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3.1 Introduction

• Feature extraction: reduce dimensionality by (linear or non-
linear) projection of D-dimensional vector onto d-dimensional
vector (d < D)

• Feature selection: reduce dimensionality by selecting subset
of original variables

• Motivation:

– reduce building/training complexity
& generalization capability ↑ (cf., curse of dimensionality)

– faster training & testing

– better models: more optimal bias/variance trade-off
too large # inputs ⇒ > # parameters ⇒ > variance
too small # inputs ⇒ > bias

– understanding complex models is more difficult
(cf., Occam’s razor)

– ranking informative variables ⇒ useful for interpretation

• Types of extraction & selection methods:

1. Unsupervised methods (component analysis)

2. Supervised methods (classification, regression)



Laboratorium voor Neuro- en Psychofysiologie

Katholieke Universiteit Leuven 3/20

3.2 Feature Extraction

• Unsupervised:

Can be linear or non-linear:

– Principal Component Analysis (PCA)
select PCs with largest eigenvalues as “features”

– Independent Component Analysis (ICA)
select ICs with largest kurtosis or largest negentropy

– Multidimensional Scaling (MDS)
select dimensions ; acceptable distortion of projected data

– Topographic Maps (SOMs)
dimensions of lattice space

• Supervised: (also called Feature Construction)

– incorporate knowledge about classes

∗ information used is class. performance = wrapper

(see further)

∗ information used is an alternative measure of discrim-
inability between classes = called filter

e.g., Linear Discriminant Analysis (LDA), Maximum Mu-
tual Information between features and classes (Torkkola
& Campbell, 2000)

Mutual Information I(c,y)

g(w,x)
high-dim data

x

class labels
c

low-dim "features"

y

– also possible for regression by discretizing target variable
into artificial classes (class-blind discretization)
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3.3 Feature Selection

→ also for selecting inputs (IVS; Input Variable Selection)

• Unsupervised:

1. By ranking input variables:

– Retain inputs with largest variance
logic: non-varying inputs cannot lead to changing out-
puts

– Determine 1st PC and retain inputs with largest coeffi-
cients
logic: largest coefficients code for largest data range
along these dimensions ⇒ most likely lead to changing
outputs

– . . .

2. domain knowledge about which variables likely contribute
e.g., for a mortgage: income & debt are important, not
length of applicant

• Supervised: (using outputs, e.g., class labels)

1. by ranking variables

2. by subset selection
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3.3 Feature Selection – Cont’d

Supervised Feature Selection:

1. By ranking variables:

• Correlation criteria (Pearson correlation coefficient):

R =
cov(input variable i, output variable)

√

var(input variable i)var(output variable)

(assuming scalar output y)
and use this for ranking all components i of input variable

also usable for classification, e.g., 2-class: y ∈ {−1,1}
→ is related to Fisher’s criterion and t-test

• Single variable classifiers:

ranking according to predictive power of variables (classi-
fiers) or goodness of fit (regression)
predictive power of individual variable:

– trade-off between false positive rate (fpr) and false nega-
tive rate (fnr) by varying threshold θ|(fpr = fnr) (break-
even point)

– ROC curve (“hit” rate (1-fpr) vs. false alarm fnr) (cri-
terion= max. area under curve)

• Information-theoretic criteria:

MI(xj, C) =
∑

C

∫

xj

p(xj, C) log2

p(xj, C)

p(xj)P(C)
dxj

with C class label (Torkkola, 2003) (regression: C → y)
difficulty = estimating densities!
discrete case = easier: integrals → sums

→֒ perform ranking based in MI
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3.3 Feature Selection – Cont’d

Supervised Feature Selection – Cont’d:

1. By ranking variables

2. By subset selection (also called Feature Construction):

It can easily be shown that ranking variables according to their
individual predictive power is less useful than selecting subsets
of features according to their joint predictive power

The latter can be tackled with filters and wrappers:

• Selection independent from chosen predictor (regres-
sor/classifier) = filter:

– relevance filter (see next)

– redundancy filter (see next)

• Use classification (or regression) performance = wrapper

One needs to choose:

(a) classification (or regression) model
e.g., Bayesian classifier, MLP, SVM,. . .

(b) search procedure, e.g., exhaustive search, branch &
bound, genetic algorithms (see further)
e.g., exhaustive search:

– choose inputs to use

– optimize model parameters

– quantify model performance

– change set of inputs

– repeat procedure,. . .

– select inputs that yield best performance
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3.3 Feature Selection – Cont’d

3.3.1 Max-Dependency, Max-Relevance, Min-Redundancy

• Optimal classification means minimal classification error

• In an unsupervised situation (i.e., not using classifiers), minimal
error usually requires maximal statistical dependency of the tar-
get class on the distribution of space spanned by feature subset
= maximal dependency

• in Mutual Information terms, maximal dependency:

maxMI(F1, . . . , Fk, C)

with F1, . . . , Fk features

• When k = 1 then feature that maximizes MI(F1, C)

• When k 6= 1: assume that we already have k − 1 features,
kth feature is one that leads to largest increase in MI:

MI(F1, . . . , Fk, C) =
∑

C

∫

f1,...,fk

p(f1, . . . , fk, C) log
p(f1, . . . , fk, C)

p(f1, . . . , fk)p(C)

with fj projections of data points onto feature Fj

– Hard to get estimates for multivariate densities
p(f1, . . . , fk, C), p(f1, . . . , fk)

– Is computationally slow

– Even for discrete/categorical case: # joint states quickly ↑
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3.3 Feature Selection – Cont’d

3.3.1 Max-Dependency, Max-Relevance, Min-Redundancy –

Cont’d

• Approximate Maximum Dependency by Maximal Relevance:
select k best features with (individually) highest relevance to
target class C (= sequential features search)
(relevance defined as correlation or mutual information)

• But k best features 6= best k features

• There could be dependency between k features (redundancy):
correlation or mutual information between pairs of features
could be high

• Removing 1 of 2 mutually redundant features does not change
classification error
(& in practice: less parameters ; better classifier)

• Hence: principle of minimum Redundancy, maximum Rele-

vance (mRMR) feature selection (Peng et al., 2005, but exists
since Battiti, 1994)

• mRMR is independent from the type of classifier, hence, it can
be combined with wrapper (hence, a 2-stage algorithm)

• mRMR software: http://research.janelia.org/peng/proj/mRMR/
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3.3 Feature Selection – Cont’d

3.3.2 Relevance Filter

• Commonly, several features do not contain any information
about target variable (not “relevant”), but which ones?

• Consider relevance expressed as mutual information (MI) be-
tween feature Fj and class labels C:

MI(Fj, C) =
∑

C

∫

fj

p(fj, C) log2

p(fj, C)

p(fj)P(C)
dfj

with fj projections of data points onto feature Fj

• Approach = supported by Data Inequality theorem:

MI(x, C) ≥ MI(Fj(x), C)

with x data point
Purpose: obtain features that maximize MI after transformation
(since transformation can only decrease MI)
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3.3 Feature Selection – Cont’d

3.3.2 Relevance Filter – Cont’d:

• Hence, one needs to estimate MI:
MI only estimated from finite sample (real density = unknown)
but: MI depends on sample size and distribution
⇒ based on MI feature relevance = difficult to decide

• Solution: permutation test:
compute MI under random permutations of class labels relative
to features & repeat random permutation N times
⇒ MI distribution for null hypothesis: Fj = irrelevant

Histogram of mutual information obtained
from 1000 random permutations. It shows
that actual MI < P0.01 threshold. Hence,
feature is not relevant
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3.3 Feature Selection – Cont’d

3.3.3 Redundancy Detection Filter

• several relevant features may still carry same information

• select those for which “distance” is larger than threshold

• distance between features d(Fi, Fj) = 1 - normalized MI:

nMI(Fi, Fj) =
2MI(Fi, Fj)

H(Fi) + H(Fj)
=

2(H(Fi) + H(Fj)− H(Fi, Fj))

H(Fi) + H(Fj)

with H(.) (differential) entropy, 0 ≤ nMI(Fi, Fj) ≤ 1
if nMI(Fi, Fj) = 0 ⇒ completely independent features
if nMI(Fi, Fj) = 1 ⇒ completely dependent features
(note: normalization does not appear in Peng’s algorithm)
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3.4 Case Study

• Stroke patients have a reduced ability to perform Activity of
Daily Living (ADL) tasks

• Here 6 ADL tasks: drinking a glass of water, turning a key,
picking up spoon, lifting a bag, reaching for a bottle, lifting and
carrying a bottle

• To quantify the patient’s performance in these tasks, several
force and torque sensors are applied to the patient’s body.

• Measurements performed in a mechatronic platform

Mechatronic platform. The positions of
the different force and torque sensors are
shown.

(for more information: Van Dijck, Van Vaerenbergh, & Van
Hulle, Artificial Intelligence in Medicine, 2009.)
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3.4 Case Study – Cont’d

Example: Force trajectories over time for the “drinking a glass”
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Forces exerted on a glass when drinking.
The forces in X, Y, and Z direction are
shown for the thumb. After approximately
0.5 s the patient tries to grasp the glass,
as shown by the increased force amplitudes
in the X and Y direction.
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3.4 Case Study – Cont’d

Representation in 3D. The trajectory is
obtained by linking consecutive end-points
of the force vectors. The patient tra-
jectory and normal control trajectory can
be distinguished by their relative degrees
of smoothness: the normal control force
trajectory seems smoother, while the pa-
tient’s trajectory is less smooth.
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3.4 Case Study – Cont’d

Example of relevance analysis

An exhaustive list of features can be designed based on the time series
generated by the sensors (based on trajectory planning, continuity in
effort, velocity components, synchronization between sensors, time
delay between sensors). This leads to 13248 features! (= huge)

But: which ones characterize difference between patients & normals?

⇒ relevance analysis of features using MI (P0.01)
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Relevance analysis of features. The fea-
ture relevance is set to 1 when it is rele-
vant, otherwise it is set to 0. Only a small
subset of 202 of the 13248 original features
is relevant. Most of the relevant features
can be contributed to “drinking a glass”
and “turning a key” tasks.
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3.4 Case Study – Cont’d

Redundancy Detection Filter

Distance between features d(Fi, Fj) = 1 - normalized MI:

nMI(Fi, Fj) =
2MI(Fi, Fj)

H(Fi) + H(Fj)
=

2(H(Fi) + H(Fj) − H(Fi, Fj))

H(Fi) + H(Fj)

with H(.) (differential) entropy, 0 ≤ nMI(Fi, Fj) ≤ 1
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Strongly dependent features. MI between
Thumb and Middle finger sensors and In-
dex and Middle finger sensors are the same
for different subjects. nMI(Fi, Fj) between
both features is 0.729 (d(Fi, Fj) = 0.271).
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3.4 Case Study – Cont’d

Example of wrapper

• roulette wheel genetic algorithm

• Bayesian classifier (based on Gaussian Mixture Model)

Schematic overview of overall feature sub-
set selection strategy for classification.
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3.4 Case Study – Cont’d

Example of wrapper – Cont’d
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Decision boundaries computed from a
Bayesian classifier. The stroke patients are
indicated by “o”, the normals by “*”. Cor-
rectness of prediction of patient/normal
classification= 85 %.
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3.4 Case Study – Cont’d

Patient recovery

• Based on reduced set of features, patients- and normals densi-
ties can be estimated

• Based on those, posterior probabilities of given case to belong
to the normals class can be computed

• Recovery of patient can be plotted over time against posterior
probability

• Can be compared with Fugl-Meyer (sub)scores
(Fugl-Meyer = assessment in motor recovery done by experts)
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3.4 Case Study – Cont’d

Patient recovery – Cont’d

Class posterior probability profile and sub-
scores of Fugl-Meyer assessment for a sub-
ject with fast recovery.

Class posterior probability profile and sub-
scores of Fugl-Meyer assessment for a sub-
ject with poor recovery.


