individual 
programmer. There never was a C++ paper design; design, documentation, and 
implementation went on simultaneously" [13]. C++ corrects many of the deficiencies of C, 
and adds to the language support for classes, type checking, overloading, free store 
management, constant types, references, inline functions, derived classes, and virtual 
functions [14]. 
 
We summarize the features of C++ in Table A-3 on page 481, relative to the seven elements of 
the object model. 
 
 
Example 
 
Again we reimplement the shape problem. The common style in C++ is to place the outside 
view of each class in header files. Thus, we may write: 
 
struct Point { 

int x;  
int y; 

}; 
 
class Shape { 
public:  

Shape();  
void setCenter(Point p);  
virtual void draw() = 0;  
Point center() const;  

private:  
Point theCenter; 
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}; 
 
class Circle : public Shape { 
public:  

Circle();  
void setRadius(int r);  
virtual void draw();  
int radius() const;  

private:  
int theRadius; 

}; 
 
class Rectangle : public Shape { 
public:  

Rectangle();  
void setHeight(int h);  
void setWidth(int w);  
virtual void Draw();  
int height() const;  
int width() const;  

private:  
int theHeight;  
int theWidth; 

}; 
 
class SolidRectangle : public Rectangle { 
public:  

virtual void draw(); 
}; 
 
The definition of C++ does not include a class library. For our purposes, we assume the 
existence of a programmatic interface to X Windows, and the global objects Display, Window, 
and GraphicsContext (which are needed by Xlib). Thus, we may complete the methods above in 
a separate file, as follows: 
 
Shape::Shape() 
{ 

theCenter.x = 0;  
theCenter.y = 0; 

}; 
 
void Shape::setCenter(Point p)  
{ 

theCenter = p; 
}; 
 
Point Shape::centero const  
{ 

return theCenter; 
}; 
 
Circle::Circleo : theRadius(0) {} 
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void Circle::setRadius(int r) 
{ 

theRadius = r; 
}; 
 
void Circle::draw() 
{ 

int X = (centero.x - theRadius);  
int Y = (centero.y - theRadius);  
XDrawArc(Display, Window, GraphicsContext, X, Y, 

(theRadius * 2), (theRadius * 2), 0, (360 * 64)); 
}; 
 
int Circle::radius () const  
{ 

return theRadius; 
}; 
 
Rectangle::Rectangle() : theMeight(0), theWidth(0) {} 
 
void Rectangle::setHeight (int h)  
{ 

theHeight = h; 
}; 
 
void Rectangle::setWidth (int w) 
{ 

theWidth = w; 
}; 
 
void Rectangle::draw() 
{ 

int X = (center().x - (theWidth 2));  
int Y = (center().y - (theHeight 2)); 
XDrawRectangle(Display, Window, GraphicsContext, X, Y,  

theWidth, theHeight); 
}; 
 
int Rectangle::height() const  
{ 

return theHeight; 
}; 
 
int Rectangle::width() const 
{ 

return theWidth; 
}; 
 
void SolidRectangle::draw() 
{ 

Rectangle::draw();  
int X = (center().x - (width() / 2));  
int Y = (center() y - (height() / 2));  
gc oldGraphicsContext = GraphicsContext;  
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XSetForeground(Display, GraphicsContext, Gray);  
XDrawFilled(Display, Window, GraphicsContext, X, Y, width(),  

height());  
GraphicsContext = oldGraphicsContext; 

}; 
 
References 
 
The primary reference for C++ is the Annotated C++ Reference Manual by Ellis and, Stroustrup 
[15]. Stroustrup [16] provides in-depth coverage of the language and its use in the context of 
object-oriented design. 
 
A.5 Commn Lisp Object System 
 
Background 
 
There are literally dozens of dialects of Lisp, including MacLisp, Standard Lisp, SpiceLisp, S-1 
Lisp, Nil, ZetaLisp, InterLisp, and Scheme. Starting in the early 1980's, a plethora of new 
dialects of Lisp emerged that supported object-oriented programming, many of which were 
invented to support ongoing research in knowledge representation. Spurred by the success in 
standardizing Common Lisp, a similar effort was undertaken in 1986 to standardize these 
object-oriented dialects. 
 
The idea of standardization was put forth at the summer 1986 ACM Lisp and Functional 
Programming Conference, resulting in the formation of a special, subcommittee as part of the 
X3jl3 ANSI committee (for the standardization of Common Lisp). Because this new dialect 
was conceived to be a proper superset of Common Lisp, it was called the Common Lisp 
Object System, or CLOS for short. Daniel Bobrow chaired the committee, whose members 
included Sonya Keene, Linda DeMichiel, Patrick Dussud, Richard Gabriel, james Kempf, 
Gregor Kicazles, and David Moon. 
 
The design of CLOS was heavily influenced by the languages New Flavors and 
CommonLoops. After about two years of work, the complete specification of CLOS was 
published in late 1988. 
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Table A-4  
CLOS 
 
Overview 
 
Keene reports that there were three design goals for CLOS: 
 
• CLOS should be a standard language extension that includes the most useful aspects of the 
existing object-oriented paradigms. 
 
• The CLOS programmer interface should be powerful and flexible enough for developing 
most application programs. 
 
• CLOS itself should be designed as an extensible protocol, to allow for customization of its 
behavior and to encourage further research in object-oriented programming [17]. 
 
We summarize the features of CLOS in Table A-4, relative to the seven elements of the object 
model. Although CLOS does not support persistent objects directly, there are straightforward 
extensions using the metaobject protocol to add persistency [18]. 
 
References 
 
The primary reference for CLOS is the Common Lisp Object System Specification [19]. 
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A.6 Ada 
 
Background 
 
The United States Department of Defense (DoD) is perhaps the largest user of computers in 
the world. By the mid-1970s, software development for its systems had reached crisis 
proportions: projects were often late, over budget, and they often failed to meet their stated 
requirements. it was evident that the problems would only worsen as software development 
costs continued to rise and the demand for software increased at an exponential rate. To help 
resolve these problems, which were further compounded by the proliferation of hundreds of 
different languages, the DoD) sponsored the development of a single, common, high-order 
programming language. In a sense, Ada represents one of the first engineered production-
quality languages. A set of requirements was developed starting in 1975 and culminated in 
the Steelman document, which was released in 1978. An international request for proposal 
(RFP) was then issued, inviting companies to design a language based upon these 
requirements. The RFP drew seventeen responses. This number was reduced to four, then 
two, and then one by an extensive design and evaluation period involving hundreds of 
computer scientists throughout the world. 
 
The winning design was originally called the Green language (so called because of its color 
code during the competition), and was then renamed Ada, in honor of Ada Augusta, 
Countess of Lovelace, who was noted for her early observations on the potential power of the 
computer. The primary author of this language was jean Ichbiah of France. Other members of 
the design team included Bernd Krieg-Brueckner, Brian Wichmann, Hemy Ledgard, jean-
Claude Heliard, jean-Loup Gailly, jean-Raymond Abrial, john Barnes, Mike Woodger, Olivier 
Roubine, S. A. Schuman, and S. C. Vestal. 
 
The immediate ancestors of Ada are Pascal and its derivatives, including Euclid, Lis, Mesa, 
Modula, and Sue. A number of concepts from ALGOL 68, Simula, CLU, and Alphard were 
also incorporated. The ANSI standard for Ada was finally released in 1983. Translators for 
Ada were slow in coming, but today there are translators for almost every major family of 
instruction-set architectures. Although Ada was originally sponsored by the DoD, it has 
found an important worldwide role in government and commercial software projects, and is 
usually the language of choice for large-scale software projects, such as the United States and 
Canadian air traffic control systems. Since ANSI standards must be reviewed every five years, 
a project called Ada 9x has been established to update this standard. Through Adaqx, the 
original language definition has changed in a number of small ways, involving clarifications, 
the filling of gaps, and the correction of errors. In its current definition, Ada is object-based, 
not object-oriented. However, Ada9x adds object-oriented programming extensions to the 
original language definition. 
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Table A-5  
Ada 
 
Overview 
 
According to its designers, Ada was designed with three concerns in mind: 
 
• Program reliability and maintenance 
 
• Programming as a human activity 
 
• Efficiency [20] 
 
We summarize the features of Ada in Table A-5, relative to the seven elements of the object 
model. 
 
References 
 
The primary reference for Ada's syntax and semantics is the Reference Manual for tbe Ada 
Programming Language [21]. 
 



 Object-Oriented Programming Languajes      492 

 
 
 
 
A.7 Eiffel 
 
Background 
 
Eiffel was created by Bertrand Meyer not only as an object-oriented programming language, 
but also as a software engineering tool. While Eiffel is influenced by Simula, it was designed 
from the beginning to be an independent object-oriented language and development 
environment. 
 

 
Table A-6 
Eiffel 
 
The language supports dynamic binding and static typing, providing for flexibility in the 
design of a class interface, but taking advantage of the type safety that static typing provides. 
There are several significant features that give support for more rigorous software 
engineering, including parameterized classes, assertions, and exceptions. Meyer contends 
that generic classes complement the inheritance relationship by allowing for horizontal 
genericity: new classes at the same level of abstraction in an inheritance hierarchy may be 
created based on type parameters, rather than duplicating behaviors in sibling subclasses. 
 
Preconditions and postconditions, both integral parts of the language, implement assertions 
upon entering and leaving a method, respectively. If a precondition fails upon entering a 
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method, or if a post condition fails when leaving, an exception is raised. A mechanism exists 
in the language to handle the exception through the use of the rescue clause and retry 
instruction. 
 
Overview 
 
Eiffel stresses the concepts of good software engineering: good class specification, strong 
typing, and facilities of taking advantage of reuse through both inheritance and generic 
classes. The formal treatment of exceptions allows rigorous specification of class interfaces in 
the implementation. 
 
Eiffel also provides a full development environment including a syntax-directed editor, 
documentation generation, class libraries, and a browser. In addition, code management and 
build management facilities are supported. 
 
Eiffel's features relative to our object model are summarized in Table A-6. 
 
ABCL/1  
ABE  
Acore  
Act/1  
Act/2  
Act/3  
Actor  
Actors  
Actra  
Ada  
Argus  
ART  
Berkeley  
Smalitalk  
Bate  
Blaze  
Brouhaha  
C with Classes  
c++  
C_talk  
Cantor  
Clascal  
Classic Ada  
CLOS  
Cluster 86  
Common Loops  
Common Objects  
Common ORBIT  
Concurrent Prolog 
Concurrent Smalltalk  
CSSA  
CST  
Director  
Distributed Smalitalk  

Eiffel  
Emerald  
ExperCommonLisp  
Extended Smalltalk  
Felix Pascal  
Flavors  
FOOPIog  
FOOPS  
FRL  
Galileo  
Garp  
GLISP  
Gypsy  
Hybrid  
Inheritance  
InnovAda 
Intermission  
Jasmine  
KL-One  
KRL  
KRS  
Littie Smalitalk  
LOOPS 
 
Lore 
Mace 
MELD 
Mjoiner 
ModPascal 
Neon 
New Flavors 
NIL 
O-CPU 

OakLisp 
Oberon 
Object Assembier 
Object Cobol 
Object Lisp 
Object Logo 
Object Oberon 
Object Pascal 
Objective-C 
ObjVLisp 
OOPC 
OOPS+ 
OPAL 
Orbit 
Orient84/K 
OTM 
PCOL 
PIE 
PL/LL 
Plasma 11 
POOL-T 
PROCOL 
Quick Pascal 
Quicktalk 
ROSS 
SAST 
SCOOP 
SCOOPS 
Self 
Simula 
SINA 
SmalItalk 
Smalitalk AT 
Smalitalk V 

Smal1world 
SPOOL 
SR 
SRI- 
STROBE 
T 
TrellislOwi 
Turbo Pascal 5.x 
Uniform 
UNIT,S 
Vulc8n 
XLISP 
Zoom/VM
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Figure A-2 
Object-Based and Object-Oriented Programming Languages 
 
References 
 
The best treatment of the Eiffel language is found in Meyer,s book, Object Oriented Software 
Construction [22]. 
 
 
 
 
A.8 Other Object-Oriented Programming Languages 
 
Figure A~2 provides the names of many other important or influential object-based and object-
oriented programming languages; the Classified Bibliography offers references to sources of 
information for most of them. 
 
Saunders [23] provides a survey of over 80 different object-based and object-oriented 
programming languages. He suggests that object-oriented programming languages may be 
grouped into seven categories [24]: 
 

• Actor Languages supporting delegation 
• Concurrent Object-oriented languages emphasizing 

concurrency 
• Distributed Object-oriented languages emphasizing 

distributed objects 
• Frame-based Languages supporting frame theory 
• Hybrid Object-oriented extensions to traditional 

languages 
• Smalltalk-based Smalltalk and its dialects 
• Ideological Application of object-oriented features 

to other domains 
• Miscellaneous Object-oriented languages that do not fit 

any other category 
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Glosary 
 
 
 
 
abstract class A class that has no instances. An abstract class is written with the 

expectation that its concrete subclasses will add to its structure and behavior, 
typically by implementing its abstract operations. 

 
abstract operation An operation that is declared but not implemented by an 

abstract class. In C++, an abstract operation is declared as a pure virtual 
member function. 

 
abstraction The essential characteristics of an object that distinguish it from all 

other kinds of objects and thus provide crisply-defined conceptual boundaries 
relative to the perspective of the viewer; the process of focusing upon the 
essential characteristics of an object. Abstraction is one of the fundamental 
elements of the object model. 

 
access control The mechanism for control of access to the structure or behavior of 

a class. Public items are accessible by all; protected items are accessible only by 
the subclasses, implementation, and friends of the class containing the item; 
private items are accessible only by the implementation and friends of the class 
containing the item; implementation items are accessible only by the 
implementation of the class containing the item. 

 
action An operation that, for all practical purposes, takes zero time. An action 

may denote the invocation of a method, the triggering of another event, or the 
starting or stopping of an activity. 

 
active object An object that encompasses its own thread of control.  
 
activity An operation that takes some time to complete. 
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actor An object that can operate upon other objects but is never operated upon by 
other objects. in some contexts, the terms active object and actor are 
interchangeable. 

 
agent An object that can both operate upon other objects and be operated upon 

by other objects. An agent is usually created to do some work on behalf of an 
actor or another agent. 

 
aggregate object An object composed of one or more other objects, each of which 

is considered a part of the aggregate object. 
 
algorithmic decomposition The process of breaking a system into parts, each of 

which represents some small step in a larger process. The application of 
structured design methods leads to an algorithmic decomposition, whose 
focus is upon the flow of control within a system. 

 
architecture The logical and physical structure of a system, forged by all the 

strategic and tactical design decisions applied during development.  
 
assertion The Boolean expression of some condition whose truth must be 

preserved.  
 
association A relationship denoting a semantic connection between two classes.  
 
attribute A part of an aggregate object. 
 
base class The most generalized class in a class structure. Most applications have 

many such root classes. Some languages define a primitive base class, which 
serves as the ultimate superclass of all classes. 

 
behavior How an object acts and reacts, in terms of its state changes and message 

passing; the outwardly visible and testable activity of an object. 
 
blocking object A passive object whose semantics are guaranteed in the presence 

of multiple threads of control. invoking an operation of a blocking object 
blocks the client for the duration of the operation. 

 
cardinality The number of instances that a class may have; the number of 

instances that . participate in a class relationship. 
 
class A set of objects that share a common structure and a common behavior. The 

terms class and t e are usually (but not always) interchangeable; a class is a 
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slightly YP different concept than a type, in that it emphasizes the 
classification of structure and behavior. 

 
class category A logical collection of classes, some of which are visible to other 

class categories, and others of which are hidden. The classes in a class category 
collaborate to provide a set of services. 

 
class diagram Part of the notation of object-oriented design, used to show the 

existence of classes and their relationships in the logical design of a system. A 
class diagram may represent all or part of the class structure of a system. 

 
class operation An operation, such as a constructor or destructor, directed at a 

class rather than an object. 
 
class structure A graph whose vertices represent classes and whose arcs 

represent relationships among these classes. The class structure of a system is 
represented by a set of class diagrams. 

 
class utility A collection of free subprograms or, in C++, a class that only 

provides static members and/or static member functions. 
 
class variable Part of the state of a class. Collectively, the class variables of a class 

constitute its structure. A class variable is shared by all instances of the same 
class. In C++, a class variable is declared as a static member.  

 
client An object that uses the services of another object, either by operating upon 

it or by referencing its state. 
 
collaboration The process whereby several objects cooperate to provide some 

higherlevel behavior. 
 
concrete class A class whose implementation is complete and thus may have 

instances. 
 
concurrency The property that distinguishes an active object from one that is 

not active. 
 

concurrent object An active object whose semantics are guaranteed in the 
presence of multiple threads of control.  

 
constraint The expression of some semantic condition that must be preserved.  
 
constructor An operation that creates an object and/or initializes its state. 
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container class A class whose instances are collections of other objects. Container 

classes may denote homogeneous collections (all of the objects in the collection 
are of the same class) or heterogeneous collections (each of the objects in the 
collection may be of a different class, although all must generally share a 
common superclass). Container classes are most often defined as 
parameterized classes, with some parameter designating the class of the 
contained objects. 

 
CRC cards Class/Responsibilities/Collaborators; a simple tool for brainstorming 

about the key abstractions and mechanisms in a system.  
 
data dictionary A comprehensive repository enumerating all the classes in a 

system. 
 
delegation The act of one object forwarding an operation to another object, to be 

performed on behalf of the first object. 
 
destructor An operation that frees the state of an object and/or destroys the 

object itself.  
 
device A piece of hardware that has no computational resources. 
 
dynamic binding Binding denotes the association of a name (such as a variable 

declaration) with a class; dynamic binding is a binding in which the 
name/class association is not made until the object designated by the name is 
created at execution time. 

 
encapsulation The process of compartmentalizing the elements of an abstraction 

that constitute its structure and behavior; encapsulation serves to separate the 
contractual interface of an abstraction and its implementation.  

 
event Some occurrence that may cause the state of a system to change.  
 
exception An indication that some invariant has not or cannot be satisfied. In 

C++, we throw an exception to abandon processing and alert some other object 
of the problem, which in turn may catch the exception and handle the problem. 

 
field A repository for part of the state of an object; collectively, the fields of an 

object constitute its structure. The terms field, instance variable, member 
object, and slot are interchangeable. 
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forward-engineering The production of executable code from a logical or 
physical model. 

 
free subprogram A procedure or function that serves as a nonprimitive 

operation upon an object or objects of the same or different classes. A free 
subprogram is any subprogram that is not a method of an object. 

 
framework A collection of classes that provide a set of services for a particular 

domain; a framework thus exports a number of individual classes and 
mechanisms that clients can use or adapt. 

 
friend A class or operation whose implementation may reference the private 

parts of another class, who alone can extend the offer of friendship.  
 
function An input/output mapping resulting from some object's behavior. 
 
function point in the context of a requirements analysis, a single, outwardly 

visible and testable activity. 
 
generic class A class that serves as a template for other classes, in which the 

template may be parameterized by other classes, objects, and/or operations. A 
generic class must be instantiated (its parameters filled in) before objects can 
be created. Generic classes are typically used as container classes. The terms 
generic class and parameterized class are interchangeable. 

 
generic function An operation upon an object. A generic function of a class may 

be redefined in subclasses; thus, for a given object, it is implemented through a 
set of methods declared in various classes related via their inheritance 
hierarchy. The terms genericfunction and virlualfunction are usually 
interchangeable. 

 
guard A Boolean expression applied to an event; if true, the expression permits 

the event to cause the state of the system to change. 
 
hierarchy A ranking or ordering of abstractions. The two most common 

hierarchies in a complex system include its class structure (including "kind of' 
hierarchies) and its object structure (including "part of' and collaboration 
hierarchies); hierarchies may also be found in the module and process 
architectures of a complex system.  

 
identity The nature of an object that distinguishes it from all other objects. 
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idiom An expression peculiar to a certain programming language or application 
culture, representing a generally accepted convention for use of the language. 

 
implementation The inside view of a class, object, or module, including the 

secrets of its behavior. 
 
information hiding The process of hiding all the secrets of an object that do not 

contribute to its essential characteristics; typically, the structure of an object is 
hidden, as well as the implementation of its methods. 

 
inheritance A relationship among classes, wherein one class shares the structure 

or behavior defined in one (single inheritance) or more (multiple inheritance) 
other classes. inheritance defines an "is-a" hierarchy among classes in which a 
subclass inherits from one or more generalized superclasses; a subclass 
typically specializes its superclasses by augmenting or redefining existing 
structure and behavior. 

 
instance Something you can do things to. An instance has state, behavior, and 

identity. The structure and behavior of similar instances are defined in their 
common class. The terms instance and object are interchangeable. 

 
instance variable A repository for part of the state of an object. Collectively, the 

instance variables of an object constitute its structure. The terms field, instance 
variable, member object, and slot are interchangeable. 

 
instantiation The process of filling in the template of a generic or parameterized 

class to produce a class from which one can create instances. 
 
interaction diagram Part of the notation of object-oriented design, used to show 

the execution of a scenario in the context of an object diagram. 
 
interface The outside view of a class, object, or module, which emphasizes its 

abstraction while hiding its structure and the secrets of its behavior.  
 
invariant The Boolean expression of some condition whose truth must be 

preserved.  
 
iterator An operation that permits the parts of an object to be visited. key An 

attribute whose value uniquely identifies a single target object. 
 
key abstraction A class or object that forms part of the vocabulary of the problem 

domain.  
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layer The collection of class categories or subsystems at the same level of 
abstraction. 

 
level of abstraction The relative ranking of abstractions in a class structure, 

object structure, module architecture, or process architecture. In terms of its 
"part of' hierarchy, a given abstraction is at a higher level of abstraction than 
others if it builds upon the others; in terms of their "kind of" hierarchy, 
high-level abstractions are generalized, and low-level abstractions are 
specialized.  

 
link Between two objects, one instance of an association. 
 
mechanism A structure whereby objects collaborate to provide some behavior 

that satisfies a requirement of the problem. 
 
member function An operation upon an object, defined as part of the declaration 

of a class; all member functions are operations, but not all operations are 
member functions. The terms memberfunction and metbod are usually 
interchangeable. In some languages, a member function stands alone and may 
be redefined in a subclass; in other languages, a member function may not be 
redefined, but serves as part of the implementation of a generic function or 
virtual function, both of which may be redefined in a subclass. 

 
member object A repository for part of the state of an object; collectively, the 

member objects of an object constitute its structure. The terms field, instance 
variable, member object, and slot are interchangeable. 

 
message An operation that one object performs upon another. The terms 

message, metbod, and operation are usually interchangeable.  
 
metaclass The class of a class; a class whose instances are themselves classes. 
 
method An operation upon an object, defined as part of the declaration of a class; 

all methods are operations, but not all operations are methods. The terms 
message, metbod, and operation are usually interchangeable. In some 
languages, a method stands alone and may be redefined in a subclass; in other 
languages, a method may not be redefined, but serves as part of the 
implementation of a generic function or a virtual function, both of which may 
be redefined in a subclass. 

 
mixin A class that embodies a single, focused behavior, used to augment the 

behavior of some other class via inheritance; the behavior of a mixin is usually 
orthogonal to the behavior of the classes with which it is combined.  
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modifier An operation that alters the state of an object. 
 
modularity The property of a system that has been decomposed into a set of 

cohesive and loosely coupled modules. 
 
module A unit of code that serves as a building block for the physical structure 

of a system; a program unit that contains declarations, expressed in the 
vocabulary of a particular programming language, that form the physical 
realization of some or all of the classes and objects in the logical design of the 
system. A module typically has two parts: its interface and its implementation. 

 
module architecture A graph whose vertices represent modules and whose arcs 

represent relationships among these modules. The module architecture of a 
system is represented by a set of module diagrams. 

 
module diagram Part of the notation of object-oriented design, used to show the 

allocation of classes and objects to modules in the physical design of a system. 
A module diagram may represent all or part of the module architecture of a 
system. 

 
monomorphism A concept in type theory, according to which a name (such as a 

variable declaration) may only denote objects of the same class. 
 
object Something you can do things to. An object has state, behavior, and 

identity; the structure and behavior of similar objects are defined in their 
common class. The terms instance and object are interchangeable. 

 
object diagram Part of the notation of object-oriented design, used to show the 

existence of objects and their relationships in the logical design of a system. An 
object diagram may represent all or part of the object structure of a system, 
and primarily illustrates the semantics of mechanisms in the logical design. A 
single object diagram represents a snapshot in time of an otherwise transitory 
event or configuration of objects. 

 
object model The collection of principles that form the foundation of 

object-oriented design; a software engineering paradigm emphasizing the 
principles of abstraction, encapsulation, modularity, hierarchy, typing, 
concurrency, and persistence. 

 
object structure A graph whose vertices represent objects and whose arcs 

represent relationships among those objects. The object structure of a system is 
represented by a set of object diagrams. 
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object-based programming A method of programming in which programs are 
organized as cooperative collections of objects, each of which represents an 
instance of some type, and whose types are all members of a hierarchy of types 
united via other than inheritance relationships. in such programs, types are 
generally viewed as static, whereas objects typically have a much more 
dynamic nature, somewhat constrained by the existence of static binding and 
monomorphism. 

 
object-oriented analysis A method of analysis in which requirements are 

examined from the perspective of the classes and objects found in the 
vocabulary of the problem domain. 

 
object-oriented decomposition The process of breaking a system into parts, each 

of which represents some class or object from the problem domain. The 
application of object-oriented design methods leads to an object-oriented 
decomposition, in which we view the world as a collection of objects that 
cooperate with one another to achieve some desired functionality. 

 
object-oriented design A method of design encompassing the process of object-

oriented decomposition and a notation for depicting both logical and physical 
as well as static and dynamic models of the system under design; specifically, 
this notation includes class diagrams, object diagrams, module diagrams, and 
process diagrams. 

 
object-oriented programming A method of implementation in which programs 

are organized as cooperative collections of objects, each of which represents an 
instance of some class, and whose classes are all members of a hierarchy of 
classes united via inheritance relationships. In such programs, classes are 
generally viewed as static, whereas objects typically have a much more 
dynamic nature, which is encouraged by the existence of dynamic binding and 
polymorphism. 

 
operation Some work that one object performs upon another in order to elicit a 

reaction. All of the operations upon a specific object may be found in free 
subprograms and member functions or methods. The terms message, method, 
and operation are usually interchangeable. 

 
parameterized class A class that serves as a template for other classes, in which 

the template may be parameterized by other classes, objects, and/or 
operations. A parameterized class must be instantiated (its parameters filled 
in) before instances can be created. Parameterized classes are typically used as 
container classes; the terms genetic class and paramete?Ized class are 
interchangeable. 
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partition The class categories or subsystems that form a part of a given level of 

abstraction.  
 
passive object An object that does not encompass its own thread of control. 
 
persistence The property of an object by which its existence transcends time (i.e., 

the object continues to exist after its creator ceases to exist) and/or space (i.e., 
the object's location moves from the address space in which it was created). 

 
polymorphism A concept in type theory, according to which a name (such as a 

variable declaration) may denote objects of many different classes that are 
related by some common superclass; thus, any object denoted by this name is 
able to respond to some common set of operations in different ways.  

 
postcondition An invariant satisfied by an operation.  
 
precondition An invariant assumed by an operation. 
 
private A declaration that forms part of the interface of a class, object, or module; 

what is declared as private is not visible to any other classes, objects, or 
modules.  

 
process The activation of a single thread of control. 
 
process architecture A graph whose vertices represent processors and devices 

and whose arcs represent connections among these processors and devices, 
The process architecture of a system is represented by a set of process 
diagrams. 

 
process diagram Part of the notation of object-oriented design, used to show the 

allocation of processes to processors in the physical design of a system. A 
process diagram may represent all or part of the process architecture of a 
system.  

 
processor A piece of hardware that has computational resources. 
 
protected A declaration that forms part of the interface of a class, object, or 

module, but that is not visible to any other classes, objects, or modules except 
those that represent subclasses. 
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protocol The ways in which an object may act and react, constituting the entire 
static and dynamic outside view of the object; the protocol of an object defines 
the envelope of the object's allowable behavior. 

 
public A declaration that forms part of the interface of a class, object, or module, 

and that is visible to all other classes, objects, and modules that have visibility 
to it. 

 
reactive system An event-driven system; the behavior of a reactive system is not 

a simple input/output mapping. 
 
real-time system A system whose essential processes must meet certain critical 

time deadlines. A hard-real-time system must be deterministic; missing a 
deadline may lead to catastrophic results. 

 
responsibility Some behavior for which an object is held accountable; a 

responsibility denotes the obligation of an object to provide a certain behavior. 
 
reverse-engineering The production of a logical or physical model from 

executable code. 
 
role The purpose or capacity wherein one class or object participates in a 

relationship with another; the role of an object denotes the selection of a set of 
behaviors that are well-defined at a single point in time; a role is the face an 
object presents to the world at a given moment. 

 
round-trip gestalt design A style of design that emphasizes the incremental and 

iterative development of a system, through the refinement of different yet 
consistent logical and physical views of the system as a whole; the process of 
object-oriented design is guided by the concepts of round-trip gestalt design; 
round-trip gestalt design is a recognition of the fact that the big picture of a 
design affects its details, and that the details often affect the big picture.  

 
scenario An outline of events that elicits some system behavior.  
 
selector An operation that accesses the state of an object but does not alter that 

state. 
 
sequential object A passive object whose semantics are guaranteed only in the 

presence of a single thread of control. 
 
server An object that never operates upon other objects, but is only operated 

upon by other objects; an object that provides certain services.  
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service The behavior provided by a given part of a system.  
 
signature The complete profile of an operation's formal arguments and return 

type. 
 
slot A repository for part of the state of an object; collectively, the slots of an 

object constitute its structure. The terms field, instance variable, member 
object, and slot are interchangeable.  

 
space complexity The relative or absolute time in which some operation 

completes. 
 
state The cumulative results of the behavior of an object; one of the possible 

conditions in which an object may exist, characterized by definite quantities 
that are distinct from other quantities; at any given point in time, the state of 
an object encompasses all of the (usually static) properties of the object plus 
the current (usually dynamic) values of each of these properties. 

 
state transition diagram Part of the notation of object-oriented design, used to 

show the state space of a given class, the events that cause a transition from 
one state to another, and the actions that result from a state change. 

 
state space An enumeration of all the possible states of an object. The state space 

of an object encompasses an indefinite yet finite number of possible (although 
not always desirable nor expected) states. 

 
static binding Binding denotes the association of a name (such as a variable 

declaration) with a class; static binding is a binding in which the name/class 
association is made when the name is declared (at compile time) but before the 
creation of the object that the name designates. 

 
strategic design decision A design decision that has sweeping architectural 

implications. 
 
strongly typed A characteristic of a programming language, according to which 

all expressions are guaranteed to be type-consistent. 
 
structure The concrete representation of the state of an object. An object does not 

share its state with any other object, although all objects of the same class do 
share the same representation of their state. 
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structured design A method of design encompassing the process of algorithmic 
decomposition. 

 
subclass A class that inherits from one or more classes (which are called its 

immediate superclasses). 
 
subsystem A collection of modules, some of which are visible to other 

subsystems and others of which are hidden. 
 
superclass The class from which another class inherits (which is called its 

immediate subclass). 
 
synchronization The concurrency semantics of an operation. An operation may 

be simple (only one thread of control is involved), synchronous (two processes 
rendezvous), balking (one process may rendezvous with another only if the 
second process is already waiting), timeout (one process may rendezvous with 
another, but will wait for the second process only for a specified amount of time), 
or asynchronous (the two processes operate independently).  
 
tactical design decision A design decision that has local architectural 
implications. 
 
thread of control A single process. The start of a thread of control is the root 

from which independent dynamic action within a system occurs; a given 
system may have many simultaneous threads of control, some of which may 
dynamically come into existence and then cease to exist. Systems executing 
across multiple CPUs allow for truly concurrent threads of control, whereas 
systems running on a single CPU can only achieve the illusion of concurrent 
threads of control. 

 
time complexity The relative or absolute space consumed by an object.  
 
transformational system An system whose behavior is an input/output 

mapping.  
 
transition The passing from one state to another state. 
 
type The definition of the domain of allowable values that an object may possess 

and the set of operations that may be performed upon the object. The terms 
class and type are usually (but not always) interchangeable; a type is a slightly 
different concept than a class, in that it emphasizes the importance of 
conformance to a common protocol. 
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typing The enforcement of the class of an object, which prevents objects of 
different types from being interchanged or, at the most, allows them to be 
interchanged only in very restricted ways. use To reference the outside view of 
an abstraction. 

 
virtual function An operation upon an object. A virtual function may be 

redefined by subclasses; thus, for a given object, it is implemented through a 
set of methods declared in various classes that are related via their inheritance 
hierarchy. The terms genetlcfunction and virtualfunction are usually 
interchangeable. 

 
visibility The ability of one abstraction to see another and thus reference 

resources in its outside view. Abstractions are visible to one another only 
where their scopes overlap. Export control may further restrict access to visible 
abstractions. 

 




