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Preface

Many systems encountered in science and engineering require an understanding
of probability concepts because they possess random variations. These include
messages arriving at a switchboard; customers arriving at a restaurant, movie
theater, or a bank; component failure in a system; traffic arrival at a junction;
and transaction requests arriving at a server.

There are several books on probability and random processes. These books
range widely in their coverage and depth. At one extreme are the very rigor-
ous books that present probability from the point of view of measure theory and
spend so much time proving exotic theorems. At the other extreme are books that
combine probability with statistics without devoting enough time on the applica-
tions of probability. In the middle lies a group of books that combine probability
and random processes. These books avoid the measure theoretic approach and
rather emphasize the axioms upon which the theory is based. This book belongs
to this group and is based on the premise that to the engineer, probability is a
modeling tool. Therefore, to an engineering student the emphasis on a probabil-
ity and random processes course should be on the application of probability to the
solution of engineering problems. Also, since some of the engineering problems
deal with data analysis, the student should also be exposed to some knowledge of
statistics. However, it is not necessary for the student to take a separate class on
statistics since most of the prerequisites for statistics are covered in a probability
course. Thus, this book differs from other books in the sense that it presents a
chapter on the essentials of statistics.

The book is designed for juniors and seniors, but can also be used at lower
graduate levels. It grew out of the author’s fifteen years of experience developing
and analyzing probabilistic models of systems in the industry as well as teaching
an introductory course on probability and random processes for over four years in
two different colleges. The emphasis throughout the book is on the applications of
probability, which are demonstrated through several examples that deal with real

xiii



xiv Preface

systems. Since many students learn by “doing,” it is suggested that the students
solve the exercises at the end of each chapter. Some mathematical knowledge is
assumed, especially freshman calculus and algebra. The book is divided into three
parts as follows:

• Part 1: Probability and Random Variables, which covers Chapters 1 to 7

• Part 2: Basic Random Processes, which covers Chapters 8 to 10

• Part 3: Introduction to Statistics, which covers Chapter 11.

A more detailed description of the chapters is as follows. Chapter 1 deals with
basic concepts in probability including sample space and events, elementary set
theory, conditional probability, independent events, basic combinatorial analysis,
and applications of probability.

Chapter 2 discusses random variables including events defined by random
variables, discrete random variables, continuous random variables, cumulative
distribution function, probability mass function of discrete random variables, and
probability density function of continuous random variables.

Chapter 3 deals with moments of random variables including the concepts
of expectation and variance, higher moments, conditional expectation, and the
Chebyshev and Markov inequalities.

Chapter 4 discusses special random variables and their distributions. These
include the Bernoulli distribution, binomial distribution, geometric distribution,
Pascal distribution, hypergeometric distribution, Poisson distribution, exponen-
tial distribution, Erlang distribution, uniform distribution, and normal distribu-
tion.

Chapter 5 deals with multiple random variables including the joint cumula-
tive distribution function of bivariate random variables, conditional distributions,
covariance, correlation coefficient, many random variables, and multinomial dis-
tribution.

Chapter 6 deals with functions of random variables including linear and power
functions of one random variable, moments of functions of one random variable,
sums of independent random variables, the maximum and minimum of two inde-
pendent random variables, two functions of two random variables, laws of large
numbers, the central limit theorem, and order statistics.

Chapter 7 discusses transform methods that are useful in computing moments
of random variables. In particular, it discusses the characteristic function, the
z-transform of the probability mass functions of discrete random variables and
the s-transform of the probability density functions of continuous random vari-
ables.

Chapter 8 presents an introduction to random processes. It discusses classifi-
cation of random processes; characterization of random processes including the
autocorrelation function of a random process, autocovariance function, crosscor-
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relation function and crosscovariance function; stationary random processes; er-
godic random processes; and power spectral density.

Chapter 9 discusses linear systems with random inputs.

Chapter 10 discusses such specialized random processes as the Gaussian
process, random walk, the Weiner process, Poisson process, and Markov process.

Chapter 11 presents an introduction to statistics and discusses such topics as
sampling theory, estimation theory, hypothesis testing, and linear regression.

The author has tried different formats in presenting the different chapters of
the book. In one particular semester we were able to go through all the chapters.
However, it was discovered that this put a lot of stress on the students. Thus, in
subsequent semesters an attempt was made to cover all the topics in Part 1 of the
book, Chapters 8 and 9, and a few selections from the other two chapters. The
instructor can try different formats and adopt the one that works best for him or
her.

The symbol � is used to indicate the end of the solution to an example. This
is to separate the continuation of a discussion preceding an example from the
example just solved.
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1.1 Introduction

Probability deals with unpredictability and randomness, and probability theory
is the branch of mathematics that is concerned with the study of random phe-
nomena. A random phenomenon is one that, under repeated observation, yields
different outcomes that are not deterministically predictable. However, these
outcomes obey certain conditions of statistical regularity whereby the relative
frequency of occurrence of the possible outcomes is approximately predictable.
Examples of these random phenomena include the number of electronic mail
(e-mail) messages received by all employees of a company in one day, the num-
ber of phone calls arriving at the university’s switchboard over a given period,

1



2 Chapter 1 Basic Probability Concepts

the number of components of a system that fail within a given interval, and the
number of A’s that a student can receive in one academic year.

According to the preceding definition, the fundamental issue in random phe-
nomena is the idea of a repeated experiment with a set of possible outcomes or
events. Associated with each of these events is a real number called the proba-
bility of the event that is related to the frequency of occurrence of the event in a
long sequence of repeated trials of the experiment. In this way it becomes obvi-
ous that the probability of an event is a value that lies between zero and one, and
the sum of the probabilities of the events for a particular experiment should sum
to one.

This chapter begins with events associated with a random experiment. Then it
provides different definitions of probability and considers elementary set theory
and algebra of sets. Finally, it discusses basic concepts in combinatorial analysis
that will be used in many of the later chapters.

1.2 Sample Space and Events

The concepts of experiments and events are very important in the study of prob-
ability. In probability, an experiment is any process of trial and observation. An
experiment whose outcome is uncertain before it is performed is called a random

experiment. When we perform a random experiment, the collection of possible
elementary outcomes is called the sample space of the experiment, which is usu-
ally denoted by S. We define these outcomes as elementary outcomes because
exactly one of the outcomes occurs when the experiment is performed. The ele-
mentary outcomes of an experiment are called the sample points of the sample
space and are denoted by wi, i = 1,2, . . . . If there are n possible outcomes of an
experiment, then the sample space is S = {w1,w2, . . . ,wn}.

An event is the occurrence of either a prescribed outcome or any one of a
number of possible outcomes of an experiment. Thus, an event is a subset of the
sample space. For example, if we toss a die, any number from 1 to 6 may appear.
Therefore, in this experiment the sample space is defined by

S = {1,2,3,4,5,6}

The event “the outcome of the toss of a die is an even number” is a subset of S

and is defined by

E = {2,4,6}
For a second example, consider a coin-tossing experiment in which each toss can
result in either a head (H) or a tail (T). If we toss a coin three times and let the
triplet xyz denote the outcome “x on the first toss, y on the second toss, and z on
the third toss,” then the sample space of the experiment is

S = {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}
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The event “one head and two tails” is a subset of S and is defined by

E = {HTT,THT,TTH}

Other examples of events are as follows:

• In a single coin toss experiment with sample space S = {H,T}, the event E =
{H} is the event that a head appears on the toss and E = {T} is the event that
a tail appears on the toss.

• If we toss a coin twice and let xy denote the outcome “x on the first toss and
y on the second toss,” where x is head or tail and y is head or tail, then the
sample space is S = {HH,HT,TH,TT}. The event E = {HT,TT} is the event
that a tail appears on the second toss.

• If we measure the lifetime of an electronic component, such as a chip, the
sample space consists of all nonnegative real numbers. That is,

S = {x|0 ≤ x < ∞}

The event that the lifetime is not more than 7 hours is defined as follows:

E = {x|0 ≤ x ≤ 7}

• If we toss a die twice and let the pair (x,y) denote the outcome “x on the first
toss and y on the second toss,” then the sample space is

S =





(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)





The event that the sum of the two tosses is 8 is denoted by

E = {(2,6), (3,5), (4,4), (5,3), (6,2)}

For any two events A and B defined on a sample space S, we can define the
following new events:

• A ∪ B is the event that consists of all sample points that are either in A or in
B or in both A and B. The event A ∪ B is called the union of events A and B.

• A ∩ B is the event that consists of all sample points that are in both A and B.
The event A ∩ B is called the intersection of events A and B. Two events are
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defined to be mutually exclusive if their intersection does not contain a sam-
ple point; that is, they have no outcomes in common. Events A1,A2,A3, . . . ,
are defined to be mutually exclusive if no two of them have any outcomes in
common and the events collectively have no outcomes in common.

• A − B is the event that consists of all sample points that are in A but not in B.
The event A − B is called the difference of events A and B. Note that A − B is
different from B − A.

The algebra of unions, intersections, and differences of events will be discussed
in greater detail when we study set theory later in this chapter.

1.3 Definitions of Probability

There are several ways to define probability. In this section we consider three de-
finitions: the axiomatic definition, the relative-frequency definition, and the clas-

sical definition.

1.3.1 Axiomatic Definition

Consider a random experiment whose sample space is S. For each event A of S

we assume that a number P(A), called the probability of event A, is defined such
that the following hold:

1. Axiom 1: 0 ≤ P(A) ≤ 1, which means that the probability of A is some number
between and including 0 and 1.

2. Axiom 2: P(S) = 1, which states that with probability 1, the outcome will be
a sample point in the sample space.

3. Axiom 3: For any set of n mutually exclusive events A1,A2, . . . ,An defined
on the same sample space,

P(A1 ∪ A2 ∪ · · · ∪ An) = P(A1) + P(A2) + · · · + P(An)

That is, for any set of mutually exclusive events defined on the same space,
the probability of at least one of these events occurring is the sum of their
respective probabilities.
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1.3.2 Relative-Frequency Definition

Consider a random experiment that is performed n times. If an event A occurs
nA times, then the probability of event A, P(A), is defined as follows:

P(A) = lim
n→∞

nA

n

The ratio nA/n is called the relative frequency of event A. While the relative-
frequency definition of probability is intuitively satisfactory for many practical
problems, it has a few limitations. One such limitation is the fact that the exper-
iment may not be repeatable, especially when we are dealing with destructive
testing of expensive and/or scarce resources. Also, the limit may not exist.

1.3.3 Classical Definition

In the classical definition, the probability P(A) of an event A is the ratio of the
number of outcomes NA of an experiment that are favorable to A to the total
number N of possible outcomes of the experiment. That is,

P(A) = NA

N

This probability is determined a priori without actually performing the experi-
ment. For example, in a coin toss experiment, there are two possible outcomes:
heads or tails. Thus, N = 2, and if the coin is fair, the probability of the event that
the toss comes up heads is 1/2.

Example 1.1 Two fair dice are tossed. Find the probability of each of the fol-
lowing events:

a. The sum of the outcomes of the two dice is equal to 7

b. The sum of the outcomes of the two dice is equal to 7 or 11

c. The outcome of the second die is greater than the outcome of the first die

d. Both dice come up with even numbers

Solution We first define the sample space of the experiment. If we let the pair
(x,y) denote the outcome “first die comes up x and second die comes up y,”
where x,y ∈ {1,2,3,4,5,6}, then S = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1),

(4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2),

(6,3), (6,4), (6,5), (6,6)}. The total number of sample points is 36. We evaluate
the three probabilities using the classical definition method.
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(a) Let A1 denote the event that the sum of the outcomes of the two dice is
equal to seven. Then A1 = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}. Since the
number of sample points in the event is 6, we have that P(A1) = 6/36 = 1/6.

(b) Let B denote the event that the sum of the outcomes of the two dice is either
seven or eleven, and let A2 denote the event that the sum of the outcomes of
the two dice is eleven. Then, A2 = {(5,6), (6,5)} with 2 sample points. Thus,
P(A2) = 2/36 = 1/18. Since B is the union of A1 and A2, which are mutually
exclusive events, we obtain

P(B) = P(A1 ∪ A2) = P(A1) + P(A2) = 1

6
+ 1

18
= 2

9

(c) Let C denote the event that the outcome of the second die is greater
than the outcome of the first die. Then C = {(1,2), (1,3), (1,4), (1,5), (1,6),

(2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6)} with 15 sam-
ple points. Thus, P(C) = 15/36 = 5/12.

(d) Let D denote the event that both dice come up with even numbers. Then
D = {(2,2), (2,4), (2,6), (4,2), (4,4), (4,6), (6,2), (6,4), (6,6)} with 9 sample
points. Thus, P(D) = 9/36 = 1/4.

Note that the problem can also be solved by considering a two-dimensional dis-
play of the sample space, as shown in Figure 1.1. The figure shows the different
events just defined.

�

Figure 1.1 Sample Space for Example 1.1
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The sample points in event D are spread over the entire sample space. There-
fore, the event D is not shown in Figure 1.1.

1.4 Applications of Probability

There are several science and engineering applications of probability. Some of
these applications are as follows.

1.4.1 Reliability Engineering

Reliability theory is concerned with the duration of the useful life of components
and systems of components. System failure times are unpredictable. Thus, the
time until a system fails, which is referred to as the time to failure of the system,
is usually modeled by a probabilistic function. Reliability applications of proba-
bility are considered later in this chapter.

1.4.2 Quality Control

Quality control deals with the inspection of finished products to ensure that they
meet the desired requirements and specifications. One way to perform the qual-
ity control function is to physically test/inspect each product as it comes off the
production line. However, this is a very costly way to do it. The practical method
is to randomly select a sample of the product from a lot and test each item in
the sample. A decision to declare the lot good or defective is thus based on the
outcome of the test of the items of the sample. This decision is itself based on a
well-designed policy that guarantees that a good lot is rejected with a very small
probability and that a bad lot is accepted with a very small probability. A lot is
considered good if the parameter that characterizes the quality of the sample has
a value that exceeds a predefined threshold value. Similarly the lot is considered
to be defective if the parameter that characterizes the quality of the sample has a
value that is smaller than the predefined threshold value. For example, one rule
for acceptance of a lot can be that the number of defective items in the selected
sample be less than some predefined fraction of the sample; otherwise the lot is
declared defective.

1.4.3 Channel Noise

Noise is an unwanted signal. A message transmitted from a source passes through
a channel where it is subject to different kinds of random disturbances that can in-
troduce errors in the message received at the sink. That is, channel noise corrupts
messages, as shown in Figure 1.2.
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Figure 1.2 Model of a Communication System

Since noise is a random signal, one of the performance issues is the probabil-
ity that the received message was not corrupted by noise. Thus, probability plays
an important role in evaluating the performance of noisy communication
channels.

1.4.4 System Simulation

Sometimes it is difficult to provide an exact solution of physical problems involv-
ing random phenomena. The difficulty arises from the fact that such problems are
very complex, which is the case, for example, when a system has unusual proper-
ties. One way to deal with these problems is to provide an approximate solution,
which attempts to make simplifying assumptions that enable the problem to be
solved analytically. Another method is to use computer simulation, which imi-
tates the physical process. Even when an approximate solution is obtained, it is
always advisable to use simulation to validate the assumptions.

A simulation model describes the operation of a system in terms of individual
events of the individual elements in the system. The model includes the interre-
lationships among the different elements and allows the effects of the elements’
actions on each other to be captured as a dynamic process.

The key to a simulation model is the generation of random numbers that can
be used to represent events—such as arrival of customers at a bank—in the sys-
tem being modeled. Because these events are random in nature, the random
numbers are used to drive the probability distributions that characterize them.
Thus, knowledge of probability theory is essential for a meaningful simulation
analysis.

1.5 Elementary Set Theory

A set is a collection of objects known as elements. The events that we discussed
earlier in this chapter are usually modeled as sets, and the algebra of sets is used
to study events. A set can be represented in a number of ways as the following
examples illustrate.



1.5 Elementary Set Theory 9

Let A denote the set of positive integers between and including 1 and 5. Then

A = {a|1 ≤ a ≤ 5} = {1,2,3,4,5}

Similarly, let B denote the set of positive odd numbers less than 10. Then

B = {1,3,5,7,9}

If k is an element of the set E, we say that k belongs to (or is a member of) E and
write k ∈ E. If k is not an element of the set E, we say that k does not belong to
(or is not a member of) E and write k /∈ E.

A set A is called a subset of set B, denoted by A ⊂ B, if every member of A is
a member of B. Alternatively, we say that the set B contains the set A by writing
B ⊃ A.

The set that contains all possible elements is called the universal set S. The set
that contains no elements (or is empty) is called the null set ∅ (or empty set).

1.5.1 Set Operations

Equality. Two sets A and B are defined to be equal, denoted by A = B, if and
only if (iff) A is a subset of B and B is a subset of A; that is A ⊂ B, and B ⊂ A.

Complementation. Let A ⊂ S. The complement of A, denoted by A, is the set
containing all elements of S that are not in A. That is,

A = {k|k ∈ S and k /∈ A}

Example 1.2 Let S = {1,2,3,4,5,6,7,8,9,10}, A = {1,2,4,7}, and B = {1,3,

4,6}. Then A = {3,5,6,8,9,10}, and B = {2,5,7,8,9,10}. �

Union. The union of two sets A and B, denoted by A ∪ B, is the set containing
all the elements of either A or B or both A and B. That is,

A ∪ B = {k|k ∈ A or k ∈ B}

In Example 1.2, A ∪ B = {1,2,3,4,6,7}.

Intersection. The intersection of two sets A and B, denoted by A ∩ B, is the set
containing all the elements that are in both A and B. That is,

A ∩ B = {k|k ∈ A and k ∈ B}

In Example 1.2, A ∩ B = {1,4}.
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Difference. The difference of two sets A and B, denoted by A − B, is the set
containing all elements of A that are not in B. That is,

A − B = {k|k ∈ A and k /∈ B}

Note that A − B 
= B − A. From Example 1.2 we find that A − B = {2,7}, while
B − A = {3,6}.

Disjoint Sets. Two sets A and B are called disjoint (or mutually exclusive) sets
if they contain no elements in common, which means that A ∩ B = ∅.

1.5.2 Number of Subsets of a Set

Let a set A contain n elements labeled a1,a2, . . . ,an. The number of possible
subsets of A is 2n, which can be obtained as follows for the case of n = 3. The
eight subsets are given by {a1,a2,a3} = ∅, {a1,a2,a3}, {a1,a2,a3}, {a1,a2,a3},
{a1,a2,a3}, {a1,a2,a3}, {a1,a2,a3}, {a1,a2,a3} = A; where ak indicates that the
element ak is not included. By convention, if ak is not an element of a subset, its
complement is not explicitly included in the subset. Thus, the subsets are ∅, {a1},
{a2}, {a3}, {a1,a2}, {a1,a3}, {a2,a3}, {a1,a2,a3} = A. Since the number of subsets
includes the null set, the number of subsets that contain at least one element is
2n − 1. The result can be extended to the case of n > 3.

The set of all subsets of a set A is called the power set of A and denoted by
s(A). Thus, for the set A = {a,b, c}, the power set of A is given by

s(A) = {∅, {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a,b, c}}

The number of members of a set A is called the cardinality of A and denoted
by |A|. Thus, if the cardinality of the set A is n, then the cardinality of the power
set of A is |s(A)| = 2n.

1.5.3 Venn Diagram

The different set operations discussed in the previous section can be graphically
represented by the Venn diagram. Figure 1.3 illustrates the complementation,
union, intersection, and difference operations on two sets A and B. The universal
set is represented by the set of points inside a rectangle. The sets A and B are
represented by the sets of points inside circles.

1.5.4 Set Identities

The operations of forming unions, intersections, and complements of sets obey
certain rules similar to the rules of algebra. These rules include the following:
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Figure 1.3 Venn Diagrams of Different Set Operations

• Commutative law for unions: A ∪ B = B ∪ A, which states that the order of the
union operation on two sets is immaterial.

• Commutative law for intersections: A ∩ B = B ∩ A, which states that the order
of the intersection operation on two sets is immaterial.

• Associative law for unions: A ∪ (B ∪ C) = (A ∪ B) ∪ C, which states that in
performing the union operation on three sets, we can proceed in two ways:
We can first perform the union operation on the first two sets to obtain an
intermediate result and then perform the operation on the result and the third
set. The same result is obtained if we first perform the operation on the last
two sets and then perform the operation on the first set and the result obtained
from the operation on the last two sets.

• Associative law for intersections: A ∩ (B ∩ C) = (A ∩ B) ∩ C, which states that
in performing the intersection operation on three sets, we can proceed in two
ways: We can first perform the intersection operation on the first two sets to
obtain an intermediate result and then perform the operation on the result
and the third set. The same result is obtained if we first perform the operation
on the last two sets and then perform the operation on the first set and the
result obtained from the operation on the last two sets.

• First distributive law: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), which states that the
intersection of a set A and the union of two sets B and C is equal to the union
of the intersection of A and B and the intersection of A and C. This law can
be extended as follows:

A ∩
(

n⋃

i=1

Bi

)
=

n⋃

i=1

(A ∩ Bi)
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• Second distributive law: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), which states that
the union of a set A and the intersection of two sets B and C is equal to the
intersection of the union of A and B and the union of A and C. The law can
also be extended as follows:

A ∪
(

n⋂

i=1

Bi

)
=

n⋂

i=1

(A ∪ Bi)

• De Morgan’s first law: A ∪ B = A∩B, which states that the complement of the
union of two sets is equal to the intersection of the complements of the sets.
The law can be extended to include more than two sets as follows:

n⋃

i=1

Ai =
n⋂

i=1

Ai

• De Morgan’s second law: A ∩ B = A ∪ B, which states that the complement of
the intersection of two sets is equal to the union of the complements of the
sets. The law can also be extended to include more than two sets as follows:

n⋂

i=1

Ai =
n⋃

i=1

Ai

• Other identities include the following:

• A − B = A ∩ B, which states that the difference of A and B is equal to the
intersection of A and the complement of B.

• A ∪ S = S, which states that the union of A and the universal set S is equal
to S.

• A ∩ S = A, which states that the intersection of A and the universal set S

is equal to A.

• A ∪ ∅ = A, which states that the union of A and the null set is equal to A.

• A ∩ ∅ = ∅, which states that the intersection of A and the null set is equal
to the null set.

• S = ∅, which states that the complement of the universal set is equal to the
null set.

• For any two sets A and B, A = (A ∩ B) ∪ (A ∩ B), which states that the set
A is equal to the union of the intersection of A and B and the intersection
of A and the complement of B.
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The way to prove these identities is to show that any point contained in the
event on the left side of the equality is also contained in the event on the right
side and vice versa.

1.5.5 Duality Principle

The duality principle states that any true result involving sets is also true when
we replace unions by intersections, intersections by unions, and sets by their com-
plements, and if we reverse the inclusion symbols ⊂ and ⊃. For example, if we
replace the union in the first distributive law with intersection and intersection
with union, we obtain the second distributive law and vice versa. The same result
holds for the two De Morgan’s laws.

1.6 Properties of Probability

We now combine the results of set identities with those of the axiomatic defin-
ition of probability. (See Section 1.3.1.) From these two sections we obtain the
following results:

1. P(A) = 1 − P(A), which states that the probability of the complement of A is
one minus the probability of A.

2. P(∅) = 0, which states that the impossible (or null) event has probability zero.

3. If A ⊂ B, then P(A) ≤ P(B). That is, if A is a subset of B, the probability of
A is at most the probability of B (or the probability of A cannot exceed the
probability of B).

4. P(A) ≤ 1, which means that the probability of event A is at most 1.

5. If A = A1 ∪ A2 ∪ · · ·∪ An, where A1,A2, . . . ,An are mutually exclusive events,
then

P(A) = P(A1) + P(A2) + · · · + P(An)

6. For any two events A and B, P(A) = P(A∩B)+P(A∩B), which follows from
the set identity: A = (A ∩ B) ∪ (A ∩ B). Since A ∩ B and A ∩ B are mutually
exclusive events, the result follows.

7. For any two events A and B, P(A ∪ B) = P(A) + P(B) − P(A ∩ B). This result
can be proved by making use of the Venn diagram. Figure 1.4a represents a
Venn diagram in which the left circle represents event A and the right circle
represents event B. In Figure 1.4b we divide the diagram into three mutually
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Figure 1.4 Venn Diagram of A ∪ B

exclusive sections labeled I, II, and III, where section I represents all points
in A that are not in B, section II represents all points in both A and B, and
section III represents all points in B that are not in A.

From Figure 1.4b, we observe that

A ∪ B = I ∪ II ∪ III

A = I ∪ II

B = II ∪ III

Since I, II, and III are mutually exclusive, Property 5 implies that

P(A ∪ B) = P(I) + P(II) + P(III)

P(A) = P(I) + P(II)

P(B) = P(II) + P(III)

Thus,

P(A) + P(B) = P(I) + 2P(II) + P(III) = {P(I) + P(II) + P(III)} + P(II)

= P(A ∪ B) + P(II)

which shows that

P(A ∪ B) = P(A) + P(B) − P(II) = P(A) + P(B) − P(A ∩ B)

8. We can extend Property 7 to the case of three events. If A1,A2,A3 are three
events in S, then

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3) − P(A1 ∩ A2) − P(A1 ∩ A3)

− P(A2 ∩ A3) + P(A1 ∩ A2 ∩ A3)
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This can be further generalized to the case of n arbitrary events in S as follows:

P(A1 ∪ A2 ∪ · · · ∪ An) =
n∑

i=1

P(Ai) −
∑

1≤i≤j≤n

P(Ai ∩ Aj)

+
∑

1≤i≤j≤k≤n

P(Ai ∩ Aj ∩ Ak) − · · ·

That is, to find the probability that at least one of the n events Ai occurs, first
add the probability of each event, then subtract the probabilities of all possible
two-way intersections, then add the probabilities of all possible three-way inter-
sections, and so on.

1.7 Conditional Probability

Consider the following experiment. We are interested in the sum of the numbers
that appear when two dice are tossed. Suppose we are interested in the event
that the sum of the two tosses is 7, and we observe that the first toss is 4. Based
on this fact, the six possible and equally likely outcomes of the two tosses are
{4, 1}, {4, 2}, {4, 3}, {4, 4}, {4, 5}, and {4, 6}. In the absence of the information that
the first toss is 4, there would have been 36 sample points in the sample space. But
with the information on the outcome of the first toss, there are now only 6 sample
points.

Let A denote the event that the sum of the two dice is 7, and let B denote the
event that the first die is 4. The conditional probability of event A given event B,
denoted by P(A|B), is defined by

P(A|B) = P(A ∩ B)

P(B)

= P({4,3})
P({4,1}) + P({4,2}) + P({4,3}) + P({4,4}) + P({4,5}) + P({4,6})

= (1/36)

(1/6)
= 1

6

Note that P(A|B) is only defined when P(B) > 0.

Example 1.3 A bag contains eight red balls, four green balls, and eight yellow
balls. A ball is drawn at random from the bag, and it is not a red ball. What is the
probability that it is a green ball?
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Solution Let G denote the event that the selected ball is a green ball, and let R

denote the event that it is not a red ball. Then, P(G) = 4/20 = 1/5, since there are
4 green balls out of a total of 20 balls, and P(R) = 12/20 = 3/5, since there are 12
balls out of 20 that are not red. Now,

P(G|R) = P(G ∩ R)

P(R)

But if the ball is green and not red, it must be green. Thus, we obtain that
G ∩ R = G and

P(G|R) = P(G ∩ R)

P(R)
= P(G)

P(R)
= 1/5

3/5
= 1

3

�

Example 1.4 A fair coin was tossed two times. Given that the first toss resulted
in heads, what is the probability that both tosses resulted in heads?

Solution Because the coin is fair, the four sample points of the sample space
S = {HH,HT,TH,TT} are equally likely. Let X denote the event that both tosses
came up heads; that is, X = {HH}. Let Y denote the event that the first toss came
up heads; that is, Y = {HH,HT}. The probability that both tosses resulted in
heads, given that the first toss resulted in heads, is given by

P(X|Y) = P(X ∩ Y)

P(Y)
= P(X)

P(Y)
= 1/4

2/4
= 1

2

�

1.7.1 Total Probability and the Bayes’ Theorem

A partition of a set A is a set {A1,A2, . . . ,An} with the following properties:

a. Ai ⊆ A, i = 1,2, . . . ,n, which means that A is a set of subsets.

b. Ai ∩ Ak = ∅, i = 1,2, . . . ,n; k = 1,2, . . . ,n; i 
= k, which means that the sub-
sets are mutually (or pairwise) disjoint; that is, no two subsets have any
element in common.

c. A1 ∪ A2 ∪ · · · ∪ An = A, which means that the subsets are collectively ex-
haustive. That is, the subsets together include all possible values of the
set A.
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Proposition 1.1. Let {A1,A2, . . . ,An} be a partition of the sample space S, and

suppose each one of the events A1,A2, . . . ,An, has nonzero probability of occur-

rence. Let A be any event. Then

P(A) = P(A1)P(A|A1) + P(A2)P(A|A2) + · · · + P(An)P(A|An)

=
n∑

i=1

P(Ai)P(A|Ai)

Proof. The proof is based on the observation that because {A1,A2, . . . ,An} is a
partition of S, the set {A ∩ A1,A ∩ A2, . . . ,A ∩ An} is a partition of the event A

because if A occurs, then it must occur in conjunction with one of the Ai’s. Thus,
we can express A as the union of n mutually exclusive events. That is,

A = (A ∩ A1) ∪ (A ∩ A2) ∪ · · · ∪ (A ∩ An)

Since these events are mutually exclusive, we obtain

P(A) = P(A ∩ A1) + P(A ∩ A2) + · · · + P(A ∩ An)

From our definition of conditional probability, P(A ∩ Ai) = P(Ai)P(A|Ai), which
exists because we assumed in the proposition that the events A1,A2, . . . ,An have
nonzero probabilities. Substituting the definition of conditional probabilities, we
obtain the desired result:

P(A) = P(A1)P(A|A1) + P(A2)P(A|A2) + · · · + P(An)P(A|An)

The preceding result is defined as the total probability of event A, which will be
useful in the remainder of the book. �

Example 1.5 A student buys 1000 integrated circuits (ICs) from supplier A,
2000 ICs from supplier B, and 3000 ICs from supplier C. He tested the ICs and
found that the conditional probability of an IC being defective depends on the
supplier from whom it was bought. Specifically, given that an IC came from sup-
plier A, the probability that it is defective is 0.05; given that an IC came from
supplier B, the probability that it is defective is 0.10; and given that an IC came
from supplier C, the probability that it is defective is 0.10. If the ICs from the
three suppliers are mixed together and one is selected at random, what is the
probability that it is defective?

Solution Let P(A), P(B), and P(C) denote the probability that a randomly se-
lected IC came from supplier A, B, and C, respectively. Also, let P(D|A) denote
the conditional probability that an IC is defective, given that it came from sup-
plier A; P(D|B) denote the conditional probability that an IC is defective, given
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that it came from supplier B; and P(D|C) denote the conditional probability that
an IC is defective, given that it came from supplier C. Then the following are true:

P(D|A) = 0.05

P(D|B) = 0.10

P(D|C) = 0.10

P(A) = 1000

1000 + 2000 + 3000
= 1

6

P(B) = 2000

1000 + 2000 + 3000
= 1

3

P(C) = 3000

1000 + 2000 + 3000
= 1

2

Let P(D) denote the unconditional probability that a randomly selected IC is
defective. Then, from the principles of total probability,

P(D) = P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)

= (0.05)(1/6) + (0.10)(1/3) + (0.10)(1/2)

= 0.09167

�

We now go back to the general discussion. Suppose event A has occurred,
but we do not know which of the mutually exclusive and exhaustive events
A1,A2, . . . ,An holds true. The conditional probability that event Ak occurred,
given that A occurred, is given by

P(Ak|A) = P(Ak ∩ A)

P(A)
= P(Ak ∩ A)

n∑

i=1

P(A|Ai)P(Ai)

where the second equality follows from the total probability of event A. Since
P(Ak ∩ A) = P(A|Ak)P(Ak), the preceding equation can be rewritten as follows:

P(Ak|A) = P(Ak ∩ A)

P(A)
= P(A|Ak)P(Ak)

n∑

i=1

P(A|Ai)P(Ai)

This result is called the Bayes’ formula (or Bayes’ rule).
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Example 1.6 In Example 1.5, given that a randomly selected IC is defective,
what is the probability that it came from supplier A?

Solution Using the same notation as in Example 1.5, the probability that the
randomly selected IC came from supplier A, given that it is defective, is given by

P(A|D) = P(D ∩ A)

P(D)

= P(D|A)P(A)

P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)

= (0.05)(1/6)

(0.05)(1/6) + (0.10)(1/3) + (0.10)(1/2)

= 0.0909
�

Example 1.7 (The Binary Symmetric Channel) A discrete channel is charac-
terized by an input alphabet X = {x1,x2, . . . ,xn}; an output alphabet Y = {y1,

y2, . . . ,ym}; and a set of conditional probabilities (called transition probabili-

ties), Pij, which are defined as follows: Pij = P(yj|xi) = P[receiving symbol yj|
symbol xi was transmitted], i = 1,2, . . . ,n; j = 1,2, . . . ,m. The binary channel is
a special case of the discrete channel, where n = m = 2. It can be represented as
shown in Figure 1.5.

In the binary channel, an error occurs if y2 is received when x1 is transmitted or
y1 is received when x2 is transmitted. Thus, the probability of error, Pe, is given by

Pe = P(x1 ∩ y2) + P(x2 ∩ y1)

= P(x1)P(y2|x1) + P(x2)P(y1|x2)

= P(x2)P12 + P(x2)P21

Figure 1.5 The Binary Channel
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If P12 = P21, we say that the channel is a binary symmetrical channel (BSC).
Also, if in the BSC P(x1) = p, then P(x2) = 1 − p = q.

Consider the BSC shown in Figure 1.6, with P(x1) = 0.6 and P(x2) = 0.4. Eval-
uate the following:

a. The probability that x1 was transmitted, given that y2 was received

b. The probability that x2 was transmitted, given that y1 was received

c. The probability that x1 was transmitted, given that y1 was received

d. The probability that x2 was transmitted, given that y2 was received

e. The unconditional probability of error

Figure 1.6 The Binary Symmetric Channel for Example 1.7

Solution Let P(y1) denote the probability that y1 was received and P(y2) the
probability that y2 was received. Then

(a) The probability that x1 was transmitted, given that y2 was received, is given
by

P(x1|y2) = P(x1 ∩ y2)

P(y2)
= P(y2|x1)P(x1)

P(y2|x1)P(x1) + P(y2|x2)P(x2)

= (0.1)(0.6)

(0.1)(0.6) + (0.9)(0.4)

= 0.143

(b) The probability that x2 was transmitted, given that y1 was received, is given
by

P(x2|y1) = P(x2 ∩ y1)

P(y1)
= P(y1|x2)P(x2)

P(y1|x1)P(x1) + P(y1|x2)P(x2)
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= (0.1)(0.4)

(0.9)(0.6) + (0.1)(0.4)

= 0.069

(c) The probability that x1 was transmitted, given that y1 was received, is given
by

P(x1|y1) = P(x1 ∩ y1)

P(y1)
= P(y1|x1)P(x1)

P(y1|x1)P(x1) + P(y1|x2)P(x2)

= (0.9)(0.6)

(0.9)(0.6) + (0.1)(0.4)

= 0.931

(d) The probability that x2 was transmitted, given that y2 was received, is given
by

P(x2|y2) = P(x2 ∩ y2)

P(y2)
= P(y2|x2)P(x2)

P(y2|x1)P(x1) + P(y2|x2)P(x2)

= (0.9)(0.4)

(0.1)(0.6) + (0.9)(0.4)

= 0.857

(e) The unconditional probability of error is given by

Pe = P(x1)P12 + P(x2)P21

= (0.6)(0.1) + (0.4)(0.1)

= 0.1

�

Example 1.8 The quarterback for a certain football team has a good game with
probability 0.6 and a bad game with probability 0.4. When he has a good game, he
throws at least one interception with a probability of 0.2; and when he has a bad
game, he throws at least one interception with a probability of 0.5. Given that he
threw at least one interception in a particular game, what is the probability that
he had a good game?

Solution Let G denote the event that the quarterback has a good game and B

the event that he had a bad game. Similarly, let I denote the event that he throws
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at least one interception. Then we have that

P(G) = 0.6

P(B) = 0.4

P(I|G) = 0.2

P(I|B) = 0.5

P(G|I) = P(G ∩ I)

P(I)

According to the Bayes’ formula, the last equation becomes

P(G|I) = P(G ∩ I)

P(I)
= P(I|G)P(G)

P(I|G)P(G) + P(I|B)P(B)

= (0.2)(0.6)

(0.2)(0.6) + (0.5)(0.4)
= 0.12

0.32

= 3/8 = 0.375

�

Example 1.9 Two events A and B are such that P[A∩B] = 0.15, P[A∪B] = 0.65,
and P[A|B] = 0.5. Find P[B|A].
Solution P[A ∪ B] = P[A]+ P[B]− P[A ∩ B] ⇒ 0.65 = P[A]+ P[B]− 0.15. This
means that P[A] + P[B] = 0.65 + 0.15 = 0.80. Also, P[A ∩ B] = P[B] × P[A|B].
This then means that

P[B] = P[A ∩ B]
P[A|B] = 0.15

0.50
= 0.30

Thus, P[A] = 0.80 − 0.30 = 0.50. Since P[A ∩ B] = P[A] × P[B|A], we have that

P[B|A] = P[A ∩ B]
P[A] = 0.15

0.50
= 0.30

�

Example 1.10 A student went to the post office to mail a package to his parents.
He gave the postal attendant a bill he believed was $20. However, the postal at-
tendant gave him change based on her belief that she received a $10 bill from
the student. The student started to dispute the change. Both the student and
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the postal attendant are honest but may make mistakes. If the postal attendant’s
drawer contains 30 $20 bills and 20 $10 bills, and she correctly identifies bills 90%
of the time, what is the probability that the student’s claim is valid?

Solution Let A denote the event that the student gave the postal attendant
a $10 bill and B the event that the student gave the postal attendant a $20 bill.
Let V denote the event that the student’s claim is valid. Finally, let L denote
the event that the postal attendant said that the student gave her a $10 bill. Since
there are 30 $20 bills and 20 $10 bills in the drawer, the probability that the money
the student gave the postal attendat was a $20 bill is 30/(20 + 30) = 0.6, and the
probability that it was a $10 bill is 1 − 0.6 = 0.4. Thus,

P(L) = P(L|A)P(A) + P(L|B)P(B)

= 0.90 × 0.4 + 0.10 × 0.6 = 0.42

Thus, the probability that the student’s claim is valid is the probability that he
gave the postal attendant a $20 bill, given that she said that he gave her a $10 bill.
Using Bayes’ formula we obtain

P(V|L) = P(V ∩ L)

P(L)
= P(L|V)P(V)

P(L)

= 0.10 × 0.60

0.42
= 1

7
= 0.1428

�

Example 1.11 An aircraft maintenance company bought equipment for detect-
ing structural defects in aircrafts. Tests indicate that 95% of the time the equip-
ment detects defects when they actually exist, and 1% of the time it gives a false
alarm that indicates the presence of a structural defect when in fact there is none.
If 2% of the aircrafts actually have structural defects, what is the probability that
an aircraft actually has a structural defect given that the equipment indicates that
it has a structural defect?

Solution Let D denote the event that an aircraft has a structural defect and B

the event that the test indicates that there is a structural defect. Then we are
required to find P(D|B). Using Bayes’ formula we obtain

P(D|B) = P(D ∩ B)

P(B)
= P(B|D)P(D)

P(B|D)P(D) + P(B|D)P(D)

= 0.95 × 0.02

{0.95 × 0.02} + {0.01 × 0.98} = 0.660
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Thus, only 66% of the aircrafts that the equipment diagnoses as having structural
defects actually have structural defects. �

1.7.2 Tree Diagram

Conditional probabilities are used to model experiments that take place in stages.
The outcomes of such experiments are conveniently represented by a tree di-
agram. A tree is a connected graph that contains no circuit (or loop). Every
two nodes in the tree have a unique path connecting them. Line segments called
branches interconnect the nodes. Each branch may split into other branches, or it
may terminate. When used to model an experiment, the nodes of the tree repre-
sent events of the experiment. The number of branches that emanate from a node
represents the number of events that can occur, given that the event represented
by that node occurs. The node that has no predecessor is called the root of the
tree, and any node that has no successor or children is called a leaf of the tree.
The events of interest are usually defined at the leaves by tracing the outcomes
of the experiment from the root to each leaf.

The conditional probabilities appear on the branches leading from the node
representing an event to the nodes representing the next events of the experi-
ment. A path through the tree corresponds to a possible outcome of the experi-
ment. Thus, the product of all the branch probabilities from the root of the tree
to any node is equal to the probability of the event represented by that node.

Consider an experiment that consists of three tosses of a coin. Let p denote
the probability of heads in a toss; then 1 − p is the probability of tails in a toss.
Figure 1.7 is the tree diagram for the experiment.

Let A be the event “the first toss came up heads,” and let B be the event “the
second toss came up tails.” Then from Figure 1.7, P(A) = p and P(B) = 1 − p.
Since P(A ∩ B) = p(1 − p), we have that

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = p + 1 − p − p(1 − p) = 1 − p(1 − p)

We can obtain the same result by noting that the event A ∪ B consists of the
following six-element set:

A ∪ B = {HHH,HHT,HTH,HTT,TTH,TTT}

Example 1.12 A university has twice as many undergraduate students as grad-
uate students. Twenty five percent of the graduate students live on campus, and
10% of the undergraduate students live on campus.

a. If a student is chosen at random from the student population, what is the
probability that the student is an undergraduate student living on campus?
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Figure 1.7 Tree Diagram for Three Tosses of a Coin

b. If a student living on campus is chosen at random, what is the probability that
the student is a graduate student?

Solution We use the tree diagram to solve the problem. Since there are twice
as many undergraduate students as there are graduate students, the proportion
of undergraduate students in the population is 2/3, and the proportion of grad-
uate students is 1/3. These as well as the other data are shown as the labels on
the branches of the tree in Figure 1.8. In the figure G denotes graduate students,
U denotes undergraduate students, ON denotes living on campus, and OFF de-
notes living off campus.

(a) From the figure we see that the probability that a randomly selected stu-
dent is an undergraduate student living on campus is 0.067. We can also
solve the problem directly as follows. We are required to find the proba-
bility of choosing an undergraduate student who lives on campus, which is
P(U ∩ ON). This is given by

P(U ∩ ON) = P(ON|U)P(U) = 0.10 × 2

3
= 0.067

(b) From the tree, the probability that a student lives on campus is (0.067+0.083).
Thus, the probability that a randomly selected student living on campus
is a graduate student is 0.083/(0.083 + 0.067) = 0.55. We can also use the
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Figure 1.8 Figure for Example 1.12

Bayes’ theorem to solve the problem as follows:

P(G|ON) = P(G ∩ ON)

P(ON)
= P(ON|G)P(G)

P(ON|G)P(G) + P(ON|U)P(U)

= (0.25)(1/3)

(0.25)(1/3) + (0.1)(2/3)
= 5

9

= 0.55

�

1.8 Independent Events

Two events A and B are defined to be independent if the knowledge that one
has occurred does not change or affect the probability that the other will occur.
In particular, if events A and B are independent, the conditional probability of
event A, given event B, P(A|B), is equal to the probability of event A. That is,
events A and B are independent if

P(A|B) = P(A)

Since by definition P(A ∩ B) = P(A|B)P(B), an alternative definition of the inde-
pendence of events is that events A and B are independent if

P(A ∩ B) = P(A)P(B)

The definition of independence can be extended to multiple events. The n events
A1,A2, . . . ,An are said to be independent if the following conditions are true:

P(Ai ∩ Aj) = P(Ai)P(Aj)
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P(Ai ∩ Aj ∩ Ak) = P(Ai)P(Aj)P(Ak)

· · ·
P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2) . . .P(An)

This is true for all 1 ≤ i < j < k < · · · ≤ n. That is, these events are pairwise inde-
pendent, independent in triplets, and so on.

Example 1.13 A red die and a blue die are rolled together. What is the proba-
bility that we obtain 4 on the red die and 2 on the blue die?

Solution Let R denote the event “4 on the red die,” and let B denote the event
“2 on the blue die.” We are, therefore, required to find P(R ∩ B). Since the out-
come of one die does not affect the outcome of the other die, the events R

and B are independent. Thus, since P(R) = 1/6 and P(B) = 1/6, P(R ∩ B) =
P(R)P(B) = 1/36. �

Example 1.14 Two coins are tossed. Let A denote the event “at most one head
on the two tosses,” and let B denote the event “one head and one tail in both
tosses.” Are A and B independent events?

Solution The sample space of the experiment is S = {HH,HT,TH,TT}. Now,
events are defined as follows: A = {HT,TH,TT} and B = {HT,TH}. Also,
A ∩ B = {HT,TH}. Thus,

P(A) = 3

4

P(B) = 2

4
= 1

2

P(A ∩ B) = 2

4
= 1

2

P(A)P(B) = 8

3

Since P(A ∩ B) 
= P(A)P(B), we conclude that events A and B are not indepen-
dent. �

Proposition 1.2. If A and B are independent events, then so are events A and B,

events A and B, and events A and B.
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Proof. Event A can be written as follows: A = (A∩B)∪ (A∩B). Since the events
A ∩ B and A ∩ B are mutually exclusive, we may write

P(A) = P(A ∩ B) + P(A ∩ B)

= P(A)P(B) + P(A ∩ B)

where the last equality follows from the fact that A and B are independent. Thus,
we obtain

P(A ∩ B) = P(A) − P(A)P(B) = P(A){1 − P(B)} = P(A)P(B)

which proves that events A and B are independent. To prove that events A

and B are independent, we start with B = (A ∩ B) ∪ (A ∩ B). Using the same
fact that the two events are mutually exclusive, we derive the condition for inde-
pendence. Finally, to prove that events A and B are independent, we start with
A = (A ∩ B) ∪ (A ∩ B) and proceed as previously using the results already estab-
lished. �

Example 1.15 A and B are two independent events defined in the same sample
space. They have the following probabilities: P[A] = x and P[B] = y. Find the
probabilities of the following events in terms of x and y:

a. Neither event A nor event B occurs

b. Event A occurs but event B does not occur

c. Either event A occurs or event B does not occur

Solution Since events A and B are independent, we know from Proposition 1.2
that events A and B are independent, events A and B are independent, and
events A and B are also independent.

(a) The probability that neither event A nor event B occurs is the probability
that event A does not occur and event B does not occur, which is given by

Pab = P(A ∩ B) = P(A)P(B) = (1 − x)(1 − y)

where the second equality is due to independence of A and B.

(b) The probability that event A occurs but event B does not occur is the prob-
ability that event A occurs and event B does not occur, which is given by

Pab = P(A ∩ B) = P(A)P(B) = x(1 − y)

where the second equality is due to the independence of A and B.
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(c) The probability that either event A occurs or event B does not occur is given
by

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

= P(A) + P(B) − P(A)P(B) = x + (1 − y) − x(1 − y)

= 1 − y(1 − x)

where the second equality is due to the independence of A and B.

�

Example 1.16 Jim and Bill like to shoot at targets. Jim can hit a target with a
probability of 0.8, while Bill can hit a target with a probability of 0.7. If both fire
at a target at the same time, what is the probability that the target is hit at least
once?

Solution Let J denote the event that Jim hits a target and B the event that Bill
hits a target. Since the outcome of Bill’s shot is not affected by the outcome of
Jim’s shot, and vice versa, the events J and B are independent. Because B and
J are independent events, the events J and B are independent, and the events B

and J are independent. Thus, the probability that the target is hit at least once is
the probability of the union of its being hit once and its being hit twice. That is,
if p is the probability that the target is hit at least once, then

p = P({J ∩ B} ∪ {J ∩ B} ∪ {J ∩ B}) = P(J ∩ B) + P(J ∩ B) + P(J ∩ B)

= P(J)P(B) + P(J)P(B) + P(J)P(B)

= (0.8)(0.3) + (0.2)(0.7) + (0.8)(0.7)

= 0.94

�

1.9 Combined Experiments

Until now our discussion has been limited to single experiments. Sometimes we
are required to form an experiment by combining multiple individual experi-
ments. Consider the case of two experiments in which one experiment has the
sample space S1 with N sample points, and the other has the sample space S2

with M sample points. That is,

S1 = {x1,x2, . . . ,xN}
S2 = {y1,y2, . . . ,yM}

If we form an experiment that is a combination of these two experiments,
the sample space of the combined experiment is called the combined space
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(or the Cartesian product space) and is defined by

S = S1 × S2 = {(xi,yj)|xi ∈ S1,yj ∈ S2, i = 1,2, . . . ,N; j = 1,2, . . . ,M}

The combined sample space of an experiment that is a combination of N experi-
ments with sample spaces Sk, k = 1,2, . . . ,N, is given by

S = S1 × S2 × · · · × SN

Note that if Lk is the number of sample points in Sk, k = 1,2, . . . ,N, then the
number of sample points in S (also called the cardinality of S) is given by L =
L1 × L2 × · · · × LN . That is, the cardinality of S is the product of the cardinalities
of the sample spaces of the different experiments.

Example 1.17 Consider a combined experiment formed from two experiments.
The first experiment consists of tossing a coin and the second experiment consists
of rolling a die. Let S1 denote the sample space of the first experiment, and let S2

denote the sample space of the second experiment. If S denotes the sample space
of the combined experiment, we obtain the following:

S1 = {H,T}
S2 = {1,2,3,4,5,6}
S = {(H,1), (H,2), (H,3), (H,4), (H,5), (H,6),

(T,1), (T,2), (T,3), (T,4), (T,5), (T,6)}

As we can see, the number of sample points in S is the product of the number
of sample points in the two sample spaces. If we assume that the coin and die
are fair, then the sample points in S are equiprobable; that is, each sample point
is equally likely to occur. Thus, for example, if we define X to be the event “a
head on the coin and an even number of the die,” then X and its probability are
given by

X = {(H,2), (H,4), (H,6)}

P(X) = 3

12
= 1

4

An alternative way to solve the problem is as follows. Let H denote the event that
the coin comes up heads, and E the event that the die comes up an even number.
Then X = H ∩ E. Because the events H and E are independent, we obtain

P(X) = P(H ∩ E) = P(H)P(E)

= 1

2
× 3

6
= 1

4

�
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1.10 Basic Combinatorial Analysis

Combinatorial analysis deals with counting the number of different ways in which
an event of interest can occur. Two basic aspects of combinatorial analysis that
are used in probability theory are permutation and combination.

1.10.1 Permutations

Sometimes we are interested in how the outcomes of an experiment can be
arranged. For example, if the possible outcomes are A, B, and C, we can think
of six possible arrangements of these outcomes: ABC, ACB, BAC, BCA, CAB,
and CBA. Each of these arrangements is called a permutation. Thus, there are
six permutations of a set of three distinct objects. This number can be derived as
follows: There are three ways of choosing the first object; after the first object has
been chosen, there are two ways of choosing the second object; and after the first
two objects have been chosen, there is one way to choose the third object. This
means that there are 3 × 2 × 1 = 6 permutations.

For a system of n distinct objects we can apply a similar reasoning to obtain
the following number of permutations:

n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1 = n!

where n! is read as “n factorial.” By convention, 0! = 1.

Assume that we want to arrange r of the n objects at a time. The problem
now becomes that of finding how many possible sequences of r objects we can
get from n objects, where r ≤ n. This number is denoted by P(n, r) and defined as
follows:

P(n, r) = n!
(n − r)! = n × (n − 1) × (n − 2) × · · · × (n − r + 1) r = 1,2, . . . ,n

The number P(n, r) represents the number of permutations (or sequences) of r

objects taken from n objects when the arrangement of the objects within a given
sequence is important. Note that when r = n, we obtain

P(n,n) = n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1 = n!

Example 1.18 A little girl has six building blocks and is required to select four
of them at a time to build a model. If the order of the blocks in each model is
important, how many models can she build?
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Solution Since the order of objects is important, this is a permutation problem.
Therefore, the number of models is given by

P(6,4) = 6!
(6 − 4)! = 6!

2! = 6 × 5 × 4 × 3 × 2 × 1

2 × 1
= 360

�

Note that if the little girl were to select three blocks at a time, the number of
permutations decreases to 120.

Example 1.19 How many words can be formed from the word SAMPLE? As-
sume that a formed word does not have to be an actual English word, but it may
contain at most as many instances of a letter as there are in the original word (for
example, “maa” is not acceptable, since “a” does not appear twice in SAMPLE,
but “mas” is allowed).

Solution The words can be single-letter words, two-letter words, three-letter
words, four-letter words, five-letter words, or six-letter words. Since the letters
of the word SAMPLE are all unique, there are P(6,k) ways of forming k-letter
words, k = 1,2, . . . ,6. Thus, the number of words that can be formed is

N = P(6,1) + P(6,2) + P(6,3) + P(6,4) + P(6,5) + P(6,6)

= 6 + 30 + 120 + 360 + 720 + 720 = 1956

�

We present the following theorem without proof.

Theorem. Given a population of n elements, let n1,n2, . . . ,nk be positive integers

such that n1 + n2 + · · · + nk = n. Then there are

N = n!
n1! × n2! × · · · × nk!

ways to partition the population into k subgroups of sizes n1,n2, . . . ,nk, respec-

tively.

Example 1.20 Five identical red blocks, two identical white blocks, and three
identical blue blocks are arranged in a row. How many different arrangements
are possible?
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Solution In this example, n = 5 + 2 + 3 = 10, n1 = 5, n2 = 2, and n3 = 3. Thus,
the number of possible arrangements is given by

N = 10!
5! × 2! × 3! = 2520

�

Example 1.21 How many words can be formed by using all the letters of the
word MISSISSIPPI?

Solution The word contains 11 letters consisting of 1 M, 4 S’s, 4 I’s, and 2 P’s.
Thus, the number of words that can be formed is

N = 11!
1! × 4! × 4! × 2! = 34650

�

1.10.2 Circular Arrangement

Consider the problem of seating n people in a circle. Assume that the positions
are labeled 1,2, . . . ,n. Then, if after one arrangement everyone moves one place
to the left or right, that will also be a new arrangement because each person is
occupying a new location. However, each person’s previous neighbors to the left
and right are still his/her neighbors in the new arrangement. This means that such
a move does not lead to a new valid arrangement. To solve this problem, one
person must remain fixed while others move.

Thus, the number of people being arranged is n − 1, which means that the
number of possible arrangements is (n − 1)! For example, the number of ways
that 10 people can be seated in a circle is (10 − 1)! = 9! = 362880.

1.10.3 Applications of Permutations in Probability

Consider a system that contains n distinct objects labeled a1,a2, . . . ,an. Assume
that we choose r of these objects in the following manner. We choose the first
object, record its type, and put it back into the “population.” We then choose the
second object, record its type, and put it back into the population. We continue
this process until we have chosen a total of r objects. This gives an “ordered sam-
ple” consisting of r of the n objects. The question is to determine the number of
distinct ordered samples that can be obtained, where two ordered samples are
said to be distinct if they differ in at least one entry in a particular position within
the samples. Since the number of ways of choosing an object in each round is n,
the total number of distinct samples is n × n × · · · × n = nr.
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Assume now that the sampling is done without replacement. That is, after an
object has been chosen, it is not put back into the population. Then the next
object from the remainder of the population is chosen and not replaced, and so
on until all the r objects have been chosen. The total number of possible ways of
making this sampling can be obtained by noting that there are n ways to choose
the first object, n − 1 ways to choose the second object, n − 2 ways to choose the
third object, and so on, and finally there are n−r+1 ways to choose the rth object.
Thus, the total number of distinct samples is n× (n−1)× (n−2)×· · ·× (n− r+1).

Example 1.22 A subway train consists of n cars. The number of passengers wait-
ing to board the train is k < n and each passenger enters a car at random. What
is the probability that all the k passengers end up in different cars of the train?

Solution Without any restriction on the occupancy of the cars, each of the k pas-
sengers can enter any one of the n cars. Thus, the number of distinct, unrestricted
arrangements of the passengers in the cars is N = n × n × · · · × n = nk.

If the passengers enter the cars in such a way that there is no more than one
passenger in a car, then the first passenger can enter any one of the n cars. After
the first passenger has entered a car, the second passenger can enter any one of
the n − 1 remaining cars. Similarly, the third passenger can enter any one of the
n − 2 remaining cars, and so on. Finally, the kth passenger can enter any one of
the n − k + 1 remaining cars. Thus, the total number of distinct arrangements of
passengers when no two passengers can be in the same car is M = n × (n − 1) ×
(n − 2) × · · · × (n − k + 1). Therefore, the probability of this event is

P = M

N
= n × (n − 1) × (n − 2) × · · · × (n − k + 1)

nk

�

Example 1.23 Ten books are placed in random order on a bookshelf. Find the
probability that three given books are placed side by side.

Solution The number of unrestricted ways of arranging the books is 10!. Con-
sider the three books to be tied together as a “superbook,” which means that
there are eight books on the bookshelf including the superbook. The number
of ways of arranging these books is 8!. In each of these arrangements the three
books can be arranged among themselves in 3! = 6 ways. Thus, the total number
of arrangements with the three books together is 8!3!, and the required probabil-
ity p is given by

p = 8!3!
10! = 6 × 8!

10 × 9 × 8! = 6

90
= 1

15
�
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1.10.4 Combinations

In permutations, the order of objects within a selection is important; that is, the
arrangement of objects within a selection is very important. Thus, the arrange-
ment ABC is different from the arrangement ACB even though they both con-
tain the same three objects. In some problems, the order of objects within a
selection is not relevant. For example, consider a student who is required to
select four subjects out of six subjects in order to graduate. Here, the order of
subjects is not important; all that matters is that the student selects four sub-
jects.

Since the order of the objects within a selection is not important, the num-
ber of ways of choosing r objects from n objects will be smaller than when the
order is important. The number of ways of selecting r objects at a time from n

objects when the order of the objects is not important is called the combination

of r objects taken from n distinct objects and denoted by C(n, r). It is defined as
follows:

C(n, r) =
(

n

r

)
= P(n, r)

r! = n!
(n − r)!r!

Recall that r! is the number of permutations of r objects taken r at a time. Thus,
C(n, r) is equal to the number of permutations of n objects taken r at a time
divided by the number of permutations of r objects taken r at a time.

Observe that C(n, r) = C(n,n−r), as can be seen from the preceding equation.
One very useful combinatorial identity is the following:

(
n + m

k

)
=

k∑

i=0

(
n

i

)(
m

k − i

)

This identity can easily be proved by considering how many ways we can select k

people from a group of m boys and n girls. In particular, when m = k = n we have
that

(
2n

n

)
=

(
n

0

)(
n

n

)
+

(
n

1

)(
n

n − 1

)
+

(
n

2

)(
n

n − 2

)
+ · · ·

+
(

n

k

)(
n

n − k

)
+ · · · +

(
n

n

)(
n

0

)

=
(

n

0

)2

+
(

n

1

)2

+
(

n

2

)2

+ · · · +
(

n

k

)2

+ · · · +
(

n

n

)2

where the last equality follows from the fact that

(
n

k

)
=

(
n

n − k

)
.
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Example 1.24 Evaluate

(
16

8

)
.

Solution

(
16

8

)
=

(
8

0

)2

+
(

8

1

)2

+
(

8

2

)2

+
(

8

3

)2

+
(

8

4

)2

+
(

8

5

)2

+
(

8

6

)2

+
(

8

7

)2

+
(

8

8

)2

= 12 + 82 + 282 + 562 + 702 + 562 + 282 + 82 + 12

= 12,870

�

Example 1.25 A little girl has six building blocks and is required to select four
of them at a time to build a model. If the order of the blocks in each model is not
important, how many models can the little girl build?

Solution The number of models is

C(6,4) = 6!
(6 − 4)!4! = 6!

2!4! = 6 × 5 × 4 × 3 × 2 × 1

2 × 1 × 4 × 3 × 2 × 1
= 15

�

Recall that when the order of the blocks is important, we would have P(6,4) =
360 models. Also P(6,4)/C(6,4) = 24 = 4!, which indicates that for each combi-
nation, there are 4! arrangements involved.

Example 1.26 Five boys and five girls are getting together for a party.

a. How many couples can be formed?

b. Suppose one of the boys has two sisters among the five girls, and he would not
accept either of them as a partner. How many couples can be formed?

Solution (a) Without any restriction, there are five girls with whom each of
the boys can be matched. Thus, the number of couples that can be formed is
5 × 5 = 25.

(b) The boy who has two sisters among the girls can only be matched with three
girls, but each of the other four boys can be matched with any of the girls.
Thus, the number of possible couples is given by 3 + 4 × 5 = 23.

�
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1.10.5 The Binomial Theorem

The following theorem, which is called the binomial theorem, is presented with-
out proof. The theorem states that

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k

This theorem can be used to present a more formal proof of the statement we
made earlier in the chapter about the number of subsets of a set with n elements.
The number of subsets of size k is

(n
k

)
. Thus, summing this over all possible values

of k we obtain the desired result:

n∑

k=0

(
n

k

)
=

n∑

k=0

(
n

k

)
1k(1)n−k = (1 + 1)n = 2n

1.10.6 Stirling’s Formula

Problems involving permutations and combinations require the calculation of n!.
Prior to the advent of the current powerful handheld calculators, the evaluation
of n! was tedious even for a moderately large n. Because of this, an approximate
formula called the Stirling’s formula was developed to obtain values of n!. Studies
indicate that this formula gives very good results especially for large values of n.
The Stirling’s formula is given by

n! ∼
√

2πn

(
n

e

)n

=
√

2πn nne−n

where e = 2.71828 . . . is the base of the natural logarithms and the notation a ∼ b

means that the number on the right is an asymptotic representation of the num-
ber on the left. As a check on the accuracy of the formula, by direct computation
10! = 3,628,800, while the value obtained via the Stirling’s formula is 3.60 × 106,
which represents an error of 0.79%. In general, the percentage error in the ap-
proximation is about 100/12n.

Example 1.27 Evaluate 50!

Solution Using the Stirling’s formula we obtain

50! =
√

100π5050e−50 = 10
√

π

(
50

2.71828

)50

= 3.04 × 1064

�
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Example 1.28 Evaluate 70!

Solution Using the Stirling’s formula we obtain

70! =
√

140π7070e−70 = N

log N = 1

2
log 140 + 1

2
logπ + 70 log 70 − 70 log e

= 1.07306 + 0.24857 + 129.15686 − 30.40061 = 100.07788 = 0.07788 + 100

N = 1.20 × 10100

�

1.10.7 Applications of Combinations in Probability

As we shall see in Chapter 4, combination plays a very important role in the
class of random variables that have the binomial distribution as well as those
that have the hypergeometric distribution. In this section, we discuss how it can
be applied to the problem of counting the number of selections among items
that contain two subgroups. To understand these applications, we first state the
following fundamental counting rule [2]:

Assume that a number of multiple choices are to be made, which include m1
ways of making the first choice, m2 ways of making the second choice, m3
ways of making the third choice, and so on. If these choices can be made
independently, then the total number of possible ways of making these choices
is m1 × m2 × m3 × · · ·

Example 1.29 The standard car license plate in a certain U.S. state has seven
characters that are made up as follows. The first character is one of the digits 1,
2, 3, or 4; the next three characters are letters (a,b, . . . ,z) of which repetition
is allowed; and the final three characters are digits (0,1, . . . ,9) that also allow
repetition.

a. How many license plates are possible?

b. How many of these possible license plates have no repeated characters?

Solution Let m1 be the number of ways of choosing the first character, m2 the
number of ways of choosing the next three characters, and m3 the number of
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ways of choosing the final three characters. Since these choices can be made in-
dependently, the principle of the fundamental counting rule implies that there
are m1 × m2 × m3 total number of possible ways of making these choices.

(a) m1 = C(4,1) = 4; since repetition is allowed, m2 = {C(26,1)}3 = 263; and
since repetition is allowed, m3 = {C(10,1)}3 = 103. Thus, the number of pos-
sible license plates is 4 × 263 × 103 = 70,304,000.

(b) When repetition is not allowed, we obtain m1 = C(4,1) = 4. To obtain the
new m2 we note that after the first letter has been chosen, it cannot be cho-
sen again as the second or third letter, and after the second letter has been
chosen, it cannot be chosen as the third letter. This means that there are
m2 = C(26,1)× C(25,1)× C(24,1) = 26 × 25 × 24 ways of choosing the next
three letters of the plate. Similarly, since repetition is not allowed, the digit
chosen as the first character of the license plate cannot appear in the third
set of characters. This means that the first digit of the third set of characters
will be chosen from nine digits, the second from eight digits, and the third
from seven digits. Thus, we have that m3 = 9 × 8 × 7. Therefore, the number
of possible license plates that have no repeated characters is given by

M = 4 × 26 × 25 × 24 × 9 × 8 × 7 = 31,449,600

�

Example 1.30 Suppose there are k defective items in a box that contains m

items. How many samples of n items of which j items are defective can we get
from the box?

Solution Since there are two classes of items (defective versus nondefective),
we can select independently from each group once the number of defective items
in the sample has been specified. Thus, since there are k defective items in the
box, the total number of ways of selecting j out of the k items at a time is

C(k, j) =
(k

j

)
, where 0 ≤ j ≤ min(k,n). Similarly, since there are m − k nondefec-

tive items in the box, the total number of ways of selecting n − j of them at a time

is C(m − k,n − j) =
(m−k

n−j

)
. Since these two choices can be made independently,

the total number of ways of choosing j defective items and n − j nondefective
items is C(k, j) × C(m − k,n − j), which is

C(k, j)C(m − k,n − j) =
(

k

j

)(
m − k

n − j

)

�
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Example 1.31 A container has 100 items, 5 of which are defective. If we pick
samples of 20 items from the container, find the total number of samples with at
most one bad item among them.

Solution Let A be the event that there is no defective item in the selected sam-
ple and B the event that there is exactly one defective item in the selected sam-
ple. Then event A consists of two subevents: zero defective items and 20 non-
defective items. Similarly, event B consists of two subevents: 1 defective item
and 19 nondefective items. The number of ways in which event A can occur is
C(5,0) × C(95,20) = C(95,20). Similarly, the number of ways in which event B

can occur is C(5,1)× C(95,19) = 5C(95,19). Therefore, the total number of sam-
ples with at most one defective item is the sum of the two, which is

C(95,20) + 5C(95,19) = 95!
75!20! + 95! × 5

76!19! = 176 × 95!
76!20! = 3.96 × 1020

Note that when we use the Stirling’s formula we get

C(95,20) + 5C(95,19) = 176 × 95!
76!20! = 176 × 9595.5

2020.5 × 7676.5 ×
√

2π
= K

log K = log 176 + 95.5 log 95 − 20.5 log 20

− 76.5 log 76 − 0.5 log 2 − 0.5 logπ

= 20.165772 = 0.165772 + 20

K = 1.46 × 1020

which is far less than the correct result. �

Example 1.32 A particular department of a small college has seven faculty
members of whom two are full professors, three are associate professors, and two
are assistant professors. How many committees of three faculty members can be
formed if each subgroup (that is, full, associate, and assistant professors) must be
represented?

Solution There are C(2,1) × C(3,1) × C(2,1) = 12 possible committees. �

Example 1.33 A batch of 100 manufactured components is checked by an in-
spector who examines 10 components selected at random. If none of the 10 com-
ponents is defective, the inspector accepts the whole batch. Otherwise, the batch
is subjected to further inspection. What is the probability that a batch containing
10 defective components will be accepted?
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Solution Let N denote the number of ways of indiscriminately selecting 10 com-
ponents from a batch of 100 components. Then N is given by

N = C(100,10) = 100!
90! × 10!

Let E denote the event “the batch containing 10 defective components is ac-
cepted by the inspector.” The number of ways that E can occur is the number of
ways of selecting 10 components from the 90 nondefective components and no
component from the 10 defective components. This number, N(E), is given by

N(E) = C(90,10) × C(10,0) = C(90,10) = 90!
80! × 10!

Because the components are selected at random, the combinations are equiprob-
able. Thus, the probability of event E is given by

P(E) = N(E)

N
= 90!

80! × 10! × 90! × 10!
100!

= 90! × 90!
100! × 80! = 90 × 89 × · · · × 81

100 × 99 × · · · × 91

= 0.3305

�

Example 1.34 The Applied Probability professor gave the class a set of 12 re-
view problems and told them that the midterm exam would consist of 6 of the
12 problems selected at random. If Lidya memorized the solutions to 8 of the 12
problems but could not solve any of the other 4 problems, what is the probability
that she got 4 or more problems correct in the exam?

Solution By choosing to memorize only a subset of the review problems Lidya
partitioned the 12 problems into two sets: a set consisting of the 8 problems she
memorized and a set consisting of the 4 problems she could not solve. If she got
k problems correct in the exam, then the k problems came from the first set and
the 6 − k problems she failed came from the second set, where k = 0,1,2, . . . ,6.
The number of ways of choosing 6 problems from 12 problems is C(12,6). The
number of ways of choosing k problems from the 8 problems that she memorized
is C(8,k), and the number of ways of choosing 6 − k problems from the four
she did not memorize is C(4,6 − k), where 6 − k ≤ 4 or 2 ≤ k ≤ 6. Because the
problems have been partitioned, the number of ways in which the 8 problems can
be chosen so that Lidya could get 4 or more of them correct in the exam is

C(8,4)C(4,2) + C(8,5)C(4,1) + C(8,6)C(4,0) = 420 + 224 + 28 = 672
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Thus, the probability p that she got 4 or more problems correct in the exam is
given by

p = C(8,4)C(4,2) + C(8,5)C(4,1) + C(8,6)C(4,0)

C(12,6)
= 672

924

= 8

11

�

1.11 Reliability Applications

As discussed earlier in the chapter, reliability theory is concerned with the du-
ration of the useful life of components and systems of components. That is, it
is concerned with determining the probability that a system with possibly many
components will be functioning at time t. The components of a system can be
arranged in two basic configurations: series configuration and parallel configura-
tion. A real system consists of a mixture of series and parallel components, which
can sometimes be reduced to an equivalent system of series configuration or a
system of parallel configuration. Figure 1.9 illustrates the two basic configura-
tions.

A system with a series configuration will function iff all its components are
functioning, while a system with parallel configuration will function iff at least

Figure 1.9 Basic Reliability Models
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one of the components is functioning. To simplify the discussion, we assume that
the different components fail independently.

Consider a system with n components labeled C1,C2, . . . ,Cn. Let Rk(t) denote
the probability that component Ck has not failed in the interval (0, t], where k =
1,2, . . . ,n. That is, Rk(t) is the probability that Ck has not failed up to time t and
is called the reliability function of Ck. For a system of components in series, the
system reliability function is given by

R(t) =
n∏

k=1

Rk(t)

This follows from the fact that all components must be operational for the system
to be operational.

In the case of a system of parallel components, we need at least one path
between A and B for the system to be operational. The probability that no such
path exists is the probability that all the components have failed, which is given
by [1 − R1(t)][1 − R2(r)] . . . [1 − Rn(t)]. Thus, the system reliability function is the
complement of this function and is given by

R(t) = 1 − [1 − R1(t)][1 − R2(t)] . . . [1 − Rn(t)] = 1 −
n∏

k=1

[1 − Rk(t)]

Example 1.35 Find the system reliability function for the system shown in Fig-
ure 1.10 in which C1 and C2 are in series and the two are in parallel with C3.

Solution We first reduce the series structure into a composite component C4

whose reliability function is given by R4(t) = R1(t)R2(t). Thus, we obtain the new
structure shown in Figure 1.11.

Thus, we obtain two parallel components and the system reliability function is

R(t) = 1 − [1 − R3(t)][1 − R4(t)]
= 1 − [1 − R3(t)][1 − R1(t)R2(t)]

�

Example 1.36 Find the system reliability function for the system shown in Fig-
ure 1.12, which is called a bridge structure.

Solution The system is operational if at least one of the following series arrange-
ments is operational: C1C4, C2C5, C1C3C5, or C2C3C4. Thus, we can replace
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Figure 1.10 Example 1.35

Figure 1.11 Composite System for Example 1.35

Figure 1.12 Example 1.36

the system with a system of series-parallel arrangements. However, the differ-
ent paths will not be independent since they have components in common. To
avoid this complication, we use a conditional probability approach. First, we con-
sider the reliability function of the system given that C3 is operational. Next we
consider the reliability function of the system given that C3 is not operational.
Figure 1.13 shows the two cases.

When C3 is operational, the system behaves like a parallel subsystem consist-
ing of C1 and C2, which is in series with another parallel subsystem consisting of
C4 and C5. Thus, if we use shorthand notation and omit the explicit dependence
on t, the reliability of the system becomes

RX = [1 − (1 − R1)(1 − R2)][1 − (1 − R4)(1 − R5)]
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Figure 1.13 Decomposing the System into Two Cases

Figure 1.14 Alternative System Configuration for Example 1.36

When C3 is not operational, signal cannot flow through that component, and the
system behaves as shown in Figure 1.13b. Thus, the reliability of the system be-
comes

RY = 1 − (1 − R1R4)(1 − R2R5)

Let P(C3) denote the probability that C3 is operational in the interval (0, t]. Since
P(C3) = R3, we use the law of total probability to obtain the system reliability as
follows:

R = RXP(C3) + RY[1 − P(C3)] = RXR3 + RY(1 − R3)

= R3[1 − (1 − R1)(1 − R2)][1 − (1 − R4)(1 − R5)]
+ (1 − R3)[1 − (1 − R1R4)(1 − R2R5)]

= R1R4 + R2R5 + R1R3R5 + R2R3R4 − R1R2R3R4 − R1R2R3R5

− R1R2R4R5 − R1R3R4R5 − R2R3R4R5 + 2R1R2R3R4R5

The first four positive terms represent the different ways we can pass signals be-
tween the input and output. Thus, the equivalent system configuration is as shown
in Figure 1.14. The other terms account for the dependencies we mentioned ear-
lier. �
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Example 1.37 Consider the network shown in Figure 1.15 that interconnects
nodes A and B. The switches S1,S2,S3, and S4 have availabilities A1, A2, A3 and
A4, respectively. That is, the probability that switch Si is operational at any given
time is Ai, i = 1,2,3,4. If the switches fail independently, what is the probability
that at a randomly selected time A can communicate with B (that is, at least one
path can be established between A and B)?

Solution We begin by reducing the structure as shown in Figure 1.16, where
S1−2 is the composite system of S1 and S2, and S1−2−3 is the composite system of
S1−2 and S3.

From Figure 1.16a, the availability of S1−2 is A1−2 = 1− (1−A1)(1−A2). Sim-
ilarly, the availability of S1−2−3 is A1−2−3 = A1−2 ×A3. Finally, from Figure 1.16b,
the probability that a path exists between A and B is given by

PA−B = 1 − (1 − A1−2−3)(1 − A4)

= 1 − (1 − [1 − (1 − A1)(1 − A2)]A3)(1 − A4)

�

Figure 1.15 Figure for Example 1.37

Figure 1.16 Reduced Forms of Figure 1.15
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1.12 Chapter Summary

This chapter has developed the basic concepts of probability, random experi-
ments, and events. Several examples are solved and applications of probability
have been provided in the fields of communications and reliability engineering.
Finally, it introduced the concepts of permutation and combination that will be
used in later chapters.

1.13 Problems

Section 1.2: Sample Space and Events

1.1 A fair die is rolled twice. Find the probability of the following events:

a. The second number is twice the first.

b. The second number is not greater than the first.

c. At least one number is greater than 3.

1.2 Two distinct dice A and B are rolled. What is the probability of each of the
following events?

a. At least one 4 appears.

b. Just one 4 appears.

c. The sum of the face values is 7.

d. One of the values is 3 and the sum of the two values is 5.

e. One of the values is 3 or the sum of the two values is 5.

1.3 Consider an experiment that consists of rolling a die twice.

a. Plot the sample space S of the experiment.

b. Identify the event A, which is the event that the sum of the two out-
comes is equal to 6.

c. Identify the event B, which is the event that the difference between the
two outcomes is equal to 2.

1.4 A four-sided fair die is rolled twice. What is the probability that the outcome
of the first roll is greater than the outcome of the second roll?

1.5 A coin is tossed until the first head appears, and then the experiment is
stopped. Define a sample space for the experiment.

1.6 A coin is tossed four times and observed to be either a head or a tail each
time. Describe the sample space for the experiment.
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1.7 Three friends, Bob, Chuck, and Dan take turns (in that order) throwing a

die until the first “six” appears. The person that throws the first six wins the

game, and the game ends. Write down a sample space for this game.

Section 1.3: Definitions of Probability

1.8 A small country has a population of 17 million people of whom 8.4 million

are male and 8.6 million are female. If 75% of the male population and 63%

of the female population are literate, what percentage of the total popula-

tion is literate?

1.9 Let A and B be two independent events with P[A] = 0.4 and P[A∪B] = 0.7.

What is P[B]?

1.10 Consider two events A and B with known probabilities P[A], P[B], and

P[A ∩ B]. Find the expression for the event that exactly one of the two

events occurs in terms of P[A], P[B], and P[A ∩ B].

1.11 Two events A and B have the following probabilities: P[A] = 1/4,

P[B|A] = 1/2, and P[A|B] = 1/3. Compute (a) P[A ∩ B], (b) P[B], and

(c) P[A ∪ B].

1.12 Two events A and B have the following probabilities: P[A] = 0.6,

P[B] = 0.7, and P[A ∩ B] = p. Find the range of values that p can take.

1.13 Two events A and B have the following probabilities: P[A] = 0.5,

P[B] = 0.6, and P[A ∩ B] = 0.25. Find the value of P[A ∩ B].

1.14 Two events A and B have the following probabilities: P[A] = 0.4,

P[B] = 0.5, and P[A ∩ B] = 0.3. Calculate the following:

a. P[A ∪ B]

b. P[A ∩ B]

c. P[A ∪ B]

1.15 Christie is taking a multiple-choice test in which each question has four

possible answers. She knows the answers to 40% of the questions and can

narrow the choices down to two answers 40% of the time. If she knows

nothing about the remaining 20% of the questions, what is the probability

that she will correctly answer a question chosen at random from the test?

1.16 A box contains nine red balls, six white balls, and five blue balls. If three

balls are drawn successively from the box, determine the following:
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a. The probability that they are drawn in the order red, white, and blue if
each ball is replaced after it has been drawn.

b. The probability that they are drawn in the order red, white, and blue if
each ball is not replaced after it has been drawn.

1.17 Let A be the set of positive even integers, let B be the set of positive integers
that are divisible by 3, and let C be the set of positive odd integers. Describe
the following events:

a. E1 = A ∪ B

b. E2 = A ∩ B

c. E3 = A ∩ C

d. E4 = (A ∪ B) ∩ C

e. E5 = A ∪ (B ∩ C)

1.18 A box contains four red balls labeled R1, R2, R3, and R4; and three white
balls labeled W1, W2, and W3. A random experiment consists of drawing a
ball from the box. State the outcomes of the following events:

a. E1, the event that the number on the ball (i.e., the subscript of the ball)
is even.

b. E2, the event that the color of the ball is red and its number is greater
than 2.

c. E3, the event that the number on the ball is less than 3.

d. E4 = E1 ∪ E3.

e. E5 = E1 ∪ (E2 ∩ E3).

1.19 A box contains 50 computer chips of which 8 are known to be bad. A chip
is selected at random and tested.

(a) What is the probability that it is bad?

(b) If a test on the first chip shows that it is bad, what is the probability that
a second chip selected at random will also be bad, assuming the tested
chip is not put back into the box?

(c) If the first chip tests good, what is the probability that a second chip
selected at random will be bad, assuming the tested chip is not put
back into the box?
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Section 1.5: Elementary Set Theory

1.20 A set S has four members: A,B,C, and D. Determine all possible subsets
of S.

1.21 For three sets A,B, and C, use the Venn diagram to show the areas cor-
responding to the sets (a) (A ∪ C) − C, (b) B ∩ A, (c) A ∩ B ∩ C, and
(d) (A ∪ B) ∩ C.

1.22 A universal set is given by S = {2,4,6,8,10,12,14}. If we define two sets
A = {2,4,8} and B = {4,6,8,12}, determine the following: (a) A, (b) B − A,
(c) A ∪ B, (d) A ∩ B, (e) A ∩ B, and (f) (A ∩ B) ∪ (A ∩ B).

1.23 Consider the switching networks shown in Figure 1.17. Let Ek denote the
event that switch Sk is closed, k = 1,2,3,4. Let EAB denote the event that
there is a closed path between nodes A and B. Express EAB in terms of the
Ek for each network.

1.24 Let A, B, and C be three events. Write out the expressions for the following
events in terms of A, B, and C using set notation:

a. A occurs but neither B nor C occurs.

b. A and B occur, but not C.

c. A or B occurs, but not C.

d. Either A occurs and not B, or B occurs and not A.

Figure 1.17 Figure for Problem 1.23
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Section 1.6: Properties of Probability

1.25 Mark and Lisa registered for Physics 101 class. Mark attends class 65% of
the time and Lisa attends class 75% of the time. Their absences are inde-
pendent. On a given day, what is the probability that

(a) at least one of them is in class?

(b) exactly one of them is in class?

(c) Mark is in class, given that only one of them is in class?

1.26 The probability of rain on a day of the year selected at random is 0.25 in
a certain city. The local weather forecast is correct 60% of the time when
the forecast is rain and 80% of the time for other forecasts. What is the
probability that the forecast on a day selected at random is correct?

1.27 53% of the adults in a certain city are female, and 15% of the adults are
unemployed males.

(a) What is the probability that an adult chosen at random in this city is an
employed male?

(b) If the overall unemployment rate in the city is 22%, what is the proba-
bility that a randomly selected adult is an employed female?

1.28 A survey of 100 companies shows that 75 of them have installed wireless
local area networks (WLANs) on their premises. If three of these compa-
nies are chosen at random without replacement, what is the probability that
each of the three has installed WLANs?

Section 1.7: Conditional Probability

1.29 A certain manufacturer produces cars at two factories labeled A and B.
Ten percent of the cars produced at factory A are found to be defective,
while 5% of the cars produced at factory B are defective. If factory A pro-
duces 100,000 cars per year and factory B produces 50,000 cars per year,
compute the following:

(a) The probability of purchasing a defective car from the manufacturer

(b) If a car purchased from the manufacturer is defective, what is the prob-
ability that it came from factory A?

1.30 Kevin rolls two dice and tells you that there is at least one 6. What is the
probability that the sum is at least 9?

1.31 Chuck is a fool with probability 0.6, a thief with probability 0.7, and neither
with probability 0.25.
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(a) What is the probability that he is a fool or a thief but not both?

(b) What is the conditional probability that he is a thief, given that he is
not a fool?

1.32 Studies indicate that the probability that a married man votes is 0.45, the
probability that a married woman votes is 0.40, and the probability that a
married woman votes given that her husband does is 0.60. Compute the
following probabilities:

(a) Both a man and his wife vote.

(b) A man votes given that his wife does.

1.33 Tom is planning to pick up a friend at the airport. He has figured out that
the plane is late 80% of the time when it rains, but only 30% of the time
when it does not rain. If the weather forecast that morning calls for a 40%
chance of rain, what is the probability that the plane will be late?

1.34 Consider the communication channel shown in Figure 1.18. The symbols
transmitted are 0 and 1. However, three possible symbols can be received:
0, 1, and E. Thus, we define the input symbol set as X ∈ {0,1} and the output
symbol set as Y ∈ {0,1,E}. The transition (or conditional) probabilities are
defined by pY|X , which is the probability that Y is received, given that X

was transmitted. In particular, p0|0 = 0.8 (i.e., given that 0 is transmitted, it
is received as 0 with probability 0.8), p1|0 = 0.1 (i.e., given that 0 is transmit-
ted, it is received as 1 with probability 0.1), and pE|0 = 0.1 (i.e., given that 0
is transmitted, it is received as E with probability 0.1). Similarly, p0|1 = 0.2,
p1|1 = 0.7, and pE|1 = 0.1. If P[X = 0] = P[X = 1] = 0.5, determine the
following:

(a) P[Y = 0], P[Y = 1], and P[Y = E]
(b) If 0 is received, what is the probability that 0 was transmitted?

(c) If E is received, what is the probability that 1 was transmitted?

(d) If 1 is received, what is the probability that 1 was transmitted?

Figure 1.18 Figure for Problem 1.34
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1.35 A group of students consists of 60% men and 40% women. Among the

men, 30% are foreign students, and among the women, 20% are foreign

students, A student is randomly selected from the group and found to be a

foreign student. What is the probability that the student is a woman?

1.36 Joe frequently gets into trouble at school, and past experience shows that

80% of the time he is guilty of the offense he is accused of. Joe has just got-

ten into trouble again, and two other students, Chris and Dana, have been

called into the principal’s office to testify about the incident. Chris is Joe’s

friend and will tell the truth if Joe is innocent, but will lie with probability

0.2 if Joe is guilty. Dana does not like Joe and so will tell the truth if Joe is

guilty, but will lie with probability 0.3 if Joe is innocent.

a. What is the probability that Chris and Dana give conflicting testi-

monies?

b. What is the probability that Joe is guilty, given that Chris and Dana give

conflicting testimonies?

1.37 Three car brands A, B, and C, have all the market share in a certain city.

Brand A has 20% of the market share, brand B has 30%, and brand C has

50%. The probability that a brand A car needs a major repair during the

first year of purchase is 0.05, the probability that a brand B car needs a

major repair during the first year of purchase is 0.10, and the probability

that a brand C car needs a major repair during the first year of purchase

is 0.15.

a. What is the probability that a randomly selected car in the city needs a

major repair during its first year of purchase?

b. If a car in the city needs a major repair during its first year of purchase,

what is the probability that it is a brand A car?

Section 1.8: Independent Events

1.38 If I toss two coins and tell you that at least one is heads, what is the proba-

bility that the first coin is heads?

1.39 Assume that we roll two dice and define three events A,B, and C, where

A = {The first die is odd}, B = {The second die is odd}, and C = {The sum

is odd}. Show that these events are pairwise independent but the three are

not independent.

1.40 Consider a game that consists of two successive trials. The first trial has

outcome A or B, and the second trial has outcome C or D. The probabilities

of the four possible outcomes of the game are as follows:
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Outcome AC AD BC BD

Probability 1/3 1/6 1/6 1/3

Determine in a convincing way if A and C are statistically independent.

1.41 Suppose that two events A and B are mutually exclusive and P[B] > 0.
Under what conditions will A and B be independent?

Section 1.10: Combinatorial Analysis

1.42 Four married couples bought tickets for eight seats in a row for a football
game.

a. In how many different ways can they be seated?

b. In how many ways can they be seated if each couple is to sit together
with the husband to the left of his wife?

c. In how many ways can they be seated if each couple is to sit together?

d. In how many ways can they be seated if all the men are to sit together
and all the women are to sit together?

1.43 A committee consisting of three electrical engineers and three mechanical
engineers is to be formed from a group of seven electrical engineers and
five mechanical engineers. Find the number of ways in which this can be
done if

a. any electrical engineer and any mechanical engineer can be included.

b. one particular electrical engineer must be on the committee.

c. two particular mechanical engineers cannot be on the same committee.

1.44 Use Stirling’s formula to evaluate 200!

1.45 A committee of three members is to be formed consisting of one represen-
tative from labor, one from management, and one from the public. If there
are seven possible representatives from labor, four from management, and
five from the public, how many different committees can be formed?

1.46 There are 100 U.S. senators, two from each of the 50 states.

(a) If two senators are chosen at random, what is the probability that they
are from the same state?

(b) If ten senators are randomly chosen to form a committee, what is the
probability that they are all from different states?

1.47 A committee of seven people is to be formed from a pool of 10 men and 12
women.
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(a) What is the probability that the committee will consist of three men
and four women?

(b) What is the probability that the committee will consist of all men?

1.48 Five departments in the college of engineering, which are labeled depart-
ments A, B, C, D, and E, send three delegates each to the college’s conven-
tion. A committee of four delegates, selected by lot, is formed. Determine
the probability that

(a) Department A is not represented on the committee.

(b) Department A has exactly one representative on the committee.

(c) Neither department A nor department C is represented on the com-
mittee.

Section 1.11: Reliability Applications

1.49 Consider the system shown in Figure 1.19. If the number inside each box
indicates the probability that the component will independently fail within
the next two years, find the probability that the system fails within two years.

1.50 Consider the structure shown in Figure 1.20. Switches S1 and S2 are in se-
ries, and the pair is in parallel with a parallel arrangement of switches S3

Figure 1.19 Figure for Problem 1.49

Figure 1.20 Figure for Problem 1.50
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and S4. Their reliability functions are R1(t), R2(t), R3(t), and R4(t), respec-
tively. The structure interconnects nodes A and B. What is the reliability
function of the composite system in terms of R1(t), R2(t), R3(t), and R4(t)

if the switches fail independently?

1.51 Consider the network shown in Figure 1.21 that interconnects nodes A
and B. The switches labeled S1,S2, . . . ,S8 have the reliability functions
R1(t),R2(t), . . . ,R8(t), respectively. If the switches fail independently, find
the reliability function of the composite system.

1.52 Consider the network shown in Figure 1.22 that interconnects nodes A
and B. The switches labeled S1,S2, . . . ,S8 have the reliability functions
R1(t),R2(t), . . . ,R8(t), respectively. If the switches fail independently, find
the reliability function of the composite system.

1.53 Consider the network shown in Figure 1.23 that interconnects nodes A
and B. The switches labeled S1,S2, . . . ,S7 have the reliability functions
R1(t),R2(t), . . . ,R7(t), respectively. If the switches fail independently, find
the reliability function of the composite system.

Figure 1.21 Figure for Problem 1.51

Figure 1.22 Figure for Problem 1.52
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Figure 1.23 Figure for Problem 1.53
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2.1 Introduction

The concept of a probability space that completely describes the outcome of a
random experiment has been developed in Chapter 1. In this chapter we develop
the idea of a function defined on the outcome of a random experiment, which is a
very high-level definition of a random variable. Thus, the value of a random vari-
able is a random phenomenon and is a numerically valued random phenomenon.

2.2 Definition of a Random Variable

Consider a random experiment with sample space S. Let w be a sample point in S.
We are interested in assigning a real number to each w ∈ S. A random variable,
X(w), is a single-valued real function that assigns a real number, called the value
of X(w), to each sample point w ∈ S. That is, it is a mapping of the sample space
onto the real line.

59
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Generally a random variable is represented by a single letter X instead of the
function X(w). Therefore, in the remainder of the book we use X to denote a ran-
dom variable. The sample space S is called the domain of the random variable X .
Also, the collection of all numbers that are values of X is called the range of the
random variable X . Figure 2.1 illustrates the concepts of domain and range of X .

Example 2.1 A coin-tossing experiment has two sample points: heads and tails.
Thus, we may define the random variable X associated with the experiment as
follows:

X(heads) = 1

X(tails) = 0

In this case, the mapping of the sample space to the real line is as shown in Fig-
ure 2.2. �

Figure 2.1 A Random Variable Associated with a Sample Point

Figure 2.2 Random Variable Associated with Coin-Tossing Experiment
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2.3 Events Defined by Random Variables

Let X be a random variable and x be a fixed real value. Let the event Ax define
the subset of S that consists of all real sample points to which the random variable
X assigns the number x. That is,

Ax = {w | X(w) = x} = [X = x]

Since Ax is an event, it will have a probability, which we define as follows:

p = P[Ax]

We can define other types of events in terms of a random variable. For fixed
numbers x, a, and b, we can define the following:

[X ≤ x] = {w | X(w) ≤ x}
[X > x] = {w | X(w) > x}

[a < X < b] = {w | a < X(w) < b}

These events have probabilities that are denoted by

• P[X ≤ x] is the probability that X takes a value less than or equal to x.

• P[X > x] is the probability that X takes a value greater than x; this is equal to
1 − P[X ≤ x].

• P[a < X < b] is the probability that X takes a value that strictly lies between
a and b.

Example 2.2 Consider an experiment in which a fair coin is tossed twice. The
sample space consists of four equally likely sample points:

S = {HH,HT,TH,TT}

Let X denote the random variable that counts the number of heads in each sam-
ple point. Thus X has the range {0,1,2}. If we consider [X ≤ 1], which is the event
that the number of heads is at most 1, we obtain

[X ≤ 1] = {TT,TH,HT}
P[X ≤ 1] = P[TT] + (P[TH] + P[HT])

= P[X = 0] + P[X = 1]

= 1

4
+ 1

2
= 3

4

�
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2.4 Distribution Functions

Let X be a random variable and x be a number. As stated earlier, we can define
the event [X ≤ x] = {x | X(w) ≤ x}. The distribution function (or the cumulative
distribution function (CDF)) of X is defined by

FX(x) = P[X ≤ x] − ∞ < x < ∞

That is, FX(x) denotes the probability that the random variable X takes on a
value that is less than or equal to x. Some properties of FX(x) include

1. FX(x) is a nondecreasing function, which means that if x1 < x2, then FX(x1) ≤
FX(x2). Thus, FX(x) can increase or stay level, but it cannot go down.

2. 0 ≤ FX(x) ≤ 1

3. FX(∞) = 1

4. FX(−∞) = 0

5. P[a < X ≤ b] = FX(b) − FX(a)

6. P[X > a] = 1 − P[X ≤ a] = 1 − FX(a)

Example 2.3 The CDF of the random variable X is given by

FX(x) =





0 x < 0

x + 1

2
0 ≤ x ≤ 1

2

1 x >
1

2

(a) Draw the graph of the CDF

(b) Compute P

[
X >

1

4

]

Solution (a) The graph of the CDF is as shown in Figure 2.3.
(b) The probability that X is greater than 1

4 is given by

P

[
X >

1

4

]
= 1 − P

[
X ≤ 1

4

]
= 1 − FX

(
1

4

)

= 1 −
(

1

4
+ 1

2

)

= 1

4

�
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Figure 2.3 Graph of FX (x)

2.5 Discrete Random Variables

A discrete random variable is a random variable that can take on at most a count-
able number of possible values. For a discrete random variable X , the probability

mass function (PMF), pX(x), is defined as follows:

pX(x) = P[X = x]

The PMF is nonzero for at most a countable or countably infinite number of
values of x. In particular, if we assume that X can only assume one of the values
x1,x2, . . . ,xn, then

pX(xi) ≥ 0 i = 1,2, . . . ,n

pX(x) = 0 otherwise

The CDF of X can be expressed in terms of pX(x) as follows:

FX(x) =
∑

k≤x

pX(k)

The CDF of a discrete random variable is a step function. That is, if X takes on
values x1,x2,x3, . . . , where x1 < x2 < x3 < . . . , then the value of FX(x) is constant
in the interval between xi−1 and xi and then takes a jump of size pX(xi) at xi,
i = 2,3, . . . . Thus, in this case, FX(x) represents the sum of all the probability
masses we have encountered as we move from −∞ to x.

Example 2.4 Assume that X has the PMF given by

pX(x)

{
1/4 x = 0
1/2 x = 1
1/4 x = 2
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Figure 2.4 Graph of FX (x) for Example 2.4

then its CDF is given by

FX(x)





0 x < 0
1/4 0 ≤ x < 1
3/4 1 ≤ x < 2
1 x ≥ 2

Thus, the graph of the CDF of X is as shown in Figure 2.4.
�

Example 2.5 Let the random variable X denote the number of heads in three
tosses of a fair coin. (a) What is the PMF of X? (b) Sketch the CDF of X .

Solution (a) The sample space of the experiment is S = {HHH,HHT,HTH,HTT,

THH,THT,TTH,TTT}. The different events defined by the random variable X

are as follows:

[X = 0] = {TTT}
[X = 1] = {HTT,THT,TTH}
[X = 2] = {HHT,HTH,THH}
[X = 3] = {HHH}

Since the eight sample points in S are equally likely, the PMF of X is as follows:

pX(x) =





1/8 x = 0
3/8 x = 1
3/8 x = 2
1/8 x = 3
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Figure 2.5 PMF of X for Example 2.5

The PMF is graphically illustrated in Figure 2.5.
(b) The CDF of X is given by

FX(x) =





0 x < 0
1/8 0 ≤ x < 1
1/2 1 ≤ x < 2
7/8 2 ≤ x < 3
1 x ≥ 3

The graph of FX(x) is shown in Figure 2.6.

�

Example 2.6 Let the random variable X denote the sum obtained in rolling a
pair of fair dice. Determine the PMF of X .

Solution Let the pair (a,b) denote the outcomes of the roll, where a is the out-
come of one die and b is the outcome of the other. Thus, the sum of the outcomes
is X = a + b. The different events defined by the random variable X are as fol-
lows:
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Figure 2.6 Graph of FX (x) for Example 2.5

[X = 2] = {(1,1)}

[X = 3] = {(1,2), (2,1)}

[X = 4] = {(1,3), (2,2), (3,1)}

[X = 5] = {(1,4), (2,3), (3,2), (4,1)}

[X = 6] = {(1,5), (2,4), (3,3), (4,2), (5,1)}

[X = 7] = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}

[X = 8] = {(2,6), (3,5), (4,4), (5,3), (6,2)}

[X = 9] = {(3,6), (4,5), (5,4), (6,3)}

[X = 10] = {(4,6), (5,5), (6,4)}

[X = 11] = {(5,6), (6,5)}

[X = 12] = {(6,6)}
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Since there are 36 equally likely sample points in the sample space, the PMF of
X is given by

pX(x) =





1/36 x = 2
2/36 x = 3
3/36 x = 4
4/36 x = 5
5/36 x = 6
6/36 x = 7
5/36 x = 8
4/36 x = 9
3/36 x = 10
2/36 x = 11
1/36 x = 12

�

Example 2.7 The PMF of the number of components K of a system that fails is
defined by

pK(k) =
{(4

k

)
(0.2)k(0.8)4−k k = 0,1, . . . ,4

0 otherwise

(a) What is the CDF of K?
(b) What is the probability that fewer than two components of the system fail?

Solution (a) The CDF of K is given by

FK(k) = P[K ≤ k] =
∑

m≤k

pK(m) =
∑

m≤k

4!
m!(4 − m)! (0.2)m(0.8)4−m

=
k∑

m=0

4!
m!(4 − m)! (0.2)m(0.8)4−m

=





(0.8)4 0 ≤ k < 1
(0.8)4 + 4(0.2)(0.8)3 1 ≤ k < 2
(0.8)4 + 4(0.2)(0.8)3 + 6(0.2)2(0.8)2 2 ≤ k < 3
(0.8)4 + 4(0.2)(0.8)3 + 6(0.2)2(0.8)2 + 4(0.2)3(0.8) 3 ≤ k < 4
(0.8)4 + 4(0.2)(0.8)3 + 6(0.2)2(0.8)2 + 4(0.2)3(0.8) + (0.2)4 k ≥ 4

=





0.4096 0 ≤ k < 1
0.8192 1 ≤ k < 2
0.9728 2 ≤ k < 3
0.9984 3 ≤ k < 4
1.0 k ≥ 4
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(b) The probability that fewer than two components of the system fail is the prob-
ability that either no component fails or one component fails, which is given by

P[K < 2] = P[{K = 0} ∪ {K = 1}] = P[K = 0] + P[K = 1] = FK(1) = 0.8192

where the second equality is due to the fact that the two events are mutually
exclusive. �

Example 2.8 The PMF of the number N of customers that arrive at a local li-
brary within a one-hour interval is defined by

pN(n) =
{

5n

n! e−5 n = 0,1, . . .

0 otherwise

What is the probability that at most two customers arrive at the library within
one hour?

Solution The probability that at most two customers arrive at the library within
one hour is the probability that zero or one or two customers arrive at the library
within one hour, which is

P[N ≤ 2] = P[{N = 0} ∪ {N = 1} ∪ {N = 2}] = P[N = 0] + P[N = 1] + P[N = 2]

= pN(0) + pN(1) + pN(2) = e−5

{
1 + 5 + 25

2

}

= 18.5e−5 = 0.1246

where the second equality on the first line is due to the fact that the three events
are mutually exclusive. �

2.5.1 Obtaining the PMF from the CDF

So far we have shown how to obtain the CDF from the PMF; namely, for a dis-
crete random variable X with PMF pX(x), the CDF is given by

FX(x) =
∑

k≤x

pX(k)

Sometimes we are given the CDF of a discrete random variable and are required
to obtain its PMF. From Figures 2.4 and 2.6 we observe that the CDF of a discrete
random variable has the staircase plot with jumps at those values of the random
variable where the PMF has a nonzero value. The size of a jump at a value of a
random variable is equal to the value of the PMF at the value.
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Thus, given the plot of the CDF of a discrete random variable, we can obtain

the PMF of the random variable by noting that the random variable only takes

on values that have nonzero probability at those points where jumps occur. The

probability that the random variable takes on any other value than where the

jumps occur is zero. Furthermore, the probability that the random variable takes

a value where a jump occurs is equal to the size of the jump.

Example 2.9 The plot of the CDF of a discrete random variable X is shown in

Figure 2.7. Find the PMF of X .

Solution The random variable takes on values with nonzero probability at

X = 1, X = 2, X = 4, and X = 6. The size of the jump at X = 1 is 1/3, the

size of the jump at X = 2 is 1/2 − 1/3 = 1/6, the size of the jump at X = 4 is

3/4 − 1/2 = 1/4, and the size of the jump at X = 6 is 1 − 3/4 = 1/4. Thus, the

PMF of X is given by

pX(x) =





1/3 x = 1
1/6 x = 2
1/4 x = 4
1/4 x = 6
0 otherwise

�

Figure 2.7 Graph of FX (x) for Example 2.9
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Example 2.10 Find the PMF of a discrete random variable X whose CDF is
given by

FX(x) =





0 x < 0
1/6 0 ≤ x < 2
1/2 2 ≤ x < 4
5/8 4 ≤ x < 6
1 x ≥ 6

Solution In this example, we do not need to plot the CDF. We observe that
it changes values at X = 0, X = 2, X = 4, and X = 6, which means that these
are the values of the random variable that have nonzero probabilities. The next
task after isolating these values with nonzero probabilities is to determine their
probabilities. The first value is pX(0), which is 1/6. At X = 2, the size of the jump
is 1/2 − 1/6 = 1/3 = pX(2). Similarly, at X = 4, the size of the jump is 5/8 − 1/2 =
1/8 = pX(4). Finally, at X = 6, the size of the jump, which is the value of pX(6), is
1 − 5/8 = 3/8. Therefore, the PMF of X is given by

pX(x) =





1/6 x = 0
1/3 x = 2
1/8 x = 4
3/8 x = 6
0 otherwise

�

2.6 Continuous Random Variables

Discrete random variables have a set of possible values that are either finite or
countably infinite. However, there exists another group of random variables that
can assume an uncountable set of possible values. Such random variables are
called continuous random variables. Thus, we define a random variable X to be a
continuous random variable if there exists a nonnegative function fX(x), defined
for all real x ∈ (−∞,∞), having the property that for any set A of real numbers,

P(X ∈ A) =
∫

A

fX(x)dx

The function fX(x) is called the probability density function (PDF) of the random
variable X and is defined by

fX(x) = dFX(x)

dx

The properties of fX(x) are as follows:
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1. fX(x) ≥ 0

2. Since X must assume some value,
∫ ∞
−∞ fX(x)dx = 1

3. P[a ≤ X ≤ b] =
∫ b

a fX(x)dx, which means that P[X = a] =
∫ a

a fX(x)dx = 0.

Thus, the probability that a continuous random variable will assume any fixed
value is zero.

4. P[X < a] = P[X ≤ a] = FX(a) =
∫ ∞
−∞ fX(x)dx

Example 2.11 Assume that X is a continuous random variable with the follow-
ing PDF:

fX(x) =
{

A
(
2x − x2

)
0 < x < 2

0 otherwise

(a) What is the value of A?
(b) Find P[X > 1].
Solution (a) Since fX(x) is a PDF, we have that

∫ ∞

−∞
fX(x)dx =

∫ 0

−∞
0dx +

∫ 2

0
A
(
2x − x2

)
dx +

∫ ∞

2
0dx =

∫ 2

0
A
(
2x − x2

)
dx = 1

Thus, we obtain

A

[
x2 − x3

3

]2

0

= 1

A

(
4 − 8

3

)
= 4A

3
= 1

A = 3

4

(b) Therefore,

P[X > 1] =
∫ ∞

1
fX(x)dx

= 3

4

∫ 2

1

(
2x − x2

)
dx = 3

4

[
x2 − x3

3

]2

1

= 3

4

[
4

3
− 2

3

]

= 1

2

�
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Example 2.12 Is the following function a legitimate PDF?

f (x) =





x2

9
0 ≤ x ≤ 3

0 otherwise

Solution For f (x) to be a legitimate PDF, we need to check to see if∫ ∞
−∞ f (x)dx = 1. Thus,

∫ ∞

−∞
f (x)dx =

∫ 3

0

x2

9
dx =

[
x3

27

]3

0

= 1

Therefore, f (x) is a legitimate PDF. �

Example 2.13 Consider the function

g(x) =
{

c a ≤ x ≤ b

0 otherwise

(a) For what value of c is g(x) a legitimate PDF?
(b) Find the CDF of the random variable X with the above PDF.

Solution (a) For g(x) to be a legitimate PDF, we must have that
∫ ∞
−∞ g(x)dx = 1.

That is,
∫ b

a

cdx = [cx]b
a = c(b − a) = 1

This implies that c = 1

b − a
.

(b) The CDF is given by

GX(x) =
∫ x

−∞
g(u)du =

∫ x

a

du

b − a

=





0 x < a
x − a

b − a
a ≤ x < b

1 x ≥ b

�

Example 2.14 Consider the function

f (x) =
{

2x 0 ≤ x ≤ b

0 otherwise
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(a) For what value of b is f (x) a legitimate PDF?
(b) Find the CDF of the random variable X with the above PDF.

Solution (a) For f (x) to be a valid PDF in the specified range, we must have that∫ b
0 f (x)dx = 1. That is,

∫ b

0
2xdx =

[
x2
]∣∣b

0
= b2 = 1

Thus, b = 1.
(b) The CDF of X is given by

F(x) =
∫ x

−∞
f (u)du =

{
0 x < 0
x2 0 ≤ x < 1
1 x ≥ 1

�

Example 2.15 The PDF of the time T it takes a bank teller to serve a customer
is defined by

fT(t) =
{

1

6
2 ≤ t ≤ 8

0 otherwise

(a) What is the CDF of T?
(b) What is the probability that a customer is served in less than 5 minutes?

Solution (a) The CDF of T is given by

FT(t) = P[T ≤ t] =
∫ t

−∞
fT(u)du

=
∫ t

2

1

6
du =

[
u

6

]t

2

=





0 t < 2
t − 2

6
2 ≤ t < 8

1 t ≥ 8

(b) Since T is a continuous random variable, the probability that a customer is
served in less than 5 minutes is given by

P[T < 5] = FT(5) = 5 − 2

6
= 0.5

�
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Example 2.16 The CDF of the random variable X is defined by

FX(x) =
{

0 x < 2
A(x − 2) 2 ≤ x < 6
1 x ≥ 6

(a) What is the value of A?
(b) With the above value of A, what is P[X > 4]?
(c) With the above value of A, what is P[3 ≤ X ≤ 5]?

Solution (a) To find A, we know that FX(6) = 1. Thus, from the definition of the
CDF we have that

FX(6) = A(6 − 2) = 4A = 1 ⇒ A = 1

4

(b) The probability that X is greater than 4 is given by

P[X > 4] = 1 − P[X ≤ 4] = 1 − FX(4) = 1 − 1

4
(4 − 2) = 1

2

(c) The probability that X lies between 3 and 5 is given by

P[3 ≤ X ≤ 5] = FX(5) − FX(3) = 1

4
{(5 − 2) − (3 − 2)} = 1

2

Note that we can also solve the problem by first finding the PDF of X as follows:

fX(x) = d

dx
FX(x) =

{
A 2 ≤ x ≤ 6

0 otherwise

Then the remainder of the problem is solved using the PDF, as follows:

∫ ∞

−∞
fX(x)dx =

∫ 6

2
Adx = 1 ⇒ A = 1

4

P[X > 4] =
∫ 6

4
Adx = 1

2

P[3 ≤ X ≤ 5] =
∫ 5

3
Adx = 1

2

�
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Example 2.17 The CDF of the random variable Y is defined by

FY(y) =
{

0 y < 0

K{1 − e−2y} y ≥ 0

(a) For what value of K is the function a valid CDF?
(b) With the above value of K, what is FY(3)?
(c) With the above value of K, what is P[2 < Y < ∞]?
Solution (a) To find K, we know that FY(∞) = 1. Thus, from the definition of
the CDF we have that

FY(∞) = K{1 − e−∞} = K(1 − 0) = 1 ⇒ K = 1

(b) FY(3) = K{1 − e−6} = 1 − e−6 = 0.9975.
(c) P[2 < Y < ∞] = P[Y > 2] = 1 − P[Y ≤ 2] = 1 − FY(2). Thus,

P[2 < Y < ∞] = 1 − {1 − e−4} = e−4 = 0.0183

As in Example 2.16, the problem can also be solved by first obtaining the PDF of
Y and then integrating over the appropriate intervals as follows:

fY(y) = d

dy
FY(y) = 2Ke−2y,y ≥ 0

∫ ∞

0
fY(y)dy = 1 = K

[
−e−2y

]∞
0

⇒ K = 1

FY(3) =
∫ 3

0
fY(y)dy =

[
−e−2y

]3
0
= 1 − e−6

P[2 < Y < ∞] =
∫ 2

∞
fY(y)dy =

[
−e−2y

]∞
2

= e−4

�

2.7 Chapter Summary

This chapter developed the concept of functions defined on the outcomes of ran-
dom phenomena. These functions, which are called random variables, can be clas-
sified into two types: discrete random variables that have a set of possible values
that are either finite or countably infinite, and continuous random variables that
can assume an uncountable set of possible values.
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Associated with both types of random variables is the concept of cumulative
distribution function that denotes the probability that a random variable X takes
on a value that is less than or equal to x. The probability mass function has been
defined for discrete random variables and is the probability that the random vari-
able X has a value x. Similarly the probability density function (PDF) is a nonneg-
ative function associated with a continuous random variable such that integrating
the PDF between two distinct values of the random variable gives the probability
that the random variable takes a value that lies between these two values. Thus,
the area under the curve defined by the PDF is the probability that the random
variable lies between the values limiting the area. Because of this, the probabil-
ity that a continuous random variable takes on a particular value is zero since
the area associated with a point is zero. Understanding the concept of random
variables is key to understanding the rest of this book.

2.8 Problems

Section 2.4: Distribution Functions

2.1 Bob claims that he can model his experimental study of a process by the
following CDF:

FX(x) =
{

0 −∞ < x ≤ 1
B{1 − e−(x−1)} 1 < x < ∞

(a) For what value of B is the function a valid CDF?

(b) With the above value of B, what is FX(3)?

(c) With the above value of B, what is P[2 < X < ∞]?
(d) With the above value of B, what is P[1 < X ≤ 3]?

2.2 The CDF of a random variable X is given by

FX(x) =
{

0 x < 0
3x2 − 2x3 0 ≤ x < 1
1 x ≥ 1

What is the PDF of X?

2.3 A random variable X has the CDF

FX(x) =
{

0 x < 0
1 − e−x2/2σ

2
x ≥ 0

where σ is a positive constant.

a. Find P[σ ≤ X ≤ 2σ].
b. Find P[X > 3σ].
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2.4 The CDF of a random variable T is given by

FT(t)

{
0 t < 0
t2 0 ≤ t ≤ 1
1 t ≥ 1

a. What is the PDF of T?

b. What is P[T > 0.5]?
c. What is P[0.5 < T < 0.75]?

2.5 The CDF of a continuous random variable X is given by

FX(x) =
{

0 x ≤ −π/2
k(1 + sin x) −π/2 < x ≤ π/2
1 x> π/2

a. Find the value of k.

b. Find the PDF of X .

2.6 The CDF of a random variable X is given by

FX(x) =





0 x ≤ 2

1 − 4

x2
x > 2

a. Find P[X < 3].
b. Find P[4 < X < 5].

2.7 The CDF of a discrete random variable K is given by

FK(k) =





0.0 k < −1
0.2 −1 ≤ k < 0
0.7 0 ≤ k < 1
1.0 k ≥ 1

a. Draw the graph of Fk(k).

b. Find pK(k), the PMF of K.

2.8 The random variable N has the CDF

FN(n) =





0.0 n < −2
0.3 −2 ≤ n < 0
0.5 0 ≤ n < 2
0.8 2 ≤ n < 4
1 n ≥ 4
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a. Draw the graph of FN(n).

b. Find pN(n), the PMF of K.

c. Draw the graph of pN(n).

2.9 The CDF of a discrete random variable Y is given by

FY(y) =





0.0 y < 2
0.3 2 ≤ y < 4
0.8 4 ≤ y < 6
1.0 y ≥ 6

a. What is P[3 < Y < 4]?
b. What is P[3 < Y ≤ 4]?

2.10 Determine the PMF of the random variable Y if its CDF is given by

FY(y) =





0 y < 0
0.50 0 ≤ y < 2
0.75 2 ≤ y < 3
0.90 3 ≤ y < 5
1 y ≥ 5

2.11 The CDF of a discrete random variable X is given as follows:

FX(x) =





0 x < 0
1/4 0 ≤ x < 1
1/2 1 ≤ x < 3
5/8 3 ≤ x < 4
1 x ≥ 4

(a) Determine pX(x), the PMF of X , and draw its graph.

(b) Determine the values of (i) P[X < 2] and (ii) P[0 ≤ X < 4].

Section 2.5: Discrete Random Variables

2.12 Let the random variable K denote the number of heads in four flips of a fair
coin.

(a) Plot the graph of pK(k).

(b) What is P[K ≥ 3]?
(c) What is P[2 ≤ K ≤ 4]?

2.13 Ken was watching some people play poker, and he wanted to model the
PMF of the random variable N that denotes the number of plays up to and
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including the play in which his friend Joe won a game. He conjectured that if
p is the probability that Joe wins any game and the games are independent,
then the PMF of N is given by

pN(n) = p(1 − p)n−1 n = 1,2, . . .

a. Show that pN(n) is a proper PMF.

b. Find the CDF of N.

2.14 The discrete random variable K has the following PMF:

pK(k) =





b k = 0
2b k = 1
3b k = 2
0 otherwise

(a) What is the value of b?

(b) Determine the values of (i) P[K < 2], (ii) P[K ≤ 2], and (iii)
P[0 < K < 2].

(c) Determine the CDF of K.

2.15 A student got a summer job at a bank, and his assignment was to model the
number of customers who arrive at the bank. The student observed that the
number of customers K that arrive over a given hour had the PMF

pK(k) =
{

λke−λ/k! k = 0,1,2, . . .

0 otherwise

(a) Show that pK(k) is a proper PMF.

(b) What is P[K > 1]?
(c) What is P[2 ≤ K ≤ 4]?

2.16 Let X be the random variable that denotes the number of times we roll a
fair die until the first time the number 5 appears. Find the probability that
X = k.

2.17 The PMF of a random variable X is given by pX(x) = bλx/x!, x = 0,1,2, . . . ,
where λ > 0. Find the numerical values for (a) P[X = 1], (b) P[X > 3].

2.18 A random variable K has the PMF

pK(k) =
(

5

k

)
(0.1)k(0.9)5−k k = 0.1, . . . ,5
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Obtain the values of the following:

(a) P[K = 1]
(b) P[K ≥ 1]

2.19 A biased four-sided die has faces labeled 1, 2, 3, and 4. Let the random
variable X denote the outcome of a roll of the die. Extensive testing of the
die shows that the PMF of X is given by

pX(x) =





0.4 x = 1
0.2 x = 2
0.3 x = 3
0.1 x = 4

a. Find the CDF of X .

b. What is the probability that a number less than 3 appears on a roll of the
die?

c. What is the probability of obtaining a number whose value is at least 3
on a roll of the die?

2.20 The number N of calls arriving at a switchboard during a period of one hour
has the PMF

pN(n) = 10ne−10

n! n = 0,1, . . .

a. What is the probability that at least two calls arrive within one hour?

b. What is the probability that at most three calls arrive within one hour?

c. What is the probability that the number of calls that arrive within one
hour is greater than three but less than or equal to six?

2.21 Assume that the random variable K denotes the number of successes in n

trials of an experiment. The probability of success in any trial of the exper-
iment is 0.6, and the PMF of K is given by

pK(k) =
(

n

k

)
(0.6k)(0.4)n−k k = 0,1, . . . ,n;n = 1,2, . . .

a. What is the probability of at least one success in five trials of the exper-
iment?

b. What is the probability of at most one success in five trials of the exper-
iment?
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c. What is the probability that the number of successes is greater than one
but less than four in five trials of the experiment?

2.22 Prove that the function p(x) is a legitimate PMF of a discrete random vari-
able X , where p(x) is defined by

p(x) =





2

3

(
1

3

)x

x = 0,1,2, . . .

0 otherwise

Section 2.6: Continuous Random Variables

2.23 Consider the following function.

g(x) =
{

a
(
1 − x2

)
−1 < x < 1

0 otherwise

(a) Determine the value of a that makes g(x) a valid probability density
function.

(b) If X is the random variable with this PDF, determine the value of
P[0 < X < 0.5].

2.24 The PDF fX(x) of a continuous random variable X is defined as follows for
λ > 0,

fX(x) =
{

bxe
−λx 0 ≤ x < ∞

0 otherwise

(a) What is the value of b?

(b) What is the CDF of X?

(c) What is P[0 ≤ X ≤ 1/λ]?
2.25 Find the PDF of the continuous random variable X with the following CDF:

FX(x) =
{

0 x ≤ 0
2x2 − x3 0 < x < 1
1 x ≥ 1

2.26 A random variable X has the following PDF, where K > 0:

fX(x) =





0 x < 1
K(x − 1) 1 ≤ x ≤ 2
K(3 − x) 2 ≤ x ≤ 3
0 x > 3

(a) What is the value of K?

(b) Sketch fX(x).
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(c) What is the CDF of X?

(d) What is P[1 ≤ X ≤ 2]?
2.27 A random variable X has the CDF

FX(x) =
{

0 x < −1
A(1 + x) −1 ≤ x < 1
1 x ≥ 1

(a) What is the value of A?

(b) With the above value of A, what is P[X > 1/4]?
(c) With the above value of A, what is P[−0.5 ≤ X ≤ 0.5]?

2.28 The lifetime X of a system in weeks is given by the following PDF:

fX(x) =
{

0.25e−0.25x x ≥ 0
0 otherwise

(a) What is the probability that the system will not fail within two weeks?

(b) Given that the system has not failed by the end of the fourth week,
what is the probability that it will fail between the fourth and sixth
weeks?

2.29 A military radar is set at a remote site with no repair facility. The time T

until the radar fails in years has the PDF given by fT(t) = 0.2e−0.2t, where
t ≥ 0. What is the probability that the radar lasts for at least four years?

2.30 The PDF of a random variable X is given by

fX(x) =
{

A/x2 x > 10
0 otherwise

(a) What is the value of A?

(b) With the above value of A, determine the CDF of X .

(c) With the above value of A, what is P[X > 20]?
2.31 Assume that X is a continuous random variable with the following PDF:

fX(x) =
{

A
(
3x2 − x3

)
0 < x < 3

0 otherwise

(a) What is the value of A?

(b) Find P[1 < X < 2].
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2.32 A random variable X has the PDF

fX(x) =
{

k
(
1 − x4

)
−1 ≤ x ≤ 1

0 otherwise

a. Find the value of k.

b. Find the CDF of X .

c. Find P[X < 1/2].
2.33 The PDF of a random variable X is given by

fX(x) =
{

x 0 < x < 1
2 − x 1 ≤ x ≤ 2
0 otherwise

a. Find the CDF of X .

b. Find P[0.2 < X < 0.8].
c. Find P[0.6 < X < 1.2].

2.34 The mileage (in thousands of miles) that car owners get with a certain type
of tire is a random variable X with PDF

fX(x) =
{

Ae−x/20 x > 0
0 otherwise

a. Find the value of A.

b. Find the CDF of X .

c. What is P[X ≤ 10]?
d. What is P[16 < X < 24]?

2.35 Assume that X is a continuous random variable with the following PDF:

fX(x) =
{

0 x < 0.5
ke−2(x−0.5) x ≥ 0.5

a. Find the value of k.

b. Find the CDF of X .

c. What is P[X ≤ 1.5]?
d. What is P[1.2 < X < 2.4]?
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3.1 Introduction

Given the set of data X1,X2, . . . ,XN , we know that the arithmetic average (or
arithmetic mean) is given by

X = X1 + X2 + · · · + XN

N

When the above numbers occur with different frequencies, we usually assign
weights w1,w2, . . . ,wN to them and the so-called weighted arithmetic mean be-
comes

X = w1X1 + w2X2 + · · · + wNXN

w1 + w2 + · · · + wN

The average is a value that is representative or typical of a set of data and tends to
lie centrally within a set of data that are arranged according to their magnitudes.
Thus, it is usually called a measure of central tendency.

85
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The term expectation is used for the process of averaging when a random vari-
able is involved. It is a number used to locate the “center” of the distribution of
a random variable. In many situations we are primarily interested in the central
tendency of a random variable, and as will be seen later in this chapter, the expec-
tation (or mean or average) of a random variable can be likened to the weighted
arithmetic average defined above.

Another measure of central tendency of a random variable is its variance,
which measures the degree to which a random variable is spread out. This chapter
deals with how the expectation (or mean or average) and variance of a random
variable can be computed.

3.2 Expectation

If X is a random variable, then the expectation (or expected value or mean) of X ,
denoted by E[X], is defined by

E[X] =





∑

i

xipX(xi) X discrete

∫ ∞

−∞
xfX(x)dx X continuous

Thus, the expected value of X is a weighted average of the possible values that X

can take, where each value is weighted by the probability that X takes that value.
The expected value of X is sometimes denoted by X .

Example 3.1 Find the expected value of the random variable X whose PDF is
defined by

fX(x) =





0 x < a
1

b − a
a ≤ x ≤ b

0 x > b

Solution The PDF of X is as shown in Figure 3.1.

E[X] =
∫ ∞

−∞
xfX(x)dx =

∫ b

a

x

b − a
dx =

[
x2

2(b − a)

]b

a

= b2 − a2

2(b − a)
= (b − a)(b + a)

2(b − a)

= b + a

2

�
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Figure 3.1 PDF of X in Example 3.1

Example 3.2 Find the expected value of the discrete random variable X with
the following PMF:

pX(x) =





1

3
x = 0

2

3
x = 2

Solution E[X] = 0

(
1

3

)
+ 2

(
2

3

)
= 4

3
�

Example 3.3 Find the expected value of the random variable K with the follow-
ing PMF:

pK(k) = λk

k! e−λ k = 0,1,2, . . .

Solution E[K] is given by

E[K] =
∞∑

k=0

kpK(k) =
∞∑

k=0

k

(
λk

k! e−λ

)

=
∞∑

k=1

λk

(k − 1)!e−λ

= λe−λ

∞∑

k=1

λk−1

(k − 1)!
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Since
∞∑

k=1

λk−1

(k − 1)! =
∞∑

k=0

λk

k! = eλ

we obtain

E[K] = λe−λeλ = λ

�

Example 3.4 Find the expected value of the random variable X whose PDF is
given by

fX(x) =
{

λe−λx x ≥ 0
0 x < 0

Solution The expected value of X is given by

E[X] =
∫ ∞

−∞
xfX(x)dx =

∫ ∞

0
xλe−λxdx

Let dv = λe−λxdx and u = x. This means that v = −e−λx and du = dx. Thus, inte-
grating by parts, we obtain

E[X] = [uv]∞0 −
∫ ∞

0
vdu

=
[
−xe−λx

]∞
0

+
∫ ∞

0
e−λxdx = 0 −

[
e−λx

λ

]∞

0

= 1

λ

�

3.3 Expectation of Nonnegative Random Variables

Some random variables assume only nonnegative values. For example, the time
X until a component fails cannot be negative. In Chapter 1 we defined the reli-
ability function R(t) of a component as the probability that the component has
not failed by time t. Thus, if the PDF of X is fX(x) and the CDF is FX(x), we can
define the reliability function of the component by RX(t), which is related to the
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CDF and PDF as follows:

RX(t) = P[X > t] = 1 − P[X ≤ t] = 1 − FX(t)

FX(t) = 1 − RX(t)

Proposition 3.1. For a nonnegative random variable X with CDF FX(x), the ex-

pected value is given by

E[X] =
∫ ∞

0
P[X > x]dx =

∫ ∞

0
[1 − FX(x)]dx

Proof. Since P[X > x] =
∫ ∞

x fX(u)du, we have that

∫ ∞

0
P[X > x]dx =

∫ ∞

0

∫ ∞

x

fX(u)dudx

The region of integration {(x,u) | 0 ≤ x < ∞,x ≤ u < ∞} is as shown in Figure 3.2.

From the figure we observe that the region of integration can be transformed
into {(x,u) | 0 ≤ x ≤ u,0 ≤ u < ∞}, which gives

∫ ∞

0
P[X > x]dx =

∫ ∞

0

∫ ∞

x

fX(u)dudx =
∫ ∞

0

{∫ u

0
dx

}
fX(u)du =

∫ ∞

0
ufX(u)du

= E[X]

This proves the proposition. The result can be extended in the following two ways.
First, for a discrete random variable X that assumes only nonnegative values,

E[X] =
∞∑

k=0

P[X > k]

Figure 3.2 Region of Integration
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Second, for a continuous random variable X that can assume both negative and
positive values, it can be shown that

E[X] =
∫ ∞

0
P[X > x]dx −

∫ ∞

0
P[X < −x]dx

�

Example 3.5 Use the above method to find the expected value of the random
variable X whose PDF is given in Example 3.4.

Solution From Example 3.4, the PDF of X is given by

fX(x) =
{

λe−λx x ≥ 0
0 x < 0

Thus, the CDF of X is given by

FX(x) =
∫ x

0
fX(u)du =

∫ x

0
λe−λudu = 1 − e−λx

The expected value of X is given by

E[X] =
∫ ∞

0
P[X > x]dx =

∫ ∞

0
[1 − FX(x)]dx

=
∫ ∞

0
e−λxdx = 1

λ

which is the same result that we obtained in Example 3.4. �

3.4 Moments of Random Variables and the Variance

The nth moment of the random variable X , denoted by E[Xn] = Xn, is defined
by

E[Xn] = Xn =





∑

i

xn
i pX(xi) X discrete

∫ ∞

−∞
xnfX(x)dx X continuous

for n = 1,2,3, . . . The first moment, E[X], is the expected value of X .

We can also define the central moments (or moments about the mean)
of a random variable. These are the moments of the difference between
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a random variable and its expected value. The nth central moment is de-
fined by

E
[
(X − X)n

]
= (X − X)n =





∑

i

(xi − X)npX(xi) X discrete

∫ ∞

−∞
(x − X)nfX(x)dx X continuous

The central moment for the case of n = 2 is very important and carries a special
name, the variance, which is usually denoted by σ2

X . Thus,

σ2
X = E

[
(X − X)2

]
= (X − X)2 =





∑

i

(xi − X)2pX(xi) X discrete

∫ ∞

−∞
(x − X)2fX(x)dx X continuous

Before we can simplify the expression for the variance, we first state and prove
the following two propositions.

Proposition 3.2. Let X be a random variable with the PDF fX(x) and mean E[X].
Let a and b be constants. Then, if Y is the random variable defined by Y = aX + b,

the expected value of Y is given by E[Y] = aE[X] + b.

Proof. Since Y is a function of X , its expected value is given by

E[Y] = E[aX + b] =
∫ ∞

−∞
(ax + b)fX(x)dx =

∫ ∞

−∞
axfX(x)dx +

∫ ∞

−∞
bfX(x)dx

= a

∫ ∞

−∞
xfX(x)dx + b

∫ ∞

−∞
fX(x)dx

= aE[X] + b

where the first term of the last line follows from the definition of expectation, and
the second term follows from the fact that the integration is 1. �

The topic “functions of random variables” is discussed in detail in Chapter 6.

Proposition 3.3. Let X be a random variable with the PDF fX(x) and mean E[X].
Let g1(X) and g2(X) be two functions of the random variable X, and let g3(X)

be defined by g3(X) = g1(X) + g2(X). The expected value of g3(X) is E[g1(X)] +
E[g2(X)].
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Proof. Since g3(X) is a function of X , its expected value is given by

E[g3(X)] =
∫ ∞

−∞
g3(X)fX(x)dx =

∫ ∞

−∞
{g1(X) + g2(X)}fX(x)dx

=
∫ ∞

−∞
g1(X)fX(x)dx +

∫ ∞

−∞
g2(X)fX(x)dx

= E[g1(X)] + E[g2(X)] �

Using these two propositions, and noting that X is a constant, we obtain the
variance of X as follows:

σ2
X = E

[
(X − X)2

]
= E

[
X2 − 2XX + (X)2

]
= E

[
X2

]
− 2E[X]X + (X)2

= E
[
X2

]
− 2XX + (X)2 = E

[
X2

]
− 2(X)2 + (X)2

= E
[
X2

]
− (X)2 = E

[
X2

]
− (E[X])2

The square root of the variance, σX , is called the standard deviation. The vari-
ance is a measure of the “spread” of a PDF or PMF. If a random variable has
a concentrated PDF or PMF, it will have a small variance. Similarly, if it has a
widely spread PDF or PMF, it will have a large variance. For example, consider
the random variables X1, X2, and X3 with the following PDFs

fX1
(x) =

{
1

4
0 ≤ x ≤ 4

0 otherwise

fX2
(x) =

{
1

3
0.5 ≤ x ≤ 3.5

0 otherwise

fX3
(x) =

{
1

2
1 ≤ x ≤ 3

0 otherwise

We can plot these PDFs as shown in Figure 3.3.

From direct computation of the mean values of these random variables, we see
that E[X1] = E[X2] = E[X3] = 2. However, their spreads about the mean value
are different. Specifically, X1 has the largest spread about the mean, while X3 has
the smallest spread about the mean. In other words, values of X3 tend to cluster
around the mean value the most, while the values of X1 tend to cluster around
the mean value the least. In terms of variance, we therefore say that X1 has the
largest variance, while X3 has the smallest variance.
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Figure 3.3 PDFs of X1, X2, and X3

Example 3.6 Let X be a continuous random variable with the PDF

fX(x) =
{

1

4
2 ≤ x ≤ 6

0 otherwise

Find the expected value and variance of X .

Solution The expected value of X is given by

E[X] =
∫ ∞

−∞
xfX(x)dx =

∫ 6

2

x

4
dx

=
[

x2

8

]6

2

= 36

8
− 4

8
= 4

To find the variance of X , we use the result of the expected value computed
earlier as follows:

σ2
X = E

[
(X − X)2

]
=

∫ ∞

−∞
(x − X)2fX(x)dx =

∫ 6

2

(x − 4)2

4
dx

= 1

4

∫ 6

2

(
x2 − 8x + 16

)
dx = 1

4

[
x3

3
− 4x2 + 16x

]6

2

= 1

4

{
(96 − 72) −

(
32 − 16 + 8

3

)}

= 4

3
�
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Note that an alternative method of computing the variance is by using the
identity

σ2
X = E

[
X2

]
− (X)2 = E

[
X2

]
− 42 = E

[
X2

]
− 16

The second moment is obtained as follows:

E
[
X2

]
=

∫ ∞

−∞
x2fX(x)dx =

∫ 6

2

x2

4
dx =

[
x3

12

]6

2

= 216 − 8

12

= 52

3

Thus, σ2
X = 52

3
− 16 = 4

3
, which is the same result obtained earlier.

Example 3.7 Find the variance of the random variable K with the following
PMF:

pK(k) = λk

k! e−λ k = 0,1,2, . . .

(This is the continuation of Example 3.3.)

Solution From Example 3.3, we know that E[K] = λ. The second moment of K

is given by:

E
[
K2

]
=

∞∑

k=0

k2 λk

k! e−λ

= λe−λ

∞∑

k=1

kλk−1

(k − 1)!

Now, we apply the following trick:

∞∑

k=1

λk

(k − 1)! = λ

∞∑

k=1

λk−1

(k − 1)! = λ

∞∑

k=0

λk

k!

= λeλ

But

d

dλ

[ ∞∑

k=1

λk

(k − 1)!

]
=

∞∑

k=1

d

dλ

[
λk

(k − 1)!

]
=

∞∑

k=1

kλk−1

(k − 1)!

Therefore,
∞∑

k=1

kλk−1

(k − 1)! = d

dλ
(λeλ) = (1 + λ)eλ
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Finally, the second moment of K is given by

E
[
K2

]
= λe−λ

∞∑

k=1

kλk−1

(k − 1)!

= (λe−λ)(1 + λ)eλ

= λ + λ2

And the variance of K is given by

σ2
K = E

[
K2

]
− (E[K])2 = λ + λ2 − λ2

= λ

�

Thus, the expected value and variance of K have identical values.

Example 3.8 A test engineer discovered that the CDF of the lifetime of an
equipment in years is given by

FX(x) =
{

0 x < 0

1 − e−x/5 0 ≤ x < ∞

a. What is the expected lifetime of the equipment?

b. What is the variance of the lifetime of the equipment?

Solution From the definition of its CDF, we can see that X is a random variable
that takes only nonnegative values. Thus,

(a) The expected lifetime of the equipment is given by

E[X] =
∫ ∞

0
P[X > x]dx =

∫ ∞

0
[1 − FX(x)]dx

=
∫ ∞

0
e−x/5dx = 5

(b) To find the variance, we first evaluate the PDF:

fX(x) = d

dx
FX(x) =

{
1

5
e−x/5 x ≥ 0

0 otherwise
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Thus, the second moment of X is given by

E
[
X2

]
=

∫ ∞

−∞
x2fX(x)dx = 1

5

∫ ∞

0
x2e−x/5dx

Let u = x2 ⇒ du = 2xdx, and let dv = e−x/5dx ⇒ v = −5e−x/5. Thus,

E
[
X2

]
=

{
−5x2e−x/5

5

}∞

0

+ 10

∫ ∞

0

xe−x/5

5
dx

= 0 + 2

∫ ∞

0
xe−x/5dx = 2

∫ ∞

0
xe−x/5dx

Let u = x ⇒ du = dx, and let dv = e−x/5dx ⇒ v = −5e−x/5. Then we have that

E
[
X2

]
= 2

{
−5xe−x/5

}∞
0

+ 10

∫ ∞

0
e−x/5dx = 0 + 10

[
−5e−x/5

]∞
0

= 50

Finally, the variance of X is given by

σ2
X = E

[
X2

]
− {E[X]}2 = 50 − 25 = 25

�

Example 3.9 A shopping cart contains ten books whose weights are as follows:
There are four books with a weight of 1.8 lbs each, one book with a weight of
2 lbs, two books with a weight of 2.5 lbs each, and three books with a weight of
3.2 lbs each.

a. What is the mean weight of the books?

b. What is the variance of the weights of the books?

Solution The total number of books is 10. The fractions of books in each weight
category are as follows:
Fraction of books with weight 1.8 lbs is 4/10 = 0.4
Fraction of books with weight 2.0 lbs is 1/10 = 0.1
Fraction of books with weight 2.5 lbs is 2/10 = 0.2
Fraction of books with weight 3.2 lbs is 3/10 = 0.3

Let Y be a random variable that denotes the weights of the books. Since these
fractions are essentially the probabilities of occurrence of these weights, we have
that

E[Y] = (0.4 × 1.8) + (0.1 × 2.0) + (0.2 × 2.5) + (0.3 × 3.2) = 2.38
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σ2
Y =

4∑

k=1

(
yk − E[Y]

)2
pY(yk)

=
{
(1.8 − 2.38)2 × 0.4

}
+

{
(2.0 − 2.38)2 × 0.1

}
+

{
(2.5 − 2.38)2 × 0.2

}

+
{
(3.2 − 2.38)2 × 0.3

}

= 0.3536

�

Example 3.10 Find the variance of the random variable X whose PDF is given
by

fX(x) =
{

λe−λx x ≥ 0
0 x < 0

(This is the continuation of Example 3.4.)

Solution From Example 3.4, the expected value of X is given by 1/λ. The second
moment of X is given by

E
[
X2

]
=

∫ ∞

0
x2λe−λxdx

Let dv = λe−λxdx and u = x2. This means that v = −e−λx and du = 2xdx. Thus,
integrating by parts we obtain

E
[
X2

]
= [uv]∞0 −

∫ ∞

0
vdu

=
[
−x2e−λx

]∞
0

+
∫ ∞

0
2xe−λxdx = 0 + 2

[
−xe−λx

λ

]∞

0

+
∫ ∞

0

2e−λx

λ
dx

= 2

λ2

Thus, the variance of X is given by

σ2
X = E

[
X2

]
− (E[X])2 = 2

λ2
− 1

λ2
= 1

λ2

�
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Example 3.11 Find the variance of the discrete random variable X with the fol-
lowing PMF:

pX(x) =





1

3
x = 0

2

3
x = 2

(This is the continuation of Example 3.2.)

Solution From Example 3.2, we know that E[X] = 4

3
. Thus, the second moment

and variance of X are given by

E
[
X2

]
= 02

(
1

3

)
+ 22

(
2

3

)
= 8

3

σ2
X = E

[
X2

]
− (E[X])2 = 8

3
− 16

9
= 8

9

�

Example 3.12 A student doing a summer internship in a company was asked to
model the lifetime of certain equipment that the company makes. After a series
of tests, the student proposed that the lifetime of the equipment can be modeled
by a random variable X that has the PDF

f (x) =





xe−x/10

100
x ≥ 0

0 otherwise

a. Show that f (x) is a valid PDF.

b. What is the probability that the lifetime of the equipment exceeds 20?

c. What is the expected value of X?

Solution (a) For f (x) to be a valid PDF, we must have that
∫ ∞
−∞ f (x)dx = 1. Now,

∫ ∞

−∞
f (x)dx =

∫ ∞

0

xe−x/10

100
dx
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Let u = x ⇒ du = dx, and let dv = e−x/10dx ⇒ v = −10e−x/10. Thus,

∫ ∞

0

xe−x/10

100
dx = 1

100

{
[
−10xe−x/10

]∞
0

+ 10

∫ ∞

0
e−x/10dx

}

= 1

100

{
0 −

[
100e−x/10

]∞
0

}
= 1

This proves that f (x) is a valid PDF.

(b) Using the results obtained in part (a), the probability that the lifetime of the
equipment exceeds 20 is given by

P[X > 20] =
∫ ∞

20
f (x)dx = 1

100

{
[
−10xe−x/10

]∞
20

+ 10

∫ ∞

20
e−x/10dx

}

= 1

100

{
200e−2 −

[
100e−x/10

]∞
20

}
= 2e−2 + e−2 = 3e−2

= 0.4060

(c) The expected value of X is given by

E[X] =
∫ ∞

−∞
xf (x)ds =

∫ ∞

0

x2e−x/10

100
dx

Let u = x2 ⇒ du = 2xdx, and let dv = e−x/10dx ⇒ v = −10e−x/10. Thus,

E[X] =
{
−10x2e−x/10

100

}∞
+ 20

∫ ∞

0

xe−x/10

100
dx = 0 + 20 = 20

where the second equality follows from the fact that the integrand is f (x), which
has been shown to be a valid PDF and thus integrates to one from zero to infinity.

�

Example 3.13 A high school student has a personal goal of scoring at least 2000
on the scholastic aptitude test (SAT). He plans to keep taking the test until he
achieves this goal; time is not an issue for him. The probability that he scores 2000
or higher on any one SAT test is p. His performance on each SAT test is indepen-
dent of his performance on other SAT tests. His friend, who has just completed
a course on probability, informed him that if K is the number of times he has to
take the test before getting a score of 2000 or higher, then the PMF of K is given
by

pK(k) = (1 − p)k−1p k = 1,2, . . .
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a. Prove that the function proposed by his friend is a true PMF.

b. Given the above PMF, what is the probability that he has to take the test more
than five times?

c. What is the expected number of times he has to take the test?

Solution (a) To prove that the friend’s proposed function is a true PMF, we need
to show that it sums to one; that is,

∞∑

k=1

pK(k) =
∞∑

k=1

p(1 − p)k−1 = p

∞∑

k=1

(1 − p)k−1 = p

∞∑

m=0

(1 − p)m

= p

1 − (1 − p)
= 1

Thus, the proposed function is a true PMF.
(b) The probability that he has to take the test more than five times is

P[K > 5] =
∞∑

k=6

pK(k) =
∞∑

k=6

(1 − p)k−1p = (1 − p)5p

∞∑

k=6

(1 − p)k−6

Let m = k − 6. Since (1 − p) < 1, we obtain

P[K > 5] = (1 − p)5p

∞∑

k=6

(1 − p)k−6 = (1 − p)5p

∞∑

m=0

(1 − p)m

= p(1 − p)5

1 − (1 − p)
= (1 − p)5

This is precisely the probability that he did not make the grade in the first five
attempts.
(c) The expected number of times he has to take the test is given by

E[K] =
∞∑

k=1

kpK(k) =
∞∑

k=1

k(1 − p)k−1p = p

∞∑

k=1

k(1 − p)k−1

Let G =
∑∞

k=0(1 − p)k. Then G = 1/p and

dG

dp
= d

dp

∞∑

k=0

(1 − p)k =
∞∑

k=0

d

dp
(1 − p)k = −

∞∑

k=0

k(1 − p)k−1 = −
∞∑

k=1

k(1 − p)k−1

Thus,
E[K] = −p

dG

dp
= −p

d

dp

(
1

p

)
= −p

(
− 1

p2

)
= 1

p

�
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This shows that the smaller the value of p, the more times on the average that
he has to take the test. For example, when p = 1/5, he will take the test an average
of five times; and when p = 0.1 = 1/10, he will take the test an average 10 times.

3.5 Conditional Expectations

Sometimes we are interested in computing the mean of a subset of a population
that shares some property. For example, we may be interested in the mean grade
of those students who have passed an exam or the average age of professors who
have doctoral degrees.

The conditional expectation of X given that an event A has occurred is given
by

E[X | A] =





∑

i

xipX|A(xi | A) X discrete

∫ ∞

−∞
xfX|A(x | A)dx X continuous

where the conditional PMF pX|A and the conditional PDF fX|A(x | A) are defined
as follows:

pX|A(x | A) = pX(x)

P(A)

fX|A(x | A) = fX(x)

P(A)

P(A) is the probability that event A occurs.

Example 3.14 Let A be the event: A = {X ≤ a},−∞ < a < ∞. What is E[X|A]?
Solution We first obtain the conditional PDF as follows:

fX|A(x | X ≤ a) =





fX(x)

P[X ≤ a] = fX(x)

FX(a)
x ≤ a

0 x > a

Thus,

E[X | A] =
∫ a
−∞ xfX(x)dx

FX(a)

�
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Example 3.15 With reference to Example 3.14, assume that the random vari-
able X has the PDF

fX(x) =
{

1

20
40 ≤ x ≤ 60

0 otherwise

Find the conditional probability when a = 55.

Solution FX(55) =
∫ 55

40
fX(x)dx =

[
x

20

]55

40

= 3

4
. Thus, E[X | X ≤ 55] is given by

E[X | X ≤ 55] =

∫ 55

40
xfX(x)dx

FX(55)
=

∫ 55

40

x

20
dx

FX(55)

= 4

3

[
x2

40

]55

40

= 4

3

(
3025 − 1600

40

)
= 4

3
× 1425

40

= 47.5

This problem has an intuitive meaning. Recall that in Example 3.1 the ex-
pected value of a random variable that is uniformly distributed between a

and b is (a + b)/2. In this example, given that X ≤ 55, the expected value is
(40 + 55)/2 = 47.5. �

3.6 The Chebyshev Inequality

The Chebyshev inequality is a statement that places a bound on the probability
that an experimental value of a random variable X with finite mean E[X] = µX

and variance σ2
X will differ from the mean by more than a fixed number a. The

statement says that the bound is directly proportional to the variance and in-
versely proportional to a2. That is,

P[|X − E[X]| ≥ a] ≤
σ2

X

a2
a > 0

This is a loose bound that can be obtained as follows.

σ2
X =

∫ ∞

−∞
(x − µX)2fX(x)dx

=
∫ −(µX−a)

−∞
(x − µX)2fX(x)dx +

∫
µX−a

−(µX−a)

(x − µX)2fX(x)dx

+
∫ ∞

µX−a

(x − µX)2fx(x)dx
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If we omit the middle integral, we obtain

σ2
X ≥

∫ −(µX−a)

−∞
(x − µX)2fX(x)dx +

∫ ∞

µX−a

(x − µX)2fX(x)dx

=
∫

|x−µX |≥a

(x − µX)2fX(x)dx ≥
∫

|x−µX |≥a

a2fX(x)dx

= a2
∫

|x−µX |≥a

fX(x)dx = a2P[|X − µX | ≥ a]

which gives the Chebyshev inequality.

Example 3.16 A random variable X has a mean of 4 and a variance of 2. Use
the Chebyshev inequality to obtain an upper bound for P[|X − 4| ≥ 3].

Solution From the Chebyshev inequality,

P[|X − 4| ≥ 3] ≤ σ2
X/32 = 2/9

�

It must be emphasized that the Chebyshev inequality is only an approximation
that is sometimes uninformative. For example, suppose we are required to use the
data in Example 3.16 to obtain P[|X − 4| ≥ 1]. In this case we would get

P[|X − 4| ≥ 1] ≤ σ2
X/12 = 2

which provides no useful information.

3.7 The Markov Inequality

The Markov inequality applies to random variables that take only nonnegative
values. If X is a random variable that takes only nonnegative values, then for any
value a > 0,

P[X ≥ a] ≤ E[X]
a

This inequality can be proved as follows.
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E[X] =
∫ ∞

0
xfX(x)dx =

∫ a

0
xfX(x)dx +

∫ ∞

a

xfX(x)dx ≥
∫ ∞

a

xfX(x)dx

≥
∫ ∞

a

afX(x)dx

= a

∫ ∞

a

fX(x)dx = aP[X ≥ a]

Example 3.17 Consider a random variable X that takes values between 0 and
6. If the expected value of X is 3.5, use the Markov inequality to obtain an upper
bound for P[X ≥ 5].

Solution P[X ≥ 5] ≤ 3.5

5
= 0.7. �

Comments: Like the Chebyshev inequality, the Markov inequality can also be

uninformative sometimes. For example, in Example 3.17, P[X ≥ 2] ≤ 3.5

2
= 1.75,

which provides no useful information.

The Chebyshev inequality tends to be more powerful than the Markov in-
equality, which means that it provides a more accurate bound than the Markov
inequality, because in addition to the mean of a random variable, it also uses in-
formation on the variance of the random variable.

3.8 Chapter Summary

This chapter developed methods of evaluating the two most commonly used mea-
sures of central tendency of random variables, namely, the expectation (or mean
or average) and the variance. Two limit theorems associated with these measures
are also considered; these are the Chebyshev inequality and the Markov inequal-
ity. Several examples are solved to demonstrate how these measures can be com-
puted for both discrete random variables and continuous random variables.

3.9 Problems

Section 3.2: Expected Values

3.1 Find the mean and variance of the random variable whose triangular PDF
is given in Figure 3.4.
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Figure 3.4 PDF of X for Problem 3.1

3.2 An insurance company has 1000 policies of men of age 50. The company’s
estimate is that the probability that a man of age 50 dies within one year is
0.02. What is the expected number of claims that the company can expect
from the beneficiaries of these men within one year?

3.3 A class has 20 students whose heights are as follows: There are 4 students
with a height of 5.5 feet, there are 5 students with a height of 5.8 feet, there
are 3 students with a height of 6.0 feet, there are 5 students with a height
of 6.2 feet, and there are 3 students with a height of 6.5 feet. If a student is
randomly selected from the class, what is his expected height?

3.4 The time it takes a machine to perform an operation depends on the state it
enters when the start button is pushed. There are three known states: fast,
moderate, and slow. When it is in the fast state, it takes 2 minutes to perform
the operation. When it is in the moderate state, it takes 4 minutes to perform
the operation. When it is in the slow state, it takes 7 minutes to perform the
operation. Studies indicate that the machine goes into the fast state 60%
of the time when the start button is pushed; it goes into the moderate state
25% of the time; and it goes into the slow state 15% of the time. What is
the expected time it takes the machine to perform the operation?

3.5 A student has three methods of solving a problem. It takes him 1 hour to
solve the problem using method A. It takes him 45 minutes to solve the
problem using method B. It takes him 30 minutes to solve the problem using
method C. His friends discovered that the student uses method A 10% of
the time, method B 40% of the time, and method C 50% of the time. What
is the expected time it takes the student to solve a problem?

3.6 Consider the following game that involves tossing a fair die. If the outcome
of a toss is an even number, you win $2. If the outcome is 1 or 3, you lose
$1. If the outcome is 5, you lose $3. What are the expected winnings?
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3.7 Three vans were used to carry 45 students in the applied probability class
to participate in a state competition on random phenomena. The first van
carried 12 students, the second van carried 15 students, and the third van
carried 18 students. Upon their arriving at the competition, one student was
randomly selected from the entire group to receive a gift certificate for a
free lunch at a local restaurant. What is the expected number of students in
the van that carried the selected student?

3.8 Find the expected value of a discrete random variable N whose PMF is
given by

PN(n) = p(1 − p)n−1 n = 1,2, . . .

3.9 Find the expected value of a discrete random variable K whose PMF is
given by

pK(k) = 5ke−5

k! k = 0,1,2, . . .

3.10 Find the expected value of a continuous random variable X whose PDF is
given by

fX(x) = 2e−2x x ≥ 0

3.11 Assume that a random variable X takes on discrete values x1,x2, . . . ,xn

with probabilities p1,p2, . . . ,pn respectively. That is, P[X = xi] = pi, i =
1,2, . . . ,n. The “entropy” of X , which is also defined as the amount of in-
formation provided by an observation of X , is defined by

H(X) =
n∑

i=1

P[X = xi] log
1

P[X = xi]
=

n∑

i=1

pi log
1

pi

When the logarithm is taken from base 2, the unit of entropy is bits. Let X

represent the outcome of a single roll of a fair die. What is the entropy of X

in bits?

Section 3.4: Moments of Random Variables and the Variance

3.12 A random variable X assumes two values 4 and 7 with probabilities p and q,
respectively, where q = 1 − p. Determine the mean and standard deviation
of X .
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3.13 Find the mean and variance of the discrete random variable X with the
following PMF:

pX(x) =





2

5
x = 3

3

5
x = 6

3.14 Let N be a random variable with the following CDF:

FN(n) =





0 n < 1
0.2 1 ≤ n < 2
0.5 2 ≤ n < 3
0.8 3 ≤ n < 4
1 n ≥ 4

a. What is the PMF of N?

b. What is the expected value of N?

c. What is the variance of N?

3.15 Let X be the random variable that denotes the outcome of tossing a fair die
once.

a. What is the PMF of X?

b. What is the expected value of X?

c. What is the variance of X?

3.16 Suppose the random variable X has the PDF fX(x) = ax3, 0 < x < 1.

a. What is the value of a?

b. What is the expected value of X?

c. What is the variance of X?

d. What is the value of m so that P[X ≤ m] = 1/2?

3.17 A random variable X has the CDF

FX(x) =





0 x < 1

0.5(x − 1) 1 ≤ x < 3

1 x ≥ 3
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a. What is the PDF of X?

b. What is the expected value of X?

c. What is the variance of X?

3.18 A random variable X has the PDF fX(x) = x2/9, 0 ≤ x ≤ 3. Find the mean,
variance, and third moment of X .

3.19 Assume the random variable X has the PDF fX(x) = λe−λx,x ≥ 0. Find the
third moment of X , E

[
X3

]
.

3.20 Suppose X is a random variable with PDF fX(x), mean E[X], and vari-
ance σ2

X . If we define the random variable Y = X2, determine the mean
and variance of Y in terms of the mean, variance, and other higher mo-
ments of X .

3.21 The PDF of a random variable X is given by fX(x) = 4x
(
9 − x2

)
/81,

0 ≤ x ≤ 3. Find the mean, variance, and third moment of X .

Section 3.5: Conditional Expectations

3.22 If the PDF of a random variable X is given by fX(x) = 4x
(
9 − x2

)
/81,

0 ≤ x ≤ 3, find the conditional expected value of X , given that X ≤ 2.

3.23 The PDF of a continuous random variable X is given by

fX(x) = 2e−2x x ≥ 0

Find the conditional expected value of X , given that X ≤ 3.

3.24 The PDF of a random variable X is given by

fX(x) =
{

0.1 30 ≤ x ≤ 40
0 otherwise

Find the conditional expected value of X , given that X ≤ 35.

3.25 A fair die is rolled once. Let N denote the outcome of the experiment. Find
the expected value of N, given that the outcome is an even number.

3.26 The life of a lightbulb in months is denoted by a random variable X with
the PDF

fX(x) = 0.5e−0.5x x ≥ 0

Find the expected value of X , given that X ≤ 1.5.
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Sections 3.6 and 3.7: Chebyshev and Markov Inequalities

3.27 A random variable X has the PDF fX(x) = 2e−2x,x ≥ 0. Obtain an upper
bound for P[X ≥ 1] using the Markov inequality.

3.28 A random variable X has the PDF fX(x) = 2e−2x,x ≥ 0. Obtain an upper
bound for P[|X − E[X]| ≥ 1].

3.29 A random variable X has a mean of 4 and a variance of 2. Use the Cheby-
shev inequality to obtain an upper bound for P[|X − 4| ≥ 2].

3.30 A random variable X has the PDF

fX(x) =
{

1

3
1 < x < 4

0 otherwise

Use the Chebyshev inequality to estimate P[|X − 2.5| ≥ 2].
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4.1 Introduction

Chapters 2 and 3 deal with general properties of random variables. Random vari-
ables with special probability distributions are encountered in different fields of
science and engineering. The goal of this chapter is to describe some of these
distributions, including their expected values and variances. These include the
Bernoulli distribution, binomial distribution, geometric distribution, Pascal dis-
tribution, hypergeometric distribution, Poisson distribution, exponential distrib-
ution, Erlang distribution, uniform distribution, and normal distribution.

111
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4.2 The Bernoulli Trial and Bernoulli Distribution

A Bernoulli trial is an experiment that results in two outcomes: success and fail-

ure. One example of a Bernoulli trial is the coin-tossing experiment, which results
in heads or tails. In a Bernoulli trial we define the probability of success and prob-
ability of failure as follows:

P[success] = p 0 ≤ p ≤ 1

P[failure] = 1 − p

Let us associate the events of the Bernoulli trial with a random variable X such
that when the outcome of the trial is a success, we define X = 1, and when the
outcome is a failure, we define X = 0. The random variable X is called a Bernoulli
random variable, and its PMF is given by

pX(x) =
{

1 − p x = 0
p x = 1

An alternative way to define the PMF of X is as follows:

pX(x) = px(1 − p)1−x x = 0,1

The PMF of X can be plotted as shown in Figure 4.1.

The CDF is given by

FX(x) =
{

0 x < 0
1 − p 0 ≤ x < 1
1 x ≥ 1

The expected value of X is given by

E[X] = 0(1 − p) + 1(p) = p

Figure 4.1 PMF of the Bernoulli Random Variable
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Similarly, the second moment of X is given by

E
[
X2

]
= 02(1 − p) + 12(p) = p

Thus, the variance of X is given by

σ2
X = E

[
X2

]
− {E[X]}2 = p − p2 = p(1 − p)

4.3 Binomial Distribution

Suppose we conduct n independent Bernoulli trials, and we represent the number
of successes in those n trials by random variable X(n). Then X(n) is defined as a
binomial random variable with parameters (n,p). The PMF of a random variable
X(n) with parameters (n,p) is given by

pX(n)(x) =
(

n

x

)
px(1 − p)n−x x = 0,1,2, . . . ,n

The binomial coefficient,

(
n

x

)
, represents the number of ways of arranging x suc-

cesses and n − x failures. The shape of the PMF of X(n) depends on the parame-
ters n and p. However, in the case when p = 0.5, the graph is symmetrical about
the mean value, which we will shortly show is equal to np. Thus, for this class of
parameters, the PMF can be graphically represented as shown in Figure 4.2.

Note that

n∑

x=0

pX(n)(x) =
n∑

x=0

(
n

x

)
px(1 − p)n−x = {p + (1 − p)}n = 1n = 1

Figure 4.2 PMF of Binomial Random Variable with p = 0.5
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The mean of X(n) can be obtained as follows:

E[X(n)] =
n∑

x=0

xpX(n)(x) =
n∑

x=0

x

(
n

x

)
px(1 − p)n−x =

n∑

x=1

x
n!

(n − x)!x!px(1 − p)n−x

=
n∑

x=1

xn(n − 1)!
(n − x)!x(x − 1)!ppx−1(1 − p)n−x

= np

n∑

x=1

(n − 1)!
(n − x)!(x − 1)!px−1(1 − p)n−x

Let j = x − 1, which means that when x = 1, j = 0; and when x = n, j = n − 1. Thus,
we obtain

E[X(n)] = np

n−1∑

j=0

(n − 1)!
(n − 1 − j)!j!pj(1 − p)n−1−j

= np

n−1∑

j=0

(
n − 1

j

)
pj(1 − p)n−1−j = np{p + (1 − p)}n−1 = np(1)n−1

= np

To obtain the variance of X(n), we first obtain the second moment as follows:

E[X(n){X(n) − 1}] =
n∑

x=0

x(x − 1)pX(n)(x) =
n∑

x=0

x(x − 1)

(
n

x

)
px(1 − p)n−x

=
n∑

x=0

x(x − 1)n!
(n − x)!x! px(1 − p)n−x

=
n∑

x=2

x(x − 1)n(n − 1)(n − 2)!
(n − x)!x(x − 1)(x − 2)! p2px−2(1 − p)n−x

= n(n − 1)p2
n∑

x=2

(n − 2)!
(n − x)!(x − 2)!px−2(1 − p)n−x

Let j = x − 2, which means that when x = 2, j = 0; and when x = n, j = n − 2. Thus,
we obtain

E[X(n){X(n) − 1}] = n(n − 1)p2
n−2∑

j=0

(n − 2)!
(n − 2 − j)!j!pj(1 − p)n−2−j

= n(n − 1)p2
n−2∑

j=0

(
n − 2

j

)
pj(1 − p)n−2−j
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= n(n − 1)p2{p + (1 − p)}n−2

= n(n − 1)p2

But E[X(n){X(n) − 1}] = E[X2(n)] − E[X(n)]. Thus,

E
[
X2(n)

]
= E[X(n){X(n) − 1}] + E[X(n)] = n(n − 1)p2 + np

From this we obtain the variance of X(n) as follows:

σ2
X(n) = E

[
X2(n)

]
− {E[X(n)]}2 = n(n − 1)p2 + np − n2p2 = np − np2

= np(1 − p)

The CDF of X(n) is given by

FX(n)(x) = P[X(n) ≤ x] =
x∑

k=0

(
n

k

)
pk(1 − p)n−k x = 0,1, . . . ,n

Example 4.1 Four fair coins are tossed. If the outcomes are assumed to be in-
dependent, find the PMF of the number of heads obtained.

Solution Let X(n) denote the number of heads that appear in the four tosses.
Then X is a binomial random variable with n = 4 and p = 1/2. Thus, the PMF of
X(n) is

pX(4)(x) =
(

4

x

)(
1

2

)x(1

2

)4−x

=
(

4

x

)(
1

2

)4

pX(4)(0) =
(

4

0

)(
1

2

)4

= 1

16

pX(4)(1) =
(

4

1

)(
1

2

)4

= 4

16

pX(4)(2) =
(

4

2

)(
1

2

)4

= 6

16

pX(4)(3) =
(

4

3

)(
1

2

)4

= 4

16

pX(4)(4) =
(

4

4

)(
1

2

)4

= 1

16

�
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Example 4.2 One hundred balls are tossed into 50 boxes. What is the expected
number of balls in the tenth box?

Solution If we think of the balls tossed as Bernoulli trials in which a success
is defined as getting a ball in the tenth box, then p = 1/50. Let X denote the
number of balls that go into the tenth box. Then X is a binomial random variable
with parameters (100, 1/50). Thus,

E[X] = np = 100 × 1

50
= 2

�

Example 4.3 A coin is tossed 10 times. Given that there are 6 heads in the 10
tosses, what is the expected number of heads in the first 5 tosses?

Solution Since there are 6 heads and hence 4 tails in the 10 tosses, we can liken
the situation to a bag that contains 6 heads and 4 tails. Thus, the probability of a
head is 6/10 = 0.6. If Y denotes the number of heads in the first 5 tosses of the
coin, then Y is a binomial random variable with parameters (5,0.6) and E[Y] =
np = 5 × 0.6 = 3. �

4.4 Geometric Distribution

The geometric random variable is used to describe the number of Bernoulli trials
until the first success occurs. A modified version, which is used to describe the
number of Bernoulli trials until the first failure occurs, is discussed later.

Let X be a random variable that denotes the number of Bernoulli trials until
the first success. If the first success occurs on the xth trial, then we know that
the first x − 1 trials resulted in failures. Thus, the PMF of a geometric random
variable, X , is given by

pX(x) = p(1 − p)x−1 x = 1,2,3 . . .

The PMF of X is illustrated in Figure 4.3, which is an exponentially decreasing
function as x increases.

Example 4.4 A bag contains six blue balls and four red balls. Balls are randomly
drawn from the bag, one at a time, until a red ball is obtained. If we assume that
each drawn ball is replaced before the next one is drawn, what is the probability
that the experiment stops after exactly five balls have been drawn?
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Figure 4.3 PMF of the Geometric Random Variable

Solution Let X denote the number of balls needed to select a red ball. Since
balls are replaced after they are drawn from the bag, the probability that a par-
ticular ball is drawn from the bag in any trial is constant. Thus, each time a red
ball is drawn, we have a success with probability p = 4/(6 + 4) = 0.4, and when a
blue ball is drawn, we have a failure with probability 1 − p = 0.6. If exactly five
balls are drawn before the experiment is stopped, then we drew four blue balls
consecutively (or we had four consecutive failures), and the fifth ball is a red ball,
which is a success. Therefore, the desired probability is given by

P[X = 5] = pX(5) = p(1 − p)5−1 = p(1 − p)4 = (0.4)(0.6)4 = 0.05184

�

The expected value of X is given by

E[X] =
∞∑

x=1

xpX(x) =
∞∑

x=1

xp(1 − p)x−1 = p

∞∑

x=1

x(1 − p)x−1

But we know that

∞∑

x=0

(1 − p)x = 1

p

d

dp

∞∑

x=0

(1 − p)x = d

dp

(
1

p

)
= − 1

p2
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Also,

d

dp

∞∑

x=0

(1 − p)x =
∞∑

x=0

d

dp
(1 − p)x = −

∞∑

x=1

x(1 − p)x−1

Thus,
∞∑

x=1

x(1 − p)x−1 = 1

p2

Therefore,

E[X] = p

∞∑

x=1

x(1 − p)x−1 = p

p2
= 1

p

We can use the same technique to show that the second moment is given by

E
[
X2

]
=

∞∑

x=1

x2pX(x) = 2 − p

p2

Thus, the variance is given by

σ2
X = E

[
X2

]
− (E[X])2 = 1 − p

p2

Example 4.5 Balls are tossed at random into 50 boxes. Find the expected num-
ber of tosses required to get the first ball in the fourth box.

Solution Let Y denote the number of tosses until the first ball goes into the
fourth box. Then Y has a geometric distribution with p = 1/50. The expected
value of Y is

E[Y] = 1

p
= 50

�

The probability that the number of trials until the first failure is greater than n is
given by

P[X > n] =
∞∑

x=n+1

p(1 − p)x−1

= p

∞∑

x=n+1

(1 − p)x−1 = (1 − p)np

∞∑

x=n+1

(1 − p)x−n−1
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= (1 − p)np

∞∑

x=0

(1 − p)x = (1 − p)np

p

= (1 − p)n

Example 4.6 The probability that a missile hits a target is p. If missiles are fired
independently at a target until it is hit, what is the probability that it takes more
than three missiles to hit the target?

Solution Since p is the probability of success, the problem merely states that
the number of attempts before a success is greater than three. That is, there have
so far been three consecutive failures. Since these attempts are independent, the
required answer is (1 − p)3. �

We use the above result to compute the CDF of X as follows:

FX(x) = P[X ≤ x] =
x∑

k=1

p(1 − p)k−1 = 1 − P[X > x] = 1 − (1 − p)x

4.4.1 Modified Geometric Distribution

As stated earlier, the geometric random variable can also be used to describe
the number of trials until the first failure in a series of Bernoulli trials. If we
denote this random variable by Y , then Y is defined to be a modified geometric
distribution, and its PMF is given by

pY(y) = (1 − p)py−1 y = 1,2,3, . . .

By interchanging p and 1 − p in the results for the “traditional” geometric distri-
bution, we obtain the results for the expected value and variance of Y as follows:

E[Y] = 1

1 − p

σ2
Y = p

(1 − p)2

Finally, the CDF of Y is given by

FY(y) = P[Y ≤ y] =
y∑

k=1

(1 − p)pk−1 = 1 − P[X > y] = 1 − py
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Example 4.7 A couple is planning to have children in a community where the
probability of having a boy is p.

(a) If they keep trying until they have a girl and then stop, what is the expected
number of children that they will have?

(b) Suppose they plan to have a minimum of four children. However, if the first
four are all boys, they will continue until they have a girl and then stop. If
there is at least one girl among the first four children, they will stop at four.
What is the expected number of children that they will have?

Solution The births are Bernoulli trials, where the probability of success is 1−p,
the probability of having a girl.

(a) Thus, the number of trials until the couple has a girl has the modified geo-
metric distribution with a mean of 1/(1 − p).

(b) The number of children Y that the couple will have depends on whether the
first four are all boys or not. If the first four are all boys, the expected number
of attempts until they have a girl is 1/(1 − p). Since they already have four
children, the expected number of children, given the first four are all boys,
is 4 + 1/(1 − p). If at least one of the first four is a girl, then the expected
number of children is four. Since the probability that the first four are all
boys is p4, the expected number of children that the couple will have is

E[Y] = p4

{
4 + 1

1 − p

}
+

(
1 − p4

)
4 = 4 + p4

1 − p

�

4.4.2 “Forgetfulness” Property of the Geometric Distribution

Let X be a random variable that denotes the number of Bernoulli trials until the
first success. Suppose we have observed a fixed number n of these trials, and they
are all failures. We would like to know the number K of additional trials until the
first success. To do this, we know that the problem tells us that K = X − n. Thus,
we are required to compute the conditional probability mass function of K, given
that X > n. We proceed as follows:

pK|X>n(k|X > n) = P[K = k|X > n] = P[X − n = k|X > n]
= P[X = n + k|X > n]
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= P[(X = n + k) ∩ (X > n)]
P[X > n]

= P[X = n + k]
P[X > n]

= p(1 − p)n+k−1

(1 − p)n

= p(1 − p)k−1

= pX(k) k = 1,2, . . .

where the fourth equality follows from the fact that the event {(X = n + k) ∩
(X > n)} is equal to the event {X = n + k} and the fifth equality follows from our

earlier result that P[X > n] = (1 − p)n.

The above result shows that the conditional probability that the number of

trials remaining until the first success, given that no success occurred in the first

n trials, has the same PMF as X had originally. This property is called the forget-

fulness or memorylessness property of the geometric distribution. It means that

the distribution “forgets” the past by not remembering how long the sequence

has lasted if no success has already occurred. Thus, each time we want to know

the number of trials until the first success, given that the first success has not yet

occurred, the process “starts” from the beginning.

Example 4.8 Tony is tossing balls randomly into 50 boxes, and his goal is to

stop when he gets the first ball into the eighth box. Given that he has tossed 20

balls without getting a ball into the eighth box, what is the expected number of

additional tosses he needs to get a ball into the eighth box?

Solution With respect to the eighth box, each toss is a Bernoulli trial with proba-

bility of success p = 1/50. Let X be the random variable that denotes the number

of tosses required to get a ball into the eighth box. Then X has a geometric distri-

bution. Let K denote the number of additional tosses required to get a ball into

the eighth box, given that no ball is in the box after 20 tosses. Then, because of the

forgetfulness property of the geometric distribution, K has the same distribution

as X . Thus

E[K] = 1

p
= 50

�
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4.5 Pascal (or Negative Binomial) Distribution

The Pascal random variable is an extension of the geometric random variable.
It describes the number of trials until the kth success, which is why it is some-
times called the “kth-order interarrival time for a Bernoulli process.” The Pascal
distribution is also called the negative binomial distribution.

Let the kth success in a Bernoulli sequence of trials occur at the nth trial.
This means that k − 1 successes occurred during the past n − 1 trials. From our
knowledge of the binomial distribution, we know that the probability of this event
is

pX(n−1)(k − 1) =
(

n − 1

k − 1

)
pk−1(1 − p)n−k

where X(n − 1) is the binomial random variable with parameters (n − 1,p). The
next trial independently results in a success with probability p. Thus, if we define
the Bernoulli random variable as X1 whose PMF we defined earlier as pX1

(x) =
px(1 − p)1−x, where x = 0 or 1, the PMF of the kth-order Pascal random variable,
Xk, is given by

pXk
(n) = P[{X(n − 1) = k − 1} ∩ {X1 = 1}] = P[{X(n − 1) = k − 1}]P[{X1 = 1}]

= pX(n−1)(k − 1)pX1
(1)

=
(

n − 1

k − 1

)
pk−1(1 − p)n−kp

=
(

n − 1

k − 1

)
pk(1 − p)n−k k = 1,2, . . . ; n = k,k + 1, . . .

Since pXk
(n) is a true PMF, we must have that

∞∑

n=k

pXk
(n) =

∞∑

n=k

(
n − 1

k − 1

)
pk(1 − p)n−k = 1

The expected value of Xk is obtained as follows:

E[Xk] =
∞∑

n=k

npXk
(n) =

∞∑

n=k

n

(
n − 1

k − 1

)
pk(1 − p)n−k = pk

∞∑

n=k

n

(
n − 1

k − 1

)
(1 − p)n−k

Define q = 1 − p. Then we obtain

E[Xk] = (1 − q)k
∞∑

n=k

n

(
n − 1

k − 1

)
qn−k
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Consider the following Maclaurin’s series expansion of the negative binomial:

g(q) = (1 − q)−k =
∞∑

m=0

(
k + m − 1

k − 1

)
qm =

∞∑

n=k

(
n − 1

k − 1

)
qn−k

Taking the derivative of g(q), we obtain

d

dq
g(q) = k

(1 − q)k+1
=

∞∑

n=k

(n − k)

(
n − 1

k − 1

)
qn−k−1

= 1

q

{ ∞∑

n=k

n

(
n − 1

k − 1

)
qn−k − k

∞∑

n=k

n

(
n − 1

k − 1

)
qn−k

}

Thus, combining this result with the result for E[Xk], we obtain

k

(1 − q)k+1
= 1

q

{
E[Xk] − k

(1 − q)k

}

which gives

E[Xk] = k

1 − q
= k

p

The second moment of Xk is given by

E
[
X2

k

]
=

∞∑

n=k

n2pXk
(n) =

∞∑

n=k

n2

(
n − 1

k − 1

)
pk(1 − p)n−k

= pk
∞∑

n=k

n2

(
n − 1

k − 1

)
(1 − p)n−k

The second derivative of g(q) is given by

d2

dq2
g(q) = k(k + 1)

(1 − q)k+2
=

∞∑

n=k

(n − k)(n − k − 1)

(
n − 1

k − 1

)
qn−k−2

= 1

q2

∞∑

n=k

(n2 − 2nk − n + k2 + k)

(
n − 1

k − 1

)
qn−k

= 1

q2

{
E
[
X2

k

]
− (2k + 1)E[Xk] + k(k + 1)

(1 − q)k

}

This gives

E
[
X2

k

]
= k2 + kq

(1 − q)2
= k2 + k(1 − p)

p2
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Thus, the variance of Xk is given by

σ2
Xk

= E
[
X2

k

]
− (E[Xk])2 = k(1 − p)

p2

The CDF of Xk is given by

FXk
(x) = P[Xk ≤ x] =

x∑

n=k

(
n − 1

k − 1

)
pk(1 − p)n−k

Example 4.9 Consider independent Bernoulli trials in which each trial results
in a success with probability p. What is the probability that there are m successes
before r failures?

Solution This is an example of the Pascal distribution. Since there are m suc-
cesses and r failures, the total number of trials is m+ r. In order for m successes to
occur before r failures, the mth success must occur no later than the (m + r − 1)th
trial. This is so because if the mth success occurs before or at the (m + r − 1)th
trial, it would have occurred before the rth failure. Thus, as long as the mth suc-
cess occurs any time from the mth trial up to the (m+ r−1)th trial, the prescribed
condition would have been met. Therefore, the desired probability is given by

γ =
m+r−1∑

n=m

(
n − 1

m − 1

)
pm(1 − p)n−m

�

Example 4.10 A student’s summer job is to call the university alumni for sup-
port for the university’s scholarship fund. Studies indicate that the probability
that each of the student’s calls is answered is 1/3. What is the probability that the
second call to be answered on one particular day is the student’s sixth call?

Solution This is an example of the second-order Pascal distribution with p =
1/3. Thus, the desired probability is given by

pX2
(6) =

(
6 − 1
2 − 1

)(
1

3

)2(2

3

)4

=
(

5
1

)(
1

9

)(
16

81

)

= 80

729
= 0.1097

�
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Example 4.11 The members of a Girl Scout troop are selling cookies from
house to house in a suburban town. The probability that they sell a set of cookies
(that is, one or more packs of cookies) at any house they visit is 0.4.

a. If they visited eight houses in one evening, what is the probability that they
sold cookies to exactly five of these houses?

b. If they visited eight houses in one evening, what is the expected number of
sets of cookies they sold?

c. What is the probability that they sold their third set of cookies in the sixth
house they visited?

Solution Let X denote the number of sets of cookies that the troop sold.

(a) If they visited eight houses, then X is a binomial random variable X(8) with
the probability of success p = 0.4. Thus, the PMF of X is

pX(8)(x) =
(

8

x

)
(0.4)x(0.6)8−x x = 0,1,2, . . . ,8

Therefore, the probability that they sold exactly five sets of cookies is the
probability of five successes in the eight attempts, which is

pX(8)(5) =
(

8

5

)
(0.4)5(0.6)3 = 8!

5!3! (0.4)5(0.6)3 = 0.1239

(b) The expected number of sets of cookies they sold after visiting eight houses
is

E[X(8)] = 8p = 8 × 0.4 = 3.2

(c) Let Xk denote the number of houses up to and including the house where
they sold their third set of cookies. Then Xk is the third-order Pascal random
variable X3, and

P[X3 = 6] = pX3
(6) =

(
6 − 1

3 − 1

)
(0.4)3(0.6)3 =

(
5

2

)
(0.24)3

= 5!
3!2! (0.24)3 = 0.1382

�
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4.6 Hypergeometric Distribution

Suppose we have N objects of which N1 < N are of type A and N − N1 are of
type B. If we draw a random sample of n objects from this population and note
the configuration of the sample and replace the objects after each trial (that is, we
sample with replacement), the number of type A objects included in the sample
is binomially distributed with parameters (n,p), where p = N1/N. This follows
from the fact that the probability of selecting an item from a particular group
remains constant from trial to trial. That is, the outcomes are independent and
the PMF of X , which is the random variable that denotes the number of type A
objects in the sample of size n, is given by

pX(x) =
(

n

x

)(
N1

N

)x(N − N1

N

)n−x

x = 0,1,2, . . . ,n

However, if we do not replace the objects after drawing each sample, the out-
comes are no longer independent and the binomial distribution no longer ap-
plies. Suppose the sample of size n is drawn without replacement. Let Kn be the
random variable that denotes the number of type A objects in the sample. The
random variable Kn is said to have a hypergeometric PMF that depends on n, N1,
and N, and this PMF is defined as follows:

pKn(k) =

(
N1

k

)(
N − N1

n − k

)

(
N

n

) k = 0,1,2, . . . ,min(n,N1)

This PMF is obtained from the fundamental counting rule defined in Chapter 1.
Specifically, since there are two types of objects, we can select from each type
independently once the number of objects to be selected from each type has been
specified. Thus, given that we need k objects from type A and hence n − k objects
from type B, the selection process in each group becomes independent of that of
the other group. With this in mind, the k objects of type A in the sample can be

selected in

(
N1

k

)
ways. Similarly, the n − k objects of type B in the sample can

be selected in

(
N − N1

n − k

)
ways. The total number of possible samples of size n

that are of the specified configuration is the product of the two numbers. There

are

(
N

n

)
possible samples of size n that can be drawn from the population. If the

sample is drawn randomly, then each sample has the same probability of being
selected, which accounts for the above PMF.

The mean and variance of Kn are given by

E[Kn] = nN1

N
= np
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σ2
Kn

= nN1(N − N1)(N − n)

N2(N − 1)
= np(1 − p)(N − n)

N − 1

where p = N1/N. Note that in the limit as N → ∞ (or N becomes large compared
to n), these equations become identical to those of the binomial distribution; that
is,

E[Kn] = np

σ2
Kn

= np(1 − p)

The hypergeometric distribution is widely used in quality control, as the following
examples illustrate.

Example 4.12 Suppose there are M1 defective items in a box that contains M

items. What is the probability that a random sample of n items from the box
contains k defective items?

Solution Since the sample was selected randomly, all samples of size n are
equally likely. Therefore, the total number of possible samples with unrestricted
composition is

C(M,n) =
(

M

n

)
.

Since there are M1 defective items in the box, the total number of ways of se-

lecting k out of the M1 items at a time is C(M1,k) =
(

M1

k

)
. Similarly, since there

are M − M1 nondefective items in the box, the total number of ways of select-

ing n − k of them at a time is C(M − M1,n − k) =
(

M − M1

n − k

)
. Since these two

selections can be made independently, the total number of ways of choosing k

defective items and n − k nondefective items is C(M1,k) × C(M − M1,n − k).
Therefore, the probability that the random sample contains k defective and n − k

nondefective items is given by the ratio of C(M1,k) × C(M − M1,n − k) to the
total number of ways of selecting samples of size n, C(M,n). Thus, we obtain the
result as

C(M1,k)C(M − M1,n − k)

C(M,n)
=

(
M1

k

)(
M − M1

n − k

)

(
M

n

)

�

Example 4.13 A container has 100 items, 5 of which the worker who packed the
container knows are defective. A merchant wants to buy the container without
knowing the above information. However, he will randomly pick 20 items from
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the container and will accept the container as good if there is at most one bad item
in the selected sample. What is the probability that the merchant will declare the
container to be good?

Solution Let A be the event that there is no defective item in the selected sam-
ple and B be the event that there is exactly one defective item in the selected
sample. Let Q denote the probability that the merchant declares the container
to be good. Then event A consists of two subevents: zero defective items and
20 nondefective items. Similarly, event B consists of two subevents: 1 defective
item and 19 nondefective items. Since events A and B are mutually exclusive, we
obtain the following results:

P[A] = C(5,0)C(95,20)

C(100,20)

P[B] = C(5,1)C(95,19)

C(100,20)

Q = P[A ∪ B] = P[A] + P[B]

= 176 · 79 · 78

168 · 90 · 97
= 0.7394

�

Example 4.14 We repeat Example 4.13 with a different sample size. Instead of
testing the quality of the container with a sample size of 20, the merchant decides
to test it with a sample size of 50. As before, he will accept the container as good
if there is at most one bad item in the selected sample. What is the probability
that the merchant will declare the container to be good?

Solution Let A, B, and Q be as previously defined in Example 4.13. Then event
A consists of two subevents: zero defective items and 50 nondefective items. Sim-
ilarly, event B consists of two subevents: 1 defective item and 49 nondefective
items. Since events A and B are mutually exclusive, we obtain the following re-
sults:

P[A] = C(5,0)C(95,50)

C(100,50)

P[B] = C(5,1)C(95,49)

C(100,50)

Q = P[A ∪ B] = P[A] + P[B]

= 37 · 47

99 · 97
= 0.1811

�
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The above examples illustrate the impact of the sample size on decisions that
can be made. With a bigger sample size, the merchant is more likely to make
a better decision because there is a greater probability that more of the defec-
tive items will be included in the sample. For example, if the decision was based
on the result of a random sample of 10 items, we would get Q = 0.9231. Simi-
larly, if it was based on the result of a random sample of 40 items, we would get
Q = 0.3316, while with a sample of 60 items, we would get Q = 0.0816. Note that
while a bigger sample size has the tendency to reveal the fact that the container
has a few bad items, it also involves more testing. Thus, to get better informa-
tion, we must be prepared to do more testing, which is a basic rule in quality
control.

Example 4.15 A certain library has a collection of 10 books on probability the-
ory. Six of these books were written by American authors and four were written
by foreign authors.

a. If I randomly select one of these books, what is the probability that it was
written by an American author?

b. If I select five of these books at random, what is the probability that two of
them were written by American authors and three of them were written by
foreign authors?

Solution (a) There are

(
6

1

)
= 6 ways to choose a book written by an American

author and

(
10

1

)
= 10 ways to choose a book at random. Therefore, the proba-

bility that a book chosen at random was written by an American author is p =
6/10 = 0.6.

(b) This is an example of the hypergeometric distribution. Thus, the probabil-
ity that of the five books selected at random, two of them were written by
American authors and three of them were written by foreign authors is given
by

p =

(
6

2

)(
4

3

)

(
10

5

) = 15 × 4

252
= 0.2381

�



130 Chapter 4 Special Probability Distributions

4.7 Poisson Distribution

A discrete random variable K is called a Poisson random variable with parame-
ter λ, where λ > 0, if its PMF is given by

pK(k) = λk

k! e−λ k = 0,1,2, . . .

The CDF of K is given by

FK(k) = P[K ≤ k] =
k∑

r=0

λr

r! e−λ

The expected value of K is given by

E[K] =
∞∑

k=0

kpK(k) =
∞∑

k=0

kλk

k! e−λ

=
∞∑

k=1

λk

(k − 1)!e
−λ = λe−λ

∞∑

k=1

λk−1

(k − 1)! = λe−λ

∞∑

k=0

λk

k!

= λe−λeλ

= λ

The second moment of K is given by

E
[
K2

]
=

∞∑

k=0

k2pK(k) =
∞∑

k=0

k2λk

k! e−λ

= λe−λ

∞∑

k=1

kλk−1

(k − 1)!

But

∞∑

k=1

λk

(k − 1)! = λ

∞∑

k=1

λk−1

(k − 1)! = λeλ

d

dλ

∞∑

k=1

λk

(k − 1)! =
∞∑

k=1

d

dλ

[
λk

(k − 1)!

]
=

∞∑

k=1

kλk−1

(k − 1)! = d

dλ

(
λeλ

)
= eλ(1 + λ)

Thus, the second moment is given by
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E
[
K2

]
= λe−λ

∞∑

k=1

kλk−1

(k − 1)! = λe−λeλ(1 + λ)

= λ2 + λ

The variance of K is given by

σ2
K = E

[
K2

]
− (E[K])2

= λ2 + λ − λ2 = λ

The Poisson distribution has many applications in science and engineering. For
example, the number of telephone calls arriving at a switchboard during various
intervals of time and the number of customers arriving at a bank during various
intervals of time are usually modeled by Poisson random variables.

Example 4.16 Messages arrive at a switchboard in a Poisson manner at an aver-
age rate of six per hour. Find the probability for each of the following events:

(a) Exactly two messages arrive within one hour.

(b) No message arrives within one hour.

(c) At least three messages arrive within one hour.

Solution Let K be the random variable that denotes the number of messages
arriving at the switchboard within a one-hour interval. The PMF of K is given by

pK(k) =
(

6k

k!

)
e−6 k = 0,1,2, . . .

a. The probability that exactly two messages arrive within one hour is

pK(2) =
(

62

2!

)
e−6 = 18e−6 = 0.0446

b. The probability that no message arrives within one hour is

pK(0) =
(

60

0!

)
e−6 = e−6 = 0.0024
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c. The probability that at least three messages arrive within one hour is

P[K ≥ 3] = 1 − P[K < 3]
= 1 − {pK(0) + pK(1) + pK(2)}

= 1 − e−6

{
60

0! + 61

1! + 62

2!

}
= 1 − e−6{1 + 6 + 18} = 1 − 25e−6

= 0.9380

�

4.7.1 Poisson Approximation to the Binomial Distribution

Let X be a binomial random variable with parameter (n,p) and PMF

pX(x) =
(

n

x

)
px(1 − p)n−x x = 0,1,2, . . . ,n

Since the PMF involves evaluating n!, which can become very large even for mod-
erate values of n, we would like to develop an approximate method for the case
of large values of n. We know that E[X] = np. Therefore, let λ = np, which means
that p = λ/n. Substituting for p in the PMF we obtain

pX(x) =
(

n

x

)(
λ

n

)x(
1 − λ

n

)n−x

= n(n − 1)(n − 2)(n − 3) . . . (n − x + 1)

x!nx
λx

(
1 − λ

n

)n−x

=
nx

(
1 − 1

n

)(
1 − 2

n

)(
1 − 3

n

)
. . .

(
1 − x − 1

n

)

x!nx
λx

(
1 − λ

n

)n(
1 − λ

n

)−x

=

(
1 − 1

n

)(
1 − 2

n

)(
1 − 3

n

)
. . .

(
1 − x − 1

n

)

x! λx

(
1 − λ

n

)n(
1 − λ

n

)−x

We know that in the limit as n becomes very large

lim
n→∞

(
1 − a

n

)
= 1 a < n
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Also, since by definition limn→∞

(
1 + a

n

)n

= ea, we conclude that in the limit as

n → ∞, if λ remains fixed, which means that p → 0, then we obtain

lim
n→∞

pX(x) = λx

x! e−λ

which is the Poisson distribution.

4.8 Exponential Distribution

A continuous random variable X is defined to be an exponential random variable
(or X has an exponential distribution) if for some parameter λ > 0 its PDF is
given by

fX(x) =
{

λe−λx x ≥ 0
0 x < 0

The CDF of X is given by

FX(x) = P[X ≤ x] =
∫ x

0
fX(y)dy =

∫ x

0
λe−λydy

=
[
−e−λy

]x

0
= 1 − e−λx

The expected value of X is given by

E[X] =
∫ ∞

0
xfX(x)dx =

∫ ∞

0
xλe−λxdx

Let u = x and dv = λe−λxdx, which means that du = dx and v = −e−λx. Thus,
integrating by parts we obtain

E[X] =
∫ ∞

0
xλe−λxdx

=
[
−xe−λx

]∞
0

+
∫ ∞

0
e−λxdx = 0 −

[
1

λ
e−λx

]∞

0

= 1

λ

By repeated use of integration by parts, it can be shown that the nth moment of
X is given by

E
[
Xn

]
=

∫ ∞

0
xnλe−λxdx = n!

λn
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Thus, the variance of X is given by

σ2
X = E

[
X2

]
− (E[X])2 = 2

λ2
− 1

λ2
= 1

λ2

Example 4.17 Assume that the length of phone calls made at a particular tele-
phone booth is exponentially distributed with a mean of 3 minutes. If you arrive
at the telephone booth just as Chris was about to make a call, find the following:

1. The probability that you will wait more than 5 minutes before Chris is done
with the call.

2. The probability that Chris’ call will last between 2 minutes and 6 minutes.

Solution Let X be a random variable that denotes the length of calls made at
the telephone booth. Since the mean length of calls is 1/λ = 3, we have that the
PDF of X is given by

fX(x) = λe−λx = 1

3
e−x/3

1. The probability that you will wait more than 5 minutes is the probability that
X is greater than 5 minutes, which is given by

P[X > 5] =
∫ ∞

5

1

3
e−x/3dx =

[
−e−x/3

]∞
5

= e−5/3 = 0.1889

2. The probability that the call lasts between 2 and 6 minutes is given by

P[2 ≤ X ≤ 6] =
∫ 6

2

1

3
e−x/3dx =

[
−e−x/3

]6
2
= FX(6) − FX(2)

= e−2/3 − e−2 = 0.3781

�

4.8.1 “Forgetfulness” Property of the Exponential Distribution

The exponential random variable is used extensively in reliability engineering to
model the lifetimes of systems. Suppose the life X of an equipment is exponen-
tially distributed with a mean of 1/λ. Assume that the equipment has not failed
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by time t. We are interested in the conditional PDF of X , given that the equip-
ment has not failed by time t. We start by finding the probability that X ≤ t + s,
given that X > t for some nonnegative additional time s. Thus,

P[X ≤ s + t|X > t] = P[(X ≤ s + t) ∩ (X > t)]
P[X > t]

= P[t < X ≤ s + t]
P[X > t] = FX(s + t) − FX(t)

1 − FX(t)

=
[
1 − e−λ(s+t)

]
−

[
1 − eλt

]

e−λt
= e−λt − e−λ(s+t)

e−λt

= 1 − e−λs = FX(s) = P[X ≤ s]

This indicates that the process only remembers the present and not the past. If
we define x = s + t, then s = x − t, and the above result becomes

P[X ≤ x|X > t] = 1 − e−λ(x−t) = FX(X>t)(x|X > t)

fX|X>t(x|X > t) = d

dx
FX(X>t)(x|X > t)

= λe−λ(x−t)

Thus, the conditional PDF is a shifted version of the original PDF, as shown in
Figure 4.4. Similar to the geometric distribution, this is referred to as the forget-

fulness or memorylessness property of the exponential distribution. This means
that, given that the equipment has not failed by time t, the residual life of the
equipment has a PDF that is identical to that of the life of the equipment be-
fore t.

Figure 4.4 PDF of the Exponential Random Variable
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Example 4.18 Assume that in Example 4.17 Chris, who is using the phone at the
telephone booth, had already talked for 2 minutes before you arrived. According
to the forgetfulness property of the exponential distribution, the mean time until
Chris is done with the call is still 3 minutes. The random variable forgets the
length of time the call had lasted before you arrived. �

4.8.2 Relationship between the Exponential and Poisson Distributions

Let λ denote the mean (or average) number of Poisson arrivals per unit time,
say, per second. Then the average number of arrivals in t seconds is λt. If K de-
notes this Poisson random variable, the PMF of the number of arrivals during an
interval of t seconds is

pK(k) = (λt)k

k! e−λt k = 0,1,2, . . . ; t ≥ 0

The probability that there is no arrival in an interval of t seconds is pK(0) = e−λt.
Thus, the probability that there is at least one arrival in an interval of t seconds is
1 − e−λt. But for an exponential random variable Y with parameter λ, the proba-
bility that an event occurs no later than time t is given by

P[Y ≤ t] = FY(t) = 1 − e−λt

Thus, an exponential distribution Y with parameter λ describes the intervals be-
tween occurrence of events defined by a Poisson random variable K with mean λt.
If we define λ as the average number of Poisson arrivals per unit time, it becomes
very clear why the mean of Y is 1/λ time units. Thus, if intervals between events
in a given process can be modeled by an exponential random variable, then the
number of those events that occur during a specified time interval can be mod-
eled by a Poisson random variable. Similarly, if the number of events that occur
within a specified time interval can be modeled by a Poisson random variable,
then the interval between successive events can be modeled by an exponential
random variable.

4.9 Erlang Distribution

The Erlang distribution is a generalization of the exponential distribution. While
the exponential random variable describes the time between adjacent events, the
Erlang random variable describes the time interval between any event and the
kth following event.
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Figure 4.5 PDF of the Erlang-2 Random Variable

A random variable Xk is referred to as a kth-order Erlang (or Erlang-k) ran-
dom variable with parameter λ if its PDF is given by

fXk
(x) =





λkxk−1e−λx

(k − 1)! k = 1,2,3, . . . ; x ≥ 0

0 x < 0

The CDF of Xk is obtained through repeated application of integration by parts
as

FXk
(x) = P[Xk ≤ x] =

∫ x

0
fXk

(t)dt = 1 −
k−1∑

j=0

(λx)je−λx

j!

A plot of the PDF of Xk for k = 2 is shown in Figure 4.5.

The expected value of Xk is given by

E[Xk] =
∫ ∞

0
xfXk

(x)dx =
∫ ∞

0
x
λkxk−1e−λx

(k − 1)! dx

= 1

(k − 1)!

∫ ∞

0
(λx)ke−λxdx

Let u = λx, which means that dx = du/λ. Thus, the above result becomes

E[Xk] = 1

(k − 1)!

∫ ∞

0
uke−u du

λ
= 1

λ(k − 1)!

∫ ∞

0
uke−udu

The integral
∫ ∞

0 uke−udu is called the gamma function of k + 1, Ŵ(k + 1), which
satisfies the condition

Ŵ(k + 1) =
∫ ∞

0
uke−udu = kŴ(k)

When k is an integer, the gamma function is given by

Ŵ(k + 1) = k! k = 0,1, . . .
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Thus, the expected value of Xk becomes

E[Xk] = 1

λ(k − 1)!

∫ ∞

0
uke−udu = Ŵ(k + 1)

λ(k − 1)! = k!
λ(k − 1)! = k

λ

Another way to compute the expected value of Xk is by noting that Xk is a non-
negative random variable. Therefore,

E[Xk] =
∫ ∞

0
[1 − FXk

(x)]dx =
∫ ∞

0

(
k−1∑

j=0

(λx)je−λx

j!

)
dx =

k−1∑

j=0

1

j!

∫ ∞

0
(λx)je−λxdx

Let u = λx, which implies that dx = du/λ. Thus, we obtain

E[Xk] =
k−1∑

j=0

1

j!

∫ ∞

0
(λx)je−λxdx =

k−1∑

j=0

1

j!

(
1

λ

)∫ ∞

0
uje−udu

=
k−1∑

j=0

1

j!

(
1

λ

)
j! =

k−1∑

j=0

(
1

λ

)
= k

λ

Note that this is k times the expected value of the underlying exponential distri-
bution. Similarly, the second moment of Xk is given by

E
[
X2

k

]
=

∫ ∞

0
x2fXk

(x)dx =
∫ ∞

0
x2 λkxk−1e−λx

(k − 1)! dx

= 1

(k − 1)!

∫ ∞

0

(λx)k+1e−λx

λ
dx

If we let u = λx as we did earlier, we obtain

E
[
X2

k

]
=

∫ ∞

0
x2fXk

(x)dx =
∫ ∞

0
x2 λkxk−1e−λx

(k − 1)! dx

= 1

λ2(k − 1)!

∫ ∞

0
uk+1e−udu = Ŵ(k + 2)

λ2(k − 1)!
= (k + 1)!

λ2(k − 1)!

= k(k + 1)

λ2

Therefore, the variance of Xk becomes

σ2
Xk

= E
[
X2

k

]
− (E[Xk])2 = k(k + 1)

λ2
− k2

λ2
= k

λ2
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Example 4.19 On a day a particular professor has office hours, the times be-
tween student visits to his office have been found to be exponentially distributed
with a mean of 10 minutes. What is the probability that the time between the ar-
rival of the second student and the arrival of the sixth student is greater than 20
minutes?

Solution Relative to the second student, the sixth student is the fourth arrival.
Thus, the random variable that describes the time between the two arrivals is a
4th-order Erlang (or Erlang-4) random variable. That is, we want the probability
that X4 > 20 minutes. Since the CDF of X4 is

FX4
(x) = P[X4 ≤ x] = 1 −

3∑

j=0

(λx)je−λx

j!

and λ = 1/10, we have that

P[X4 > 20] = 1 − P[X4 ≤ 20] =
3∑

j=0

(20λ)je−20λ

j! =
3∑

j=0

2je−2

j!

= e−2 + 2e−2 + 2e−2 + 4

3
e−2 = e−2(1 + 2 + 2 + 4/3) = 19

3
e−2

= 0.8571

�

Note that the result is essentially the probability that less than four students
arrive during an interval of 20 minutes.

Example 4.20 The lengths of phone calls at a certain phone booth are exponen-
tially distributed with a mean of 4 minutes. I arrived at the booth while Tom was
using the phone, and I was told that he had already spent 2 minutes on the call
before I arrived.

1. What is the average time I will wait until he ends his call?

2. What is the probability that Tom’s call will last between 3 minutes and 6
minutes after my arrival?

3. Assume that I am the first in line at the booth to use the phone after Tom, and
by the time he finished his call more than 5 people were waiting behind me
to use the phone. What is the probability that the time between the instant I
start using the phone and the time the fourth person behind me starts her call
is greater than 15 minutes?
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Solution Let X denote the lengths of calls made at the phone booth. Then the
PDF of X is

fX(x) =
{

λe−λx x ≥ 0
0 otherwise

where λ = 1/4.

(a) Because of the forgetfulness property of the exponential distribution, the
average time I wait until Tom’s call ends is the same as the mean length of a
call, which is 4 minutes.

(b) Due to the forgetfulness property of the exponential distribution, Tom’s call
“started from scratch” when I arrived. Therefore, the probability that it lasts
between 3 minutes and 6 minutes after my arrival is the probability that an
arbitrary call lasts between 3 minutes and 6 minutes, which is

P[3 < X < 6] =
∫ 6

3
fX(x)dx =

∫ 6

3
λe−λxdx

=
[
−e−λx

]6
3
= e−3λ − e−6λ = e−3/4 − e−6/4 = 0.2492

(c) Let Yk denote the time that elapses from the instant I commence my call
until the end of the call initiated by the third person behind me, which is
the instant the fourth person behind me can initiate her call. Then Yk is the
4th-order Erlang random variable Y4. Thus, the PDF of Y4 is

fY4
(y) =





λ4y3e−λy

3! y ≥ 0

0 otherwise

where λ = 1/4. The CDF of Y4 is given by

FY4
(y) = P[Y4 ≤ y] = 1 −

3∑

k=0

(λy)k

k! e−λy

Therefore,

P[Y4 > 15] = 1 − FY4
(15) =

3∑

k=0

(15λ)k

k! e−15λ

= e−15λ

[
1 + 15λ + (15λ)2

2
+ (15λ)3

6

]

= e−15/4[1 + 3.75 + 7.03125 + 8.78906] = 0.4838

�
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4.10 Uniform Distribution

A continuous random variable X is said to have a uniform distribution over the
interval [a,b] if its PDF is given by

fX(x) =





1

b − a
a ≤ x ≤ b

0 otherwise

It is used to model events that are equally likely to occur at any time within a
given time interval. The plot of the PDF is shown in Figure 4.6.

The CDF of X is given by

FX(x) = P[X ≤ x] =





0 x < a
x − a

b − a
a ≤ x ≤ b

1 x ≥ b

The expected value of X is given by

E[X] =
∫ ∞

−∞
xfX(x)dx =

∫ b

a

x

b − a
dx =

[
x2

2(b − a)

]b

a

= b2 − a2

2(b − a)
= (b − a)(b + a)

2(b − a)

= b + a

2

The second moment of X is given by

Figure 4.6 PDF of the Uniform Random Variable
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E[X2] =
∫ ∞

−∞
x2fX(x)dx =

∫ b

a

x2

b − a
dx =

[
x3

3(b − a)

]b

a

= b3 − a3

3(b − a)
= (b − a)(b2 + ab + a2)

3(b − a)

= b2 + ab + a2

3

Thus, the variance of X is given by

σ2
X = E

[
X2

]
− (E[X])2

= b2 + ab + a2

3
− b2 + 2ab + a2

4

= b2 − 2ab + a2

12

= (b − a)2

12

Example 4.21 The time that Joe, the teaching assistant, takes to grade a paper
is uniformly distributed between 5 minutes and 10 minutes. Find the mean and
variance of the time he takes to grade a paper.

Solution Let X be a random variable that denotes the time it takes Joe to grade
a paper. Since X is uniformly distributed, we find that the mean and variance are
as follows:

E[X] = 10 + 5

2
= 7.5

σ2
X = (10 − 5)2

12
= 25

12

�

4.10.1 The Discrete Uniform Distribution

A discrete random variable K is said to have a uniform distribution in the range
k = a,a + 1,a + 2, . . . ,a + N − 1 if it has the PMF

pK(k) =
{

1

N
k = a,a + 1, . . . ,a + N − 1

0 otherwise
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The mean of K is given by

E[K] =
a+N−1∑

k=a

k

N
= 1

N

{
a+N−1∑

k=1

k −
a−1∑

k=1

k

}

= 1

N

{
(a + N − 1)(a + N)

2
− a(a − 1)

2

}

= 1

2
{N + 2a − 1} = 1

2
{(a + N − 1) + a}

where the second line follows from the fact that

n∑

k=1

k = n(n + 1)

2

Thus, the expected value is the arithmetic average of the lowest and highest
values of the random variable as in the case of the continuous uniform random
variable. The second moment is given by

E
[
K2

]
=

a+N−1∑

k=a

k2

N
= 1

N

{
a+N−1∑

k=1

k2 −
a−1∑

k=1

k2

}

Using the fact that

n∑

k=1

k2 = n(n + 1)(2n + 1)

6

we obtain

E
[
K2

]
= 2N2 + 6aN + 6a2 − 6a − 3N + 1

6

Thus, the variance is given by

σ2
K = N2 − 1

12

Example 4.22 Let X be the random variable that denotes the outcome of the
roll of a fair die. We know that the PMF of X is given by

pX(x) = 1

6
x = 1,2, . . . ,6
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We can compute the mean and variance of X either directly or via the above
formulas. First, by the direct method,

E[X] = 1 + 2 + 3 + 4 + 5 + 6

6
= 21

6
= 7

2

E
[
X2

]
= 12 + 22 + 32 + 42 + 52 + 62

6
= 91

6

σ2
X = E

[
X2

]
− (E[X])2 = 91

6
− 49

4
= 35

12

Next, we apply the formula by noting that N = 6 and a = 1. Then

E[X] = 1

2
{N + 2a − 1} = 7

2

σ2
X = N2 − 1

12
= 35

12

�

Thus, the two methods yield the same results.

4.11 Normal Distribution

A continuous random variable X is defined to be a normal random variable with
parameters µX and σ2

X if its PDF is given by

fX(x) = 1√
2πσ2

X

e−(x−µX )2/2σ
2
X − ∞ < x < ∞

The PDF is a bell-shaped curve that is symmetric about µX , which is the mean
of X . The parameter σ2

X is the variance. Figure 4.7 illustrates the shape of the
PDF. Since the variance (or more precisely, the standard deviation) is a measure
of the spread around the mean, the larger the variance, the lower the peak of the
curve and the more spread out it will be.

The CDF of X is given by

FX(x) = P[X ≤ x] = 1

σX

√
2π

∫ x

−∞
e−(u−µX )2/2σ

2
X du

The normal random variable X with parameters µX and σ2
X is usually designated

X = N(µX ;σ2
X). The special case of zero mean and unit variance (i.e., µX = 0
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Figure 4.7 PDF of the Normal Random Variable

and σ2
X = 1) is designated X = N(0;1) and is called the standard normal random

variable. Let y = (u − µX)/σX . Then du = σXdy and the CDF of X becomes

FX(x) = 1√
2π

∫ (x−µX )/σX

−∞
e−y2/2dy

Thus, with the above transformation, X becomes a standard normal random vari-
able. The above integral cannot be evaluated in closed form. It is usually evalu-
ated numerically through the function �(x), which is defined as follows:

�(x) = 1√
2π

∫ x

−∞
e−y2/2dy

Thus, the CDF of X is given by

FX(x) = 1√
2π

∫ (u−µX )/σX

−∞
e−y2/2dy = �

(
x − µX

σX

)

The values of �(x) are usually given for nonnegative values of x. For negative
values of x, �(x) can be obtained from the following relationship:

�(−x) = 1 − �(x)

Values of �(x) are given in Table 1 in Appendix 1.

Example 4.23 If X = N(3;9), which means that X is a normal random variable
with µX = 3 and σ2

X = 9, find the probability that X lies between 2 and 5.

Solution We are required to evaluate P[2 < X < 5], which is given by
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P[2 < X < 5] = FX(5) − FX(2)

= �

(
5 − µX

σX

)
− �

(
2 − µX

σX

)

= �

(
5 − 3

3

)
− �

(
2 − 3

3

)
= �

(
2

3

)
− �

(
−1

3

)

= �

(
2

3

)
−

{
1 − �

(
1

3

)}

= �

(
2

3

)
+ �

(
1

3

)
− 1

From Table 1 of Appendix 1, �(2/3) = �(0.67) = 0.7486 and �(1/3) = �(0.33) =
0.6293. Thus,

P[2 < X < 5] = �

(
2

3

)
+ �

(
1

3

)
− 1

= 0.7486 + 0.6293 − 1 = 0.3779

Note that 2/3 can also be approximated by 0.66, which means that we could also
get �(2/3) = �(0.66) = 0.7454, and the desired result would be 0.3747. �

Example 4.24 The weights in pounds of parcels arriving at a package deliv-
ery company’s warehouse can be modeled by an N(5;16) normal random vari-
able, X .

a. What is the probability that a randomly selected parcel weighs between 1 and
10 pounds?

b. What is the probability that a randomly selected parcel weighs more than
9 pounds?

Solution Since X is an N(5;16) normal random variable, we have that its mean
µX = 5 and its variance σ2

X = 16. Therefore, its standard deviation is σX = 4.

(a) The probability that a randomly selected parcel weighs between 1 and 10
pounds is

P[1 < X < 10] = FX(10) − FX(1) = �

(
10 − µX

σX

)
− �

(
1 − µX

σX

)

= �

(
10 − 5

4

)
− �

(
1 − 5

4

)
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= �(1.25) − �(−1) = �(1.25) − {1 − �(1)}
= �(1.25) + �(1) − 1 = 0.8944 + 0.8413 − 1

= 0.7357

(b) The probability that a randomly selected parcel weighs more than 9 pounds
is

P[X > 9] = 1 − P[X ≤ 9] = 1 − FX(9) = 1 − �

(
9 − 5

4

)

= 1 − �(1) = 1 − 0.8413 = 0.1587

�

4.11.1 Normal Approximation to the Binomial Distribution

Let X be a binomial random variable with parameter (n,p). Thus, the PMF is
given by

pX(x) =
(

n

x

)
px(1 − p)n−x x = 0,1,2, . . . ,n

When n is large with neither p nor q = 1 − p close to zero, the binomial distri-
bution can be approximated by the standard normal random variable with the
normalized score as

Z = X − µX

σX
= X − np√

np(1 − p)

Thus,

P[a ≤ X ≤ b] = P

[
a − np√
np(1 − p)

≤ Z ≤ b − np√
np(1 − p)

]

The approximation is very good when both np and n(1 − p) are greater than 5.

Example 4.25 A coin is tossed 10 times. Find the probability of getting be-
tween 4 and 7 heads inclusive using (a) the binomial distribution and (b) the
normal approximation to the binomial distribution.

Solution Let X be the random variable that denotes the number of heads in 10
tosses of the coin. Then we are required to find P[4 ≤ X ≤ 7],
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(a) Using the binomial distribution,

P[4 ≤ X ≤ 7] =
7∑

x=4

pX(x) =
7∑

x=4

(
10

x

)(
1

2

)x(1

2

)10−x

=
(

1

2

)10 7∑

x=4

(
10

x

)

=
10!
4!6! + 10!

5!5! + 10!
6!4! + 10!

7!3!
1024

= 792

1024

= 0.7734

(b) Using the normal approximation to the binomial distribution, we obtain the
result

np = 5

np(1 − p) = 2.5

P[4 ≤ X ≤ 7] = P

[
4 − 5√

2.5
≤ Z ≤ 7 − 5√

2.5

]
= P[−0.63 ≤ Z ≤ 1.26]

= �(1.26) − �(−0.63) = �(1.26) + �(0.63) − 1

= 0.8962 + 0.7357 − 1

= 0.6319

Observe that the result obtained by the approximation is much smaller than
the result obtained by the direct method. This is because we have not con-
verted the integers 4 and 7 into appropriate nonintegral values that the con-
tinuous normal random variable can take. In statistical studies, it is a com-
mon practice to convert the intergers 4 and 7 to the values 3.5 and 7.5, re-
spectively, before using them for the preceding computation. Therefore, with
this in mind, we proceed as follows:

np = 5

np(1 − p) = 2.5

P[4 ≤ X ≤ 7] = P

[
3.5 − 5√

2.5
≤ Z ≤ 7.5 − 5√

2.5

]
= P[−0.95 ≤ Z ≤ 1.58]

= �(1.58) − �(−0.95) = �(1.58) + �(0.95) − 1

= 0.9429 + 0.8289 − 1

= 0.7718

�
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Thus, we see that the result gives a better approximation than when the con-
version is not made.

4.11.2 The Error Function

Recall that the normal distribution is given by

fX(x) = 1√
2πσ2

X

e−(x−µX )2/2σ
2
X − ∞ < x < ∞

As stated earlier, the CDF of X is given by

FX(x) = P[X ≤ x] = 1

σX

√
2π

∫ x

−∞
e−(u−µX )2/2σ

2
X du

Another transformation of the random variable X is as follows. Let y = (u −
µX)/σX

√
2; then du =

√
2σXdy and the transformed random variable is an

N

(
0; 1

2

)
normal random variable. The CDF of X becomes

FX(x) = 1√
π

∫ (x−µX )/σX

√
2

−∞
e−y2

dy

Suppose we are interested in obtaining the probability that X takes on values in
the range −V ≤ X ≤ V, where V is a constant parameter. Thus, we obtain the
following:

P[−V ≤ X ≤ V] = 1√
π

∫ (V−µX )/σX

√
2

−(V−µX )σX

√
2

e−y2
dy = 2√

π

∫ (V−µX )/σX

√
2

0
e−y2

dy

where the last equality is due to the symmetrical nature of the distribution. In the
mathematical literature a quantity called the error function is defined as follows:

erf(x) = 2√
π

∫ x

0
e−y2

dy

Values of the error function are usually provided in mathematical tables. The
complementary error function is defined as

erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x

e−y2
dy

Thus, the probability that X is greater than V is given by

P[X > V] = 1√
π

∫ ∞

(V−µX )/σX

√
2

e−y2
dy = 1

2
erfc

(
V − µX

σX

√
2

)
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The error function is related to �(x) as follows:

�(x) = 1

2

[
1 + erf

(
x√
2

)]

Alternatively, given the �(x) table, we can obtain the error function by

erf(x) = 2�
(
x
√

2
)
− 1

4.11.3 The Q-Function

Another function that is closely related to �(x) and that is commonly used in
electrical engineering is the Q-function, which is defined as follows:

Q(x) = 1√
2π

∫ ∞

x

e−y2/2dy

The Q-function has the property that

Q(−x) = 1 − Q(x)

Thus, by definition,

FX(x) = 1 − Q

(
x − µX

σX

)

Similarly, the Q-function is related to the error function as follows:

Q(x) = 1

2

[
1 − erf

(
x√
2

)]

4.12 The Hazard Function

Let X be a random variable that represents the time until a piece of equipment
fails. Let fX(x) and FX(x) be the PDF and CDF of X , respectively. The hazard
function of X , denoted by hX(x), is defined by

hX(x) = fX(x)

1 − FX(x)
FX(x) 
= 1

That is, hX(x) is the instantaneous rate at which a component will fail given that it
has already survived a length of time x, and hX(x)dx is the conditional probability
that the equipment will fail between x and x+dx, given that it has survived a time
greater than x. Alternatively, based on our knowledge of conditional probability,
we can consider hX(x) to be the conditional PDF of X , given that X > x.
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Recall that in Chapter 1 we defined the reliability function R(t) of a compo-
nent as the probability that the component has not failed by time t. Thus, we can
relate the reliability function RX(x) of X to its CDF as follows:

RX(x) = P[X > x] = 1 − P[X ≤ x] = 1 − FX(x)

Thus, the hazard function can be defined in terms of the reliability function as
follows:

hX(x) = fX(x)

RX(x)

We now show that by specifying the hazard function, we uniquely specify the
reliability function and, hence, the CDF of a random variable. Since FX(x) =
1 − RX(x), we have that

fX(x) = d

dx
FX(x) = d

dx
{1 − RX(x)} = − d

dx
RX(x)

Thus,

hX(x) =
d

dx
FX(x)

RX(x)
=

− d

dx
RX(x)

RX(x)
= − d

dx
ln RX(x)

Integrating both sides from 0 to x we obtain

[ln RX(t)]x
0 = −

∫ x

0
hX(t)dt

Since RX(0) = 1, we have that

ln RX(x) = −
∫ x

0
hX(t)dt

RX(x) = 1 − FX(x) = exp

{
−
∫ x

0
hX(t)dt

}

Example 4.26 The time until a component fails is exponentially distributed with
a mean of 200 hours. Given that the component has not failed after operating for
150 hours, calculate the hazard function.

Solution Let T denote the time until the component fails. Then the PDF and
CDF of T are given by

fT(t) = λe−λt, λ = 1/200, t ≥ 0

FT(t) =
∫ t

0
fT(x)dx = 1 − e−λt
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Thus, the hazard function is given by

hT(t) = fT(t)

1 − FT(t)
= λe−λt

e−λt
= λ

Since λ is the failure rate, we see that the hazard function in this case is a constant
that is equal to the failure rate. �

Example 4.27 Determine the hazard function of a component whose time to
failure X is the so-called Weibull random variable with parameters λ and ρ and
whose PDF and CDF are given by

fX(x) = λρxρ−1e−λxρ

, x ≥ 0; λ,ρ ≥ 0

FX(x) = 1 − e−λxρ

Solution The Weibull distribution is widely used in reliability modeling. When
ρ = 1, we obtain the exponential distribution; and when ρ = 2, we obtain the
Rayleigh distribution that is popularly used to model different types of interfer-
ence in communication systems. The hazard function of the Weibull distribution
is given by

hX(x) = fX(x)

1 − FX(x)
= λρxρ−1e−λxρ

e−λxρ = λρxρ−1

�

Example 4.28 The hazard function of a certain random variable Y is given by
hY(y) = 0.5y, y ≥ 0. What is the PDF of Y?

Solution The reliability function of Y is given by

RY(y) = exp

{
−
∫ y

0
hY(t)dt

}
= exp

{
−
∫ y

0
0.5tdt

}
= e−0.25y2 = 1 − FY(y)

Therefore, the CDF of Y is given by

FY(y) = 1 − RY(y) = 1 − e−0.25y2

Finally, the PDF of Y is given by

fY(y) = d

dy
Fy(y) = 0.5ye−0.25y2

y ≥ 0

�
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4.13 Chapter Summary

This chapter introduced some of the many classes of random variables. The

Bernoulli random variable is used to model experiments that have only two pos-

sible outcomes, which are referred to as success and failure. Assume that we per-

form the experiment n times and then stop. The random variable that is used to

denote the number of successes that occurred in those n Bernoulli trials is the

binomial random variable. If the goal is to keep performing the experiment until

a success occurs, then the random variable that denotes the number of Bernoulli

trials until success occurs is called the geometric random variable. Sometimes we

are not interested in the first success but in the kth success. The random variable

that denotes the number of Bernoulli trials up to and including that trial in which

the kth success occurs is called the kth-order Pascal random variable.

One popular area of application of probability is quality control. Some of the

items coming off a production line are good and some are bad. If we know before-

hand the fraction of the items in a production batch that are good, we may want

to know the probability that the sample contains a specified number of bad items.

The random variable that is used to denote this number is the hypergeometric

random variable.

The Poisson random variable is used to count the number of arrivals over a

given interval. It is a popularly used model for such events as the number of cus-

tomers arriving at a restaurant, the number of messages that arrive at the switch-

board, and the number of equipment failures over a given interval.

All of the above random variables are discrete random variables. Continuous

random variables include the exponential random variable that is used to denote

the length of time between occurrences of an event. Associated with the expo-

nential random variable is the Erlang-k random variable, which is used to denote

the length of the interval from the beginning of the observation of the occurrence

of an event until the point in time when the kth occurrence of that event takes

place.

Two other continuous random variables are covered in this chapter. One is the

uniformly distributed random variable, which is used to denote the time of events

that are equally likely to occur at any time within a given interval. The other is the

normal random variable that is used to denote events that have a high probability

of occurrence around the mean value and a smaller probability of occurrence the

farther away from the mean value we move.

Table 4.1 is a summary of the PMFs (in the case of discrete random variables),

PDFs (in the case of continuous random variables), CDFs, means, and variances

of the different random variables.
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Table 4.1 Summary of the Random Variables

Random
Variable

PMF PDF CDF Mean Variance

Bernoulli pX (x) =
{

1 − p x = 0
p x = 1

– FX (x) =
{

0 x < 0
1 − p 0 ≤ x < 1
1 x ≥ 1

p p(1 − p)

Binomial pX(n)(x) =
(n

x

)
px(1 − p)n−x – FX(n)(x) =

∑x
k=0

(n
k

)
pk(1 − p)n−k np np(1 − p)

where x = 0,1,2, . . . ,n for 0 ≤ x < n and
FX(n)(x) = 1 for x ≥ n

Geometric pX (x) = p(1 − p)x−1 – FX (x) = 1 − (1 − p)x x ≥ 1 1/p
1−p

p2

where x = 1,2,3, . . .

Pascal-k pXk
(n) =

(n−1
k−1

)
pk(1 − p)n−k – FXk

(x) =
∑x

n=k

(n−1
k−1

)
pk(1 − p)n−k k/p

k(1−p)

p2

where k = 1,2, . . .; n = k,k + 1, . . . – for x = k,k + 1, . . .

Hyper- pKn (k) = (
N1
k )(

N−N1
n−k )

(N
n)

– FKn (k) =
∑k

j=0

{
(

N1
j )(

N−N1
n−j )

(N
n)

}
np

n(N−n)p(1−p)

N−1

geometric where k = 0,1, . . . ,min(n,N1) for k = 0,1, . . . ,min(n,N1) and p = N1
N

FKn (k) = 1 for k > min(n,N1)

Poisson pK(k) = λke−λ

k! – FK(k) =
∑k

r=0
λr

r! e−λ λ λ

where k = 0,1,2, . . . where k ≥ 0

Exponential – fX (x) = λe−λx FX (x) = 1 − e−λx 1/λ 1/λ2

where x ≥ 0 and λ > 0 where x ≥ 0

Erlang-k – fXk(x) = λkxk−1e−λx

(k−1)! FXk
(x) = 1 −

∑k−1
r=0

(λx)r

r! e−λx k/λ k/λ2

where k = 1,2, . . . , and x ≥ 0 where x ≥ 0

Uniform – fX (x) =
{

1
b−a a ≤ x ≤ b

0 otherwise
FX (x) =

{
0 x < a
x−a
b−a a ≤ x ≤ b

1 x ≥ b

b+a
2

(b−a)2

12

Normal – fX (x) = e−(x−µX )/2σ
2
X√

2πσ
2
X

FX (x) = �

(
x−µX
σX

)
µX σ

2
X

where −∞ < x < ∞ where −∞ < x < ∞
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4.14 Problems

Section 4.3: Binomial Distribution

4.1 Suppose four dice are tossed. What is the probability that at most one 6
appears?

4.2 An equipment consists of nine components, each of which will indepen-
dently fail with a probability of p. If the equipment is able to function prop-
erly when at least six of the components are operational, what is the proba-
bility that it is functioning properly?

4.3 A fair coin is tossed three times. Let the random variable X denote the
number of heads that turn up. Determine the mean and variance of X .

4.4 A certain student is known to be late to the Signals and Systems class 30%
of the time. If the class meets four times a week, find

a. the probability that the student is late for at least three classes in a given
week.

b. the probability that the student will not be late at all during a given
week.

4.5 A multiple-choice exam has six problems, each of which has three possible
answers. What is the probability that John will get four or more correct
answers by just guessing?

4.6 A block of 100 bits is to be transmitted over a binary channel with a prob-
ability of bit error of p = 0.001. What is the probability that three or more
bits are received in error?

4.7 An office has four phone lines. Each is busy about 10% of the time. Assume
that the phone lines act independently.

a. What is the probability that all four phones are busy?

b. What is the probability that three of the phones are busy?

4.8 The laptops made by the XYZ Corporation have a probability of 0.10 of
being defective as they come out of the assembly line. The ABC company
has purchased eight of these laptops for office use.

a. What is the PMF of K, the number of defective laptops out of the eight
that the ABC company purchased?

b. What is the probability that at most one laptop is defective out of the
eight?

c. What is the probability that exactly one laptop is defective out of the
eight?
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d. What is the expected number of defective laptops out of the eight?

4.9 On the average, 25% of the products manufactured by a certain company

are found to be defective. If we select four of these products at random and

denote the number of the four products that are defective by the random

variable X , determine the mean and variance of X .

4.10 Five fair coins are tossed. Assuming that the outcomes are independent,

find the PMF of the number of heads obtained in the experiment.

4.11 A company makes gadgets that it sells in packages of eight. It has been

found that the probability that a gadget made by the company is defective

is 0.1 independently of other gadgets. If the company offers a money-back

guarantee for any package that contains more than one defective gadget,

what is probability that the person who bought a given package will be re-

funded?

4.12 At least 10 of 12 people in a jury are required to find a person guilty before

the person can be convicted. Assume that each juror acts independently of

other jurors and each juror has a probability of 0.7 of finding a person guilty.

What is the probability that a person is convicted?

4.13 A radar system has a probability of 0.1 of detecting a certain target during

a single scan. Find the probability that the target will be detected

a. at least two times in four consecutive scans.

b. at least once in 20 consecutive scans.

4.14 A machine makes errors in a certain operation with probability p. There are

two types of errors: type A error and type B error. The fraction of errors of

type A is a, and the fraction of errors of type B is 1 − a.

a. What is the probability of k errors in n operations?

b. What is the probability of kA type A errors in n operations?

c. What is the probability of kB type B errors in n operations?

d. What is the probability of kA type A errors and kB type B errors in n

operations?

4.15 Studies indicate that 40% of marriages end in divorce, where it is assumed

that divorces are independent of each other. Out of 10 married couples,

determine the following probabilities:

a. That only the Arthurs and the Martins will stay married.

b. That exactly 2 of the 10 couples will stay married.
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4.16 A car has five traffic lights on its route. Independently of other traffic lights,
each traffic light turns red as the car approaches the light (and thus forces
the car to stop at the light) with a probability of 0.4.

a. Let K be a random variable that denotes the number of lights at which
the car stops. What is the PMF of K?

b. What is the probability that the car stops at exactly two lights?

c. What is the probability that the car stops at more than two lights?

d. What is the expected value of K?

4.17 In a class of 18 boys and 12 girls, boys have a probability of 1/3 of know-
ing the answer to a typical question that the teacher asks and girls have a
probability of 1/2 of knowing the answer to the question. Assume that each
student acts independently. Let K be a random variable that denotes the
number of students who know the answer to a question that the teacher
asks in class. Determine the following:

a. The PMF of K.

b. The mean of K.

c. The variance of K.

4.18 A bag contains 2 red balls and 6 green balls. A ball is randomly selected
from the bag, its color is noted and the ball is put back into the bag, which is
then thoroughly mixed. Determine the probability that in 10 such selections
a red ball is selected exactly 4 times using

a. the binomial distribution.

b. the Poisson approximation to the binomial distribution.

4.19 Ten balls are randomly tossed into 5 boxes labeled B1,B2, . . . ,B5. Deter-
mine the following probabilities:

a. Each box gets 2 balls.

b. Box B3 is empty.

c. Box B2 has 6 balls.

Section 4.4: Geometric Distribution

4.20 A fair die is rolled repeatedly until a 6 appears.

a. What is the probability that the experiment stops at the fourth roll?

b. Given that the experiment stops at the third roll, what is the probability
the sum of all the three rolls is at least 12?
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4.21 A certain door can be opened by exactly one of six keys. If you try the keys
one after another, what is the expected number of keys you will have to try
before the door is opened?

4.22 A box contains R red balls and B blue balls. An experiment is conducted
with the balls as follows. A ball is randomly selected from the box, its color
is noted and the ball is put back into the box. The process is repeated until
a blue ball is selected.

a. What is the probability that the experiment stops after exactly n trials?

b. What is the probability that the experiment requires at least k trials be-
fore it stops?

4.23 Twenty percent of the population of a particular city wear glasses. If you
randomly stop people from that city, determine the following probabilities:

a. It takes exactly 10 tries to get a person who wears glasses.

b. It takes at least 10 tries to get a person who wears glasses.

4.24 A student is planning to take the scholastic aptitude test (SAT) exam to
gain admission to a top college. She hopes to keep taking the exam until
she gets a score of at least 2000 and then she will stop. Her score in any of
the exams is uniformly distributed between 800 and 2200, and her score in
one exam is independent of her score in any other exam.

a. What is the probability that she reaches her goal of scoring at least 2000
points in any exam?

b. What is the PMF of the number of times she will take the exam before
reaching her goal?

c. What is the expected number of times she will take the exam?

Section 4.5: Pascal Distribution

4.25 Sam is fond of taking long-distance trips. During each trip his car has a
tire failure in each 100-mile stretch with a probability of 0.05. He recently
embarked on an 800-mile trip and took two spare tires with him on the trip.

a. What is the probability that the first change of tire occurred 300 miles
from his starting point?

b. What is the probability that his second change of tire occurred 500 miles
from his starting point?

c. What is the probability that he completed the trip without having to
change tires?
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4.26 Six applicants for a job were all found to be qualified by the company. The
company then ranked these applicants in a priority order. Three positions
are open. Past experience has shown that 20% of applicants who are of-
fered this kind of position by the company do not accept the offer. What
is the probability that the sixth-ranked applicant will be offered one of the
positions?

4.27 Twenty percent of the population of a particular city wear glasses. If you
randomly stop people from that city, determine the following probabilities:

a. It takes exactly 10 tries to get the third person who wears glasses.

b. It takes at least 10 tries to get the third person who wears glasses.

4.28 The probability of getting a head in a single toss of a biased coin is q. In an
experiment that consists of repeated tosses of the coin, what is the proba-
bility that the 18th head occurs on the 30th toss?

4.29 Pete makes house calls to give away free books to families with children.
He gives away books to those families that open the door for him when
he rings their doorbell and have children living at home. He gives exactly
one book to a qualified family. Studies indicate that the probability that the
door is opened when Pete rings the doorbell is 0.75, and the probability that
a family has children living at home is 0.5. If the events “door opened” and
“family has children” are independent, determine the following:

a. The probability that Pete gives away his first book at the third house he
visits.

b. The probability that he gives away his second book to the fifth family he
visits.

c. The conditional probability that he gives away the fifth book to the
eleventh family he visits, given that he has given away exactly four books
to the first eight families he visited.

d. Given that he did not give away the second book at the second house,
what is the probability that he will give it out at the fifth house?

4.30 The Carter family owns a bookstore and their son, who just completed an
introductory course in probability at a local college, has determined that
the probability that anyone who comes to the store actually will buy a book
is 0.3. If the family gives a coupon to the local ice cream place to every
customer who buys a book from the store, what is the probability that on a
particular day the third coupon was given to the eighth customer?

4.31 A telemarketer is paid $1 for each sale she makes. The probability that any
call she makes results in a sale is 0.6.
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a. What is the probability that she earned her third dollar on the sixth call
she made?

b. If she made 6 calls per hour, what is the probability that she earned $8
in two hours?

Section 4.6: Hypergeometric Distribution

4.32 A list contains the names of 4 girls and 6 boys. If 5 students are randomly
selected from the list, what is the probability that those selected will consist
of 2 girls and 3 boys?

4.33 There are 50 states in the United States, and each state is represented by
2 senators in the U.S. Senate. A group of 20 U.S. senators is choosen ran-
domly from the 100 senators in the U.S. Senate to visit a troubled part of
the world.

a. What is the probability that the two Massachusetts senators are among
those choosen?

b. What is the probability that neither of the two Massachusetts senators
is among those selected?

4.34 A professor provides 12 review problems for an exam and tells the students
that the actual exam will consist of 6 problems choosen randomly from the
12 review problems. Alex decides to memorize the solutions to 8 of the 12
problems. If Alex cannot solve any of the other 4 problems that he did not
memorize, what is the probability that he is able to solve 4 or more problems
correctly in the exam?

4.35 A class has 18 boys and 12 girls. If the teacher randomly selects a group of 15
students to represent the class in a competition, determine the following:

a. The probability that 8 members of the group are girls.

b. The expected number of boys in the group.

4.36 A drawer contains 10 left gloves and 12 right gloves. If you randomly pull
out a set of 4 gloves, what is the probability that the set consists of 2 right
gloves and 2 left gloves?

Section 4.7: Poisson Distribution

4.37 The number of cars that arrive at a gas station is a Poisson random variable
with a mean of 50 cars per hour. The station has only one attendant, and
each car requires exactly one minute to fill up. If we define a waiting line
as the condition in which two or more cars are found at the same time at
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the gas station, what is the probability that a waiting line will occur at the
station?

4.38 The number of traffic tickets that a certain traffic officer gives out on any
day has been shown to have a Poisson distribution with a mean of 7.

a. What is the probability that on one particular day the officer gave out
no ticket?

b. What is the probability that she gives out fewer than 4 tickets in one
day?

4.39 A Geiger counter counts the particles emitted by radioactive material. If
the number of particles emitted per second by a particular radioactive ma-
terial has a Poisson distribution with a mean of 10 particles, determine the
following:

a. The probability of at most 3 particles in one second.

b. The probability of more than 1 particle in one second.

4.40 The number of cars that arrive at a drive-in window of a certain bank over
a 20-minute period is a Poisson random variable with a mean of four cars.
What is the probability that more than three cars will arrive during any 20-
minute period?

4.41 The number of phone calls that arrive at a secretary’s desk has a Poisson
distribution with a mean of 4 per hour.

a. What is the probability that no phone calls arrive in a given hour?

b. What is the probability that more than 2 calls arrive within a given hour?

4.42 The number of typing mistakes that Ann makes on a given page has a Pois-
son distribution with a mean of 3 mistakes.

a. What is the probability that she makes exactly 7 mistakes on a given
page?

b. What is the probability that she makes fewer than 4 mistakes on a given
page?

c. What is the probability that Ann makes no mistake on a given page?

Section 4.8: Exponential Distribution

4.43 The PDF of a certain random variable T is given by

fT(t) = ke−4t t ≥ 0

a. What is the value of k?



162 Chapter 4 Special Probability Distributions

b. What is the expected value of T?

c. Find P[T < 1].
4.44 The lifetime X of a system in weeks is given by the following PDF:

fX(x) =
{

0.25e−0.25x x ≥ 0
0 otherwise

a. What is the expected value of X?

b. What is the CDF of X?

c. What is the variance of X?

d. What is the probability that the system will not fail within two weeks?

e. Given that the system has not failed by the end of the fourth week, what
is the probability that it will fail between the fourth and sixth weeks?

4.45 The time T in hours between bus arrivals at a bus station in downtown
Lowell is a random variable with the following PDF:

fT(t) = 2e−2t t ≥ 0

a. What is the expected value of T?

b. What is the variance of T?

c. What is P[T > 1]?
4.46 The PDF of the times between successive bus arrivals at a suburban bus

stop is given by

fT(t) = 0.1e−0.1t t ≥ 0

where T is in minutes. A turtle that requires 15 minutes to cross the street
starts crossing the street at the bus station immediately after a bus has left
the station. What is the probability that the turtle will not be on the road
when the next bus arrives?

4.47 The PDF of the times between successive bus arrivals at a suburban bus
stop is given by

fT(t) = 0.2e−0.2t t ≥ 0

where T is in minutes. An ant that requires 10 minutes to cross the street
starts crossing the street at the bus station immediately after a bus has left
the station. Given that no bus has arrived in the past 8 minutes since the ant
started its journey across the street, determine the following:

a. The probability that the ant will completely cross the road before the
next bus arrives.

b. The expected time until the next bus arrives.
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4.48 The times between telephone calls that arrive at a switchboard are expo-
nentially distributed with a mean of 30 minutes. Given that a call has just
arrived, what is the probability that it takes at least 2 hours before the next
call arrives?

4.49 The durations of calls to a radio talk show are known to be exponentially
distributed with a mean of 3 minutes.

a. What is the probability that a call will last less than 2 minutes?

b. What is the probability that a call will last longer than 4 minutes?

c. Given that a call has already lasted 4 minutes, what is the probability
that it will last at least another 4 minutes?

d. Given that a call has already lasted 4 minutes, what is the expected re-
maining time until it ends?

4.50 The life of a particular brand of batteries is exponentially distributed with
a mean of 4 weeks. You just replaced the battery in your gadget with the
particular brand.

a. What is the probability that the battery life exceeds 2 weeks?

b. Given that the battery has lasted 6 weeks, what is the probability that it
will last at least another 5 weeks?

4.51 The PDF of the times T in weeks between employee strikes at a certain
company is given by

fT(t) = 0.02e−0.02t t ≥ 0

a. What is the expected time between strikes at the company?

b. Find P[T ≤ t|T < 40] for all t.

c. Find P[40 < t < 60].
4.52 Find the PDF of the random variable X whose hazard function is given by

hX(x) = 0.05.

Section 4.9: Erlang Distribution

4.53 A communication channel fades in a random manner. The duration X of
each fade is exponentially distributed with a mean of 1/λ. The duration T

of the interval between the end of one fade and the beginning of the next
fade is an Erlang random variable with PDF

fT(t) = µ4t3e−µt

3! t ≥ 0
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If we observe the channel at a randomly selected instant, what is the prob-
ability that it is in the fade state?

4.54 The random variable X , which denotes the interval between two consecu-
tive events, has the PDF

fX(x) = 4x2e−2x x ≥ 0

If we assume that intervals between events are independent, determine the
following:

a. The expected value of X .

b. The expected value of the interval between the 11th and 13th events.

c. The probability that X ≤ 6.

4.55 The students in the electrical and computer engineering department arrive
at the departmental lounge to view the video of the lecture for a particular
course according to a Poisson process with a rate of 5 students per hour.
The person in charge of the operating the VCR will not turn the machine
on until there are at least 5 students in the lounge.

a. Given that there is currently no student in the lounge, what is the ex-
pected waiting time until the VCR is turned on?

b. Given that there is currently no student in the lounge, what is the prob-
ability that the VCR is not turned on within one hour from now?

Section 4.10: Uniform Distribution

4.56 Jack is the only employee of an auto repair shop that specializes in installing
mufflers. The time T minutes that it takes Jack to install a muffler has the
PDF

fT(t) =
{

0.05 10 ≤ t ≤ 30
0 otherwise

a. What is the expected time it takes Jack to install a muffler?

b. What is the variance of the time it takes Jack to install a muffler?

4.57 A random variable X is uniformly distributed between 0 and 10. Find
the probability that X lies between the standard deviation σX and the
mean E[X].

4.58 A random variable X is uniformly distributed between 3 and 15. Find the
following parameters:

a. The expected value of X .

b. The variance of X .
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c. The probability that X lies between 5 and 10.

d. The probability that X is less than 6.

4.59 Starting at 7 a.m., buses arrive at a particular bus stop in a college campus
at intervals of 15 minutes (that is, at 7 a.m., 7:15, 7:30, etc.). Joe is a frequent
passenger on this route, and the time he arrives each morning to catch a bus
is known to be uniformly distributed between 7 a.m. and 7:30 a.m.

a. What is the probability that Joe waits less than 5 minutes for a bus?

b. What is the probability that he waits more than 10 minutes for a bus?

4.60 The time it takes a bank teller to serve a customer is uniformly distributed
between 2 and 6 minutes. A customer has just stepped up to the window,
and you are next in line.

a. What is the expected time you will wait before it is your turn to be
served?

b. What is the probability that you wait less than 1 minute before being
served?

c. What is the probability that you wait between 3 and 5 minutes before
being served?

Section 4.11: Normal Distribution

4.61 The mean weight of 200 students in a certain college is 140 lbs, and the
standard deviation is 10 lbs. If we assume that the weights are normally
distributed, evaluate the following:

a. The expected number of students that weigh between 110 and 145 lbs.

b. The expected number of students that weigh less than 120 lbs.

c. The expected number of students that weigh more than 170 lbs.

4.62 The weights of parcels that are dropped off at a local shipping center can be
represented by a random variable X that is normally distributed with mean
µX = 70 and standard deviation σX = 10. Determine the following:

a. P[X > 50].
b. P[X < 60].
c. P[60 < X < 90].

4.63 Find the probability of getting between 4 and 8 heads in 12 tosses of a fair
coin by using

a. the binomial distribution.

b. the normal approximation to the binomial distribution.
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Table 4.2 Table for Grading Score

Test Score Letter Grade

µX + σX < X A
µX < X < µX + σX B
µX − σX < X < µX C
µX − 2σX < X < µX − σX D
X < µX − 2σX F

4.64 The test scores X of a certain subject were found to be approximately nor-
mally distributed with mean µX and standard deviation σX . So the profes-
sor decided to assign grades according to Table 4.2. What fraction of the
class gets A, B, C, D, and F?

4.65 The random variable X is a normal random variable with zero mean and
standard deviation σX . Compute the probability P[|X| ≤ 2σX ].

4.66 The annual rainfall in inches in a certain region has a normal distribution
with a mean of 40 and variance of 16. What is the probability that the rain-
fall in a given year is between 30 and 48 inches?
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5.1 Introduction

We have so far been concerned with the properties of a single random variable
defined on a given sample space. Sometimes we encounter problems that deal
with two or more random variables defined on the same sample space. In this
chapter we consider these multivariate systems. We first consider bivariate ran-
dom variables and later consider systems with more than two random variables.

5.2 Joint CDFs of Bivariate Random Variables

Consider two random variables X and Y defined on the same sample space. For
example, X can denote the grade of a student and Y can denote the height of the
same student. The joint cumulative distribution function (joint CDF) of X and Y

167



168 Chapter 5 Multiple Random Variables

is given by

FXY(x,y) = P[X ≤ x,Y ≤ y]
The pair (X,Y) is referred to as a bivariate random variable. If we define FX(x) =
P[X ≤ x] as the marginal CDF of X and FY(y) = P[Y ≤ y] as the marginal CDF
of Y , then we define the random variables X and Y to be independent if

FXY(x,y) = FX(x)FY(y)

for every value of x and y.

5.2.1 Properties of the Joint CDF

As a probability function FXY(x,y) has certain properties, which include the fol-
lowing:

1. Since FXY(x,y) is a probability, 0 ≤ FXY(x,y) ≤ 1 for −∞ < x < ∞, −∞ <

y < ∞.

2. If x1 ≤ x2 and y1 ≤ y2, then FXY(x1,y1) ≤ FXY(x2,y1) ≤ FXY(x2,y2). Simi-
larly, FXY(x1,y1) ≤ FXY(x1,y2) ≤ FXY(x2,y2). This follows from the fact that
FXY(x,y) is a nondecreasing function of x and y.

3. lim
x→∞
y→∞

FXY(x,y) = FXY(∞,∞) = 1

4. lim
x→−∞

FXY(x,y) = FXY(−∞,y) = 0

5. lim
y→−∞

FXY(x,y) = FXY(x,−∞) = 0

6. lim
x→a+

FXY(x,y) = FXY(a,y)

7. lim
y→b+

FXY(x,y) = FXY(x,b)

8. P[x1 < X ≤ x2,Y ≤ y] = FXY(x2,y) − FXY(x1,y)

9. P[X ≤ x,y1 < Y ≤ y2] = FXY(x,y2) − FXY(x,y1)

10. If x1 ≤ x2 and y1 ≤ y2, then

P[x1 < X ≤ x2,y1 < Y ≤ y2] = FXY(x2,y2) − FXY(x1,y2) − FXY(x2,y1)

+ FXY(x1,y1) ≥ 0

Also, the marginal CDFs are obtained as follows:

FX(x) = FXY(x,∞)

FY(y) = FXY(∞,y)

From the above properties we can answer questions about X and Y .
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Example 5.1 Given two random variables X and Y with the joint CDF
FXY(x,y) and marginal CDFs FX(x) and FY(y), respectively, compute the joint
probability that X is greater than a and Y is greater than b.

Solution We can obtain the desired probability as follows. From the De Mor-
gan’s second law, we know that A ∩ B = A ∪ B. Thus,

P[X > a,Y > b] = P[{X > a} ∩ {Y > b}] = 1 − P[{X > a} ∩ {Y > b}]
= 1 − P[{X > a} ∪ {Y > b}]
= 1 − P[{X ≤ a} ∪ {Y ≤ b}]
= 1 − {P[X ≤ a] + P[Y ≤ b] − P[X ≤ a,Y ≤ b]}
= 1 − FX(a) − FY(b) + FXY(a,b)

�

5.3 Discrete Random Variables

When both X and Y are discrete random variables, we define their joint PMF as
follows:

pXY(x,y) = P[X = x,Y = y]

The properties of the joint PMF include the following:

1. As a probability, the PMF can neither be negative nor exceed unity, which
means that 0 ≤ pXY(x,y) ≤ 1.

2.
∑

x

∑

y

pXY(x,y) = 1

3.
∑

x≤a

∑

y≤b

pXY(x,y) = FXY(a,b)

The marginal PMFs are obtained as follows:

pX(x) =
∑

y

pXY(x,y) = P[X = x]

pY(y) =
∑

x

pXY(x,y) = P[Y = y]
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If X and Y are independent random variables,

pXY(x,y) = pX(x)pY(y)

Example 5.2 The joint PMF of two random variables X and Y is given by

pXY(x,y) =
{

k(2x + y) x = 1,2; y = 1,2
0 otherwise

where k is a constant.

a. What is the value of k?

b. Find the marginal PMFs of X and Y .

c. Are X and Y independent?

Solution (a) To evaluate k, we remember that

∑

x

∑

y

p(x,y) =
2∑

x=1

2∑

y=1

k(2x + y) = 1.

Thus,
2∑

x=1

2∑

y=1

k(2x + y) = k

2∑

x=1

{(2x + 1) + (2x + 2)}

= k{(2 + 1) + (2 + 2) + (4 + 1) + (4 + 2)}
= 18k = 1

This gives k = 1/18.
(b) The marginal PMFs are

pX(x) =
∑

y

pXY(x,y) = 1

18

2∑

y=1

(2x + y) = 1

18
{(2x + 1) + (2x + 2)}

= 1

18
(4x + 3) x = 1,2

pY(y) =
∑

x

pXY(x,y) = 1

18

2∑

x=1

(2x + y) = 1

18
{(2 + y) + (4 + y)}

= 1

18
(2y + 6) y = 1,2

(c) Since pX(x)pY(y) 
= pXY(x,y), we conclude that X and Y are not independent.
�
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Example 5.3 The number of emergency calls X to a police station of a certain
town has a Poisson distribution with mean λ. The probability that any one of
these calls is about robbery is p. What is the PMF of Y , the number of calls about
robbery?

Solution We assume that the reasons for calls to the police station are indepen-
dent. When X = x, Y is a binomial random variable with parameters (x,p). Thus,
the joint PMF of X and Y is given by

pXY(x,y) = P[X = x,Y = y] = P[Y = y|X = x]P[X = x]

=
(

x

y

)
py(1 − p)x−y e−λλx

x! = e−λ(λp)y[λ(1 − p)]x−y

y!(x − y)!

Therefore,

pY(y) = P[Y = y] =
∑

x

pXY(x,y) = e−λ(λp)y

y!
∑

x≥y

[λ(1 − p)]x−y

(x − y)!

Let x − y = k. Then

pY(y) = e−λ(λp)y

y!

∞∑

k=0

[λ(1 − p)]k

k! = e−λ(λp)y

y! eλ(1−p) = e−λp(λp)y

y! y = 0,1, . . .

This indicates that Y has a Poisson distribution with mean λp. �

Example 5.4 A fair coin is tossed three times. Let X be a random variable that
takes the value 0 if the first toss is a tail and the value 1 if the first toss is a head.
Also, let Y be a random variable that defines the total number of heads in the
three tosses.

a. Determine the joint PMF of X and Y .

b. Are X and Y independent?

Solution Let H denote the event that a head appears on a toss and T the event
that a tail appears on a toss. Table 5.1 shows the sample space and the values of
the two random variables.

(a) Since X takes values 0 and 1, and Y takes values 0, 1, 2, and 3, the joint PMF
of X and Y can then be constructed as follows:
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Table 5.1 Sample Space and Values of Random Variables

Sample Space Value of X Value of Y

HHH 1 3
HHT 1 2
HTH 1 2
HTT 1 1
THH 0 2
THT 0 1
TTH 0 1
TTT 0 0

pXY(0,0) = P[X = 0,Y = 0] = P[{TTT}] = 1/8

pXY(0,1) = P[X = 0,Y = 1] = P[{THT} ∪ {TTH}] = 1/4

pXY(0,2) = P[X = 0,Y = 2] = P[{THH}] = 1/8

pXY(0,3) = P[X = 0,Y = 3] = 0

pXY(1,0) = P[X = 1,Y = 0] = 0

pXY(1,1) = P[X = 1,Y = 1] = P[{HTT}] = 1/8

pXY(1,2) = P[X = 1,Y = 2] = P[{HTH} ∪ {HHT}] = 1/4

pXY(1,3) = P[X = 1,Y = 3] = P[{HHH}] = 1/8

(b) If X and Y are independent, then for all x and y we have that pXY(x,y) =
pX(x)pY(y). Thus, to show that X and Y are not independent, all we have
to do is to find a pair of x and y at which the joint PMF does not satisfy the
above condition. Consider the point (x,y) = (0,0).

pX(0) =
∑

y

pXY(0,y) = pXY(0,0) + pXY(0,1) + pXY(0,2) + pXY(0,3) = 1/2

pY(0) =
∑

x

pXY(x,0) = pXY(0,0) + pXY(1,0) = 1/8

Since pX(0)pY(0) = (1/2) × (1/8) = 1/16 
= pXY(0,0), we conclude that X and Y

are not independent. A more extensive test will involve obtaining the marginal
PMFs of X and Y and testing each pair of x-y values. However, for this example,
the above proof is sufficient. �
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5.4 Continuous Random Variables

If both X and Y are continuous random variables, their joint PDF is given by

fXY(x,y) = ∂2

∂x∂y
FXY(x,y)

The joint PDF satisfies the following condition:

FXY(x,y) =
∫ x

−∞

∫ y

−∞
fXY(u,v)dvdu

The joint PDF also has the following properties:

1. For all x and y, fXY(x,y) ≥ 0

2.

∫ ∞

−∞

∫ ∞

−∞
fXY(x,y)dxdy = 1

3. fXY(x,y) is continuous for all except possibly finitely values of x or of y

4. P[x1 < X ≤ x2,y1 < Y ≤ y2] =
∫ y2

y1

∫ x2

x1

fXY(x,y)dxdy

The marginal PDFs are given by

fX(x) =
∫ ∞

−∞
fXY(x,y)dy

fY(y) =
∫ ∞

−∞
fXY(x,y)dx

If X and Y are independent random variables, then

fXY(x,y) = fX(x)fY(y)

Example 5.5 X and Y are two continuous random variables whose joint PDF is
given by

fXY(x,y) =
{

e−(x+y) 0 ≤ x < ∞, 0 ≤ y < ∞
0 otherwise

Are X and Y independent?
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Solution To answer the question, we first evaluate the marginal PDFs of X

and Y :

fX(x) =
∫ ∞

−∞
fXY(x,y)dy =

∫ ∞

0
e−(x+y)dy = e−x

∫ ∞

0
e−ydy

=
{

e−x x ≥ 0
0 otherwise

fY(y) =
∫ ∞

−∞
fXY(x,y)dx =

∫ ∞

0
e−(x+y)dx = e−y

∫ ∞

0
e−xdx

=
{

e−y y ≥ 0
0 otherwise

Now, fX(x)fY(y) = e−xe−y = e−(x+y) = fXY(x,y), which means that X and Y are
independent. �

Example 5.6 Determine if random variables X and Y are independent when
their joint PDF is given by

fXY(x,y) =
{

2e−(x+y) 0 ≤ x ≤ y, 0 ≤ y < ∞
0 otherwise

Solution We evaluate the marginal PDFs of X and Y by noting the relationship
between X and Y , thereby defining the region of interest as the shaded area in
Figure 5.1. Note that the shaded area extends to y = ∞.

Then we obtain

fX(x) = 2

∫ ∞

x

e−(x+y)dy = 2e−x

∫ ∞

x

e−ydy = 2e−x[−e−y]∞x

= 2e−2x

Figure 5.1 Relationship between X and Y
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fY(y) = 2

∫ y

0
e−(x+y)dx = 2e−y

∫ y

0
e−xdx = 2e−y[−e−x]y

0

= 2e−y[1 − e−y]

Since fX(x)fY(y) = 4{e−(2x+y) − e−2(x+y)} 
= fXY(x,y), X and Y are not indepen-
dent. �

5.5 Determining Probabilities from a Joint CDF

Suppose that X and Y are given random variables, and we are required to de-
termine the probability of a certain event defined in terms of X and Y for which
the joint CDF is known. We start by sketching the event in the x-y plane. For
example, assume we are required to find P[a < X ≤ b, c < Y ≤ d]. The region of
interest is shown in Figure 5.2, which defines four partitions.

Consider the following events:

E1 = {(X ≤ b) ∩ (Y ≤ d)}
E2 = {(X ≤ b) ∩ (Y ≤ c)}
E3 = {(X ≤ a) ∩ (Y ≤ d)}
E4 = {(X ≤ a) ∩ (Y ≤ c)}
E5 = {(a < X ≤ b) ∩ (c < Y ≤ d)}

Figure 5.2 Domain Partitions
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The region of interest is B, which corresponds to event E5 that can be obtained
as follows:

E5 = E1 − E2 − E3 + E4

Thus,

P[a < X ≤ b, c < Y ≤ d] = FXY(b,d) − FXY(b, c) − FXY(a,d) + FXY(a, c)

Note that the probability is simply the joint CDF evaluated at the point where X

and Y jointly have the larger of their two values plus the CDF evaluated at the
point where they jointly have their smaller values minus the CDF evaluated at
the two points where they have mixed smaller and larger values. When X and Y

are independent random variables, the above result becomes

P[a<X ≤b, c<Y ≤d] = FXY(b,d) − FXY(b, c) − FXY(a,d) + FXY(a, c)

= FX(b)FY(d)−FX(b)FY(c)−FX(a)FY(d)+FX(a)FY(c)

= FX(b)[FY(d) − FY(c)] − FX(a)[FY(d) − FY(c)]
= [FX(b) − FX(a)][FY(d) − FY(c)]
= P[a < X ≤ b][c < Y ≤ d]

Finally, for the case when X and Y are discrete random variables, the joint CDF
can be obtained from the joint PMF as follows:

FXY(m,n) =
∑

j≤m

∑

k≤n

pXY(j,k)

For example, if X and Y take only nonnegative values,

FXY(1,2) =
∑

j≤1

∑

k≤2

pXY(j,k)

= pXY(0,0)+pXY(0,1)+pXY(0,2)+pXY(1,0)+pXY(1,1)+pXY(2,2)

Example 5.7 The joint CDF of two discrete random variables X and Y is given
as follows:

FXY(x,y) =





1

8
x = 1, y = 1

5

8
x = 1, y = 2

1

4
x = 2, y = 1

1 x = 2, y = 2
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Determine the following:

1. Joint PMF of X and Y

2. Marginal PMF of X

3. Marginal PMF of Y .

Solution The joint PMF is obtained from the relationship FXY(a,b) =∑

x≤a

∑

y≤b

pXY(x,y). Thus,

FXY(1,1) = 1/8 = pXY(1,1)

FXY(1,2) = pXY(1,1) + pXY(1,2) = 5/8 ⇒ pXY(1,2) = 5/8 − 1/8 = 1/2

FXY(2,1) = pXY(1,1) + pXY(2,1) = 1/4 ⇒ pXY(2,1) = 1/4 − 1/8 = 1/8

FXY(2,2) = pXY(1,1) + pXY(1,2) + pXY(2,1) + pXY(2,2) = 1 ⇒ pXY(2,2) = 1/4

The joint PMF becomes

pXY(x,y) =





1

8
x = 1, y = 1

1

2
x = 1, y = 2

1

8
x = 2, y = 1

1

4
x = 2, y = 2

The marginal PMF of X is given by

pX(x) =
{

pXY(1,1) + pXY(1,2) = 5/8 x = 1

pXY(2,1) + pXY(2,2) = 3/8 x = 2

The marginal PMF of Y is given by

pY(y) =
{

pXY(1,1) + pXY(2,1) = 1/4 y = 1

pXY(1,2) + pXY(2,2) = 3/4 y = 2

�
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5.6 Conditional Distributions

Recall that for two events A and B, the conditional probability of event A given
event B is defined by

P[A|B] = P[A ∩ B]
P[B]

which is defined when P[B] > 0. In this section we extend the same concept to
two random variables X and Y governed by a joint CDF FXY(x,y).

5.6.1 Conditional PMF for Discrete Random Variables

Consider two discrete random variables X and Y with the joint PMF pXY(x,y).
The conditional PMF of Y , given X = x, is given by

pY|X(y|x) = P[X = x,Y = y]
P[X = x]

= pXY(x,y)

pX(x)

provided pX(x) > 0. Similarly, the conditional PMF of X , given Y = y, is given by

pX|Y(x|y) = P[X = x,Y = y]
P[Y = y]

= pXY(x,y)

pY(y)

provided pY(y) > 0. If X and Y are independent random variables, pX|Y(x|y) =
pX(x) and pY|X(y|x) = pY(y). Also, the conditional CDFs are defined by

FX|Y(x|y) = P[X ≤ x|Y = y]

=
∑

u≤x

pX|Y(u|y)

FY|X(y|x) = P[Y ≤ y|X = X]

=
∑

v≤y

pY|X(v|x)

Example 5.8 The joint PMF of two random variables X and Y is given by

pXY(x,y) =
{

1

18
(2x + y) x = 1,2; y = 1,2

0 otherwise
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a. What is the conditional PMF of Y given X?

b. What is the conditional PMF of X given Y?

Solution From Example 5.2 we know that the marginal PMFs are given by

pX(x) =
∑

y

pXY(x,y) = 1

18

2∑

y=1

(2x + y) = 1

18
(4x + 3) x = 1,2

pY(y) =
∑

x

pXY(x,y) = 1

18

2∑

x=1

(2x + y) = 1

18
(2y + 6) y = 1,2

Thus, the conditional PMFs are given by

pX|Y(x|y) = pXY(x,y)

pY(y)
= 2x + y

2y + 6

pY|X(y|x) = pXY(x,y)

pX(x)
= 2x + y

4x + 3

�

5.6.2 Conditional PDF for Continuous Random Variables

Consider two continuous random variables X and Y with the joint PDF fXY(x,y).
The conditional PDF of Y , given X = x, is defined by

f Y|X(y|x) = fXY(x,y)

fX(x)

provided fX(x) > 0. Similarly, the conditional PDF of X , given Y = y, is given by

f X|Y(x|y) = fXY(x,y)

fY(y)

provided fY(y) > 0. If X and Y are independent, then f X|Y(x|y) = fX(x) and
f Y|X(y|x) = fY(y).

Example 5.9 Two random variables X and Y have the following joint PDF:

fXY(x,y) =
{

xe−x(y+1) 0 ≤ x < ∞; 0 ≤ y < ∞
0 otherwise

Determine the conditional PDF of X given Y and the conditional PDF of Y

given X .
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Solution To determine the conditional PDFs, we first evaluate the marginal
PDFs, which are given by

fX(x) =
∫ ∞

0
fXY(x,y)dy =

∫ ∞

0
xe−x(y+1)dy = xe−x

∫ ∞

0
e−xydy

= xe−x

[
−e−xy

x

]∞

0

= e−x 0 ≤ x < ∞

fY(y) =
∫ ∞

0
fXY(x,y)dx =

∫ ∞

0
xe−x(y+1)dx

Let u = x, which means that du = dx; and let dv = e−x(y+1)dx, which means that
v = −e−x(y+1)/(y + 1). Integrating by parts we obtain

fY(y) =
∫ ∞

0
xe−x(y+1)dx =

[
−xe−x(y+1)

y + 1

]∞

0

+ 1

y + 1

∫ ∞

0
e−x(y+1)dx

= 0 − 1

(y + 1)2

[
e−x(y+1)

]∞
0

= 1

(y + 1)2
0 ≤ y < ∞

Thus, the conditional PDFs are given by

f Y|X(y|x) = fXY(x,y)

fX(x)
= xe−x(y+1)

e−x
= xe−xy 0 ≤ y < ∞

f X|Y(x|y) = fXY(x,y)

fY(y)
= xe−x(y+1)

1/(y + 1)2
= x(y + 1)2e−x(y+1) 0 ≤ x < ∞

�

5.6.3 Conditional Means and Variances

If X and Y are discrete random variables with the joint PMF pXY(x,y), the con-
ditional expected value of Y , given that X = x, is defined by

µY|X = E[Y|X = x] =
∑

y

ypY|X(y|x)
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The conditional variance of Y , given X = x, is given by

σ2
Y|X = E[(Y − µY|X)2|X]

=
∑

y

(y − µY|X)2pY|X(y|x)

= E[Y2|X = x] − (E[Y|X = x])2

Similarly, the conditional expected value and variance of X , given Y = y, are
given by

µX|Y = E[X|Y = y] =
∑

x

xpX|Y(x|y)

σ2
X|Y = E[(X − µX|Y)2|Y] =

∑

x

(x − µX|Y)2pX|Y(x|y)

= E[X2|Y = y] − (E[X|Y = y])2

If X and Y are continuous random variables with the joint PDF fXY(x,y), the
conditional expected value and variance of Y , given X = x, are

µY|X = E[Y|X = x] =
∫ ∞

−∞
yf Y|X(y|x)dy

σ2
Y|X = E[(Y − µY|X)2|X] =

∫ ∞

−∞
(y − µY|X)2f Y|X(y|x)dy

= E[Y2|X = x] − (E[Y|X = x])2

Finally, the conditional expected value and variance of X , given Y = y, are

µX|Y = E[X|Y = y] =
∫ ∞

−∞
xf X|Y(x|y)dx

σ2
X|Y = E[(X − µX|Y)2|Y] =

∫ ∞

−∞
(x − µX|Y)2f X|Y(x|y)dx

= E[X2|Y = y] − (E[X|Y = y])2

Example 5.10 Compute the conditional mean E[X|Y = y] if the joint PDF of X

and Y is given by

fXY(x,y) =





e−(x/y)e−y

y
0 ≤ x < ∞; 0 ≤ y < ∞

0 otherwise
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Solution We first compute the marginal PDF fY(y) and the conditional PDF
f X|Y(x|y), which are given by

fY(y) =
∫ ∞

0
fXY(x,y)dx =

∫ ∞

0

e−(x/y)e−y

y
dx = e−y

y

∫ ∞

0
e−(x/y)dx

= e−y

f X|Y(x|y) = fXY(x,y)

fY(y)
= e−(x/y)e−y

ye−y

=
(

1

y

)
e−(x/y)

Thus, the conditional mean is given by

E[X|Y = y] =
∫ ∞

0
xf X|Y(x|y)dx =

(
1

y

)∫ ∞

0
xe−(x/y)dx

=
(

1

y

){
[−xye−(x/y)]∞0 + y

∫ ∞

0
e−(x/y)dx

}

= y
�

Example 5.11 Assume that the random variables X and Y have the PDF
fXY(x,y). What is E[E[X|Y]]?
Solution By definition,

E[E[X|Y]] =
∫ ∞

−∞
E[X|Y = y]fY(y)dy

∫ ∞

−∞

∫ ∞

−∞
xf X|Y(x|y)dxfY(y)dy

=
∫ ∞

−∞

∫ ∞

−∞
x

fXY(x,y)

fY(y)
dxfY(y)dy =

∫ ∞

−∞

∫ ∞

−∞
xfXY(x,y)dxdy

=
∫ ∞

−∞

[∫ ∞

−∞
fXY(x,y)dy

]
xdx =

∫ ∞

−∞
xfX(x)dx

= E[X]
�

5.6.4 Simple Rule for Independence

In many cases we are given the joint PDF of the random variables X and Y and
are required to determine if they are independent random variables. It turns out
that the determination can be made based on the nature of the PDF and the
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combined sample space of the PDF. The following is a general rule that applies
when X and Y are independent:

If the joint PDF of X and Y is of the form: fXY(x,y) = constant × x-factor ×
y-factor in the rectangular region (which can be finite or infinite) a ≤ x ≤ b, c ≤
y ≤ d, then X and Y are independent. Furthermore, if the joint PDF is not in
the separable form shown above or the joint sample space is not rectangular,
then X and Y are not independent.

The x-factor is fX(x) and the y-factor is fY(y), provided the constant term is dis-
tributed in such a way that fX(x) and fY(y) are true PDFs.

Example 5.12 Assume that the random variables X and Y have the joint PDF

fXY(x,y) = 1

2
x3y 0 ≤ x ≤ 2,0 ≤ y ≤ 1

Determine if X and Y are independent.

Solution Applying the above rule we find that the joint PDF is separable and
the joint sample space is rectangular. Therefore, X and Y are independent. Thus,
we have that

fXY(x,y) = fX(x) × fY(y) = 1

2
× x3 × y 0 ≤ x ≤ 2,0 ≤ y ≤ 1

where

fX(x) = Ax3 0 ≤ x ≤ 2

fY(y) = By 0 ≤ y ≤ 1

1

2
= AB

We can find the values of A and B as follows:
∫ 2

0
fX(x)dx = 1 =

∫ 2

0
Ax3dx = A

[
x4

4

]2

0

= 4A ⇒ A = 1

4

Thus,

B = 1/2

1/4
= 2

From these we obtain the marginal PDFs as

fX(x) = 1

4
x3 0 ≤ x ≤ 2

fY(y) = 2y 0 ≤ y ≤ 1

�
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5.7 Covariance and Correlation Coefficient

Consider two random variables X and Y with expected values E[X] = µX and
E[Y] = µY , respectively, and variances σ2

X and σ2
Y , respectively. The covariance

of X and Y , which is denoted by Cov(X,Y) or σXY , is defined by

Cov(X,Y) = σXY = E[(X − µX)(Y − µY)]
= E[XY − µYX − µXY + µXµY ]
= E[XY] − µXµY − µXµY + µXµY

= E[XY] − µXµY

If X and Y are independent, then E[XY] = µXµY and Cov(X,Y) = 0. However,
the converse is not true; that is, if the covariance of X and Y is zero, it does not
mean that X and Y are independent random variables. If the covariance of two
random variables is zero, we define the two random variables to be uncorrelated.

We define the correlation coefficient of X and Y , denoted by ρ(X,Y) or ρXY ,
as follows:

ρXY = Cov(X,Y)√
Var(X)Var(Y)

= σXY

σXσY

The correlation coefficient has the property that

−1 ≤ ρXY ≤ 1

This can be proved as follows. Since the variance is always nonnegative, we have
that if X and Y have variances given by σ2

X and σ2
Y , respectively, then

0 ≤ Var

(
X

σX
+ Y

σY

)
= Var(X)

σ2
X

+ Var(Y)

σ2
Y

+ 2Cov(X,Y)

σXσY

= 2[1 + ρXY]

which implies that −1 ≤ ρXY . Also,

0 ≤ Var

(
X

σX
− Y

σY

)
= Var(X)

σ2
X

+ Var(Y)

σ2
Y

− 2Cov(X,Y)

σXσY

= 2[1 − ρXY]

which implies the ρXY ≤ 1. Thus,

−1 ≤ ρXY ≤ 1

The correlation coefficient ρXY provides a measure of how good a prediction of
the value of one of the two random variables can be formed based on an observed
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value of the other. Thus, if we represent the relationship between X and Y by the
linear equation Y = a+bX , a value of ρXY near −1 or +1 indicates a high degree
of linearity between X and Y . In particular, a positive ρXY implies that b > 0,
and a negative ρXY implies that b < 0. That is, a positive ρXY implies that as X

increases, Y also tends to increase; and a negative ρXY implies that as X increases,
Y tends to decrease. A value of ρXY = 0 means that there is no linear correlation

between X and Y . However, it does not mean that there is no correlation at all
between them because there may still be a high nonlinear correlation between
them. In general, ρXY measures the goodness of fit of the equation that expresses
Y as a function of X to actual (or measured) values of Y . That is, it indicates how
closely the equation that expresses Y as a function of X matches measured (or
observed) values of Y .

Example 5.13 The joint PDF of the random variables X and Y is defined as
follows:

fXY(x,y) =
{

25e−5y 0 < x < 0.2, y > 0
0 otherwise

1. Find the marginal PDFs of X and Y .

2. What is the covariance of X and Y?

Solution The marginal PDFs are obtained as follows:

fX(x) =
∫ ∞

0
fXY(x,y)dy =

∫ ∞

0
25e−5ydy

=
{

5 0 < x < 0.2
0 otherwise

fY(y) =
∫ ∞

0
fXY(x,y)dx =

∫ 0.2

0
25e−5ydx

=
{

5e−5y y > 0
0 otherwise

Thus, X has a uniform distribution, and Y has an exponential distribution. The
expected values of X and Y are given by

E[X] = µX = 0 + 0.2

2
= 0.1

E[Y] = µY = 1/5 = 0.2
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Also,

E[XY] =
∫ 0.2

x=0

∫ ∞

y=0
xyfXY(x,y)dydx =

∫ 0.2

x=0

∫ ∞

y=0
25xye−5ydydx

=
∫ 0.2

x=0
x

{∫ ∞

y=0
25ye−5ydy

}
dx =

∫ 0.2

x=0
xdx =

[
x2

2

]0.2

0

= 0.02

Thus, the covariance of X and Y is given by

σXY = E[XY] − µXµY = 0.02 − (0.1)(0.2) = 0

�

Thus, X and Y are uncorrelated. Note that the reason why X and Y are un-
correlated is that they are independent, since fXY(x,y) = fX(x)fY(y).

Example 5.14 Hans and Ann planned to meet at their favorite restaurant on a
date at about 6:30 p.m. Both of them will arrive at the restaurant separately by
train. They live in different parts of the city and so will be arriving on different
trains that operate independently of each other’s schedule. Hans’ train will ar-
rive at a stop by the restaurant at a time that is uniformly distributed between
6:00 p.m. and 7:00 p.m. Ann’s train will arrive at the same stop at a time that is
uniformly distributed between 6:15 p.m. and 6:45 p.m. They agreed that whoever
arrives at the restaurant first will wait up to 5 minutes before leaving.

a. What is the probability that they meet?

b. What is the probability that Ann arrives before Hans?

Solution Let X be the random variable that denotes Hans’ arrival time, and
let Y be the random variable that denotes Ann’s arrival time. As stated in the
problem, X and Y are independent random variables. If we consider the time
from 6:00 p.m. to 7:00 p.m., we see that we can represent the PDFs of X and Y as
follows:

fX(x) =
{

1/60 0 ≤ x ≤ 60
0 otherwise

fY(y) =
{

1/30 15 ≤ y ≤ 45
0 otherwise

Thus, the joint PDF fXY(x,y), which is the product of the above marginal PDFs,
has a uniform distribution over the rectangle shown in Figure 5.3.
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Figure 5.3 Domain of the Joint Distribution

(a) The probability that they meet is given by p = P[|X − Y| ≤ 5], which is the
probability of being in the crosshatched area of the rectangle. Now, the total
area of the rectangle is 60×30 = 1800. The area of section A is 10×30 = 300,
which is also the area of section D. The area of section B is 30 × 30/2 = 450,
which is also the area of section C. Thus, the area of the crosshatched section
is 1800 − 2(450 + 300) = 300. This means that

p = 300/1800 = 1/6

(b) The probability that Ann arrives before Hans is P[Y < X], which is the prob-
ability of being in the portion of the rectangle above the line Y = X . From
the symmetry of the diagram, this can be seen to be equal to 1/2. �

5.8 Many Random Variables

In the previous sections we considered a system of two random variables. In this
section we extend the concepts developed for two random variables to systems
of more than two random variables.

Let X1,X2, . . . ,Xn be a set of random variables that are defined on the same
sample space. Their joint CDF is defined as

FX1X2...Xn(x1,x2, . . . ,xn) = P[X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn]

If all the random variables are discrete random variables, their joint PMF is de-
fined by

pX1X2...Xn(x1,x2, . . . ,xn) = P[X1 = x1,X2 = x2, . . . ,Xn = xn]
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The properties of the joint PMF include the following:

1. 0 ≤ pX1X2...Xn(x1,x2, . . . ,xn) ≤ 1

2.
∑

x1

∑

x2

· · ·
∑

xn

pX1X2...Xn(x1,x2, . . . ,xn) = 1

3. The marginal PMFs are obtained by summing the joint PMF over the appro-
priate ranges. For example, the marginal PMF of Xn is given by

pXn(xn) =
∑

x1

∑

x2

· · ·
∑

xn−1

pX1X2...Xn(x1,x2, . . . ,xn)

4. The conditional PMFs are similarly obtained. For example,

pXn|X1...Xn−1
(xn|x1,x2, . . . ,xn−1)

= P[Xn = xn|X1 = x1,X2 = x2, . . . ,Xn−1 = xn−1]

= pX1X2...Xn(x1,x2, . . . ,xn)

pX1X2...Xn−1
(x1,x2, . . . ,xn−1)

The random variables are defined to be mutually independent if

pX1X2...Xn(x1,x2, . . . ,xn) =
n∏

i=1

pXi
(xi)

If all the random variables are continuous random variables, their joint PDF can
be obtained from the joint CDF as follows:

fX1X2...Xn(x1,x2, . . . ,xn) = ∂n

∂x1∂x2 . . . ∂xn
FX1X2...Xn(x1,x2, . . . ,xn)

The joint PDF has the following properties:

1. fX1X2...Xn(x1,x2, . . . ,xn) ≥ 0

2.

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX1X2...Xn(x1,x2, . . . ,xn)dx1dx2 . . .dxn = 1

3. The conditional PDFs can also be defined. For example,

fXn|X1...Xn−1
(xn|x1,x2, . . . ,xn−1) = fX1X2...Xn(x1,x2, . . . ,xn)

fX1X2...Xn−1
(x1,x2, . . . ,xn−1)

4. If the random variables are mutually independent, then

fX1X2...Xn(x1,x2, . . . ,xn) =
n∏

i=1

fXi
(xi)
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5.9 Multinomial Distributions

The multinomial distribution is an extension of the binomial distribution, which
was discussed in Chapter 4. It arises when a sequence of n independent exper-
iments is performed. Assume that each experiment can result in any one of m

possible outcomes with probabilities p1,p2, . . . ,pm, where
∑m

i=1
pi = 1. Let Ki

denote the number of the n experiments that result in outcome number i, where
i = 1,2, . . . ,m. Then

pK1K2...Km(k1,k2, . . . ,km) = P[K1 = k1,K2 = k2, . . . ,Km = km]

=
(

n

k1,k2, . . . ,km

)
p

k1
1 p

k2
2 . . .pkm

m

= n!
k1!k2! . . .km!p

k1
1 p

k2
2 . . .pkm

m

where
∑m

i=1
ki = n, ki = 0,1, . . . ,n for i = 1,2, . . . ,m. When m = 2, we get the

binomial distribution.

Example 5.15 A fair die is rolled 7 times. Find the probability that the number
1 appears twice and the number 2 appears once.

Solution The problem asks for the numbers 1 and 2. All the other four numbers
(i.e., 3 through 6) are lumped into one event. Thus, instead of the normal 6 events,
we have three events. Let K1 be the number of times the number 1 appears in the
7 trials, K2 the number times the number 2 appears in the 7 trials, and K3 the
number of times that all the other four numbers (3, 4, 5, 6) appear in the 7 trials.
Similarly, let p1 denote the probability that 1 appears in any roll of the die, p2 the
probability that 2 appears in any roll of the die, and p3 the probability that any
number other than 1 or 2 appears in any roll of the die. Since the die is fair, we
have that p1 = p2 = 1/6 and p3 = 4/6. Thus, the desired result is

pK1K2K3
(2,1,4) = 7!

2!1!4!

(
1

6

)2(1

6

)(
4

6

)4

= (105)(256)

67
= 26,880

279,936

= 0.0960

�
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Example 5.16 The student population of a college in Massachusetts has been
found to be made up as follows: 50% are from Massachusetts (in-state students),
20% are from the other states of the United States (out-of-state students), and
30% are from other countries (foreign students). If 10 students from the college
are randomly selected by a company conducting a survey, what is the probability
that 6 of them will be in-state students, 2 will be out-of-state students, and 2 will
be foreign students?

Solution Let K1 be the number of in-state students among the 10 selected stu-
dents, K2 the number of out-of-state students among the 10 selected students,
and K3 the number of foreign students among the 10 selected students. Similarly,
let p1 denote the probability that an in-state student is randomly selected, p2 the
probability that an out-of-state student is randomly selected, and p3 the proba-
bility that a foreign student is randomly selected. Since p1 = 0.5, p2 = 0.2, and
p3 = 0.3, the desired result is

pK1K2K3
(6,2,2) = 10!

6!2!2! (0.5)6(0.2)2(0.3)2 = 1260(0.5)6(0.2)2(0.3)2

= 0.0709
�

5.10 Chapter Summary

This chapter discussed problems that deal with two or more random variables
simultaneously. It also discussed the concepts of covariance and correlation coef-
ficient of two random variables. It discussed the multinomial distribution, which
is an extension of the binomial distribution considered in Chapter 4. Sometimes
multinomial distribution-related problems can be reduced to binomial distribu-
tion problems, especially if we are only interested in obtaining results concerning
only one member of the distribution.

5.11 Problems

Section 5.3: Bivariate Discrete Random Variables

5.1 The joint PMF of two discrete random variables X and Y is given by

pXY(x,y) =
{

kxy x = 1,2,3; y = 1,2,3
0 otherwise

a. Determine the value of the constant k.
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b. Find the marginal PMFs of X and Y .

c. Find P[1 ≤ X ≤ 2,Y ≤ 2].
5.2 A fair coin is tossed three times. Let the random variable X denote the

number of heads in the first two tosses, and let the random variable Y

denote the number of heads in the third toss. Determine the joint PMF
pXY(x,y) of X and Y .

5.3 The joint PMF of two random variables X and Y is given by

pXY(x,y) =





0.10 x = 1, y = 1
0.35 x = 2, y = 2
0.05 x = 3, y = 3
0.50 x = 4, y = 4
0 otherwise

a. Determine the joint CDF FXY(x,y).

b. Find P[1 ≤ X ≤ 2,Y ≤ 2].
5.4 Two discrete random variables X and Y have the joint CDF defined as fol-

lows:

FXY(x,y) =





1/12 x = 0, y = 0
1/3 x = 0, y = 1
2/3 x = 0, y = 2
1/6 x = 1, y = 0
7/12 x = 1, y = 1
1 x = 1, y = 2

Determine the following:

a. P[0 < X < 2,0 < Y < 2]
b. the marginal CDFs of X and Y (i.e., FX(x) and FY(y))

c. P[X = 1,Y = 1]
5.5 Two discrete random variables X and Y have the joint PMF defined as fol-

lows:

pXY(x,y) =





1/12 x = 1, y = 1
1/6 x = 1, y = 2
1/12 x = 1, y = 3
1/6 x = 2, y = 1
1/4 x = 2, y = 2
1/12 x = 2, y = 3
1/12 x = 3, y = 1
1/12 x = 2, y = 2
0 otherwise
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Determine the following:

a. the marginal PMFs of X and Y(i.e., pX(x) and pY(y))

b. P[X < 2.5]
c. the probability that Y is odd

5.6 Two discrete random variables X and Y have the joint PMF given by

pXY(x,y) =





0.2 x = 1, y = 1
0.1 x = 1, y = 2
0.1 x = 2, y = 1
0.2 x = 2, y = 2
0.1 x = 3, y = 1
0.3 x = 3, y = 2

Determine the following:

a. the marginal PMFs of X and Y (i.e., pX(x) and pY(y))

b. the conditional PMF of X given Y , pX|Y(x|y)

c. whether X and Y are independent.

Section 5.4: Bivariate Continuous Random Variables

5.7 The joint PDF of two continuous random variables X and Y is given by

fXY(x,y) =
{

kx 0 < y ≤ x < 1
0 otherwise

a. Determine the value of the constant k.

b. Find the marginal PDFs of X and Y .

c. Find P

[
0 < X <

1

2
,0 < Y <

1

4

]

5.8 The joint CDF of two continuous random variables X and Y is given by

FXY(x,y) =
{

1 − e−axe−by + e−(ax+by) x ≥ 0; y ≥ 0
0 otherwise

a. Find the marginal PDFs of X and Y

b. Carefully show why or why not X and Y are independent.

5.9 Two random variables X and Y have the joint PDF given by

fXY(x,y) =
{

ke−(2x+3y) x ≥ 0, y ≥ 0
0 otherwise
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Determine the following:

a. the value of the constant k that makes fXY(x,y) a true joint PDF

b. the marginal PDFs of X and Y

c. P[X < 1,Y < 0.5]
5.10 Two random variables X and Y have the joint PDF given by

fXY(x,y) =
{

k
(
1 − x2y

)
0 ≤ x ≤ 1, 0 ≤ y ≥ 1

0 otherwise

Determine the following:

a. the value of the constant k that makes fXY(x,y) a true joint PDF

b. the conditional PDFs of X given Y , f X|Y(x|y), and Y given X , f Y|X(y|x)

5.11 The joint PDF of two random variables X and Y is given by

fXY(x,y) = 6

7

(
x2 + xy

2

)
0 < x < 1,0 < y < 2

a. What is the CDF FX(x) of X?

b. Find P[X > Y].

c. Find P

[
Y >

1

2
|X <

1

2

]
.

5.12 Two random variables X and Y have the joint PDF given by

fXY(x,y) =
{

ke−(x+y) x ≥ 0, y ≥ x

0 otherwise

Determine the following:

a. the value of the constant k that makes fXY(x,y) a true joint PDF

b. P[Y < 2X]
5.13 The joint PDF of two random variables X and Y is given by

fXY(x,y) = 6x

7
1 ≤ x + y ≤ 2,x ≥ 0,y ≥ 2

a. Without actually performing the integration, obtain the integral that ex-
presses the P

[
Y > X2

]
. (That is, just give the exact limits of the integra-

tion.)

b. In a very convincing way, obtain the exact value of P[X > Y].
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5.14 Two random variables X and Y have the joint PDF given by

fXY(x,y) =
{

1

2
e−2y 0 ≤ x ≤ 4, y ≥ 0

0 otherwise

Determine the marginal PDFs of X and Y .

Section 5.6: Conditional Distributions

5.15 A box contains 3 red balls and 2 green balls. One ball is randomly selected
from the box, its color is observed, and it is put back into the box. A second
ball is then selected and goes through the same process. Let the random
variables X and Y be defined as follows: X = 0 if the first ball is green, and
X = 1 if the first ball is red; Y = 0 if the second ball is green, and Y = 1 if
the second ball is red.

a. Find the joint PMF of X and Y .

b. Find the conditional PMF of X given Y .

5.16 Let the random variables X and Y have the joint PDF fXY(x,y) = 2e−(x+2y),
x ≥ 0, y ≥ 0. Find the conditional expectation of (a) X given Y , and (b) Y

given X .

5.17 A fair coin is tossed four times. Let X denote the number of heads obtained
in the first two tosses, and let Y denote the number of heads obtained in the
last two tosses.

a. Find the joint PMF of X and Y .

b. Show that X and Y are independent random variables.

5.18 Two random variables X and Y have the joint PDF

fXY(x,y) = xye−y2/4 0 ≤ x ≤ 1,y ≥ 0

a. Find the marginal PDFs of X and Y.

b. Determine if X and Y are independent.

5.19 Two random variables X and Y have the joint PDF

fXY(x,y) = 6

7
x 1 ≤ x + y ≤ 2,x ≥ 0,y ≥ 0

a. Find the marginal PDFs of X and Y.

b. Determine if X and Y are independent.
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Section 5.7: Covariance and Correlation Coefficient

5.20 Two discrete random variables X and Y have the joint PMF given by

pXY(x,y) =





0 x = −1, y = 0

1

3
x = −1, y = 1

1

3
x = 0, y = 0

0 x = 0, y = 1
0 x = 1, y = 0
1

3
x = 1, y = 1

a. Are X and Y independent?

b. What is the covariance of X and Y?

5.21 Two events A and B are such that P[A] = 1/4, P[B|A] = 1/2, and P[A|B] =
1/4. Let the random variable X be defined such that X = 1 if event A occurs
and X = 0 if event A does not occur. Similarly, let the random variable Y

be defined such that Y = 1 if event B occurs and Y = 0 if event B does not
occur.

a. Find E[X] and the variance of X .

b. Find E[Y] and the variance of Y .

c. Find ρXY and determine whether or not X and Y are uncorrelated.

5.22 A fair die is tossed three times. Let X be the random variable that denotes
the number of 1’s and let Y be the random variable that denotes the number
of 3’s. Find the correlation coefficient of X and Y .

Section 5.9: Multinomial Distributions

5.23 A box contains 10 chips from supplier A, 16 chips from supplier B, and 14
chips from supplier C. Assume that we perform the following experiment
20 times: We draw one chip from the box, note the supplier from where it
came, and put it back into the box. What is the probability that a chip from
vendor B is drawn 9 times?

5.24 With reference to the previous problem, what is the probability that a chip
from vendor A is drawn 5 times and a chip from vendor C is drawn 6 times?

5.25 The students in one college have the following rating system for their pro-
fessors: excellent, good, fair, and bad. In a recent poll of the students, it
was found that they believe that 20% of the professors are excellent, 50%
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are good, 20% are fair, and 10% are bad. Assume that 12 professors are
randomly selected from the college.

a. What is the probability that 6 are excellent, 4 are good, 1 is fair, and 1 is
bad?

b. What is the probability that 6 are excellent, 4 are good, and 2 are fair?

c. What is the probability that 6 are excellent and 6 are good?

d. What is the probability that 4 are excellent and 3 are good?

e. What is the probability that 4 are bad?

f. What is the probability that none is bad?

5.26 Studies on the toasters made by a company indicate that 50% are good,
35% are fair, 10% burn the toast, and 5% catch fire. If a store has 40 of
these toasters in stock, determine the following probabilities:

a. 30 are good, 5 are fair, 3 burn the toast, and 2 catch fire

b. 30 are good and 4 are fair

c. None catches fire

d. None burns the toast and none catches fire

5.27 Ten pieces of candy are given out at random to a group that consists of 8
boys, 7 girls, and 5 adults. If anyone can get more than one piece of candy,
find the following probabilities:

a. 4 pieces go to the girls and 2 go to the adults

b. 5 pieces go to the boys
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6.1 Introduction

The previous chapters discussed basic properties of events defined in a given sam-
ple space and the random variables used to represent those events. The funda-
mental assumption that was made in those chapters is that events can always
be defined by random variables. However, in many applications, the events are
functions of other events. For example, the time until a complex system fails is
a function of the time to failure of the individual components that make up the
system. This means that the random variable used to represent the time to failure
of the complex system is a function of the random variables used to represent
the times to failure of the component parts of the system. This chapter deals with
functions of random variables. Because of the complexity involved in computing

197
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the CDFs and PDFs of functions of multiple random variables, we restrict our
discussion to functions of at most two random variables.

6.2 Functions of One Random Variable

Let X be a random variable, and let Y be a new random variable that is a function
of X . That is,

Y = g(X)

We are interested in computing the PDF or PMF of Y when the PDF or PMF of
X is given. For example, let g(X) = X + 5. Then

FY(y) = P[Y ≤ y] = P[X + 5 ≤ y]

6.2.1 Linear Functions

Consider the function g(X) = aX + b, where a and b are constants. The CDF of
Y is given by

FY(y) = P{Y ≤ y} = P[aX + b ≤ y]

= P

[
X ≤ y − b

a

]

= FX

(
y − b

a

)

where a is positive. The PDF of Y is given by

fY(y) = dFY(y)

dy
=

dFX

(y − b

a

)

dy
=

(
dFX(u)

du

)(
du

dy

)

where u = y − b

a
and

du

dy
= 1

a
. Thus,

fY(y) = fX(u)

(
1

a

)

=
(

1

a

)
fX

(
y − b

a

)

If a < 0, we have that

FY(y) = P{Y ≤ y} = P[aX + b ≤ y] = P[aX ≤ y − b]

= P

[
X ≥ y − b

a

]
= 1 −

{
P

[
X ≤ y − b

a

]
− P

[
X = y − b

a

]}
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The change in sign on the second line arises from the fact that a is negative. If
X is continuous, P[X = (y − b)/a] = 0. Thus, the CDF and PDF for the case of
negative a are given by

FY(y) = 1 − P

[
X ≤ y − b

a

]

= 1 − FX

(
y − b

a

)

fY(y) = −
(

1

a

)
fX

(
y − b

a

)

Therefore, the general PDF of Y is given by

fY(y) = 1

|a| fX

(
y − b

a

)

Example 6.1 Find the PDF of Y in terms of the PDF of X if Y = 2X + 7.

Solution From the results obtained above,

FY(y) = FX

(
y − 7

2

)

fY(y) =
(

1

2

)
fX

(
y − 7

2

)

�

6.2.2 Power Functions

Consider the quadratic function Y = X2. The plot of Y against X is shown in
Figure 6.1 where we see that for one value of Y there are two values of X , namely√

Y and −
√

Y.

Thus, the CDF of Y is given by

FY(y) = P[Y ≤ y] = P
[
X2 ≤ y

]

= P
[
|X| ≤ √

y
]

y > 0

= P
[
−√

y ≤ X ≤ √
y
]

= FX

(√
y
)
− FX

(
−√

y
)
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Figure 6.1 Plot of Y = X2

The PDF of Y is given by

fY(y) = dFY(y)

dy
= d

dy

[
FX

(√
y
)
− FX

(
−√

y
)]

Let u = √
y = y

1
2 . Thus,

du

dy
= 1

2
y− 1

2 and

fY(y) = d

dy

[
FX

(√
y
)
− FX

(
−√

y
)]

= dFX(u)

du

du

dy
+ dFX(−u)

du

du

dy

= 1

2
y− 1

2

[
dFX(u)

du
+ dFX(−u)

du

]

= 1

2
y− 1

2
[
fX

(√
y
)
+ fX

(
−√

y
)]

= fX(
√

y) + fX(−√
y)

2
√

y
y > 0

If fX(x) is an even function, then fX(x) = fX(−x) and FX(−x) = 1 − FX(x). Thus,
we have

fY(y) = fX(
√

y) + fX(−√
y)

2
√

y
= 2fX(

√
y)

2
√

y
= fX(

√
y)

√
y

Example 6.2 Find the PDF of the random variable Y = X2, where X is the stan-
dard normal random variable.
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Solution Since the PDF of X is given by fX(x) = 1√
2π

e−x2/2, which is an even

function, we have that and

FY(y) = FX

(√
y
)
− FX

(
−√

y
)

= 2FX

(√
y
)
− 1

Therefore, if we let u = √
y, then

fY(y) = dFY(y)

dy
= 2

dFX(u)

du

1

2
√

y

= 1
√

y
fX

(√
y
)

= 1√
2πy

e−y/2 y > 0

�

6.3 Expectation of a Function of One Random Variable

Let X be a random variable and g(X) be a real-valued function of X . The ex-
pected value of g(X) is defined by

E[g(X)] =





∑

x

g(x)pX(x) X discrete

∫ ∞

−∞
g(x)fX(x)dx X continuous

6.3.1 Moments of a Linear Function

Assume that g(X) = aX + b, where X is a continuous random variable. Then

E[g(X)] = E[aX + b]

=
∫ ∞

−∞
g(x)fX(x)dx =

∫ ∞

−∞
(ax + b)fX(x)dx

= a

∫ ∞

−∞
xfX(x)dx + b

∫ ∞

−∞
fX(x)dx

= aE[X] + b
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This means that the expected value of a linear function of a single random vari-
able is the linear function obtained by replacing the random variable by its ex-
pectation. When X is a discrete random variable, we replace the summation by
integration and obtain the same result.

The variance of g(X) is given by

Var(g(X)) = Var(aX + b) = E
[
(aX + b − E[aX + b])2

]

= E
[
(aX + b − aE[X] − b)2

]

= E
[
a2(X − E[X])2

]
= a2E

[
(X − E[X])2

]

= a2σ2
X

6.4 Sums of Independent Random Variables

Consider two independent continuous random variables X and Y . We are inter-
ested in computing the CDF and PDF of their sum g(X,Y) = S = X + Y . The
random variable S can be used to model the reliability of systems with stand-by
connections, as shown in Figure 6.2. In such systems, the component A whose
time-to-failure is represented by the random variable X is the primary compo-
nent, and the component B whose time-to-failure is represented by the random
variable Y is the backup component that is brought into operation when the pri-
mary component fails. Thus, S represents the time until the system fails, which is
the sum of the lifetimes of both components.

Their CDF can be obtained as follows:

FS(s) = P[S ≤ s] = P[X + Y ≤ s] =
∫

D

∫
fXY(x,y)dxdy

where D is the set D = {(x,y)|x + y ≤ s}, which is the area to the left of the line
s = x + y as shown in Figure 6.3.

Figure 6.2 Stand-by Connection Modeled by the Random Variable S
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Thus,

FS(s) =
∫ ∞

−∞

∫ s−y

−∞
fXY(x,y)dxdy =

∫ ∞

−∞

∫ s−y

−∞
fX(x)fY(y)dxdy

=
∫ ∞

−∞

{∫ s−y

−∞
fX(x)dx

}
fY(y)dy

=
∫ ∞

−∞
FX(s − y)fY(y)dy

The PDF of S is obtained by differentiating the CDF, as follows:

fS(s) = d

ds
FS(s) = d

ds

∫ ∞

−∞
FX(s − y)fY(y)dy

=
∫ ∞

−∞

d

ds
FX(s − y)fY(y)dy

=
∫ ∞

−∞
fX(s − y)fY(y)dy

where we have assumed that we can interchange differentiation and integration.
The expression on the right-hand side is a well-known result in signal analysis

Figure 6.3 Domain of D
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called the convolution integral. Thus, we find that the PDF of the sum S of two
independent random variables X and Y is the convolution of the PDFs of the two
random variables; that is,

fS(s) = fX(s) ∗ fY(s)

Example 6.3 Find the PDF of the sum of X and Y if the two random variables
are independent random variables with the common PDF

fX(u) = fY(u) =
{

1

4
0 < u < 4

0 otherwise

Solution The limits of integration of the PDF of S = X + Y can be computed
with the aid of Figure 6.4. When 0 ≤ s ≤ 4 (see Figure 6.4(a) where fY(s − x) is
shown in dashed lines),

fS(s)

∫ s

0

1

16
dy = s

16

For 4 < s < 8 (see Figure 6.4(b)), we obtain

fS(s) = 1

16

∫ 4

s−4
dy = 8 − s

16

Thus

fS(s) =





s

16
0 ≤ s ≤ 4

8 − s

16
4 < s < 8

0 otherwise
�

Figure 6.4 Convolution of PDFs (a) 0 ≤ s ≤ 4 and (b) 4 < s < 8
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Figure 6.5 PDF of S = X + Y

The PDF of S is illustrated in Figure 6.5.

Example 6.4 (A more general case of Example 6.3.) Obtain the PDF of Z =
X + Y , where X and Y are two independent random variables with the following
PDFs:

fX(x) =
{ 1

b − a
a < x < b

0 otherwise

fY(y) =
{ 1

d − c
c < y < d;d − c < b − a

0 otherwise

Solution The two PDFs are shown in Figure 6.6.
To evaluate the limits of integration of the PDF of Z, we consider the following
regions represented by the diagram shown in Figure 6.7.

When z < a+c, fZ(z) = 0. When a+c ≤ z ≤ a+d (see Figure 6.7(i)), we obtain

fZ(z) = 1

(b − a)(d − c)

∫ z−c

a

dy = z − c − a

(b − a)(d − c)

When a + d ≤ z ≤ b + c (see Figure 6.7(ii)), we obtain

fZ(z) = 1

(b − a)(d − c)

∫ z−c

z−d

dy = 1

b − a

When b + c ≤ z ≤ b + d (see Figure 6.7(iii)), we obtain

fZ(z) = 1

(b − a)(d − c)

∫ b

z−d

dy = b + d − z

(b − a)(d − c)
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Figure 6.6 PDFs of X and Y

Figure 6.7 Convolution of the PDFs for Different Values of z

Finally, when z > b + d, fZ(z) = 0. Thus, the PDF of Z is given by

fZ(z) =





0 z < a + c
z − a − c

(b − a)(d − c)
a + c ≤ z ≤ a + d

1

b − a
a + d ≤ z ≤ b + c

b + d − z

(b − a)(d − c)
b + c ≤ z ≤ b + d

0 z > b + d

�

The PDF is graphically illustrated in Figure 6.8, which is a trapezoid. Note
that when b − a = d − c, the PDF reduces to an isosceles triangle centered at
z = (a + c + b + d)/2, similar to that in Figure 6.5. In the special case when a = c

and b = d, the isosceles triangle is centered at z = a + b.

Example 6.5 The time X between consecutive snowstorms in winter is a ran-
dom variable with the PDF

fX(x) =
{

λe−λx x ≥ 0

0 otherwise
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Figure 6.8 PDF of Z = X + Y

Assume it has not snowed up until now. What is the PDF of the time U until the
second snowstorm?

Solution Let X be the random variable that denotes the time until the first
snowstorm from the reference time, and let Y be the random variable that de-
notes the time between the first snowstorm and the second snowstorm. If we
assume that the times between snowstorms are independent, then X and Y are
independent and identically distributed random variables. That is, the PDF of Y

is given by

fY(y) =
{

λe−λy y ≥ 0

0 otherwise

Thus, U = X + Y , and the PDF of U is given by

fU(u) =
∫ ∞

0
fX(x)fY(u − x)dx

Since fX(x) = 0 when x < 0, fY(u − x) = 0 when u − x < 0 (or x > u). Thus, the
range of interest in the integration is 0 ≤ x ≤ u, and we obtain

fU(u) =
∫ u

0
fX(x)fY(u − x)dx

=
∫ u

0
λe−λxλe−λ(u−x)dx = λ2e−λu

∫ u

0
dx

= λ2ue−λu u ≥ 0

�

This is the Erlang-2 distribution.
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Example 6.6 Find the PDF of U, which is the sum of X and Y that are indepen-
dent random variables with the following PDFs:

fX(x) = λe−λx x ≥ 0

fY(y) = λ2ye−λy y ≥ 0

Solution Since X and Y are independent and based on the argument developed
in the previous example, the PDF of U is given by

fU(u) =
∫ u

0
fX(x)fY(u − x)dx

=
∫ u

0
λe−λxλ2(u − x)e−λ(u−x)dx = λ3e−λu

∫ u

0
(u − x)dx

= λ3e−λu

[
ux − x2

2

]u

0

= λ3e−λu

[
u2 − u2

2

]

= λ3u2e−λu

2

= λ3u2e−λu

2! u ≥ 0

�

This is the Erlang-3 distribution.

Example 6.7 Find the PDF of W, which is the sum of X and Y that are indepen-
dent random variables with the following PDFs:

fX(x) = λe−λx x ≥ 0

fY(y) = µe−λy y ≥ 0

where λ 
= µ.

Solution Since X and Y are independent, the PDF of W is given by

fW(w) =
∫ ∞

−∞
fX(x)fY(w − x)dx

The limits of integration can be derived as follows based on the facts presented in
Figure 6.9. The lower limit is zero because fX(x) = 0 when x < 0. Also, fY(w−x) =
0 when w − x < 0 (or when x > w). Thus, the upper limit is w and the range of
interest in the integration is 0 ≤ x ≤ w. �
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Figure 6.9 PDF of W = X + Y

Thus, the PDF of W is given by

fW(w) =
∫ w

0
fX(x)fY(w − x)dx =

∫ w

0
λe−λxµe−µ(w−x)dx

= λµe−µw

∫ w

0
e−(λ−µ)xdx

= λµ

λ − µ
e−µw

{
1 − e−(λ−µ)x

}
= λµ

λ − µ

{
e−µw − e−λw

}
w ≥ 0

Comment: The last three examples illustrate the fact that if fX(x) = 0 for x < 0
and fY(y) = 0 for y < 0, then the PDF of the sum U = X + Y is given by

fU(u) =
∫ u

0
fX(x)fY(u − x)dx =

∫ u

0
fX(u − y)fY(y)dy

6.4.1 Moments of the Sum of Random Variables

Consider two continuous random variables X and Y with joint PDF fXY(x,y).
Let the random variable S be the sum of X and Y ; that is, S = X + Y . The mean
of S is given by

E[S] = E[X + Y] =
∫ ∞

−∞

∫ ∞

−∞
(x + y)fXY(x,y)dxdy

=
∫ ∞

−∞
x

{∫ ∞

−∞
fXY(x,y)dy

}
dx +

∫ ∞

−∞
y

{∫ ∞

−∞
fXY(x,y)dx

}
dy

=
∫ ∞

−∞
xfX(x)dx +

∫ ∞

−∞
yfY(y)dy

= E[X] + E[Y]
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Similarly, the variance of S is given by

σ2
S = E

[
(S − E[S])2

]
= E

[
{X + Y − E[X] − E[Y]}2

]

= E
[
{(X − E[X]) + (Y − E[Y])}2

]

= E
[
(X − E[X])2 + (Y − E[Y])2 + 2(X − E[X])(Y − E[Y])

]

= E
[
(X − E[X])2

]
+ E

[
(Y − E[Y])2

]
+ 2E

[
(X − E[X])(Y − E[Y])

]

= σ2
X + σ2

Y + 2Cov(X,Y)

When X and Y are independent, Cov(X,Y) = 0, and we get σ2
S = σ2

X + σ2
Y .

6.4.2 Sum of Discrete Random Variables

The examples above deal with continuous random variables. Let Z = X + Y ,
where X and Y are discrete random variables. Then the PMF of Z is given by

pZ(z) = P[Z = z] = P[X + Y = z] =
∑

k≤z

P[X = k,Y = z − k] =
∑

k≤z

pXY(k,z − k)

If X and Y are independent random variables, then the PMF of Z is the convolu-
tion of the PMF of X and the PMF of Y . That is,

pZ(z) =
∑

k≤z

pXY(k,z − k) =
∑

k≤z

pX(k)pY(z − k)

Example 6.8 Assume that X is a random variable with the PMF

pX(x) =
{

1

M
x = 0,1,2, . . . ,M − 1

0 otherwise

and Y is the random variable with the PMF

pY(y) =
{

1

N
y = 0,1,2, . . . ,N − 1

0 otherwise

where N > M. If Z = X + Y , find the PMF of Z.

Solution Since X and Y are independent, pZ(z) =
∑

k≤z
pX(k)pY(z − k). The

plots of pX(k) and pY(z − k) are shown in Figure 6.10.
When z < 0, pZ(z) = 0. When 0 ≤ z ≤ M − 1 (see Figure 6.10(a)), pZ(z) =

(z + 1)/NM. When M − 1 ≤ z ≤ N − 1, pZ(z) = 1/N (see Figure 6.10(b)). When
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N − 1 ≤ z ≤ M + N − 2 (see Figure 6.10(c)), pZ(z) = (N + M − 1 − z)/(NM).
Finally, when z > N + M − 2, pZ(z) = 0. Thus, the PMF of Z is given by the
following trapezoid:

pZ(z) =





0 z < 0
z + 1

NM
0 ≤ z ≤ M − 1

1

N
M − 1 ≤ z ≤ N − 1

N + M − 1 − z

NM
N − 1 ≤ z ≤ N + M − 2

0 z > N + M − 2

�

Figure 6.11 shows the PMF of Z.

Figure 6.10 Derivation of the PMF of Z

Figure 6.11 PMF of Z
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Example 6.9 What is the expected sum of the numbers that are obtained in 16
tosses of a fair die?

Solution Let X be the random variable that denotes the sum of the numbers
that appear in 16 tosses of the die. Let Xk denote the number that appears on the
kth toss, 1 ≤ k ≤ 16. Then

X = X1 + X2 + X3 + · · · + X16

Thus, since the Xk are independent and identically distributed random variables,

E[X] =
16∑

k=1

E[Xk] = 16E[X1]

Now, since each of the 6 numbers is equally likely to appear on a toss of the die,
pXk

(x) = 1/6, x = 1,2, . . . ,6. Thus,

E[X1] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2

Therefore, E[X] = 16E[X1] = (16 × 7)/2 = 56. �

Example 6.10 A group of N graduating seniors of a boys’ high school threw
their caps up into the air after their commencement exercise and walked away
as the caps fell to the floor of the commencement hall. The janitor picked up the
caps and put them in a room. If each student later came back and picked up a
cap at random, what is the expected number of students who picked up their own
caps?

Solution Let X be the random variable that denotes the number of students
who picked their own caps. Let Xk be the indicator random variable defined as
follows:

Xk =
{

1 if the kth student picked his own cap

0 otherwise

where 1 ≤ k ≤ N. Thus,

X = X1 + X2 + X3 + · · · + XN

If the caps are picked up randomly, then for each k, E[Xk] = P[Xk = 1] = 1/N.
Thus,

E[X] =
N∑

k=1

E[Xk] = NE[X1] = N/N = 1

�
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Example 6.11 Students arrive at a dance hall in pairs of one boy and one girl.
There are N couples, and the building owner discovered that having 2N people
in the hall violates the building code. To comply with the code, he must ask m

people to leave. If he selects these m people in a random manner, what is the
expected number of couples that would still remain in the hall?

Solution Let X be the random variable that denotes the number of couples that
remain in the hall after the m people have been removed. Let Xk be the indicator
random variable defined as follows:

Xk =
{

1 if the kth couple remains

0 otherwise

where 1 ≤ k ≤ N. Thus,

X = X1 + X2 + X3 + · · · + XN

For each k, E[Xk] = P[Xk = 1]. But the probability that a couple remains is the
ratio of the number of ways of choosing m people from 2N − 2 people to the
number of ways of choosing m people from 2N people, where the number 2N − 2
follows from the fact that the 2 people are not among those being considered for
removal. That is,

E[Xk] = P[Xk = 1] =

(
2N − 2

m

)

(
2N

m

)

=

{
(2N − 2)!

m!(2N − m)!

}

{
(2N)!

m!(2N − m)!

} = (2N − m)(2N − n − 1)

2N(2N − 1)

Thus,

E[X] =
N∑

k=1

E[Xk] = NE[X1] = N(2N − m)(2N − m − 1)

2N(2N − 1)

= (2N − m)(2N − m − 1)

2(2N − 1)

�

For example, if N = 50 and m = 15, then E[X] = 36.06, which means that 36
couples would still remain in the hall.
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6.4.3 Sum of Independent Binomial Random Variables

Let X and Y be two independent binomial random variables with parameters
(n,p) and (m,p), respectively. Let their sum be Z; that is, Z = X + Y . Then the
PMF of Z is given by

pZ(z) = P[X + Y = z]

=
n∑

k=0

P[X = k,Y = z − k] =
n∑

k=0

P[X = k]P[Y = z − k]

=
n∑

k=0

(
n

k

)
pk(1 − p)n−k

(
m

z − k

)
pz−k(1 − p)m−z+k

= pz(1 − p)n+m−z
n∑

k=0

(
n

k

)(
m

z − k

)

Using the combinatorial identity

(
n + m

z

)
=

n∑

k=0

(
n

k

)(
m

z − k

)
, we obtain

pZ(z) =
(

n + m

z

)
pz(1 − p)n+m−z

This result shows that the sum of two independent binomial random variables
with parameters (n,p) and (m,p) is a binomial random variable with parameter
(n + m,p).

6.4.4 Sum of Independent Poisson Random Variables

Let X and Y be two independent Poisson random variables with parameters
λX and λY and let Z be their sum; that is, Z = X + Y . Consider the event
{Z = z}, which can be written as the union of two subevents: {Z = X + Y = z} =
{X = k,Y = z − k}, 0 ≤ k ≤ z. Thus, the PMF of Z is given by

pZ(z) = P[X + Y = z] =
∑

k=0

P[X = k,Y = z − k]

=
z∑

k=0

P[X = k]P[Y = z − k] =
z∑

k=0

{
λk

X

k! e−λX

}{
λz−k

Y

(z − k)!e−λY

}

= e−(λX+λY ) 1

z!

z∑

k=0

z!
k!(z − k)!λ

k
Xλz−k

Y = e−(λX+λY )

z!

z∑

k=0

(
z

k

)
λk

Xλz−k
Y
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Using the binomial identity

z∑

k=0

(
z

k

)
λk

Xλz−k
Y = (λX + λY)z the result becomes

pZ(z) = (λX + λY)z

z! e−(λX+λY ) z = 0,1,2, . . .

Thus, the sum of two independent Poisson random variables with parameters λX

and λY is a Poisson random variable with parameter λX + λY .

6.4.5 The Spare Parts Problem

From Figure 6.2 we can see that finding the sum of independent random variables
is equivalent to finding the lifetime of a system that achieves continuous opera-
tion by permitting instantaneous replacement of a component with a spare part
at the time of the component’s failure. One interesting issue is to find the prob-
ability that the life of the system exceeds a given value. For the case where only
one spare part is available, we are basically dealing with the sum of two random
variables. For the case where we have n − 1 spare parts, we are dealing with the
sum of n random variables. For the case of n = 2, we have that if the lifetime of
the primary component is X and the lifetime of the spare component is Y , where
X and Y are independent, then the lifetime of the component W and its PDF are
given by

W = X + Y

fW(w) =
∫ w

0
fX(w − y)fY(y)dy

Thus, if we define the reliability function of the system by RW(w), the probability
that the lifetime of the system exceeds the value w0 is given by

P[W > w0] =
∫ ∞

w0

fW(w)dw = 1 − FW(w0)

= RW(w0)

If it is desired that P[W > w0] ≥ φ, where 0 ≤ φ < 1, then we could be required
to find the parameters of X and Y that are necessary to achieve this goal. For
example, if X and Y are independent and identically distributed exponential ran-
dom variables with mean 1/λ, we can find the smallest mean value of the random
variables that can achieve this goal.

For the case of n − 1 spare parts, the lifetime of the system U is given by

U = X1 + X2 + · · · + Xn
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where Xk is the lifetime of the kth component. If we assume that the Xk are
independent, the PDF of U is given by the following n-fold convolution integral:

fU(u) =
∫ u

0

∫ x1

0
. . .

∫ xn−1

0
fX1

(u − x1)fX2
(x1 − x2) . . . fXn−1

(xn−1 − xn)

× fXn(xn)dxndxn−1 . . .dx1

For the special case when the Xk are identically distributed exponential ran-
dom variables with mean 1/λ, U becomes an nth order Erlang random variable
with the PDF, CDF, and reliability function given by

fU(u) =
{

λnun−1e−λu

(n − 1)! n = 1,2, . . . ; u ≥ 0

0 u < 0

FU(u) = 1 −
n−1∑

k=0

(λu)ke−λu

k!

RU(u) = 1 − FU(u) =
n−1∑

k=0

(λu)ke−λu

k!

Example 6.12 A system consists of one component whose lifetime is exponen-
tially distributed with a mean of 50 hours. When the component fails, it is imme-
diately replaced by a spare component whose lifetime is independent and identi-
cally distributed as that of the original component without the system suffering a
downtime.

(a) What is the probability that the system has not failed after 100 hours of op-
eration?

(b) If the mean lifetime of the component and its spare is increased by 10%,
how does that affect the probability that the system exceeds a lifetime of 100
hours?

Solution Let X be a random variable that denotes the lifetime of the component
and let U be the random variable that denotes the lifetime of the system. Then,
U is an Erlang-2 random variable whose PDF, CDF, and reliability function are
given by

fU(u) =
{

λ2ue−λu u ≥ 0
0 u < 0
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FU(u) = 1 −
1∑

k=0

(λu)ke−λu

k! = 1 − e−λu{1 + λu}

RU(u) = 1 − FU(u) = e−λu{1 + λu}

(a) Since 1/λ = 50, we have that

P[U > 100] = RU(100) = e−100/50

{
1 + 100

50

}
= e−2{1 + 2} = 0.4060

(b) When we increase the mean lifetime of the component by 10%, we obtain
1/λ = 50(1 + 0.1) = 55. Thus, with the new λu = 100/55, the corresponding
value of RU(100) is

RU(100) = e−100/50

{
1 + 100

50

}
= 0.4574

�

That is, the probability that the system lifetime exceeds 100 hours increases by
approximately 13%.

Example 6.13 The time to failure of a component of a system is exponentially
distributed with a mean of 100 hours. If the component fails, it is immediately
replaced by an identical spare component whose time to failure is independent of
that of the previous one and the system experiences no downtime in the process
of component replacement. What is the smallest number of spare parts that must
be used to guarantee continuous operation of the system for at least 300 hours
with a probability of at least 0.95?

Solution Let X be the random variable that denotes the lifetime of a compo-
nent, and let the number of spare parts be n − 1. Let U be the random variable
that denotes the lifetime of the system. Then U = X1 + X2 + · · ·+ Xn, which is an
Erlang-n random variable whose reliability function is given by

RU(u) = e−λu

{
1 + λu + (λu)2

2! + · · · + (λu)n−1

(n − 1)!

}
≥ 0.95

Since λ = 1/100 we have that

RU(300) = e−3

{
1 + 3 + (3)2

2! + (3)3

3! + (3)4

4! + (3)5

5! + · · · + (3)n−1

(n − 1)!

}
≥ 0.95

The following Table 6.1 shows the values of RU(300) for different values of n.
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Table 6.1 Values of n − 1 and RU(300)

n − 1 RU(300)

0 0.0498
1 0.1991
2 0.4232
3 0.6472
4 0.8153
5 0.9161
6 0.9665

Thus, we see that with n − 1 = 5 we cannot provide the required probabil-
ity of operation, while with n − 1 = 6 we can. This means that we need 6 spare
components to achieve the goal. �

6.5 Minimum of Two Independent Random Variables

Consider two independent continuous random variables X and Y . We are in-
terested in a random variable U that is the minimum of X and Y ; that is,
U = min(X,Y). The random variable U can be used to represent the reliabil-
ity of systems with series connections, as shown in Figure 6.12. Such systems are
operational as long as all components are operational. The first component to fail
causes the system to fail. Thus, if in the example shown in Figure 6.12 the times-
to-failure are represented by the random variables X and Y , then S represents
the time until the system fails, which is the minimum of the lifetimes of the two
components.

The CDF of U can be obtained as follows:

FU(u) = P[U ≤ u] = P[min(X,Y) ≤ u] = P[(X ≤ u,X ≤ Y) ∪ (Y ≤ u,X > Y)]

Since P[A∪B] = P[A]+P[B]−P[A∩B], we have that FU(u) = FX(u)+FY(u)−
FXY(u,u). Also, since X and Y are independent, we obtain the CDF and PDF of
U as follows:

FU(u) = FX(u) + FY(u) − FXY(u,u) = FX(u) + FY(u) − FX(u)FY(u)

fU(u) = d

du
FU(u) = fX(u) + fY(u) − fX(u)FY(u) − FX(u)fY(u)

= fX(u){1 − FY(u)} + fY(u){1 − FX(u)}
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Figure 6.12 Series Connection Modeled by the Random Variable U

Example 6.14 Assume that U = min(X,Y), where X and Y are independent
random variables with the respective PDFs

fX(x) = λe−λx x ≥ 0

fY(y) = µe−µy y ≥ 0

where λ > 0 and µ > 0. What is the PDF of U?

Solution We first obtain the CDFs of X and Y , which are as follows:

FX(x) = P[X ≤ x] =
∫ x

0
λe−λwdw = 1 − e−λx

FY(y) = P[Y ≤ y] =
∫ y

0
µe−µwdw = 1 − e−µy

Thus, the PDF of U is given by

fU(u) = fX(u){1 − FY(u)} + fY(u){1 − FX(u)}
= λe−λue−µu + µe−µue−λu

= (λ + µ)e−(λ+µ)u u ≥ 0

�

Since λ and µ are the failure rates of the components, the result indicates that
the composite system behaves like a single unit whose failure rate is the sum of
the two failure rates. More importantly, U is an exponentially distributed random
variable whose expected value is E[U] = 1/(λ + µ).

6.6 Maximum of Two Independent Random Variables

Consider two independent continuous random variables X and Y . We are inter-
ested in the CDF and PDF of the random variable W that is the maximum of the
two random variables; that is, W = max(X,Y). The random variable W can be
used to represent the reliability of systems with parallel connections, as shown in
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Figure 6.13 Parallel Connection Modeled by the Random Variable W

Figure 6.13. In such systems, we are interested in passing a signal between the two
endpoints through either the component labeled A or the component labeled B.
Thus, as long as one or both components are operational, the system is opera-
tional. This implies that the system is declared to have failed when both paths
become unavailable. That is, the reliability of the system depends on the reliabil-
ity of the last component to fail.

The CDF of W can be obtained by noting that if the greater of the two random
variables is less than or equal to w, then the smaller random variable must also
be less than or equal to w. Thus,

FW(w) = P[W ≤ w] = P[max(X,Y) ≤ w] = P[(X ≤ w) ∩ (Y ≤ w)] = FXY(w,w)

Since X and Y are independent, we obtain the CDF and PDF of W as follows:

FW(w) = FXY(w,w) = FX(w)FY(w)

fW(w) = d

dw
FW(w) = fX(w)FY(w) + FX(w)fY(w)

Example 6.15 Assume that W = max(X,Y), where X and Y are independent
random variables with the respective PDFs:

fX(x) = λe−λx x ≥ 0

fY(y) = µe−µy y ≥ 0

where λ > 0 and µ > 0. What is the PDF of W?

Solution We first obtain the CDFs of X and Y , which are as follows:

FX(x) = P[X ≤ x] =
∫ x

0
λe−λzdz = 1 − e−λx

FY(y) = P[Y ≤ y] =
∫ y

0
µe−µzdz = 1 − e−µy

Thus, the PDF of W is given by

fW(w) = fX(w)FY(w) + FX(w)fY(w)
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= λe−λw
(
1 − e−µw

)
+ µe−µw

(
1 − e−λw

)

= λe−λw + µe−µw − (λ + µ)e−(λ+µ)w w ≥ 0

�

Note that the expected value of W is E[W] = 1/λ + 1/µ − 1/(λ + µ).

6.7 Comparison of the Interconnection Models

So far we have considered three models for interconnecting two components,
namely the standby model, serial model, and parallel model. Figure 6.14 is a re-
view of the three models. Let X be the random variable that denotes the lifetime
of component A, and Y be the random variable that denotes the lifetime of com-
ponent B.

We define the following random variables:

S = X + Y

U = min(X,Y)

W = max(X,Y)

Assume that the PDFs of X and Y are defined respectively as follows:

fX(x) = λe−λx x ≥ 0, λ > 0

fY(y) = µe−µy y ≥ 0, µ > 0

Figure 6.14 The Three Interconnection Models
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The following is a summary of the results obtained earlier for the PDFs of S,U

and W in terms of those of X and Y :

fS(s) = λµ

λ − µ

{
e−µs − e−λs

}
s ≥ 0

fU(u) = (λ + µ)e−(λ+µ)u u ≥ 0

fW(w) = λe−λw + µe−µw − (λ + µ)e−(λ+µ)w w ≥ 0

Similarly, the mean values of the random variables are given by

E[S] = 1

λ
+ 1

µ

E[U] = 1

λ + µ

E[W] = 1

λ
+ 1

µ
− 1

λ + µ

From the above result, we find that E[S] > E(W). We then compare E[U] and
E[W]. We have that

E[W] − E[U] = 1

λ
+ 1

µ
− 1

λ + µ
− 1

λ + µ
= 1

λ
+ 1

µ
− 2

λ + µ

= µ(λ + µ) + λ(λ + µ) − 2λµ

λµ(λ + µ)
= (λ + µ)2 − 2λµ

λµ(λ + µ)
= λ2 + µ2

λµ(λ + µ)
> 0

Thus, we have that E[S] > E[W] > E[U]. That is, the standby connection has the
greatest mean lifetime, followed by the parallel connection, and the serial con-
nection has the smallest mean lifetime. This result is not surprising because the
failure rate of the serial connection is the sum of the failure rates of the two com-
ponents, which means that the mean lifetime of the serial connection is smaller
than the mean lifetime of either component. Similarly, the mean lifetime of the
standby connection is the sum of the mean lifetimes of the individual components.
Finally, the mean lifetime of the parallel connection is equal to the mean lifetime
of the component that lasts the longer time, which means that it lies somewhere
between those of the other two models.

6.8 Two Functions of Two Random Variables

Let X and Y be two random variables with a given joint PDF fXY(x,y). As-
sume that U and W are two functions of X and Y ; that is, U = g(X,Y) and
W = h(X,Y). Sometimes it is necessary to obtain the joint PDF of U and W,
fUW(u,w), in terms of the PDFs of X and Y .



6.8 Two Functions of Two Random Variables 223

It can be shown that fUW(u,w) is given by

fUW(u,w) = fXY(x1,y1)

|J(x1,y1)|
+ fXY(x2,y2)

|J(x2,y2)|
+ · · · + fXY(xn,yn)

|J(xn,yn)|

where (x1,y1), (x2,y2), . . . , (xn,yn) are real solutions of the equations u =
g(x,y) and w = h(x,y); and J(x,y) is called the Jacobian of the transformation
{u = g(x,y),w = h(x,y)} and defined by

J(x,y) =

∣∣∣∣∣∣∣

∂g

∂x

∂g

∂y

∂h

∂x

∂h

∂y

∣∣∣∣∣∣∣
= ∂g

∂x
· ∂h

∂y
− ∂g

∂y
· ∂h

∂x

Example 6.16 Let U = g(X,Y) = X + Y and W = h(X,Y) = X − Y . Find
fUW(u,w).

Solution The unique solution to the equations u = x + y and w = x − y is x =
(u + w)/2 and y = (u − w)/2. Thus, there is only one set of solutions. Since

J(x,y) =

∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y

∂w

∂x

∂w

∂y

∣∣∣∣∣∣∣
=

∣∣∣∣
1 1
1 −1

∣∣∣∣ = −2

we obtain

fUW(u,w) = fXY(x,y)

|J(x,y)| = 1

| − 2| fXY

(
u + w

2
,

u − w

2

)
= 1

2
fXY

(
u + w

2
,

u − w

2

)

�

Example 6.17 Find fUW(u,w) if U = X2 + Y2 and W = X2.

Solution From the second equation we have that x = ±
√

w. Substituting this
value of x in the first equation, we obtain y = ±

√
(u − w), which is real only when

u ≥ w. Also,

J(x,y) =

∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y

∂w

∂x

∂w

∂y

∣∣∣∣∣∣∣
=

∣∣∣∣
2x 2y

2x 0

∣∣∣∣ = −4xy
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Thus,

fUW(u,w) = fXY(
√

w,
√

u − w)

4|
√

w(u − w)|
+ fXY(

√
w,−

√
u − w)

4| −
√

w(u − w)|
+ fXY(−

√
w,

√
u − w)

4| −
√

w(u − w)|

+ fXY(−
√

w,−
√

u − w)

4|
√

w(u − w)|

= fXY(
√

w,
√

u − w) + fXY(
√

w,−
√

u − w)

4|
√

w(u − w)|

+ fXY(−
√

w,
√

u − w) + fXY(−
√

w,−
√

u − w)

4|
√

w(u − w)|
u > w > 0

�

6.8.1 Application of the Transformation Method

Assume that U = g(X,Y), and we are required to find the PDF of U. We can
use the above transformation method by defining an auxiliary function W = X or
W = Y so we can obtain the joint PDF fUW(u,w) of U and W. Then we obtain
the required marginal PDF fU(u) as follows:

fU(u) =
∫ ∞

−∞
fUW(u,w)dw

Example 6.18 Find the PDF of the random variable U = X +Y , where the joint
PDF of X and Y , fXY(x,y), is given.

Solution We define the auxiliary random variable W = X . Then the unique so-
lution to the two equations is x = w and y = u − w, and the Jacobian of the trans-
formation is

J(x,y) =

∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y

∂w

∂x

∂w

∂y

∣∣∣∣∣∣∣
=

∣∣∣∣
1 1
1 0

∣∣∣∣ = −1

Since there is only one solution to the equations, we have that

fUW(u,w) = fXY(w,u − w)

| − 1| = fXY(w,u − w)

fU(u) =
∫ ∞

−∞
fUW(u,w)dw =

∫ ∞

−∞
fXY(w,u − w)dw

�
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This reduces to the convolution integral we obtained earlier when X and Y

are independent.

Example 6.19 Find the PDF of the random variable U = X −Y , where the joint
PDF of X and Y is given.

Solution We define the auxiliary random variable W = X . Then the unique so-
lution to the two equations is x = w and y = w − u, and the Jacobian of the trans-
formation is

J(x,y) =

∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y

∂w

∂x

∂w

∂y

∣∣∣∣∣∣∣
=

∣∣∣∣
1 −1
1 0

∣∣∣∣ = 1

Since there is only one solution to the equations, we have that

fUW(u,w) = fXY(w,w − u)

fU(u) =
∫ ∞

−∞
fUW(u,w)dw =

∫ ∞

−∞
fXY(w,w − u)dw

�

Example 6.20 The joint PDF of two random variables X and Y is given by
fXY(x,y). If we define the random variable U = XY , determine the PDF of U.

Solution We define the auxiliary random variable W = X . Then the unique so-
lution to the two equations is x = w and y = u/x = u/w, and the Jacobian of the
transformation is

J(x,y) =

∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y

∂w

∂x

∂w

∂y

∣∣∣∣∣∣∣
=

∣∣∣∣
y x

1 0

∣∣∣∣ = −x = −w

Since there is only one solution to the equations, we have that

fUW(u,w) = fXY(x,y)

|J(x,y)| = 1

|w| fXY(w,u/w)

fU(u) =
∫ ∞

−∞
fUW(u,w)dw =

∫ ∞

−∞

1

|w| fXY(w,u/w)dw

�
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Example 6.21 The joint PDF of two random variables X and Y is given by
fXY(x,y). If we define the random variable V = X/Y , determine the PDF of V.

Solution We define the auxiliary random variable W = X . Then the unique so-
lution to the two equations is y = w and x = vy = vw, and the Jacobian of the
transformation is

J(x,y) =

∣∣∣∣∣∣∣

∂v

∂x

∂v

∂y

∂w

∂x

∂w

∂y

∣∣∣∣∣∣∣
=

∣∣∣∣
1/y −x/y2

0 1

∣∣∣∣ = 1/y = 1/w

Since there is only one solution to the equations, we have that

fVW(v,w) = fXY(x,y)

|J(x,y)| = |w|fXY(vw,w)

fV(v) =
∫ ∞

−∞
fUW(v,w)dw =

∫ ∞

−∞
|w|fXY(vw,w)dw

�

6.9 Laws of Large Numbers

There are two fundamental laws that deal with limiting behavior of probabilis-
tic sequences. One law is called the “weak” law of large numbers, and the other
is called the “strong” law of large numbers. The weak law describes how a se-
quence of probabilities converges, and the strong law describes how a sequence
of random variables behaves in the limit.

Let X1,X2, . . . ,Xn be a sequence of mutually independent and identically
distributed random variables each of which has a finite mean E[Xk] = µX , k =
1,2, . . . ,n. Let Sn be the linear sum of the n random variables; that is,

Sn = X1 + X2 + · · · + Xn

Then the average of Sn, which is also called the sample mean, is given by

Sn = Sn

n
= X1 + X2 + · · · + Xn

n

The laws of large numbers state the following:

1. The Weak Law of Large Numbers: For each ε > 0,

lim
n→∞

P[|Sn − µX | > ε] = 0
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An alternative statement of the law is

lim
n→∞

P[|Sn − µX ]| ≤ ε] = 1

2. The Strong Law of Large Numbers: For each ε > 0,

P
[

lim
n→∞

|Sn − µX | > ε
]

= 0

An alternative statement of the law is

P
[

lim
n→∞

|Sn − µX | ≤ ε
]

= 1

Thus, the strong law states that with probability 1 the sequence of sample means
Sn converges to a constant value µX , which is the population mean of the random
variables, as n becomes very large. This validates the relative-frequency definition
of probability. The weak law states that the probability is high that the sequence
of sample means converges to µX as n becomes very large. Thus, the weak law
is a convergence statement about a sequence of probabilities; it states that the
sequence of random variables {Sn} converges in probability to the population
mean µX as n becomes very large.

6.10 The Central Limit Theorem

While the strong law of large numbers helps to validate the relative-frequency
definition of probability, it says nothing about the limiting distribution of the
sum Sn. The central limit theorem achieves this purpose. Let X1,X2, . . . ,Xn be a
sequence of mutually independent and identically distributed random variables
each of which has a finite mean µX and variance σ2

X . Let

Sn = X1 + X2 + · · · + Xn

The central limit theorem states that for large n the distribution of Sn is approxi-
mately normal, regardless of the form of the distribution of the Xk. Now,

Sn = E[Sn] = nµX

σ2
Sn

= nσ2
X

Converting Sn to a standard normal random variable (i.e., zero mean and vari-
ance = 1) we obtain

Zn = Sn − Sn

σSn

= Sn − nµX√
nσ2

X

= Sn − nµX

σX

√
n
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Then the central limit theorem states that if FZn(z) is the CDF of Zn, then

lim
n→∞

FZn(z) = lim
n→∞

P[Zn ≤ z] = 1√
2π

∫ z

−∞
e−u2/2du = �(z)

This means that lim
n→∞

Zn = N(0;1).

Example 6.22 Assume that the random variable Sn is the sum of 48 indepen-
dent experimental values of the random variable X whose PDF is given by

fX(x) =
{

1

3
1 ≤ x ≤ 4

0 otherwise

Find the probability that Sn lies in the range 108 ≤ Sn ≤ 126.

Solution The expected value and variance of X are given by

E[X] = (4 + 1)

2
= 2.5

σ2
X = (4 − 1)2

12
= 3

4

Thus, the mean and variance of Sn are given by

E[Sn] = 48E[X] = (48)(2.5) = 120

σ2
Sn

= 48σ2
X = (48)

(
3

4

)
= 36

Assuming that the sum approximates the normal random variable, which is usu-
ally true for n ≥ 30, the CDF of the normalized random value of Sn becomes

P[Sn ≤ s] = FSn(s) = �

(
s − E[Sn]

σSn

)
= �

(
s − 120

6

)

Therefore, the probability that Sn lies in the range 108 ≤ Sn ≤ 126 is given by

P[108 ≤ Sn ≤ 126] = FSn(126) − FSn(108)

= �

(
126 − 120

6

)
− �

(
108 − 120

6

)

= �(1) − �(−2) = �(1) − {1 − �(2)}
= �(1) + �(2) − 1

= 0.8413 + 0.9772 − 1

= 0.8185

where the values of �(1) and �(2) are obtained from Table 1 in Appendix 1. �
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6.11 Order Statistics

Consider an experiment in which we have n identical light bulbs, labeled
1,2, . . . ,n, that we turn on at the same time. We are interested in determining
the time until each of the n bulbs fails. Assume that the time X until a bulb fails
has a PDF fX(x) and a CDF FX(x). Let X1,X2, . . . ,Xn denote the time until the
bulbs failed. Assume we order the lifetimes of these bulbs after the experiment.
Particularly, let the random variables Yk, k = 1,2, . . . ,n, be defined as follows.

Y1 = max{X1,X2, . . . ,Xn}
Y2 = second largest of X1,X2, . . . ,Xn

. . .

Yn = min{X1,X2, . . . ,Xn}

The random variables Y1,Y2, . . . ,Yn are called the order statistics corresponding
to the random variables X1,X2, . . . ,Xn. In particular, Yk is called the kth order
statistic. It is obvious that Y1 ≥ Y2 ≥ · · · ≥ Yn, and in the case where the Xk are
continuous random variables, then Y1 > Y2 > · · · > Yn with probability one.

The CDF of Yk, FYk
(y) = P[Yk ≤ y], can be computed as follows:

FYk
(y) = P

[
Yk ≤ y

]

= P
[
at most (k − 1) Xi ≥ y

]

= P
[
{all Xi ≤ y} ∪

{[
(n − 1) Xi ≤ y

]
∩
[
1 Xi ≥ y

]}
∪ · · ·

∪
{[

(n − k + 1) Xi ≤ y
]
∩
[
(k − 1) Xi ≥ y

]}]

= P
[
all Xi ≥ y

]
+ P

[{
(n − 1) Xi ≤ y

}
∩
{
1 Xi ≥ y

}]
+ · · ·

+ P
[{

(n − k + 1) Xi ≤ y
}

∩
{
(k − 1) Xi ≥ y

}]

If we consider the events as results of n Bernoulli trials, where in any trial we
have that

P[success] = P
[
Xi ≤ y

]
= FX(y)

P[failure] = P
[
Xi > y

]
= 1 − FX(y)

then we obtain the result:

FYk
(y) = P[n successes] + P[(n − 1) successes] + · · · + P[(n − k + 1) successes]

=
[
FX(y)

]n +
(

n

n − 1

)[
FX(y)

]n−1[
1 − FX(y)

]
+ · · ·

+
(

n

n − k + 1

)[
FX(y)

]n−k+1[
1 − FX(y)

]k−1
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=
k−1∑

l=0

(
n

n − l

)[
FX(y)

]n−l[
1 − FX(y)

]l

There are two ways we can obtain the PDF of Yk. One way is to differentiate
FYk

(y) to obtain fYk
(y). The other way, which we develop here, proceeds as fol-

lows:

fYk
(y)dy = P

[
Yk ≈ y

]

= P
[
1 Xi ≈ y, (k − 1) Xi ≥ y, (n − k) Xi ≤ y

]

= n!
1!(k − 1)!(n − k)!

[
fX(y)dy

]1[
1 − FX(y)

]k−1[
FX(y)

]n−k

When we cancel out the dy’s we obtain

fYk
(y) = n!

(k − 1)!(n − k)! fX(y)
[
1 − FX(y)

]k−1[
FX(y)

]n−k

Example 6.23 Assume that the random variables X1,X2, . . . ,X10 are indepen-
dent and identically distributed with the common PDF fX(x) and common CDF
FX(x). Find the PDF and CDF of the following:

a. the third largest random variable

b. the fifth largest random variable

c. the largest random variable

d. the smallest random variable

Solution (a) The third largest random variable is obtained by substituting k = 3
and n = 10 in the above result. Thus,

FY3
(y) =

[
FX(y)

]10 +
(

10
9

)[
FX(y)

]9[
1 − FX(y)

]
+

(
10
8

)[
FX(y)

]8[
1 − FX(y)

]2

=
[
FX(y)

]10 + 10
[
FX(y)

]9[
1 − FX(y)

]
+ 45

[
FX(y)

]8[
1 − FX(y)

]2

fY3
(y) = 10!

2!7! fX(y)
[
1 − FX(y)

]2[
FX(y)

]7

= 360fX(y)
[
1 − FX(y)

]2[
FX(y)

]7
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(b) The fifth largest random variable is obtained by substituting k = 5 and n = 10,
as follows:

FY5
(y) =

4∑

l=0

(
10

10 − l

)[
FX(y)

]10−l[
1 − FX(y)

]l

=
[
FX(y)

]10 +
(

10
9

)[
FX(y)

]n−1[
1 − FX(y)

]
+ · · ·

+
(

10
6

)[
FX(y)

]6[
1 − FX(y)

]4

fY5
(y) = 10!

4!5! fX(y)
[
1 − FX(y)

]4[
FX(y)

]5

= 1260fX(y)
[
1 − FX(y)

]4[
FX(y)

]5

(c) The largest random variable implies that k = 1 in the formula with n = 10.
Thus, we obtain

FY1
(y) =

[
FX(y)

]10

fY1
(y) = 10!

(1 − 1)!(10 − 1)! fX(y)
[
1 − FX(y)

]1−1[
FX(y)

]10−1

= 10fX(y)
[
FX(y)

]9

(d) The smallest random variable implies that k = 10. Thus, we obtain

FY10
(y) =

9∑

l=0

(
10

10 − l

)[
FX(y)

]10−l[
1 − FX(y)

]l

fY10
(y) = 10!

(10 − 1)!(10 − 10)! fX(y)
[
1 − FX(y)

]10−1[
FX(y)

]10−10

= 10fX(y)
[
1 − FX(y)

]9

�

Example 6.24 Assume that the random variables X1,X2, . . . ,X32 are indepen-
dent and identically distributed with the common PDF fX(x) and common CDF
FX(x). Find the PDF and CDF of the following:

a. the fourth largest random variable

b. the 27th largest random variable
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c. the largest random variable

d. the smallest random variable

e. What is the probability that the fourth largest random variable has a value
between 8 and 9?

Solution The CDF of the kth largest random variable is given by

FYk
(y) =

k−1∑

l=0

(
n

n − l

)[
FX(y)

]n−l[
1 − FX(y)

]l

Similarly, the PDF of the kth largest random variable is given by

fYk
(y) = n!

(k − 1)!(n − k)! fX(y)
[
1 − FX(y)

]k−1[
FX(y)

]n−k

(a) The CDF and PDF of the fourth largest random variable are obtained by
substituting k = 4 and n = 32 in the above equation; that is,

FY4
(y) =

[
FX(y)

]32 + 32
[
FX(y)

]31[
1 − FX(y)

]
+

(
32
30

)[
FX(y)

]30[
1 − FX(y)

]2

+
(

32
30

)[
FX(y)

]29[
1 − FX(y)

]3

=
[
FX(y)

]32 + 32
[
FX(y)

]31[
1 − FX(y)

]

+ 496
[
FX(y)

]30[
1 − FX(y)

]2 + 4960
[
FX(y)

]29[
1 − FX(y)

]3

fY4
(y) = 32!

3!28! fX(y)
[
1 − FX(y)

]3[
FX(y)

]28

= 143,840fX(y)
[
1 − FX(y)

]3[
FX(y)

]28

(b) The 27th largest random variable is obtained by substituting k = 27 as fol-
lows:

FY27
(y) =

26∑

l=0

(
32

32 − l

)[
FX(y)

]32−l[
1 − FX(y)

]l

=
[
FX(y)

]32 + 32
[
FX(y)

]31[
1 − FX(y)

]
+ · · ·

+
(

32
6

)[
FX(y)

]6[
1 − FX(y)

]26

fY27
(y) = 32!

26!5! fX(y)
[
1 − FX(y)

]26[
FX(y)

]5
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(c) The largest random variable implies that k = 1 in the formula. Thus, we ob-
tain

FY1
(y) =

[
FX(y)

]32

FY1
(y) = 32!

0!31! fX(y)
[
1 − FX(y)

]1−1[
FX(y)

]32−1

= 32fX(y)
[
FX(y)

]31

(d) The smallest random variable implies that k = 32. Thus, we obtain

FY32
(y) =

31∑

l=0

(
32

32 − l

)[
FX(y)

]32−l[
1 − FX(y)

]l

fY10
(y) = 32!

31!0! fX(y)
[
1 − FX(y)

]32−1[
FX(y)

]32−32

= 32fX(y)
[
1 − FX(y)

]31

(e) The probability that the fourth largest random variable lies between 8 and 9
is given by

P[8 < Y4 < 9] = FY4
(9) − FY4

(8)

where FY4
(y) is as derived above.

�

6.12 Chapter Summary

This chapter discussed how to model several functions of random variables. The
concept of sums of random variables is related to the idea of systems with standby
redundancy. Other functions discussed include the minimum of two random vari-
ables, which is used to model systems connected in series; the maximum of two
random variables, which is used to model systems connected in parallel; the
central limit theorem; the laws of large numbers; order statistics, which is con-
cerned with arranging a set of observation data in an increasing order; and two
functions of two random variables, which are analyzed using a transformation
method.
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6.13 Problems

Section 6.2: Functions of One Random Variable

6.1 Suppose X is a random variable and Y = aX −b, where a and b are constants.
Find the PDF, expected value, and variance of Y .

6.2 If Y = aX2, where a > 0 is a constant and the PDF of X , fX(x), is known, find

a. the PDF of Y .

b. the PDF of Y when fX(x) is an even function.

6.3 If Y = aX2, where a > 0 is a constant and the mean and other moments of X

are known, determine the following in terms of the moments of X :

a. The mean of Y .

b. The variance of Y .

6.4 If Y = |X| and the PDF of X , fX(x), is known, find the PDF of Y in terms of
fX(x).

6.5 The random variable X has the following PDF:

fX(x) =
{

1

3
−1 < x < 2

0 otherwise

If we define Y = 2X + 3, what is the PDF of Y?

6.6 Assume that Y = aX , where a > 0 is a constant and the PDF of X , fX(x), is
known.

a. Determine the PDF of Y in terms of the PDF of X .

b. Find the PDF of Y for the special case where Y = eX and the PDF of X

is given by

fX(x) =
{

1 0 < x < 1
0 otherwise

6.7 Assume that Y = ln X , where the PDF of X , fX(x), is known. Find the PDF
of Y in terms of the PDF of X .
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Section 6.4: Sums of Random Variables

6.8 A random variable X has the PDF fX(x) = 2x,0 ≤ x ≤ 1, and 0 elsewhere.

Independently of X , a random variable Y is uniformly distributed between

−1 and 1. Let the random variable W = X + Y . Determine the PDF of W.

6.9 X and Y are two independent random variables with PDFs

fX(x) = 4e−4x x ≥ 0

fY(y) = 2e−2y y ≥ 0

If we define the random variable U = X + Y , find

a. the PDF of U.

b. P[U > 0.2].

6.10 Suppose we roll two dice. Let the random variables X and Y denote the

numbers that appear on the dice. What is the expected value of X + Y?

6.11 Assume that X is a random variable that denotes the sum of the outcomes

of two tosses of a fair coin. Denote the outcome “heads” by 1 and the out-

come “tails” by 0. What is the expected value of X?

6.12 Suppose we select 4 students at random from a class of 10 boys and 12 girls.

Let the random variable X denote the number of boys selected, and let the

random variable Y denote the number of girls selected. What is E[X − Y]?

6.13 Suppose we put 8 balls randomly into 5 boxes. What is the expected number

of empty boxes?

6.14 Two coins A and B are used in an experiment. Coin A is a biased coin that

has a probability of heads equal to 1/4 and a probability of tails equal to 3/4.

Coin B is a fair coin. Each coin is tossed four times. Let X be the random

variable that denotes the number of heads resulting from coin A, and let

Y be the random variable that denotes the number of heads resulting from

coin B. Determine the following:

a. The probability that X = Y .

b. The probability that X > Y .

c. The probability that X + Y ≤ 4.
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6.15 Two random variables X and Y have the joint PDF given by

fXY(x,y) = 4xy 0 < x < 1,0 < y < 1

If we define the random variable U = X + Y , find the PDF of U.

Sections 6.4 and 6.5: Maximum and Minimum of Independent Random Variables

6.16 Suppose we roll two dice. Let the random variables X and Y denote the
numbers that appear on the dice. What is the expected value of

a. max(X,Y)

a. min(X,Y)?

6.17 A system consists of two components A and B that are connected in series.
If the lifetime of A is exponentially distributed with a mean of 200 hours
and the lifetime of B is exponentially distributed with a mean of 400 hours,
what is the PDF of X , the time until the system fails?

6.18 A system consists of two components A and B that are connected in paral-
lel. If the lifetime of A is exponentially distributed with a mean of 200 hours
and the lifetime of B is exponentially distributed with a mean of 400 hours,
what is the PDF of Y , the time until the system fails?

6.19 The random variables X1,X2,X3,X4,X5 are independent and identically
distributed exponential random variables with parameter λ. Find the fol-
lowing probability: P[max(X1,X2,X3,X4,X5) ≤ a].

6.20 A system consists of three independent components X,Y , and Z whose
lifetimes are exponentially distributed with means 1/λX , 1/λY , and 1/λZ,
respectively. Determine the PDF and expected value of W, the time until
the system fails (or the lifetime of the system), under the following system
configurations:

a. The components are connected in series.

b. The components are connected in parallel.

c. The components are connected in a backup mode with X used first,
then Y , and then Z.
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Section 6.8: Two Functions of Two Random Variables

6.21 Two independent random variables X and Y have variances σ2
X = 9 and

σ2
Y = 25, respectively. If we define two new random variables U and V as

follows,

U = 2X + 3Y

V = 4X − 2Y

a. find the variances of U and V.

b. find the correlation coefficient of U and V.

c. find the joint PDF of U and V in terms of fXY(x,y).

6.22 Two random variables X and Y have zero mean and variances σ2
X = 16 and

σ2
Y = 36. If their correlation coefficient is 0.5, determine the following:

a. The variance of the sum of X and Y .

b. The variance of the difference of X and Y .

6.23 The joint PDF of two continuous random variables X and Y is given by

fXY(x,y) =
{

e−(x+y) 0 < x < ∞,0 < y < ∞
0 otherwise

If we define the random variable W = X/Y , find the PDF of W.

6.24 Let X and Y be two independent random variables that are uniformly dis-
tributed between 0 and 1. If we define Z = XY , find the PDF of Z.

6.25 Suppose X and Y are independent and identically distributed geometric
random variables with success parameter p. Find the PMF of S = X + Y .

6.26 Three independent continuous random variables X,Y , and Z are uniformly
distributed between 0 and 1. If the random variable S = X + Y + Z, deter-
mine the PDF of S.

6.27 Suppose X and Y are two continuous random variables with the joint PDF
fXY(x,y). Let the functions U and W be defined as follows: U = 2X + 3Y ,
and W = X + 2Y . Find the joint PDF fUW(u,w).

6.28 Find fUW(u,w) in terms of fXY(x,y) if U = X2 + Y2 and W = X2 − Y2.
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6.29 X and Y are independent normal random variables, where X = N(µX;σ2
X)

and Y = N(µY;σ2
Y). If we define U = X + Y and W = X − Y , find the joint

PDF of U and W. (Note: Give the explicit expression for fUW(u,w).)

Section 6.10: The Central Limit Theorem

6.30 If 30 fair dice are rolled, what is the probability that the sum obtained is
between 95 and 125?

6.31 X1,X2, . . . ,X35 are independent random variables each of which is uni-
formly distributed between 0 and 1. Let S = X1 + X2 + · · · + X35. What
is the probability that S > 22?

6.32 The random variable X is uniformly distributed between 1 and 2. If S is the
sum of 40 independent experimental values of X , evaluate P[55 < S ≤ 65].

6.33 Consider the number of times K that the number 4 appears in 600 tosses
of a fair die. Determine the probability that the number appears 100 times
using the following methods:

a. Stirling’s formula, which states that n! ∼
√

2πn(n
e )n =

√
2πnnne−n

b. The Poisson approximation to the binomial distribution

c. The central limit theorem by replacing K = 100 with 99.5 < K < 100.5

Section 6.11: Order Statistics

6.34 A machine has 7 identical components that operate independently with
respective lifetimes X1,X2, . . . ,X7 hours. Their common PDF and CDF are
fX(x) and FX(x), respectively. Find the probability that the machine lasts at
most 5 hours if

a. It keeps going until all its components fail.

b. It fails as soon as one of its components fails.

c. It fails when it has only one component that has not failed.

6.35 A machine needs 4 out of its 6 identical independent components to op-
erate. Let X1,X2, . . . ,X6 denote the respective lifetimes of the components,
and assume that each component’s lifetime is exponentially distributed with a
mean of 1/λ hours. Find



6.13 Problems 239

a. The CDF of the machine’s lifetime.

b. The PDF of the machine’s lifetime.

6.36 Assume that the random variables X1,X2, . . . ,X6 are independent and
identically distributed with the common PDF fX(x) and common CDF FX(x).
Find the PDF and CDF of the following:

a. The second largest random variable.

b. The maximum random variable.

c. The minimum random variable.
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7.1 Introduction

Different types of transforms are used in science and engineering. These include
the z-transform, Laplace transform, and Fourier transform. They are sometimes
called characteristic functions. One of the reasons for their popularity is that
when they are introduced into the solution of many problems, the calculations
become greatly simplified. For example, many solutions of equations that involve
derivatives and integrals of functions are given as the convolution of two func-
tions: a(x) ∗ b(x). As students of signals and systems know, the Fourier transform
of a convolution is the product of the individual Fourier transforms. That is, if
F[g(x)] is the Fourier transform of the function g(x), then

F[a(x) ∗ b(x)] = A(w)B(w)

where A(w) is the Fourier transform of a(x) and B(w) is the Fourier transform
of b(x). This means that the convolution operation can be replaced by the much
simpler multiplication operation. In fact, sometimes transform methods are the
only tools available for solving some types of problems.
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242 Chapter 7 Transform Methods

This chapter discusses how transform methods are used in probability theory.
We consider three types of transforms: characteristic functions, the z-transform
(or moment-generating function) of PMFs, and the s-transform (or Laplace trans-
form) of PDFs. The z-transform and the s-transform are particularly used when
random variables take only nonnegative values. Thus, the s-transform is essen-
tially the one-sided Laplace transform of a PDF. Examples of this class of ran-
dom variables are frequently encountered in many engineering problems, such as
the number of customers that arrive at the bank or the time until a component
fails. We are interested in the s-transforms of PDFs and z-transforms of PMFs
and not those of arbitrary functions. As a result, these transforms satisfy certain
conditions that relate to their probabilistic origin.

7.2 The Characteristic Function

Let fX(x) be the PDF of the continuous random variable X . The characteristic
function of X is defined by

�X(w) = E
[
ejwX

]
=

∫ ∞

−∞
fX(x)ejwxdx

where j =
√

−1. We can obtain fX(x) from �X(w) as follows:

fX(x) = 1

2π

∫ ∞

−∞
�X(w)e−jwxdw

If X is a discrete random variable with PMF pX(x), the characteristic function is
given by

�X(w) =
∞∑

x=−∞
pX(x)ejwx

Note that �X(0) = 1, which is a test of whether a given function of w is a true
characteristic function of a random variable.

Example 7.1 Find the characteristic function of the exponential random vari-
able X with the PDF fX(x) = λe−λx, x ≥ 0.

Solution �X(w) =
∫ ∞

0 λe−λxejwxdx =
∫ ∞

0 λe−(λ−jw)xdx = λ
λ−jw �

Example 7.2(a) Find the characteristic function of the normal random variable
X = N

(
µX;σ2

X

)
.
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Solution From Chapter 4 we know that the PDF of X is given by

fX(x) = 1√
2πσ2

X

e−(x−µX )2/2σ
2
X −∞ < x < ∞

Thus, the characteristic function of X is given by

�X(w) =
∫ ∞

−∞
fX(x)ejwxdx = 1√

2πσ2
X

∫ ∞

−∞
e−(x−µX )2/2σ

2
X ejwxdx

Let u = (x − µX)/σX , which means that x = uσX + µX and dx = σXdu. Thus, we
can write

�X(w) = 1√
2π

∫ ∞

−∞
e−u2/2ejw(uσX+µX )du = ejwµX

√
2π

∫ ∞

−∞
e−(u2−2jwσX u)/2du

But we have that

u2 − 2jwσXu

2
= u2 − 2jwσXu + (jwσX)2

2
− (jwσX)2

2
= (u − jwσX)2

2
+

w2σ2
X

2

Thus,

�X(w) = ejwµX

√
2π

∫ ∞

−∞
e−(u−jwσX )2/2e−w2

σ
2
X/2du

= e(jwµX−w2
σ

2
X/2)

∫ ∞

−∞

e−(u−jwσX )2/2

√
2π

du

Consider the function g(u) = e−(u−jwσX )2/2/
√

2π. If we substitute ν = u − jwσX

we obtain g(ν) = e−ν2/2/
√

2π, which is the PDF of the N(0;1) random variable.
This means that the integral in the above equation is 1. Thus, we obtain

�X(w) = e(jwµX−w2
σ

2
X/2) = exp

(
jwµX −

w2σ2
X

2

)

�

7.2.1 Moment-Generating Property of the Characteristic Function

One of the primary reasons for studying the transform methods is to use them to
derive the moments of the different probability distributions. By definition

�X(w) =
∫ ∞

−∞
ejwxfX(x)dx
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Taking the derivative of �X(w), we obtain

d

dw
�X(w) = d

dw

∫ ∞

−∞
ejwxfX(x)dx

=
∫ ∞

−∞

d

dw
ejwxfX(x)dx =

∫ ∞

−∞
jxejwxfX(x)dx

d

dw
�X(w)|w=0 =

∫ ∞

−∞
jxfX(x)dx = jE[X]

d2

dw2
�X(w) = d

dw

∫ ∞

−∞
jxejwxfX(x)dx = −

∫ ∞

−∞
x2ejwxfX(x)dx

d2

dw2
�X(w)|w=0 = −

∫ ∞

−∞
x2fX(x)dx = −E

[
X2

]

In general,

dn

dwn
�X(w)|w=0 = jnE

[
Xn

]

Example 7.2(b) Find the mean and second moment of the random variable
whose PDF has the characteristic function

�X(w) = exp

(
jwµX −

w2σ2
X

2

)

Solution The first and second derivatives of �X(w) are given by

d

dw
�X(w) =

(
jµX − wσ2

X

)
exp

(
jwµX −

w2σ2
X

2

)

d2

dw2
�X(w) = exp

(
jwµX −

w2σ2
X

2

){(
jµX − wσ2

X

)2 − σ2
X

}

Thus, we obtain

E[X] = 1

j

d

dw
�X(w)|w=0 = µX

E
[
X2

]
= − d2

dw2
�X(w)|w=0 = µ2

X + σ2
X

�
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7.3 The s-Transform

Let fX(x) be the PDF of the continuous random variable X that takes only non-
negative values; that is, fX(x) = 0 for x < 0. The s-transform of fX(x), denoted by
MX(s), is defined by

MX(s) = E
[
e−sX

]
=

∫ ∞

0
e−sxfX(x)dx

One important property of an s-transform is that when it is evaluated at the point
s = 0, its value is equal to 1. That is,

MX(s)|s=0 =
∫ ∞

0
fX(x)dx = 1

Example 7.3 For what value of K is the function A(s) = K

s + 5
a valid s-trans-

form of a PDF?

Solution To be a valid s-transform of a PDF, A(0) must be equal to 1. That is,
we must have that K/(0 + 5) = K/5 = 1; which means that K = 5. �

7.3.1 Moment-Generating Property of the s-Transform

As stated earlier, one of the primary reasons for studying the transform methods
is to use them to derive the moments of the different probability distributions. By
definition

MX(s) =
∫ ∞

0
e−sxfX(x)dx

Taking different derivatives of MX(s) and evaluating them at s = 0, we obtain the
following results:

d

ds
MX(s) = d

ds

∫ ∞

0
e−sxfX(x)dx =

∫ ∞

0

d

ds
e−sxfX(x)dx

= −
∫ ∞

0
xe−sxfX(x)dx

d

ds
MX(s)|s=0 = −

∫ ∞

0
xfX(x)dx

= −E[X]
d2

ds2
MX(s) = d

ds
(−1)

∫ ∞

−∞
xe−sxfX(x)dx =

∫ ∞

0
x2e−sxfX(x)dx
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d2

ds2
MX(s)|s=0 =

∫ ∞

0
x2fX(x)dx

= E
[
X2

]

In general,

dn

dsn
MX(s)|s=0 = (−1)nE

[
Xn

]

7.3.2 The s-Transforms of Some Well-Known PDFs

In this section we derive expressions for the s-transforms of the probability distri-
bution functions of some of the random variables that are discussed in Chapter 4.
These include the exponential distribution, the Erlang distribution, and the uni-
form distribution.

7.3.2.1 The s-Transform of the Exponential Distribution

From Chapter 4 we know that the PDF of an exponentially distributed random
variable X with mean 1/λ is given by

fX(x) = λe−λx x ≥ 0

Thus, the s-transform of the PDF of X is given by

MX(s) =
∫ ∞

0
e−sxfX(x)dx =

∫ ∞

0
e−sxλe−λxdx =

∫ ∞

0
λe−(s+λ)xdx

=
[
− λ

s + λ
e−(s+λ)x

]∞

0

= λ

s + λ

Therefore, the moments of X are obtained as follows:

d

ds
MX(s) = − λ

(s + λ)2
⇒ d

ds
MX(s)|s=0 = −1

λ
= (−1)E[X]

d2

ds2
MX(s) = 2λ

(s + λ)3
⇒ d2

ds2
MX(s)|s=0 = 2

λ2
= E

[
X2

]
= (−1)2E

[
X2

]

d3

ds3
MX(s) = (−2)(3)λ

(s + λ)4
⇒ d3

ds3
MX(s)|s=0 = (−2)(3)

λ3
= − 3!

λ3
= (−1)3E

[
X3

]

Thus, in general

dn

dsn
MX(s) = (−1)n n!λ

(s + λ)n+1
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dn

dsn
MX(s)|s=0 = (−1)n

(
n!
λn

)
= (−1)nE[Xn]

7.3.2.2 The s-Transform of the Uniform Distribution

If X is a uniformly distributed random variable that takes on values between a

and b, where a < b, we know that its PDF is given by

fX(x) =
{ 1

b − a
a ≤ x ≤ b

0 otherwise

Thus, the s-transform of the PDF of X is given by

MX(s) =
∫ ∞

0
e−sxfX(x)dx =

∫ b

a

e−sx

b − a
dx

=
[
− e−sx

s(b − a)

]b

a

= e−as − e−bs

s(a − b)

7.3.3 The s-Transform of the PDF of the Sum of Independent Random
Variables

Let X1,X2, . . .Xn be independent continuous random variables. Thus, their joint
PDF is the product of their PDFs. That is,

fX1X2...Xn(x1,x2, . . . ,xn) =
n∏

i=1

fXi
(xi)

Assume that Y is the sum of these n random variables; that is,

Y = X1 + X2 + · · · + Xn

The s-transform of the PDF of Y is given by

MY(s) = E
[
e−sY

]
= E

[
e−s(X1+X2+···+Xn)

]

=
∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
e−s(x1+x2+···+xn)fX1X2...Xn(x1,x2, . . . ,xn)dx1dx2 . . .dxn

=
∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
e−sx1 e−sx2 . . . e−sxn fX1

(x1)fX2
(x2)

. . . fXn(xn)dx1dx2 . . .dxn
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=
∫ ∞

0
e−sx1 fX1

(x1)dx1

∫ ∞

0
e−sx2 fX2

(x2)dx2 . . .

∫ ∞

0
e−sxn fXn(xn)dxn

=
n∏

i=1

MXi
(s)

Thus, the s-transform of the PDF of Y is the product of the s-transforms of the
PDFs of the random variables in the sum. When the random variables are also
identically distributed, the s-transform of the PDF of Y becomes

MY(s) = [MX(s)]n

7.3.3.1 The s-Transform of the Erlang Distribution

Recall that an Erlang-k random variable Xk is the sum of k independent and
identically distributed exponential random variables. Thus, from the above result
we have that the s-transform of the PDF of the Erlang-k random variable is

MXk
(s) = [MX(s)]k =

[
λ

s + λ

]k

= λk

(s + λ)k

Example 7.4 A communication channel is degraded beyond use in a random
manner. A smart student figured out that the duration Y of the intervals between
consecutive periods of degradation has the PDF

fY(y) = 0.24y3e−0.2y

3! y ≥ 0

What is the s-transform of the PDF of Y?

Solution First, we must realize that Y is an Erlang random variable. To deter-
mine the order of the random variable, we put its PDF in the general form of the
Erlang PDF as follows:

fY(y) = λkyk−1e−λy

(k − 1)! y ≥ 0

From the power of y we see that k − 1 = 3, which means that k = 4 and so Y

is a fourth-order Erlang random variable. Let X be the underlying exponential
distribution. Since λ = 0.2, the PDF of X and its s-transform are given as follows:

fX(x) = 0.2e−0.2x x ≥ 0

MX(s) = 0.2

s + 0.2
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Thus, Y = X1 + X2 + X3 + X4, where the Xi are independent and identically
distributed with the above PDF. Since the s-transform of the PDF of the sum of
independent random variables is equal to the product of their s-transforms, we
have that

MY(s) = [MX(s)]4 =
(

0.2

s + 0.2

)4

�

Example 7.5 Determine in an efficient manner the fourth moment of the ran-
dom variable X whose PDF is given by

fX(x) = 43x2e−4x

2
x ≥ 0

Solution First, we realize that X is an Erlang random variable. But to determine
its order me need to put its PDF in the standard form of the Erlang PDF as shown
below:

fX(x) = λkxk−1e−λx

(k − 1)! x ≥ 0

From the power of x we see that k − 1 = 2, which means that k = 3. That is, X

is a third-order Erlang random variable. Let Y be the underlying exponentially
distributed random variable. Then the PDF of Y and its s-transform are given by

fY(y) = 4e−4y y ≥ 0

MY(s) = 4

s + 4

Thus, X = Y1 +Y2 +Y3, where the Yi are independent and identically distributed
with the above PDF. Since the s-transform of the PDF of the sum of independent
random variables is equal to the product of their s-transforms, we have that

MX(s) = [MY(s)]3 =
(

4

s + 4

)3

The fourth moment of X is given by

E
[
X4

]
= (−1)4 d

ds4
MX(s)|s=0 = d4

ds4

{
4/(s + 4)

}3
∣∣∣∣
s=0

= 360(4)3

(s + 4)7

∣∣∣∣
s=0

= 1.40625

�
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7.4 The z-Transform

Let pX(x) be the PMF of the discrete random variable X . The z-transform of
pX(x), denoted by GX(z), is defined by

GX(z) = E
[
zX

]
=

∞∑

x=0

zxpX(x)

Thus, the PMF pX(x) is required to take on only nonnegative integers. The sum
is guaranteed to converge and, therefore, the z-transform exists, when evaluated
on or within the unit circle (where |z| ≤ 1). Note that

GX(1) =
∞∑

x=0

pX(x) = 1

This means that a valid z-transform of a PMF reduces to unity when evaluated at
z = 1. However, this is a necessary but not sufficient condition for a function to
the z-transform of a PMF. By definition,

GX(z) =
∞∑

x=0

zxpX(x)

= pX(0) + zpX(1) + z2PX(2) + z3pX(3) + · · ·

This means that P[X = k] = pX(k) is the coefficient of zk in the series expansion.
Thus, given the z-transform of a PMF, we can uniquely recover the PMF. The im-
plication of this statement is that not every polynomial that has a value 1 when
evaluated at z = 1 is a valid z-transform of a PMF. For example, consider the func-
tion A(z) = 2z − 1. Although A(1) = 1, the function contains invalid coefficients
in the sense that these coefficients either have negative values or positive values
that are greater than one. Thus, for a function of z to be a valid z-transform of a
PMF, it must have a value of 1 when evaluated at z = 1, and the coefficients of z

must be nonnegative numbers that cannot be greater than 1.

The individual terms of the PMF can also be determined as follows:

pX(x) = 1

x!

[
dx

dzx
GX(z)

]

z=0

x = 0,1,2, . . .

This feature of the z-transform is the reason it is cometimes called the probability
generating function.
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Example 7.6 Is the following function a valid z-transform of a PMF? If so, what
is the PMF?

GX(z) = 1 − a

1 − az
0 < a < 1

Solution First, we note that GX(1) = 1, which means that the function GX(z) is
potentially a valid z-transform of a PMF. Next, we test the coefficients of z in the
function. Now,

GX(z) = (1 − a)

∞∑

k=0

(az)k = (1 − a)
{
1 + az + a2z2 + a3z3 + · · · + akzk + · · ·

}

Since 0 < a < 1, we see that all the coefficients of z are nonnegative quantities
that are no greater than 1. Therefore, the function is a valid z-transform of a
PMF, and the PMF is the following:

pX(x) = (1 − a)ax x = 0,1,2, . . .

�

Example 7.7 Explain why the function F(z) = z2 + z − 1 is or is not a valid
z-transform of the PMF of a random variable.

Solution One of the tests for a function of z to be a valid z-transform of a PMF is
that it must be equal to 1 when evaluated at z = 1. As can be seen, F(1) = 1, so the
function has passed the first test. The second test is that the coefficients of z must
be nonnegative since, for example, the coefficient of zk is the probability that
the random variable takes the value k. In the function above, the constant term,
which represents the probability that the supposed random variable takes the
value 0, is negative 1. This means that the function cannot be a valid z-transform
of a PMF. �

Example 7.8 The z-transform of the PMF of a discrete random variable K is
given by

GK(z) = A

[
10 + 8z2

(2 − z)

]

(a) What is the expected value of K?
(b) Find pK(1), the probability that K has the value 1.
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Solution Before answering both questions, we need to obtain the numerical
value of A. For GK(z) to be a valid z-transform, it must satisfy the condition
GK(1) = 1. Thus, we have that

GK(1) = A

[
10 + 8

(2 − 1)

]
= 18A = 1

This means that A = 1/18.

(a) The expected value of K is

E[K] = d

dz
GK(z)|z=1 = A

{
(2 − z)16z − (10 + 8z2)(−1)

(2 − z)2

∣∣∣∣
z=1

}
= 34

18
= 1.9

(b) To obtain the PMF of K, we observe that

GK(z) = A

[
10 + 8z2

(2 − z)

]
= A

2

[
10 + 8z2

1 − z
2

]

= A(10 + 8z2)

2

∞∑

m=0

(
z

2

)m

= A(10 + 8z2)

2

{
1 + z

2
+ z2

4
+ z3

8
+ z4

16
+ · · ·

}

= A

2

{
10 + z

[
10

2

]
+ z2

[
10

4
+ 8

]
+ z3

[
10

8
+ 4

]
+ z4

[
10

16
+ 2

]
+ · · ·

}

Thus, the probability that K has a value 1 is the coefficient of z in GK(z),
which is

pK(1) = A

2
× 10

2
= 5

36

�

7.4.1 Moment-Generating Property of the z-Transform

As stated earlier, one of the major motivations for studying transform methods
is their usefulness in computing the moments of the different random variables.
Unfortunately the moment-generating capability of the z-transform is not as com-
putationally efficient as that of the s-transform.

The moment-generating capability of the z-transform lies in the results ob-
tained from evaluating the derivatives of the transform at z = 1. For a discrete
random variable X with PMF pX(x), we have that

GX(z) =
∞∑

x=0

zxpX(x)
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d

dz
GX(z) = d

dz

∞∑

x=0

zxpX(x) =
∞∑

x=0

d

dz
zxpX(x)

=
∞∑

x=0

xzx−1px(x) =
∞∑

x=1

xzx−1pX(x)

d

dz
GX(z)|z=1 =

∞∑
xpX(x) =

∞∑
xpX(x) = E[X]

Similarly,

d2

dz2
GX(z) = d

dz

∞∑

x=1

xzx−1pX(x) =
∞∑

x=1

x
d

dz
zx−1pX(x)

=
∞∑

x=1

x(x − 1)zx−2pX(x)

d2

dz2
GX(z)|z=1 =

∞∑

x=1

x(x − 1)pX(x) =
∞∑

x=0

x(x − 1)pX(x)

=
∞∑

x=0

x2pX(x) −
∞∑

x=0

xpX(x)

= E
[
X2

]
− E[X]

E
[
X2

]
= d2

dz2
GX(z)|z=1 + d

dz
GX(z)|z=1

Thus, the variance is obtained as follows:

σ2
X = E

[
X2

]
− (E[X])2

=
[

d2

dz2
GX(z) + d

dz
GX(z) −

{
d

dz
GX(z)

}2]

z=1

7.4.2 The z-Transform of the Bernoulli Distribution

From Chapter 4 we know that the PMF of a Bernoulli random variable X is given
by

pX(x) =
{

p x = 1
1 − p x = 0

= px(1 − p)1−x x = 0,1
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Thus, the z-transform of the PMF pX(x) is given by

GX(z) =
∞∑

x=0

zxpX(x) =
1∑

x=0

zxpX(x) = z0(1 − p) + z1p

= 1 − p + zp

7.4.3 The z-Transform of the Binomial Distribution

From Chapter 4 we know that the PMF of a binomial random variable X(n) with
parameters (n,p) is given by

pX(n)(x) =
(

n

x

)
px(1 − p)n−x x = 0,1,2, . . . ,n

Thus, the z-transform of the PMF is given by

GX(n)(z) =
∞∑

x=0

zxpX(n)(x) =
∞∑

x=0

zx

(
n

x

)
px(1 − p)n−x =

∞∑

x=0

(
n

x

)
(zp)x(1 − p)n−x

= (zp + 1 − p)n

where the last equality follows from the binomial identity

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

7.4.4 The z-Transform of the Geometric Distribution

From Chapter 4 we know that the PMF of a geometric random variable, X , with
a probability p of success is given by

pX(x) = p(1 − p)x−1 x = 1,2,3, . . .

Thus, the z-transform of the PMF is given by

GX(z) =
∞∑

x=0

zxpX(x) =
∞∑

x=1

zxp(1 − p)x−1 = zp

∞∑

x=1

[z(1 − p)]x−1

= zp

1 − z(1 − p)

Note that the z-transform of the modified geometric distribution can be obtained
by interchanging p and 1 − p in the above expression.
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7.4.5 The z-Transform of the Poisson Distribution

From Chapter 4 we know that the PMF of a Poisson random variable with para-
meter λ, where λ > 0, is given by

pK(k) = λk

k! e−λ k = 0,1,2, . . .

Thus, the z-transform of the PMF is given by

GK(z) =
∞∑

k=0

zkpK(k) =
∞∑

k=0

zk λk

k! e−λ

= e−λ

∞∑

k=0

(zλ)k

k! = e−λezλ

= eλ(z−1)

7.4.6 The z-Transform of the PMF of the Sum of Independent Random
Variables

Let X1,X2, . . . ,Xn be independent discrete random variables. Thus, their joint
PMF is the product of their PMFs. That is,

pX1X2...Xn(x1,x2, . . . ,xn) =
n∏

i=1

pXi
(xi)

Assume that Y is the sum of these n random variables; that is,

Y = X1 + X2 + · · · + Xn

Then in a manner similar to the case of the s-transform of the PDF of the sum of
independent continuous random variables, it can be shown that the z-transform
of the PMF of Y is the product of the z-transforms of the PMFs of the n random
variables. That is,

GY(z) =
n∏

i=1

GXi
(z)

When the random variables are also identically distributed, the z-transform of
the PMF of Y becomes

GY(z) = [GX(z)]n
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Recall that the binomial random variable X(n) is the sum of n Bernoulli random
variables. This is why we obtained the z-transform of the PMF of the binomial
distribution as GX(n)(z) = (zp + 1 − p)n and that of the PMF of the Bernoulli
distribution as GX(z) = zp + 1 − p.

7.4.7 The z-Transform of the Pascal Distribution

From Chapter 4 we know that the PMF of the kth-order Pascal random variable,
Xk, with a probability p of success is given by

pXk
(n) =

(
n − 1
k − 1

)
pk(1 − p)n−k k = 1,2, . . . ;n = k,k + 1, . . .

As we saw in Chapter 4, the kth-order Pascal random variable is the sum of k

independent and identically distributed geometric random variables. Thus, the
z-transform of the PMF of the kth-order Pascal random variable, Xk, is given by

GXk
(z) =

[
zp

1 − z(1 − p)

]k

7.5 Random Sum of Random Variables

Let X be a continuous random variable with PDF fX(x) whose s-transform is
MX(s). We know that if Y is the sum of n independent and identically distributed
random variables with the PDF fX(x), then the s-transform of the PDF of Y is
given by

MY(s) = [MX(s)]n

The above result assumes that n is a fixed number. However, there are certain sit-
uations when the number of random variables in a sum is itself a random variable.
For this case, let N denote a discrete random variable with PMF pN(n) whose
z-transform is GN(z). Our goal is to find the s-transform of the PDF of Y when
the number of random variables is itself a random variable N.

Thus, we consider the sum

Y = X1 + X2 + · · · + XN

where N has a known PMF, which in turn has a known z-transform. Now, let
N = n. Then with N fixed at n, we have that

Y|N=n = X1 + X2 + · · · + Xn

MY|N(s|n) = [MX(s)]n
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MY(s) =
∑

n

pN(n)MY|N(s|n) =
∑

n

pN(n)[MX(s)]n

= GN(MX(s))

That is, the s-transform of the PDF of a random sum of independent and identi-
cally distributed random variables is the z-transform of the PMF of the number
of variables evaluated at the s-transform of the PDF of the constituent random
variables. Now, let u = MX(s). Then

d

ds
MY(s) = d

ds
GN(MX(s)) =

{
dGN(u)

du

}{
du

ds

}

d

ds
MY(s)|s=0 =

[{
dGN(u)

du

}{
du

ds

}]

s=0

When s = 0,u|s=0 = MX(0) = 1. Thus, we obtain

d

ds
MY(s)|s=0 =

[{
dGN(u)

du

}{
du

ds

}]

s=0

= dGN(u)

du

∣∣∣∣
u=1

dMX(s)

ds

∣∣∣∣
s=0

−E[Y] = E[N](−E[X]) = −E[N]E[X]

E[Y] = E[N]E[X]

Also,

d2

ds2
MY(s) = d

ds

[{
dGN(u)

du

}{
du

ds

}]

=
{

du

ds

}
d

ds

{
dGN(u)

du

}
+

{
dGN(u)

du

}{
d2u

ds2

}

=
{

du

ds

}2{d2GN(u)

du2

}
+

{
dGN(u)

du

}{
d2u

ds2

}

d2

ds2
MY(s)|s=0 = E

[
Y2

]
=

[{
du

ds

}2{d2GN(u)

du2

}
+

{
dGN(u)

du

}{
d2u

ds2

}]

s=0;u=1

= {−E[X]}2
{
E
[
N2

]
− E[N]

}
+ E[N]E

[
X2

]

= E
[
N2

]
{E[X]}2 + E[N]E

[
X2

]
− E[N]{E[X]}2

The variance of Y is given by

σ2
Y = E

[
Y2

]
− (E[Y])2

= E
[
N2

]
{E[X]}2 + E[N]E

[
X2

]
− E[N]{E[X]}2 − (E[N]E[X])2
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= E[N]
{
E
[
X2

]
− {E[X]}2

}
+ (E[X])2

{
E
[
N2

]
− (E[N])2

}

= E[N]σ2
X + (E[X])2σ2

N

If X is also a discrete random variable, then we obtain

GY(z) = GN(GX(z))

and the results for E[Y] and σ2
Y still hold.

Example 7.9 Books are packed into cartons. The weight W of a book is a con-
tinuous random variable with PDF

fW(w) = λe−λw w ≥ 0

The number K of books in any carton is a random variable with the PMF

pK(k) = µk

k! e−µ k = 0,1,2, . . .

If we randomly select a carton and its weight is X , determine
a. the s-transform of the PDF of X .
b. E[X].
c. the variance of X .

Solution (a) The s-transform of the PDF of W is given by

MW(s) = λ

s + λ

Similarly, the z-transform of the PMF of K is given by

GK(z) = eµ(z−1)

Thus, the s-transform of the PDF if X is given by

MX(s) = GK(MW(s))

= eµ( λ
s+λ

−1) = e−µs/(s+λ)

(b) The expected weight of the randomly selected carton is

E[X] = E[K]E[W] = µ

(
1

λ

)
= µ

λ
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(c) The variance of X is given by

σ2
X = E[K]σ2

W + (E[W])2σ2
K

= µ

(
1

λ2

)
+

(
1

λ

)2

µ = 2µ

λ2

�

Example 7.10 The number K of parcels that the drivers of a parcel delivery
service company can load in their trucks is a random variable with the PMF

pK(k) = 40ke−40

k! k = 0,1,2, . . .

The weight W of a parcel in pounds is a continuous random variable with PDF

fW(w) =
{

1/6 3 ≤ w ≤ 9
0 otherwise

Let X denote the weight of a randomly selected loaded truck.
a. What is the s-transform of the PDF of X?
b. What is the expected value of X?
c. What is the variance of X?

Solution (a) Let the number of parcels in the truck be K = k, and let Wi denote
the weight of parcel i, 1 ≤ i ≤ k. Then, since we have fixed K at k, we have that

X|K=k = W1 + W2 + · · · + Wk

MX|K(s|k) = [MW(s)]k

Thus, the s-transform of the PDF of X is

MX(s) =
∞∑

k=0

pK(k)MX|K(s|k) =
∞∑

k=0

pK(k)[MW(s)]k = GK(MW(s))

(b) Since K is a Poisson random variable, its expected value and variance are
given by

E[K] = 40

σ2
K = 40
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Similarly, since W has a uniform distribution, its mean and variance are given by

E[W] = (3 + 9)/2 = 6

σ2
W = (9 − 3)2/12 = 3

Thus,

E[X] = E[W] × E[K] = 240

(c) The variance of X is given by

σ2
X = E[K]σ2

W + (E[W])2σ2
K = (40)(3) +

(
62
)
(40) = 1560

�

Example 7.11 The number K of customers that arrive at Jay’s supermarket in a
given day has the PMF

pK(k) = λke−λ

k! k = 0,1,2, . . .

Independently of K, the number of items N that any customer purchases from
the supermarket has the PMF

pN(n) = µne−µ

n! n = 0,1,2, . . .

Determine the mean and the z-transform of the PMF of Y , the total number of
items that the store sells on an arbitrary day.

Solution Let K = k, and let Ni denote the number of items purchased by cus-
tomer i, 1 ≤ i ≤ k. Then

Y|K=k = N1 + N2 + · · · ,Nk

pY(y) =
∞∑

k=0

pY|K(y|k)pK(k)

Thus, the z-transform of the PMF of Y is

GY(z) =
∞∑

y=0

zypY(y) =
∞∑

y=0

zy
∞∑

k=0

pY|K(y|k)pK(k)

Interchanging the order of the summation, we obtain

GY(z) =
∞∑

y=0

zypY(y) =
∞∑

k=0

pK(k)

∞∑

y=0

zypY|K(y|k) =
∞∑

k=0

pK(k)GY|K(z)
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Since the number of items purchased by each customer is independent of the
number purchased by other customers, we have that

GY|K(z) = [GN(z)]k

Thus,

GY(z) =
∞∑

k=0

pK(k)GY|K(z) =
∞∑

k=0

pK(k)[GN(z)]k = GK(GN(z))

Since GK(z) = eλ(z−1) and GN(z) = eµ(z−1), we have that

GY(z) = eλ(eµ(z−1)−1)

�

7.6 Chapter Summary

This chapter discussed three transform methods that are frequently used in
the analysis of probabilistic problems. These are the characteristic function, the
s-transform, and the z-transform. Both the s-transform and the z-transform are
used for random variables that take only nonnegative values, which include
many random variables that are used to model practical systems. The moment-
generating properties of the different transforms have also been demonstrated.

Table 7.1 is a summary of the different transforms of some of the well-known
PMFs and PDFs.

7.7 Problems

Section 7.2: Characteristic Functions

7.1 Find the characteristic function of the random variable X with the following
PDF:

fX(x) =
{ 1

b − a
a < x < b

0 otherwise

7.2 Find the characteristic function of the random variable Y with the following
PDF:

fY(y) =
{

3e−3y y ≥ 0

0 otherwise
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Table 7.1 Summary of the Transforms of Well-Known PMFs and PDFs

Characteristic

PMF PDF z-Transform s-Transform Function

Bernoulli

pX (x) =
{

1 − p x = 0

p x = 1
− 1 − p + zp

Binomial

pX(n)(x) =
(n

x

)
px(1 − p)n−x

where x = 0,1,2, . . . ,n

− (1 − p + zp)n

Geometric

pX (x) = p(1 − p)x−1

where x = 1,2,3, . . .

− zp

1 − z(1 − p)

Pascal-k

pXk
(n) =

(
n−1
k−1

)
pk(1 − p)n−k

where k = 1,2, . . . ;n = k,

k + 1, . . .

−
[

zp

1 − z(1 − p)

]k

Poisson

pK(k) = λke−λ

k!
where k = 0,1,2, . . .

− eλ(z−1)

− Exponential

fX (x) = λe−λx, x ≥ 0
− λ

s + λ

λ

λ − jw

−
Erlang-k

fXk
(x) = λkxk−1e−λx

(k − 1)!
k = 1,2, . . . , x ≥ 0

−
[

λ

s + λ

]k [
λ

λ − jw

]k

−

Uniform

fX (x) ={
1

b − a
a ≤ x ≤ b

0 otherwise
where a ≥ 0

− e−as − e−bs

s(b − a)

ejwb − ejwa

jw(b − a)

−

Normal

fX (x) = e−(x−µX )2/2σ
2
X

√
2πσ

2
X

where −∞ < x < ∞

− − e(jwµX −w2
σ

2
X /2)

7.3 Find the characteristic function of the random variable X with the following
PDF:

fX(x) =





0 x < −3
x + 3

9
−3 ≤ x < 0

3 − x

9
0 ≤ x < 3

0 x ≥ 3
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Section 7.3: s-Transforms

7.4 Explain why each of the following functions is or is not a valid s-transform
of a PDF:

a. A(s) = 1 − e−5s

s

b. B(s) = 7

4 + 3s

c. C(s) = 5

5 + 3s

7.5 Assume that the s-transform of the PDF of the random variable Y is given
by

MY(s) = K

s + 2

Determine the following:

(a) the value of K that makes the function a valid s-transform of a PDF

(b) E[Y2]
7.6 X and Y are independent random variables with the PDFs

fX(x) =
{

λe−λx x ≥ 0

0 x < 0

fY(y) =
{

µe−µy y ≥ 0

0 y < 0

If the random variable R is defined by R = X +Y , determine the following:

a. MR(s)

b. E[R]
c. σ2

R

7.7 The random variable X has the following PDF:

fX(x) =
{

2x 0 ≤ x ≤ 1

0 otherwise

Determine the numerical values of

a.

[
d

ds
{MX(s)}3

]

s=0

b.

[
d3

ds3
MX(s)

]

s=0
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7.8 The s-transform of the PDF of the random variable X is given by

MX(s) = λ6

(s + λ)6

Determine the following:

a. E[X]
b. σ2

X

7.9 The s-transform of the PDF of the random variable X is given as MX(s). If
we define the random variable Y = aX + b, what is the s-transform of the
PDF of Y?

7.10 The continuous random variables X and Y have the following PDFs:

fX(x) =
{

1 0 < x ≤ 1

0 otherwise

fY(y) =
{

0.5 2 < y ≤ 4

0 otherwise

Assume that the function L(s) is defined as follows:

L(s) = [MX(s)]3[MY(s)]2

Determine the value of the following quantity:

[
d2

ds2
L(s)

]

s=0

−
{[

d

ds
L(s)

]∣∣∣∣
s=0

}2

Section 7.4: z-Transforms

7.11 The z-transform of the PMF of the random variable X is given by

GX(z) = 1 + z2 + z4

3

Determine

a. E[X]
b. pX(E[X]); that is, P[X = E[X]].

7.12 If the z-transform of the PMF of the random variable X is given by

GX(z) = A(1 + 3z)3

determine the numerical values of the following:
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a. E
[
X3

]

b. pX(2)

7.13 If the z-transform of the PMF of the random variable K is given by

GK(z) =
A
(
14 + 5z − 3z2

)

(2 − z)

determine the values of

a. A

b. pk(1)

7.14 Explain why the function C(z) = z2 + 2z − 2 is or is not a valid z-transform
of the PMF of a random variable.

7.15 Consider the function D(z) = 1

2 − z
.

a. Is it a valid z-transform of the PMF of a random variable?

b. If it is, what PMF has the z-transform?

7.16 If the z-transform of the PMF of the random variable N is given by

GN(z) = 0.5z5 + 0.3z7 + 0.2z10

determine

a. the PMF of N

b. E[N]
c. σ2

N

7.17 The PMF of the random variable X has the z-transform

GX(z) =
[

zp

1 − z(1 − p)

]6

Determine the following:

a. E[X]
b. σ2

X

7.18 The z-transform of the PMF of the random variable X is given as GX(z). If
we define the random variable Y = aX + b, what is the z-transform of the
PMF of Y?



266 Chapter 7 Transform Methods

Section 7.5: Random Sum of Random Variables

7.19 People arrive at a restaurant in families. The number of families X that
arrive over the period of 1 hour is found to be a Poisson random variable
with mean λ. If the number of people in each arriving family is a random
variable N whose PMF has the z-transform that is given by

GN(z) = 1

2
z + 1

3
z2 + 1

6
z3

determine the following:

a. GM(z), the z-transform of the PMF of M, which is the total number of
people arriving at the restaurant in an arbitrary hour.

b. E[Y], where Y is the total number of people that arrive at the restaurant
over a three-hour period.

7.20 The number of customers, K, that shop at the neighborhood store in a day
has the PMF

pK(k) = λke−λ

k! k = 0,1,2, . . .

Independently of K, the number of items N that each customer purchases
has the PMF

pN(n) =





1/4 n = 0
1/4 n = 1
1/3 n = 2
1/6 n = 3

What is the z-transform of the PMF of Y , the total number of items that the
store sells on an arbitrary day?

7.21 Books are packed into cartons. The weight W of a book in pounds is a
continuous random variable with PDF

fW(w) =
{

1/4 1 ≤ w ≤ 5
0 otherwise

The number K of books in any carton is a random variable with the PMF

pK(k) =





1/4 k = 8
1/4 k = 9
1/3 k = 10
1/6 k = 12

If we randomly select a carton and its weight is X , determine

a. the s-transform of the PDF of X .

b. E[X].
c. the variance of X .
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8.1 Introduction

Chapters 1 to 7 were devoted to the study of probability theory. In those chapters
we were concerned with outcomes of random experiments and the random vari-
ables used to represent them. This chapter deals with the dynamics of probability
theory. The concept of random processes enlarges the random variable concept
to include time. Thus, instead of thinking of a random variable X that maps an
event s ∈ S, where S is the sample space, to some number X(s), we think of how
the random variable maps the event to different numbers at different times. This
implies that instead of the number X(s) we deal with X(t, s), where t ∈ T and T

is called the parameter set of the process and is usually a set of times.

Random processes are widely encountered in such fields as communications,
control, management science, and time series analysis. Examples of random

267



268 Chapter 8 Introduction to Random Processes

processes include the population growth, the failure of a piece of equipment, the
price of a given stock over time, and the number of calls that arrive at a switch-
board.

If we fix the sample point s,X(t) is some real function of time. For each s, we
have a function X(t). Thus, X(t, s) can be viewed as a collection of time functions,
one for each sample point s, as shown in Figure 8.1.

On the other hand, if we fix t, we have a function X(s) that depends only on s

and thus is a random variable. Thus, a random process becomes a random variable
when time is fixed at some particular value. With many values of t we obtain a
collection of random variables. Thus, we can define a random process as a family
of random variables {X(t, s) | t ∈ T, s ∈ S} defined over a given probability space
and indexed by the time parameter t.

A random process is also called a stochastic process. Consider a communi-
cation system example. Assume we have a set of possible messages that can be
transmitted over a channel. The set of possible messages then constitutes our
sample space. For each message M generated by our source, we transmit an asso-
ciated waveform X(t, s) over the channel. The channel is not perfect; it selectively
adds a noise waveform N(t, s) to the original waveform so that what is seen at the
receiver is a random signal R(t, s) that is the sum of the transmitted waveform
and the noise waveform. That is,

R(t, s) = X(t, s) + N(t, s)

Figure 8.1 A Sample Random Process
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Because the noise waveform is probabilistically selected by the channel, different
noise waveforms can be associated not only with the same transmitted waveform
but also with different transmitted waveforms. Thus, the plot of R(t, s) will be
different for different values of s.

8.2 Classification of Random Processes

A random process can be classified according to the nature of the time parameter
and the values that X(t, s) can take on. As discussed earlier, T is called the param-
eter set of the random process. If T is an interval of real numbers and hence is
continuous, the process is called a continuous-time random process. Similarly, if
T is a countable set and hence is discrete, the process is called a discrete-time ran-
dom process. A discrete-time random process is also called a random sequence,
which is denoted by {X[n] | n = 1,2, . . .}.

The values that X(t, s) assumes are called the states of the random process. The
set of all possible values of X(t, s) forms the state space, E, of the random process.
If E is continuous, the process is called a continuous-state random process. Simi-
larly, if E is discrete, the process is called a discrete-state random process.

8.3 Characterizing a Random Process

In the remainder of the discussion we will represent the random process X(t, s) by
X(t); that is, we will suppress s, the sample space parameter. A random process
is completely described or characterized by the joint CDF. Since the value of a
random process X(t) at time ti, X(ti), is a random variable, let

FX(x1, t1) = FX(x1) = P[X(t1) ≤ x1]
FX(x2, t2) = FX(x2) = P[X(t2) ≤ x2]

. . .

FX(xn, tn) = FX(xn) = P[X(tn) ≤ xn]

where 0 < t1 < t2 < · · · < tn. Then the joint CDF, which is defined by

FX(x1,x2, . . . ,xn; t1, t2, . . . , tn) = P[X(t1) ≤ x1,X(t2) ≤ x2, . . . ,X(tn) ≤ xn]
for all n

completely characterizes the random process. If X(t) is a continuous-time random
process, then it is specified by a collection of PDFs:

fX(x1,x2, . . . ,xn; t1, t2, . . . , tn) = ∂n

∂x1∂x2 . . . ∂xn
FX(x1,x2, . . . ,xn; t1, t2, . . . , tn)
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Similarly, if X(t) is a discrete-time random process, then it is specified by a collec-
tion of PMFs:

pX(x1,x2, . . . ,xn; t1, t2, . . . , tn) = P[X1 = x1,X2 = x2, . . . ,Xn = xn]

8.3.1 Mean and Autocorrelation Function of a Random Process

The mean of X(t) is a function of time called the ensemble average and is denoted
by

µX(t) = E[X(t)]

The autocorrelation function provides a measure of similarity between two ob-
servations of the random process X(t) at different points in time t and s. The
autocorrelation function of X(t) and X(s) is denoted by RXX(t, s) and defined as
follows:

RXX(t, s) = E[X(t)X(s)] = E[X(s)X(t)] = RXX(s, t)

RXX(t, t) = E
[
X2(t)

]

It is common to define s = t + τ, which gives the autocorrelation function as

RXX(t, t + τ) = E[X(t)X(t + τ)]

The parameter τ is sometimes called the delay time (or lag time). The autocorre-
lation function of a deterministic periodic function of period T is given by

RXX(t, t + τ) = 1

2T

∫ T

−T

fX(t)fX(t + τ)dt

Similarly, for an aperiodic function the autocorrelation function is given by

RXX(t, t + τ) =
∫ ∞

−∞
fX(t)fX(t + τ)dt

Basically the autocorrelation function defines how much a signal is similar to
a time-shifted version of itself. Noise is known to correlate only with an exact
replica of itself; that is, when both functions match perfectly. Communication en-
gineers take advantage of this phenomenon in communication systems that use
a modulation scheme called spread spectrum. In this modulation scheme, finding
different noise-like functions is a major task.

A random process X(t) is called a second order process if E[X2(t)] < ∞ for
each t ∈ T.
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8.3.2 The Autocovariance Function of a Random Process

The autocovariance function of the random process X(t) is another quantita-
tive measure of the statistical coupling between X(t) and X(s). It is denoted by
CXX(t, s) and defined as follows:

CXX(t, s) = Cov(X(t),X(s)) = E[{X(t) − µX(t)}{X(s) − µX(s)}]
= E[X(t)X(s)] − µX(s)E[X(t)] − µX(t)E[X(s)] + µX(t)µX(s)

= RXX(t, s) − µX(t)µX(s)

If X(t) and X(s) are independent, then RXX(t, s) = µX(t)µX(s), and we have
CXX(t, s) = 0, which means that there is no coupling between X(t) and X(s). This
is equivalent to saying that X(t) and X(s) are uncorrelated, but the reverse is not
true. That is, CXX(t, s) = 0 does not mean that X(t) and X(s) are independent.

Example 8.1 A random process is defined by

X(t) = K cos wt t ≥ 0

where w is a constant and K is uniformly distributed between 0 and 2. Determine
the following:

(a) E[X(t)]
(b) The autocorrelation function of X(t)

(c) The autocovariance function of X(t)

Solution The expected value and variance of K are given by E[K] = (2 + 0)/2
= 1 and σ2

K = (2 − 0)2/12 = 1/3. Thus, E
[
K2

]
= σ2

K + (E[K])2 = 4/3.

(a) The mean of X(t) is given by E[X(t)] = E[K cos wt] = E[K] cos wt = cos wt

(b) The autocorrelation function of X(t) is given by

RXX(t, s) = E[X(t)X(s)] = E
[
K2 cos(wt) cos(ws)

]
= E

[
K2

]
cos(wt) cos(ws)

= 4

3
cos(wt) cos(ws)

(c) The autocovariance function of X(t) is given by

CXX(t, s) = RXX(t, s) − E[X(t)]E[X(s)]

= 4

3
cos(wt) cos(ws) − cos(wt) cos(ws)

= 1

3
cos(wt) cos(ws)

�
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8.4 Crosscorrelation and Crosscovariance Functions

Let X(t) and Y(t) be two random processes defined on the same probability
space and with means µX(t) and µY(t), respectively. The crosscorrelation func-
tion RXY(t, s) of the two random processes is defined by

RXY(t, s) = E[X(t)Y(s)] = RYX(s, t)

for all t and s. The crosscorrelation function essentially measures how similar two
different processes (or signals) are when one of them is shifted in time relative to
the other. If RXY(t, s) = 0 for all t and s, we say that X(t) and Y(t) are orthogonal

processes. If the two processes are statistically independent, the crosscorrelation
function becomes

RXY(t, s) = E[X(t)]E[Y(s)] = µX(t)µY(s)

The crosscovariance functions of X(t) and Y(t), denoted by CXY(t, s), is de-
fined by

CXY(t, s) = E[{X(t) − µX(t)}{Y(s) − µY(s)}]
= E[X(t)Y(s)] − E[X(t)µY(s)] − E[µX(t)Y(s)] + E[µX(t)µY(s)]
= E[X(t)Y(s)] − E[X(t)]µY(s) − µX(t)E[Y(s) + µX(t)µY(s)

= RXY(t, s) − µX(t)µY(s)

The random processes X(t) and Y(t) are said to be uncorrelated if CXY(t, s) = 0
for all t and s. That is, X(t) and Y(t) are said to be uncorrelated if for all t and s,
we have that

RXY(t, s) = µX(t)µY(s)

In many situations the random process Y(t) is the sum of the random process
X(t) and a statistically independent noise process N(t).

Example 8.2 A random process Y(t) consists of the sum of the random process
X(t) and a statistically independent noise process N(t). Find the crosscorrelation
function of X(t) and Y(t).

Solution By definition the crosscorrelation function is given by

RXY(t, s) = E[X(t)Y(s)] = E[X(t){X(s) + N(s)}]
= E[X(t)Y(s)] + E[X(t)N(s)]
= RXX(t, s) + E[X(t)]E[N(s)]
= RXX(t, s) + µX(t)µN(s)



8.4 Crosscorrelation and Crosscovariance Functions 273

where the fourth equality follows from the fact that X(t) and N(s) are indepen-
dent. Using the results obtained earlier, the crosscovariance function of X(t) and
Y(t) is given by

CXY(t, s) = E[{X(t) − µX(t)}{Y(s) − µY(s)}] = RXY(t, s) − µX(t)µY(s)

= RXX(t, s) + µX(t)µN(s) − µX(t){µX(s) + µN(s)}
= RXX(t, s) − µX(t)µX(s)

= CXX(t, s)

�

Thus, the crosscovariance function is identical to the autocovariance function.

8.4.1 Review of Some Trigonometric Identities

Some of the problems that we encounter in this chapter deal with trigonometric
functions. As a result we summarize some of the relevant trigonometric identi-
ties. These identities are derived from expansions of sin(A ± B) and cos(A ± B).
Specifically, we know that

sin(A + B) = sin A cos B + cos A sin B

sin(A − B) = sin A cos B − cos A sin B

Adding the two equations, we obtain the following identity:

sin A cos B = 1

2
{sin(A + B) + sin(A − B)}

Similarly,

cos(A − B) = cos A cos B + sin A sin B

cos(A + B) = cos A cos B − sin A sin B

Adding the two equations, we obtain the following identity:

cos A cos B = 1

2
{cos(A − B) + cos(A + B)}

Similarly, subtracting the second equation from the first, we obtain the following
identity:

sin A sin B = 1

2
{cos(A − B) − cos(A + B)}
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Example 8.3 Two random processes X(t) and Y(t) are defined as follows:

X(t) = A cos(wt + �)

Y(t) = B sin(wt + �)

where A,B, and w are constants and � is a random variable that is uniformly
distributed between 0 and 2π. Find the crosscorrelation function of X(t) and Y(t).

Solution The crosscorrelation function of X(t) and Y(t) is given by

RXY(t, s) = E[X(t)Y(s)] = E[A cos(wt + �)B sin(ws + �)]
= E[AB cos(wt + �) sin(ws + �)]
= ABE[cos(wt + �) sin(ws + �)]

= ABE

[
1

2
{sin(wt + ws + 2�) − sin(wt − ws)}

]

= AB

2
{E[sin(wt + ws + 2�)] − sin w(t − s)}

Now, since f�(θ) = 1/2π for 0 ≤ � ≤ 2π, we have that

E[sin(wt + ws + 2θ)] =
∫ ∞

−∞
sin(wt + ws + 2θ)f�(θ)dθ

= 1

2π

∫ 2π

0
sin(wt + ws + 2θ)dθ

= 1

2π

[
−cos(wt + ws + 2θ)

2

]2π

0

= 1

4π
{cos(wt + ws) − cos(wt + ws + 4π)}

= 1

4π
{cos(wt + ws) − cos(wt + ws)} = 0

Thus,

RXY(t, s) = AB

2
[0 − sin w(t − s)] = −AB

2
sin w(t − s)

If we define s = t + τ, then

RXY(t, s) = RXY(t, t + τ) = −AB

2
sin w(−τ)

= AB

2
sin(wτ)

�
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8.5 Stationary Random Processes

There are several ways to define a stationary random process. At a high level, it is
a process whose statistical properties do not vary with time. In this book we con-
sider only two types of stationary processes. These are the strict-sense stationary

processes and the wide-sense stationary processes.

8.5.1 Strict-Sense Stationary Processes

A random process is defined to be a strict-sense stationary process if its CDF is
invariant to a shift in the time origin. This means that the process X(t) with the
CDF FX(x1,x2, . . . ,xn; t1, t2, . . . , tn) is a strict-sense stationary process if its CDF
is identical to that of X(t + ε) for any arbitrary ε. Thus, we have that being a
strict-sense stationary process implies that for any arbitrary ε,

FX(x1,x2, . . . ,xn; t1, t2, . . . , tn) = FX(x1,x2, . . . ,xn; t1 + ε, t2 + ε, . . . , tn + ε)

for all n

When the CDF is differentiable, the equivalent condition for strict-sense station-
arity is that the PDF is invariant to a shift in the time origin; that is,

fX(x1,x2, . . . ,xn; t1, t2, . . . , tn) = fX(x1,x2, . . . ,xn; t1 + ε, t2 + ε, . . . , tn + ε)

for all n

If X(t) is a strict-sense stationary process, then the CDF FX1X2
(x1,x2; t1, t1 + τ)

does not depend on t but it may depend on τ. Thus, if t2 = t1 + τ, then
FX1X2

(x1,x2; t1, t2) may depend on t2 − t1, but not on t1 and t2 individually. This
means that if X(t) is a strict-sense stationary process, then the autocorrelation and
autocovariance functions do not depend on t. Thus, we have that for all τ ∈ T:

µX(t) = µX(0)

RXX(t, t + τ) = RXX(0,τ)

CXX(t, t + τ) = CXX(0,τ)

If the condition µX(t) = µX(0) holds for all t, the mean is constant and de-
noted by µX . Similarly, if the equation RXX(t, t + τ) does not depend on t but
is a function of τ, we write RXX(0,τ) = RXX(τ). Finally, whenever the condition
CXX(t, t + τ) = CXX(0,τ) holds for all t, we write CXX(0,τ) = CXX(τ).

8.5.2 Wide-Sense Stationary Processes

Many practical problems that we encounter require that we deal with only the
mean and autocorrelation function of a random process. Solutions to these prob-
lems are simplified if these quantities do not depend on absolute time. Random
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Figure 8.2 PMF of A and B

processes in which the mean and autocorrelation function do not depend on ab-
solute time are called wide-sense stationary (WSS) processes. Thus, for a wide-
sense stationary process X(t),

E[X(t)] = µX (constant)

RXX(t, t + τ) = RXX(τ)

Note that a strict-sense stationary process is also a wide-sense stationary process.
However, in general the converse is not true; that is, a WSS process is not neces-
sarily stationary in the strict sense.

Example 8.4 A random process X(t) is defined by

X(t) = A cos t + B sin t − ∞ < t < ∞

where A and B are independent random variables each of which has a value −2
with probability 1/3 and a value 1 with probability 2/3. Show that X(t) is a wide-
sense stationary process.

Solution The PMF of A and B is shown in Figure 8.2.

E[A] = E[B] = 1

3
(−2) + 2

3
(1) = 0

E
[
A2

]
= E

[
B2

]
= 1

3
(−2)2 + 2

3
(1)2 = 2

Since A and B are independent, E[AB] = E[A]E[B] = 0. Thus,

RXX(t, s) = E[X(t)X(s)] = E[{A cos(t) + B sin(t)}{A cos(s) + B sin(s)}]
=

[
A2 cos(t) cos(s) + AB cos(t) sin(s) + AB sin(t) cos(s)

+ B2 sin(t) sin(s)
]
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= E
[
A2

]
cos(t) cos(s) + E[AB]{cos(t) sin(s) + sin(t) cos(s)}

+ E
[
B2

]
sin(t) sin(s)

= 2{cos(t) cos(s) + sin(t) sin(s)}
= 2 cos(t − s)

Since the mean is constant and the autocorrelation function is a function of the
difference between the two times, we conclude that the random process X(t) is
wide-sense stationary. �

Example 8.5 Assume that X(t) is a random process defined as follows:

X(t) = A cos(2πt + �)

where A is a zero-mean normal random variable with variance σ2
A = 2 and � is

a uniformly distributed random variable over the interval −π ≤ φ ≤ π. A and �

are statistically independent. Let the random variable Y be defined as follows:

Y =
∫ 1

0
X(t)dt

Determine

1. the mean E[Y] of Y .

2. the variance of Y .

Solution The mean of X(t) is given by

E[X(t)] = E[A cos(2πt + �)] = E[A]E[cos(2πt + �)] = 0

Similarly the variance of X(t) is given by

σ2
X(t) = E

[
{X(t) − E[X(t)]}2

]
= E

[
X2(t)

]

= E
[
(A cos(2πt + �))2

]
= E

[
A2

]
E
[
{cos(2πt + �)}2

]

= 2E

[
1 + cos(4πt + 2�)

2

]
= 2 × 1

2

{
1 +

∫
π

−π

cos(4πt + 2φ)f�(φ)dφ

}

= 1 + 1

2π

∫
π

−π

cos(4πt + 2φ)dφ = 1
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(1) The mean of Y is given by

E[Y] = E

[∫ 1

0
X(t)dt

]
=

∫ 1

0
E[X(t)]dt = 0

(2) The variance of Y is given by

σ2
Y = E

[
{Y − E[Y]}2

]
= E

[
Y2

]

= E

[(∫ 1

0
X(t)dt

)2]
= E

[{∫ 1

0
A cos(2πt + �)dt

}2]

= E

[{
A sin(2πt + �)

2π

∣∣∣
1

0

}2]

= 1

4π2
E
[
{A sin(2π + �) − A sin(�)}2

]
= 1

4π2
E
[
{A sin(�) − A sin(�)}2

]
= 0

�

Note that

Y =
∫ 1

0
X(t)dt =

∫ 1

0
A cos(2πt + �)dt = A[sin(2π + �) − sin(�)]

2π
= 0

which is why we got the results for the mean and variance of Y .

8.5.2.1 Properties of Autocorrelation Functions for WSS Processes

As defined earlier, the autocorrelation function of a wide-sense stationary ran-
dom process X(t) is defined as

RXX(t, t + τ) = RXX(τ)

The properties of autocorrelation functions of wide-sense stationary processes
include the following:

1. |RXX(τ)| ≤ RXX(0), which means that RXX(τ) is bounded by its value at the
origin (or the largest value of RXX(τ) occurs at τ = 0)

2. RXX(τ) = RXX(−τ), which means that RXX(τ) is an even function

3. RXX(0) = E
[
X2(t)

]
, which means that the largest value of the autocorrela-

tion function, RXX(0) (according to property 1 above), is equal to the second
moment of the random process. E

[
X2(t)

]
is usually referred to as the mean-

square value.
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4. If X(t) has no periodic components and is ergodic (where the concept
of “ergodic processes” is discussed later), and E[X(t)] = µX 
= 0, then
lim|τ|→∞ RXX(τ) = µ2

X .

5. If X(t) has a direct-current (dc) component or mean value, then RXX(τ) will
have a constant component. Thus, if X(t) = K + N(t), where K is a constant,
then RXX(τ) = K2 + RNN(τ).

6. If X(t) has a periodic component, then RXX(τ) will have a periodic compo-
nent with the same period.

7. RXX(τ) cannot have an arbitrary shape; this means that any arbitrary function
cannot be an autocorrelation function.

Example 8.6 Compute the variance of the random process X(t) whose autocor-
relation function is given by

RXX(τ) = 25 + 4

1 + 6τ2

Solution By property 4, the square of the mean is given by: µ2
X = lim|τ|→∞

RXX(τ) = 25. Thus, µX =
√

25 = ±5. Note that the property yields only the mag-
nitude of the mean but not its sign. Also, from property 3,

E
[
X2(t)

]
= RXX(0) = 25 + 4 = 29

Thus, the variance is given by

σ2
X = E

[
X2(t)

]
− µ2

X = 29 − 25 = 4

�

Example 8.7 A random process has the autocorrelation function

RXX(τ) = 4τ2 + 6

τ2 + 1

Find the mean-square value, the mean value and the variance of the process.

Solution We first decompose the function to obtain its dc component as follows:

RXX(τ) = 4τ2 + 6

τ2 + 1
= 4(τ2 + 1) + 2

τ2 + 1
= 4 + 2

τ2 + 1
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Thus,

E
[
X2(t)

]
= RXX(0) = 6

E[X(t)] = ±
√

lim
|τ|→∞

RXX(τ) = ±
√

4 = ±2

σ2
X = E

[
X2(t)

]
− (E[X(t)])2 = 6 − 4 = 2

�

8.5.2.2 Autocorrelation Matrices for WSS Processes

Consider a WSS random signal X(t) that is sampled at periodic time instants and
assume that we accumulate N such samples. If the sampling times are t1, t2, . . . , tN ,
the vector representing the different samples of X(t) is given by

X =




X(t1)

X(t2)

. . .

X(tN)




Since each sample is a random variable, we can define an N × N autocorrelation
matrix that gives the autocorrelation function for every pair of random variables
in the vector X. Also, if the interval between two consecutive samples is 	t, we
have that

t2 = t1 + 	t

t3 = t2 + 	t = t1 + 2	t

. . .

tN = tN−1 + 	t = t1 + (N − 1)	t

Thus, the autocorrelation matrix becomes

RXX = E
[
XXT

]
= E








X(t1)X(t1) X(t1)X(t2) . . . X(t1)X(tN)

X(t2)X(t1) X(t2)X(t2) . . . X(t2)X(tN)

. . . . . . . . . . . .

X(tN)X(t1) X(tN)X(t2) . . . X(tN)X(tN)








=




RXX(t1, t1) RXX(t1, t2) . . . RXX(t1, tN)

RXX(t2, t1) RXX(t2, t2) . . . RXX(t2, tN)

. . . . . . . . . . . .

RXX(tN, t1) RXX(tN, t2) . . . RXX(tN, tN)




=




RXX(0) RXX(	t) . . . RXX([N − 1]	t)

RXX(	t) RXX(0) . . . RXX([N − 2]	t)

. . . . . . . . . . . .

RXX([N − 1]	t) RXX([N − 2]	t) . . . RXX(0)



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where XT is the transpose of X, and we have taken advantage of the fact that
RXX(−τ) = RXX(τ). Thus, for a wide-sense stationary process, RXX is a symmet-
ric matrix. In a similar manner we can obtain the autocovariance matrix CXX,
which is defined as follows:

CXX = E
[(

X − X̄
)(

XT − X̄
T)] = RXX − X̄X̄

T

Example 8.8 Determine the missing elements denoted by xx in the following
autocorrelation matrix of a WSS random process Y(t):

RYY =




2 1.3 0.4 xx

xx 2 1.2 0.8
0.4 1.2 xx 1.1
0.9 xx xx 2




Solution Since the autocorrelation matrix of a WSS process is a symmetric ma-
trix, the real matrix is as follows:

RYY =




2 1.3 0.4 0.9
1.3 2 1.2 0.8
0.4 1.2 2 1.1
0.9 0.8 1.1 2




�

8.5.2.3 Properties of Crosscorrelation Functions for WSS Processes

As defined earlier, the crosscorrelation function RXY(t, s) of the two random
processes X(t) and Y(t) is defined by

RXY(t, s) = E[X(t)Y(s)]

If we set s = t + τ, we may write

RXY(t, t + τ) = E[X(t)Y(t + τ)]

We say that X(t) and Y(t) are jointly wide-sense stationary if RXY(t, t + τ) is
independent of the absolute time. That is, X(t) and Y(t) are jointly wide-sense
stationary random processes if

RXY(t, t + τ) = E[X(t)Y(t + τ)] = RXY(τ)

Generally the crosscorrelation function is not an even function, as is true for the
autocorrelation function. Also, it does not necessarily have a maximum value at
the origin as is true for the autocorrelation function. Some of the properties of
RXY(τ) include the following:



282 Chapter 8 Introduction to Random Processes

1. RXY(τ) = RYX(−τ)

2. |RXY(τ)| ≤
√

RXX(0)RYY(0)

3. |RXY(τ)| ≤ [RXX(0) + RYY(0)]/2

8.6 Ergodic Random Processes

One desirable property of a random process is the ability to estimate its parame-
ters from measurement data. Consider a random process X(t) whose observed
samples are x(t). The time average of the function x(t) is defined by

x̄ = lim
T→∞

1

2T

∫ T

−T

x(t)dt

The statistical average of the random process X(t) is the expected value E[X(t)]
of the process. The expected value is also called the ensemble average. An ergodic
random process is a stationary process in which every member of the ensemble
exhibits the same statistical behavior as the ensemble. This implies that it is pos-
sible to determine the statistical behavior of the ensemble by examining only one
typical sample function. Thus, for an ergodic random process, the mean values
and moments can be determined by time averages as well as by ensemble aver-
ages (or expected values), which are equal. That is,

E
[
Xn

]
= Xn =

∫ ∞

−∞
xnfX(x)dx = lim

T→∞

1

2T

∫ T

−T

Xn(t)dt

A random process X(t) is defined to be mean-ergodic (or ergodic in the mean) if
E[X(t)] = x̄.

Example 8.9 A random process has sample functions of the form

X(t) = A cos(wt + �)

where w is constant, A is a random variable that has a magnitude of +1 and −1
with equal probability, and � is a random variable that is uniformly distributed
between 0 and 2π. Assume that the random variables A and � are independent.

(a) Is X(t) a wide-sense stationary process?

(b) Is X(t) a mean-ergodic process?
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Figure 8.3 PMF of A and PDF of � for Example 8.9

Solution The PMF of A and the PDF of � are shown in Figure 8.3.

E[A] = 0

σ2
A = 1

2
(1)2 + 1

2
(−1)2 = 1 = E

[
A2

]

E[�] = π

σ2
� = (2π)2

12
= π2

3

(a) Since A and � are independent, E[X(t)] = E[A]E[cos(wt +�)] = 0, which is
a constant. Also, the autocorrelation function of X(t) is given by

RXX(t, t + τ) = E[A cos(wt + �)A cos(wt + wτ + �)]
= E

[
A2

]
E[cos(wt + �) cos(wt + wτ + �)]

= 1

2
E[cos(−wτ) + cos(2wt + wτ + 2�)]

= 1

2
E[cos(−wτ)] + 1

2
E[cos(2wt + wτ + 2�)]

= 1

2
cos(wτ) + 1

2
E[cos(2wt + wτ + 2�)]

= 1

2
cos(wτ) + 1

2

∫ 2π

0

cos(2wt + wτ + 2θ)

2π
dθ

= 1

2
cos(wτ) + 1

8π
[sin(2wt + wτ + 2θ)]2π

0

= 1

2
cos(wτ) + 1

8π
{sin(2wt + wτ + 4π) − sin(2wt + wτ)}

= 1

2
cos(wτ)
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Since the mean is constant and the autocorrelation function depends only
on the difference between the two times and not on t, we conclude that the
process is wide-sense stationary.

(b)

lim
T→∞

1

2T

∫ T

−T

X(t)dt = lim
T→∞

1

2T

∫ 2π

0
A cos(wt + �)dt = lim

T→∞

A

2Tw
[sin(wt + �)]2π

0

= lim
T→∞

A

2Tw
[sin(2πw + �) − sin�] = 0

Thus, X(t) is mean-ergodic.
�

8.7 Power Spectral Density

So far we have been able to characterize a random process by its mean, auto-
correlation function, and covariance function. All these functions deal with the
time domain; we have not said anything about the spectral (or frequency domain)
properties of the process. For a deterministic signal y(t), it is well known that its
spectral properties are contained in its Fourier transform Y(w), which is given by

Y(w) =
∫ ∞

−∞
y(t)e−jwtdt

Conversely, given Y(w) we can recover y(t) by means of the inverse Fourier trans-
form:

y(t) = 1

2π

∫ ∞

−∞
Y(w)ejwtdw

Thus, Y(w) provides a complete description of y(t) and vice versa. Unfortunately
the same argument cannot be applied to a random process X(t) because the
Fourier transform may not exist for most sample functions of the process. One
of the conditions for the function y(t) to be Fourier transformable is that it must
be absolutely integrable, which means that

∫ ∞

−∞
|y(t)|dt < ∞

Recall that for wide-sense stationary processes the autocorrelation function,
RXX(τ), is bounded: |RXX(τ)| ≤ RXX(0) = E[X2(t)]. Thus, instead of working di-
rectly with the random process X(t), we work with its autocorrelation function,
which is bounded and hence absolutely integrable.
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For a wide-sense stationary process, the Fourier transform of the autocorrela-
tion function is called the power spectral density, SXX(w), of the random process.
Thus,

SXX(w) =
∫ ∞

−∞
RXX(τ)e−jwτdτ

We can recover RXX(τ) via the inverse Fourier transform operation as follows:

RXX(τ) = 1

2π

∫ ∞

−∞
SXX(w)ejwτdw

The statement that the autocorrelation function of a random process and the
power spectral density of the process constitute a Fourier transform pair is called
the Wiener–Khintchine theorem. Note that the mean-square value of the random
process, E

[
X2(t)

]
, which is also called the average power, is given by

E
[
X2(t)

]
= RXX(0) = 1

2π

∫ ∞

−∞
SXX(w)dw

Thus, the properties of the power spectral density include the following:

1. SXX(w) ≥ 0, which means that SXX(w) is a nonnegative function

2. SXX(−w) = SXX(w), which means that SXX(w) is an even function

3. The power spectral density is a real function if X(t) is real because we have
that

SXX(w) =
∫ ∞

−∞
RXX(τ)e−jwτdτ =

∫ ∞

−∞
RXX(τ){cos(wτ) − j sin(wτ)}dτ

=
∫ ∞

−∞
RXX(τ) cos(wτ)dτ − j

∫ ∞

−∞
RXX(τ) sin(wτ)dτ

We know from the second property above that SXX(w) is an even function.
Since RXX(τ) cos(wτ) is an even function of τ and RXX(τ) sin(wτ) is an odd
function of τ, the imaginary part in the above equation vanishes. Thus, we
have that

SXX(w) =
∫ ∞

−∞
RXX(τ) cos(wτ)dτ = 2

∫ ∞

0
RXX(τ) cos(wτ)dτ

where the second equality follows from the fact that SXX(w) is an even func-
tion.

4. The average power of X(t) is given by E
[
X2(t)

]
= RXX(0) = 1

2π
×

∫ ∞
−∞ SXX(w)dw, as stated earlier.
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Table 8.1 Some Common Fourier Transform Pairs

x(τ) X(w)

e−a|τ|, a > 0
2a

a2 + w2

e−aτ, a > 0, τ ≥ 0
1

a + jw

ebτ, b > 0, τ < 0
1

b − jw

τe−aτ, a > 0, τ ≥ 0
1

(a + jw)2

1 2πδ(w)

δ(τ) 1

ejw0τ 2πδ(w − w0)

{
1 −T/2 < τ < T/2
0 otherwise

T
sin(wT/2)

(wT/2)
{

1 − |τ|/T |τ| < T

0 otherwise
T

[
sin(wT/2)

(wT/2)

]2

cos(w0τ) πδ(w − w0) + πδ(w + w0)

sin(w0τ) −jπ[δ(w − w0) − δ(w + w0)]

e−a|τ| cos(w0τ)
a

a2 + (w − w0)2
+ a

a2 + (w + w0)2

5. S∗
XX(w) = SXX(w), where S∗

XX(w) is the complex conjugate of SXX(w). This
means that SXX(w) cannot be a complex function; it must be a real function.

6. If
∫ ∞
−∞ |RXX(τ)|dτ < ∞, then SXX(w) is a continuous function of w.

Table 8.1 shows some of the common Fourier transform pairs used in random
processes analysis.

Note that because of the fact that the power spectral density must be an even,
nonnegative, real function, some of the entries for x(τ) cannot be autocorrelation
functions of wide-sense stationary processes. In particular, the functions e−aτ,
τe−aτ, and sin(w0τ) cannot be autocorrelation functions of wide-sense stationary
processes because their Fourier transforms are complex functions.

For two random processes X(t) and Y(t) that are jointly wide-sense station-
ary, the Fourier transform of their crosscorrelation function RXY(τ) is called the
cross-power spectral density, SXY(w), of the two random processes. Thus,

SXY(w) =
∫ ∞

−∞
RXY(τ)e−jwτdτ
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Figure 8.4 Plot of SXX (w) for Example 8.10

The cross-power spectral density is generally a complex function even when both
X(t) and Y(t) are real. Thus, since RYX(τ) = RXY(−τ), we have that

SYX(w) = SXY(−w) = S∗
XY(w)

where S∗
XY(w) is the complex conjugate of SXY(w).

Example 8.10 Determine the autocorrelation function of the random process
with the power spectral density given by

SXX(w) =
{

S0 |w| < w0

0 otherwise

Solution SXX(w) is plotted in Figure 8.4.

RXX(τ) = 1

2π

∫ ∞

−∞
SXX(w)ejwτdw

= 1

2π

∫ w0

−w0

S0ejwτdw = S0

2jπτ

[
ejwτ

]w0

−w0

= S0

2jπτ

[
ejw0τ − e−jw0τ

]
= S0

πτ

(
ejw0τ − e−jw0τ

2j

)

= S0

πτ
sin(w0τ)

�

Example 8.11 A stationary random process X(t) has the power spectral density

SXX(w) = 24

w2 + 16

Find the mean-square value of the process.
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Solution Method 1 (Brute-Force Method): The mean-square value is given by

E
[
X2(t)

]
= 1

2π

∫ ∞

−∞
SXX(w)dw = 1

2π

∫ ∞

−∞

24

w2 + 16
dw

= 1

2π

∫ ∞

−∞

24

16[1 + (w/4)2]
dw

Let w/4 = tanθ. Then

dw = 4 sec2(θ)dθ

1 + (w/4)2 = 1 + tan(θ)2 = sec2(θ)

Also, when w = −∞, θ = −π/2; and when w = ∞, θ = π/2. Thus, we obtain

E
[
X2(t)

]
= 24

32π

∫
π/2

−π/2

4 sec2(θ)dθ

sec2(θ)
= 3

π

∫
π/2

−π/2
dθ

= 3

π
[θ]π/2

−π/2 = 3

π

{
π

2
−

(
−π

2

)}
= 3

π

{
π

2
+ π

2

}

= 3

Solution Method 2 (Smart-Move Method): From Table 8.1 we observe that

e−a|τ| ↔ 2a

a2 + w2

That is, e−a|τ| and 2a/(a2 + w2) are Fourier transform pairs. Thus, if we can iden-
tify the parameter a in the given problem, we can readily obtain the autocorrela-
tion function. Rearranging the power spectral density, we obtain

SXX(w) = 24

w2 + 16
= 24

w2 + 42
= 3

{
2(4)

w2 + 42

}
≡ 3

{
2a

w2 + a2

}

This means that a = 4 and the autocorrelation function is

RXX(τ) = 3e−4|τ|

Therefore, the mean-square value of the process is

E
[
X2(t)

]
= RXX(0) = 3

�
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8.7.1 White Noise

White noise is the term used to define a random function whose power spectral
density is constant for all frequencies. Thus, if N(t) denotes white noise,

SNN(w) = N0/2

where N0 is a real positive constant. The inverse Fourier transform of SNN(w)

gives the autocorrelation function of N(t), RNN(τ), as follows:

RNN(τ) = (N0/2)δ(τ)

where δ(τ) is the impulse function. The two functions are shown in Figure 8.5.

Example 8.12 Let Y(t) = X(t) + N(t) be a wide-sense stationary process where
X(t) is the actual signal and N(t) is a zero-mean noise process with variance σ2

N
and independent of X(t). Find the power spectral density of Y(t).

Solution Since X(t) and N(t) are independent random processes, the autocor-
relation function of Y(t) is given by

RYY(τ) = E[Y(t)Y(t + τ)] = E[{X(t) + N(t)}{X(t + τ) + N(t + τ)}]
= E[X(t)X(t + τ) + X(t)N(t + τ) + N(t)X(t + τ) + N(t)N(t + τ)]
= E[X(t)X(t + τ)] + E[X(t)]E[N(t + τ)] + E[N(t)]E[X(t + τ)]

+E[N(t)N(t + τ)]
= RXX(τ) + RNN(τ) = RXX(τ) + σ2

Nδ(τ)

Thus, the power spectral density of Y(t) is given by

SYY(w) = SXX(w) + σ2
N

�

Figure 8.5 Power Spectral Density and Autocorrelation Function of White Noise
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8.8 Discrete-Time Random Processes

All the discussion thus far assumes that we are dealing with continuous-time
random processes. In this section we extend the discussion to discrete-time ran-
dom processes {X[n],n = 0,1, . . .}, which are also called random sequences.
A discrete-time random process can be obtained by sampling a continuous-time
random process. Thus, if the sampling interval is Ts, then for such a case we have
that

X[n] = X(nTs) n = 0,±1,±2, . . .

We provide a summary of the key results as follows.

8.8.1 Mean, Autocorrelation Function, and Autocovariance Function

The mean of X[n] is given by

µX [n] = E[X[n]]

The autocorrelation function is given by

RXX [n,n + m] = E[X[n]X∗[n + m]]

where X∗[n] is the complex conjugate of X[n]. The random process is wide-sense
stationary if µX [n] = µ, a constant, and RXX [n,n + m] = RXX [m].

Finally, the autocovariance function of X[n], CXX [n1,n2], which is one mea-
sure of the coupling between X[n1] and X[n2], is defined by

CXX

[
n1,n2

]
= E

[{
X
[
n1

]
− µX

[
n1

]}{
X
[
n2

]
− µX

[
n2

]}]

= E
[
X
[
n1

]
X
[
n2

]]
− µX

[
n1

]
µX

[
n2

]

= RXX

[
n1,n2

]
− µX

[
n1

]
µX

[
n2

]

If X[n1] and X[n2] are independent, then RXX [n1,n2] = µX [n1]µX [n2], and we
have CXX [n1,n2] = 0, which means that X[n1] and X[n2] are uncorrelated.

A discrete-time random process is called a white noise if the random variables
X[nk] are uncorrelated. If the white noise is a Gaussian wide-sense stationary
process, then X[n] consists of a sequence of independent and identically distrib-
uted random variables with variance σ2 and the autocorrelation function is given
by

RXX [m] = σ2δ[m]

δ[m] =
{

1 m = 0
0 m 
= 0
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8.8.2 Power Spectral Density

The power spectral density of X[n] is given by the following discrete-time Fourier
transform of its autocorrelation function:

SXX(
) =
∞∑

m=−∞
RXX [m]e−j
m

Note that e−j
n is periodic with period 2π. That is, e−j(
+2π)n = e−j
ne−j2πn =
e−j
n because e−j2πn = 1. Thus, SXX(
) is periodic with period 2π, and it is suffi-
cient to define SXX(
) only in the range (−π,π). This means that the autocorre-
lation function is given by

RXX [m] = 1

2π

∫
π

−π

SXX(
)ej
md


The properties of SXX(
) include the following:

1. SXX(
 + 2π) = SXX(
), which means that SXX(
) is periodic with period 2π

as stated earlier.

2. SXX(−
) = SXX(
), which means that SXX(
) is an even function.

3. SXX(
) is real, which means that SXX(
) ≥ 0.

4. E[X2[n]] = RXX [0] = 1
2π

∫
π

−π
SXX(
)d
, which is the average power of the

process.

Example 8.13 Assume that X[n] is a real process, which means that RXX [−m] =
RXX [m]. Find the power spectral density SXX(
).

Solution The power spectral density is the discrete-time Fourier transform of
the autocorrelation function and is given by

SXX(
) =
∞∑

m=−∞
RXX [m]e−j
m =

−1∑

m=−∞
RXX [m]e−j
m +

∞∑

m=0

RXX [m]e−j
m

=
∞∑

k=1

RXX [−k]ej
k +
∞∑

m=0

RXX [m]e−j
m

=
∞∑

k=1

RXX [−k]ej
k +
∞∑

m=1

RXX [m]e−j
m + RXX [0]
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= RXX [0] + 2

∞∑

m=1

RXX [m] {e
j
m + e−j
m}

2

= RXX [0] + 2

∞∑

m=1

RXX [m] cos(m
)

�

Example 8.14 Find the power spectral density of a random sequence X[n]
whose autocorrelation function is given by RXX [m] = a|m|.

Solution The power spectral density is given by

SXX(
) =
∞∑

m=−∞
RXX [m]e−j
m =

∞∑

m=−∞
a|m|e−j
m

=
−1∑

m=−∞
a−me−j
m +

∞∑

m=0

ame−j
m

=
∞∑

k=1

akej
k +
∞∑

m=0

ame−j
m =
∞∑

k=1

{
aej


}k +
∞∑

m=0

{
ae−j


}m

= 1

1 − aej

− 1 + 1

1 − ae−j


= 1 − a2

1 + a2 − 2 cos(
)

�

8.8.3 Sampling of Continuous-Time Processes

As discussed earlier, one of the methods that can be used to generate discrete-
time processes is by sampling a continuous-time process. Thus, if X(t) is a
continuous-time process that is sampled at constant intervals of Ts time units
(that is, Ts is the sampling period), then the samples constitute the discrete-time
process defined by

X[n] = X(nTs) n = 0,±1,±2, . . .

If µX(t) and RXX(t1, t2) are the mean and autocorrelation function, respectively,
of X(t), the mean and autocorrelation function of X[n] are given by

µX [n] = µX(nTs)
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RXX [n1,n2] = RXX(n1Ts,n2Ts)

It can be shown that if X(t) is a wide-sense stationary process, then X[n] is also
a wide-sense stationary process with mean µX [n] = µX and autocorrelation func-
tion RXX [m] = RXX(mTs). If X(t) is a wide-sense stationary process, then the
power spectral density of X[n] is given by

SXX(
) =
∞∑

m=−∞
RXX [m]e−j
m =

∞∑

m=−∞
RXcXc(mTs)e

−j
m

= 1

Ts

∞∑

m=−∞
SXcXc

(

 − 2πm

Ts

)

where SXcXc(w) and RXcXc(τ) are the power spectral density and autocorrelation
function, respectively, of X(t).

Example 8.15 A wide-sense stationary continuous-time process Xc(t) has the
autocorrelation function given by

RXcXc(τ) = e−4|τ|

If Xc(t) is sampled with a sampling period of 20 seconds to produce the discrete-
time process X[n], find the power spectral density of X[n].
Solution The discrete-time process X[n] = Xc(20n). From Table 8.1 we see that
the power spectral density of the continuous-time process is given by

SXcXc(w) = 2 × 4

42 + w2
= 8

16 + w2

Thus, the power spectral density of the discrete-time process X[n] is given by

SXX(
) = 1

Ts

∞∑

m=−∞
SXcXc

(

 − 2πm

Ts

)
= 1

20

∞∑

m=−∞

8

16 +
[
 − 2πm

20

]2

�

8.9 Chapter Summary

This chapter presented an introduction to random (or stochastic) processes. It
provided different classifications of random processes including discrete-state
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random processes, continuous-state random processes, discrete-time random
processes, and continuous-time random processes. It also discussed two types of
stationarity for random processes. A random process whose CDF is invariant to
a shift in the time origin is defined to be a strict-sense stationary random process.
In many practical situations, this stringent condition is not required. For these
situations two conditions are required: the mean value of the process must be a
constant, and the autocorrelation function must be dependent only on the dif-
ference between the two observation times and not on the absolute time. Such
processes are said to be stationary in the wide sense.

The power spectral density of a continuous-time random process is defined as
the Fourier transform of its autocorrelation function. Thus, the autocorrelation
function and the power spectral density are Fourier transform pairs, which means
that given one of them the other can be obtained by an inverse transformation.
Similarly, the power spectral density of a discrete-time random process is defined
as the discrete-time Fourier transform of its autocorrelation function.

8.10 Problems

Section 8.3: Mean, Autocorrelation Function, and Autocovariance Function

8.1 Calculate the autocorrelation function of the rectangular pulse shown in
Figure 8.6; that is,

X(t) = A 0 ≤ t ≤ T

where A and T are constants.

8.2 Calculate the autocorrelation function of the periodic function X(t) =
A sin(wt + φ), where the period T = 2π/w, and A, φ, and w are constants.

8.3 The random process X(t) is given by

X(t) = Y cos(2πt) t ≥ 0

where Y is a random variable that is uniformly distributed between 0 and 2.
Find the expected value and autocorrelation function of X(t).

Figure 8.6 Figure for Problem 8.1
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8.4 The sample function X(t) of a stationary random process Y(t) is given by

X(t) = Y(t) sin(wt + �)

where w is a constant, Y(t) and � are statistically independent, and � is
uniformly distributed between 0 and 2π. Find the autocorrelation function
of X(t) in terms of RYY(τ).

8.5 The sample function X(t) of a stationary random process Y(t) is given by

X(t) = Y(t) sin(wt + �)

where w is a constant, Y(t) and � are statistically independent, and � is
uniformly distributed between 0 and 2π. Find the autocovariance function
of X(t).

8.6 The random process X(t) is given by

X(t) = A cos(wt) + B sin(wt)

where w is a constant, and A and B are independent standard normal ran-
dom variables (i.e., zero mean and variance of 1). Find the autocovariance
function of X(t).

8.7 Assume that Y is a random variable that is uniformly distributed between
0 and 2. If we define the random process X(t) = Y cos(2πt), t ≥ 0, find the
autocovariance function of X(t).

8.8 A random process X(t) is given by

X(t) = A cos(t) + (B + 1) sin(t) − ∞ < t < ∞

where A and B are independent random variables with E[A] = E[B] = 0
and E[A2] = E[B2] = 1. Find the autocovariance function of X(t).

8.9 Determine the missing elements of the following autocovariance matrix of
a zero-mean wide-sense stationary random process X(t), where the missing
elements are denoted by xx.

CXX =




1 xx 0.4 xx

0.8 xx 0.6 0.4
xx 0.6 1 0.6
0.2 xx xx 1




8.10 The random process X(t) is defined as follows:

X(t) = A + e−B|t|
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where A and B are independent random variables. A is uniformly distrib-
uted over the range −1 ≤ a ≤ 1, and B is uniformly distributed over the
range 0 ≤ b ≤ 2. Find the following:

a. the mean of X(t)

b. the autocorrelation function of X(t)

8.11 The random process X(t) has the autocorrelation function RXX(τ) = e−2|τ|.
The random process Y(t) is defined as follows:

Y(t) =
∫ t

0
X2(u)du

Find E[Y(t)].

Section 8.4: Crosscorrelation and Crosscovariance Functions

8.12 Two random processes X(t) and Y(t) are both zero-mean and wide-sense
stationary processes. If we define the random process Z(t) = X(t) + Y(t),
determine the autocorrelation function of Z(t) under the following condi-
tions:

a. X(t) and Y(t) are jointly wide-sense stationary.

b. X(t) and Y(t) are orthogonal.

8.13 Two random processes X(t) and Y(t) are defined as follows:

X(t) = A cos(wt) + B sin(wt)

Y(t) = B cos(wt) − A sin(wt)

where w is a constant, and A and B zero-mean and uncorrelated random
variables with variances σ2

A = σ2
B = σ2. Find the crosscorrelation function

RXY(t, t + τ).

8.14 Two random processes X(t) and Y(t) are defined as follows:

X(t) = A cos(wt + �)

Y(t) = B sin(wt + �)

where w,A, and B are constants, and � is a random variable that is uni-
formly distributed between 0 and 2π.

a. Find the autocorrelation function RXX(t, t + τ), and show that X(t) is a
wide-sense stationary process.

b. Find the autocorrelation function RYY(t, t + τ), and show that Y(t) is a
wide-sense stationary process.
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c. Find the crosscorrelation function RXY(t, t + τ), and show that X(t) and
Y(t) are jointly wide-sense stationary.

Section 8.5: Wide-Sense Stationary Processes

8.15 Two random processes X(t) and Y(t) are defined as follows:

X(t) = A cos(w1t + �)

Y(t) = B sin(w2t + �)

where w1, w2, A, and B are constants, and � and � are statistically inde-
pendent random variables, each of which is uniformly distributed between
0 and 2π.

a. Find the crosscorrelation function RXY(t, t + τ), and show that X(t) and
Y(t) are jointly wide-sense stationary.

b. If � = �, show that X(t) and Y(t) are not jointly wide-sense stationary.

c. If � = �, under what condition are X(t) and Y(t) jointly wide-sense
stationary?

8.16 Explain why the following matrices can or cannot be valid autocorrelation
matrices of a zero-mean wide-sense stationary random process X(t).

a.

G =




1 1.2 0.4 1
1.2 1 0.6 0.9
0.4 0.6 1 1.3
1 0.9 1.3 1




b.

H =




2 1.2 0.4 1
1.2 2 0.6 0.9
0.4 0.6 2 1.3
1 0.9 1.3 2




c.

K =




1 0.7 0.4 0.8
0.5 1 0.6 0.9
0.4 0.6 1 0.3
0.1 0.9 0.3 1



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8.17 Two jointly stationary random processes X(t) and Y(t) are defined as fol-
lows:

X(t) = 2 cos(5t + φ)

Y(t) = 10 sin(5t + φ)

where φ is a random variable that is uniformly distributed between 0 and
2π. Find the crosscorrelation functions RXY(τ) and RYX(τ).

8.18 State why each of the functions, F(τ), G(τ), and H(τ), shown in Figure 8.7,
can or cannot be a valid autocorrelation function of a wide-sense stationary
process.

8.19 A random process Y(t) is given by

Y(t) = A cos(wt + φ)

where A, w, and φ are independent random variables. Assume that A has a
mean of 3 and a variance of 9, φ is uniformly distributed between −π and π,
and w is uniformly distributed between −6 and 6. Determine if the process
is stationary in the wide sense.

8.20 A random process X(t) is given by

X(t) = A cos(t) + (B + 1) sin(t) − ∞ < t < ∞

where A and B are independent random variables with E[A] = E[B] = 0
and E[A2] = E[B2] = 1. Is X(t) wide-sense stationary?

Figure 8.7 Figure for Problem 8.18
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8.21 A random process has the autocorrelation function

RXX(τ) = 16τ2 + 28

τ2 + 1

Find the mean-square value, the mean value, and the variance of the
process.

8.22 A wide-sense stationary random process X(t) has a mean-square value (or
average power) E

[
X2(t)

]
= 11. Give reasons why the functions given below

can or cannot be its autocorrelation function.

a. RXX(τ) = 11 sin(2τ)

1 + τ2

b. RXX(τ) = 11τ

1 + 3τ2 + 4τ4

c. RXX(τ) = τ2 + 44

τ2 + 4

d. RXX(τ) = 11 cos(τ)

1 + 3τ2 + 4τ4

e. RXX(τ) = 11τ2

1 + 3τ2 + 4τ4

8.23 An ergodic random process X(t) has the autocorrelation function

RXX(τ) = 36 + 4

1 + τ2

Determine the mean value, mean-square value, and variance of X(t).

8.24 Assume that X(t) is the sum of a deterministic quantity Q and a wide-sense
stationary noise process N(t). Determine the following:

a. the mean of X(t)

b. the autocorrelation function of X(t)

c. the autocovariance function of X(t)

8.25 Two statistically independent and zero-mean random processes X(t) and
Y(t) have the following autocorrelation functions, respectively:

RXX(τ) = e−|τ|

RYY(τ) = cos(2πτ)

Determine the following:

a. the autocorrelation function of the process U(t) = X(t) + Y(t)
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b. the autocorrelation function of the process V(t) = X(t) − Y(t)

c. the crosscorrelation function of U(t) and V(t)

Section 8.6: Ergodic Random Processes

8.26 A random process Y(t) is given by

Y(t) = A cos(wt + φ)

where w is a constant, and A and φ are independent random variables. The
random variable A has a mean of 3 and a variance of 9, and φ is uniformly
distributed between −π and π. Determine if the process is a mean-ergodic
process.

8.27 A random process X(t) is given by

X(t) = A

where A is a random variable with a finite mean of µA and finite vari-
ance σ2

A. Determine if X(t) is a mean-ergodic process.

Section 8.7: Power Spectral Density

8.28 Assume that V(t) and W(t) are both zero-mean wide-sense stationary ran-
dom processes and let the random process M(t) be defined as follows:

M(t) = V(t) + W(t)

a. If V(t) and W(t) are jointly wide-sense stationary, determine the follow-
ing in terms of those of V(t) and W(t):

1. the autocorrelation function of M(t)

2. the power spectral density of M(t)

b. If V(t) and W(t) are orthogonal, determine the following in terms of
those of V(t) and W(t):

1 the autocorrelation function of M(t)

2. the power spectral density of M(t)

8.29 A stationary random process X(t) has an autocorrelation function given by

RXX(τ) = 2e−|τ| + 4e−4|τ|

Find the power spectral density of the process.
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8.30 A random process X(t) has a power spectral density given by

SXX(w) =
{

4 − w2

9
|w| ≤ 6

0 otherwise

Determine (a) the average power and (b) the autocorrelation function of
the process.

8.31 A random process Y(t) has the power spectral density

SYY(w) = 9

w2 + 64

Find (a) the average power in the process and (b) the autocorrelation func-
tion.

8.32 A random process Z(t) has the autocorrelation function given by

RZZ(τ) =





1 + τ

τ0
−τ0 ≤ τ ≤ 0

1 − τ

τ0
0 ≤ τ ≤ τ0

0 otherwise

where τ0 is a constant. Calculate the power spectral density of the process.

8.33 Give reasons why the functions given below can or cannot be the power
spectral density of a wide-sense stationary random process.

a. SXX(w) = sin(w)

w

b. SXX(w) = cos(w)

w

c. SXX(w) = 8

w2 + 16

d. SXX(w) = 5w2

1 + 3w2 + 4w4

e. SXX(w) = 5w

1 + 3w2 + 4w4

8.34 A bandlimited white noise has the power spectral density defined by

SXX(w) =
{

0.01 400π ≤ |w| ≤ 500π

0 otherwise

Find the mean-square value of the process.
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8.35 A wide-sense stationary noise process N(t) has an autocorrelation function

RNN(τ) = Ae−4|τ|

where A is a constant. Determine the power spectral density.

8.36 Two random processes X(t) and Y(t) are defined as follows:

X(t) = A cos(w0t) + B sin(w0t)

Y(t) = B cos(w0t) − A sin(w0t)

where w0 is a constant, and A and B are zero-mean and uncorrelated ran-
dom variables with variances σ2

A = σ2
B = σ2. Find the cross-power spectral

density of X(t) and Y(t), SXY(w). (Note that SXY(w) is the Fourier trans-
form of the crosscorrelation function RXY(τ).)

8.37 Two random processes X(t) and Y(t) are both zero-mean and wide-sense
stationary processes. If we define the random process Z(t) = X(t) + Y(t),
determine the power spectral density of Z(t) under the following condi-
tions:

a. X(t) and Y(t) are jointly wide-sense stationary.

b. X(t) and Y(t) are orthogonal.

8.38 Two jointly stationary random processes X(t) and Y(t) have the crosscorre-
lation function given by:

RXY(τ) = 2e−2τ τ ≥ 0

Determine the following:

a. the cross-power spectral density SXY(w)

b. the cross-power spectral density SYX(w)

8.39 Two jointly stationary random processes X(t) and Y(t) have the cross-
power spectral density given by

SXY(w) = 1

−w2 + j4w + 4

Find the corresponding crosscorrelation function.

8.40 Two zero-mean independent wide-sense stationary random processes X(t)

and Y(t) have the following power spectral densities

SXX(w) = 4

w2 + 4

SYY(w) = 4

w2 + 4
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respectively. A new random process W(t) is defined as follows: W(t) =
X(t) + Y(t). Determine the following:

a. the power spectral density of W(t)

b. the cross-power spectral density SXW(w)

c. the cross-power spectral density SYW(w)

8.41 Two zero-mean independent wide-sense stationary random processes X(t)

and Y(t) have the following power spectral densities:

SXX(w) = 4

w2 + 4

SYY(w) = w2

w2 + 4

respectively. Two new random processes V(t) and W(t) are defined as fol-
lows:

V(t) = X(t) + Y(t)

W(t) = X(t) − Y(t)

respectively. Determine the cross-power spectral density SVW(w).

8.42 A zero-mean wide-sense stationary random process X(t), −∞ < t < ∞, has
the following power spectral density:

SXX(w) = 2

1 + w2
− ∞ < w < ∞

The random process Y(t) is defined by

Y(t) =
2∑

k=0

X(t + k)

a. Find the mean of Y(t).

b. Find the variance of Y(t).

8.43 Consider two individual wide-sense stationary processes X(t) and Y(t).
Consider the random process Z(t) = X(t) + Y(t).

a. Show that the autocorrelation function of Z(t) is given by

RZZ(t, t + τ) = RXX(τ) + RYY(τ) + RXY(t, t + τ) + RYX(t, t + τ).
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b. If X(t) and Y(t) are jointly wide-sense stationary, show that the autocor-
relation function of Z(t) is given by

RZZ(t, t + τ) = RXX(τ) + RYY(τ) + RXY(τ) + RYX(τ).

c. If X(t) and Y(t) are jointly wide-sense stationary, find the power spectral
density of Z(t).

d. If X(t) and Y(t) are uncorrelated, find the power spectral density of Z(t).

e. If X(t) and Y(t) are orthogonal, find the power spectral density of Z(t).

Section 8.8: Discrete-time Random Processes

8.44 Find the power spectral density of a random sequence X[n] whose autocor-
relation function is given by RXX [m] = am, m = 0,1,2, . . ., where |a| < 1.

8.45 A wide-sense stationary continuous-time process X(t) has the autocorrela-
tion function given by

RXcXc(τ) = e−2|τ| cos(w0τ)

If X(t) is sampled with a sampling period of 10 seconds to produce the
discrete-time process X[n], find the power spectral density of X[n]. [Hint:
Use Table 8.1 to find SXcXc(w).]

8.46 Periodic samples of the autocorrelation function of white noise N(t) with
period T are defined by

RNN(kT) =
{

σ2
N k = 0

0 k 
= 0

Find the power spectral density of the discrete-time random process.

8.47 The autocorrelation function RXX [k] of a discrete-time process X[n] is
given by

RXX [k] =





σ2
X k = 0

4σ2
X

k2π2
k = odd

0 k = even

Find the power spectral density SXX(
) of the process.
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9.1 Introduction

In Chapter 8 the concept of random processes was introduced. Different param-
eters that are associated with random processes were also discussed. These pa-
rameters include autocorrelation function, autocovariance function, crosscorre-
lation function, crosscovariance function, and power spectral density. The goal of
this chapter is to determine the response or output of a linear system when the
input is a random signal instead of a deterministic signal. To set the stage for the
discussion, we first begin with a brief review of linear systems with deterministic
inputs. Then we examine the response of linear systems to random inputs.

9.2 Overview of Linear Systems with Deterministic Inputs

Consider a system with a deterministic input signal x(t) and a deterministic re-
sponse y(t). The system is usually represented either in terms of its impulse func-

305
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Figure 9.1 Time-Domain and Frequency-Domain Representation of Linear System

tion (or impulse response) h(t) or its system response H(w), which is the Fourier
transform of the impulse function. This is illustrated in Figure 9.1. The system
response is also called the transfer function of the system.

The system is defined to be linear if its response to a sum of inputs xk(t),
k = 1,2, . . . ,K, is equal to the sum of the responses taken separately. Also, the
system is said to be a time-invariant system if the form of the impulse response
does not depend on the time the impulse is applied. For linear time-invariant
systems, the response of the system to an input x(t) is the convolution of x(t) and
h(t). That is,

y(t) = x(t) ∗ h(t)

=
∫ ∞

−∞
x(τ)h(t − τ)dτ

where the last equation is called the convolution integral of x(t) and h(t). If we
define u = t − τ, we see that

y(t) =
∫ ∞

−∞
x(t − u)h(u)du =

∫ ∞

−∞
h(u)x(t − u)du = h(t) ∗ x(t)

Thus, the convolution equation can be written in one of two forms:

y(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ =

∫ ∞

−∞
h(τ)x(t − τ)dτ

In the frequency-domain, we can compute the Fourier transform of y(t) as fol-
lows:

Y(w) = F[y(t)] =
∫ ∞

−∞
y(t)e−jwtdt

=
∫ ∞

−∞

{∫ ∞

−∞
x(τ)h(t − τ)dτ

}
e−jwtdt
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where F[y(t)] denotes the Fourier transform of y(t). Interchanging the order of
integration and since x(τ) does not depend on t, we obtain

Y(w) =
∫ ∞

−∞
x(τ)

{∫ ∞

−∞
h(t − τ)e−jwtdt

}
dτ

But the inner integral is the Fourier transform of h(t − τ), which is e−jwτH(w).
Therefore,

Y(w) =
∫ ∞

−∞
x(τ)e−jwτH(w)dτ = H(w)

∫ ∞

−∞
x(τ)e−jwτdτ = H(w)X(w)

Thus, the Fourier transform of the output signal is the product of the system re-
sponse and the Fourier transform of the input signal.

A system is said to be causal if its output at time t0, y(t0), resulting from input
x(t) does not depend on x(t) for any time t > t0, for all t0 and all inputs x(t). Thus,
the output of a causal system cannot anticipate or precede the input signal to
produce the output; it only depends on values of the input at the present time
and in the past. This means that for a causal system, h(t) = 0 for t < 0, which is
why a causal system is sometimes referred to as a nonanticipative system because
the system output does not anticipate future values of the input. For a causal
linear time-invariant system, the output process is given by

y(t) =
∫ t

−∞
x(τ)h(t − τ)dτ =

∫ ∞

0
h(τ)x(t − τ)dτ

9.3 Linear Systems with Continuous-Time Random Inputs

We can now extend this principle to the case of continuous-time random in-
puts. Recall that the random process X(t) is not guaranteed to be Fourier trans-
formable, which is the reason we deal with its autocorrelation function in the fre-
quency domain. The problem we want to address then is this: Given that X(t) is
the input to a linear time-invariant system with impulse response h(t) and Y(t) is
the corresponding output of the system, can we determine the mean and autocor-
relation function of Y(t) if those of X(t) are known? From our earlier discussion,
the output process is given by

Y(t) =
∫ ∞

−∞
X(τ)h(t − τ)dτ

Thus, the mean of Y(t) is given by

µY(t) = E[Y(t)] = E

[∫ ∞

−∞
X(τ)h(t − τ)dτ

]
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=
∫ ∞

−∞
E[X(τ)]h(t − τ)dτ

=
∫ ∞

−∞
µX(τ)h(t − τ)dτ = µX(t) ∗ h(t)

Since we can also write

Y(t) =
∫ ∞

−∞
h(τ)X(t − τ)dτ

we see that the mean is

µY(t) =
∫ ∞

−∞
h(τ)µX(t − τ)dτ = h(t) ∗ µX(t)

This means that

µY(t) = µX(t) ∗ h(t) = h(t) ∗ µX(t)

Thus, the mean of the output process is the convolution of the mean of the input
process and the impulse response.

The crosscorrelation function between the input process X(t) and the output
process Y(t) is given by

RXY(t, t + τ) = E[X(t)Y(t + τ)] = E

[
X(t)

∫ ∞

−∞
h(u)X(t + τ − u)du

]

=
∫ ∞

−∞
E[X(t)X(t + τ − u)]h(u)du

=
∫ ∞

−∞
RXX(t, t + τ − u)h(u)du

If X(t) is a wide-sense stationary process, this reduces to

RXY(τ) =
∫ ∞

−∞
RXX(τ − u)h(u)du = RXX(τ) ∗ h(τ)

If we take the Fourier transforms of both sides, we obtain the cross-power spectral

density between X(t) and Y(t) as

SXY(w) = H(w)SXX(w)

Thus, the transfer function of the system is given by

H(w) = SXY(w)

SXX(w)
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In a similar way it can be shown that the crosscorrelation function between the
output process Y(t), and a wide-sense stationary input process X(t) is given by

RYX(τ) = E[Y(t)X(t + τ)] =
∫ ∞

−∞
RXX(τ − u)h(−u)du = RXX(τ) ∗ h(−τ)

And if we take the Fourier transforms of both sides, we obtain the cross-power
spectral density between Y(t) and X(t) as

SYX(w) = H∗(w)SXX(w)

where H∗(w) is the complex conjugate of H(w) and is given by

H∗(w) = SYX(w)

SXX(w)

Finally, the autocorrelation function of the output of a linear time-invariant sys-
tem with a wide-sense stationary process input is given by

RYY(τ) = E[Y(t)Y(t + τ)] = E

[
Y(t)

∫ ∞

−∞
h(u)X(t + τ − u)du

]

=
∫ ∞

−∞
h(u)E[Y(t)X(t + τ − u)]du =

∫ ∞

−∞
h(u)RYX(τ − u)du

= RYX(τ) ∗ h(τ)

= RXX(τ) ∗ h(−τ) ∗ h(τ) = h(−τ) ∗ h(τ) ∗ RXX(τ)

where the last equality follows from the fact that the order in which convolutions
are performed does not change the answer. Finally, we can obtain the power spec-
tral density of the output process of a linear time-invariant system with a wide-
sense stationary input as follows:

SYY(w) =
∫ ∞

−∞
RYY(τ)e−jwτdτ

=
∫ ∞

−∞
[h(−τ) ∗ h(τ) ∗ RXX(τ)]e−jwτdτ

Since the Fourier transform of a convolution is the product of the Fourier trans-
forms, we obtain

SYY(w) = H∗(w)H(w)SXX(w) = |H(w)|2SXX(w)

The quantity |H(w)|2 is called the power transfer function of the system and is
given by

|H(w)|2 = SYY(w)

SXX(w)
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Figure 9.2 The Bandpass Filter

Example 9.1 Assume that the input X(t) to a linear time-invariant system is
white noise. What is the power spectral density of the output process Y(t) if the
system response H(w) is given by the following?

H(w) =
{

1 w1 < |w| < w2

0 otherwise

Solution The plot of H(w) is illustrated in Figure 9.2, which is an ideal bandpass
filter.

Since SXX(w) = SNN(w) = N0/2 for −∞ < w < ∞, we obtain

SYY(w) = SXX(w)|H(w)|2 = N0

2
|H(w)|2

=
{

N0

2
w1 < |w| < w2

0 otherwise

�

Example 9.2 A random process X(t) is the input to a linear system whose im-
pulse response is h(t) = 2e−t, t ≥ 0. If the autocorrelation function of the process
is RXX(τ) = e−2|τ|, find the power spectral density of the output process Y(t).

Solution The spectral density of the input process is

SXX(w) =
∫ ∞

−∞
RXX(τ)e−jwτdτ =

∫ ∞

−∞
e−2|τ|e−jwτdτ

=
∫ 0

−∞
e2τe−jwτdτ +

∫ ∞

0
e−2τe−jwτdτ

=
∫ 0

−∞
e(2−jw)τdτ +

∫ ∞

0
e−(2+jw)τdτ = 1

2 − jw
+ 1

2 + jw
= 4

w2 + 4
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The transfer function of the linear system is given by

H(w) =
∫ ∞

−∞
h(t)e−jwtdt =

∫ ∞

0
2e−te−jwtdt =

∫ ∞

0
2e−(1+jw)tdt = 2

1 + jw

Thus, the power spectral density of the output process is given by

SYY(w) = H∗(w)H(w)SXX(w) = |H(w)|2SXX(w)

=
∣∣∣∣

2

1 + jw

∣∣∣∣
2 4

w2 + 4
= 16

(w2 + 1)(w2 + 4)

�

Example 9.3 A random process X(t) is the input to a linear system whose im-
pulse response is h(t) = 2e−t , t ≥ 0. If the autocorrelation function of the process
is RXX(τ) = e−2|τ|, determine the following:

1. The crosscorrelation function RXY(τ) between the input process X(t) and the
output process Y(t).

2. The crosscorrelation function RYX(τ) between the output process Y(t) and
the output process X(t).

Solution The crosscorrelation function between the input process and the out-
put process is given by

RXY(τ) =
∫ ∞

−∞
RXX(τ − u)h(u)du = RXX(τ) ∗ h(τ)

Thus, the cross-power spectral density SXY(w) associated with RXY(τ) is given by

SXY(w) = SXX(w)H(w) = 4

w2 + 4
× 2

1 + jw
= 8

(2 + jw)(2 − jw)(1 + jw)

SXY(w) ≡ a

2 + jw
+ 2

2 − jw
+ c

1 + jw

where

a = (2 + jw)SXY(w)|jw=−2 = −2

b = (2 − jw)SXY(w)|jw=2 = 2/3

c = (1 + jw)SXY(w)|jw=−1 = 8/3



312 Chapter 9 Linear Systems with Random Inputs

Therefore,

SXY(w) = − 2

2 + jw
+ 2/3

2 − jw
+ 8/3

1 + jw

Now, from Table 8.1 we see that the Fourier transform of the function f (t) = e−at

for t ≥ 0 and a > 0 is F(w) = 1/(a + jw). Similarly, the Fourier transform of the
function g(t) = ebt for t < 0 and b > 0 is G(w) = 1/(b − jw). Thus, if we define the
unit step function

u(τ) =
{

1 τ ≥ 0
0 otherwise

we obtain the crosscorrelation function between the input process and the output
process as

RXY(τ) =
{

8

3
e−τ − 2e−2τ

}
u(τ) + 2

3
e2τu(−τ)

To find RYX(τ), we use the relationship RXY(τ) = RYX(−τ) to obtain

RYX(τ) =
{

8

3
eτ − 2e2τ

}
u(−τ) + 2

3
e−2τu(τ)

�

Example 9.4 Consider the linear system shown in Figure 9.3 with an input
process X(t) and a zero-mean noise process N(t), where the two input processes
are wide-sense stationary processes that are mutually uncorrelated and have
power spectral densities SXX(w) and SNN(w), respectively. Find the power spec-
tral density of the output process Y(t).

Solution Let the input process be V(t) = X(t) + N(t). Then the autocorrelation
function of V(t) is

RVV(τ) = E[V(t)V(t + τ)] = E[{X(t) + N(t)}{X(t + τ) + N(t + τ)}]
= E[X(t)X(t + τ)] + E[X(t)N(t + τ)]

+ E[N(t)X(t + τ)] + E[N(t)N(t + τ)]
= RXX(τ) + RNN(τ)

Figure 9.3 Figure for Example 9.4
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where the last equality follows from the fact that X(t) and N(t) are mutually un-
correlated. Thus, SVV(w) = SXX(w) + SNN(w). Let the system response by H(w);
then we have the following results:

SYY(w) = |H(w)|2SVV(w) = |H(w)|2{SXX(w) + SNN(w)}

�

9.4 Linear Systems with Discrete-Time Random Inputs

The analysis of the linear time-invariant system with continuous-time random
processes can easily be extended to discrete-time random processes (or discrete
sequences). Let the input process of a linear time-invariant system with impulse
response h[n] be the random sequence {X[n] | n = 1,2, . . .}. The response of the
system to an input sequence X[n] is given by

Y[n] =
∞∑

k=−∞
X[k]hk[n]

where hk[n] is the system response for X[k]. Since the system is time-invariant,
we may write hk[n] = h[n − k]. Thus, for a linear time-invariant system we obtain

Y[n] =
∞∑

k=−∞
X[k]h[n − k]

which is usually called the convolutional sum and written as Y[n] = X[n] ∗ h[n].
As in the continuous-time system, it can also be shown that

Y[n] =
∞∑

k=−∞
h[k]X[n − k] = h[n] ∗ X[n]

Given that the mean of X[n] is µX , the mean of Y[n] is given by

µY = E[Y[n]] = E

[ ∞∑

k=−∞
X[k]h[n − k]

]
=

∞∑

k=−∞
E[X[k]h[n − k]]

=
∞∑

k=−∞
E[X[k]]h[n − k] = µX

∞∑

k=−∞
h[n − k]

Unlike the continuous-time system that uses the Fourier transform for spectral
analysis, the discrete-time system uses the discrete-time Fourier transform that
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is based on the discrete frequency 
. Thus, if the autocorrelation sequence of a
discrete sequence X[n] is RXX [n], the power spectral density of X[n] is obtained
through the following discrete-time Fourier transform:

SXX(
) =
∞∑

n=−∞
RXX [n]e−j
n

As stated in Chapter 8, SXX(
) is periodic with period 2π , which enables us to
recover the autocorrelation sequence as follows:

RXX [n] = 1

2π

∫
π

−π

SXX(
)ej
nd


The crosscorrelation function of X[n] and the output discrete sequence Y[n] is
given by

RXY[n,n + k] = E[X[n]Y[n + k]] = E

[
X[n]

∞∑

l=−∞
h[l]X[n + k − l]

]

=
∞∑

l=−∞
h[l]E[X[n]X[n + k − l]] =

∞∑

l=−∞
h[l]RXX [n,n + k − l]

If X[n] is wide-sense stationary, then we have that

RXY[n,n + k] =
∞∑

l=−∞
h[l]RXX [k − l] = h[k] ∗ RXX [k] = RXY[k]

For the case where X[n] is a wide-sense stationary sequence, the cross-power
spectral density is given by

SXY(
) =
∞∑

k=−∞
RXY[k]e−j
k =

∞∑

k=−∞
{h[k] ∗ RXY[k]}e−j
k = H(
)SXX(
)

The autocorrelation function of the output discrete sequence Y[n] is given by

RYY[n,n + k] = E[Y[n]Y[n + k]] = E

[ ∞∑

j=−∞
h[j]X[n − j]

∞∑

l=−∞
h[l]X[n + k − l]

]

=
∞∑

j=−∞

∞∑

l=−∞
E[h[j]X[n − j]h[l]X[n + k − l]]

=
∞∑

j=−∞

∞∑

l=−∞
h[j]h[l]E[X[n − j]X[n + k − l]]
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=
∞∑

j=−∞

∞∑

l=−∞
h[j]h[l]RXX [n − j,n + k − l]

If X[n] is a wide-sense stationary discrete sequence, then we obtain

RYY[n,n + k] =
∞∑

j=−∞

∞∑

l=−∞
h[j]h[l]RXX [k + j − l] = RYY[k]

In a manner similar to the continuous-time case, it can be shown that the power
spectral density of Y[n] is given by

SYY(
) = |H(
)|2SXX(
)

Example 9.5 The impulse response of a discrete linear time-invariant system is
given by

h[n] = anu[n]
where |α| < 1, and u[n] is the unit step sequence defined by

u[n] =
{

1 n ≥ 0
0 n < 0

If the input sequence X[n] is a discrete-time white noise with power spectral den-
sity N0/2, find the power spectral density of the output Y[n].
Solution The system response is given by

H(
) =
∞∑

n=−∞
h[n]e−j
n =

∞∑

n=0

ane−j
n

= 1

1 − ae−j


Since SXX(
) = N0/2, we have that

SYY(
) = |H(
)|2SXX(
) = H∗(
)H(
)SXX(
)

=
(

1

1 − aej


)(
1

1 − ae−j


)
N0

2
= N0

2{1 − ae−j
 − aej
 + a2}

= N0

2{1 − a[e−j
 + ej
] + a2}
= N0

2{1 − 2a([e−j
 + ej
]/2) + a2}

= N0

2{1 − 2a cos(
) + a2}
�
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9.5 Autoregressive Moving Average Process

The autoregressive moving average (ARMA) process is frequently used in time
series analysis. It consists of two parts: the moving average process and the au-
toregressive process. Let {W[n], n ≥ 0} be a wide-sense stationary random input
sequence with zero-mean and variance σ2

W . In general the W[n] are assumed to
be uncorrelated. An example of such a sequence is noise. The different processes
are defined as follows.

9.5.1 Moving Average Process

A moving average process of order q is a process whose current value Y[n] de-
pends linearly on the q past values of the random input process. Thus, given a set
of constants β0,β1, . . . ,βq, the output process defined by

Y[n] = β0W[n] + β1W[n − 1] + β2W[n − 2] + · · · + βqW[n − q]

=
q∑

k=0

βkW[n − k] n ≥ 0

is called a moving average process of order q, MA(q). The moving average
process is a special case of the purely feedforward system called the finite im-

pulse response (FIR) system with input X[n] that has nonzero mean. The general
structure of FIR systems is shown in Figure 9.4, where D indicates a unit delay.

Since the W[n] are uncorrelated, the mean, variance, and autocorrelation
function of MA(q) are given by

E[Y[n]] = E

[
q∑

k=0

βkW[n − k]
]

=
q∑

k=0

βkE[W[n − k]] = 0

σ2
Y [n] = E

[
(Y[n] − E[Y[n]])2

]
= E

[
Y2[n]

]
= E

[(
q∑

k=0

βkW[n − k]
)2]

= E

[
q∑

k=0

βkW[n − k]
q∑

j=0

βjW[n − j]
]

=
q∑

k=0

q∑

j=0

βkβjE[W[n − k]W[n − j]]

Since we know that

E[W[m]W[k]] =
{

σ2
W m = k

0 m 
= k
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Figure 9.4 Structure of a Finite Impulse Response System

the quantity E[W[n − k]W[n − j]] will have a nonzero value σ2
W when k = j and a

zero value elsewhere. Thus, we have that

σ2
Y[n] = σ2

W

q∑

k=0

β2
k

In the same way, the autocorrelation function is given by

RYY[n,n + m] = E[Y[n]Y[n + m]] = E

[
q∑

k=0

βkW[n − k]
q∑

j=0

βjW[n + m − j]
]

=
q∑

k=0

q∑

j=0

βkβjE[W[n − k]W[n + m − j]]

Since the quantity E[W[n − k]W[n + m − j]] has a nonzero value σ2
W when j =

k + m and a zero value elsewhere, we have that

RYY[n,n + m] =
q−m∑

k=0

βkβk+mE[W2[n − k]] = σ2
W

q−m∑

k=0

βkβk+m 0 ≤ m ≤ q

For m > q the autocorrelation function is zero because there is no overlap in the
products. Note that the autocorrelation function depends only on m and not on n.
Therefore, Y[n] is a wide-sense stationary process.
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Note also that if SXX(
) is the discrete-time Fourier transform of RXX [m],
then SXX(
)e−j
m0 is the discrete-time Fourier transform of RXX [m−m0], where
m0 is a constant. Thus, the crosscorrelation function of W[n] and Y[n] is given by

RWY[n,n + k] = E[W[n]Y[n + k]]
= E[W[n]{β0W[n + k] + β1W[n + k − 1] + · · · + βqW[n + k − q]}]
= β0RWW[k] + β1RWW[k − 1] + β2RWW[k − 2] + · · ·

+ βqRWW[k − q]

=
q∑

m=0

βmRWW[k − m] = RWY[k]

This means that the cross-power spectral density is given by

SWY(
) =
∞∑

k=−∞
RWY[k]e−j
k =

∞∑

k=−∞

q∑

m=0

βmRWW[k − m]e−j
k

=
q∑

m=0

βme−j
m
∞∑

k=−∞
RWW[k − m]ej(k−m)
 = SWW(
)

q∑

m=0

βme−j
m

From this we see that the transfer function of the linear system defined by the
MA(q) is given by

H(
) = SWY(
)

SWW(
)
=

q∑

m=0

βme−j
m

Thus, the MA(q) process has a transfer function that is similar to that of the finite
impulse response (or nonrecursive) filter. This is not surprising, since the moving
average process equation is a nonrecursive equation—we do not recursively use
previously known values of the output process to compute the present value of
the output process.

Example 9.6 Find the variance and autocorrelation function of the first-order
moving average process MA(1).

Solution The first-order moving average process is given by Y[n] = β0W[n] +
β1W[n − 1], n ≥ 0. Thus, the variance and autocorrelation function are given by

σ2
Y[n] = σ2

W

1∑

k=0

β2
k = σ2

W

(
β2

0 + β2
1

)

RYY[n,n + m] = σ2
W

1−m∑

k=0

βkβk+m
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where 0 ≤ m ≤ 1. This gives

RYY[n,n] = RYY [0] = σ2
W

(
β2

0 + β2
1

)

RYY[n,n + 1] = RYY [1] = σ2
Wβ0β1

RYY[n,n + k] = RYY [k] = 0, k > 1

Thus, the power spectral density of the MA(1) is given by

SYY(
) =
∞∑

k=−∞
RYY[k]e−j
k = σ2

W

(
β2

0 + β2
1

)
+ σ2

Wβ0β1e−j


�

9.5.2 Autoregressive Process

Given a set of constants β0, α1, . . . ,αp, the output process defined by

Y[n] = α1Y[n − 1] + α2Y[n − 2] + · · · + αpY[n − p] + β0W[n]

=
p∑

k=1

αkY[n − k] + β0W[n] n ≥ 0

is called an autoregressive process of order p, AR(p). It is called “autoregres-
sive” because Y[n] regresses on itself, which means that the value of Y[n] can be
written as a linear function of its own past p values rather than the past values of
the input random process. The autoregressive process is a special case of the feed-
back system called the infinite impulse response (IIR) system with input X[n] that
has nonzero mean. The general structure of IIR systems is shown in Figure 9.5,
where D indicates a unit delay.

One example of an AR(p) process is the behavior of a company’s stock in
the stock market. Suppose we can approximate the stock price by the following
model:

Stock price on day k = Stock price on day (k − 1) + Random events on day k

Then we can model it as an AR(1) process. If the stock price depends on the
previous 3 days’ prices, for example, then it can be modeled as an AR(3) process.

The mean of Y[n] is given by

E[Y[n]] =
p∑

k=1

αkE[Y[n − k]] + β0E[W[n]] n ≥ 0
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Figure 9.5 Structure of an Infinite Impulse Response System

Since E[W[n]] = 0 and Y[n] = 0 for n < 0, we can solve the above equation re-
cursively to obtain

E[Y[n]] = 0

Similarly, it can be shown that the variance is given by

σ2
Y [n] =

p∑

k=0

p∑

j=0

αkαjRYY[n − k,n − j] + β2
0σ

2
W

Thus, the variance is a function of various preceding autocorrelation functions at
various time indices. The autocorrelation function at n and n can be shown to be
equal to

RYY[n,n] =
p∑

k=1

αkRYY[n,n − k] + β2
0σ

2
W

Finally, it can be shown that the transfer function of the linear system defined by
the AR(p) is given by

H(
) = β0

1 −
∑p

k=0 αke−j
k

Thus, the transfer function is similar to that of a recursive (or infinite response)
filter. This is so because the equation for the AR(p) process is a recursive equa-
tion. Consequently it has an impulse response of infinite duration as long as at
least one of the βk, k = 1,2, . . . ,p, is nonzero.
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Example 9.7 Find the autocorrelation function and variance for the first-order
autoregressive process, AR(1).

Solution AR(1) is defined by

Y[n] = α1Y[n − 1] + β0W[n] = α1

{
α1Y[n − 2] + β0W[n − 1]

}
+ β0W[n]

= α2
1

{
α1Y[n − 3] + β0W[n − 2]

}
+ β0α1W[n − 1] + β0W[n]

= β0W[n] + β0α1W[n − 1] + β0α
2
1W[n − 2] + · · ·

When expressed in this form it becomes clear that

E[Y[n]] = 0

σ2
Y [n] = σ2

Wβ2
0

{
1 + α2

1 + α4
1 + · · ·

}

Thus, the variance is finite provided |α1| < 1. Under this condition we have that

σ2
Y [n] =

σ2
Wβ2

0

1 − α2
1

The autocorrelation function is given by

RYY[m] = RYY[n,n + m] = E[Y[n]Y[n + m]]

= E

[∑

k

β0α
k
1W[n − k]

∑

j

β0α
j
1W[n + m − j]

]
m ≥ 0

= β2
0

∑

k

∑

j

αk
1α

j
1E[W[n − k]W[n + m − j]]

Since E[W[m]W[n]] = 0 if m 
= n and E[W[m]W[n]] = σ2
W if m = n, we have that

E[W[n − k]W[n + m − j]] =
{

σ2
W j = m + k

0 otherwise

Thus, we have that

RYY[m] = β2
0σ

2
W

∞∑

k=0

αk
1αm+k

1 =
σ2

Wβ2
0

1 − α2
1

αm
1 = σ2

Y [n]αm
1 m ≥ 0
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Therefore, the power spectral density of AR(1) is given by

SYY(
) =
∞∑

m=−∞
RYY[m]e−j
m =

σ2
Wβ2

0

1 − α2
1

∞∑

m=0

αm
1 e−j
m =

σ2
Wβ2

0

(1 − α2
1)(1 − α1e−j
)

�

9.5.3 ARMA Process

The ARMA process of order (p,q) is obtained by combining an MA(q) process
and an AR(p) process. That is, it contains p AR terms and q MA terms and is
given by

Y[n] =
p∑

k=1

αkY[n − k] +
q∑

k=0

βkW[n − k] n ≥ 0

A structural representation of the ARMA process is a combination of the struc-
tures shown in Figure 9.4 and Figure 9.5, as shown in Figure 9.6.

One of the advantages of ARMA is that a stationary random sequence
(or time series) may be more adequately modeled by an ARMA model involving
fewer parameters than a pure MA or AR process alone. Since E[W[n − k]] = 0
for k = 0,1, . . . ,q, it is easy to show that E[Y[n]] = 0. Similarly, it can be shown

Figure 9.6 Structure of an ARMA Process
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that the variance of Y[n] is given by

σ2
Y[n] =

p∑

k=1

αkRYY[n,n − k] +
q∑

k=0

βkRYW[n,n − k]

Thus, the variance is obtained as the weighted sum of the autocorrelation function
evaluated at different times and the weighted sum of various crosscorrelation
functions at different times. Finally, it can be shown that the transfer function of
the linear system defined by the ARMA(p,q) is given by

H(
) =

q∑

k=0

βke−j
k

1 −
p∑

k=0

αke−j
k

9.6 Chapter Summary

This chapter dealt with response of linear time-invariant systems to random in-
puts. Both continuous-time and discrete-time systems were considered. Both the
output power spectral density and the cross-power spectral density between the
input and output processes were obtained. The power spectral density SXX(
)

of a discrete-time input process was shown to be periodic with a period of 2π.
This means that it is sufficient to define SXX(
) only in the range (−π,π). The
chapter also introduced the autoregressive process, moving average process, and
the autoregressive moving average process.

9.7 Problems

Section 9.2: Linear Systems with Deterministic Input

9.1 Find the Fourier transform of the following “sawtooth” function x(t) defined
in the interval [−T,T]:

x(t) =





1 + t

T
−T ≤ t ≤ 0

1 − t

T
0 ≤ t ≤ T
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9.2 Consider a system that performs a differentiation of the input function; that
is, when the input function is x(t), the output function is

y(t) = d

dt
x(t)

Find the Fourier transform of y(t) in terms of the Fourier transform of x(t).

9.3 Consider a system that performs a complex modulation on an input function.
That is, when the input function is x(t), the output function is

y(t) = ejw0tx(t)

where w0 > 0 is a constant. Find the Fourier transform of y(t) in terms of the
Fourier transform of x(t).

9.4 Consider a system that introduces a delay of t0 to an input function. That is,
when the input function is x(t), the output function is

y(t) = x(t − t0)

where t0 > 0 is a constant. Find the Fourier transform of y(t) in terms of the
Fourier transform of x(t).

9.5 Consider a system that performs a scaling operation on an input function.
That is, when the input function is x(t), the output function is

y(t) = x(at)

where a > 0 is a constant. Find the Fourier transform of y(t) in terms of the
Fourier transform of x(t).

Section 9.3: Linear Systems with Continuous Random Input

9.6 A stationary zero-mean random signal X(t) is the input to two filters, as
shown in Figure 9.7.

Figure 9.7 Figure for Problem 9.6
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The power spectral density of X(t) is SXX(w) = N0/2, and the filter impulse
responses are given by

h1(t) =
{

1 0 ≤ t < 1
0 otherwise

h2(t) =
{

2e−t t ≥ 0
0 otherwise

Determine the following:

a. The mean E[Yi(t)] and second moment E[Y2
i (t)] of the output signal

Yi(t), for i = 1,2

b. The crosscorrelation function RY1Y2
(t, t + τ)

9.7 A wide-sense stationary process X(t) is the input to a linear system whose
impulse response is h(t) = 2e−7t , t ≥ 0. If the autocorrelation function of the
process is RXX(τ) = e−4|τ| and the output process is Y(t), find the following:

a. The power spectral density of Y(t)

b. The cross-spectral power density SXY(w)

c. The crosscorrelation function RXY(τ)

9.8 A linear system has a transfer function given by

H(w) = w

w2 + 15w + 50

Determine the power spectral density of the output when the input function
is

a. a stationary random process X(t) with an autocorrelation function
RXX(τ) = 10e−|τ|.

b. white noise that has a mean-square value of 1.2 V2/Hz.

9.9 A linear system has the impulse response h(t) = e−at, where t ≥ 0 and a > 0,
find the power transfer function of the system.

9.10 Consider the system with the impulse response h(t) = e−at , where t ≥ 0 and
a > 0. Assume that the input is white noise with power spectral density
N0/2. What is the power spectral density of the output process?

9.11 The power transfer function of a system is given by

|H(w)|2 = 64

[16 + w2]2

Use Table 8.1 to obtain the impulse function h(t) of the system.
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9.12 A wide-sense stationary process X(t) has the autocorrelation function given
by

RXX(τ) = cos(w0τ)

The process is input to a system with the power transfer function

|H(w)|2 = 64

[16 + w2]2

a. Find the power spectral density of the output process.

b. If Y(t) is the output process, find the cross-power spectral density
SXY(w).

9.13 A causal system is used to generate an output process Y(t) with the power
spectral density

SYY(w) = 2a

a2 + w2

Find the impulse response h(t) of the system.

9.14 X(t) is a wide-sense stationary process. It is the input to a linear system
with impulse response h(t), and Y(t) is the output process. Consider another
process Z(t) that is obtained as follows: Z(t) = X(t) − Y(t). The scheme is
illustrated in Figure 9.8.

Determine the following in terms of the parameters of X(t):

a. The autocorrelation function RZZ(τ)

b. The power spectral density SZZ(w)

c. The crosscorrelation function RXZ(τ)

d. The cross-power spectral density SXZ(w)

9.15 Consider the system shown in Figure 9.9 in which an output process Y(t) is
the sum of an input process X(t) and a delayed version of X(t) that is scaled
(or multiplied) by a factor a.

Determine the following:

a. The equation that governs the system (i.e., the equation that relates Y(t)

to X(t))

Figure 9.8 Figure for Problem 9.14
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Figure 9.9 Figure for Problem 9.15

b. The crosscorrelation function RXY(τ)

c. The cross-power spectral density SXY(w)

d. The transfer function H(w) of the system

e. The power spectral density of Y(t)

9.16 X(t) and Y(t) are two jointly wide-sense stationary processes. If Z(t) =
X(t)+ Y(t) is the input to a linear system with impulse response h(t), deter-

mine the following:

a. The autocorrelation function of Z(t)

b. The power spectral density of Z(t)

c. The cross-power spectral density SZV(w) of the input process Z(t) and

the output process V(t)

d. The power spectral density of the output process V(t).

9.17 X(t) is a wide-sense stationary process. Assume that Z(t) = X(t − d), where

d is a constant delay. If Z(t) is the input to a linear system with impulse

response h(t), determine the following:

a. The autocorrelation function of Z(t)

b. The power spectral density SZZ(w)

c. The crosscorrelation function RZX(τ)

d. The cross-power spectral density SZX(w)

e. The power spectral density SYY(w) of the output process Y(t), which

is obtained by passing Z(t) through a linear system with the system re-

sponse H(w)
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9.18 X(t) is a wide-sense stationary process that is the input to a linear system
with the transfer function

H(w) = 1

a + jw

where a > 0. If X(t) is a zero-mean white noise with power spectral density
N0/2, determine the following:

a. The impulse response h(t) of the system

b. The cross-power spectral density SXY(w) of the input process and the
output process Y(t)

c. The crosscorrelation function RXY(τ) of X(t) and Y(t)

d. The crosscorrelation function RYX(τ) of Y(t) and X(t)

e. The cross-power spectral density SYX(w) of Y(t) and X(t)

f. The power spectral density SYY(w) of the output process

Section 9.4: Linear Systems with Discrete Random Input

9.19 A linear system has an impulse response given by

h[n] =
{

e−an n ≥ 0
0 n < 0

where a > 0 is a constant. Find the transfer function of the system.

9.20 A linear system has an impulse response given by

h[n] =
{

e−an n ≥ 0
0 n < 0

where a > 0 is a constant. Assume that the autocorrelation function of the
input sequence to this system is defined by

RXX [n] = bn 0 < b < 1, n ≥ 0

Find the power spectral density of the output process.

9.21 The autocorrelation function of a discrete-time random sequence X[n] is
given by

RXX [m] = e−b|m|

where b > 0 is a constant. Find the power spectral density of the sequence.
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9.22 A linear system has an impulse response given by

h[n] =
{

e−an n ≥ 0
0 n < 0

where a > 0 is a constant. Assume that the autocorrelation function of the
input discrete-time random sequence X[n] is given by

RXX [m] = e−b|m|

Find the power spectral density of the output process.

9.23 A wide-sense stationary continuous-time process Xc(t) has the autocorrela-
tion function given by

RXcXc(τ) = e−4|τ|

If Xc(t) is sampled with a sampling period of 10 seconds to produce the
discrete-time process X[n], find the power spectral density of X[n].

9.24 A wide-sense stationary continuous-time process Xc(t) has the autocorrela-
tion function given by

RXcXc(τ) = e−4|τ|

Xc(t) is sampled with a sampling period of 10 seconds to produce the
discrete-time sequence X[n]. The sequence is then input to a system with
the impulse response

h[n] =
{

e−an n ≥ 0
0 n < 0

Find the power spectral density of the output process.

9.25 Consider the system shown in Figure 9.10 in which an output sequence Y[n]
is the sum of an input sequence X[n] and a version of X[n] that has been
delayed by one unit and scaled (or multiplied) by a factor a.

Figure 9.10 Figure for Problem 9.25
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Determine the following:

a. The equation that governs the system

b. The crosscorrelation function RXY[m]

c. The cross-power spectral density SXY(
)

d. The transfer function H(
) of the system

Section 9.5: Autoregressive Moving Average Processes

9.26 A discrete-time feedback control system has the property that its output

voltage Y[n] at time n is a linear combination of the output voltage at time

n − 1 scaled by a factor a and a random error W[n] at time n that is inde-

pendent of past outputs, as shown in Figure 9.11, where |a| < 1. The random

process W[n] is a sequence of independent and identically distributed ran-

dom variables with zero mean and standard deviation β. Assume also that

the random process Y[n] has zero mean, and W[n] = 0 for n < 0.

a. Determine the equation that governs the system.

b. Is the output process Y[n] wide-sense stationary?

c. If Y[n] is a wide-sense stationary process, find the power transfer func-

tion.

d. Find the crosscorrelation function RWY[n,n + m].

c. Find the autocorrelation function RWW[n,n + m].

9.27 Find the mean, autocorrelation function, and variance of the MA(2)

process, assuming that n > 2 for the output process Y[n].

9.28 Find the autocorrelation function of the following MA(2) process:

Y[n] = W[n] + 0.7W[n − 1] − 0.2W[n − 2]

Figure 9.11 Figure for Problem 9.26
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9.29 Find the autocorrelation function of the following AR(2) process:

Y[n] = 0.7Y[n − 1] − 0.2Y[n − 2] + W[n]

9.30 Consider the following ARMA(1, 1) process, where |α| < 1, |β| < 1, and
Y[n] = 0 for n < 0:

Y[n] = αY[n − 1] + W[n] + βW[n − 1]

Assume that W[n] is a zero-mean random process with W[n] = 0 when
n < 0, and the variance is E[W[n]W[k]] = σ2

Wδ[n − k].
a. Carefully find a general expression for the Y[n] in terms of only W[n]

and its delayed versions.

b. Using the above results, find the autocorrelation function of the ARMA(1,1)
process.

9.31 Write out the expression for the MA(5) process.

9.32 Write out the expression for the AR(5) process.

9.33 Write out the expression for the ARMA(4, 3) process.
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10.1 Introduction

In this chapter we consider some well-known random processes. These include
the Bernoulli process, random walk, Gaussian process, Poisson process, and
Markov process.

10.2 The Bernoulli Process

Consider a sequence of independent Bernoulli trials, such as coin tossing, where
for each trial the probability of success is p and the probability of failure is 1 − p.

333
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Let Xi be the random variable that denotes the outcome of the ith trial and let
it take values as follows: Xi = 1 if a success occurs and Xi = 0 if a failure occurs.
Then the PMF of Xi is given by

pX(x) =
{

p x = 1
1 − p x = 0

The Bernoulli random variable is used when an experiment has only two
outcomes: on/off, yes/no, success/failure, working/broken, hit/miss, early/late,
heads/tails, and so on. The sequence of random variables {Xi, i = 1,2, . . .} re-
sulting from, say, tossing the same coin many times, is called a Bernoulli process.

In such a process we may be interested in the number of successes in a given
number of trials, the number of trials until the first success, or the number trials
until the kth success. Let the random variable Yn be defined as follows:

Yn =
n∑

i=1

Xi

Then Yn denotes the number of successes in n Bernoulli trials, which we know
from section 4.3 of Chapter 4 to be a binomial random variable. That is, the
PMF of Yn is given by

pYn(k) =
(

n

k

)
pk(1 − p)n−k k = 0,1, . . . ,n

Let L1 be the random variable that denotes the arrival time of the first success;
that is, L1 is the number of times up to and including that trial in which the first
success occurs. From Chapter 4 we know that L1 is a geometrically distributed
random variable with parameter p; that is, the PMF of L1 is given by

pL1
(l) = p(1 − p)l−1 l = 1,2, . . .

Also as stated in Chapter 4, L1 is a random variable that has no memory. That is,
if we have observed a fixed number n of Bernoulli trials and they are all failures,
the number K of additional trials until the first success has the PMF

pK|L1>n(k|L1 > n) = P[K = k|L1 > n] = P[L1 − n = k|L1 > n] = p(1 − p)k−1

= pL1
(k)

Finally, the number of trials up to and including that in which the kth success
occurs is known to be a kth-order Pascal random variable Xk whose PMF is
given by

pXk
(n) =

(
n − 1

k − 1

)
pk(1 − p)n−k k = 1,2, . . . ; n = k,k + 1, . . .
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Example 10.1 Consider a sequence of independent tosses of a coin with proba-
bility p of heads in any toss. Let Yn denote the number of heads in n consecutive
tosses of the coin. Evaluate the probability of the following event: Y5 = 3, Y8 = 5,
Y14 = 9.

Solution We solve the problem by considering the following nonoverlapping
intervals and the associated numbers of successes: Y5 = 3, Y8 −Y5 = 2, Y14 −Y8 =
4. Since these are nonoverlapping intervals, Y5, Y8 − Y5 = Y3 and Y14 − Y8 = Y6

are independent binomial random variables. Thus, we have that

P[Y5 = 3, Y8 = 5, Y14 = 9] = P[Y5 = 3, Y8 − Y5 = 2, Y14 − Y8 = 4]
= P[Y5 = 3]P[Y8 − Y5 = 2]P[Y14 − Y8 = 4]
= P[Y5 = 3]P[Y3 = 2]P[Y6 = 4]

=
(

5

3

)
p3(1 − p)2

(
3

2

)
p2(1 − p)

(
6

4

)
p4(1 − p)2

= 450p9(1 − p)5

�

10.3 Random Walk

A random walk is derived from a sequence of Bernoulli trials as follows. Consider
a Bernoulli trial in which the probability of success is p and the probability of
failure is 1 − p. Assume that the experiment is performed every T time units, and
let the random variable Xk denote the outcome of the kth trial. Furthermore,
assume that the PMF of Xk is as follows:

pXk
(x) =

{
p x = 1
1 − p x = −1

Finally, let the random variable Yn be defined as follows:

Yn =
n∑

k=1

Xk n = 1,2, . . .

where Y0 = 0. If we use Xk to model a process where we take a step to the right
if the outcome of the kth trial is a success and a step to the left if the outcome
is a failure, then the random variable Yn represents the location of the process
relative to the starting point (or origin) at the end of the nth trial. The resulting
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Figure 10.1 A Sample Path of the Random Walk

trajectory of the process as it moves through the xy plane, where the x coordinate
represents the time and the y coordinate represents the location at a given time,
is called a one-dimensional random walk. If we define the random process Y(t) =
Yn, n ≤ t < n + 1, then Figure 10.1 shows an example of the sample path of Y(t),
where the length of each step is s. It is a staircase with discontinuities at t = kT,
k = 1,2, . . . .

Suppose that at the end of the nth trial there are exactly k successes. Then
there are k steps to the right and n − k steps to the left. Thus,

Y(nT) = ks − (n − k)s = (2k − n)s = rs

where r = 2k − n. This implies that Y(nT) is a random variable that assumes
values rs, where r = n,n − 2,n − 4, . . . ,−n. Since the event {Y(nT) = rs} is the
event {k successes in n trials}, where k = (n + r)/2, we have that

P[Y(nT) = rs] = P

[
n + r

2
successes

]
=




n

n + r

2


p

n+r
2 (1 − p)

n−r
2

Note that (n+ r) must be an even number. Also, since Y(nT) is the sum of n inde-
pendent Bernoulli random variables, its mean and variance are given as follows:

E[Y(nT)] = nE[Xk] = n[ps − (1 − p)s] = (2p − 1)ns

E
[
X2

k

]
= ps2 + (1 − p)s2 = s2

Var[Y(nT)] = nVar[Xk] = n
[
s2 − s2(2p − 1)2

]
= 4p(1 − p)ns2

In the special case where p = 1/2, E[Y(nT)] = 0, and Var[Y(nT)] = ns2.
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10.3.1 Gambler’s Ruin

The random walk described above assumes that the process can continue forever;
in other words, it is unbounded. If the walk is bounded, then the ends of the
walk are called barriers. These barriers can impose different characteristics on
the process. For example, they can be reflecting barriers, which means that on
hitting them the walk turns around and continues. They can also be absorbing

barriers, which means that the walk ends.

Consider the following random walk with absorbing barriers, which is gen-
erally referred to as the gambler’s ruin. Suppose a gambler plays a sequence of
independent games against an opponent. He starts out with $k, and in each game
he wins $1 with probability p and loses $1 with probability q = 1−p. When p > q,
the game is advantageous to the gambler either because he is more skilled than
his opponent or the rules of the game favor him. If p = q, the game is fair; and if
p < q, the game is disadvantageous to the gambler.

Assume that the gambler stops when he has a total of $N, which means he
has additional $(N − k) over his initial $k. (Another way to express this is that he
plays against an opponent who starts out with $(N − k) and the game stops when
either player has lost all of his or her money.) We are interested in computing the
probability rk that the player will be ruined (or he has lost all of his or her money)
after starting with $k.

To solve the problem, we note that at the end of the first game, the player
will have the sum of $k + 1 if he wins the game (with probability p) and the sum
of $(k − 1) if he loses the game (with probability q). Thus, if he wins the first
game, the probability that he will eventually be ruined is rk+1; and if he loses his
first game, the probability that he will be ruined is rk−1. There are two boundary
conditions in this problem. First, r0 = 1, since he cannot gamble when he has no
money. Second, rN = 0, since he cannot be ruined. Thus, we obtain the following
difference equation:

rk = qrk−1 + prk+1 0 < k < N

Since p + q = 1, we obtain

(p + q)rk = qrk−1 + prk+1 0 < k < N

which we can write as

p(rk+1 − rk) = q(rk − rk−1)

From this we obtain the following:

rk+1 − rk = (q/p)(rk − rk−1) 0 < k < N

Noting that r2 − r1 = (q/p)(r1 − r0) = (q/p)(r1 − 1), r3 − r2 = (q/p)(r2 − r1) =
(q/p)2(r1 − 1), and so on, we obtain the following:

rk+1 − rk = (q/p)k(r1 − 1) 0 < k < N
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Now,

rk − 1 = rk − r0 = (rk − rk−1) + (rk−1 − rk−2) + · · · + (r1 − 1)

=
[
(q/p)k−1 + (q/p)k−2 + · · · + 1

]
(r1 − 1)

=





1 − (q/p)k

1 − (q/p)
(r1 − 1) p 
= q

k(r1 − 1) p = q

Recalling the boundary condition that rN = 0 implies that

r1 =





1 − 1 − (q/p)

1 − (q/p)N
p 
= q

1 − 1

N
p = q

Thus,

rk =





1 − 1 − (q/p)k

1 − (q/p)N
= (q/p)k − (q/p)N

1 − (q/p)N
p 
= q

1 − k

N
p = q

Example 10.2 A certain student wanted to travel during a break to visit his par-
ents. The bus fare was $20, but the student had only $10. He figured out that there
was a bar nearby where people play card games for money. The student signed
up for one where he could bet $1 per game. If he won the game, he would gain
$1; but if he lost the game, he would lose his $1 bet. If the probability that he won
a game is 0.6 independent of other games, what is the probability that he was not
able to make the trip?

Solution In this example, k = 10 and N = 20. Define a = q/p where p = 0.6 and
q = 1 − p = 0.4. Thus, a = 2/3 and the probability that he was not able to make
the trip is the probability that he was ruined given that he started with k = 10.
This is r10, which is given by

r10 = (q/p)10 − (q/p)20

1 − (q/p)20
= (2/3)10 − (2/3)20

1 − (2/3)20
= 0.0170

�

Thus, there is only a very small probability that he will not make the trip.



10.4 The Gaussian Process 339

10.4 The Gaussian Process

Gaussian processes are important in many ways. First, many physical problems
are the result of adding large numbers of independent random variables. Accord-
ing to the central limit theorem, such sums of random variables are essentially
normal (or Gaussian) random variables. Also, the analysis of many systems is
simplified if they are assumed to be Gaussian processes because of the properties
of Gaussian processes. For example, noise in communication systems is usually
modeled as a Gaussian process. Similarly, noise voltages in resistors are modeled
as Gaussian processes.

A random process {X(t), t ∈ T} is defined to be a Gaussian random process if
and only if for any choice of n real coefficients a1,a2, . . . ,an and choice of n time
instants t1, t2, . . . , tn in the index set T the random variable a1X(t1)+a2X(t2)+· · ·
+ anX(tn) is a Gaussian (or normal) random variable. This definition implies that
the random variables X(t1),X(t2), . . . ,X(tn) have a jointly normal PDF; that is,

fX(t1),X(t2),...,X(tn)(x1,x2, . . . ,xn)

= 1

(2π)n/2|CXX|1/2
exp

[
−

(x − µX)TC−1
XX(x − µX)

2

]

where µX is the vector of the mean functions of the X(tk), CXX is the matrix
of the autocovariance functions, X is the vector of the X(tk), and T denotes the
transpose operation. That is,

µX =




µX(t1)
µX(t2)

. . .
µX(tn)


 X =




X(t1)
X(t2)
. . .

X(tn)




CXX =




CXX(t1, t1) CXX(t1, t2) . . . CXX(t1, tn)
CXX(t2, t1) CXX(t2, t2) . . . CXX(t2, tn)

. . . . . . . . . . . .
CXX(tn, t1) CXX(tn, t2) . . . CXX(tn, tn)




If the X(tk) are mutually uncorrelated, then

CXX(ti, tj) =
{

σ2
X i = j

0 otherwise

In this case the autocovariance matrix and its inverse become

CXX =




σ2
X 0 . . . 0

0 σ2
X . . . 0

. . . . . . . . . . . .

0 0 . . . σ2
X


 C−1

XX =




1

σ2
X

0 . . . 0

0
1

σ2
X

. . . 0

. . . . . . . . . . . .

0 0 . . .
1

σ2
X



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Thus, we obtain

(x − µX)TC−1
XX(x − µX) =

N∑

k=1

[xk − µX(tk)]2

σ2
X

fX(t1),X(t2),...,X(tn)(x1,x2, . . . ,xn) = 1

(2πσ2
X)n/2

exp

[
−

n∑

k=1

[xk − µX(tk)]2

σ2
X

]

If in addition to being mutually uncorrelated the random variables, X(t1),X(t2),

. . . ,X(tn) have different variances such that Var(X(tk)) = σ2
k (1 ≤ k ≤ n), then the

covariance matrix and the joint PDF are given by

CXX =




σ2
1 0 . . . 0

0 σ2
2 . . . 0

. . . . . . . . . . . .

0 0 . . . σ2
n




fX(t1),X(t2),...,X(tn)(x1,x2, . . . ,xn) = 1

(2π)n/2

(
n∏

k=1

σk

) exp

[
−

n∑

k=1

[xk − µX(tk)]2

2σ2
k

]

which implies that X(t1),X(t2), . . . ,X(tn) are also mutually independent. We list
three important properties of Gaussian processes:

1. A Gaussian process that is wide-sense stationary is also strict-sense stationary.

2. If the input to a linear system is a Gaussian process, then the output is also a
Gaussian process.

3. If the input X(t) to a linear system is a zero-mean Gaussian process, the out-
put process Y(t) is also a zero-mean process. The proof of this property is as
follows:

Y(t) =
∫ ∞

−∞
h(u)X(t − u)dτ

E[Y(t)] = E

[∫ ∞

−∞
h(u)X(t − u)du

]
=

∫ ∞

−∞
h(u)E[X(t − u)]du = 0

Example 10.3 A wide-sense stationary Gaussian random process has an auto-
correlation function

RXX(τ) = 6e−|τ|/2
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Determine the covariance matrix of the random variables X(t), X(t+1), X(t+2),
and X(t + 3).

Solution First, note that

E[X(t)] = µX(t) = ±
√

lim
|τ|→∞

{RXX(τ)} = 0

Let X1 = X(t), X2 = X(t + 1), X3 = X(t + 2), X4 = X(t + 3). Then the elements of
the covariance matrix are given by

Cij = Cov(Xi,Xj) = E
[
(Xi − µXi

)(Xj − µXj
)
]
= E[XiXj] = Rij = RXX(i, j)

= RXX(j − i) = 6e−|j−i|/2

where Rij is the i − jth element of the autocorrelation matrix. Thus,

CXX = RXX =




6 6e−1/2 6e−1 6e−3/2

6e−1/2 6 6e−1/2 6e−1

6e−1 6e−1/2 6 6e−1/2

6e−3/2 6e−1 6e−1/2 6




�

10.4.1 White Gaussian Noise Process

The Gaussian process is used to model noise voltages in resistors as well as re-
ceiver noise in communication systems. As we saw in Chapter 8, white noise N(t)

is characterized as follows:

1. The mean value is µNN = 0.

2. The autocorrelation function is given by RNN(τ) = (N0/2)δ(τ).

3. The power spectral density is SNN(w) = N0/2.

The autocorrelation function is an impulse function because, according to the
definition of a Gaussian process, for any collection of distinct time instants
t1, t2. . . . , tn, the random variables N(t1),N(t2), . . . ,N(tn) are independent. Thus,
except when τ = 0,

RNN(τ) = E[N(t)N(t + τ)] = E[N(t)]E[N(t + τ)] = 0

While white Gaussian noise is popularly used as a mathematical modeling tool,
it does not conform to any physically realizable signal because of the following



342 Chapter 10 Some Models of Random Processes

observation:

E
[
N2(t)

]
= RNN(0) =

∫ ∞

−∞
SNN(w)dw =

∫ ∞

−∞

N0

2
dw = ∞

That is, white noise has infinite average power, which is physically impossible.
While such a process cannot exist physically, it is a convenient mathematical con-
cept that greatly simplifies many computations in the analysis of linear systems
that would otherwise be very difficult. Another frequently used concept in the
analysis of linear systems is the bandlimited white noise, which has a nonzero and
constant power spectral density over a finite frequency band, and zero elsewhere.
That is, for a bandlimited white noise N(t), the power spectral density is given by

SNN(w) =
{

S0 −w0 < w < w0

0 otherwise

10.5 Poisson Process

Poisson processes are widely used to model arrivals (or occurrence of events) in
a system. For example, they are used to model the arrival of telephone calls at a
switchboard, the arrival of customers’ orders at a service facility, and the random
failures of equipment. Before we provide a formal definition of a Poisson process,
we first consider some basic definitions.

10.5.1 Counting Processes

A random process {X(t)|t ≥ 0} is called a counting process if X(t) represents the
total number of “events” that have occurred in the interval [0, t). An example
of a counting process is the number of customers that arrive at a bank from the
time the bank opens its doors for business until some time t. A counting process
satisfies the following conditions:

1. X(t) ≥ 0, which means that it has nonnegative values.

2. X(0) = 0, which means that the counting of events begins at time 0.

3. X(t) is integer-valued.

4. If s < t, then X(s) ≤ X(t), which means that it is a nondecreasing function of
time.

5. X(t) − X(s) represents the number of events that have occurred in the inter-
val [s, t].
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Figure 10.2 Sample Function of a Counting Process

Figure 10.2 represents a sample of a counting process. The first event occurs at
time t1, and subsequent events occur at times t2, t3, and t4. Thus, the number of
events that occur in the interval [0, t4] is four.

10.5.2 Independent Increment Processes

A counting process is defined to be an independent increment process if the num-
ber of events that occur in disjoint time intervals is an independent random vari-
able. For example, in Figure 10.2, consider the two nonoverlapping (i.e., disjoint)
time intervals [0, t1] and [t2, t4]. If the number of events occurring in one inter-
val is independent of the number of events that occur in the other, then the
process is an independent increment process. Thus, X(t) is an independent in-
crement process if for every set of time instants t0 = 0 < t1 < t2 < · · · < tn, the
increments X(t1) − X(t0),X(t2) − X(t1), . . . ,X(tn) − X(tn−1) are mutually inde-
pendent random variables.

10.5.3 Stationary Increments

A counting process X(t) is defined to possess stationary increments if for every set
of time instants t0 = 0 < t1 < t2 < · · · < tn, the increments X(t1) − X(t0),X(t2) −
X(t1), . . . ,X(tn) − X(tn−1) are identically distributed. In general, the mean of an
independent increment process X(t) with stationary increments has the form

E[X(t)] = mt

where the constant m is the value of the mean at time t = 1. That is, m = E[X(1)].
Similarly, the variance of an independent increment process X(t) with stationary
increments has the form

Var[X(t)] = σ2t

where the constant σ2 is the value of the variance at time t = 1; that is, σ2 =
Var[X(1)].
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10.5.4 Definitions of a Poisson Process

There are two ways to define a Poisson process. The first definition of the process
is that it is a counting process X(t) in which the number of events in any interval
of length t has a Poisson distribution with mean λt. Thus, for all s, t > 0,

P[X(s + t) − X(s) = n] = (λt)n

n! e−λt n = 0,1,2, . . .

The second way to define the Poisson process X(t) is that it is a counting process
with stationary and independent increments such that for a rate λ > 0 the follow-
ing conditions hold:

1. P[X(t + 	t) − X(t) = 1] = λ	t + o(	t), which means that the probability of
one event within a small time interval 	t is approximately λ	t, where o(	t)

is a function of 	t that goes to zero faster than 	t does. That is,

lim
	t→0

o(	t)

	t
= 0

2. P[X(t + 	t) − (X(t) ≥ 2)] = o(	t), which means that the probability of two or
more events within a small time interval 	t is o(	t).

3. P[X(t + 	t) − X(t) = 0] = 1 − λ	t + o(	t).

These three properties enable us to derive the PMF of the number of events in a
time interval of length t as follows:

P[X(t + 	t) = n] = P[X(t) = n]P[X(	t) = 0]
+ P[X(t) = n − 1]P[X(	t) = 1]

= P[X(t) = n](1 − λ	t)

+ P[X(t) = n − 1]λ	t

P[X(t + 	t) = n] − P[X(t) = n] = −λP[X(t) = n]	t

+ λP[X(t) = n − 1]	t

P[X(t + 	t) = n] − P[X(t) = n]
	t

= −λP[X(t) = n] + λP[X(t) = n − 1]

lim
	t→0

{
P[X(t + 	t) = n] − P[X(t) = n]

	t

}
= d

dt
P[X(t) = n]

= −λP[X(t) = n] + λP[X(t) = n − 1]
d

dt
P[X(t) = n] + λP[X(t) = n] = λP[X(t) = n − 1]
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The last equation may be solved iteratively for n = 0,1,2, . . . , subject to the initial
conditions

P[X(0) = n] =
{

1 n = 0
0 n 
= 0

This gives the PMF of the number of events (or “arrivals”) in an interval of length
t as

pX(n, t) = (λt)n

n! e−λt t ≥ 0,n = 0,1,2, . . .

From the results obtained for Poisson random variables in Chapters 4 and 7, we
have that

GX(t)(z) = eλt(z−1)

E[X(t)] = λt

σ2
X(t) = λt

The fact that the mean E[X(t)] = λt indicates that λ is the expected number of
arrivals per unit time in the Poisson process. Thus, the parameter λ is called the
arrival rate for the process. If λ is independent of time, the Poisson process is
called a homogeneous Poisson process. Sometimes the arrival rate is a function
of time, and we represent it as λ(t). Such processes are called nonhomogeneous

Poisson processes. In this chapter we are concerned mainly with homogeneous
Poisson processes.

10.5.5 Interarrival Times for the Poisson Process

Let Lr be a continuous random variable that is defined to be the interval between
any event in a Poisson process and the rth event after it. Then Lr is called the rth-
order interarrival time. Let fLr(l) be the PDF of Lr. To derive the expression for
fLr(l), we consider time of length l over which we know that r − 1 events have
occurred. Assume that the next event (that is the rth event) occurs during the
next time of length 	l, as shown in Figure 10.3.

Since the intervals l and 	l are nonoverlapping, the number of events that oc-
cur within one interval is independent of the number of events that occur within

Figure 10.3 Definition of Event Intervals
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the other interval. Thus, the PDF of Lr can be obtained as follows:

fLr(l)	l = P[l < Lr ≤ l + 	l]
= P

[
{X(l) = r − 1} ∩ {X(	l) = 1}

]
= P[X(l) = r − 1]P[X(	l) = 1]

= (λl)r−1

(r − 1)!e−λlλ	l

Thus, fLr(l) is given by

fLr(l) = (λl)r−1

(r − 1)!e
−λlλ = λrlr−1

(r − 1)!e−λl l ≥ 0; r = 1,2, . . .

which is the Erlang-r (or rth-order Erlang) distribution. The special case of r = 1
is the exponential distribution. That is,

fLr(l) = λe−λl l ≥ 0

This result provides another definition of a Poisson process: It is a counting
process with stationary and independent increments in which the intervals be-
tween consecutive events are exponentially distributed.

10.5.6 Conditional and Joint PMFs for Poisson Processes

Consider two times t1 and t2 such that 0 < t1 < t2. Assume that k1 Poisson events
have occurred over the interval (0, t1). Let λ be the arrival rate of the Poisson
process X(t). Then the PMF of X(t1) is given by

pX(t1)(k1) = (λt1)
k1

k1!
e−λt1 k1 = 0,1,2, . . .

The conditional probability that k2 events occur over the interval (0, t2) given
that k1 events have occurred over the interval (0, t1) is just the probability that
k2 − k1 events occur over the interval (t1, t2), which is given by

P
[
X(t2) = k2|X(t1) = k1

]
= [λ(t2 − t1)]k2−k1

(k2 − k1)!
e−λ(t2−t1)

where k2 ≥ k1. Finally, the joint PMF of k2 events occurring by time t2 and k1

events occurring by time t1, where t1 < t2, is given by

pX(t1)X(t2)(k1,k2) = P
[
X(t2) = k2|X(t1) = k1

]
P
[
X(t1) = k1

]

= [λ(t2 − t1)]k2−k1

(k2 − k1)!
e−λ(t2−t1)

(λt1)
k1

k1!
e−λt1

= (λt1)
k1 [λ(t2 − t1)]k2−k1

k1!(k2 − k1)!
e−λt2 k2 ≥ k1
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10.5.7 Compound Poisson Process

Let {N(t)|t ≥ 0} be a Poisson process with arrival rate λ. Let {Yi, i = 1,2, . . .} be a
family of independent and identically distributed random variables. Assume that
the Poisson process {N(t)|t ≥ 0} and the sequence {Yi, i = 1,2, . . .} are indepen-
dent. We define a random process {X(t)|t ≥ 0} to be a compound Poisson process

if, for t ≥ 0, it can be represented by

X(t) =
N(t)∑

i=1

Yi

Thus, X(t) is a Poisson sum of random variables. One example of the concept
of a compound Poisson process is the following: Assume students arrive at the
university bookstore to buy books in a Poisson manner. If the number of books
that each of these students buys is an independent and identically distributed ran-
dom variable, then the number of books bought by time t is a compound Poisson
process.

Because the compound Poisson process has a rate that takes on a stochastic
nature, it is also called a doubly stochastic Poisson process. This term is used to
emphasize the fact that the process involves two kinds of randomness: There is
a randomness that is associated with the main process that is sometimes called
the Poisson point process, and there is another independent randomness that is
associated with its rate.

Assume that the Yi are discrete random variables with the PMF pY(y). The
results can easily be modified to deal with the case when they are continuous ran-
dom variables, where s-transforms rather than z-transforms are used. The value
of X(t), given that N(t) = n, is X(t) = Y1 + Y2 + · · · + Yn. Thus, the conditional
z-transform of the PMF of X(t), given that N(t) = n, is given by

GX(t)|N(t)(z|n) = E
[
zY1+Y2+···+Yn

]
=

(
E
[
zY

])n = [GY(z)]n

where the last two equalities follow from the fact that the Yi are independent.
Thus, the unconditional z-transform of the PMF of X(t) is given by

GX(t)(z) =
∞∑

n=0

GX(t)|N(t)(z|n)pN(t)(n) =
∞∑

n=0

[GY(z)]npN(t)(n)

=
∞∑

n=0

[GY(z)]n (λt)n

n! e−λt = e−λt
∞∑

n=0

[GY(z)λt]n

n! = e−λteGY (z)λt

= eλt[GY (z)−1]
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Thus, the mean and variance of X(t) can be obtained through differentiating the
above function. These are given by

E[X(t)] = d

dz
GX(t)(z)|z=1 = λtE[Y]

E
[
X2(t)

]
= d2

dz2
GX(t)(z)|z=1 + d

dz
GX(t)(z)|z=1 = λtE

[
Y2

]
+ {λtE[Y]}2

σ2
X(t) = E

[
X2(t)

]
− (E[X(t)])2 = λtE

[
Y2

]

Note that this is a special case of the random sum of random variables discussed
in Section 7.4 of Chapter 7. Using the current notation, it was shown in Section 7.4
that

E[X(t)] = E[N(t)]E[Y] = λtE[Y]

σ2
X(t) = E[N(t)]σ2

Y + (E[Y])2σ2
N(t) = λtσ2

Y + λt(E[Y])2

= λt
{
σ2

Y + (E[Y])2
}

= λtE
[
Y2

]

Note also that in the case when the Yi are continuous random variables, the result
would be MX(t)(s) = eλt[MY (s)−1] and the above results still hold.

Example 10.4 Customers arrive at a grocery store in a Poisson manner at an
average rate of 10 customers per hour. The amount of money that each customer
spends is uniformly distributed between $8.00 and $20.00. What is the average
total amount of money that customers who arrive over a two-hour interval spend
in the store? What is the variance of this total amount?

Solution This is a compound Poisson process with λ = 10 customers per hour.
Let Y be the random variable that represents the amount of money a customer
spends in the store. Since Y is uniformly distributed over the interval (8, 20), we
have that

E[Y] = 8 + 20

2
= 14

σ2
Y = (20 − 8)2

12
= 12

E
[
Y2

]
= σ2

Y + (E[Y])2 = 12 + 196 = 208

Therefore, the mean and the variance of the total amount of money that cus-
tomers arriving over a two-hour time interval (t = 2) spend in the store are
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given by

E[X(2)] = λ(2)E[Y] = (10)(2)(14) = 280

σ2
X(2) = λ(2)E

[
Y2

]
= (10)(2)(208) = 4160

�

10.5.8 Combinations of Independent Poisson Processes

Consider two independent Poisson processes {X(t)|t ≥ 0} and {Y(t)|t ≥ 0} with
arrival rates λX and λY , respectively. Consider a random process {N(t)|t ≥ 0} that
is the sum of the two Poisson processes; that is, N(t) = X(t) + Y(t). Thus, {N(t)|
t ≥ 0} is the process consisting of arrivals from the two Poisson processes. We want
to show that {N(t)|t ≥ 0} is also a Poisson process with arrival rate λ = λX + λY .

To do this, we note that {X(t)|t ≥ 0} and {Y(t)|t ≥ 0} are specified as being
independent. Therefore,

P[N(t + 	t) − N(t) = 0] = P[X(t + 	t) − X(t) = 0]P[Y(t + 	t) − Y(t) = 0]
= [1 − λX	t + o(	t)][1 − λY	t + o(	t)]
= 1 − λX	t − λY	t + o(	t) = 1 − (λX + λY)	t + o(	t)

= 1 − λ	t + o(	t)

Since the last equation is the probability that there is no arrival within an interval
of length 	t, it follows that {N(t)|t ≥ 0} is a Poisson process.

Another way to prove this is to note that when t is fixed, N(t) is a random
variable that is a sum of two independent random variables. Thus, the z-transform
of the PMF of N(t) is the product of the z-transform of the PMF of X(t) and the
z-transform of the PMF of Y(t). That is,

GN(t)(z) = GX(t)(z)GY(t)(z)

= eλX t[z−1]eλY t[z−1] = e(λX+λY )t[z−1]

= eλt[z−1]

Thus, N(t) is a Poisson random variable. Since for each t,N(t) is a random vari-
able, the collection of these random variables over time (that is, {N(t)|t ≥ 0})
constitutes a Poisson random process.

The third way to show this is via the interarrival time. Let L denote the time
until the first arrival in the process {N(t)|t ≥ 0}, let LX denote the time until the
first arrival in the process {X(t)|t ≥ 0}, and let LY denote the time until the first



350 Chapter 10 Some Models of Random Processes

arrival in the process {Y(t)|t ≥ 0}. Then, since the two Poisson processes are inde-
pendent,

P[L > t] = P[LX > t]P[LY > t] = e−λX te−λY t = e−(λX+λY )t

= e−λt

which shows that {N(t)|t ≥ 0} exhibits the same memoryless property as {N(t)|
t ≥ 0} and {Y(t)|t ≥ 0}. Therefore, {N(t)|t ≥ 0} must be a Poisson process.

Example 10.5 Two lightbulbs, labeled A and B, have exponentially distributed
lifetimes. If the two lifetimes of the two bulbs are independent, and the mean
lifetime of bulb A is 500 hours, while the mean lifetime of bulb B is 200 hours,
what is the mean time to a bulb failure?

Solution Let λA denote the burnout rate of bulb A and λB the burnout rate
of bulb B. Since 1/λA = 500 and 1/λB = 200, the rates are λA = 1/500 and λB =
1/200. From the results obtained above, the two bulbs behave like a single system
with an exponentially distributed lifetime with a mean of 1/λ, where λ = λA +λB.
Thus, the mean time until a bulb fails in hours is

1

λ
= 1

λA + λB
= 1

(1/500) + (1/200)
= 1000

7
= 142.86

�

10.5.9 Competing Independent Poisson Processes

In this section we extend the combination problem discussed in the previous
section. Thus, we consider two independent Poisson processes {X(t)|t ≥ 0} and
{Y(t)|t ≥ 0} with arrival rates λX and λY , respectively. The question we are inter-
ested in is this: What is the probability that an arrival from {X(t)|t ≥ 0} occurs be-
fore an arrival from {Y(t)|t ≥ 0}? Since the interarrival times in a Poisson process
are exponentially distributed, let TX be the random variable that denotes the in-
terarrival time in the {X(t)|t ≥ 0} process, and let TY be the random variable that
denotes the interarrival time in the {Y(t)|t ≥ 0} process. Thus, we are interested in
the computing P[TX < TY ], where fTX

(x) = λXe−λX x, x ≥ 0, and fTY
(y) = λe−λY y,

y ≥ 0. Because the two processes are independent, the joint PDF of TX and TY is
given by

fTX TY
(x,y) = λXλYe−λX xe−λY y x ≥ 0, y ≥ 0

In order to evaluate the probability, we consider the limits of integration by ob-
serving Figure 10.4.
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Figure 10.4 Partitioning the Regions Around the Line X = Y

Thus,

P[TX < TY] =
∫ ∞

x=0

∫ ∞

y=x

λXλYe−λX xe−λY ydxdy =
∫ ∞

x=0
λXe−λX xe−λY xdx

=
∫ ∞

x=0
λXe−(λX+λY )xdx

= λX

λX + λY

Another way to derive this result is by considering events that occur within the
small time interval [t, t + 	t]. Then, since the probability of an arrival from X(t)

within the interval [t, t + 	t] is approximately λX	t, and the probability of an
arrival (from either X(t) or Y(t)) is approximately (λX + λY)	t, the probability
that the X(t) process occurs in the interval [t, t + 	t], given an arrival in that
interval, is λX	t/(λX + λY)	t = λX/(λX + λY).

The third way to solve the problem is to consider a time interval T. Within this
interval, the total number of arrivals from the {X(t)|t ≥ 0} process is λXT. Since
the two processes form a combination of independent Poisson processes with
rate (λX + λY), the total number of arrivals from both processes is (λX + λY)T.
Thus, the probability that an {X(t)|t ≥ 0} process occurs is λXT/(λX + λY)T =
λX/(λX + λY).

Example 10.6 Two lightbulbs, labeled A and B, have exponentially distributed
lifetimes. If the two lifetimes of the two bulbs are independent and the mean
lifetime of bulb A is 500 hours, while the mean lifetime of bulb B is 200 hours,
what is the probability that bulb A fails before bulb B?

Solution Let λA denote the burnout rate of bulb A and λB the burnout rate of
bulb B. Since 1/λA = 500 and 1/λB = 200, the rates are λA = 1/500 and λB =



352 Chapter 10 Some Models of Random Processes

1/200. Thus, the probability that bulb A fails before bulb B is

λA

λA + λB
= 1/500

1/500 + 1/200
= 2/7

�

10.5.10 Subdivision of a Poisson Process and the Filtered Poisson Process

Consider a Poisson process {X(t)|t ≥ 0} with arrival rate λ. Assume that arrivals
in {X(t)|t ≥ 0} can be sent to one of two outputs, which we call output A and
output B. Assume that the decision on which output an arrival is sent to is made
independently of other arrivals. Furthermore, assume that each arrival is sent to
output A with probability p and to output B with probability 1 − p, as shown in
Figure 10.5.

The arrival rate at output A is λA = pλ, and the arrival rate at output B is
λB = (1 − p)λ. The two outputs are independent. Consider a small time interval
(t, t + 	t). The probability that there is an arrival in the original process over this
interval is approximately λ	t if we ignore higher-order terms of 	t. Thus, the
probability that there is an arrival in output A over this interval is approximately
pλ	t, and the probability that there is an arrival in output B over this interval is
(1 − p)λ	t. Since the original process is a stationary and independent increment
process and the two outputs are independent, each output is a stationary and
independent increment process. Thus, each output is a Poisson process. We can
then refer to output A as the Poisson process {XA(t)|t ≥ 0} with arrival rate pλ.
Similarly, we can refer to output B as the Poisson process {XB(t)|t ≥ 0} with arrival
rate (1 − p)λ.

A filtered Poisson process Y(t) is a process in which events occur according
to a Poisson process X(t) with rate λ, but each event is independently recorded
with a probability p. From the discussion above, we observe that Y(t) is a Poisson
process with rate λp.

Example 10.7 A gas station is located next to a fast-food restaurant along a
highway. Cars arrive at the restaurant according to a Poisson process at an aver-
age rate of 12 per hour. Independently of other cars, each car that stops at the

Figure 10.5 Subdivision of a Poisson Process



10.5 Poisson Process 353

restaurant will go to refuel at the gas station before going back to the highway
with a probability of 0.25. What is the probability that exactly 10 cars have been
refueled at the gas station within a particular two-hour period?

Solution The process that governs car arrivals at the gas station is Poisson with
a rate of λG = pλ = (0.25)(12) = 3 cars per hour. Thus, if K represents the number
of cars that arrive at the gas station within 2 hours, the probability that K = 10
cars is given by

P[K = 10] = (2λG)10

10! e−2λG = 610

10! e−6 = 0.0413

�

10.5.11 Random Incidence

Consider a Poisson process X(t) in which events (or arrivals) occur at times T0 =
0,T1,T2, . . . . Let the interarrival times Yk be defined as follows:

Y1 = T1 − T0

Y2 = T2 − T1

. . .

Yk = Tk − Tk−1

These interarrival times are illustrated in Figure 10.6, where Ak denotes the kth
arrival.

The Poisson process belongs to a class of random processes called renewal

processes that have the property that the Yk are mutually independent and iden-
tically distributed. For the Poisson process with mean arrival rate λ, the Yk are
exponentially distributed with mean 1/λ, as discussed earlier.

Consider the following problem in connection with the Yk. Assume the Tk

are the points in time that buses arrive at a bus stop. A passenger arrives at the
bus stop at a random time and wants to know how long he or she will wait until
the next bus arrival. This problem is usually referred to as the random incidence

problem, since the subject (or passenger in this example) is incident to the process

Figure 10.6 Interarrival Times of a Poisson Process
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Figure 10.7 Random Incidence

at a random time. Let R be the random variable that denotes the time from the
moment the passenger arrived until the next bus arrival. R is referred to as the
residual life of the Poisson process. Also, let W denote the length of the interar-
rival gap that the passenger entered by random incidence. Figure 10.7 illustrates
the random incidence problem.

Let fY(y) denote the PDF of the interarrival times; let fW(w) denote the PDF
of W, the gap entered by random incidence; and let fR(r) denote the PDF of the
residual life, R. The probability that the random arrival occurs in a gap of length
between w and w + dw can be assumed to be directly proportional to the length
w of the gap and relative occurrence fY(w)dw of such gaps. That is,

fW(w)dw = βwfY(w)dw

where β is the constant of proportionality. Thus, fW(w) = βwfY(w). Since fW(w)

is a PDF, we have that

∫ ∞

−∞
fW(w)dw = 1 = β

∫ ∞

−∞
wfY(w)dw = βE[Y]

Thus, β = 1/E[Y], and we obtain

fW(w) = wfY(w)

E[Y]

The expected value of W is given by E[W] = E
[
Y2

]
/E[Y]. This result applies to

all renewal processes. For a Poisson process, Y is exponentially distributed with
E[Y] = 1/λ and E

[
Y2

]
= 2/λ2. Thus, for a Poisson process we obtain

fW(w) = λwfY(w) = λ2we−λw w ≥ 0

E[W] = 2/λ

This means that for a Poisson process, the gap entered by random incidence has
the second-order Erlang distribution; thus, the expected length of the gap is twice
the expected length of an interarrival time. This is often referred to as the random

incidence paradox. The reason for this fact is that the passenger is more likely to
enter a large gap than a small gap.
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Next, we consider the PDF of the residual life R of the process. Given that
the passenger enters a gap of length w, he or she is equally like to be anywhere
within the gap. Thus, the conditional PDF of R given that W = w is given by

fR|W(r|w) = 1

w
0 ≤ r ≤ w

When we combine this result with the previous one, we get the joint PDF of R

and W as follows:

fRW(r,w) = fR|W(r|w)fW(w) = 1

w

{
wfY(w)

E[Y]

}

= fY(w)

E[Y] 0 ≤ r ≤ w ≤ ∞

The marginal PDF of R becomes

fR(r) =
∫ ∞

r

fRW(r,w)dw =
∫ ∞

r

fY(w)

E[Y] dw = 1 − FY(r)

E[Y] r ≥ 0

Since Y is exponentially distributed, 1 − FY(r) = e−λr, which means that

fR(r) = λe−λr r ≥ 0

Thus, for a Poisson process, the residual life of the process has the same distri-
bution as the interarrival time, which can be expected from the “forgetfulness”
property of the exponential distribution. In Figure 10.7 the random variable S

denotes the time between the last bus arrival and the passenger’s random arrival.
Since W = S + R, the expected value of S is E[W] − E[R] = 1/λ.

Example 10.8 City buses arrive at a particular bus stop according to a Poisson
process with a rate of 5 buses per hour. Ross arrived at the bus stop and had to
wait to catch the next bus.

1. What is the mean time between the instant Ross arrived at the bus stop until
the next bus arrives?

2. What is the mean time between the last bus arrival and the arrival of the bus
that Ross boarded?

Solution Since buses arrive at the bus stop according to a Poisson process, the
time between bus arrivals is exponentially distributed with a mean of 1/5 hours
(or 12 minutes). Thus, we obtain the following results:
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1. According to the principles of random incidence, the time until the next bus
arrives after Ross’s arrival is exponentially distributed with a mean of 12
minutes. Thus, Ross waits an average of 12 minutes before the next bus ar-
rives.

2. Also, the mean time between the last bus arrival and the arrival of the bus
that Ross boarded is the mean length of the gap that Ross entered by random
incidence. According to the principles of random incidence, the mean length
of this gap is twice the mean length of time that Ross waits until the next bus
arrives. Thus, the mean time between the two bus arrivals is 24 minutes.

�

10.5.12 Nonhomogeneous Poisson Process

What we have described so far is the homogeneous Poisson process because the
arrival rate is constant. In many applications it is necessary to consider arrival
rates λ = λ(t) that vary with time. Such a process with a varying arrival rate is
called a nonhomogeneous or nonstationary Poisson process, which we briefly dis-
cuss in this section.

Let {N(t)|t ≥ 0} be a nonhomogeneous Poisson process with arrival rate λ(t).
Let the parameter m(t) be defined as follows:

m(t) =
∫ t

0
λ(u)du

Then m(t) represents the expected number of arrivals up to time t. It can be
shown that for any t, s ≥ 0, N(t) satisfies the following condition:

P[N(t + s) − N(t) = k] = [m(t + s) − m(t)]k

k! e−[m(t+s)−m(t)] k = 0,1,2, . . .

That is, the number of arrivals over the interval [t, t + s] is a Poisson random
variable with a mean of m(t + s) − m(t).

Example 10.9 A company cafeteria opens daily on weekdays at 8 a.m. Studies
indicate that the employees arrive at the cafeteria over its normal business hours
in a Poisson manner. However, the arrival rate varies with the time of the day. In
particular, the following observation has been made:

1. During the first three hours from when the cafeteria opens for business, there
is a steady increase in the customer arrival rate from 4 per hour to 16 per hour.
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Figure 10.8 Example 10.9

2. Then the arrival rate remains constant at 16 customers per hour for the next
two hours.

3. Finally the arrival rate uniformly declines to 0 per hour in the next 2 hours.

(a) What is the probability that no employee arrives at the cafeteria during the
first two hours?

(b) What is the expected number of arrivals during the first four hours?

Solution The problem can be modeled by a nonhomogeneous Poisson process
with the time-dependent arrival rate represented by Figure 10.8.

Thus, the arrival rate is given by

λ(t) =
{

4 + 4t 0 ≤ t ≤ 3
16 3 ≤ t ≤ 5
16 − 8(t − 5) 5 ≤ t ≤ 7

(a) The probability that no employee arrives during the first two hours is given
by

p0 = P[N(2) − N(0) = 0] = [m(2) − m(0)]0

0! e−[m(2)−m(0)]

= e−[m(2)−m(0)] = e−m(2)

where the last equality follows from the fact that m(0) = 0. Since

m(2) =
∫ 2

0
λ(t)dt =

∫ 2

0
(4 + 4t)dt =

[
4t + 2t2

]2
0
= 16

Thus, p0 = e−16.
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(b) The expected number of arrivals during the first four hours is given by

m(4) =
∫ 4

0
λ(t)dt =

∫ 3

0
(4 + 4t)dt +

∫ 4

3
16dt =

[
4t + 2t2

]3
0
+ [16t]4

3 = 46

�

10.6 Markov Processes

Markov processes are widely used in engineering, science, and business model-
ing. They are used to model systems that have a limited memory of their pasts.
For example, in the gambler’s ruin problem discussed earlier in this chapter, the
amount of money the gambler will make after n + 1 games is determined by the
amount of money he has made after n games. Any other information is irrele-
vant in making this prediction. In population growth studies, the population of
the next generation depends mainly on the current population and possibly the
last few generations.

A random process {X(t)|t ∈ T} is called a first-order Markov process if
for any t0 < t1 < · · · < tn the conditional CDF of X(tn) for given values of
X(t0),X(t1), . . . ,X(tn−1) depends only on X(tn−1). That is,

P[X(tn) ≤ xn|X(tn−1) = xn−1,X(tn−2) = xn−2, . . . ,X(t0) = x0]
= P[X(tn) ≤ xn|X(tn−1) = xn−1]

This means that, given the present state of the process, the future state is inde-
pendent of the past. This property is usually referred to as the Markov property.
In second-order Markov processes, the future state depends on both the current
state and the last immediate state and so on for higher-order Markov processes.
In this chapter we consider only first-order Markov processes.

Markov processes are classified according to the nature of the time parameter
and the nature of the state space. With respect to state space, a Markov process
can be either a discrete-state Markov process or a continuous-state Markov
process. A discrete-state Markov process is called a Markov chain. Similarly, with
respect to time, a Markov process can be either a discrete-time Markov process
or a continuous-time Markov process. Thus, there are four basic types of Markov
processes:

1. Discrete-time Markov chain (or discrete-time discrete-state Markov process).

2. Continuous-time Markov chain (or continuous-time discrete-state Markov
process).

3. Discrete-time Markov process (or discrete-time continuous-state Markov
process).
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Figure 10.9 Classification of Markov Processes

4. Continuous-time Markov process (or continuous-time continuous-state
Markov process).

This classification of Markov processes is illustrated in Figure 10.9.

The remainder of the discussion in this chapter deals with Markov chains (that
is, discrete-state Markov processes).

10.7 Discrete-Time Markov Chains

The discrete-time process {Xk,k = 0,1,2, . . .} is called a Markov chain if for all
i, j,k, . . . ,m, the following is true:

P[Xk = j|Xk−1 = i,Xk−2 = n, . . . ,X0 = m] = P[Xk = j|Xk−1 = i] = pijk

The quantity pijk is called the state transition probability, which is the conditional
probability that the process will be in state j at time k immediately after the next
transition, given that it is in state i at time k − 1. A Markov chain that obeys the
preceding rule is called a nonhomogeneous Markov chain. In this book we will
consider only homogeneous Markov chains, which are Markov chains in which
pijk = pij. This means that homogeneous Markov chains do not depend on the
time unit, which implies that

P[Xk = j|Xk−1 = i,Xk−2 = α, . . . ,X0 = θ ] = P[Xk = j|Xk−1 = i] = pij

The homogeneous state transition probability pij satisfies the following condi-
tions:

1. 0 ≤ pij ≤ 1

2.
∑

j

pij = 1, i = 1,2, . . . ,n, which follows from the fact that the states are mu-

tually exclusive and collectively exhaustive
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10.7.1 State Transition Probability Matrix

It is customary to display the state transition probabilities as members of an n×n

matrix P, where pij is the entry in the ith row and jth column:

P =




p11 p12 . . . p1n

p21 p22 . . . p2n

. . . . . . . . . . . .

pn1 pn2 . . . pnn




P is called the transition probability matrix. It is a stochastic matrix because for

any row i,
∑

j

pij = 1.

10.7.2 The n-Step State Transition Probability

Let pij(n) denote the conditional probability that the system will be in state j after
exactly n transitions, given that it is presently in state i. That is,

pij(n) = P[Xm+n = j|Xm = i]

pij(0) =
{

1 i = j

0 i 
= j

pij(1) = pij

Consider the two-step transition probability pij(2), which is defined by

pij(2) = P[Xm+2 = j|Xm = i]

Assume that m = 0, then

pij(2) = P[X2 = j|X0 = i]

=
∑

k

P[X2 = j,X1 = k|X0 = i]

=
∑

k

P[X2 = j|X1 = k,X0 = i]P[X1 = k|X0 = i]

=
∑

k

P[X2 = j|X1 = k]P[X1 = k|X0 = i]

=
∑

k

pkjpik =
∑

k

pikpkj

where the second to the last equality is due to the Markov property. The final
equation states that the probability of starting in state i and being in state j at the
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end of the second transition is the probability that we first go immediately from
state i to an intermediate state k and then immediately from state k to state j; the
summation is taken over all possible intermediate states k.

Proposition. The following proposition deals with a class of equations called the

Chapman–Kolmogorov equations, which provide a generalization of the above re-

sults obtained for the two-step transition probability. The proposition is as follows:

For all 0 < r < n, pij(n) =
∑

k

pik(r)pkj(n − r)

This proposition states that the probability that the process starts in state i and

finds itself in state j at the end of the nth transition is the product of the probability

that the process starts in state i and finds itself in an intermediate state k after r
transitions, and the probability that it goes from state k to state j after additional

n − r transitions.

Proof. The proof is a generalization of the proof for the case of n = 2 and is as
follows.

pij(n) = P[Xn = j|X0 = i]

=
∑

k

P[Xn = j,Xr = k|X0 = i]

=
∑

k

P[Xn = j|Xr = k,X0 = i]P[Xr = k|X0 = i]

=
∑

k

P[Xn = j|Xr = k]P[Xr = k|X0 = i] =
∑

k

pkj(n − r)pik(r)

=
∑

k

pik(r)pkj(n − r)

�

10.7.3 State Transition Diagrams

Consider the following problem. It has been observed via a series of tosses of a
particular biased coin that the outcome of the next toss depends on the outcome
of the current toss. In particular, given that the current toss comes up heads, the
next toss will come up heads with probability 0.6 and tails with probability 0.4.
Similarly, given that the current toss comes up tails, the next toss will come up
heads with probability 0.35 and tails with probability 0.65.
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Figure 10.10 Example of State-Transition Diagram

If we define state 1 to represent heads and state 2 to represent tails, then the
transition probability matrix for this problem is the following:

P =
[

0.6 0.4
0.35 0.65

]

All the properties of the Markov process can be determined from this matrix.
However, the analysis of the problem can be simplified by the use of the state-

transition diagram in which the states are represented by circles and directed arcs
represent transitions between states. The state-transition probabilities are labeled
on the appropriate arcs. Thus, with respect to the above problem, we obtain the
state-transition diagram shown in Figure 10.10.

Example 10.10 Assume that people in a particular society can be classified as
belonging to the upper class (U), middle class (M), and lower class (L). Mem-
bership in any class is inherited in the following probabilistic manner. Given
that a person is raised in an upper-class family, he or she will have an upper-
class family with probability 0.7, a middle-class family with probability 0.2, and
a lower-class family with probability 0.1. Similarly, given that a person is raised
in a middle-class family, he or she will have an upper-class family with probabil-
ity 0.1, a middle-class family with probability 0.6, and a lower-class family with
probability 0.3. Finally, given that a person is raised in a lower-class family, he or
she will have a middle-class family with probability 0.3 and a lower-class family
with probability 0.7. Determine (a) the transition probability matrix and (b) the
state-transition diagram for this problem.

Solution (a) Using the first row to represent the upper class, the second row
to represent the middle class, and the third row to represent the lower class, we
obtain the following transition probability matrix:

P =




0.7 0.2 0.1
0.1 0.6 0.3
0.0 0.3 0.7




(b) The state-transition diagram is as shown in Figure 10.11. �
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Figure 10.11 State-Transition Diagram for Example 10.10

10.7.4 Classification of States

A state j is said to be accessible (or can be reached) from state i if, starting from
state i, it is possible that the process will ever enter state j. This implies that
pij(n) > 0 for some n > 0. Thus, the n-step probability enables us to obtain reach-
ability information between any two states of the process.

Two states that are accessible from each other are said to communicate with
each other. The concept of communication divides the state space into different
classes. Two states that communicate are said to be in the same class. All members
of one class communicate with one another. If a class is not accessible from any
state outside the class, we define the class to be a closed communicating class.
A Markov chain in which all states communicate, which means that there is only
one class, is called an irreducible Markov chain. For example, the Markov chains
shown in Figures 10.10 and 10.11 are irreducible chains.

The states of a Markov chain can be classified into two broad groups: those
that the process enters infinitely often and those that it enters finitely often. In
the long run, the process will be found to be in only those states that it enters
infinitely often. Let fij(n) denote the conditional probability that given that the
process is presently in state i, the first time it will enter state j occurs in exactly n

transitions (or steps). We call fij(n) the probability of first passage from state i to
state j in n transitions. The parameter fij, which is defined as follows:

fij =
∞∑

n=1

fij(n)

is the probability of first passage from state i to state j. It is the conditional prob-
ability that the process will ever enter state j, given that it was initially in state i.
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Obviously fij(1) = pij and a recursive method of computing fij(n) is

fij(n) =
∑

l 
=j

pilflj(n − 1)

The quantity fii denotes the probability that a process that starts at state i will
ever return to state i. Any state i for which fii = 1 is called a recurrent state, and
any state i for which fii < 1 is called a transient state. More formally, we define
these states as follows:

a. A state j is called a transient (or nonrecurrent) state if there is a positive prob-
ability that the process will never return to j again after it leaves j.

b. A state j is called a recurrent (or persistent) state if, with probability 1, the
process will eventually return to j after it leaves j. A set of recurrent states
forms a single chain if every member of the set communicates with all other
members of the set.

c. A recurrent state j is called a periodic state if there exists an integer d, d > 1,
such that pjj(n) is zero for all values of n other than d,2d,3d, . . . ; d is called
the period. If d = 1, the recurrent state j is said to be aperiodic.

d. A recurrent state j is called a positive recurrent state if, starting at state j the
expected time until the process returns to state j is finite. Otherwise, the re-
current state is called a null recurrent state.

e. Positive recurrent, aperiodic states are called ergodic states.

f. A chain consisting of ergodic states is called an ergodic chain.

g. A state j is called an absorbing (or trapping) state if pjj = 1. Thus, once the
process enters a trapping or absorbing state, it never leaves the state, which
means that it is “trapped.”

Example 10.11 Consider the Markov chain with the state-transition diagram
shown in Figure 10.12. Identify the transient states, the recurrent states, and the
periodic states with their periods. How many chains are there in the process?

Solution Transient States: 4
Recurrent States: 1, 2, 3
Periodic States: None
Chains: 1 chain: {1, 2, 3}

�
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Example 10.12 Consider the state-transition diagram of Figure 10.13, which is
a modified version of Figure 10.12. Here, the transition is now from state 2 to
state 4 instead of from state 4 to state 2. For this case, states 1, 2, and 3 are now
transient states because when the process enters state 2 and makes a transition
to state 4, it does not return to these states again. Also, state 4 is a trapping (or
absorbing) state because once the process enters the state, it never leaves the
state. As stated in the definition, we identify a trapping state from the fact that,
as in this example, p44 = 1 and p4k = 0 for k not equal to 4. �

Example 10.13 Identify the transient states, recurrent states, periodic states,
and single chains in the Markov chain whose state-transition diagram is shown
in Figure 10.14.

Figure 10.12 State-Transition Diagram for Example 10.11

Figure 10.13 State-Transition Diagram for Example 10.12

Figure 10.14 State-Transition Diagram for Example 10.13
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Solution Transient States: None
Recurrent States: 1, 2, 3
Periodic States: 1, 2, 3
Period: d = 3
Chains: 1 chain: {1, 2, 3}

�

10.7.5 Limiting-State Probabilities

Recall that the n-step state transition probability pij(n) is the conditional proba-
bility that the system will be in state j after exactly n transitions, given that it is
presently in state i. The n-step transition probabilities can be obtained by mul-
tiplying the transition probability matrix by itself n times. For example, consider
the following transition probability matrix:

P =




0.4 0.5 0.1
0.3 0.3 0.4
0.3 0.2 0.5




P2 =




0.4 0.5 0.1
0.3 0.3 0.4
0.3 0.2 0.5


×




0.4 0.5 0.1
0.3 0.3 0.4
0.3 0.2 0.5


 =




0.34 0.37 0.29
0.33 0.32 0.35
0.33 0.31 0.36




P3 =




0.34 0.37 0.29
0.33 0.32 0.35
0.33 0.31 0.36


×




0.4 0.5 0.1
0.3 0.3 0.4
0.3 0.2 0.5


 =




0.334 0.339 0.327
0.333 0.331 0.336
0.333 0.330 0.337




From the matrix P2 we obtain the pij(2). For example, p23(2) = 0.35, which is the

entry in the second row and third column of the matrix P2. Similarly, the entries
of the matrix P3 are the pij(3).

For this particular matrix and matrices for a large number of Markov chains,
we find that as we multiply the transition probability matrix by itself many times,
the entries remain constant. More importantly, all the members of one column
will tend to converge to the same value.

If we define P[X(0) = i] as the probability that the process is in state i before
it makes the first transition, then the set {P[X(0) = i]} defines the initial condition
for the process and for an N-state process,

N∑

i=1

P[X(0) = i] = 1
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Let P[X(n) = j] denote the probability that it is in state j at the end of the first n

transitions, then for the N-state process,

P[X(n) = j] =
N∑

i=1

P[X(0) = i]pij(n)

For the class of Markov chains referenced above, it can be shown that as n → ∞
the n-step transition probability pij(n) does not depend on i, which means that
P[X(n) = j] approaches a constant as n → ∞ for this class of Markov chains.
That is, the constant is independent of the initial conditions. Thus, for the class of
Markov chains in which the limit exists, we define the limiting-state probabilities

as follows:

lim
n→∞

P[X(n) = j] = πj j = 1,2, . . . ,N

Recall that the n-step transition probability can be written in the form

pij(n) =
∑

k

pik(n − 1)pkj

If the limiting-state probabilities exist and do not depend on the initial state, then

lim
n→∞

pij(n) = πj = lim
n→∞

∑

k

pik(n − 1)pkj =
∑

k

πkpkj

If we define the limiting-state probability vector � = [π1,π2, . . . ,πN], then we
have that

πj =
∑

k

πkpkj

� = �P

1 =
∑

j

πj

where the last equation is due to the law of total probability. Each of the first
two equations, together with the last equation, gives a system of linear equations
that the πj must satisfy. The following propositions specify the conditions for the
existence of the limiting-state probabilities:

a. In any irreducible, aperiodic Markov chain the limits πj = lim
n→∞

pij(n) exist and

are independent of the initial distribution.

b. In any irreducible, periodic Markov chain the limits πj = lim
n→∞

pij(n) exist and

are independent of the initial distribution. However, they must be interpreted
as the long-run probability that the process is in state j.
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Figure 10.15 State-Transition Diagram for Example 10.14

Example 10.14 Recall the biased coin problem whose state transition diagram
is given in Figure 10.10 and reproduced in Figure 10.15. Find the limiting-state
probabilities.

Solution There are three equations associated with the above Markov chain,
and they are

π1 = 0.6π1 + 0.35π2

π2 = 0.4π1 + 0.65π2

1 = π1 + π2

Since there are three equations and two unknowns, one of the equations is redun-
dant. Thus, the rule-of-thumb is that for an N-state Markov chain, we use the first
N − 1 linear equations from the relation πj =

∑
k πkpkj and the total probability:

1 =
∑

j πj. For the given problem we have

π1 = 0.6π1 + 0.35π2

1 = π1 + π2

From the first equation we obtain π1 = (0.35/0.4)π2 = (7/8)π2. Substituting for
π1 and solving for π2 in the second equation, we obtain the result � = {π1,π2} =
{7/15,8/15}. �

Suppose we are also required to compute p12(3), which is the probability that
the process will be in state 2 at the end of the third transition, given that it is
presently in state 1. We can proceed in two ways: the direct method or the matrix
method. We consider both methods.

(a) Direct Method. Under this method, we exhaustively enumerate all the
possible ways of a state 1 to state 2 transition in 3 steps. If we use the notation
a → b → c to denote a transition from state a to state b and then from state b to
state c, the desired result is the following:

p12(3) = P[{1 → 1 → 1 → 2} ∪ {1 → 1 → 2 → 2} ∪ {1 → 2 → 1 → 2}
∪ {1 → 2 → 2 → 2}]
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Since the different events are mutually exclusive, we obtain

p12(3) = P[1 → 1 → 1 → 2] + P[1 → 1 → 2 → 2] + P[1 → 2 → 1 → 2]
+ P[1 → 2 → 2 → 2]

= (0.6)(0.6)(0.4) + (0.6)(0.4)(0.65) + (0.4)(0.35)(0.4) + (0.4)(0.65)(0.65)

= 0.525

(b) Matrix Method. One of the limitations of the direct method is that it is
difficult to exhaustively enumerate the different ways of going from state 1 to
state 2 in n steps, especially when n is large. This is where the matrix method
becomes very useful. As discussed earlier, pij(n) is the ijth (ith row, jth column)
entry in the matrix Pn. Thus, for the current problem, we are looking for the entry
in the first row and second column of the matrix P3. Therefore, we have

P =
[

0.6 0.4
0.35 0.65

]

P2 = P × P =
[

0.6 0.4
0.35 0.65

]
×

[
0.6 0.4

0.35 0.65

]
=

[
0.5 0.5

0.4375 0.5625

]

P3 = P × P2 =
[

0.6 0.4
0.35 0.65

]
×

[
0.5 0.5

0.4375 0.5625

]
=

[
0.475 0.525

0.459375 0.540625

]

The required result (first row, second column) is 0.525, which is the result ob-
tained via the direct method.

10.7.6 Doubly Stochastic Matrix

A transition probability matrix P is defined to be a doubly stochastic matrix if
each of its columns sums to 1. That is, not only does each row sum to 1, each
column also sums to 1. Thus, for every column j of a doubly stochastic matrix, we

have that
∑

i

pij = 1.

Doubly stochastic matrices have interesting limiting-state probabilities, as the
following theorem shows.

Theorem. If P is a doubly stochastic matrix associated with the transition prob-

abilities of a Markov chain with N states, then the limiting-state probabilities are

given by πi = 1/N, i = 1,2, . . . ,N.

Proof. We know that the limiting-state probabilities satisfy the condition

πj =
∑

k

πkpkj
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Figure 10.16 State-Transition Diagram for Example 10.15

To check the validity of the theorem, we observe that when we substitute πi =
1/N, i = 1,2, . . . ,N, in the above equation, we obtain

1

N
= 1

N

∑

k

pkj

This shows that πi = 1/N satisfies the condition � = �P, which the limiting-state
probabilities are required to satisfy. Conversely, from the above equation, we see
that if the limiting-state probabilities are given by 1/N, then each column j of P

sums to 1; that is, P is doubly stochastic. This completes the proof. �

Example 10.15 Find the transition probability matrix and the limiting-state
probabilities of the process represented by the state-transition diagram shown
in Figure 10.16.

Solution The transition probability matrix is given by

P =




0.4 0.5 0.1
0.3 0.3 0.4
0.3 0.2 0.5




It can be seen that each row of the matrix sums to 1 and each column also sums
to 1; that is, it is a doubly stochastic matrix. Since the process is an irreducible,
aperiodic Markov chain, the limiting-state probabilities exist and are given by
π1 = π2 = π3 = 1/3. �

10.8 Continuous-Time Markov Chains

A random process {X(t)|t ≥ 0} is a continuous-time Markov chain if, for all s, t ≥ 0
and nonnegative integers i, j,k,

P[X(t + s) = j|X(s) = i,X(u) = k,0 ≤ u ≤ s] = P[X(t + s) = j|X(s) = i]



10.8 Continuous-Time Markov Chains 371

This means that in a continuous-time Markov chain, the conditional probability
of the future state at time t + s, given the present state at s and all past states,
depends only on the present state and is independent of the past. If, in addition
P[X(t + s) = j|X(s) = i] is independent of s, then the process {X(t)|t ≥ 0} is said to
be time homogeneous or have the time homogeneity property. Time homogeneous
Markov chains have stationary (or homogeneous) transition probabilities. Let

pij(t) = P[X(t + s) = j|X(s) = i]
pj(t) = P[X(t) = j]

That is, pij(t) is the probability that a Markov chain that is presently in state i will
be in state j after an additional time t, and pj(t) is the probability that a Markov
chain is in state j at time t. Thus, the pij(t) are the transition probabilities that
satisfy the following condition 0 ≤ pij(t) ≤ 1. Also,

∑

j

pij(t) = 1

∑

j

pj(t) = 1

The last equation follows from the fact that at any given time the process must be
in some state. Also,

pij(t + s) =
∑

k

P[X(t + s) = j,X(t) = k|X(0) = i]

=
∑

k

P[X(0) = i,X(t) = k,X(t + s) = j]
P[X(0) = i]

=
∑

k

{
P[X(0) = i,X(t) = k]

P[X(0) = i]

}{
P[X(0) = i,X(t) = k,X(t + s) = j]

P[X(0) = i,X(t) = k]

}

=
∑

k

P[X(t) = k|X(0) = i]P[X(t + s) = j|X(0) = i,X(t) = k]

=
∑

k

P[X(t) = k|X(0) = i]P[X(t + s) = j|X(t) = k]

=
∑

k

pik(t)pkj(s)

This equation is called the Chapman–Kolmogorov equation for the continuous-
time Markov chain. Note that the second to last equation is due to the Markov
property.
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Whenever a continuous-time Markov chain enters a state i, it spends an
amount of time called the dwell time (or holding time) in that state. The holding
time in state i is exponentially distributed with mean 1/vi. At the expiration of
the holding time the process makes a transition to another state j with probability
pij, where

∑
j pij = 1.

Because the mean holding time in state i is 1/vi, vi represents the rate at which
the process leaves state i, and vipij represents the rate when in state i that the
process makes a transition to state j. Also, since the holding times are exponen-
tially distributed, the probability that when the process is in state i, a transition to
state j 
= i will take place in the next small time 	t is pijvi	t. The probability that
no transition out of state i will take place in 	t, given that the process is presently
in state i, is 1 −

∑
j 
=i pijvi	t, and

∑
j 
=i pijvi	t is the probability that it leaves state

i in 	t.

With these definitions we consider the state-transition diagram for the process,
which is shown in Figure 10.17 for state i. We consider the transition equations
for state i for the small time interval 	t.

From Figure 10.17, we obtain the following equation:

pi(t + 	t) = pi(t)

{
1 −

∑

j 
=i

pijvi	t

}
+

∑

j 
=i

pj(t)pjivj	t

pi(t + 	t) − pi(t) = −pi(t)
∑

j 
=i

pijvi	t +
∑

j 
=i

pj(t)pjivj	t

pi(t + 	t) − pi(t)

	t
= −vipi(t)

∑

j 
=i

pij +
∑

j 
=i

pj(t)pjivj

lim
	t→0

{
pi(t + 	t) − pi(t)

	t

}
= dpi(t)

dt
= −vipi(t)

∑

j 
=i

pij +
∑

j 
=i

pj(t)pjivj

Figure 10.17 State-Transition Diagram for State i over Small Time 	t
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In the steady state, pj(t) → pj and

lim
t→∞

{
dpi(t)

dt

}
= 0

Thus, we obtain

0 = −vipi

∑

j 
=i

pij +
∑

j 
=i

pjpjivj

1 =
∑

i

pi

Alternatively, we may write

vipi

∑

j 
=i

pij =
∑

j 
=i

pjpjivj

1 =
∑

i

pi

The left side of the first equation is the rate of transition out of state i, while the
right side is the rate of transition into state i. This “balance” equation states that
in the steady state the two rates are equal for any state in the Markov chain.

10.8.1 Birth and Death Processes

Birth and death processes are a special type of continuous-time Markov chains.
Consider a continuous-time Markov chain with states 0,1,2, . . . . If pij = 0 when-
ever j 
= i − 1 or j 
= i + 1, then the Markov chain is called a birth and death
process. Thus, a birth and death process is a continuous-time Markov chain with
states 0,1,2, . . . , in which transitions from state i can only go to either state i + 1
or state i − 1. That is, a transition either causes an increase in state by one or a
decrease in state by one. A birth is said to occur when the state increases by one,
and a death is said to occur when the state decreases by one. For a birth and death
process, we define the following transition rates from state i:

λi = vipi(i+1)

µi = vipi(i−1)

Thus, λi is the rate at which a birth occurs when the process is in state i and µi is
the rate at which a death occurs when the process is in state i. The sum of these
two rates is λi + µi = vi, which is the rate of transition out of state i. The state-

transition-rate diagram of a birth and death process is shown in Figure 10.18. It
is called a state-transition-rate diagram as opposed to a state-transition diagram
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Figure 10.18 State-Transition-Rate Diagram for Birth and Death Process

because it shows the rate at which the process moves from state to state and not
the probability of moving from one state to another. Note that µ0 = 0, since there
can be no death when the process is in an empty state.

The actual state-transition probabilities when the process is in state i are pi(i+1)

and pi(i−1). By definition, pi(i+1) = λi/(λi +µi) is the probability that a birth occurs
before a death when the process is in state i. Similarly, pi(i−1) = µi/(λi + µi) is the
probability that a death occurs before a birth when the process is in state i.

Recall that the rate at which the probability of the process being in state i

changes with time is given by

dpi(t)

dt
= −vipi(t)

∑

j 
=i

pij +
∑

j 
=i

pj(t)pjivj

= −(λi + µi)pi(t) + µi+1pi+1(t) + λi−1pi−1(t)

In the steady state,

lim
t→∞

{
dpi(t)

dt

}
= 0,

which gives

(λi + µi)pi(t) = µi+1pi+1(t) + λi−1pi−1(t)

The equation states that the rate at which the process leaves state i either through
a birth or a death is equal to the rate at which it enters the state through a birth
when the process is in state i − 1 or through a death when the process is in state
i + 1.

If we assume that the limiting probabilities lim
t→∞

pij(t) = pj exist, then from the

above equation we obtain the following:

(λi + µi)pi = µi+1pi+1 + λi−1pi−1
∑

i

pi = 1

This is called the balance equation because it balances (or equates) the rate at
which the process enters state i with the rate at which it leaves state i.
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Figure 10.19 State-Transition-Rate Diagram for Example 10.16

Example 10.16 A machine is operational for an exponentially distributed time
with mean 1/λ before breaking down. When it breaks down, it takes a time that is
exponentially distributed with mean 1/µ to repair it. What is the fraction of time
that the machine is operational (or available)?

Solution This is a two-state birth and death process. Let U denote the up state
and D the down state. Then, the state-transition-rate diagram is shown in Fig-
ure 10.19.

Let pU denote the steady-state probability that the process is in the operational
state, and let pD denote the steady-state probability that the process is in the
down state. Then the balance equations become

λpU = µpD

pU + pD = 1 ⇒ pD = 1 − pU

Substituting pD = 1 − pU in the first equation gives pU = µ/(λ + µ). �

Example 10.17 Customers arrive at a bank according to a Poisson process with
rate λ. The time to serve each customer is exponentially distributed with mean
1/µ. There is only one teller at the bank, and an arriving customer who finds the
teller busy when she arrives will join a single queue that operates on a first-come,
first-served basis. Determine the limiting-state probabilities given that µ > λ.

Solution This is a continuous-time Markov chain in which arrivals constitute
births and service completions constitute deaths. Also, for all i, µi = µ and λi = λ.
Thus if pk denotes the steady-state probability that there are k customers in the
system, the balance equations are as follows:

λp0 = µp1 ⇒ p1 =
(

λ

µ

)
p0

(λ + µ)p1 = λp0 + µp2 ⇒ p2 =
(

λ

µ

)
p1 =

(
λ

µ

)2

p0

(λ + µ)p2 = λp1 + µp3 ⇒ p3 =
(

λ

µ

)
p2 =

(
λ

µ

)3

p0
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Similarly, it can be shown that

pk =
(

λ

µ

)k

p0 k = 0,1,2, . . .

Now,

∞∑

k=0

pk = 1 = p0

∞∑

k=0

(
λ

µ

)k

= p0

1 − λ
µ

Thus,

p0 = 1 − λ

µ

pk =
(

1 − λ

µ

)(
λ

µ

)k

k = 0,1,2, . . .

�

10.9 Gambler’s Ruin as a Markov Chain

Recall the gambler’s ruin problem discussed in section 10.3.1. Two players A
and B play a series of games with A starting with $a and B starting with $b, where
a + b = N. With probability p player A wins each game from player B and thus
gains an additional $1; and with probability q = 1 − p player A loses each game
to B and thus loses $1. If A reaches $0 he is ruined, and the game ends. Similarly
if B reaches $0, he is ruined and the game is over. Let the state of the game be k,
which denotes the total amount that A currently has. Thus, the game ends when
k = 0 and A is ruined; it also ends when k = N and B is ruined. This means that
states 0 and N are absorbing states. Let pik denote the conditional probability
that the game will move to state k next, given that it is currently in state i. Then
pik is the state transition probability, which is given by

pik =





p k = i + 1, i 
= 0

1 − p k = i − 1, i 
= N

1 k = i = 0

1 k = i = N

0 otherwise
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Thus, the state transition probability matrix is given by

P =




1 0 0 0 0 . . . 0 0 0 0 0

1 − p 0 p 0 0 . . . 0 0 0 0 0

0 1 − p 0 p 0 . . . 0 0 0 0 0

0 0 1 − p 0 p . . . 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . p 0 0 0 0

0 0 0 0 0 . . . 0 p 0 0 0

0 0 0 0 0 . . . 1 − p 0 p 0 0

0 0 0 0 0 . . . 0 0 1 − p 0 p

0 0 0 0 0 . . . 0 0 0 0 1




Similarly, the state-transition diagram for the game is shown in Figure 10.20.

The above process assumes that both the gambler and his adversary are play-
ing to obtain each other’s fortune and will stop when either one is out of money
(i.e., either one is ruined). Sometimes they can play for sports, where when one is
ruined, the other gives him $1 (or whatever is the cost of each play) to continue.
That is, when the process enters state 0, then with probability 1 − p0, it stays in
state 0, and with probability p0, it makes a transition to state 1. Similarly, when it
enters state N, it stays in state N with probability pN and makes a transition to
state N − 1 with probability 1 − pN . Note that p0 and pN need not be equal to p.
Also, when p0 = 0 and pN = 1, we have the previous scheme. This scheme is a
type of random walk with reflecting barriers and is illustrated in Figure 10.21.

Figure 10.20 State-Transition Diagram for the Gambler’s Ruin

Figure 10.21 State-Transition Diagram for Gambler’s Ruin Game for Sports
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10.10 Chapter Summary

This chapter considered some of the frequently used random processes in sys-
tem modeling. These are the Bernoulli process, Gaussian process, random walk,
Poisson process, and Markov process. The Bernoulli process is used to model a
sequence of trials, each of which results in one of two outcomes that are gener-
ally described as success or failure. For this process the number of trials between
two successes is geometrically distributed, and the number of successes in a given
number of trials has the binomial distribution. Finally, the number of trials up
to and including the trial that results in the kth success is the kth-order Pascal
random variable.

The random walk is an extension of the Bernoulli process. Here the process
takes a step to the right in the kth trial if the outcome of the trial is a success
and a step to the left if the outcome is a failure. The resulting trajectory of the
process as it moves through the xy plane, where the x coordinate represents time
and the y coordinate represents the location at a given time, is the so-called one-
dimensional random walk. It is commonly used in a class of problems called the
gambler’s ruin.

A random process {X(t), t ∈ T} is defined to be a Gaussian random process
if and only if for any choice of n time instants t1, t2, . . . , tn in the index set T,
the random variables X(t1),X(t2), . . . ,X(tn) have a jointly normal PDF. Gaussian
processes are important because many physical problems are the result of adding
large numbers of independent random variables. According to the central limit
theorem, such sums of random variables are essentially normal (or Gaussian)
random variables.

The Poisson process is a counting process that is used to model systems where
the interarrival times are exponentially distributed. The time until the kth arrival
has the Erlang distribution. Because of the forgetfulness property of the expo-
nential distribution, Poisson processes are popularly used to model many arrival
processes like customers at a restaurant or library and message arrivals at switch-
boards.

Finally, the Markov process is used to model systems with limited memory of
the past. For the so-called first-order Markov process, given the present state of
the process, the future state is independent of the past. This property is usually
referred to as the Markov property.

10.11 Problems

Section 10.2: Bernoulli Process

10.1 A random process Y[n] is defined by Y[n] = 3X[n] + 1, where X[n] is a
Bernoulli process with a success probability p. Find the mean and variance
of Y[n].
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10.2 A sequence of Bernoulli trials consists of choosing seven components at
random from a batch of components. A selected component is classified
as either defective and nondefective. A nondefective component is con-
sidered a success, while a defective component is considered a failure. If
the probability that a selected component is nondefective is 0.8, what is
the probability of three successes?

10.3 The probability that a patient recovers from a rare blood disease is 0.3.
If 15 people are known to have contracted this disease, find the following
probabilities:

a. At least 10 survive.

b. From 3 to 8 survive.

c. Exactly 6 survive.

10.4 A sequence of Bernoulli trials consists of choosing components at random
from a batch of components. A selected component is classified as either
defective or nondefective. A nondefective component is considered a suc-
cess, while a defective component is considered a failure. If the probability
that a selected component is nondefective is 0.8, determine the probabili-
ties of the following events:

a. The first success occurs on the fifth trial.

b. The third success occurs on the eighth trial.

c. There are 2 successes by the fourth trial, there are 4 successes by the
tenth trial, and there are 10 successes by the eighteenth trial.

10.5 A lady invites 12 people for dinner at her house. Unfortunately the dining
room table can only seat 6 people. Her plan is that if 6 or fewer guests
come, then they will be seated at the table (i.e., they will have a sit-down
dinner); otherwise she will set up a buffet-style meal. The probability that
each invited guest will come to dinner is 0.4, and each guest’s decision is
independent of other guests’ decisions. Determine the following:

a. The probability that she has a sit-down dinner.

b. The probability that she has a buffet-style dinner.

c. The probability that there are at most three guests.

10.6 A Girl Scout troop sells cookies from house to house. One of the parents
of the girls figured out that the probability that they sell a set of packs of
cookies at any house they visit is 0.4, where it is assumed that they sell
exactly one set to each house that buys their cookies.

a. What is the probability that the first house where they make their first
sale is the fifth house they visit?
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b. Given that they visited 10 houses on a particular day, what is the prob-
ability that they sold exactly 6 sets of cookie packs?

c. What is the probability that on a particular day the third set of cookie
packs is sold at the seventh house that the girls visit?

Section 10.3: Random Walk

10.7 A bag contains 3 red balls, 6 green balls, and 2 blue balls. Jack plays a game
in which he bets $1 to draw a ball from the bag. If he draws a green ball,
he wins $1 dollar; otherwise he loses a dollar. Assume that the balls are
drawn with replacement and that Jack starts the game with $50 with the
hope of reaching $100 before going bankrupt. What is the probability that
he will succeed?

10.8 Consider a gambler’s ruin game in which p = q = 1/2. Let di, 0 < i < N,
denote the expected duration of a game in which a gambler starts from
state i, such as starting with $i. He gets $1 when he wins a game and loses
$1 when he loses a game. The boundary conditions for the series of games
are d0 = 0 and dN = 0; that is, the gambler is ruined when he enters state
0, and the series ends when he enters state N.

a. Show that di is given by

di =





0 i = 0,N

1 + di+1 + di−1

2
i = 1,2, . . . ,N − 1

b. Obtain the general expression for di from the above equation terms
of N.

10.9 Consider a variation of the gambler’s ruin problem with parameters p (i.e.,
the probability that player A wins a game) and N modeled in terms of a
random walk with reflecting barrier at zero. Specifically, when state 0 is
reached, the process moves to state 1 with probability p0 or stays at state
0 with probability 1 − p0. Thus, the only trapping state is N. That is, only
player B can be ruined.

a. Give the state transition diagram of the process.

b. If ri is the probability of player B being ruined when the process is
currently in state i, obtain the expression for ri to show what happens
on the first game when the process is in state i.

10.10 Ben and Jerry play a series of games of checkers. During each game each
player bets a $1, and whoever wins the game gets the $2. Ben is a better
player than Jerry and has a probability 0.6 of winning each game. Initially
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Ben had $9, while Jerry had $6, and the game is over when either player is
wiped out.

a. What is the probability that Ben is ruined, that is, that Jerry will wipe
him out?

b. What is the probability that Jerry is ruined?

10.11 Ben and Jerry play a series of games of cards. During each game each
player bets a $1, and whoever wins the game gets the $2. Sometimes a
game can end in a tie, in which case neither player loses his money. Ben is
a better player than Jerry and has a probability 0.5 of winning each game,
a probability 0.3 of losing each game, and probability 0.2 of tying with
Jerry. Initially Ben had $9, while Jerry had $6, and the game is over when
either player is wiped out.

a. Give the state transition diagram of the process.

b. If rk denotes the probability that Ben is ruined, given that the process
is currently in state k, obtain an expression for rk in the first game when
the process is in state k.

Section 10.4: Gaussian Process

10.12 Suppose that X(t) is a wide-sense stationary Gaussian process with the
autocorrelation function

RXX(τ) = 4 + e−|τ|

Determine the covariance matrix for the random variables X(0), X(1),
X(3), and X(6).

10.13 A Gaussian process X(t) has an autocorrelation function

RXX(τ) = 4 sin(πτ)

πτ

Determine the covariance matrix for the random variables X(t), X(t + 1),
X(t + 2), and X(t + 3).

10.14 Suppose X(t) is a Gaussian random process with a mean E[X(t)] = 0 and
autocorrelation function RXX(τ) = e−|τ|. Assume that the random vari-
able A is defined as follows:

A =
∫ 1

0
X(t)dt

Determine the following:

a. E[A]
b. σ2

A



382 Chapter 10 Some Models of Random Processes

10.15 Suppose X(t) is a Gaussian random process with a mean E[X(t)] = 0 and
autocorrelation function RXX(τ) = e−|τ|. Assume that the random vari-
able A is defined as follows:

A =
∫ B

0
X(t)dt

where B is a uniformly distributed random variable with values between
1 and 5 and is independent of the random process X(t). Determine the
following:

a. E[A]
b. σ2

A

Section 10.5: Poisson Process

10.16 University buses arrive at the Students’ Center to take students to their
classes according to a Poisson process with an average rate of 5 buses per
hour. Chris just missed the last bus. What is the probability that he waits
more than 20 minutes before boarding a bus?

10.17 Cars arrive at a gas station according to a Poisson process at an average
rate of 12 cars per hour. The station has only one attendant. If the atten-
dant decides to take a 2-minute coffee break when there are no cars at the
station, what is the probability that one or more cars will be waiting when
he comes back from the break, given that any car that arrives when he is
on coffee break waits for him to get back?

10.18 Cars arrive at a gas station according to a Poisson process at an average
rate of 50 cars per hour. There is only one pump at the station, and the
attendant takes 1 minute to fill up each car. What is the probability that a
waiting line will form at the station? (Note: A waiting line occurs if two or
more cars arrive in any 1-minute period.)

10.19 Studies indicate that the probability that three cars will arrive at a park-
ing lot in a 5-minute interval is 0.14. If cars arrive according to a Poisson
process, determine the following:

a. The average arrival rate of cars.

b. The probability that no more than 2 cars arrive in a 10-minute interval.

10.20 Telephone calls arrive at a switching center in a Poisson manner at an av-
erage rate of 75 calls per minute. What is the probability that more than
three calls arrive within a 5-second period.

10.21 An insurance company pays out claims on its life insurance policies in ac-
cordance with a Poisson process with an average rate of 5 claims per week.
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If the amount of money paid on each policy is uniformly distributed be-
tween $2000 and $10,000, what is the mean of the total amount of money
that the company pays out in a four-week period?

10.22 Customers arrive at the neighborhood bookstore according to a Poisson
process with an average rate of 10 customers per hour. Independent of
other customers, each arriving customer buys a book with probability 1/8.

a. What is the probability that the bookstore sells no book during a par-
ticular hour?

b. What is the PDF of the time until the first book is sold?

10.23 Joe is a student who is conducting experiments with a series of lightbulbs.
He started with 10 identical lightbulbs, each of which has an exponentially
distributed lifetime with a mean of 200 hours. Joe wants to know how long
it will take until the last bulb burns out (or fails). At noontime Joe stepped
out to get some lunch with 6 bulbs still on. Assume that Joe came back and
found that none of the 6 bulbs has failed.

a. After Joe came back, what is the expected time until the first bulb fail-
ure?

b. What is the expected length of time between the fourth bulb failure
and the fifth bulb failure?

10.24 Three customers A,B, and C, simultaneously arrive at a bank with two
tellers on duty. The two tellers were idle when the three customers arrived,
and A goes directly to one teller, B goes to the other teller, and C waits
until either A or B leaves before she can begin receiving service. If the
service times provided by the tellers are exponentially distributed with a
mean of 4 minutes, what is the probability that customer A is still in the
bank after the other two customers leave?

10.25 The times between component failures in a certain system are exponen-
tially distributed with a mean of 4 hours. What is the probability that at
least one component failure occurs within a 30-minute period?

10.26 Students arrive at the professor’s office for extra help according to a Pois-
son process with an average rate of 4 students per hour. The professor does
not start the tutorial until at least 3 students are available. Students who
arrive while the tutorial is going on will have to wait for the next session.

a. Given that a tutorial has just ended and there are no students currently
waiting for the professor, what is the mean time until another tutorial
can start?

b. Given that one student was waiting when the tutorial ended, what is
the probability that the next tutorial does not start within the first 2
hours?
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10.27 Customers arrive at a bank according to a Poisson process with an average
rate of 6 customers per hour. Each arriving customer is either a man with
probability p or a woman with probability 1 − p. It was found that in the
first 2 hours the average number of men who arrived at the bank was 8.
What is the average number of women who arrived over the same period?

10.28 Alan is conducting an experiment to test the mean lifetimes of two sets
of electric bulbs labeled A and B. The manufacturer claims that the mean
lifetime of bulbs in set A is 200 hours, while the mean lifetime of the bulbs
in set B is 400 hours. The lifetimes for both sets are exponentially distrib-
uted. Alan’s experimental procedure is as follows: He started with one
bulb from each set. As soon as a bulb from a given set fails (or burns out),
he immediately replaces it with a new bulb from the same set and writes
down the lifetime of the burnt-out bulb. Thus, at any point in time he has
two bulbs on, one from each set. If at the end of the week Alan tells you
that 8 bulbs have failed, determine the following:

a. The probability that exactly 5 of those 8 bulbs are from set B.

b. The probability that no bulb will fail in the first 100 hours.

c. The mean time between two consecutive bulb failures.

10.29 The Merrimack Airlines company runs a commuter air service between
Manchester, New Hampshire, and Cape Cod, Massachusetts. Since the
company is a small one, there is no set schedule for their flights, and no
reservation is needed for the flights. However, it has been determined
that their planes arrive at the Manchester airport according to a Poisson
process with an average rate of 2 planes per hour. Vanessa arrived at the
Manchester airport and had to wait to catch the next flight.

a. What is the mean time between the instant Vanessa arrived at the air-
port until the time the next plane arrived?

b. What is the mean time between the arrival time of the last plane that
took off from the Manchester airport before Vanessa arrived and the
arrival time of the plane that she boarded?

10.30 Bob has a pet that requires the light in his apartment to always be on. To
achieve this, Bob keeps three lightbulbs on with the hope that at least one
bulb will be operational when he is not at the apartment. The lightbulbs
have independent and identically distributed lifetimes T with PDF fT(t) =
λe−λt , t ≥ 0.

a. Probabilistically speaking, given that Bob is about to leave the apart-
ment and all three bulbs are working fine, what does he gain by replac-
ing all three bulbs with new ones before he leaves?
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b. Suppose X is the random variable that denotes the time until the first
bulb fails. What is the PDF of X?

c. Given that Bob is going away for an indefinite period of time and all
three bulbs are working fine before he leaves, what is the PDF of Y ,
the time until the third bulb failure after he leaves?

d. What is the expected value of Y?

10.31 Joe replaced two lightbulbs, one of which is rated 60 watts with an expo-
nentially distributed lifetime whose mean is 200 hours, and the other is
rated 100 watts with an exponentially distributed lifetime whose mean is
100 hours.

a. What is the probability that the 60-watt bulb fails before the 100-watt
bulb?

b. What is the mean time until the first of the two bulbs fails?

c. Given that the 60-watt bulb has not failed after 300 hours, what is the
probability that it will last at least another 100 hours?

10.32 A 5-motor machine can operate properly if at least 3 of the 5 motors are
functioning. If the lifetime X of each motor has the PDF fX(x) = λe−λx,
x ≥ 0, λ > 0, and if the lifetimes of the motors are independent, what is the
mean of the random variable Y , the time until the machine fails?

10.33 Alice has two identical personal computers, which she never uses at the
same time. She uses one PC at a time and the other is a backup. If the
one she is currently using fails, she turns it off, calls the PC repairman and
turns on the backup PC. The time until either PC fails when it is in use
is exponentially distributed with a mean of 50 hours. The time between
the moment a PC fails until the repairman comes and finishes repairing
it is also exponentially distributed with a mean of 3 hours. What is the
probability that Alice is idle because neither PC is operational?

10.34 Cars arrive from the northbound section of an intersection in a Poisson
manner at the rate of λN cars per minute and from the eastbound section
in a Poisson manner at the rate of λE cars per minute.

a. Given that there is currently no car at the intersection, what is the prob-
ability that a northbound car arrives before an eastbound car?

b. Given that there is currently no car at the intersection, what is the
probability that the fourth northbound car arrives before the second
eastbound car?

10.35 A one-way street has a fork in it, and cars arriving at the fork can either
bear right or left. A car arriving at the fork will bear right with probabil-
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ity 0.6 and will bear left with probability 0.4. Cars arrive at the fork in a
Poisson manner with a rate of 8 cars per minute.

a. What is the probability that at least four cars bear right at the fork in
three minutes?

b. Given that three cars bear right at the fork in three minutes, what is the
probability that two cars bear left at the fork in three minutes?

c. Given that 10 cars arrive at the fork in three minutes, what is the prob-
ability that four of the cars bear right at the fork?

Section 10.7: Discrete-Time Markov Chains

10.36 Determine the missing elements denoted by x in the following transition
probability matrix:

P =




x 1/3 1/3 1/3

1/10 x 1/5 2/5

x x x 1

3/5 2/5 x x




10.37 Draw the state-transition diagram for the Markov chain with the following
transition probability matrix.

P =




1/2 0 0 1/2

1/2 1/2 0 0

1/4 0 1/2 1/4

0 1/2 1/4 1/4




10.38 Consider a Markov chain with the following state-transition diagram.
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a. Give the transition probability matrix.

b. Identify the recurrent states.

c. Identify the transient states.

10.39 Consider the Markov chain with the following state-transition diagram.

a. List the transient states, the recurrent states, and the periodic states.

b. Identify the members of each chain of recurrent states.

c. Give the transition probability matrix of the process.

d. Given that the process starts in state 1, either determine the numerical
value of the probability that the process is in state 8 after an infinitely
large number of transitions or explain why this quantity does not exist.

10.40 Consider the following three-state Markov chain:
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a. Identify the transient states, the recurrent states, the periodic states,
and the members of each chain of recurrent states.

b. Either determine the limiting-state probabilities or explain why they
do not exist.

c. Given that the process is currently in state 1, determine P[A], the prob-
ability that it will be in state 3 at least once during the next two transi-
tions.

10.41 Consider the following Markov chain:

a. Which states are transient?

b. Which states are periodic?

c. Does state 3 have a limiting-state probability? If so, determine this
probability.

d. Assuming that the process begins in state 4, determine the z-transform
of the PMF of K, where K is the number of trials up to and including
the trial in which the process enters state 2 for the second time.

10.42 Find the limiting-state probabilities associated with the following transi-
tion probability matrix:

P =




0.4 0.3 0.3
0.3 0.4 0.3
0.3 0.3 0.4




10.43 Consider the following transition probability matrix:

P =




0.6 0.2 0.2
0.3 0.4 0.3
0.0 0.3 0.7




a. Give the state-transition diagram.

b. Given that the process is currently in state 1, what is the probability
that it will be in state 2 at the end of the third transition?
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c. Given that the process is currently in state 1, what is the probability
that the first time it enters state 3 is the fourth transition?

10.44 Consider the following social mobility problem. Studies indicate that peo-
ple in a society can be classified as belonging to the upper class (state 1),
middle class (state 2), and lower class (state 3). Membership in any class
is inherited in the following probabilistic manner. Given that a person is
raised in an upper-class family, he will have an upper-class family with
probability 0.45, a middle-class family with probability 0.48, and a lower-
class family with probability 0.07. Given that a person is raised in a
middle-class family, he will have an upper-class family with probability
0.05, a middle-class family with probability 0.70, and a lower-class family
with probability 0.25. Finally, given that a person is raised in a lower-class
family, he will have an upper-class family with probability 0.01, a middle-
class family with probability 0.50, and a lower-class family with probability
0.49. Determine the following:

a. The state-transition diagram of the process.

b. The transition probability matrix of the process.

c. The limiting-state probabilities. Interpret what they mean to the layper-
son.

10.45 A taxi driver conducts his business in three different towns 1, 2, and 3. On
any given day, when he is in town 1, the probability that the next passenger
he picks up is going to town 1 is 0.3, the probability that the next passenger
he picks up is going to town 2 is 0.2, and the probability that the next
passenger he picks up is going to town 3 is 0.5. When he is in town 2, the
probability that the next passenger he picks up is going to town 1 is 0.1, the
probability that the next passenger he picks up is going to town 2 is 0.8, and
the probability that the next passenger he picks up is going to town 3 is 0.1.
When he is in town 3, the probability that the next passenger he picks up
is going to town 1 is 0.4, the probability that the next passenger he picks
up is going to town 2 is 0.4, and the probability that the next passenger he
picks up is going to town 3 is 0.2.

a. Determine the state-transition diagram for the process.

b. Give the transition probability matrix for the process.

c. What are the limiting-state probabilities?

d. Given that the taxi driver is currently in town 2 and is waiting to pick
up his first customer for the day, what is the probability that the first
time he picks up a passenger to town 2 is when he picks up his third
passenger for the day?



390 Chapter 10 Some Models of Random Processes

e. Given that he is currently in town 2, what is the probability that his
third passenger from now will be going to town 1?

10.46 New England fall weather can be classified as sunny, cloudy, or rainy.
A student conducted a detailed study of the weather conditions and came
up with the following conclusion: Given that it is sunny on any given day,
then on the following day it will be sunny again with probability 0.5, cloudy
with probability 0.3, and rainy with probability 0.2. Given that it is cloudy
on any given day, then on the following day it will be sunny with proba-
bility 0.4, cloudy again with probability 0.3, and rainy with probability 0.3.
Finally, given that it is rainy on any given day, then on the following day
it will be sunny with probability 0.2, cloudy with probability 0.5, and rainy
again with probability 0.3.

a. Give the state-transition diagram of New England fall weather with
the state “sunny” as state 1, the state “cloudy” as state 2, and the state
“rainy” as state 3.

b. Using the same convention as in part (a), give the transition probability
matrix of New England fall weather.

c. Given that it is sunny today, what is the probability that it will be sunny
four days from now?

d. Determine the limiting-state probabilities of the weather.

10.47 A student went to a gambling casino with $3. He wins $1 at each round
with a probability p and loses $1 with a probability 1 − p. Being a very
cautious player, the student has decided to stop playing when he doubles
his original $3 (i.e., when he has a total of $6) or when he loses all his
money.

a. Give the state-transition diagram of the process.

b. What is the probability that he stops after being ruined (i.e., he lost all
his money)?

c. What is the probability that he stops after he has doubled his original
amount?

Section 10.8: Continuous-Time Markov Chains

10.48 A small company has two identical PCs that are running at the same time.
The time until either PC fails is exponentially distributed with a mean
of 1/λ. When a PC fails, a technician starts repairing it immediately. The
two PCs fail independently of each other. The time to repair a failed PC
is exponentially distributed with a mean of 1/µ. As soon as the repair is
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completed, the PC is brought back on-line and is assumed to be as good as
new.

a. Give the state-transition-rate diagram of the process.

b. What is the fraction of time that both machines are down?

10.49 Customers arrive at Mike’s barber shop according to a Poisson process
with rate λ customers per hour. Unfortunately Mike, the barber, has only
five chairs in his shop for customers to wait when there is already a cus-
tomer receiving a haircut. Customers who arrive when Mike is busy and
all the chairs are occupied leave without waiting for a haircut. Mike is the
only barber in the shop, and the time to complete a haircut is exponentially
distributed with a mean of 1/µ hours.

a. Give the state-transition-rate diagram of the process.

b. What is the probability that there are three customers waiting in the
shop?

c. What is the probability that an arriving customer leaves without receiv-
ing a haircut?

d. What is the probability that an arriving customer does not have to
wait?

10.50 A small company has two PCs A and B. The time to failure for PC A
is exponentially distributed with a mean of 1/λA hours, and the time to
failure for PC B is exponentially distributed with a mean of 1/λB hours.
The PCs also have different repair times. The time to repair PC A when
it fails is exponentially distributed with a mean of 1/µA hours, and the
time to repair PC B when it fails is exponentially distributed with a mean
of 1/µB hours. There is only one repair person available to work on both
machines when failure occurs, and each machine is considered as good as
new after it has been repaired.

a. Give the state-transition-rate diagram of the process.

b. What is the probability that both PCs are down?

c. What is the probability that PC A is the first to fail given that both PCs
have failed?

d. What is the probability that both PCs are up?

10.51 Lazy Lou has three identical lightbulbs in his living room that he keeps on
all the time. But because of his laziness Lou does not replace a lightbulb
when it fails. (Maybe Lou does not even notice that the bulb has failed!)
However, when all three bulbs have failed, Lou replaces them at the same
time. The lifetime of each bulb is exponentially distributed with a mean
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of 1/λ, and the time to replace all three bulbs is exponentially distributed
with a mean of 1/µ.

a. Give the state-transition-rate diagram of the process.

b. What is the probability that only one lightbulb is working?

c. What is the probability that all three lightbulbs are working?

10.52 A switchboard has two outgoing lines serving four customers who never
call each other. When a customer is not talking on the phone, he or she
generates calls according to a Poisson process with rate λ calls/minute.
Call lengths are exponentially distributed with a mean of 1/µ minutes. If
a customer finds the switchboard blocked (i.e., both lines are busy) when
attempting to make a call, he or she never tries to make that particular call
again; that is, the call is lost.

a. Give the state-transition-rate diagram of the process.

b. What is the fraction of time that the switchboard is blocked?

10.53 A service facility can hold up to six customers who arrive according to a
Poisson process with a rate of λ customers per hour. Customers who arrive
when the facility is full are lost and never make an attempt to return to the
facility. Whenever there are two or fewer customers in the facility, there
is only one attendant serving them. The time to service each customer is
exponentially distributed with a mean of 1/µ hours. Whenever there are
three or more customers, the attendant is joined by a colleague, and the
service time is still the same for each customer. When the number of cus-
tomers goes down to 2, the last attendant to complete service will stop
serving. Thus, whenever there are 2 or less customers in the facility, only
one attendant can serve.

a. Give the state-transition-rate diagram of the process.

b. What is the probability that both attendants are busy attending to cus-
tomers?

c. What is the probability that neither attendant is busy?

10.54 A taxicab company has a small fleet of three taxis that operate from the
company’s station. The time it takes a taxi to take a customer to his or
her location and return to the station is exponentially distributed with a
mean of 1/µ hours. Customers arrive according to a Poisson process with
an average rate of λ customers per hour. If a potential customer arrives
at the station and finds that no taxi is available, he or she goes to an-
other taxicab company. The taxis always return to the station after drop-
ping off a customer without picking up any new customers on their way
back.
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a. Give the state-transition-rate diagram of the process.

b. What is the probability that an arriving customer sees exactly one taxi
at the station?

c. What is the probability that an arriving customer goes to another taxi-
cab company?

10.55 Consider a collection of particles that act independently in giving rise
to succeeding generations of particles. Suppose that each particle, from
the time it appears, waits a length of time that is exponentially dis-
tributed with a mean of 1/λ and then either splits into two identical
particles with probability p or disappears with probability 1 − p. Let
X(t), 0 ≤ t < ∞, denote the number of particles that are present at
time t.

a. Find the birth and death rates of the process.

b. Give the state-transition-rate diagram of the process.
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11.1 Introduction

Statistics deals with gathering, classifying, and analyzing data. Statistics is differ-
ent from probability. Fully defined probability problems have unique and precise
solutions. Statistics is concerned with the relationship between abstract proba-
bilistic models and actual physical systems. One of the primary tools of the statis-
tician is knowledge of probability theory.

A statistician works by postulating a probabilistic model for the system under
investigation based on his or her knowledge of the physical mechanisms involved
in the system and on personal experience. The statistician expects the model to
exhibit a probabilistic behavior that is similar to that of the physical system.

There are two general branches of statistics: descriptive statistics and induc-

tive statistics (or statistical inference). Descriptive statistics deals with collecting,
grouping, and presenting data in a way that can be easily understood. It is con-
cerned with issues such as summarizing the available data by such variables as
the mean; median (or the middle data value when the data values are ordered in
size from the smallest value to the largest value); mode (or the value that occurs

395
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most frequently); and measures of the spread of the data, including range, vari-
ance, and standard deviation. It can also describe the data by a set of graphs, bar
charts, tables, and frequency distributions.

Statistical inference uses the data to draw conclusions (or inferences) about,
or estimate parameters of, the environment from which the data came. That is,
statistical inference is concerned with making generalizations based on a set of
data by going beyond information contained in the set.

There are different aspects of inductive statistics, which we will consider in the
remainder of this chapter. These include the following:

1. Sampling theory, which deals with problems associated with selecting samples
from some collection that is too large to be examined completely.

2. Estimation theory, which is concerned with making some prediction or esti-
mate based on the available data.

3. Hypothesis testing, which attempts to choose one model from several postu-
lated (or hypothesized) models of the physical system.

4. Curve fitting and regression, which attempts to find mathematical expressions
that best represent the collected data.

11.2 Sampling Theory

In statistics, the collection of data to be studied is called a population. A popula-
tion can be finite or infinite. For example, a study on the number of students in
the electrical engineering department of a college deals with a finite population.
On the other hand, a study that involves the entire world population deals with
what may be regarded as a countably infinite population.

For many statistical studies it is difficult and sometimes impossible to examine
the entire population. In such cases the studies will be conducted with a small
part of the population called a sample. Facts about the population can be inferred
from the results obtained from the sample. The process of obtaining samples is
called sampling.

The reliability of conclusions drawn about the population depends on whether
the sample is chosen to represent the population sufficiently well. One way to
ensure that the sample sufficiently represents the population well is to ensure
that each member of the population has the same chance of being in the sample.
Samples constructed in this manner are called random samples.

We will be concerned with obtaining a sample of size n that is described by
the values x1,x2, . . . ,xn of a random variable X . We assume that each value is
independent of the others. Thus, we can conceptualize these values as a sequence
X1,X2, . . . ,Xn of independent and identically distributed random variables, each
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of which has the same distribution as X . We will, therefore, define a random
sample of size n as a sequence of independent and identically distributed random
variables X1,X2, . . . ,Xn. Once a sample has been taken, we denote the values
obtained in the sample by x1,x2, . . . ,xn.

Any quantity obtained from a sample for the purpose of estimating a popu-

lation parameter is called a sample statistic (or simply statistic). An estimator θ̂

of a parameter θ of a random variable X is a random variable that depends on a
random sample X1,X2, . . . ,Xn. The two most common estimators are the sample
mean and the sample variance.

11.2.1 The Sample Mean

Let X1,X2, . . . ,Xn denote the random variables for a sample of size n. We define
the sample mean �X as the following random variable:

�X = X1 + X2 + · · · + Xn

n
= 1

n

n∑

i=1

Xi

As stated earlier, the Xi are random variables that are assumed to have the same
PDF fX(x) as the population random variable X . When a particular sample with
values x1,x2, . . . ,xn has been obtained, the sample mean is given by

x̄ = x1 + x2 + · · · + xn

n

Let µX denote the mean value of the population random variable X . Since the
sample mean is a random variable, it has a mean value, which is given by

E
[�X

]
= E

[
1

n

n∑

i=1

Xi

]
= 1

n

n∑

i=1

E
[
Xi

]
= 1

n

n∑

i=1

µX = µX

since the mean value of the sample mean is equal to the true mean value of the
population random variable. Therefore, we define the sample mean to be an un-

biased estimate of the population mean. The term “unbiased estimate” implies
that the mean value of the estimate of a parameter is the same as the true mean
of the parameter.

We can also compute the variance of the sample mean. If the population is
infinite or the population is finite but sampling is done with replacement, the
variance of the sample mean is given by

σ2
�X = E

[(�X − µX

)2] = E

[(
X1 + X2 + · · · + Xn

n
− µX

)2
]
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= 1

n2

n∑

i=1

E
[
X2

i

]
+ 1

n2

n∑

i=1
i 
=j

n∑

j=1

E
[
XiXj

]
− 2µX

n

n∑

i=1

E
[
Xi

]
+ µ2

X

Since the Xi are independent random variables, E[XiXj] = E[Xi]E[Xj] = µ2
X .

Therefore,

σ2
�X = 1

n2

n∑

i=1

E
[
X2

i

]
+ 1

n2

n∑

i=1
i 
=j

n∑

j=1

E
[
XiXj

]
− 2µX

n

n∑

i=1

E
[
Xi

]
+ µ2

X

= E[X2]
n

+
(

n(n − 1)

n2

)
µ2

X − µ2
X = E[X2]

n
−

µ2
X

n
=

E[X2] − µ2
X

n

=
σ2

X

n

where σ2
X is the true variance of the population. When the population size is N

and sampling is done without replacement, then if the sample size is n ≤ N, the
variance of the sample mean is given by

σ2
�X =

σ2
X

n

(
N − n

N − 1

)

Finally, since the sample mean is a random variable, we would like to find its
PDF. Because the sample mean is derived from the sum of random variables, the
central limit theorem says that it tends to be asymptotically normal regardless of
the distribution of the random variables in the sample. In general this assumption
of normal distribution is true when n ≥ 30. If we define the standard normal score
of the sample mean by

Z =
�X − µX

σX/
√

n

then when n ≥ 30,

F�X(x) = P
[�X ≤ x

]
= �

(
x − µX

σX/
√

n

)

Example 11.1 A random variable X is sampled 36 times obtaining a value �X
that is used as an estimate of E[X]. If the PDF of X is fX(x) = 2e−2x, where
x ≥ 0,

(a) Determine E[�X] and E[�X2].
(b) What is the probability that the sample mean lies between 1/4 and 3/4?
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Solution (a) Since X is an exponential random variable, the true mean and true
variance are given by E[X] = 1/2 and σ2

X = 1/4. Thus, E[�X] = E[X] = 1/2. Since

n = 36, the second moment of �X is given by

E
[�X2

]
=

σ2
X

n
+

(
E
[�X

])2 = 1/4

36
+

(
1

2

)2

= 37

144

(b) Since n = 36, the variance of the sample mean becomes σ2
�X = σ2

X/36 = 1/144.

The probability that the sample mean lies between 1/4 and 3/4 is given by

P

[
1

4
≤ �X ≤ 3

4

]
= F�X(3/4) − F�X(1/4) = �

(
3/4 − 1/2

1/12

)
− �

(
1/4 − 1/2

1/12

)

= �(3) − �(−3) = �(3) −
{
1 − �(3)

}
= 2�(3) − 1

= 2(0.9987) − 1 = 0.9974

where the values used in the last equality are taken from Table 1 of Appendix 1.
�

11.2.2 The Sample Variance

Since knowledge of the variance indicates the spread of values around the mean,
it is desirable to obtain an estimate of the variance. The sample variance is de-
noted by S2 and defined by

S2 = 1

n

n∑

i=1

(
Xi − �X

)2

Since Xi − �X =
(
Xi − E[X]

)
−

(�X − E[X]
)
, we have that

(
Xi − �X

)2 =
(
Xi − E[X]

)2 − 2
(
Xi − E[X]

)(�X − E[X]
)
+

(�X − E[X]
)2

n∑

i=1

(
Xi − �X

)2 =
n∑

i=1

(
Xi − E[X]

)2 − 2
(�X − E[X]

) n∑

i=1

(
Xi − E[X]

)

+
n∑

i=1

(�X − E[X]
)2

=
n∑

i=1

(
Xi − E[X]

)2 − 2n
(�X − E[X]

)2 + n
(�X − E[X]

)2

=
n∑

i=1

(
Xi − E[X]

)2 − n
(�X − E[X]

)2
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Thus, since the sample variance is also a random variable, its expected value is
given by

E
[
S2

]
= E

[
1

n

n∑

i=1

(
Xi − �X

)2

]
= 1

n
E

[
n∑

i=1

(
Xi − �X

)2

]

= 1

n
E

[
n∑

i=1

(
Xi − E[X]

)2 − n
(�X − E[X]

)2

]

= 1

n

[
n∑

i=1

E
(
Xi − E[X]

)2 − nE
[(�X − E[X]

)2]
]

= 1

n

[
nσ2

X − nσ2
�X
]
= 1

n

[
nσ2

X −
nσ2

X

n

]

= n − 1

n
σ2

X

where σ2
X is the variance of the population. Since the mean of the sample variance

is not equal to the population variance, the sample variance is a biased estimate

of the variance. To obtain an unbiased estimate, we define a new random variable
as follows:

Ŝ2 = n

n − 1
S2 = 1

n − 1

n∑

i=1

(
Xi − �X

)2

E
[

Ŝ2
]
= σ2

X

Thus, Ŝ2 is an unbiased estimate of the variance. The above results hold when
sampling is from an infinite population or done with replacement in a finite popu-
lation. If sampling is done without replacement from a finite population of size N,
then the mean of the sample variance is given by

E
[
S2

]
=

(
N

N − 1

)(
n − 1

n

)
σ2

X

11.2.3 Sampling Distributions

Assume that the population from which samples are taken has a mean E[X] and
variance σ2

X . Then, when the sample size is n, the central limit theorem allows us

to expect the sample mean �X to be a normally distributed random variable with
the standardized score given by

Z =
�X − E[X]
σX/

√
n
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As stated earlier in the chapter, this claim of normal distribution is valid when
n ≥ 30. When n < 30, we use the Student’s t distribution by defining the normal-
ized sample mean as

T =
�X − E[X]

Ŝ/
√

n
=

�X − E[X]
S/

√
(n − 1)

When the sample size is n, the Student’s t distribution is said to have n−1 degrees
of freedom. The PDF of the Student’s t distribution is given by

fT(t) =
Ŵ

(
ν + 1

2

)

√
νπŴ

(
ν

2

)
(

1 + t2

ν

)−(ν+1)/2

where Ŵ(x) is the gamma function of x and ν = n − 1 is the number of degrees
of freedom, which is the number of independent samples. Ŵ(x) has the following
properties:

Ŵ(k + 1) =
{

kŴ(k) any k

k! k integer

Ŵ(2) = Ŵ(1) = 1

Ŵ(1/2) =
√

π

Thus, for example, Ŵ(2.5) = 1.5 × Ŵ(1.5) = 1.5 × 0.5 × Ŵ(0.5) = 1.5 × 0.5 × √
π =

1.3293. The Student’s t distribution is symmetrical about its mean value of 0 and
is similar to the normal curve, as shown in Figure 11.1. The variance of the distri-
bution depends on ν; it is greater than 1 but approaches 1 as n → ∞.

Figure 11.1 Student’s t and Normal Distributions
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11.3 Estimation Theory

As discussed earlier, estimation theory is concerned with making some predic-
tion or estimate based on the available data. In general the goal is to estimate a
variable that is not directly observable but is observed only through some other
measurable variables. For example, we may be required to estimate the ampli-
tude, frequency, or phase of a known signal in noise.

An unbiased estimator of a population parameter is a statistic whose mean or
expected value is equal to the mean of the parameter. The corresponding value
of the statistic is then called an unbiased estimate.

Another concept associated with an estimator is efficiency. If the sampling
distributions of two statistics have the same mean, the statistic with the smaller
variance is said to be a more efficient estimator of the mean. The correspond-

ing value of the statistic is called an efficient estimator. Thus, if X̂1 and X̂2 are
unbiased estimators of X , then X̂1 is a more efficient estimator of X than X̂2 if
σ2

X̂1
< σ2

X̂2
. Generally, we would like the estimates to be unbiased and efficient.

But, in practice, biased or inefficient estimators are used due to the relative ease
with which they are obtained.

Suppose we use an estimator of the form

X̂ = 1

n

n∑

i=1

Xi

where Xi, i = 1,2, . . . ,n, are the observed data used to estimate X . Such an es-
timator is defined to be a consistent estimator of X if it converges in probability
to X ; that is,

lim
n→∞

P
(∣∣X̂ − X

∣∣ ≥ ε
)
= 0

Thus, as the sample size n increases, a consistent estimator gets closer to the true
parameter (that is, it is asymptotically unbiased). Note that as defined above, X̂ is
the sample mean. If the observed data (or the samples) come from a population
with finite mean and variance, we know that the variance of X̂ is σ2

X̂
= σ2

X/n,

which goes to zero as n goes to infinity. Recall from Chapter 3 that the Chebyshev
inequality states that for a random variable Y ,

P[|Y − E[Y]| ≥ a] ≤
σ2

Y

a2
a > 0

Thus, we conclude that the sample mean is a consistent estimator of the popu-
lation mean. In general, any unbiased estimator X̂ of X with the property that
limn→∞ σ2

X̂
= 0 is a consistent estimator of X due to the Chebyshev inequality.
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11.3.1 Point Estimate, Interval Estimate, and Confidence Interval

The sample mean is called a point estimate because it assigns a single value to the
estimate. Thus, a point estimate is a single value that best estimates the population
parameter. Another type of estimate is the interval estimate.

In interval estimation, the parameter being estimated lies between a certain
interval, called the confidence interval, with a certain probability. Thus, an interval
estimate consists of two numbers between which the population parameter can be
expected to lie with a certain level of confidence. The end-points of a confidence
interval are called the confidence limits.

A q-percent confidence interval is the interval within which the estimate will
lie with a probability of q/100. This means that a q-percent confidence interval
has a probability of q/100 of containing the population parameter. The parameter
q is also called the confidence level.

In the case of the sample mean, the q-percent confidence interval is defined as
follows when sampling is done with replacement or from an infinite population:

�X − kσX√
n

≤ E
[�X

]
≤ �X + kσX√

n

where k is a constant that depends on q and is called the confidence coefficient or
critical value. Note that k defines the number of standard deviations on either side
of the mean that the confidence interval is expected to cover. Thus, the confidence
limits are �X ± kσX/

√
n, and the error of the estimate is kσX/

√
n.

When sampling is done without replacement from a finite population of
size N, we obtain

�X − kσX√
n

√
N − n

N − 1
≤ E

[�X
]
≤ �X + kσX√

n

√
N − n

N − 1

Values of k that correspond to various confidence levels are shown in Table 11.1.

Figure 11.2 illustrates the confidence interval for the case of q = 95%. From
Table 11.1 we can see that this corresponds to k = 1.96.

Example 11.2 One sample of a normally distributed random variable with stan-
dard deviation is used to estimate the true mean E[X]. Determine the 95% con-
fidence interval for the sample mean.

Table 11.1 Values of k for Different Confidence Levels

Confidence Level 99.99% 99.9% 99% 95% 90% 80%

k 3.89 3.29 2.58 1.96 1.64 1.28
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Figure 11.2 Confidence Limits for the 95% Confidence Level

Solution Ninety five percent of the time the sample mean, E[�X], falls within the
interval given by �X − kσX/

√
n ≤ E[�X] ≤ �X + kσX/

√
n. From Table 11.1 we find

that when q = 95%, k = 1.96. Since n = 1, the confidence interval is �X −1.96σX ≤
E[�X] ≤ �X + 1.96σX . �

Example 11.3 If σX = 1, determine the number of observations required to en-
sure that at the 99% confidence level, �X − 0.1 ≤ E[X] ≤ �X + 0.1 where

�X = 1

n

n∑

i=1

Xi

Solution The variance of the sample mean is σ2
�X = σ2

X/n. From Table 11.1, the

value of k at the 99% confidence level is 2.58. Thus,

P

[
�X − 2.58

σX√
n

≤ E[X] ≤ �X + 2.58
σX√

n

]
= 0.99

and we are required to find the value of n such that 2.58σX/
√

n = 0.1. Since
σX = 1, we have that

2.58√
n

= 0.1

√
n = 2.58/0.1 = 25.8

n = 25.82 = 665.64

Since n must be an integer, we have that n = 666. �
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11.3.2 Maximum Likelihood Estimation

Consider the following problem. A box contains a number of red and blue balls.
Suppose that it is known that the ratio of the numbers is 3:1, but it is not known
whether the red or blue balls are more numerous. Thus, the probability of drawing
a red ball from the box is either 1/4 or 3/4. If we draw m balls from the box with
replacement, we know that the number K of red balls drawn has the following
binomial distribution:

pK(k) =
(

m

k

)
pk(1 − p)m−k k = 0,1,2, . . . ,m

where p is the probability of drawing a red ball and has the value p = 1/4 or
p = 3/4. The idea behind maximum likelihood estimation is to obtain the “best”
estimate of p. More formally, the maximum likelihood estimation of the parame-
ters θ1,θ2, . . . ,θn, which characterize a random variable X , chooses the value(s)
that make(s) the observed values x1,x2, . . . ,xn most probable.

Suppose X is a random variable whose distribution depends on a single pa-
rameter θ. Let x1,x2, . . . ,xn be an observed random sample. If X is discrete, the
probability that a random sample consists of exactly these values is given by

L(θ) = L(θ;x1,x2, . . . ,xn) = pX(x1;θ)pX(x2;θ) . . .pX(xn;θ)

L(θ) is called the likelihood function and is a function of θ; that is, its value de-
pends on both the selected sample values and the choice of θ. If X is continuous
with PDF fX(x), then the likelihood function is defined by

L(θ) = L(θ;x1,x2, . . . ,xn) = fX(x1;θ)fX(x2;θ) . . . fX(xn;θ)

The maximum likelihood estimate of θ is the value of θ that maximizes the value
of L(θ). If L(θ) is a differentiable function, then a necessary condition for L(θ)

to have a maximum value is that

∂

∂θ
L(θ) = 0

The partial derivative is used because L(θ) depends on both θ and the sample

values x1,x2, . . . ,xn. If θ̂ is the value of θ that maximizes L(θ), then θ̂ is called
the maximum likelihood estimator. Also, if the likelihood function contains k pa-
rameters such that

L(θ;x1,x2, . . . ,xn) = L(θ1,θ2, . . . ,θk;x1,x2, . . . ,xn) =
n∏

i=1

fX(xi;θ1,θ2, . . . ,θk)



406 Chapter 11 Introduction to Statistics

then the point where the likelihood function is a maximum is the solution to the
following k equations:

∂

∂θ1
L(θ1,θ2, . . . ,θk;x1,x2, . . . ,xn) = 0

∂

∂θ2
L(θ1,θ2, . . . ,θk;x1,x2, . . . ,xn) = 0

· · · = · · ·
∂

∂θk
L(θ1,θ2, . . . ,θk;x1,x2, . . . ,xn) = 0

In many cases it is more convenient to work with the logarithm of the likelihood
function.

Example 11.4 Suppose a random sample of size n is drawn from the Bernoulli
distribution. What is the maximum likelihood estimate of p, the success probabil-
ity?

Solution Let X denote the Bernoulli random variable with a probability of suc-
cess p. Then the PMF of X is

pX(x;p) = px(1 − p)1−x 0 ≤ p ≤ 1

where x = 0 or 1. The sample values x1,x2, . . . ,xn will be a sequence of 0’s and
1’s, and the likelihood function is

L(p;x1,x2, . . . ,xn) = L(p) =
n∏

i=1

pxi(1 − p)1−xi = p
∑

xi(1 − p)n−
∑

xi

If we define

y =
∑

xi

we obtain the following, where the logarithm is taken to base e,

log L(p) = y log p + (n − y) log(1 − p)

Then

∂

∂p
log L(p) = y

p
− n − y

1 − p
= 0

This gives

p̂ = y

n
= 1

n

∑
xi = x̄

�
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Example 11.5 Consider a box that contains a mix of red and blue balls whose
exact composition of red and blue balls is not known. If we draw n balls from
the box with replacement and obtain k red balls, what is the maximum likelihood
estimate of p, the probability of drawing a red ball?

Solution Let K denote the number of red balls among the n balls drawn from
the box. We know that K has the following binomial distribution:

pK(k) =
(

n

k

)
pk(1 − p)n−k k = 0,1,2, . . . ,n

where p is the probability of drawing a red ball. Thus, the likelihood function is
given by

L(p;k) =
(

n

k

)
pk(1 − p)n−k

Taking the logarithm to base e on both sides we obtain

log L(p;k) = log

(
n

k

)
+ k log p + (n − k) log(1 − p)

Then

∂

∂p
log L(p;k) = k

p
− n − k

1 − p
= 0

This gives p̂ = k/n. Thus, for example, if we perform the drawing n = 15 times
and obtain red balls k = 8 times, then p̂ = 8/15 = 0.533. �

Example 11.6 The campus police receive complaints about student distur-
bances on campus according to a Poisson process. The police chief wants to es-
timate the average arrival rate λ of these complaints from the random sample
x1,x2, . . . ,xn of arrivals per one-hour interval. What result will the chief obtain?

Solution The PMF of a Poisson random variable X with mean λ is

pX(x) = λx

x! e−λ x = 0,1,2, . . .

Thus, the maximum likelihood function for the random sample is given by

L(λ) = L(λ;x1,x2, . . . ,xn) =
(

λx1

x1!
e−λ

)(
λx2

x2!
e−λ

)
· · ·

(
λxn

xn! e−λ

)
= λye−nλ

x1!x2! . . .xn!
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where y = x1 + x2 + · · · + xn. Thus, taking logarithms to base e on both sides we
obtain:

log L(λ) = −nλ + y logλ − log(x1!x2! . . .xn!)
Then

∂

∂λ
log L(λ) = −n + y

λ
= 0

This gives

λ̂ = y

n
= x1 + x2 + · · · + xn

n

�

11.3.3 Minimum Mean Squared Error Estimation

Let X̂ be an estimator of the random variable X . The estimation error ε is defined
as the difference between the true value X and the estimated value X̂ ; that is,

ε = X − X̂

The error is a random variable that provides a measure of how well the estimator
performs. There are several ways to define the goodness of an estimator, and
they are all based on defining an appropriate cost function C(ε) of ε. The goal is
to choose the estimator in such a manner as to minimize the cost function. The
choice of the cost function is subjective. For example, we may define the cost
function as the squared error:

C1(ε) = ε2

Alternatively, we may define the cost function as the absolute error:

C2(ε) = |ε|

These two cost functions are illustrated in Figure 11.3, where it can be seen that
C1(ε) penalizes large errors severely and rewards errors that are less than 1, while
C2(ε) treats errors on a linear basis.

Mean squared error (MSE) estimation, which is used to obtain estimates of
random variables, defines the cost function as follows:

C(ε) = E
[
ε2
]

MSE has the advantage that it is mathematically tractable. Also, when used in
linear estimation, optimal estimates can be found in terms of the first-order and
second-order moments, where by optimality we mean that errors are minimized.
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Figure 11.3 Squared Error and Absolute Error Cost Functions

Example 11.7 Assume that the random variable Y is estimated from the ran-
dom variable X by the following linear function of X :

Ŷ = aX + b

Determine the values of a and b that minimize the mean squared error.

Solution The mean squared error is given by

ems = E
[(

Y − Ŷ
)2] = E

[
{Y − (aX + b)}2

]

The necessary conditions for a and b to minimize ems are as follows:

∂ems

∂a
= E[2(−X){Y − (aX + b)}] = 0

∂ems

∂b
= E[2(−1){Y − (aX + b)}] = 0

Simplifying these two equations, we obtain

E[XY] = aE
[
X2

]
+ bE[X]

E[Y] = aE[X] + b

From these we obtain the optimal values a∗ and b∗ of a and b, respectively, as
follows:

a∗ = E[XY] − E[X]E[Y]
σ2

X

= Cov(X,Y)

σ2
X

= σXY

σ2
X

= ρXYσXσY

σ2
X

= ρXYσY

σX

b∗ = E[Y] − σXYE[X]
σ2

X

= E[Y] − ρXYσYE[X]
σX
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where ρXY is the correlation coefficient of X and Y . Finally, the minimum mean
squared error becomes

emms = ems| a=a∗
b=b∗

= σ2
Y − (σXY)2

σ2
X

= σ2
Y − ρ2

XYσ2
Y = σ2

Y

(
1 − ρ2

XY

)

When the joint PDF of X and Y is given, the different first-order and second-
order moments are obtained from the specified PDF. �

Sometimes the mean squared error is further reduced by using nonlinear es-
timation. However, this reduction is achieved at the expense of requiring more
statistical properties of the random variables. Consider two random variables X

and Y that have the joint PDF fXY(x,y). Assume that it is desired to estimate Y

by some nonlinear function g(X). That is,

Ŷ = g(X)

Then the mean squared error is given by

ems = E
[(

Y − Ŷ
)2] = E

[
(Y − g(X))2

]

=
∫ ∞

−∞

∫ ∞

−∞
[y − g(x)]2fXY(x,y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
[y − g(x)]2fY|X(y|x)fX(x)dydx

=
∫ ∞

−∞

{∫ ∞

−∞
[y − g(x)]2fY|X(y|x)dy

}
fX(x)dx =

∫ ∞

−∞
M(x)fX(x)dx

M(x) is the term in parentheses. Since [y−g(x)]2 is nonnegative for all x and fX(x)

is also nonnegative, we can minimize ems by minimizing M(x). Thus, the optimal
g(X) in the sense of the minimum mean squared error is obtained by

d

dx
M(x) = d

dx

∫ ∞

−∞
[y − g(x)]2fY|X(y|x)dy

=
∫ ∞

−∞
2

(
−dg

dx

)
[y − g(x)]fY|X(y|x)dy = 0

Now, for a fixed x, dg/dx is a constant. Thus, the above equation simplifies to

∫ ∞

−∞
g(x)fY|X(y|x)dy =

∫ ∞

−∞
yfY|X(y|x)dy = E[Y|X = x]
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Since
∫ ∞
−∞ g(x)fY|X(y|x)dy = g(x)

∫ ∞
−∞ fY|X(y|x)dy = g(x), we have that minimiz-

ing ems implies that

g(x) = E[Y|X = x]
The minimum mean squared error becomes

emms =
∫ ∞

−∞

{∫ ∞

−∞
[y − E[Y|X = x]]2fY|X(y|x)dy

}
fX(x)dx

=
∫ ∞

−∞
σ2

Y|X=x fX(x)dx

Example 11.8 The joint PDF of the random variables X and Y is given by

fXY(x,y) = e−(x+y) x ≥ 0;y ≥ 0

Determine the best nonlinear estimate of Y in terms of X .

Solution The marginal PDF of X is given by

fX(x) =
∫ ∞

0
fXY(x,y)dy =

∫ ∞

0
e−(x+y)dy = e−x x ≥ 0

The conditional PDF of Y given X = x is given by

fY|X(y|x) = fXY(x,y)

fX(x)
= e−(x+y)

e−x
= e−y y ≥ 0

The g(X) that minimizes the mean squared error is given by

g(X) = E[Y|X = x] =
∫ ∞

0
yfY|X(y|x)dy =

∫ ∞

0
ye−ydy = 1

�

11.4 Hypothesis Testing

Hypothesis testing is an aspect of statistical inference, which we defined earlier as
the process of drawing conclusions about a population based on a random sample.
It is a procedure for determining whether to accept or reject a certain statement
(called statistical hypothesis) about the random variable determining the popu-
lation, based on information obtained from a random sample of the population.
Thus, a statistical hypothesis is an assumption made about a population and is
generally stated as a proposition concerning the distribution of a random vari-
able from that population. It is used to make statistical decisions. The hypothesis
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may be a statement about the values of one or more of the parameters of a given
distribution, or it may be a statement about the form of the distribution. Exam-
ples of statistical hypotheses include the following:

1. The average waiting time in the checkout area of the cafeteria does not exceed
2 minutes.

2. The arrival pattern of customers at a bank is Poisson.

3. The time between bus arrivals at a students’ bus station is exponentially dis-
tributed.

11.4.1 Hypothesis Test Procedure

A statistical hypothesis test is a formal step-by-step procedure. It starts by defin-
ing the so-called null hypothesis, which, as the name suggests, is a statement that
there is no statistical difference between two procedures. For example, if we want
to decide whether a given coin has been altered to give unequal probabilities
of heads and tails, we may formulate the hypothesis that the coin is fair, which
means the probability of heads on a toss of the coin is p = 0.5. Similarly, if we
want to decide whether a given drug is more effective than a placebo, we can
make the statement that there is no difference between the drug and the placebo.
The null hypothesis is denoted by H0. Any hypothesis that differs from a given
null hypothesis is called an alternative hypothesis, which is denoted by H1. There
are different ways to formulate the alternative hypothesis. In the coin example
mentioned above, the different forms of H1 include p 
= 0.5, p > 0.5, or p < 0.5.

The test procedure can be summarized as follows:

1. Decide on a null hypothesis H0 and an alternative hypothesis H1.

2. Select a test statistic, such as the sample mean or the sample variance.

3. Choose a rejection region (sometimes called the critical region) for the values
of the test statistic.

4. Calculate the test statistic of a random sample from the population. Reject
H0 and accept H1, if the value of the test statistic falls in the rejection region;
otherwise, accept H0 and reject H1.

The critical region is determined by a parameter α, which is called the level of sig-

nificance of the test. The value of α is usually chosen to be 0.01 or 0.05 (or some-
times expressed as 1% or 5%), though any value between 0 and 1 can be selected.
The level of significance is usually the confidence level subtracted from 100%.
Thus, the rejection region is the region that lies outside the confidence interval;
the confidence interval is the acceptance region. Note that choosing a high confi-
dence level, and hence a small level of significance, makes it more likely that any
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Figure 11.4 Relation of Confidence Limits and Level of Significance

given sample will result in accepting the null hypothesis, since a high confidence
level will result in a wider confidence interval (or greater acceptance region).

Figure 11.4 illustrates the rejection region and the confidence limits when the
confidence level is q = 95%. The boundary between the confidence region and
the rejection region is denoted by the symbol zc and is called the critical value.
In Figure 11.4, z1 = E[�X] − 19.6σX/

√
n is the lower confidence limit, and z2 =

E[�X] + 1.96σX/
√

n is the upper confidence limit.

11.4.2 Type I and Type II Errors

There are two types of errors that can be committed when we carry out a hypoth-
esis test. These are called Type I error and Type II error. A Type I error is com-
mitted if we reject a hypothesis when it should be accepted. Similarly, a Type II
error is committed if we accept a hypothesis when it should be rejected. Both
types of errors lead to a wrong decision. Which type of error is more serious than
the other depends on the situation. The goal of any hypothesis test must be to
minimize both types of errors. One obvious way to reduce both types of errors is
to increase the sample size, which may not always be possible. Note that the level
of significance, α, represents the maximum probability with which we would be
willing to commit a Type I error. These two types of error are summarized in
Table 11.2.

11.4.3 One-Tailed and Two-Tailed Tests

Hypothesis tests are classified as either one-tailed (also called one-sided) tests or
two-tailed (also called two-sided) tests. One-tailed tests are concerned with one
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Table 11.2 Summary of the Types of Errors

Status of H0 Accept H0 Reject H0

H0 True Correct Acceptance False Rejection (Type I Error)
H0 False False Acceptance (Type II Error) Correct Rejection

Table 11.3 Critical Points for Different Levels of Significance

Level of Significance (α) 0.10 0.05 0.01 0.005 0.002

zc for 1-Tailed Tests −1.28 or −1.645 or −2.33 or −2.58 or −2.88 or
1.28 1.645 2.33 2.58 2.88

zc for 2-Tailed Tests −1.645 and −1.96 and −2.58 and −2.81 and −3.08 and
1.645 1.96 2.58 2.81 3.08

side of a statistic, such as “the mean is greater than 10” or “the mean is less
than 10.” Thus, one-tailed tests deal with only one tail of the distribution, and the
z-score is on only one side of the statistic.

Two-tailed tests deal with both tails of the distribution, and the z-score is on
both sides of the statistic. For example, Figure 11.4 illustrates a two-tailed test.
A hypothesis like “the mean is not equal to 10” involves a two-tailed test. Ta-
ble 11.3 shows the critical values, zc, for both the one-tailed test and the two-tailed
test in tests involving the normal distribution.

In a one-tailed test, the area under the rejection region is equal to the level
of significance, α. Also, the rejection region can be below (i.e., to the left of) the
acceptance region or beyond (i.e., to the right of) the acceptance region depend-
ing on how H1 is formulated. When the rejection region is below the acceptance
region, we say that it is a left-tail test. Similarly, when the rejection region is above
the acceptance region, we say that it is a right-tail test. In the two-tailed test, there
are two critical regions, and the area under each region is α/2. As stated earlier,
the two-tailed test is illustrated in Figure 11.4. Figure 11.5 illustrates the rejec-
tion region that is beyond the acceptance region for the one-tailed test, or more
specifically the right-tail test.

Note that in a one-tailed test, when H1 involves values that are greater than
E[X], we have a right-tail test. Similarly, when H1 involves values that are less
than E[X], we have a left-tail test. For example, an alternative hypothesis of the
type H1 : E[X] > 100 is a right-tail test, while an alternative hypothesis of the
type H1 : E[X] < 100 is a left-tail test.

Example 11.9 The mean lifetime of a sample of 100 lightbulbs produced by
Lighting Systems Corporation is computed to be 1570 hours with a standard devi-
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Figure 11.5 Critical Region for One-Tailed Tests

ation of 120 hours. If the president of the company claims that the mean lifetime
E[X] of all the lightbulbs produced by the company is 1600 hours, test the hypoth-
esis that E[X] is not equal to 1600 hours using a level of significance of (a) 0.05
and (b) 0.01.

Solution The null hypothesis is

H0 : E[X] = 1600 hours

Similarly, the alternative hypothesis is

H1 : E[X] 
= 1600 hours

Since E[X] 
= 1600 includes numbers that are both greater than and less than
1600, this is a two-tailed test. From the available data, the normalized value of
the sample mean is

z =
�X − E[�X]
σX/

√
n

= 1570 − 1600

120/
√

100
= −30

12
= −2.50

(a) At a level of significance of 0.05, zc = ±1.96 for a two-tailed test. Thus, our
acceptance region is [−1.96,19.6] of the standard normal distribution. The
rejection and acceptance regions are illustrated in Figure 11.6.

Since z = −2.50 lies outside the range [−1.96,1.96] (that is, it is in the
rejection region), we reject H0 at the 0.05 level of significance, which means
that the difference in mean lifetimes is statistically significant.
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Figure 11.6 Critical Region for Problem 11.9(a)

Figure 11.7 Critical Region for Problem 11.9(b)

(b) At the 0.01 level of significance, zc = ±2.58. The acceptance and rejection
regions are shown in Figure 11.7. Since z = −2.50 lies within the range
[−2.58,2.58], which is the acceptance region, we accept H0 at the 0.01 level
of significance, which means that the difference in mean lifetimes is not sta-
tistically significant.

�

Example 11.10 For Example 11.9, test the hypothesis that E[X] is less than
1600 hours using a level of significance of (a) 0.05 and (b) 0.01.

Solution Here we define the null hypothesis and alternative hypothesis as fol-
lows:
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Figure 11.8 Critical Region for Problem 11.10(a)

H0 : E[X] = 1600 hours

H1 : E[X] < 1600 hours

This is a one-tailed test; or more precisely, a left-tail test. Since the z-score is the
same as in Example 11.9, we only need to find the confidence limits for the two
cases.

(a) Since H1 is concerned with values that are less than E[X], we have a left-
tail test, which means that we choose the rejection region that is below the
acceptance region. Therefore, we choose zc = −1.645 for the 0.05 level of
significance in Table 11.3. Since z = −2.50 lies in the rejection region (i.e.,
−2.50 < −1.645), as illustrated in Figure 11.8, we reject H0 at the 0.05 level
of significance and thus accept H1. This implies that the difference in mean
lifetimes is statistically significant.

(b) From Table 11.3, zc = −2.33 at the 0.01 level of significance, which is greater
than z = −2.50. Thus, we reject H0 at the 0.01 level of significance and ac-
cept H1.

�

Note that we had earlier accepted H0 under the two-tailed test scheme at the
same level of significance in Example 11.9. This means that decisions made under
the one-tailed test do not necessarily agree with those made under the two-tailed
test.

Example 11.11 A manufacturer of a migraine headache drug claimed that the
drug is 90% effective in relieving migraines for a period of 24 hours. In a sample
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of 200 people who have migraine headaches, the drug provided relief for 160
people for a period of 24 hours. Determine whether the manufacture’s claim is
legitimate at a level of significance of 0.05.

Solution Since the claimed success probability of the drug is p = 0.9, the null
hypothesis is

H0 : p = 0.9

Also, since the drug is either effective or not, testing the drug on any individual
is essentially a Bernoulli trial with claimed success probability of 0.9. Thus, the
variance of the trial is

σ2
p = p(1 − p) = 0.09

Since the drug provided relief for only 160 of the 200 people tested, the observed
success probability is

p̄ = 160

200
= 0.8

Because we are interested in determining whether the proportion of people that
the drug was effective in relieving their migranes is too low, we choose the alter-
native hypothesis as follows:

H1 : p < 0.9

Thus, we have a left-tail test. Now, the standard normal score of the observed
proportion is given by

z = p̄ − p

�σp
= p̄ − p

σp√
n

= 0.8 − 0.9√
0.09

200

= − 0.1

0.0212
= −4.72

For a left-tail test at the 0.05 level of significance, the critical value is zc = −2.33.
Since z = −4.72 falls within the rejection region, we reject H0 and accept H1; that
is, the company’s claim is false. �

11.5 Curve Fitting and Linear Regression

Sometimes we are required to use statistical data to reveal a mathematical rela-
tionship between two or more variables. Such information can be obtained from
a scatter diagram, which is a graph of sample values that are plotted on the xy-
plane. From the graph we can see whether the values fall into a linear or nonlinear
pattern. An example of a scatter diagram is illustrated in Figure 11.9, which shows
how a time function X(t) varies with time. In this case, we see that the data points
seem to fall into a straight line.
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Figure 11.9 Example of Scatter Diagram

Figure 11.10 Difference Between Sample Values and Predicted Values

The general problem of finding a mathematical model to represent a given set
of data is called curve fitting. The resulting model or curve is called a regression

curve (or regression line), and the mathematical equation so developed is called a
regression equation. The equation can be a linear or nonlinear one. However, in
this book we consider only linear regression equations.

Since many regression lines can potentially be drawn through a scatter dia-
gram, there is a need to find the “best” line. The problem is how to establish an
acceptable criterion for defining “best.” The general definition of the best regres-
sion equation is the so-called “least-squares” line. This is a regression line that
has the property that the sum of the squares of the differences between the value
predicted by the regression equation at any value of x and the corresponding
observed value of y at that value of x is a minimum. Thus, consider the scatter
diagram in Figure 11.10. Assume that the regression line is a straight line given
by the equation

y = a + bx

Let the points (x1,y1), (x2,y2), . . . , (xn,yn) represent the points on the scatter di-
agram. Then for any given xk the predicted value of y on the regression line is
a + bxk. The difference between yk on the scatter diagram and the value a + bxk
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predicted by the line is defined by dk = yk −(a+bxk). The least-squares condition
then states that the best line is the line for which d2

1 + d2
2 + · · · + d2

n is a minimum.

The condition that d2
1 + d2

2 + · · · + d2
n is a minimum implies that the sum

D =
n∑

i=1

[
yi − (a + bxi)

]2

is a minimum. To find the parameters a and b that give D its minimum value, we
proceed as follows:

∂D

∂a
= ∂

∂a

n∑

i=1

[
yi −(a+bxi)

]2 =
n∑

i=1

∂

∂a

[
yi −(a+bxi)

]2 =
n∑

i=1

−2
[
yi −(a+bxi)

]
= 0

This means that
n∑

i=1

yi = an + b

n∑

i=1

xi

Similarly,

∂D

∂b
= ∂

∂b

n∑

i=1

[
yi − (a + bxi)

]2 =
n∑

i=1

∂

∂b

[
yi − (a + bxi)

]2

=
n∑

i=1

−2xi

[
yi − (a + bxi)

]
= 0

This implies that

n∑

i=1

xiyi = a

n∑

i=1

xi + b

n∑

i=1

x2
i

From these two equations we obtain the following conditions for D to be a mini-
mum:

b =
n

n∑

i=1

xiyi −
n∑

i=1

xi

n∑

i=1

yi

n

n∑

i=1

x2
i −

( n∑

i=1

xi

)2

a =

∑n
i=1 yi

n∑

i=1

x2
i −

n∑

i=1

xi

n∑

i=1

xiyi

n

n∑

i=1

x2
i −

( n∑

i=1

xi

)2
=

n∑

i=1

yi − b

n∑

i=1

xi

n
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Example 11.12 (a) Fit a linear least-squares line to the data shown in Table 11.4.
(b) Estimate the value of y when x = 15.

Solution (a) We are looking for a least-squares line y = a + bx such that a and b

satisfy the following conditions:

b =
n

n∑

i=1

xiyi −
n∑

i=1

xi

n∑

i=1

yi

n

n∑

i=1

x2
i −

( n∑

i=1

xi

)2

a =

n∑

i=1

yi − b

n∑

i=1

xi

n

Thus, we construct Table 11.5. From the table we obtain the following results:

b =
6
∑

i

xiyi −
∑

i

xi

∑

i

yi

6
∑

i

x2
i −

(∑

i

xi

)2
= 6(226) − (42)(28)

6(336) − (42)2
= 1356 − 1176

2016 − 1764
= 180

252
= 0.7143

Table 11.4 Values for Example 11.12

x 3 5 6 8 9 11
y 2 3 4 6 5 8

Table 11.5 Solution to Example 11.12

x y x2 xy y2

3 2 9 6 4
5 3 25 15 9
6 4 36 24 16
8 6 64 48 36
9 5 81 45 25

11 8 121 88 64∑

i

xi = 42
∑

i

yi = 28
∑

i

x2
i = 336

∑

i

xiyi = 226
∑

i

y2
i = 154
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a =

∑

i

yi − b
∑

i

xi

6
= 28 − 0.7143(42)

6
= 28 − 30.00

6
= −2

6
= −0.3333

Thus, the linear least-squares regression line is y = −0.3333 + 0.7143x.
(b) When x = 15, we obtain y = −0.3333 + 0.7143x = −0.3333 + 0.7143(15) =
10.3812. �

11.6 Chapter Summary

This chapter covered basic statistical methods. As stated earlier, statistics is con-
cerned with the relationship between abstract probabilistic models and actual
physical systems. The two general branches of statistics are descriptive statistics
and inductive statistics (or statistical inference). Descriptive statistics deals with
collecting, grouping, and presenting data in a way that can be easily understood.
This task includes summarizing the available data by such variables as the mean,
median, mode, and measures of the spread of the data (including range, variance,
and standard deviation). It also includes describing the data by a set of graphs,
bar charts, tables, and frequency distributions.

Statistical inference uses the data to draw conclusions (or inferences) about,
or estimate parameters of, the environment from which the data came. Four dif-
ferent aspects of statistical inference are discussed:

1. Sampling theory, which deals with problems associated with selecting samples
from some collection that is too large to be examined completely.

2. Estimation theory, which is concerned with making some prediction or esti-
mate based on the available data.

3. Hypothesis testing, which attempts to choose one model from several postu-
lated (or hypothesized) models of the physical system.

4. Curve fitting and regression, which attempts to find mathematical expressions
that best represent the collected data.

11.7 Problems

Section 11.2: Sampling Theory

11.1 A sample size of 5 results in the sample values 9, 7, 1, 4, and 6.

a. What is the sample mean?

b. What is the sample variance?

c. What is the unbiased estimate of the sample variance?
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11.2 The true mean of a quiz conducted in a class of 50 students is 70 points, and
the true standard deviation is 12 points. Estimate the mean by sampling a
subset of the scores, without replacement.

a. What is the standard deviation of the sample mean if only 10 scores are
used?

b. How large should the sample size be for the standard deviation of the
sample mean to be 1% of the true mean?

11.3 A random sample of size 81 is taken from a population that has a mean of
24 and variance 324. Use the central limit theorem to determine the proba-
bility that the sample mean lies between 23.9 and 24.2.

11.4 A random number generator produces three-digit random numbers that
are uniformly distributed between 0.000 and 0.999.

a. If the generator produces the sequence of numbers 0.276, 0.123, 0.072,
0.324, 0.815, 0.312, 0.432, 0.283, and 0.717, what is the sample mean?

b. What is the variance of the sample mean of numbers produced by the
random number generator?

c. How large should the sample size be in order to obtain a sample mean
whose standard deviation is no greater than 0.01?

11.5 Calculate the value of the Student’s t PDF for t = 2 with (a) 6 degrees of
freedom and (b) 12 degrees of freedom.

Section 11.3: Estimation Theory

11.6 A large number of light bulbs was turned on continuously to determine
the average number of days a bulb can last. The study revealed that the
average lifetime of a bulb is 120 days with a standard deviation of 10 days.
If the lifetimes are assumed to be independent normal random variables,
find the confidence limits for a confidence level of 90% on the sample
mean that is computed from a sample size of (a) 100 and (b) 25.

11.7 A random sample of 50 of the 200 electrical engineering students’ grades
in applied probability showed a mean of 75% and a standard deviation of
10%.

a. What are the 95% confidence limits for the estimate of the mean of the
200 grades?

b. What are the 99% confidence limits for the estimate of the mean of the
200 grades?

c. With what confidence can we say that the mean of all the 200 grades is
75 ± 1?
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11.8 The mean of the grades of 36 freshmen is used to estimate the true average
grade for the freshman class. If µ is the true mean, what is the probability
that the estimate differs from the true mean by 3.6 marks if the standard
deviation is known to be 24? (Note: The problem is asking for the proba-
bility that the true mean lies between µ − 3.6 and µ + 3.6.)

11.9 What is the increase in sample size that is required to increase the confi-
dence level of a given confidence interval for a normal random variable
from 90% to 99.9%?

11.10 A box contains red and white balls in an unknown proportion. A random
sample of 60 balls selected with replacement from the box showed that
70% were red. Find the 95% confidence limits for the actual proportion of
red balls in the box.

11.11 A box contains a mix of red and blue balls whose exact composition of red
and blue balls is not known. If we draw 20 balls from the box with replace-
ment and obtain 12 red balls, what is the maximum-likelihood estimate of
p, the probability of drawing a red ball?

11.12 A box contains red and green balls whose exact composition is not known.
An experimenter draws balls one by one with replacement until a green
ball appears. Let X denote the number of balls drawn until a green
ball appears. This operation is repeated n times to obtain the sample
X1,X2, . . . ,Xn. Let p be the fraction of green balls in the box. What is
the maximum-likelihood estimate of p on the basis of this sample?

11.13 The joint PDF of two random variables X and Y is given by

fXY(x,y) =
{

2 0 ≤ y ≤ x; 0 ≤ x ≤ 1

0 otherwise

a. Find the best linear estimate of Y in terms of X , where by best linear
estimate we mean the linear estimate that gives the minimum mean
squared error.

b. Determine the minimum mean squared error corresponding to the lin-
ear estimate.

c. Find the best nonlinear estimate of Y in terms of X

11.14 The joint PDF of two random variables X and Y is given by

fXY(x,y) =
{

2

3
(x + 2y) 0 < x < 1; 0 < y < 1

0 otherwise
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a. Use the minimum mean squared error criterion to find the best linear

estimate of Y in terms of X .

b. Determine the minimum mean squared error corresponding to the lin-

ear estimate.

c. Find the best nonlinear estimate of Y in terms of X

Section 11.4: Hypothesis Testing

11.15 A college provost claimed that 60% of the freshmen at his school receive

their degrees within four years. A curious analyst followed the progress of

a particular freshman class with 36 students and found that only 15 of the

students received their degrees at the end of their fourth year. Determine

whether this particular class performed worse than previous classes at a

level of significance of (a) 0.05 and (b) 0.01.

11.16 An equipment manufacturing company claimed that at least 95% of the

equipment it supplied to a factory conformed to specifications. An exam-

ination of a sample of 200 pieces of equipment revealed that 18 of them

did not meet the specifications. Determine whether the company’s claim is

legitimate at a level of significance of (a) 0.01 and (b) 0.05.

11.17 A company wants to know with a 95% level of confidence if it can claim

that the boxes of detergent that it sells contain more than 500 grams of de-

tergent each. From past experience the company knows that the amount of

detergent in the boxes is normally distributed with a standard deviation of

75 grams. A worker takes a random sample of 100 boxes and finds that the

average amount of detergent in a box is 510 grams. Should the company

make the claim?

11.18 A government agency received many consumers’ complaints that boxes

of cereal sold by a company contain less than the advertised weight of

20 oz of cereal with a standard deviation of 5 oz. To check the consumers’

complaints, the agency bought 36 boxes of the cereal and found that the

average weight of cereal was 18 oz. If the amount of cereal in the boxes

is normally distributed, test the consumers’ complaint at the 95% level of

confidence.

Section 11.5: Curve Fitting and Linear Regression

11.19 Data were collected for a random variable Y as a function of an-

other random variable X . The recorded (x,y) pairs are as follows:

(3,2), (5,3), (6,4), (8,6), (9,5), and (11,8).
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a. Plot the scatter diagram for these data.

b. Find the linear regression line of y on x that best fits these data.

c. Estimate the value of y when x = 15.

11.20 Data were collected for a random variable Y as a function of an-
other random variable X . The recorded (x,y) pairs are as follows:
(1,11), (3,12), (4,14), (6,15), (8,17), (9,18), and (11,19).

a. Plot the scatter diagram for these data.

b. Find the linear regression line of y on x that best fits these data.

c. Estimate the value of y when x = 20.

11.21 The ages x and systolic blood pressures y of 12 people are shown in the
following table:

Age (x) 56 42 72 36 63 47 55 49 38 42 68 60

Blood
Pressure (y) 147 125 160 118 149 128 150 145 115 140 152 155

a. Find the linear least-squares regression line of y on x.

b. Estimate the blood pressure of a person whose age is 45 years.

11.22 The following table shows a random sample of 12 couples who stated the
number x of children they planned to have at the time of their marriage
and the number y of actual children they have.

Couple 1 2 3 4 5 6 7 8 9 10 11 12
Planned Number
of Children (x) 3 3 0 2 2 3 0 3 2 1 3 2
Actual Number of
Children (y) 4 3 0 4 4 3 0 4 3 1 3 1

a. Find the linear least-squares regression line of y on x.

b. Estimate the number of children that a couple who had planned to
have 5 children actually had.



Appendix 1: Table for the CDF
of the Standard Normal
Random Variable

Table 1 Area �(x) Under the Standard Normal Curve to the Left of x

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

427
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Table 1 (Continued.)

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000
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