

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Introduction

About XML Authority

Acknowledgements

Part I—XML: Why and What

Chapter 1—Foundational View
Background Information

XML Grammar Overview

XML Benefits

XML and SGML Comparison

XML and HTML Comparison

XML and Java Comparison

Chapter 2—XML Design Policy
Some Related Internet Sites

Production Rules Overview

Well-Formed Documents

Valid Documents

Document Structure

Logical Structure

Rules for Element Type Declarations

Rule for Empty Elements

Rules for Element Types

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Rules for Element Contents

Rule for Mixed Content

Rules for Element Attributes

Rules for Attribute Types

Rules for Enumerated Types

Rule for Attribute Defaults

Rules for Conditional Sections

Physical Structure

Rule for Character References

Rules for Entity References

Rules for Internal Entities

Rules for External Entity Declarations

Rule for Text Declarations

Rules for Notation Declarations

XML Processor Guidelines

Character Encoding Guidelines

Unparsed Entities Treatment Guidelines

Not Recognized Guidelines

Included Guidelines

Included if Validating Guidelines

Forbidden Guidelines

Included in Literal Guidelines

Notify Guideline

Bypassed Guideline

Included as PE Guidelines

Internal Entity Treatment Guideline

Predefined Entities Guidelines

Miscellaneous Guidelines

Validating Process Guidelines

Chapter 3—Developing an XML Document
Type Definition (DTD)

DTD FAQ

What is a DTD?

Document Logical Structure

Document Physical Structure

Markup Declarations Overview

Elements

Attributes

Entities

Notations

Conditional Sections

Processing Instructions

Developing a Model DTD

Developing an E-mail’s Logical Structure

Developing the Tag Sets for an E-mail Document
Type

Handling Element Variability

Developing an Empty-Element Tag

Defining an Element’s Attributes

Creating a Unique Identifier Attribute

Incorporating Standard Text Elements

Incorporating Non-Standard Text Elements

Using Text from Any Location

Declaring a Special Non-Standard Character

Handling Illustrations

Handling Different Types of Output

Developing a Processing Instruction

Developing a Document Type Declaration

Role of the Processor

Chapter 4—Document Object Model Overview
DOM Defined

DOM Specification Abstract

DOM’s Language Neutrality

DOM Interface

DOM and Style Sheets

Entities

DOM Interfaces

The DOM Structure Model Hierarchy

NamedNodeMap Interface Synopsis

Node Interface Synopsis

Attr Interface Synopsis

CharacterData Interface Synopsis

Comment Interface Synopsis

Text Interface Synopsis

CDATASection Interface Synopsis

DocumentFragment Interface Synopsis

Document Interface Synopsis

DocumentType Interface Synopsis

Element Interface Synopsis

Entity Interface Synopsis

EntityReference Interface Synopsis

Notation Interface Synopsis

ProcessingInstruction Interface Synopsis

DOM Terms and Definitions

Specification References

Sample DOM Scenario

DOM Java Sample

DOM XML DTD Sample

DOM XML Markup Sample

DOM Output Sample

Chapter 5—DCAM, IDL, and UML Overviews
DCAM Overview

Interface Definition Language (IDL) Overview

Process for Creating an IDL Server Interface

Process for Creating an IDL Client Interface

UML Overview

Chapter 6—Web Interface Definition Language
(WIDL)

Overview of WIDL

WIDL-SPEC DTD Overview

WIDL-SPEC Root Element

METHOD Sub-Element

RECORD Sub-Element

VALUE Sub-Element

RECORDREF Sub-Element

WIDL-MAPPING DTD Overview

WIDL-MAPPING Root Element

http://www.itknowledge.com/reference/standard/1556226683/ch05/079-088.html#Heading1
http://www.itknowledge.com/reference/standard/1556226683/ch05/079-088.html#Heading2

SERVICE Empty-Element

INPUT-BINDING Element

OUTPUT-BINDING Element

CONDITION Sub-Element

REGION Sub-Element

VALUE Sub-Element

BINDINGREF Sub-Element

WIDL Implications for XML and CORBA

XML and WIDL-SPEC Interface

Condition Handling

Part II—CORBA: Why and What

Chapter 7—CORBA Headlines
Headlines on CORBA Objects

Headlines on the ORB

Headlines on CORBA Domains

Headlines on CORBAservices

Headlines on Security Service

Headlines on CORBAfacilities

Basic Designed XML/CORBA DTD

Chapter 8—Essentials of CORBAservices
CORBAservices Highlights

Core Design Principles for CORBAservices

Concurrency Control Service Essentials

Event Service Essentials

Externalization Service Essentials

Licensing Service Essentials

Life Cycle Service Essentials

Naming Service Essentials

Object Collections Service Essentials

Object Trader Service Essentials

Persistent Object Service Essentials

Property Service Essentials

Query Service Essentials

Relationship Service Essentials

Security Service Essentials

Time Service Essentials

Transaction Service Essentials

Chapter 9—Essentials of CORBAfacilities
User Interface Facility Essentials

Information Management Facility Essentials

System Management Facility Essentials

Task Management Facility Essentials

Vertical Facilities Essentials

Essentials on CORBAservices Support

Part III—XML Applications

Chapter 10—Design and Development Issues
General Software Design and Development Principles

Abstraction

Flexibility

Interoperability

Modularity

Reconfigurability

Reusability

Scalability

Simplicity

Stability

Use Good Project Management Practices

Guideline 1: Define Goals and Customer
Expectations

Guideline 2: Define Control Process

Guideline 3: Define Skill Process

Guideline 4: Define Time Requirements

Guideline 5: Define Resource Requirements

Guideline 6: Design an XML Document

Guideline 7: Develop an XML Document

Guideline 8: Adhere to Well-Formedness
Constraints

Guideline 9: Adhere to Validity Constraints

Guideline 10: Consider Special Local
Situation

Some CORBA Design Issues

Some XML DTD Design Issues

Some HTML Design Issues

Some Java Design Issues

Chapter 11—Designing an XML DTD for
CORBA Domains

Declaring the Document Type: Domains

Before Declaring Any Element

Declaring Element Type: Reference

Declaring Element Type: Represent

Declaring Element Type: Addressing

Declaring Element Type: Connect

Declaring Element Type: Security

Declaring Element Type: Type

Declaring Element Type: Transaction

Possible XML Solution

Chapter 12—Designing an XML DTD for
CORBAservices

Declaring the Document Type: Services

Declaring Element Type: Naming

Declaring Element Type: Event

Declaring Element Type: Persistent

Declaring Element Type: LifeCycle

Declaring Element Type: Concurrency

Declaring Element Type: Externalization

Declaring Element Type: Relationship

Declaring Element Type: Transaction

Declaring Element Type: Query

Declaring Element Type: Licensing

Declaring Element Type: Property

Declaring Element Type: Time

Declaring Element Type: Security

Declaring Element Type: Trader

Declaring Element Type: Collections

Chapter 13—Designing an XML DTD for the
Security Service

Speaking “Policy”

Identifying Attributes

Using the Application Developer’s Interfaces

Using the Administrator’s Interfaces

Using the Implementor’s Interfaces

Planning an XML Security Service DTD System

Guidelines for Developing DTDs for Security

Chapter 14—Designing an XML DTD for
CORBAfacilities

Declaring the Document Type: Facilities

Declaring Element Type: UserIf

Declaring Element Type: Information

Declaring Element Type: Systems

Declaring Element Type: Task

Declaring Element Type: Imagery

Declaring Element Type: InfoSuper

Declaring Element Type: Manufacturing

Declaring Element Type: Simulation

Declaring Element Type: OAGI

Declaring Element Type: Accounting

Declaring Element Type: AppDev

Declaring Element Type: Mapping

Chapter 15—Final Thoughts, Summary, and
Conclusions

Final Thoughts

Summary

Conclusions

Part IV—Appendixes

Appendix A—Terms and Definitions

Appendix B—XML Alphabetical Production
Rules List

Appendix C—XML Production Rules

Appendix D—Constraints
Well-Formedness Constraints

Validity Constraints

Appendix E—XML Web Sites
Big Two Web Sites

Web Sites of Organizations and Companies

Web Sites of Individuals

Other Sites Referenced in the Book

Appendix F—XML Markup Examples

Index

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Table of Contents

Introduction
Web or Internet technologies, especially those that can be labeled
object-oriented, are in flux. This book associates two of these technologies:
Extensible Markup Language (XML) and Common Object Request Broker
Architecture (CORBA). This book makes brief references to Java, an
object-oriented, controlling programming language, as a kind of cement or
glue. This book also discusses Standard Generalized Markup Language
(SGML) because XML and Hypertext Markup Language (HTML) are both
children of this programming language.

While the first design goal of the XML Recommendation states “XML shall be
straightforwardly usable over the Internet”1 it can be demonstrated that XML
has broad application in such areas as e-commerce. With this in mind, this
book focuses on XML document type definitions (DTD) design using the
structures of CORBA so one might get a new perspective on programming in
an object-oriented environment. It is not a book that teaches XML, but rather
discusses design for experienced object-oriented developers. One needs to
comprehend how an analysis of an environment, CORBA, assists in design
and development of XML elements, attributes, and entities that reflect that
environment.

1Extensible Markup Language (XML) 1.0 W3C Recommendation
10-February-1998; URL is
http://www.w3.org/TR/1998/REC-xml-19980210.

CORBA documentation is extensive. The contributors to CORBA
development all seek four core design goals—interoperability, portability,
scalability, and reusability. One can analyze CORBA documentation from
many views. The one used in this book is to analyze some of the variables in
different interface sets (CORBAservices, CORBAfacilities, and domains) to

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.w3.org/tr/1998/rec-xml-19980210

see how one could model XML document structures. The analysis does not
actually consider values, but how an XML document has potential for
integration of local network data with various CORBA interfaces.

Note: This book discusses design and development processes, not the actual
how-to-do-this. There are many vendors available to assist in unique local
CORBA integration issues.

For one to use the full power of XML, one must create one’s own XML
document type definition (DTD). One then takes a most critical step by
establishing a document’s grammar (the implicit rules) and its unique
meaningful markup. This follows to a certain degree precedence, designing
DTDs for XML dialects such as Chemical Markup Language (CML).

XML enables generic SGML to serve, receive, and process in the same way as
HTML does on the Web. This means XML can describe a document and can
establish hyperlinks as HTML. It is also a bit more. XML handles data in a
document. XML gives one the capability to manipulate (manage or handle)
data from a document into a database and vice versa.

XML also extends (1) HTML’s capabilities to handle document control, (2)
the function to publish information in a variety of media from the same source,
(3) the ability to establish complex documentation links, and (4) the design
technique for defining different document descriptions. These notions are
found in XML’s name, extensible.

CORBA is a standard for defining a network as object-oriented in comparison
to client/server. A basic premise of object-oriented (OO) theory is that a client
can access or can be accessed. The same holds true for a server. CORBA can
define these objects in two major areas: CORBAservices (see Chapter 8) and
CORBAfacilities (see Chapter 9).

Java is an object-oriented language designed to be:

• Reusable

• Portable

• Interoperable

Besides these three, there are seven other Java characteristics that are
important as a part of justification for moving to Java internetworking:

• Application adaptation is possible because of dynamic network
downloading.

• Application performance is increased.

• Design, development, testing, and implementation are simpler because
of component-level object programming.

• Development time is shorter because of code reuse.

• Memory management increases system robustness.

• Multithreading produces high performance in GUI functions.

• Security is improved because the Java run-time system checks for
viruses.

SGML became a global text-processing standard in 1986 through the
International Organization for Standardization (ISO).2 It became a standard
through the hard work of many, but in particular Charles F. Goldfarb. SGML
is the parent of XML. XML extends SGML’s document paradigm to the
hypertext environment of the Internet (see Chapters 1 and 2). The name of the
standard is “ISO 8879: 1986 Information processing—Text and Office
systems—Standard Generalized Markup Language (SGML).”

2The group in French is known as Organisation Internationale de
Normalisation. ISO is not the group’s acronym, but comes from the Greek
“isos” meaning “equal.”

Note: Before SGML there were Script and GML (Generalized Markup
Language). Charles F. Goldfarb, Ed Mosher, and Ray Lorie at IBM
developed the idea to enable document sharing among different IBM
systems. XML is like most Internet technologies in that its origin extends
back a number of decades.

Probably the most precise way to define HTML is a method, a markup
language, which describes an electronic page that uses links (hypertext) to
associate a series of such pages that become an electronic document. One
could say “In the beginning (a British overstatement) was HTML and it was
found wanting.” Actually, there was manuscript (writing by hand), the printed
document that looked like a manuscript (check out the Gutenberg Bible as
originally printed), and more variations on this theme until the computer
environment. The computer environment has or had Script, Generalized
Markup Language (GML), Standard Generalized Markup Language (SGML),
Hypertext Markup Language (HTML), and Extensible Markup Language
(XML). This is a poor man’s history of publishing in less than 50 words. Left
out are key items such as pictographs (wall paintings), cuneiform
(wedge-shaped writing), hieroglyphics (sound symbolic writing), ideograms
(idea symbolic writing), and Virtual Reality Markup Language (VRML).

Book’s Audience

This book is for system administrators, MIS managers, and network designers
and developers that want to or have been tasked to use the latest Web
technologies, in particular CORBA and XML, to enhance their system. Any
system enhancement involves ever-changing goals, issues, and techniques that
include:

• System architecture and configuration

• Operating systems

• Protocols

• Management tools

• Application software

• Graphical user interfaces (browsers)

• User activities, abilities, and needs

Because of the above situation, this book considers selected processes for

solving some of these issues. The methodologies given here enable you, the
system administrator, to evaluate effectively and efficiently how XML design
can be used in CORBA networking. Also, one must consider the relationships
among XML, SGML, HTML, and Java to achieve a more comprehensive
user-friendly environment.

This book is also for people who assist the system administrator either in
policy or design integration. This would include:

• Design and development team

• Product vendors

• Consultants

• Support technicians

• Documentation and training groups

• Users (internal, customers, or vendors)

This book is for anyone who has tried to read Extensible Markup Language
(XML) 1.0, W3C Recommendation (10 February 1998). The Recommendation
is the result of lengthy discussions by experts in publishing technology. The
experts were trying to resolve how to use the best design considerations of two
worlds, SGML and HTML. One of their goals was to write a concise statement
of the results of the discussions. The Recommendation is a set of 89
production rules with minimal commentary.

There are no alternatives given. There are no how-we-got-there statements.

Their concern was and is data and text structure, not appearance.

Finally, this book is for anyone who has tried to read the extensive CORBA
documentation available. When any new network architecture is developed,
one should expect technical clarifications. This book tries to give a twisted
view of reality for the developer who is challenged by the weight of
documentation. A “simple” view of CORBA is that it is “a set of interfaces”
and “its variables” are the keys to comprehension.

Key Issues

The first issue is that the XML Recommendation was only completed in
February 1998 after a 15-month effort. This area is dynamic to say the least.
There are already ideas on the table to extend XML with such things as
Extensible Stylesheet Language (XSL). There are also legacy hardware and
software issues. There are such things as lack of tools (parsers) and experience.
Because one knows or had experiences with SGML or HTML does not make
one an expert with XML. There are only 89 XML production rules, but this
book tries to demonstrate that there are many nuances to each rule. There are
least 500 permutations for all the rules.

Note: A goal of the W3C XML Activity was to have a concise document.
The document is approximately 30 pages. It has minimal commentary.

The second issue is that the CORBA documentation is as extensive as XML
documentation is sparse. There are multiple committees working on special

facets of the infrastructure for CORBAservices, CORBAfacilities, and
domains. There is the expectation that a new version of the general
specification will be released in 1999.

Focus Is

This book focuses on a process for designing XML document type definitions
(DTDs) in the context of the CORBA infrastructure. It is a design guide to
assist developers who need to work with CORBA by demonstrating the
importance of CORBA interface variables as viewed through an XML DTD
design process. Also the book is concerned with languages that can assist in
defining or modeling CORBA objects and can also assist in the design and
development of XML DTDs for CORBA.

This book uses different metaphors to try to highlight “sound bites” of
information on CORBA. Two metaphors used are “news headlines” and
“document.”

Focus Is-Not

This book is not a comprehensive answer to integrating XML into CORBA. It
is not a programming guide such as one for Java. It is not an XML markup
guide per se since the focus is only on the first and most critical step in XML
design—the development of XML DTDs. And finally, the book is not an
explanation of CORBA interworkings.

Each system administrator or developer must consider other factors such as
legacy hardware, legacy software, system configurations, and users. Also, skill
sets, project goals, and customer goals have to be considered.

Expectations about the Readers

So there are no surprises as to what is not in this book, here is a list of
expectations about the reader:

• Reader has a system-level knowledge of the technologies (protocols,
servers) of the Internet and of an intranet.

• Introducing CORBA into a system is a goal of the reader’s
corporation and he or she wants to determine the potentials of XML as a
part of the system’s design.

• Reader is a key player in the development of the network either as the
system administrator or in another technical role. However, other types
of readers (marketing, training, documentation, and general
management) may be interested in concepts developed in this book.

• Reader has a basic awareness of what takes place when new
applications are introduced in a system.

• Reader has a basic knowledge of the jargon of computer science.

• Reader’s system has a configuration different from any other.

• Reader can draw upon internal and external technical resources.

Basic Position of the Author

Here are the basic notions that underlie this book:

• There is no one way to design or develop XML DTDs, but there are
rules for these activities.

• No one person can effectively design and develop all the XML DTDs
for a system in a short time.

• Creating XML DTDs is a logical evolutionary process.

• The reader should use the technical expertise of vendors, not their
marketing expertise.

• The end goals for CORBA and XML are the same as the reasons for
using Java: interoperability, portability, and reusability.

• It is necessary to get a definition of customer expectations for

• Why they want to use CORBA.

• When they are going to use them.

• Where they are going to use them.

• What they want in them.

• How they are going to be used.

• It is necessary to explain to the customers what part of their
expectations is achievable based on

• Budgetary restrictions

• Technological developments

• Time limitations

Significance of CORBA 3.0

The Object Management Group (Framingham, MA) has scheduled CORBA
3.0 for release by the end of 1999. This version of CORBA simplifies the use
of CORBA ORBs for the development of distributed object applications. New
features include:

• Enhanced Java language to IDL mapping

• Improved quality of service features

• Embedded environment support

• Real-time CORBA 1.0

• New messaging support

• Support for distributed components

• Component Model

• CORBA Scripting Language

• Multiple interfaces

• Objects-by-value

• Support for legacy environments

• DCE/CORBA interworking

• Firewalls

Note: The design process is not limited because of an impending new
release except for the consideration of new interfaces and variables. Any
design process should acknowledge the need for scalability since one can
expect a CORBA 4.0.

Enhanced Java Language to IDL Mapping

The new Java language to IDL mapping specification allows developers to
build distributed applications completely in Java and then generates the
CORBA IDL from the Java class files. This allows other binary applications to
access Java applications using Remote Method Invocation (RMI) over Internet
Inter-ORB Protocol (IIOP). For details on the Java side, see JDK 1.2
documents and in particular information on the idltojava compiler.

Improved Quality of Service Features

This specification defines improved service with minimal CORBA addresses
required for a CORBA-compliant system that can operate in an embedded
environment. This opens the door for the use of CORBA in embedded devices.

For developers to have more direct control over ORB resource allocation, a
new type of ORB called the Real-time ORB has also been specified. Such an
ORB might be comprised of fixed priority scheduling, control over ORB
resources for end-to-end predictability, and flexible communications.
Real-time CORBA should be useful for time-critical and process control
applications.

New Messaging Support

The Asynchronous Messaging specification has two components: levels of
quality of service (QoS) agreements and Interface Definition Language (IDL)
changes necessary to support asynchronous method invocations. This enhances
CORBA abilities to support synchronous, deferred synchronous, and one-way
messaging. QoS policies tell the ORB how to handle various delivery
scenarios.

Support for Distributed Components

The new CORBA Component Model specifies a framework for the
development of “plug-and-play” CORBA objects. The model encapsulates the
creation, life cycle, and events for a single object and allows clients to explore
dynamically an object’s capabilities, methods, and events.

The ability to have multiple interfaces allows a single object to present
multiple views of itself through an interface selection mechanism. This ability
allows a program access to an object’s functions based on interface definitions,
operations, or other criteria.

CORBA 3.0 assists programmers using objects-by-value to integrate CORBA
more seamlessly into object-oriented programming languages such as Java.
Objects-by-value are passed as parameters rather than as references.

The new CORBA Scripting Language specification removes memory
allocation and deallocation, memory pointers, and compilation and linking
procedures. One can compose CORBA components into applications. It allows
client developers to create and access CORBA servers, while focusing on
integration for the development of business logic.

Support for Legacy Environments

CORBA 3.0 can assist programmers in their legacy environments, particularly:

• Firewalls

• DCE application integration

The CORBA 3.0 Firewall specification defines interfaces for passing IIOP
through a firewall. The options allow the firewall to have filters and proxies on
either side. This specification extends the secure use of CORBA to the Internet
and across organizational boundaries.

The DCE/CORBA Interworking specification provides a roadmap for
integrating legacy DCE applications into CORBA environments. There are
new options for ensuring extended use of legacy applications.

Key Questions

Here are just a few of the questions that should have some resolution by the
last page of the book:

• What is an XML application? Is there more than one type?

• What is a CORBAservice?

• What is a CORBAfacility?

• How does XML relate to SGML?

• How does XML compare to HTML?

• How does one use Java in developing an XML application?

• What is a process for designing and developing an XML application?

Book Outline

Part I—XML: Why and What

Chapter 1—Foundational View

This chapter briefly looks at the practical implications of XML and considers
these areas:

• Background information

• XML grammar overview

• XML benefits

• XML and SGML comparison

• XML and HTML comparison

• XML and Java comparison

Chapter 2—XML Design Policy

This chapter heavily uses the language of the XML Recommendation 1.0 (10
February 1998) to give a foundational basis for further discussions on how to
implement production. The place and order of a production rule is important in
an implementing context. This chapter gives an overview of the
Recommendation and discusses:

• Production rules overview

• Well-formed documents

• Valid documents

• Logical structures

• Physical structures

• XML processor constraints

Warning: One should always refer to the latest version of the Extensible
Markup Language Recommendation.3 The Recommendation, not this book,
should be the ultimate document on XML.

3The latest Recommendation version can be found starting with the URL
http://www.w3.org/TR.

Chapter 3—Developing an XML Document Type
Definition (DTD)

This chapter includes three parts:

First, this chapter gives ten frequently asked questions about a DTD. The
answers to these questions are expanded upon in various sections of this
chapter.

Second, this chapter looks at the fundamental process for developing a
document type definition (DTD). The ideas given are extended in the chapters
on developing DTDs for CORBAservices and CORBAfacilities.

Third, this chapter also includes discussions on some key tools for developing
a DTD and XML documents. Three of the tools discussed are parsers, editors,
and browsers.

Chapter 4—Document Object Model Overview

This chapter reviews one of the latest technologies that is related to XML: the
Document Object Model (DOM). The focus is on the DOM Specification
Level 1 (1 October 1998). The DOM permits one to view an XML document
as a data holder and as an object of the CORBA paradigm. The DOM should
be the API standard for handling XML documents in applications, browsers,
and editors. Included at the end of the chapter is a four-part example of Java
code, an XML DTD, XML markup, and DOM output.

Chapter 5—DCAM, IDL, and UML Overviews

http://www.w3.org/tr

This chapter discusses three developing Web technologies and their
implications for developing XML applications for CORBA. A part of the
Distributed Component Architecture Modeling (DCAM) effort is to develop
taxonomies into standard format for such products as browsers, IDLs, Web
tools and servers, message brokers (CORBA, COM+, etc.), and application
frameworks. The Interface Definition Language (IDL) describes CORBA
objects. The Unified Modeling Language is used in developing models of
CORBA objects and infrastructure.

Chapter 6—Web Interface Definition Language (WIDL)

This chapter overviews the Web Interface Definition Language (WIDL), an
important new Web technology for conceptual developing of XML
applications for CORBA from webMethods. This technology goes
hand-in-hand with the Document Object Model (DOM) and Distributed
Component Architecture Modeling (DCAM) technologies.

This chapter considers four key notions about WIDL:

• WIDL overview

• WIDL-SPEC DTD

• WIDL-MAPPING DTD

• WIDL implications for XML and CORBA

Part II—CORBA: Why and What

Chapter 7—CORBA Headlines

This chapter uses the “news headline” metaphor as a method for searching for
the components, features, functions, or parts of CORBA that can be equated to
XML elements, attributes, or entities. The search includes a look at the
architecture, the ORB, domains, CORBAservices, Security Service, and
CORBAfacilities. The chapter ends with a very basic designed XML/CORBA
DTD.

Chapter 8—Essentials of CORBAservices

This chapter briefly establishes essentials of descriptive information of
CORBAservices for the development of a document type definition (DTD) for
a document type labeled services (Chapter 12). A Security Service DTD is
developed in Chapter 13 with a document type labeled security, and more
details are given there.

Chapter 9—Essentials of CORBAfacilities

As with the discussion on CORBAservices in Chapter 8, this chapter focuses
CORBAfacilities architecture or infrastructure, rather than the “how-to,” for
the purpose of gaining information for designing an XML document type
definition (DTD) for CORBAfacilities in Chapter 14. The information given
here is based on OMG’s document for CORBAfacilities, version 4.0
(November 1995).

Part III—XML Applications

Chapter 10—Design and Development Issues

This chapter outlines ten general key design and development issues. Besides
the general principles one needs to clarify specific issues. These issues come in
two categories, single environment or multiple environments. A single
environment could consist of CORBA itself. A multiple environment would
consist of both CORBA and XML integration. This chapter discusses both
categories for CORBA, XML, HTML, and Java.

Chapter 11—Designing an XML DTD for CORBA
Domains

This chapter reflects on the design issues for developing XML DTDs for
CORBA domains at a very high level. This chapter also briefly looks at the
potential of CORBA domains and the potential use of XML with various
domains through discussions about seven interoperability issues.

Chapter 12—Designing an XML DTD for
CORBAservices

This chapter discusses the planning, designing, and developing of an XML
DTD for CORBAservices based on information from Chapter 8 and the
CORBAservices Specification (various chapters are dated 1996-1997). The
premise here is that an XML document can handle data and that CORBA is
fundamentally a series of interfaces; thus, one can design an XML document
that organizes and declares the variables that might go into the interfaces.

The document type definition (DTD) for CORBAservices is broadly structured
using the interfaces for declaring XML elements. The information given here
is a high-level model for looking at the issue of CORBA/XML integration. It
is recognized that an object-oriented programming language such as Java
would be required to complete this integration.

Chapter 13—Designing an XML DTD for the Security
Service

This chapter discusses some issues for design and development of an XML
DTD that reflects key security functionality and CORBA implementation of a
Security service. One must be knowledgeable of two items:

• Fundamental security attributes

• CORBA security service interfaces

The interfaces are suited for three types of people:

• Administrator

• Application developer

• Implementor

This chapter closes with guidelines for designing a “DTD system” for a

CORBA security service. Local factors determine an actual model.

Chapter 14—Designing an XML DTD for
CORBAfacilities

This chapter describes some XML elements and attribute lists for some of the
twelve facilities that make up CORBAfacilities based on information from
Chapter 9 and the CORBAfacilities: Common Facilities Architecture V4.0
November 1995 Specification. The premise here is that an XML document can
handle data and that one uses the concepts developed for CORBAfacilities as a
starting point for eventual CORBA/XML integration. This chapter is basically
a “what-if” rather than a “how-to” chapter.

Chapter 15—Final Thoughts, Summary, and Conclusions

This chapter looks at the future possibilities of the ideas discussed in prior
chapters. There is a summary of the key ideas present in the prior chapters.
There are some high level general conclusions on XML document type
definitions based on a CORBA framework.

Part IV—Appendixes

Appendix A—Terms and Definitions

This appendix defines key CORBA and XML terms used in this book.

Appendix B—XML Alphabetical Production Rules List

This appendix lists in alphabetical order 89 products and their associated
production rule numbers from XML Working Recommendation 1.0 (10
February 1998). See also Appendix C.

Appendix C—XML Production Rules

This appendix summarizes the XML production rules from XML Working
Recommendation 1.0 (10 February 1998). See also Appendix B and Appendix
D.

Appendix D—Constraints

This appendix summarizes the well-formedness and validity constraints from
XML Working Recommendation 1.0 (10 February 1998). These constraints
are required for designing a conforming XML processor. See also Appendix C.

Appendix E—XML Web Sites

This appendix gives key XML Web sites for getting the latest information on
subjects discussed in this book.

Appendix F—XML Markup Examples

This appendix shows some very simple examples of generalized XML

markup.

Book Navigation

The book may be read from cover or cover or used as a reference book. The
table of contents or index may direct you to points of interest since you may
already have a specific solution.

Companion CD-ROM

The companion CD-ROM contains a multimedia presentation to explain the
essential concepts of the XML Specification, along with a trial version of
XML Authority from Extensibility, Inc. Please see the last page of the book
and the CD itself for more information.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Table of Contents

About XML Authority

Product Overview

XML schemas enrich, illustrate, and validate information models for today’s
advanced Internet applications. XML schemas enable automated content
creation and repurposing for both document and data intensive applications.
XML Authority provides comprehensive support for the most advanced needs
in schema development.

E-commerce and ERP applications utilize XML schemas to bridge business
dialects and enable transaction automation between heterogeneous
environments. Moreover, industry schemas document common vocabularies,
enhancing collaboration and standardization. As native XML browsers become
available, schemas will ensure the right information is made available to the
right user.

XML Authority is a graphical design tool accelerating the creation and
enhancing the management of schemas for XML. With support for data typing,
solutions for data interchange, and document-oriented applications converge.
XML Authority includes a toolset to help convert existing application and
document structures to schemas, defining the basis for well-formed XML
documents and enabling valid XML. With output supporting XML’s existing
and emerging schema standards, XML Authority provides adaptive qualities to
XML deployments. XML Authority fully supports and extends the XML 1.0
specification for schema.

Comprehensive Schema Authoring and Management
Environment

XML Authority’s intuitive graphical interface provides comprehensive

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

lifecycle management support of schemas for XML. Using XML Authority,
schemas can be developed on a modular level and integrated for
comprehensive solutions. Moreover, collaborative efforts for schema
development are fully supported. This is especially useful when sharing
schemas between organizations.

• Interactive graphical schema representation

• Schema Qlicker, point and click content model creation

• Real-time syntax checking, ensuring valid schema

• Concurrent cross referencing of schema design and source

• Tree view of document structure

• Workgroup support with versioning and change logging

• Audience-specific comments

• Assistants for getting started and improving results

Advanced Schema Development Support

XML Authority includes schema development support beyond the XML 1.0
DTD specifications, providing an incomparable toolset for advanced document
publishing and data interchange applications. In addition to support for DTDs,
XML Authority delivers advanced capabilities of the emerging DCD
specification. Users of XML Authority enjoy the best of today’s standards and
the latest concepts in XML development.

• Reusable content model and attribute sets

• Data type support

• High fidelity round-tripping

• Robust parameter entity support

• Processing instructions, notations, and general entities

Schema Information Importing

XML Authority imports schema information residing in existing data
structures and documents. Once imported into XML Authority, the schema can
be modified and combined to create schemas for XML.

Diverse Output Formats

XML Authority outputs XML schemas and XML prototype documents. XML
Authority outputs DCDs, DTDs, and XML schema. The output is formatted
for easy legibility. The following schema syntax output formats are provided:
DTD, XML-Data (IE-5 Compliant), XML Schema Definition Language
(XSDL), SOX, DCD, DDML, and XML Exemplar.

The Companion CD

Through a special arrangement between Wordware Publishing and
Extensibility, a 10-use trial version of XML Authority v1.0 is included on the
companion CD-ROM. XML Authority is the most comprehensive tool
available for the creation, conversion, and management of schema for XML.

To get started, simply open the HTML file titled Welcome to Extensibility on
the CD. The CD also contains a helpful XML Authority Walkthrough designed
to make you familiar with the software in less than 15 minutes and a complete
XML glossary to help you become familiar with the language. For your
reference, XML Authority includes detailed documentation to help you
navigate through every feature of the software. For more information about
XML Authority, please see the previous page.

The companion CD also includes a computer-based training course called
Fundamentals of XML. It is based on the XML Recommendation 1.0 (10
February 1998). This requires a 640 x 480 high color (16-bit) monitor. To use
Fundamentals of XML, either copy Xmlfd.exe to your hard drive and run, or
double-click on Xmlfd.exe.

Caution: Opening the CD package makes this book nonreturnable.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Table of Contents

Acknowledgements
This is my fourth book with Wordware Publishing, Inc. I would again like to
thank the fine people who seek to make the writing process more fun and
easier than it should be. I would like to thank several people. Jim Hill,
publisher, had the fortitude to ask me to write another book on CORBA. Beth
Kohler and Kellie Key, editors, made the words that I set down clearer and
more readable. Denise McEvoy, interior designer, makes bland manuscripts
look professional. Alan McCuller, cover designer, showed once again his
magic in designing an eye-catching cover. And finally, Pamela Alba, executive
assistant, and her friendly smile that got me through the administrative hurdles.

I would like to thank especially all those people who contributed to the source
documentation on CORBA and XML.

Any omissions or technical misinterpretations are mine.

George M. Doss

Plano, TX

Dedication

This book is dedicated to all my teachers—good or bad, remembered or
forgotten, formal or informal. They all contributed to what I know today.

Table of Contents

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Part I
XML: Why and What

Included in This Part:

• Chapter 1—Foundational View

• Chapter 2—XML Design Policy

• Chapter 3—Developing an XML Document Type Definition (DTD)

• Chapter 4—Document Object Model Overview

• Chapter 5—DCAM, IDL, and UML Overviews

• Chapter 6—Web Interface Definition Language (WIDL)

Chapter 1
Foundational View
Included In This Chapter:

• Background Information

• XML Grammar Overview

• XML Benefits

• XML and SGML Comparison

• XML and HTML Comparison

• XML and Java Comparison

This chapter looks at Extensible Markup Language (XML) in descriptive, it-is-this, terms
rather than in prescriptive, how-to-use, terms. Chapter 2 discusses the theoretical
underpinnings, the production rules, based on XML Recommendation 1.0 (10 February
1998).

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Note: As of the writing of this book, the Recommendation lacks final approval as a
Standard. The authors expect minimal changes to the Recommendation.

XML is a subset of SGML with the powers of HTML. With XML one can speak of a
Web-based document rather than of a Web-based page as with HTML.

This chapter looks at very briefly:

• XML’s background

• XML’s grammar

• XML’s benefits

• XML and SGML comparison

• XML and HTML comparison

• XML and Java comparison

Note: Later chapters discuss in detail many of the specialized uses of words in this chapter.
Also see Appendix A, Terms and Definitions.”

Background Information

XML’s actual history is very brief since the first working draft was published in November
1996. XML’s foundation comes from the Standard Generalized Markup Language (SGML)
that was published in 1986 as ISO 8879 (1986 Information processing— Text and Office
systems— Standard Generalized Markup Language (SGML)). The reality of SGML as a
standard for electronic documentation markup comes through the dedicated efforts of
Charles F. Goldfarb.

The W3C XML Activity, a working group of the World Wide Web Consortium (W3C),
developed XML. The editors were Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen.

XML Recommendation 1.0 shows precisely how XML design eases implementation and
SGML and HTML interoperability. If one takes time to read the Recommendation, not an
easy task, look for all sentences that begin “For interoperability….” The Recommendation
(Specification) is a very short document and is very precise. One should read the
Recommendation in HTML format so one can follow the links.

Note: This book includes a computer-based training (CBT) course that summarizes the key
ideas of the Recommendation. The CBT’s structural design primarily uses the
Recommendation document structure including numbered sub-sections.

XML Grammar Overview

The key to comprehending the XML production rules is to know the notation rules or
grammar. There are two views of XML grammar: the Extended Backus-Naur Form (EBNF)
notation and the language developed in the Recommendation. EBNF was used to define the
XML production rules. The rules defined the formal grammar of XML. A production rule
takes this form:

Symbol::= expression

The Recommendation uses 16 right-hand EBNF rules. One uses these rules as a basis for the
construction of production rules.

1. #xN
N is a hexadecimal integer.
Expression matches the character in ISO/IEC 10646 whose canonical (UCS-4) code
value, when interpreted as an unsigned binary number, has the value indicated.
For further details, see ISO/IEC 10646-1993 (E). Information technology— Universal
Multiple-Octet Coded Character Set (UCS)— Part I: Architecture and Basic
Multilingual Plane. [Geneva]: ISO, 1993 (plus amendments AM 1 through AM 7).
The Web site is either:
http://charts.unicode.org/ or ftp.unicode.org/Public/2.1-Update
Example:
White space (Production Rule 3) equals one of the following in the format of #xN:

#x20—space

#x9—horizontal tab

#xD—carriage return

#xA—line feed

2. [a-zA-Z],[#xN-#xN]
Matches any character within the defined range(s).
The IS0/IEC 10646 defines a character as a specified unit, such as a tab, Latin A, Latin
a, etc.
See also the Unicode Standard, located at http://charts.unicode.org.
Example:
Character range in Production Rule 2 is defined as:

Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD]
| [#x10000-#x10FFFF]

See also the Unicode Standard.

3. [^a-z],[^#xN-xN]
Matches any character outside the defined range(s). The character ^represents “not”.
The IS0/IEC 10646 defines a character as a specified unit, such as a tab, Latin A, etc.
See also the Unicode Standard.
Example:
The general declarations of XML do not use this notation.
Production Rule 14 for character data states:

CharData ::= [^<&]* - ([^<&]* ’]]>’ [^<&]*)

This rule reads that character data can be any character string excluding (^) the
less-than symbol (<), the ampersand (&), and the]]> string.

4. [^abc],[^#xN#xN#xN]
Matches any character not defined.
The IS0/IEC 10646 defines a character as a specified unit, such as a tab, Latin A, etc.
See also the Unicode Standard.
Example:
Character data (Production Rule 14) is defined as:

CharData ::= [^<&]* - ([^<&]* ’]]>’ [^<&]*)

http://charts.unicode.org/
http://www.itknowledge.com/reference/standard/1556226683/ch01/ftp.unicode.org/public/2.1-update
http://charts.unicode.org./

Character data is all text excluding markup that is the less-than symbol (<), the
ampersand (&), and the]]> string.

5. “string”
Matches a literal string within double quotes.
For a match, the compared strings must be identical within ISO/IEC 10646 code
definitions.
Example from Production Rule 11:

SystemLiteral ::= (’"’ [^"]* ’"’) | ("’" [^’]* “’")

Note: The first (expression) is this rule. For ease of reading, here is the example
including spaces. SystemLiteral ::= (' " ' [^"] ' " ') | (" ' " [^'] " ' "). A string can be
delimited by a set of double quotation marks.

6. ‘string’
Matches a literal string within single quotes.
For a match, the compared strings must be identical within ISO/IEC 10646 code
definitions.
Example from Production Rule 11:

SystemLiteral ::= (’"’ [^"]* ’"’) | ("’" [^’]* “’")

Note: The second (expression) is this rule. For ease of reading, here is the example
including spaces. SystemLiteral ::= (' " ' [^"] ' " ') | (" ' " [^'] " ' "). A string can be
delimited by a set of single quotation marks.

7. (expression)
A set of simple expressions treated as a unit within parentheses.
A (B) means A followed by the expression B. Production Rule 6 states:

Names ::= Name (S Name)*

This rule reads that Names has at least one Name followed by optional one or more
occurrences of Name.

8. A?
Matches A or nothing. Commonly used in production rules as S?. This means there
can be zero or one occurrence of white space. Using the break (br) tag from HTML,
one can have either
 or
 because this is an empty-element tag (Production
Rule 44 for EmptyElemTag).

9. A B
Matches A followed by B.
Production Rule 1 states:

document ::= prolog element Misc*

This rule reads a document consisting of a prolog followed by an element and perhaps
followed by miscellaneous markup.

10. A | B
Matches A or B, but not both.
Production Rule 3 reads:

S ::= (#x20 | #x9 | #xD | #xA)+

This rules that a white space (S) can be in hexadecimal a space (#x20) or (|) a tab
(#x9) or (|) a carriage return (#xD) or (|) a line feed (#xA), and there must be an
occurrence (+) for a white space to exist.

11. A - B
Matches any string that matches A, but not B.
Production Rule 17 for a processing instruction target reads:

PITarget ::= Name - (('X' | 'x') ('M' | 'm') ('L' | 'l'))

This rule reads that a name for a processing instruction name (PITarget) can be any
name except one beginning with XML, xml, or any other combination of these six
letters.

Note: See Production Rule 23 for a XMLDecl (XML Declaration).

12. A+
There must be a match or matches of occurrence A.
Production Rule 3 reads:

S ::= (#x20 | #x9 | #xD | #xA)+

This rules that a white space (S) can be in hexadecimal a space, a tab, a carriage
return, or a line feed, and there must be an occurrence (+) for a white space to exist.

13. A*
Expression may occur or have occurrences.
Production Rule 1 reads:

document ::= prolog element Misc*

Misc* can occur or not occur and there still be a document.

14. /* ... */
This is a notation for commenting on a production rule. Production Rule 15 declares
the syntax for a comment within XML markup. Comments can appear anywhere in a
document except within markup.

Comment ::= '<!--' ((Char - '-') | ('-' (Char - '-')))*
'-->'

Example:

<!-- This is an example comment. -->

15. [wfc: ...]
Well-formedness constraint
This identifies by name a constraint that can produce a fatal error. There are 10 of
these constraints.

16. [vc: ...]
Validity constraint
This identifies by name a constraint that can produce an error that can be reported by a
validating XML processor. There are 21 of these constraints.

Note: The SGML Standard uses X and Y instead of A and B as given above.

Ten of the key words of XML based on the Recommendation are:

• Attribute

• Constraint

• Content

• Declaration

• Element

• Entity

• Processing instruction

• Production rule

• Valid document

• Well-formed document

Note: These words or concepts are discussed throughout the book. Also see Appendix A,
“Terms and Definitions.”

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

XML Benefits

XML is important for two types of applications: document or data exchange
and database connectivity. XML provides a richer set of elements and
publishing extensions than HTML. XML can handle application design for
processing data that is for a specific use, but has a process that is an open,
nonproprietary solution. The premise of this book is that a document should be
considered a data object and thus can be processed in a CORBA networking
environment as any object.

XML was designed to handle the foundational abilities of the object
technology, similar to Java. Java’s three key abilities are:

• Reusability

• Portability

• Interoperability

A key capability of XML is to handle interchange format transfer of data
between different databases and different operating systems.

XML and SGML Comparison

XML is a child of SGML. The key to working with XML and SGML is
ensuring that a DTD design works with both markup languages. This means
that any SGML DTD should conform to XML production rules.1

1While a comparison is done here, one must remember XML is SGML.

Note: An SGML DTD contains the pointers to the files with the DTD rules
that govern the document’s markup.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

There are a number of differences between XML and SGML. Here are ten
major differences:

• XML requires both a start-tag and an end-tag, but SGML does not.

• XML permits optional DTDs, but SGML does not.

• XML is more flexible than SGML in expressing an element’s rank in
nests.

• XML does not have declarations that are independent of the DTD and
contain instructions for the parser.

• XML does not have limitations on the quantity or capacity of
document objects as SGML does.

• XML comments require both <!-- and -->.

• XML permits flexibility with default settings, but SGML uses the
default of CURRENT.

• XML is not as rich in features as SGML.

• XML has speedier processing capabilities.

• XML was designed for general use; SGML’s complexity has resulted
in use by documentation experts.

XML and HTML Comparison

While both XML and HTML are both markup language and are children of
SGML, each has different generalizations and purposes. Because one knows
HTML does not necessarily imply one knows XML.

XML uses most of the HTML tags, but a key requirement is the need to have
both a start-tag and an end-tag. This means every <p> must have a </p>. There
are three other required steps to ensure that an HTML document becomes a
well-formed document (see Chapter 2 for a discussion of well-formedness
processor constraints). The requirements are:

• Tags must be nested correctly.

• Attribute values must be within quotation marks (single or double).

• Empty-elements must be correctly formatted.

HTML is a markup language that describes a document’s structure, but is not
designed for document format control. Frames were developed as a solution
for this issue, but the two most common browsers, Microsoft’s Internet
Explorer and Netscape’s Navigator, support frames differently.

Note: Many of the formatting controls (frames, tables, and new tags) were
developed for HTML because of demands by Web designers. These
designers never took the time to understand the basic concepts of HTML.
This appears also to be happening to XML. However, this trend may not be
blamed necessarily on designers.

XML was designed to do what HTML cannot:

• Control document display.

• Define complex links (multiple link declarations).

• Describe different and specific document types.

• Publish data in various forms of media.

• Transport information in a various forms of media.

Perhaps the key difference between XML and HTML can be summed up in the
word extensible. Extensible means that one can create one’s own tags and
attributes. One can also alter tags already defined in an existing document type
definition (DTD). For example, Name could be declared a tag with two nested
tags:

<!ELEMENT Name (LastName, FirstName)>

Note: There are dangers in this activity. These dangers are discussed in
more detail in Chapter 10.

XML and Java Comparison

XML is an object-oriented markup language while Java is an object-oriented
controlling programming language. Both were designed on the same three key
principles:

• Interoperability

• Portability

• Reusability

There are two methods to associate or link XML with Java. Both are under
dynamic changes and one should check the Sun Microsystems
(www.sun.com), Microsoft (msdn.microsoft.com), and World Wide Web
Consortium (www.w3.org/Style/XSL) Web sites for the latest information.
The methods are:

• Use the Extensible Stylesheet Language (XSL) and JavaScript.

• Use an XML parser with a Java compiler

Note: These two methods are discussed in more detail in Chapter 10.

XSL is in the proposal stage with the World Wide Web Consortium. XSL uses
the underpinning concepts of Document Style Semantics and Specification
Language (DSSSL), an ISO standard. The basic goals of XSL are:

• To be used over the Internet

• To be readable by a human

• To be created easily

XSL uses a variant of JavaScript. The variant includes features for applying
style to Web documents. XSL focuses on document style applications. XSL
with XML has the ability to fetch data from a document and present the data
with a desired style.

The second method of using an XML parser and a Java compiler is first based
on the premise that applications with XML require an XML parser. The
second premise is that programmers use either a command-line interface or an

http://www.itknowledge.com/reference/standard/1556226683/ch01/www.sun.com
http://www.itknowledge.com/reference/standard/1556226683/ch01/msdn.microsoft.com
http://www.itknowledge.com/reference/standard/1556226683/ch01/www.w3.org/style/xsl

application programming interface (API) to include parsing. Third, XML
builds information interchange languages. And finally, the use of the notion of
an Object Model Interface is a keystone factor of this method.

Note: The goal of this technology is the integration of the Document Object
Model and the API. The Web site for the latest is: www.w3.org/DOM/.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/reference/standard/1556226683/ch01/www.w3.org/dom/
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch01/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 2
XML Design Policy
Included in This Chapter:

• Some Related Internet Sites

• Production Rules Overview

• Well-Formed Documents

• Valid Documents

• Document Structure

• Logical Structure

• Physical Structure

• XML Processor Guidelines

For purposes of discussion, a policy can consist of recommendations (may do
this), specifications or rules (shall do this), structure (parameters are this and
not that), and guidelines (steps to do this). The ultimate goal of an XML
design policy is for a developed XML document to have a conforming XML
processor return no error messages. Structure, not appearance, is the
underpinning concept for XML design. There are other “X languages” that
establish relationships, pointers, and presentation.

To achieve an error-free goal, one needs to be knowledgeable of the XML
production rules, the processor constraints and guidelines, and the logical and
physical structures of XML documents. The underpinnings of these items are
ten design goals for XML. The key goals for XML are to be usable over the
Internet, to support a wide variety of applications, to be compatible with
SGML, and to have a minimal set of optional features. Other goals are that
XML design can be written easily, be prepared quickly, and be formal

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

(organized) and concise. XML documents should be human-legible and should
be easy to create. The tenth goal reflects the growth of storage capacity:
“Terseness in XML markup is of minimal importance.”1

1A goal of the W3C XML Activity was to write a concise document. The
XML Recommendation is a set of 89 conclusions, or production rules,
without alternatives and with minimal comments. Experts in the field of
publishing technology, such as SGML, established these rules after lengthy
discussions. One also needs a high level of knowledge of computer science
because of the technical jargon used, such as production, declaration, and
token.

Note: Based on the tenth goal, an XML markup commandment is “Thy
markup shall be commented.”

There are 89 production rules. These rules have over 500 permutations. This
book’s focus is on some of the key permutations to show how XML can be
applicable to CORBA.

Note: This chapter relies heavily on the production rules to give a
foundational basis for further discussions on how to implement them. The
place and order of a production rule is important in an implementing context.

There are two types of processor constraints: well-formedness and validity.
They are the consequences for failure to adhere to the production rules. These
constraints are the basis for the design of the functions of a conforming XML
processor. A conforming processor must follow or adhere to the
well-formedness constraints in the Extensible Markup Language (XML) 1.0
W3 Recommendation (10 February 1998).

A well-formedness constraint is a rule that when not adhered to produces a
fatal error and a conforming XML processor must report to the application.
The process terminates and gives a message. The process cannot continue to
pass character data and information about the document’s logical structure to
the application in the normal way.

A validity constraint is a rule that when not adhered to produces an error where
the results are unpredictable. The conforming processor may detect and report
an error and may recover from it. Validating XML processors must report the
errors at user option.

Note: This chapter relies heavily on the precise language of the XML
Recommendation 1.0 (10 February 1998). Other chapters explain these rules
in language that is appropriate to this book’s objectives.

This chapter closes with guidelines on how a processor should handle the
production rules. These rules state the implications of all of the production
rules. These guidelines can be considered a supplement of the well-formedness
and validity constraints.

Some Related Internet Sites

These sites are directly related to the Recommendation. Other sites are listed in
Appendix E.

www.w3.org/XML (for XML activity)

www.w3.org/TR (other recommendations)

www.w3.org/XML/xml-19980210-errata (for errors)

ftp://nic.ddn.mil/rfc/rfcNNNN.txt (NNNN is RFC number; see 1766 for
language ID tags)

charts.unicode.org/ (canonical code values)

Production Rules Overview

As stated previously, there are 89 production rules, and these rules have over
500 permutations. These rules can be classified in four general areas:
document definition (Rules 1-38), logical document structure (Rules 39-65),
physical document structure (Rules 66-83), and character definition (Rules
84-89). The rules comply with the Extended Backus-Naur Form (EBNF)
notation. The rule form is:

symbol ::= expression

Also included with some rules are processor constraints, well-formedness and
validity. These constraints are at times further clarified “for compatibility” and
“for interoperability.” These clarifications relate to XML’s relationship to
SGML.

These production rules were designed and developed to implement the ten
XML goals given in the second paragraph of this chapter. It may be a semantic
issue but this book refers to XML production rules rather than XML as syntax.
XML permits you to create your own markup tags. You are not limited to
using or distorting tags with specified syntax as with SGML or more
particularly HTML.

Note: All the production rules are listed in Appendix C.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/reference/standard/1556226683/ch02/www.w3.org/xml
http://www.itknowledge.com/reference/standard/1556226683/ch02/www.w3.org/tr
http://www.itknowledge.com/reference/standard/1556226683/ch02/www.w3.org/xml/xml-19980210-errata
ftp://nic.ddn.mil/rfc/rfcnnnn.txt
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Well-Formed Documents

Five steps in achieving well-formedness for parsed entities:

1. All internal parameter entities are well-formed by definition.

2. The well-formed document entity matches the production document (Rule 1).

3. A well-formed internal general parsed entity’s replacement text matches the production
content (Rule 43).

4. A well-formed external general parsed entity matches the production extParsedEnt (Rule 78).
Rule 78:

extParsedEnt ::= TextDecl? Content

5. A well-formed external parameter entity matches the production extPE (Rule 79).
Rule 79:

extPE ::= TextDecl? ExtSubsetDecl

Note: Rules 78 and 79 use Rules 31 (ExtSubsetDecl), 43 (Content), and 77 (TextDecl).

A consequence of well-formedness in entities is the logical and physical structures in an XML
document are properly nested. This means that no start-tag, end-tag, empty-element tag, element,
comment, processing instruction, character reference, or entity reference can begin in one entity and
end in another.

Note: See Rules 15, 16, 39, 40, 42, 44, 66, and 68 for details.

There are ten well-formedness constraints in the Recommendation. If a well-formedness constraint is
not adhered to, there is a fatal error and a conforming processor must give notification and terminate its
processing.

Note: These constraints are listed in Appendix D and are more detailed with their associated production
rules.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Valid Documents

A valid XML document complies with the stated validity constraints. There are 21 validity constraints
in the Recommendation. If a validity constraint is not adhered to, the result is unpredictable. A
validating processor must report validity constraint failures.

Note: These constraints are listed in Appendix D and are more detailed with their associated production
rules.

Document Structure

An XML document basically consists of:

• A root document entity
Rule 1:

document ::= prolog element Misc*

• Declarations (in logical and physical structures)

• Comments
Rule 15:

Comment ::= '<!- -' ((Char - '-') | ('-' (Char - '-')))* '- ->'

Example of a comment:

<!- - This is a comment example. - ->

• Character references

• Processing instructions
Rule 16:

PI ::= '<?' PI Target (S (Char* - (Char* '?>' Char*)))? '?>'

• Elements (logical structure, Rules 39-65)

• Entities (physical structure, Rules 66-83)

Logical Structure

The logical structure of an XML document is indicated by explicit markup known as elements
bounded by:

• Start-tags

• End-tags

• Empty-element tags

Rules for Element Type Declarations

An element is the core component of the logical structure. The key characteristics of an element are:

• Has a type, identified by name (generic identifier (GI)).

• May have a set of attribute specifications, each with a unique name and value.

An element is defined by Rule 39:

element ::= EmptyElemTag | STag content ETag
 [WFC: Element Type Match]
 [VC: Element Valid]

When an element has content, text, a start-tag, and an end-tag must delimit the content. When an
element is empty, it must be represented either by a start-tag immediately followed by an end-tag or by
an empty-element tag.

Well-Formedness Constraint: Element Type Match means the name in an element’s end-tag must
match the element type in the start-tag.

Validity Constraint: Element Valid means there must be a declaration matching elementdecl (Rule 45)
where the name (Rule 5) matches the element type and one of the following holds:

• The declaration matches EMPTY and the element has no content.

• The declaration matches children (Rule 47) and the child element sequence belongs to the
content model language, with optional white space (Rule 3) between each child element.

• The declaration matches MIXED (Rule 51) and the content consists of character data (Rule
14) and child elements whose types match names in the content model.

• The declaration matches ANY, and the types of any child elements have been declared.

Note: Rule 39 uses production Rules 40, 41, 43, and 44.

The start-tag appearing at the beginning of a non-empty element has two production rules:

Rule 40:

STag ::= '<' Name (S Attribute)* S? '>'
 [WFC: Unique Att Spec]

Rule 41:

Attribute ::= Name Eq AttValue
 [VC: Attribute Value Type]
 [WFC: No External Entity Reference]
 [WFC: No < in Attribute Values]

Notes: (Rules 40 and 41):

• Element’s type is the Name between the start-tag and end-tag.

• An attribute specification is a Name-AttValue pair.

• Well-Formedness Constraint: Unique Att Spec means an attribute name can appear once in the
same start-tag or empty-element tag.

• Validity Constraint: Attribute Value Type means the attribute must have been declared. The
value must be of the type declared for it.

• Well-Formedness Constraint: No External Entity Reference means an attribute value cannot
contain entity references to external entities.

• An attribute value is the content or text between the ‘or’ delimiters.

• Well-Formedness Constraint: No < in Attribute Values means the replacement text of a
referenced entity in an attribute value (other than “<”) must not contain a <.

The end-tag, which echoes the start-tag, appearing at the end of a non-empty element has this
production rule:

Rule 42:

ETag ::= '</' Name S? '>'

Example of a start-tag and end-tag:

<termdef id="dt-CORBAservices" term="Opposite of CORBAfacilities.">

</termdef>

The content of elements is the text between the start-tag and the end-tag.

Rule 43:

content ::= (element | CharData | Reference | CDSect | PI | Comment)*

Note: Rules 14, 15, 16, 18, 39, and 67 and are used in this rule definition.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Rule for Empty Elements

The tag for an empty element is a special form used for an element without content. It serves the
same function as a start-tag followed by an end-tag. It must be used when an element is declared
EMPTY.

Rule 44:

EmptyElemTag ::= '<' Name (S Attribute)* S? '/>'
 [WFC: Unique Att Spec]

Well-Formedness Constraint: Unique Att Spec means a name can appear once in the same
start-tag or empty-element tag.

Rules for Element Types

The element structure for an XML document for validation purposes can be defined or
constrained (boundaries established) using element type (Rules 45 and 46) and attribute-list
declarations (Rules 52 and 53).

An element type declaration can also establish the constraints of an element’s children (Rule 47).

Note: At the user’s option, an XML processor can issue a warning when a declaration mentions
an element type that has no declaration.

An element type declaration takes the form:

Rule 45:

elementdecl ::= '<!ELEMENT' S Name S contentspec S? '>'
 [VC: Unique Element Type Declaration]

Validity Constraint: Unique Element Type Declaration means no element may be declared more
than once.

Rule 46:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

contentspec ::= '<!EMPTY' | 'ANY' | Mixed | children

Note: The Name gives the element type being declared.

Examples of Element Type Declarations:

<!ELEMENT br EMPTY>
<!ELEMENT container ANY>
<!ELEMENT p (#PCDATA|emph)* >
<!ELEMENT %name.para; %content.para; >

Rules for Element Contents

Element content is when an element type can contain only child elements, no character data,
optionally separated by white space (Rule 3).

The option requires a content model, a grammar that governs the allowed child element types
and the order of their appearance. The grammar is based on content particles (cps) (Rule 48).

Four element-content models are:

Rule 47:

children ::= (choice | seq) ('?' | '*' | '+')?

Rule 48:

cp ::= (Name | choice | seq) ('?' | '*' | '+')?

Rule 49:

choice ::= '(' S? cp (S? '|' S? cp)* S? ')'
 [VC: Proper Group/PE Nesting]

Rule 50:

seq ::= '(' S? cp (S? ',' S? cp)* S? ')'
 [VC: Proper Group/PE Nesting]

Validity Constraint: Proper Group/PE Nesting means parameter-entity replacement text must be
properly nested within parentheses.

For interoperability, if a parameter-entity reference appears in a choice, seq, or Mixed construct,
its replacement text should not be empty. A connector (| or ,) should not be the first nor last
non-blank character of the replacement text.

Examples of Element content models:

<!ELEMENT div1 (head, (p | list | note)*, div2*)>
<!ELEMENT spec (front, body, back?)>
<!ELEMENT dictionary-body (%div.mix; | %dict.mix;)*>

Note: The content of an element matches a content model if it is possible to trace out a path
through the content model, obeying the sequence, choice, and repetition operators and matching
each element in the content against an element type in the content model.

For compatibility, it is an error if an element in the document matches more than one occurrence
of an element type in the content model.

Rule for Mixed Content

Mixed content is when an element type may contain character data, optionally interspersed with
child elements. The types of child elements may be constrained, but not their order or their
number of occurrences. A mixed-content declaration requires that the name(s) give the types of
elements that may appear as children.

Rule 51:

Mixed ::= '(' S? '#PCDATA' (S? '|' S? Name)* S? ')*' | '(' S?
 '#PCDATA' S? ')'
 [VC: Proper Group/PE Nesting]
 [VC: No Duplicate Types]

Validity Constraint: Proper Group/PE Nesting means parameter-entity replacement text must be
properly nested within parentheses.

For interoperability, if a parameter-entity reference appears in a choice, seq, or Mixed construct,
its replacement text should not be empty. A connector (| or ,) should not be the first nor last
non-blank character of the replacement text.

Validity Constraint: No Duplicate Types means the same name must not appear more than once
in a single mixed-content declaration.

Examples of mixed-content declarations:

<!ELEMENT p (#PCDATA|a|ul|b|i|em)*>
<!ELEMENT p (#PCDATA | %font; | %phrase; | %special; | %form;)* >
<!ELEMENT b (#PCDATA)>

Rules for Element Attributes

An attribute (Rule 41) associates a name-value pair with an element (Rule 39). An attribute
specification appears only within a start-tag or an element tag.

An attribute-list declaration specifies the name, data type, and default value (if any) of each
attribute associated with a given element. An attribute-list declaration may:

• Define the set of attributes pertaining to a given element type.

• Establish type constraints for these attributes.

• Provide default values for attributes.

In an attribute-list declaration, the Name in the AttlistDecl Rule (52) is the type of element.
Name in the AttDef Rule (53) is the name of the attribute.

Rule 52:

AttlistDecl ::= '<!ATTLIST' S Name AttDef* S? '>'

Rule 53:

AttDef ::= S Name S AttType S DefaultDecl

Note: AttType is Rule 54. DefaultDecl is Rule 60.

For interoperability, a DTD can have:

• One attribute-list declaration for a given element type.

• One attribute definition for a given attribute name.

• One or more attribute definitions in an attribute-list declaration.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Rules for Attribute Types

There are three kinds of attribute types:

• A string type (Rule 55)

• A tokenized type (Rule 56)

• An enumerated type (Rules 57-59)

Rule 54:

AttType ::= StringType | TokenizedType | Enumerated Type

The string type may take any literal string as a value.

Rule 55:

StringType ::= 'CDATA'

The tokenized type has a variety of lexical and semantic constraints.

Rule 56:

TokenizedType ::= 'ID'[VC: ID]
 [VC: One ID per Element Type]
 [VC: ID Attribute Default]
 | 'IDREF'[VC: IDREF]
 | 'IDREFS'[VC: IDREF]
 | 'ENTITY'[VC: Entity Name]
 | 'ENTITIES'[VC: Entity Name]
 | 'NMTOKEN'[VC: Name Token]
 | 'NMTOKENS'[VC: Name Token]

Notes:

• Validity Constraint: ID means values of the type ID must match the Name production (Rule
5). ID values must uniquely identify the elements that bear them.

• Validity Constraint: One ID per Element Type means an element type must have only one
ID specified attribute.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Validity Constraint: ID Attribute Default means an ID attribute must have a declared default
of #IMPLIED or #REQUIRED.

• Validity Constraint: IDREF means values of types IDREF and IDREFS MUST match
Name and Names production respectively (Rules 5 and 6). IDREF values must match the
value of some ID attribute.

• Validity Constraint: Entity Name means values of types ENTITY and ENTITIES must
match Name and Names production (Rules 5 and 6).
Each Name must match the name of an unparsed entity (Rule 66) declared in the DTD.

• Validity Constraint: Name Token means values of types NMTOKEN and NMTOKENS
must match Nmtoken and Nmtokens production (Rules 7 and 8).

Rules for Enumerated Types

There are two kinds of enumerated types. They have a variety of attributes as determined by the
declaration.

Rule 57:

EnumeratedType ::= NotationType | Enumeration

Rule 58:

NotationType ::= 'NOTATION' S '(' S? Name (S? | S? Name)* S? ')'
 [VC: Notation Attribute]

Rule 59:

Enumeration ::= '(' S? Nmtoken (S? '|' S? Nmtoken)*
 [VC: Enumeration]

Notes:

• A NOTATION attribute identifies a notation, declared in the DTD with associated system
and/or public identifiers, to be used in interpreting the element to which the attribute is
attached.

• A notation identifies by name the format of an unparsed entity.

• For interoperability, the same Nmtoken must occur only once in the enumerated types of an
element type.

• Validity Constraint: Notation Attribute means Values of this type must match one of the
notation names included in the declaration; all notation names in the declaration must be
declared.

• Validity Constraint: Enumeration means values of this type must match one of the Nmtoken
tokens in the declaration.

Rule for Attribute Defaults

Rule 53 (AttDef) contains DefaultDecl; it is for declaring an attribute default. If an attribute
declaration does not provide whether the attribute’s presence is required, DefaultDecl is used.

Rule 60:

DefaultDecl ::= '#REQUIRED' | '#IMPLIED' | (('FIXED' S)? AttValue)
 [VC: Required Attribute]
 [VC: Attribute Default Legal]
 [WFC: No < in Attribute Values]
 [VC: Fixed Attribute Default]

Notes:

• Validity Constraint: Required Attribute means that when the default is #REQUIRED, the
attribute must be specified for all elements of the type in the attribute-list declaration (Rule
52).

• Validity Constraint: Attribute Default Legal means the declared default value must meet the
lexical constraints of the declared attribute type (Rule 54).

• Well-Formedness Constraint: No < in Attribute Values means the replacement text of a
referenced entity in an attribute value (other than “<”) must not contain a <.

• Validity Constraint: Fixed Attribute Default means when the default is #FIXED, the
instances of that attribute must match the default value.

Examples of attribute-list declarations:

<!ATTLIST termdef
 id ID #REQUIRED
 name CDATA #IMPLIED>
<!ATTLIST list
 type (bullets|ordered|glossary) "ordered">
<!ATTLIST form
 method CDATA #FIXED "POST">
-

Notes:

• #REQUIRED means that the attribute must be provided.

• #IMPLIED mean no default value is provided.

• #FIXED means that the attribute must have a default value.

The processor must normalize an attribute value before it is checked for validity or passed to an
application. Normalization is as follows:

• A character reference is processed by appending it to the attribute value.

• An entity reference is processed by recursively processing the replacement text of the
entity.

• White space (Rule 3) is processed by appending a single #x20.

• Other characters are processed by appending them to the normalized value.

Notes:

• If the declared value is not CDATA, then the XML processor must further process the
normalized attribute value by discarding any leading and trailing space (#x20) characters, and
by replacing sequences of space (#x20) characters by a single space (#x20) character.

• A non-validating parser should treat all attributes for which no declaration has been read as
if declared CDATA.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Rules for Conditional Sections

Conditional sections (Rules 61-65) are portions of the DTD external subset that are included in or
excluded from the DTD’s logical structure based on the keyword that governs them.

Rule 61:

conditionalSect ::= includeSect | ignoreSect

Rule 62:

includeSect ::= '<![' S? 'INCLUDE' S? '[' extSubsetDecl ']]>'

Rule 63:

ignoreSect ::= '<![' S? 'IGNORE' S? '[' ignoreSectContents ']]>'

Rule 64:

ignoreSectContents ::= Ignore ('<![' ignoreSectContents ']]>' Ignore)*

Rule 65:

Ignore ::= Char* - (Char* ('<![' | ']]>') Char*)

Example of conditional sections:

<!ENTITY %draft 'INCLUDE'>
<!ENTITY %final 'IGNORE'>
<![%draft;[
<!ELEMENT book (comments*, title, body, supplements?)>
]]>
<![%final;[
<!ELEMENT book (title, body, supplements?)>
]]>
-

Notes:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• A conditional section may contain one or more complete declarations, comments, processing
instructions, or nested conditional sections, intermingled with white space.

• INCLUDE means the contents of the conditional section are part of the DTD.

Physical Structure

The physical structure of an XML document consists of entities. Entities are storage units that have
content. All are identified by name except the document entity and the external DTD subset. There is
only one document entity.

Entities are either parsed or unparsed. A parsed entity’s contents are referred to as its replacement text.
This text is an integral part of the document. A parsed entity is invoked by name using entity references.

An unparsed entity’s contents may or may not be text. The text may not be XML. An unparsed entity
does have an associated notation (Rule 82) identified by name. An unparsed entity is invoked by name
given in the value of ENTITY or ENTITIES attributes.

An entity can be general or a parameter. A general entity is for use within the document content. A
parameter entity is for use within the DTD. Because they occupy different namespaces, a general entity
and a parameter entity with the same name are distinctive.

Rule for Character References

A character reference refers to a specific character in the ISO/IEC 10646 character set. That is one not
directly accessible from available input devices.

Rule 66:

CharRef ::= '&#' [0-9]+ ';' | '&#x' [0-9a-fA-F]+ ';'
 [WFC: Legal Character]

Well-Formedness Constraint: Legal Character means characters referred to using character references
must match the production of Char (Rule 2).

If the character reference begins with “&#x”, the digits and letters up to the terminating semicolon (;)
provide a hexadecimal representation of the character code point in ISO/IEC 10646. If it begins with
“&#”, the digits up to the terminating semicolon (;) provide a decimal representation.

Rules for Entity References

An entity reference refers to the content of a named entity. Parsed general entity references use as
delimiters the ampersand (&) and semicolon (;). Parameter-entity references use as delimiters the
percent sign (%) and semicolon (;). Entity reference is governed by Rules 67-69.

Rule 67:

Reference ::= EntityRef | CharRef

Rule 68:

EntityRef ::= '&' Name ';'
 [WFC: Entity Declared]
 [VC: Entity Declared]
 [WFC: Parsed Entity]
 [WFC: No Recursion]

Rule 69:

PEReference ::= '%' Name ';'

 [VC: Entity Declared]
 [WFC: No Recursion]
 [WFC: In DTD]

Well-Formedness Constraint: In a document without a DTD, a document with only an internal DTD
subset which contains no parameter entity references, or a document with “standalone='yes'”, Entity
Declared means the Name given in the entity reference must match that in an entity declaration.
However, there is an exception. Well-formed documents need not declare amp, lt, gt, apos, or quot.

Validity Constraint: In a document with an external subset or external parameter entities with
“standalone='no'”, Entity Declared means the Name given in the entity references must match that in an
entity declaration.

For interoperability, valid documents should declare the entities amp, lt, gt, apos, or quot in the specified
form.

Well-Formedness Constraint: Parsed Entity means an entity reference must not contain the name of an
unparsed entity. However, unparsed entities may be referred to only in attribute values (Rule 10)
declared to be of type ENTITY or ENTITIES.

Well-Formedness Constraint: No Recursion means a parsed entity must not contain a recursive reference
to itself, either directly or indirectly.

Well-Formedness Constraint: In DTD means Parameter-entity references may only appear in the DTD.

Example of character and entity references:

Type <key>less-than</key> (<) to save options.
This document was prepared on &docdate; and is
classified &security-level;.

Example of parameter-entity reference:

<! declare the parameter entity "ISOLat2"... >
<!ENTITY %ISOLat2
 SYSTEM "hhtp://www.xml.com/iso/isolat2-xml.entities">
<! ... now reference it >
%ISOLat2

Rules for Internal Entities

An entity declaration is governed by five production rules (Rules 70-74). The Name in the rules
identifies the entity in an entity reference (Rule 68) or, in the case of an unparsed entity, in the value of
an ENTITY or ENTITIES attribute.

Note: The first declaration occurrence of an entity is binding.

Rule 70:

EntityDecl ::= GEDecl | PEDecl

Rule 71:

GEDecl ::= '<!ENTITY' S Name S EntityDef S? '>'

Rule 72:

PEDecl ::= '<!ENTITY' S '%' S Name S PEDef S? '>'

Rule 73:

EntityDef ::= EntityValue | (ExternalID NDataDecl?)

Rule 74:

PEDef ::= EntityValue | ExternalID

An internal entity is when the entity definition is an EntityValue (Rule 9). There is no separate physical
storage object, and the content of the entity is given in declaration. An internal entity is a parsed entity.

Example of an internal entity declaration:

<!ENTITY Pub-Status "This is a pre-release of the specification">

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Rules for External Entity Declarations

An external entity is an entity that is not a part of the internal markup declarations. There is no entity
definition that is an EntityValue (Rule 9). There are two production rules (Rules 75-76). If the
NDATADecl (Rule 76) is present, a general unparsed entity exists; otherwise, it is a parsed entity.

Rule 75:

ExternalID ::= 'SYSTEM' S SystemLiteral | 'PUBLIC' S PubidLiteral
 S SystemLiteral

Rule 76:

NDataDecl ::= S 'NDATA' S Name
 [VC: Notation Declared]

Notes:

• Validity Constraint: Notation Declared means the Name must match the declared name of
notation (Rule 82).

• The SystemLiteral is called the entity’s system identifier.

• The PubidLiteral is an external identifier, public.

Examples of external entity declarations:

<!ENTITY galley
 SYSTEM "http://www.myplace.com/template/Galley.xml">
<!ENTITY galley
 PUBLIC "-//Myplace//TEXT Standard galley template//EN"
 "http://www.myplace.com/template/Galley.xml">
<!ENTITY galley
 SYSTEM "../grafix/Galley.gif"
 NDATA gif>

Rule for Text Declarations

A parsed entity is invoked by name using an entity reference. It is an integral part of the document. Its

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

contents are referred to as replacement text.

A text declaration can only appear at the beginning of an external parsed entity. A text declaration
must be provided literally, not by reference to a parsed entity.

Rule 77:

TextDecl ::= '<?xml' VersionInfo? EncodingDecl S? '?>'

Note: This rule uses Rules 3, 24, and 80.

Rules for Notation Declarations

Notations identify by name the format of unparsed entities, the format of elements that bear a notation
attribute, or the application to which a processing instruction is addressed.

Notation declarations provide a name for the notation for use in entity and attribute-list declarations
and in attribute specifications and an external identifier for the notation which may allow an XML
processor or its client application to locate a helper application capable of processing data in the given
notation.

Rule 82:

NotationDecl ::='<NOTATION' S Name S (ExternalID | PublicID) S? '>'

Rule 83:

PublicID ::= 'PUBLIC' S PubidLiteral

XML processors must provide applications with the name and external identifier(s) of any notation
declared and referred to in an attribute value, an attribute definition, or an entity declaration.

XML Processor Guidelines

Processor guidelines are precise statements on how a conforming processor shall implement the
productions. The guidelines supplement the well-formedness and validity constraints. Why do you
need to be aware of these guidelines? Your ultimate goal as a designer is to have error-free XML
markup.

Character Encoding Guidelines

The requirements for processors to do character encoding in entities are:

1. Each external parsed entity may use different encoding.

2. All XML processors must be able to read entities in either UTF-8 or UTF-16.

3. The XML processor must use the Byte Order Mark described by ISO/IEC 10646 to
differentiate between UTF-16 (beginning code) and UTF-8.

4. Parsed entities using encoding other than UTF-8 and UTF-16 must begin with a text
declaration containing an encoding declaration.

5. In the document entity, the encoding declaration is part of the XML declaration (Rule 23).

6. The EncName (Rule 81) is the name of the encoding used.

The encoding declaration rules are:

Rule 80:

EncodingDecl ::= S 'encoding' Eq ('"' EncName '"' | "'" EncName "'")

Rule 81:

EncName ::= [A-Za-z] ([A-Za-z0-9._] | '-')*

Note: Encoding name contains only Latin characters.

Examples of encoding declarations:

<?xml encoding='UTF-8'?>
<?xml encoding='ISO-10646-UCS-2'?>
<?xml encoding='ISO-8859-1'?>
<?xml encoding="EUC-JP"?>

Unparsed Entities Treatment Guidelines

Guidelines for an XML processor’s treatment of unparsed entities are:

1. Reference in Content is anywhere after the start-tag and before the end-tag of an element. It
corresponds to the non-terminal content.

2. Reference in Attribute Value is within either the value of an attribute in a start-tag or a
default value in an attribute declaration. It corresponds to the non-terminal AttValue.

3. Attribute Value is a Name, not a reference. It appears either as the value of an attribute that
has been declared as type ENTITY or as one of the space-separated tokens in the value of an
attribute which has been declared as type ENTITIES.

4. Reference in Entity Value is within a parameter or internal entity’s literal entity value in the
entity’s declaration. It corresponds to the non-terminal EntityValue.

5. Reference in DTD is within either the internal or external subsets of the DTD, but outside of
an EntityValue or AttValue.

Not Recognized Guidelines

The Not Recognized guidelines are:

1. Outside of the DTD the percent (%) character has no special significance; thus, what would
be parameter-entity references in the DTD are not recognized as markup in content.

2. The names of unparsed entities are not recognized except when they appear in the value of an
appropriately declared attribute.

Included Guidelines

The Included guidelines are:

1. An entity is included when its replacement text is retrieved and processed, in place of the
reference itself, as though it were part of the document at the location the reference was
recognized.

2. The replacement text may contain both character data and (except for parameter entities)
markup.

3. A character reference is included when the indicated character is processed in place of the
reference itself.

Included if Validating Guidelines

The Included if Validating guidelines are:

1. For an XML processor to validate a document it must include the document’s replacement
text.

2. If a non-validating parser does not include the replacement text, it must inform the

application that it recognized, but did not read, the entity.

Forbidden Guidelines

The Forbidden guidelines constitute fatal errors:

1. The appearance of a reference to an unparsed entity.

2. The appearance of any character or general-entity reference in the DTD except within an
EntityValue or AttValue.

3. A reference to an external entity in an attribute value.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Included in Literal Guidelines

The Included in Literal guidelines are:

1. When an entity reference appears in an attribute value or a
parameter-entity reference appears in a literal entity value, its
replacement text is processed in place of the reference as though it were
part of the document at the location the reference was recognized. There
is an exception. A single- or double-quote character in the replacement
text is treated as a normal data character and does not terminate the
literal.

2. Well-formed:

<!ENTITY % YN '"Yes"' >
<!ENTITY WhatSheSaid "She said &YN;" >

3. Not well-formed:

<!ENTITY EndAttr "27'" >
<element attribute='a-&EndAttr;>

Notify Guideline

The Notify guideline is:

When the name of an unparsed entity appears as a token in the value of an
attribute of declared type ENTITY or ENTITIES, a validating processor must
inform the application of the system and public identifiers for both the entity
and its associated notation.

Bypassed Guideline

The Bypassed guideline is:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

When a general entity reference appears in the EntityValue in an entity
declaration, it is bypassed and left as is.

Included as PE Guidelines

The Included as PE (parameter-entity) guidelines are:

1. Parameter entities need only be included if validating.

2. When a parameter-entity reference is recognized in the DTD and
included, its replacement text is enlarged by the attachment of one
leading and one following space (#x20) character. The intent is to
constrain the replacement text of parameter entities to contain an
integral number of grammatical tokens in the DTD.

Internal Entity Treatment Guideline

The Internal Entity Treatment guideline is:

The treatment of internal entities requires that an entity’s value be considered
in its two forms: literal entity value or replacement text. The literal entity value
is the quoted string present in the entity declaration (non-terminal
EntityValue).

The replacement text is the content of the entity after replacement of character
references and parameter-entity references.

The internal entity value as given in EntityValue may contain these references:

• Character

• Parameter-entity

• General-entity

The replacement text that is included must contain:

• The replacement text of any parameter entities referred to.

• The character referred to in place of any character references in the
literal entity value.

The general-entity references must be left, unexpanded.

Predefined Entities Guidelines

The Predefined Entities guidelines are:

Entity and references can be used to escape the left angle bracket (<),
ampersand (&), and other delimiters. These general entities have been
specified for this purpose: amp, lt, gt, apos, and quot.

Numeric references are handled by “<” and “&”. They are used to
escape the left angle bracket (<) and ampersand (&) when they occur in
character data.

Example declarations:

<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&&">
<!ENTITY apos "'">
<!ENTITY quot """>

Miscellaneous Guidelines

The document entity serves as the root of the entity and a starting point for an
XML processor.

Conformance is concerned with whether a processor is validating or
non-validating.

A processor must report any well-formedness constraint violations whether
document entity or parsed entity.

Validating Process Guidelines

A validating processor must:

• Report violations of the declarations in the DTD (fatal errors).

• Report any validity constraint errors.

• Read and process the DTD and external referenced parsed entities.

A non-validating processor must:

• Report violations of the declarations in the DTD (fatal errors).

• Read and process the internal DTD subset and only parameters up to
the first reference that cannot be read.

Users can be impacted by processor type, in particular the non-validating type.

• Certain well-formedness errors, specifically those that require reading
external entities, may not be detected.

• Attribute values may not be normalized when information is passed
from processor to an application.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch02/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 3
Developing an XML Document Type
Definition (DTD)
Included in This Chapter:

• DTD FAQ

• What is a DTD?

• Document Logical Structure

• Document Physical Structure

• Markup Declarations Overview

• Developing a Model DTD

• Developing a Document Type Declaration

• Role of the Processor

This chapter looks at the fundamental process for developing a document type
definition (DTD). The ideas given are extended in the chapters on developing
DTDs for CORBA.

This chapter concludes with a discussion on the key tool for developing a DTD
and XML documents, the parser (processor). In actuality there are three key
tools: parsers, editors (your choice of a text editor), and browsers. Check the
appropriate Web sites for the latest information on XML implementation by
browser vendors since this is, to say the least, a dynamic area. It is also
recommended to go beyond the parser discussion and do a search on “XML
parser.”

The following section has ten frequently asked questions about a DTD. The
answers to these questions are expanded upon in other sections of this chapter.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

DTD FAQ

1. What is a document type definition?
An XML user can define the role of each element of text in a formal
model, known as a document type definition (DTD). This action enables
the user to declare where each component of document occurs in a valid
place within the interchanged data stream.
An XML DTD enables a computer, that is, a parser, to check, for
example, the logical structure of a document. A rule of a logical
document structure is that a second-level heading is not entered prior to
its associated first-level heading.

Note: Document structure logic is based on an evolutionary process
that established the elements with their attributes and their order in a
given document type. For example, the logical structure of a novel is
different from a textbook. They may or may not have similar physical
attributes such as font type and size.

XML does not require the presence of a DTD. When a DTD is not used,
an XML system assigns a default definition for undeclared components
of the markup.

Note: A default definition may enable one to use HTML tags when
both the start-tags and end-tags are present.

2. What are some types of document types (text structures) that can be
defined by XML?
XML can describe any logical text structure: book, database, dictionary,
encyclopedia, form, letter, memo, or report. It extends the notion of
page. A spreadsheet can be a document type. Later in this chapter a
general model DTD for an e-mail document type is developed.

3. What are three key logical components of an XML document?
The three key logical components of an XML document are entity,
element, and attribute. Each entity can contain one or more logical
elements. Each of these elements can have certain attributes (properties)
that describe the way in which it is to be processed.

4. What is the importance of the concept of document to XML?
XML is based on the metaphor (an implicit designation) of a document
composed of a series of entities (containers). In programming parlance
the equivalent word would be object. Class is also an equivalent in some
cases.

5. What is the important difference between XML and SGML?
Simplistically, XML is an optimized markup language (subset) of
SGML for the Web. XML is data-centric rather than publishing-centric.

6. What is an important difference between XML markup and HTML
markup?
An XML document must clearly mark where the start and end of each of
the component parts occurs. The core rule in XML is start-tag, content,
and end-tag; or an empty-element tag.

7. How does XML differ from other markup languages?
XML differs from other markup languages in that it not only indicates
where a change of appearance occurs or where a new element starts, but
identifies clearly the boundaries of every part of a document. A
boundary can be a new chapter, a new paragraph (text), or a new
reference.

Note: A document is anything that can be logically structured with
content and containers. An XML document is similar to the desktop
icons “folder” and “trash can.”

For this to happen, a user must provide a document type definition
(DTD) that declares each of the permitted elements, attributes, entities
and the relationships between elements and entities. These declarations
define the boundaries.

8. How can predefined markup tags be used?
To use a set of predefined markup tags, a user needs to know how the
markup tags are delimited from normal text and in which order the
various elements should be used.
An XML parser can provide a list of the elements that are valid at each
point in the document. Also it should be able to add automatically the
required delimiters to the name to produce a markup tag. For example,
say a document uses HTML markup and only uses the tag <p>; the
parser should note the requirement for the </p> because XML requires
both a start-tag and an end-tag.

9. What are the standard XML tags (markup)?
XML does not have a predefined set of tags, like the type defined for
HTML, that can be used to mark up documents.
XML is a markup language that can pass information about a
document’s components from one computer system to another computer
system using a DTD.

10. How is XML markup denoted?
Elements and their attributes are entered between matched pairs of angle
brackets (<…>). Entity references start with an ampersand and end with
a semicolon (&…;). XML tag sets are based on a document’s logical
structure.

What is a DTD?

A document type definition (DTD) defines the role of each element of text in a
formal model. When a DTD is used, a parser can establish that each
component of the document occurs in a valid place within the interchanged
data stream.

An XML DTD enables a computer, that is, a parser, to check the logical
structure of a document. A rule of a logical structure is that a second-level
element is not entered prior to its associated first-level element.

XML does not require the presence of a DTD. When a DTD is not used, an
XML system may assign a default definition for undeclared components of the

markup.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Document Logical Structure

Logical structures for XML documents are covered in detail in Section 3 of the
Working Recommendation. A logical structure is a data boundary (element)
while a physical structure is a data container (entity). The logical structure of
an XML document consists of:

• Declarations

• Elements

• Comments

• Character references

The logical structure of an XML document is indicated by explicit markup
known as elements bounded by:

• Start-tags

• End-tags

• Empty-element tags

An important rule is that for every start-tag there must be an end-tag. XML is
rigid about this rule as compared to HTML which permits just a start-tag.

Document Physical Structure

Physical structures for XML documents are covered in detail in Section 4 of
the Working Recommendation. A physical structure is a data container (entity)
while a logical structure is a data boundary (element). The physical structure
of an XML document consists of entities.

Entities are storage units that can have content. All are identified by name
except the document entity and the external DTD subset. There is only one
document entity.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Entities are either parsed or unparsed. A parsed entity’s contents are referred to
as its replacement text. This text is an integral part of the document. An
unparsed entity’s contents may or may not be text.

Markup Declarations Overview

This section is a brief definitional section on the key XML declaration types.
Later sections in this chapter give examples on how to do these declaration
types. Later chapters on developing XML documents for CORBAservices and
CORBAfacilities expand on these fundamental ideas or concepts.

Elements

An element is a key component of a document. It is founded in production
Rule 1:

document ::= prolog element Misc*.

Note: Appendix C is a listing of the 89 production rules.

Element is the XML technique for defining start-tags, end-tags, and
empty-element tags. While HTML has a fixed set of tags, XML permits a user
to define any number of tag sets. There are three key production rules that
govern the notion of element. They are as follows:

• An element (Rule 39) is delimited by a start-tag and end-tag or by an
empty-element tag.

• Content (Rule 43) is text between a start-tag and end-tag.

• An empty element (Rule 44) is represented by a start-tag followed by
an end-tag, or by an empty-element tag.

Attributes

An attribute (Rule 41) associates a name-value pair with an element (Rule 39).
An attribute specification appears only within a start-tag or an empty-element
tag. The basic syntax for an attribute list is <!ATTLIST …>.

An attribute-list declaration specifies the name, data type, and default value (if
any) of each attribute associated with a given element. An attribute-list
declaration may:

• Define the set of attributes pertaining to a given element type.

• Establish type constraints for these attributes.

• Provide default values for attributes.

Note: More technical information on attributes is found in Section 3.3 of the
Working Recommendation and Production Rules 52 and 53.

Entities

There are three key entity notions: entity, entity declaration, and entity

reference. An entity is any data that can be treated as a unit. An entity
declaration is governed by Production Rules 70-74. An entity reference is
governed by Production Rule 67. It signifies that a copy of the entity is to be
included at this point.

Notations

Notations identify by name the:

• Format of unparsed entities.

• Format of elements that bear a notation attribute.

• Application to which a processing instruction is addressed.

Notation declarations provide a name for the notation, for use in entity and
attribute-list declarations and in attribute specifications, and an external
identifier for the notation which may allow an XML processor or its client
application to locate a helper application capable of processing data in the
given notation. Notation declarations are governed by Production Rules 82 and
83.

Conditional Sections

Conditional sections are portions of the DTD external subset, which are
included in or excluded from the DTD’s logical structure based on the
keyword, which governs them. These sections are governed by Production
Rules 61-65.

Processing Instructions

A processing instruction (PI) allows a document to give instructions for one or
more applications. A PI can identify the version of XML being used, the way
in which it is encoded, and whether it references other files or not.

Developing a Model DTD

This section gives a series of steps for developing a model DTD. An e-mail
document type is used as the example. This process is expanded in other
chapters where DTDs are developed for CORBA.

After the first section below the created DTD structure is reintroduced after
each discussed declaration. Declarations are not necessarily developed as they
are given in the DTD. While this may appear to be redundant, it is perhaps
better than doing one complete DTD at the chapter’s end.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Developing an E-mail’s Logical Structure

The first step in designing a document type is to frame the structure for a logical and practical
example. In a database document type, one would only need to lay out one record structure unless
there are is variation. The following markup has the basic logical document structure (components) of
an e-mail document type.

Note: An e-mail document type is a variation of two other document types: a memo and a letter.

<!- - e-mail is the root element - ->
<email>
<!- - Sender's e-mail address has defined attributes - ->
<sender>jcaesar@mail.mercury.com</sender>
<!- - a variation on month day year - ->
<!- - Day name, dd/mm/yy usual format - ->
<date>15 Mar 44 BC</date>
<!- - to could be defined to have first and last names - ->
<to>Senators</to>
<!- - could be free form or formalized - ->
<from>Julius Caesar</from>
<!- - carbon copy is an optional element - ->
<cc>W. Shakespeare</cc>
<!- - optional with parsed data - ->
<subject>Attendance</subject>
<!- - could have more than one paragraph - ->
<text>I will arrive at your gathering at Theater of Pompey
in time for lunch.</text>
</email>

Note: The comments <!- - … - -> reflect design considerations. Also note the use of pairs of start-tags
and end-tags (logical elements).

Developing the Tag Sets for an E-mail Document Type

One must create a document type definition (DTD) to define tag sets. The DTD formally identifies the
relationships among the various elements that form a document. For a simple email model the XML

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

DTD might be:

<!DOCTYPE email [
<!ELEMENT email (date, to, from, cc?, subject?, text+) >
<!ELEMENT date (#PCDATA) >
<!ELEMENT to (#PCDATA) >
<!ELEMENT from (#PCDATA) >
<!ELEMENT cc (#PCDATA) >
<!ELEMENT subject (#PCDATA) >
<!ELEMENT text (#PCDATA) >
]>

This model tells the parser that an email consists of a sequence of header elements: <date>, <to>,
<from>, and, optionally <cc> and <subject>. They are to be followed by the contents of the email.
There must be at least one paragraph present (indicated by the + after text). In this example, the email’s
element components have been defined containing parsed character data (#PCDATA), that is, data that
has been checked to ensure that it contains no unrecognized markup strings.

Note: For text, one could use p or para for paragraph.

Handling Element Variability

Where the position of an element in the model is variable, the element can be defined as part of a
repeatable choice of elements. For example, the model definition for the <text> element could be
modified to allow references to citations to books (in a Web environment read this as Uniform
Resource Locators (URLs)) or references to figures to be located anywhere in a paragraph. The
element could take this form with two added element attributes defined:

<!ELEMENT text (#PCDATA|citation|figref)+ >
<!- - citation could read url - ->
<!ELEMENT citation (#PCDATA) >
<!ELEMENT figref (#PCDATA) >

Note: The preceding example is given to extend the notion of an e-mail.

Developing an Empty-Element Tag

When there is the requirement for a placeholder, an element that does not require any content, then an
empty-element tag is used. No end-tag is required.

For example, <image/> is a type of empty element that acts as a placeholder for a figure’s illustration.
There can also be an optional <caption> element that identifies any text associated with the image. A
<figure> can be defined of consisting of these two elements: <image/> and <caption>.

The following element declarations extend the email model to include figures:

<!ELEMENT email (date, to, from, cc?, subject?, (text|figure)+ >
<!- - header information given in an previous example - ->
<!ELEMENT figure (image, caption?) >
<!ELEMENT image EMPTY >
<!ELEMENT caption (#PCDATA) >

Note: Text or a figure can appear one or more times.

Defining an Element’s Attributes

Where elements can have variable forms or need to be linked together, they can be given suitable
attributes to specify the properties to be applied to them.

For example, it might be decided that the <text> field of email could optionally be printed in bold,
italic, or normal. An attribute-list declaration might be: <!ATTLIST text form (bold|italic|normal)
“normal” >.

This declaration tells the parser that the <text> start-tag can be amended to read <text form="bold"> or
<text form="italic"> if a variant text justification is required. If no such change is stated, the
application is to use the default value, that is, <text form="normal">.

Creating a Unique Identifier Attribute

This provides a cross-reference among locations in a document. It ensures that a unique identifier is
assigned to an element such as each figure by adding an attribute-list declaration of the following form
to the DTD:

<!ATTLIST figure id ID #REQUIRED >

This declaration tells the parser that each <figure> element entered must have a unique identifier
within the start-tag, for example, <figure id="figIX"> rather than <figure>.

Incorporating Standard Text Elements

An example of standard text is boilerplate. For example, Caesar desired to give the appearance of
personalizing his email. A boilerplate paragraph could be included as a greeting to the senator’s
family, such as “I wish all is going well with your household.”

Commonly used text can be declared within the DTD as a text entity. A text entity definition could
take the form:

<!ENTITY mygreeting "I wish all is going well with your household." >

Once such a declaration is made in the DTD a user can use an entity reference of the form
&mygreeting; in place of the full greeting. Only the declaration in the DTD needs to be changed if
Caesar decides to pen a new greeting such as “I came, I saw, I conquered.”

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Incorporating Non-Standard Text Elements

Non-standard text is text that has characters that are not a part of the standard character set. For example,
Caesar wants to include a statement in Greek in his email. The important thing for Caesar to remember here is
that the reader has to have an output device (printer or scribe) that handles the character set.

<?xml version "1.0" encoding="UTF-16">

Note: Greek glyphs (characters) are found in the Unicode Standard 2.1 U+0370 to U+03FF.

Using Text from Any Location

Text stored in another file can also be incorporated into the email using an entity reference. In this case the
entity declaration in the DTD identifies the location of the file containing the text to be referenced:

<!ENTITY chapXXI SYSTEM "http://www.JGCaesar.gov/law/volIII/chapXXI.xml" >

The entity reference &chapXXI; shows where the file is to be added.

Note: Another way to state this entity declaration is:

<!ENTITY chap21 SYSTEM "http://www.JGCaesar.gov/law/vol3/chap21.xml" >

Declaring a Special Non-Standard Character

Non-standard characters such as umlaut, accents (acute, grave, and circumflex), and tilde can be declared to
show how the characters can be generated. A typical entry might read:

<!ENTITY atilde CDATA "ã" >

When the string ã is encountered in the text, the parser replaces it with the code whose decimal value is
227. A hexadecimal equivalent can be used to do the same thing, ã.

Handling Illustrations

XML has many techniques for handling non-standard document elements. Where the coding scheme of an
element of the file such as an illustration differs from that used for normal text, the contents of the element can
be treated as an entity with a special notation:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.jgcaesar.gov/law/voliii/chapxxi.xml
http://www.jgcaesar.gov/law/vol3/chap21.xml

<!ENTITY figXIV SYSTEM "http://www.JGCaesar.gov/law/volIII/figures/figXIV"
NDATA gif >

One could also write this entity another way:

<!ENTITY fig14 SYSTEM "http://www.JGCaesar.gov/law/vol3/figures/fig14"
NDATA gif >

Details of the relevant notation can be defined as an attribute of an element:

<!ATTLIST graphic
 source %URL; #REQUIRED
 type NOTATION (GIF|PNG|JPEG) "JPEG" >

To position the figure in the text, a user either enters an entity reference such as &figXIV; (&fig14;) or an
empty element such as:

<graphic source="http://www.JGCaesar.gov/figures/figXIV.gif" type="GIF"/>

There also needs to be a notation declaration that tells the application what to do with the unparsed data that is
contained in the referenced file. The application’s call format might be:

<!NOTATION GIF SYSTEM "c:\\windows\\system\\gif.dll" >

Handling Different Types of Output

When the text output is on a line-by-line basis, such as computer code, it can be flagged as a special type of
parsed character data by addition of a special reserved attribute, xml:space, to the element declaration:

<!ELEMENT code (#PCDATA) >
<!ATTLIST code xml:space (default|preserve) #FIXED "preserve" >

This declaration preserves the line breaks rather than using the default of replacing line breaks by spaces
before justifying the contents of the element.

Developing a Processing Instruction

A processing instruction (PI) allows a document to give instructions for one or more applications. A
processing instruction can identify the version of XML being used, the way in which it is encoded, and
whether it references other files or not:

<?xml version="1.0" encoding="UTF-16" standalone="no">

The first part of this PI is only stated if the XML markup adheres to the XML Recommendation. The second
part of this PI refers to the type of text format used. In this example it is 16-bit UCS (Universal Multiple-Octet
Coded Character Set) Transformation Format. The third part of this PI indicates that there may be external
markup declarations.

Developing a Document Type Declaration

A document type declaration should not be confused with a document type definition. A document type
declaration either contains the formal markup declarations in its internal subset (between square brackets) or
references a file containing the relevant markup declarations (the external subset):

<!DOCTYPE email SYSTEM "http://www.JGCaesar.gov/dtds/email.dtd">

Role of the Processor

What a processor (parser) should do or not do is defined in the conformance section of the Recommendation
(Section 5). Appendix D of this book is a list of the well-formedness constraints a parser must follow. Also in

http://www.jgcaesar.gov/law/voliii/figures/figxiv
http://www.jgcaesar.gov/law/vol3/figures/fig14
http://www.jgcaesar.gov/figures/figxiv.gif
http://www.jgcaesar.gov/dtds/email.dtd

the same appendix is a list of the validity constraints that apply to all valid documents. Throughout the
Recommendation are further extension of the implications of the production rules. These extensions include in
their wording either “for compatibility” or “for interoperability.”

Note: These constraints and rule extensions are discussed throughout this book where it is appropriate.

In doing one’s XML design of a document, one should verify that the markup adheres to the well-formedness
constraints. The consequence is fatal. Failure to comply with the validity constraints gives unpredictable
results. The results could be a sneeze or pneumonia.

There are many options as to the selection of parsers. For the many designers that may be working with
Internet Explorer 4.0 there are least two XML parsers by Microsoft:

• The C++ parser is non-validating. (This parser comes with IE 4.0.)

• The Java parser is for application developers.

Note: In Internet Explorer 5.0 there is the capability to use XML to write embedded “data islands” within HTML
pages.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch03/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 4
Document Object Model Overview
Included in This Chapter:

• DOM Defined

• DOM Specification Abstract

• DOM's Language Neutrality

• DOM Interface

• DOM and Style Sheets

• Entities

• DOM Interfaces

• DOM Terms and Definitions

• Specification References

• Sample DOM Scenario

This chapter looks at one of the newest of the Web document and
object-oriented technologies. It is defined in the Document Object Model
(DOM) Level 1 Specification, Version 1.0, W3C Recommendation, October 1,
1998. Only Section 1 of the Specification is discussed here because it is
concerned with XML. Section 2 of the Specification covers the specifics of the
HTML component of the DOM.

The URLs for this specification are:

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.ps

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.pdf

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.w3.org/tr/1998/rec-dom-level-1-19981001
http://www.w3.org/tr/1998/rec-dom-level-1-19981001/dom.ps
http://www.w3.org/tr/1998/rec-dom-level-1-19981001/dom.pdf

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.tgz

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.zip

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.txt

Note: The Specification does carry this copyright, “Copyright © World
Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved.”

DOM is important to the conceptual idea of an object-oriented network
paradigm (CORBA), to the use of object-oriented languages on the Web, and
to the use of XML as an object-oriented markup language or a Web document
structure defining language.

Why is knowledge of the DOM important to a developer of XML
applications? The DOM permits the developer to view conceptually an XML
document as a holder of data. This means an XML document can be
considered an object within the CORBA paradigm.

This chapter focuses on:

• Highlighting the key goals of DOM.

• Showing some of the possible relationships among DOM, XML, and
CORBA.

• Giving synopses of the XML node interfaces with notes on Java when
appropriate.

Note: See the end of the chapter for a very simple DOM scenario that
includes Java coding, an XML DTD, XML markup, and DOM output.

DOM Defined

The Document Object Model is a model by which a Web document that
contains objects, such as elements, can be manipulated. This means one is able
to add, change, or delete an element or its attribute in a valid document. There
are also the capabilities to get a list of all the elements (the tags rather than the
content), such as <para> in the document, and to find all the attributes of a
given element.

This means that Level 1 of the DOM allows manipulation of the content in that
document. It also allows navigation around an XML document. The goals of
Level 2 (publishing date 1999) are to allow manipulation of the Cascading
Style Sheets (CSS) attached to an XML document to have an event model and
to include enhanced query capabilities.

The Document Object Model is not an object model in the same manner as the
Component Object Model (COM). The DOM is a set of interfaces and objects
designed for managing XML documents. There is an object model because the
DOM identifies:

• Interfaces and objects that represent and manipulate a document.

• Interfaces and objects that have the semantics to handle both behavior

http://www.w3.org/tr/1998/rec-dom-level-1-19981001/dom.tgz
http://www.w3.org/tr/1998/rec-dom-level-1-19981001/dom.zip
http://www.w3.org/tr/1998/rec-dom-level-1-19981001/dom.txt

and attributes.

• Interface and object relationships and collaborations.

More precisely, the DOM is not:

• A binary specification

• A set of data structures

• A technique of persisting objects to XML

• A semantic set of definitions for XML

• A competitor to the Component Object Model (COM)

The DOM is a programming object model that comes from object-oriented
design. The Specification interfaces are defined as objects. This implicit data
model does not mean that this model has to be used for any interface
implementation.

The DOM may be implemented using language-independent systems such as
CORBA or COM. CORBA and COM specify interfaces and objects. The
DOM may also be implemented using language-specific bindings like the Java
or ECMAScript bindings (EMCA-262).

Note: See the latest DOM Specification on the Web for details on these
binding implementations.

DOM Specification Abstract

This specification defines the logical structure of XML documents.
Manipulation (adding, changing, deleting, and navigating) has been designed
for language-neutral and platform-neutral interfaces. A standard set of objects
(one each for XML and HTML) represents these document types that provide
a model for combining objects and a standard interface for accessing and
manipulating them.

More specifically, the DOM Specification defines an application programming
interface for XML and HTML. It provides a low-level set of fundamental
interfaces that can represent any structured document. It also defines extended
interfaces for representing an XML document.

DOM’s Language Neutrality

DOM itself is language-neutral. The language to use is dependent upon a
number of situations:

• Application used

• Browser used (JScript or JavaScript as examples)

• CSS style sheets required

• Drivers used such as ODBC

• Editor used

• Interface goals defined

DOM Interface

The Object Management Group Interface Definition Language (OMG IDL)
was selected as the DOM interface. OMG IDL specifies language and
implementation-neutral interfaces. However, the selection of OMG IDL by the
DOM Working Group does not imply a requirement to use a specific object
binding run time.

Various other IDLs could be used. It is expected by the time you read this
book that the DOM can be implemented using CORBA, COM, or Java Virtual
Machine run-time bindings or bindings to various programming languages.

Check the latest version of the Specification to see how the DOM Working
Group has specified bindings for Java and ECMAScript (the standardization of
JavaScript/JScript by the European Computer Manufacturer’s Association
(ECMA) defined in ECMA-262). The bindings should be located in one or
more appendices to the Specification.

The DOM Specification does not define any methods related to memory
management such as releasing an object. This is because the way one deals
with memory is language specific. Any memory management method required
by a particular language needs to be specified in that language binding.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

DOM and Style Sheets

A goal of the DOM Specification Level 2 is to specify a way to manipulate and change
Cascading Style Sheets (CSS). There should also be core functionality that may be applicable
to other style sheet languages. It is not a goal of Level 2 to specify a similar interface to
Extensible Stylesheet Language (XSL).

Entities

There are no objects representing entities in the fundamental DOM interfaces. Numeric
character references and predefined entities references in XML are replaced by the single
character that makes up the entity’s replacement. For example, in:

 <para>Two famous lovers are Julius & Cleopatra.</para>

The “&” is replaced by the character “&”, and the text in the <para> element forms a
single continuous sequence of characters.

Note: The representations of both internal and external entities are defined within the
extended XML interfaces of the DOM.

When a DOM representation of an XML document is serialized, an application needs to check
each character in text data to see if it needs to be escaped using a numeric or a predefined
entity. Failing to do so could result in validity failure.

DOM Interfaces

The DOM specifies interfaces that may be used to manage XML documents. These interfaces
are abstractions, similar to “abstract base classes” in C++. They specify how to access and
manipulate an application’s internal representation of a document. Any DOM application that
adheres to the specified interfaces can maintain documents in any convenient representation.
The DOM is designed to avoid implementation dependencies because an existing program
may use the DOM interfaces to access software written prior to the existence of the DOM

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Specification.

The DOM Structure Model Hierarchy

The DOM presents documents as a hierarchy of nodal objects that also implement other, more
specialized interfaces. In Java these interfaces are classes. Some root nodes may have
children, while others do not. The node types are as follows:

• Document: Element (one permitted), ProcessingInstruction, Comment,
DocumentType

• DocumentFragment: Element, ProcessingInstruction, Comment, Text,
CDATASection, Entity Reference

• DocumentType: no children

• EntityReference: Element, ProcessingInstruction, Comment, Text, CDATASection,
EntityReference

• Element: Element, Text, Comment, ProcessingInstruction, CDATASection,
EntityReference

• Attr: Text, EntityReference

• ProcessingInstruction: no children

• Comment: no children

• Text: no children

• CDATASection: no children

• Entity: Element, ProcessingInstruction, Comment, Text, CDATASection,
EntityReference

• Notation: no children

Note: The interface hierarchy is contained in the Java org.w3c.dom package.

The interface hierarchy is as follows:

• DOMImplementation

• NamedNodeMap

• NodeList

• Node

• Attr

• CharacterData

• Comment

• Text

• CDATASection

• DocumentFragment

• Document

• DocumentType

• Element

• Entity

• EntityReference

• Notation

• ProcessingInstruction

Note: The interface synopses are discussed as listed in the hierarchy.

NamedNodeMap Interface Synopsis

Objects implementing the NamedNodeMap interface are used to represent collections of
nodes that can be accessed by name. NamedNodeMaps are not maintained in any particular
order. However, NamedNodeMap may also be accessed by an ordinal index, but this is simply
to allow convenient enumeration of its contents.

Note: In Java, a NamedNodeMap is a subclass of type Node. It represents a generic
non-editable list of data objects.

Node Interface Synopsis

The Node interface is the primary data type for the entire Document Object Model. It
represents a single node in the document tree.

Note: In Java, a Node interface is a Node base class. This class is a fundamental run-time data
container. It has a tree structure arrangement. This class includes class constants for:

• Document

• Element

• Attribute

• Text

• PI

• Comment

Attr Interface Synopsis

The Attr interface represents an attribute in an Element object. Typically the allowable values
for the attribute are defined in a document type definition (DTD).

The DOM views attributes as properties of elements rather than having a separate identity
from associated elements. This may make it more efficient to implement such features as
default attributes associated with all elements of a given type.

In XML, where the value of an attribute can contain entity references, the child nodes of the
Attr node provide a representation in which entity references are not expanded. These child
nodes may be either Text or EntityReference nodes. Because the attribute type may be
unknown, there are no tokenized attribute values.

Note: The Attribute class holds information about attribute occurrences that appear within an
XML document.

CharacterData Interface Synopsis

The CharacterData interface extends Node with a set of attributes and methods for accessing
character data in the DOM. No DOM objects correspond directly to CharacterData.

Comment Interface Synopsis

A comment’s content is represented by all the characters between the starting '<!--' and
ending '-->'. This is the definition of an XML comment.

Note: In Java, the Comment class is a run-time representation of comments.

Text Interface Synopsis

The Text interface represents the textual content (character data in XML) of an Element or
Attr. If there is no markup inside an element’s content, the text is contained in a single object
implementing the Text interface that is the only child of the element. If there is markup, it is
parsed into a list of elements and Text nodes that form the list of children of the element.

Note: In Java, the Text class holds data content read in a document instance. The data content
is contained in the Java class NodeList.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

CDATASection Interface Synopsis

CDATA sections are used to escape blocks of text containing characters that
would otherwise be regarded as markup. The only delimiter that is recognized
in a CDATA section is the “]]>” string that ends the CDATA section. CDATA
sections cannot be nested. The primary purpose is for including material, such
as XML fragments, without needing to escape all the delimiters.

Note: The Java class CDATASection represents such information as HTTP
headers.

DocumentFragment Interface Synopsis

DocumentFragment enables the extraction of a portion of a document’s tree or
the creation of a new fragment of a document.

Document Interface Synopsis

The Document interface represents the entire XML document. Conceptually, it
is the root of the document tree and provides the primary access to the
document’s data.

Note: The Document interface is the Java class for the top-level (root) Node
of the in-memory, run-time representation of the XML document. It includes
the document type declaration associated with a root element of a document
instance.

DocumentType Interface Synopsis

Each Document has a doctype attribute whose value is either null or a
DocumentType object. The DocumentType interface provides an interface to

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

the list of entities defined for the document.

Element Interface Synopsis

Assume the following XML document:

 <elementExample id="sample">
 <subelementa/>
 <subelementb><subsubelement/></subelementb>
 </elementExample>

When represented using DOM, the top node is an Element node for
elementExample, which contains two child Element nodes, one for
subelementa without a child node and one for subelementb with a child node.

There are methods on the Element interface to retrieve either an Attr object by
name or an attribute value by name. In XML, where an attribute value may
contain entity references, an Attr object should be retrieved to examine the
possibly fairly complex sub-tree representing the attribute value.

Note: The Java Element class is the data container for the document’s
elements. The information includes such things as an element’s tag set name
and its attributes.

Entity Interface Synopsis

This interface represents an entity, either parsed or unparsed, in an XML
document. Notice that this interface models the entity, not the entity
declaration.

EntityReference Interface Synopsis

EntityReference objects may be inserted into the structure model when an
entity reference is in the source document or when the user wishes to insert an
entity reference.

Note: Character references and predefined entities references are expanded
by the XML processor so that characters are represented by their Unicode
equivalent rather than by an entity reference.

Notation Interface Synopsis

This interface represents a notation declared in the document type definition
(DTD). A notation either declares by name the format of an unparsed entity or
is used for formal declaration of Processing Instruction targets.

Note: The DOM does not support editing Notation nodes.

ProcessingInstruction Interface Synopsis

The ProcessingInstruction interface represents a “processing instruction.” A PI

is used in XML as a way to keep processor-specific information in the text of
the document.

Note: In Java, the Processing Instruction (PI) class is a run-time
representation of PIs.

DOM Terms and Definitions

Some of the term definitions used in the DOM Specification were borrowed or
modified from similar definitions in other W3C or standards documents.
Below are just a few of the key definitions as defined in the Specification that
may be directly relevant to a XML document’s logical structure.

Ancestor
An ancestor node of any node A is any node above A in a tree model of
a document, where “above” means “toward the root.”

Child
A child is an immediate descendant node of a node.

Content model
The content model is a simple grammar governing the allowed types of
the child elements and the order in which they appear.

Context
A context specifies an access pattern (or path), a set of interfaces that
gives a way to interact with a model.

Cooked model
A model for a document that represents a document after it has been
manipulated in some way. For example, any combination of any of the
following transformations would create a cooked model:

1. Expansion of internal text entities

2. Expansion of external entities

3. Model augmentation with style-specified generated text

4. Execution of style-specified reordering

5. Execution of scripts

Note: A browser might only be able to provide access to a cooked model,
while an editor might provide access to a cooked model or the initial
structure model (also known as the uncooked model) for a document.

Cursor
A cursor is an object representation of a node. It may possess
information about context and the path traversed to reach the node.

Data model
A data model is a collection of descriptions of data structures and their
contained fields, together with the operations or functions that
manipulate them.

Descendant

A descendant node of any node A is any node below A in a tree model
of a document, where “below” means “away from the root.”

Element
Each document contains one or more elements, the boundaries of which
are either delimited by start-tags and end-tags or, for empty elements, by
an empty-element tag. Each element has a type, identified by name, and
may have a set of attributes. Each attribute has a name and a value.

Equivalence
Two nodes are equivalent if they have the same node type and node
name. Also, if the nodes contain data, that must be the same. If the
nodes have attributes, then a collection of attribute names must be the
same and the attributes corresponding by name must be equivalent as
nodes.

Inheritance
In object-oriented programming, the ability to create new classes (or
interfaces) that contain all the methods and properties of another class
(or interface), plus additional methods and properties.

Initial structure model
This model represents the document before it has been modified by
entity expansions, generated text, style-specified reordering, or the
execution of scripts. It is also known as the raw structure model or the
uncooked model.

Interface
An interface is a declaration of a set of methods with no information
given about their implementation. In object systems that support
interfaces and inheritance, interfaces can usually inherit from one
another.

Language binding
A programming language binding for an IDL specification is an
implementation of the interfaces in the specification for the given
language.

Method
A method is an operation or function that is associated with an object
and is allowed to manipulate the object’s data.

Model
A model is the actual data representation for the information at hand.

Object model
An object model is a collection of descriptions of classes or interfaces,
together with their member data, member functions, and class-static
operations.

Parent
A parent is an immediate ancestor node of a node.

Root node
The root node is the unique node that is not a child of any other node.
All other nodes are children or other descendants of the root node.

Sibling
Two nodes are siblings if they have the same parent node.

String comparison
When string matching is required, it is to occur as though the
comparison were between two sequences of code points from the
Unicode 2.0 Standard.

Tag valid document
A document is tag valid if all start-tags and end- tags are properly
balanced and nested.

Type valid document
A document is type valid if it conforms to an explicit DTD.

Uncooked model
See initial structure model.

Well-formed document
A document is well-formed if it is tag valid and entities are limited to
single elements (i.e., single sub-trees).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Specification References

XML: W3C (World Wide Web Consortium) Extensible Markup Language (XML) 1.0.
http://www.w3.org/TR/REC-xml.

HTML 4.0: W3C (World Wide Web Consortium) HTML 4.0 Specification.
http://www.w3.org/TR/REC-html40.

Unicode: The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.: Addison-Wesley
Developers Press, 1996.

CORBA: OMG (Object Management Group) The Common Object Request Broker: Architecture and
Specification. http://www.omg.org/corba/corbiiop.htm

Java: Sun. The Java Language Specification. http://java.sun.com/docs/ books/jls/

ECMAScript: ECMA (European Computer Manufacturers Association) ECMAScript Language
Specification. http://www.ecma.ch/stand/ECMA-262.htm

Sample DOM Scenario

This scenario consists of four interrelated parts:

• Java code

• XML DTD

• XML Markup

• DOM Output

DOM Java Sample

This sample produces the DOM output sample, BksXML.dom, below. XML for Java includes a
com.ibm.xml.parser.Parser class that can simulate an XML parser that can parse an XML document and
generate a DOM node tree. Also Java has an interface hierarchy org.w3c.dom package. This sample uses
inputs BksXML.dtd and BksXML.xml.

import com.ibm.xml.parser.*;
import org.w3c.dom.*;

import java.io.*;
public class BksXML {

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/reference/standard/1556226683/ch05/079-088.html
http://www.w3.org/tr/rec-xml
http://www.w3.org/tr/rec-html40
http://www.omg.org/corba/corbiiop.htm
http://java.sun.com/docs/ books/jls/
http://www.ecma.ch/stand/ecma-262.htm

 public static void main(String[] argv) {
 try {
 if (argv.length != 1) {
 System.out.println("Usage: java BksXML " +
 "<document>");
 System.exit(0);
 }

 String fn = argv[0];
 InputStream is = new FileInputStream(fn);

 Parser ps = new Parser(fn);
 Document doc = ps.readStream(is);
 System.out.println("Start document");

 Element el = doc.getDocumentElement();
 printElement(el);

 System.out.println("End document");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void printElement(Element el) {
 String en = el.getTagName();
 System.out.println("Start element: " + en);

 NodeIterator ni = el.getAttributes();
 Node n = ni.toNextNode();
 while (n != null) {
 Attribute a = (Attribute) n;
 System.out.println("Attribute: " + a.getName() + "=" +
 ' " ' + a.toString() + ' " ');

 n = ni.toNextNode();
 }

 if (el.hasChildNodes()) {
 ni = el.getChildNodes();
 n = ni.toNextNode();
 while (n != null) {

 int nt = n.getNodeType();
 if (nt == Node.Element) {
 Element e = (Element) n;
 System.out.println("End Element: " + e);
 } else if (nt == Node.TEXT) {
 TEXT t = (Text) n;
 System.out.println("Text: " + ' " ' + t.getData() + ' " ');
 }

 n = ni.toNextNode();
 }
 }

 System.out.println("End element: " + en);
 }

}

DOM XML DTD Sample

This document type definition (DTD) defines the markup tag sets (elements) for the XML encoding below. It
is also one of the inputs for the Java application above. The other input is the XML encoding in the
following section.

<?xml version="1.0" encoding="UTF-16" ?>
<!-- BksXML.dtd -->
<!- - May have multiple occurences of title, author, and
 description - ->
<ELEMENT BksXML (Title*, Author*, Description*)>

<!ELEMENT Title EMPTY>
<!ATTLIST Title name CDATA #REQUIRED>

<!ELEMENT Author EMPTY>
<!ATTLIST Author Lname CDATA #REQUIRED
 Fname CDATA #REQUIRED>

<!ELEMENT Description EMPTY>
<!ATTLIST Description pubr CDATA #REQUIRED
 pdate CDATA #IMPLIED
 pgno CDATA #IMPLIED
 review CDATA #IMPLIED>

DOM XML Markup Sample

This sample uses the above DTD. It is also the second input for the above Java application, BksXML.java,
the other input being BksXML.dtd. This sample only uses three books and only the first author listed when
there is more than one to keep the example simple. Each of these books has established a knowledge niche
different from this book and from each other.

<?xml version="1.0" ?>
<!-- BksXML.xml -->

<!DOCTYPE BksXML SYSTEM "BksXML.dtd"> [

<BksXML>

<Title name="The XML Handbook"/>
<Title name="Presenting XML"/>
<Title name="Client/Server Data Access with Java and XML"/>

<Author Lname="Goldfarb" Fname="Charles"/>
<Author Lname="Light" Fname="Richard"/>
<Author Lname="Chang" Fname="Dan"/>

<Description pubr="Prentice Hall" pdate="1998"/>
<Description pubr="Sams Net" pgno="414"/>
<Description pubr="John Wiley" review="Covers the client/server
 paradigm."/>

</BksXML>
]>

DOM Output Sample

This is the result of BksXML.java with its inputs of BksXML.dtd and BksXML.xml. If the descriptions in
BksXML.xml had been extended, one could have publication data (pdate), number of pages (pgno), and a
review for each title.

Start document
Start element: BksXML
Text: "
"
Start element: Title
Attribute: name="The XML Handbook"
End element: Title
Text: "
"
Start element: Title
Attribute: name="Presenting XML"
End element: Title
Text: "
"
Start element: Title
Attribute: name="Client/Server Data Access with Java and XML"
End element: Title
Text: "
"
Start element: Author
Attribute: Lname="Goldfarb"
Attribute: Fname="Charles"
End element: Author
Text:"
"
Start element: Author
Attribute: Lname="Light"
Attribute: Fname="Richard"
End element: Author
Text:"
"
Start element: Author
Attribute: Lname="Chang"
Attribute: Fname="Dan"
End element: Author
Text:"
"
Start element: Description
Attribute: pubr="Prentice Hall"
Attribute: pdate="1998"
End element: Description
Text:"
"
Start element: Description
Attribute: pubr="Sams Net"
Attribute: pgno="414"
End element: Description
Text:"
"
Start element: Description
Attribute: pubr="John Wiley"
Attribute: review="Covers the client/server paradigm."
End element: Description
Text:"

"
End element: BksXML
End document

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/reference/standard/1556226683/ch05/079-088.html
http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch04/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

There are many components of the DCAM effort beyond just the modeling
process itself. These components as a part of the Interoperability
Clearinghouse (IC) initiative include:

• Analysis Tools—Tools that provide support for a wide range of
“views” based on DCAM.

• Component Frameworks—A Web-based component-based
architecture modeling tool that allows an industry to combine
interoperable products into their domain unique architectures.

• Electronic Forum—A point for dynamic information sharing.

• Information Directory—A Web-based Distributed Component
Architecture Modeling (DCAM) tool that enables drill down analyses
from architectures to compliant product suites.

• Information Dissemination—Data collection and propagation of the
repository though network of IC Partners and Subscribers.

• Information Repository—A Configuration Management type
repository application as a back end to the Distributed Component
Architecture Modeler to document and communicate findings.

• Interoperability Product Profiles—Product profiles that ensure
consistent reporting formats.

• Solution Providers—A logical site for the sharing of information
among industries’ most critical technology resources: the systems
integrators and consultants.

• Standard Templates—Formats and processes for standardization,
conformance testing, and interoperability validation.

• Testing Coordination—Cooperative agreements with testing
organizations.

• User Coordination (government)—Cooperative agreements (CRADA)
with technology-driven agencies.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.itknowledge.com/reference/standard/1556226683/ch05/079-088.html

• User Coordination (industry)—Cooperative agreements with
technology-driven commercial industries: finance, insurance,
telecommunications, manufacturing, and health care.

• Vendor Coordination—Cooperative agreements with software
companies committed to the distributed computing and Internet product
markets.

DCAM’s evolution requires the inclusion of these features and functions
definitions in technology and commercial terms. Some of these features and
functions are:

• Allowable solution set definition

• Definition of selected interoperable product suites

• Implemented product suites

• Known third-party product partners.

• Lessons learned from test cases

• Product abstracts for current offerings

• Results of interoperability and conformance test

• Selected infrastructure products

• Selected interoperable product suite definitions

• Standards taxonomies

• Systems testing data

• Target technologies for business applications

• Test results of available test suites and tools

Note: Any network administrator or developer can use this list when
considering any major application design.

Interface Definition Language (IDL) Overview

The OMG Interface Definition Language (IDL) describes the interfaces that
client objects call and object implementation provides. An IDL interface fully
defines an interface and fully specifies each operation’s parameters. IDL
concepts are mapped to a number of languages such as Java, C++, and
Smalltalk.

Note: Java IDL is an Object Request Broker (ORB) provided with JDK 1.2
and complies with the CORBA/IIOP Specification 2.0. The idltojava
compiler defines, implements, and accesses CORBA objects from the Java
programming language. See the appropriate JDK 1.2 documents for details.

IDL follows the lexical rules of C++. Its grammar is a subset of the proposed
ANSI C++ standard. See “The Common Object Request Broker: Architecture
and Specification,” version 2.2 or later, Chapter 3 for details on IDL at
www.omg.org/corba.

There is a key principle about IDL that one should be aware of—it is for
defining CORBA interfaces and is not for implementing applications. This

http://www.itknowledge.com/reference/standard/1556226683/ch05/www.omg.org/corba

principle ensures language independence. A server could be written in Java
and the client could be written in C++. This adheres to a basic characteristic of
CORBA—portability, or the capability to run across a variety of platforms.

IDL definitions can be compared to Java definitions of interfaces or to C++
header files. This is an interface description, not an implementation.

How is language independence achieved? The concept of language mapping is
used. Language mapping is the process that specifies an IDL construct to
another language’s construct. The Object Management Group (OMG) has
developed a number of language maps for such languages as Java, C, C++, and
COBOL. This notion is important because in a given network there may be a
variety of legacy programming languages and operating systems. This also
gives one the freedom to choose the best language for any given application.

Process for Creating an IDL Server Interface

Since the focus of this book is to make a system administrator aware of issues
in the developmental process for an enterprise network using CORBA and not
specific solutions, this section is a process overview not an IDL definition
solution for a server interface. While the process may be simply stated, one
should be experienced in programming and network design.

The process given here is to assist the network administrator in giving
directions to the programmers on the team. The steps are few, but the design
requires thought. The steps are:

1. Define the IDL server interface.

2. Implement using either the delegation or inheritance approach.

3. Compile the code to generate client stubs and server skeletons.

4. Implement the IDL server interface.

5. Compile the server application.

6. Run the server application.

7. Repeat the above steps until step 6 is a success.

Four terms used in steps 2 and 3 need clarification. Delegation calls the
methods of the implementing class. Inheritance passes the methods of the
implementing class from the interface class. A client stub is a compiled piece
of code that makes the interface available to a client. A server skeleton is a
compiled piece of code that is the “skeleton” or “frame” used for building the
server implementation code on the interface.

Previous Table of Contents Next

http://www.itknowledge.com/reference/standard/1556226683/ch05/079-088.html

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

In a political metaphor, a new president of the United States inherits problems
from the prior president, and the new president then delegates his requirements
for solutions to his Cabinet. The problems are the president’s, while the
solutions are the Cabinet’s. A client stub is like the social body concerned with
the solution. A server skeleton is like the Cabinet Department that has to solve
the problem.

Note: An “IDL compiler” is really a translator. It converts IDL source code
to the implementation language, Java, C++, etc.

Caution: Before deciding on an approach, you need to understand what the
application does. For example, if the application uses legacy code to
implement the interface, then the use of the delegation approach is logical. It
would not be practical to change the classes in the legacy code to inherit
from an IDL compiler generated class.

Process for Creating an IDL Client Interface

It was stated in the previous section that the book’s focus is to raise one’s
awareness to issues in the developmental process for an enterprise network and
not offer specific solutions. Local expectations, resources, skills, and the
legacy environment determine real solutions. This section is a process
overview, not an IDL definition solution for a client interface.

The steps given here as above are to assist the network administrator in giving
directions to the programmers on the team. The steps are few; the
implementation of the client interfaces should be simpler than the server
interfaces. The steps are:

1. Use the client stubs generated in the original compile.

2. Bind the client to a server object.

3. Use the server object interfaces.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

UML Overview

Critical to modeling the infrastructure is the Unified Modeling Language
(UML). This tool assists in creating an object-oriented design. Rational
Software Corporation with a number of partners that include Hewlett-Packard,
IBM, Microsoft, and Oracle developed UML for this activity. See Rational
Software Corporation’s site (http://www.rational.com/uml/ index.jhtml) for
information.

UML seeks to use the best engineering practices for developing large and
complex system models. It can be used in both software and non-software
environments. This means you can model a client as software and as hardware.
It is used for specifying, visualizing, constructing, and documenting a system’s
infrastructure.

Throughout the design process you have to consider the components of your
enterprise network; all of these components make up the infrastructure. The
components come in two flavors—concrete and abstract. Knowing what the
components are and their places in the enterprise network is key to modeling,
determining what tools you need, establishing protocols that implement
integration, identifying interconnectivity issues, and establishing the roles of
the service and access servers.

Note: The word “component” is used throughout this chapter because most
computer literature uses this term based on the client/server paradigm;
however, in the context of CORBA and Java internetworking the word
“object” is more appropriate.

Concrete components or objects give the structure to the enterprise network.
They are things you can see either with your eyes or with graphical user
interfaces (management tools).

Abstract components are the functionalism (purposes, utilities, and flows) of
the enterprise network. They are things you cannot see either with your eyes or
with graphical user interfaces (management tools). The concrete cannot stand
alone without the abstract and the abstract cannot stand alone without the
concrete. The abstract components are the results of trying to describe the
concrete capabilities.

A UML model is like a building blueprint. It aids in system definition, system
visualization, and system construction. UML assists you in designing an
object-oriented system network.

Besides not being a process, UML is not a programming language. Its name
says UML is a modeling language. It is also not a tool interface, but a semantic
metamodel. A metamodel is a high-level abstraction.

Previous Table of Contents Next

http://www.rational.com/uml/ index.jhtml

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch05/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 6
Web Interface Definition Language
(WIDL)
Included in This Chapter:

• Overview of WIDL

• WIDL-SPEC DTD Overview

• WIDL MAPPING DTD Overview

• WIDL Implications for XML and CORBA

Web Interface Definition Language (WIDL) is an important new Web
technology for conceptual development of XML applications for CORBA.
This technology goes hand-in-hand with the Document Object Model (DOM)
and Distributed Component Architecture Modeling (DCAM) technologies.
This chapter is detailed since it is important to comprehend WIDL and other
IDLs as a foundational requirement for doing modeling with CORBA. The
knowledge of XML’s place is an integral component of this comprehension.

This chapter looks at the key notions about WIDL version 3.0:

• WIDL overview

• WIDL-SPEC DTD

• WIDL-MAPPING DTD

• WIDL implications for XML and CORBA

This chapter is based on information from

http://www.transactnet.com/products/toolkit/userguide/refman/widl/
overview.html

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.transactnet.com/products/toolkit/userguide/refman/widl/ overview.html
http://www.transactnet.com/products/toolkit/userguide/refman/widl/ overview.html

This URL has links to the WIDL Specifications, the WIDL Specification
DTD, the WIDL Mappings, and the WIDL Mapping DTD.

webMethods made a Submission Request to W3C on September 22, 1997
(http://www.w3c.org/Submission/1997/15/).

Note: webMethods is a provider of XML-based business-to-business (B2B)
integration solutions and holds copyright to the WIDL Specification. Check
the URL for the latest versions of the specification and mapping. There are
significant differences between version 2.0 and version 3.0. Because of the
dynamics of the technology, one should expect dynamic changes.

Caution: When quotation marks are used in this chapter, they are a part of
the expected markup. For example, the correct markup is “SUCCESS,” not
SUCCESS.

Overview of WIDL

WIDL is an application of XML. It is a metalanguage, a top-level conceptual
language that implements a service-based architecture over the
document-based resources of the World Wide Web. This Web technology uses
HTTP for communication among XML and HTML documents (XML to
XML, HTML to HTML, or XML to HTML) by interpreting them as
inter-application messages.

Note: XML and HTML are referenced together in this chapter because of
WIDL’s ability to handle XML to HTML communications.

WIDL defines two types of XML documents: a WIDL specification and a
WIDL mapping. These document types conform to XML document type
declarations.

A WIDL specification is an XML document that provides an abstract
description of an application interface. It names the interface and describes the
services that are associated with the interface. Different applications may
implement the same specification in different ways. WIDL allows any two
applications that conform to the same specification to be interchangeable, so
clients need not have knowledge of the details of any application’s interface. A
WIDL specification provides all of the information required for generating
code.

A WIDL mapping is an XML document that describes how to map between
XML or HTML pages and a WIDL specification. It exposes a Web site or an
XML-based application as a set of services. Through a WIDL mapping, a
client application may interact with the Web by invoking Web services as if
they were implemented as program functions or procedures. WIDL mappings
allow applications to interact with the Web without having any knowledge of
XML, HTML, or network protocols.

http://www.w3c.org/submission/1997/15/

WIDL-SPEC DTD Overview

The elements and attributes of this DTD are described in the five sections that
follow the DTD. In this DTD there are the attributes NAME and COMMENT
under each element; however, they are not identical. They are unique to that
element. The definition of each COMMENT attribute can be phrased in the
same manner. The key words in the definition are “of this element.”

WIDL-SPEC DTD
<!ELEMENT WIDL-SPEC (METHOD | RECORD)+>
<!ATTLIST WIDL-SPEC
 NAME CDATA #REQUIRED
 VERSION CDATA #FIXED "3.0"
 COMMENT CDATA #IMPLIED>

<!ELEMENT METHOD EMPTY>
<!ATTLIST METHOD
 NAME CDATA #REQUIRED
 INPUT CDATA #IMPLIED
 OUTPUT CDATA #IMPLIED
 COMMENT CDATA #IMPLIED>

<!ELEMENT RECORD (VALUE | RECORDREF)+>
<!ATTLIST RECORD
 NAME CDATA #REQUIRED
 COMMENT CDATA #IMPLIED>

<!ELEMENT VALUE EMPTY>
<!ATTLIST VALUE
 NAME CDATA #REQUIRED
 DIM (0 | 1 | 2) "0"
 TYPE CDATA "STRING"
 COMMENT CDATA #IMPLIED>

<!ELEMENT RECORDREF EMPTY>
<!ATTLIST RECORDREF
 NAME CDATA #REQUIRED
 DIM (0 | 1 | 2) "0"
 RECORD CDATA #REQUIRED
 COMMENT CDATA #IMPLIED>

WIDL-SPEC Root Element

The root (parent, node) element for a WIDL interface specification is
WIDL-SPEC. The WIDL-SPEC element may contain any number of
METHOD and RECORD sub-elements (signified by the +). The WIDL-SPEC
element has three attributes: NAME, VERSION, and COMMENT.

NAME

This required attribute establishes an interface name. An
interface name is case sensitive. It represents either a service
name for naming or directory services. Within an interface
name dots are allowed to delimit a hierarchy of related
interfaces. Example specification names follow:
com.mycompany.products.search
com.mycompany.products.purchase
com.mycompany.personnel.address_book

Note: webMethods Object Model defines object references. In the
WIDL-MAPPING DTD (the overview is in the next major section),
webMethods can be the value “WOM” in either the CONTENT attribute of
element VALUE or BINDINGREF.

VERSION This required attribute must be “3.0”. This indicates WIDL
3.0 Specification conformance.

COMMENT This is optional descriptive information of this element.

METHOD Sub-Element

The METHOD sub-element represents an operation that a client may ask a
server to perform. Every method has a name and optionally a set of input and
output attributes (parameters). One can also include comments about this
sub-element.

NAME This required attribute establishes a unique method name for
the method.

INPUT This optional attribute names the record that specifies the
method’s input arguments. The input arguments are the
record’s fields.

OUTPUT This optional attribute names the record that specifies the
method’s output arguments. The output arguments are the
record’s fields.

COMMENT This is optional descriptive information of this element.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

RECORD Sub-Element

The RECORD sub-element groups and names a collection of fields. It is
similar to a Java class that has state variables, but has no methods. A
RECORD contains a set of one or more VALUE and RECORDREF elements,
each of which is known as a field of the RECORD.

NAME This required attribute establishes a unique record name.
COMMENT This is optional descriptive information of this element.

VALUE Sub-Element

The VALUE empty-element type represents any record field that is not a
nested record. A value represents such things as numbers, text, XML, dates,
etc. Values are similar to primitive types in most programming languages.
Values also represent arrays of these primitive types. The attributes of the
VALUE element follow:

NAME This required attribute establishes a unique record name
within a given RECORD.

DIM This optional attribute defines a field’s dimensions.
• “1” indicates a single-dimensional array of strings.
• “2” indicates a two-dimensional array of strings.
• “0” (the default) indicates there is not an array, but a string.

TYPE This optional attribute identifies the lexical type of the field.
Lexical types include integers, floating-point numbers, and
strings.

Warning: WIDL Release 3.0 only supports strings. If the TYPE attribute is
used it must be “STRING”.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

COMMENT This is optional descriptive information of this element.

RECORDREF Sub-Element

The RECORDREF sub-element represents a record that is nested within
another record. It is a child of RECORD that is empty. RECORD elements are
always immediate children of WIDL-SPEC. The attributes of the
RECORDREF sub-element follow:

NAME
This required attribute establishes a unique record name
within a given RECORD.

DIM This optional attribute defines a field’s dimensions.
• “1” indicates a single-dimensional array of records.
• “2” indicates a two-dimensional array of records.
• “0” (the default) indicates there is not an array, but a record.

RECORD This required attribute names the record that nests within the
parent RECORD element.

COMMENT This is optional descriptive information of this element.

WIDL-MAPPING DTD Overview

The elements and their attributes are described in the eight sections that follow
the DTD. In this DTD there are the attributes NAME and COMMENT under
each element; however, they are not identical. They are unique to that element.
The definition of each COMMENT attribute can be phrased in the same
manner. The key words in the definition are “of this element.”

WIDL-MAPPING DTD
<!ELEMENT WIDL-MAPPING (SERVICE | INPUT-BINDING
 | OUTPUT-BINDING)+>
<!ATTLIST WIDL-MAPPING
 NAME CDATA #REQUIRED
 VERSION CDATA #FIXED "3.0"
 BASEURL CDATA #IMPLIED
 DEFAULT-CONTENT (WOM | CONSTANT) "WOM"
 COMMENT CDATA #IMPLIED>

<!ELEMENT SERVICE EMPTY>
<!ATTLIST SERVICE
 NAME CDATA #REQUIRED
 INPUT CDATA #IMPLIED
 OUTPUT CDATA #IMPLIED
 URL CDATA #REQUIRED
 METHOD (GET | POST) "GET"
 AUTHUSER CDATA #IMPLIED
 AUTHPASS CDATA #IMPLIED
 SOURCE CDATA #IMPLIED
 TIMEOUT CDATA #IMPLIED
 RETRIES CDATA #IMPLIED

 COMMENT CDATA #IMPLIED>

<!ELEMENT INPUT-BINDING (VALUE | BINDINGREF)+>
<!ATTLIST INPUT-BINDING
 NAME CDATA #REQUIRED
 COMMENT CDATA #IMPLIED>

<!ELEMENT OUTPUT-BINDING (CONDITION | REGION | VALUE
 | BINDINGREF)+>
<!ATTLIST OUTPUT-BINDING
 NAME CDATA #REQUIRED
 COMMENT CDATA #IMPLIED>
<!ELEMENT CONDITION EMPTY>
<!ATTLIST CONDITION
 TYPE (SUCCESS | FAILURE | RETRY) "SUCCESS"
 REFERENCE CDATA #IMPLIED
 MATCH CDATA #IMPLIED
 WAIT CDATA #IMPLIED
 MASK CDATA #IMPLIED
 REBIND CDATA #IMPLIED
 SERVICE CDATA #IMPLIED
 REASONREF CDATA #IMPLIED
 REASONTEXT CDATA #IMPLIED
 RETRIES CDATA #IMPLIED
 COMMENT CDATA #IMPLIED>

<!ELEMENT REGION EMPTY>
<!ATTLIST REGION
 NAME CDATA #REQUIRED
 START CDATA #REQUIRED
 END CDATA #REQUIRED
 NULLOK CDATA #IMPLIED
 PATTERN CDATA #IMPLIED
 COMMENT CDATA #IMPLIED>

<!ELEMENT VALUE (#PCDATA)>
<!ATTLIST VALUE
 NAME CDATA #REQUIRED
 DIM (0 | 1 | 2) "0"
 TYPE CDATA "STRING"
 CONTENT (WOM | CONSTANT) #IMPLIED
 FORMNAME CDATA #IMPLIED
 USAGE (DEFAULT | HEADER | INTERNAL) "DEFAULT"
 NULLOK (TRUE | FALSE) "FALSE"
 COMMENT CDATA #IMPLIED>

<!ELEMENT BINDINGREF (#PCDATA)>
<!ATTLIST BINDINGREF
 NAME CDATA #REQUIRED
 DIM (0 | 1 | 2) "0"

 RECORD CDATA #REQUIRED
 CONTENT (WOM | CONSTANT) #IMPLIED
 FORMNAME CDATA #IMPLIED
 USAGE (DEFAULT | HEADER | INTERNAL) "DEFAULT"
 NULLOK (TRUE | FALSE) "FALSE"
 COMMENT CDATA #IMPLIED>

Note: This DTD, in particular the OUTPUT-BINDING element, was
reorganized from the Specification to reflect an XML logical structure.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

WIDL-MAPPING Root Element

The root (parent, node) element for WIDL mappings is WIDL-MAPPING. A
WIDL mapping is an implementation of a WIDL specification for a particular
Web site. A mapping exposes the Web site to programs by making the Web
site look like programming language functions rather than XML and HTML
documents. These functions are the SERVICE empty-elements of a WIDL
mapping document. The WIDL-MAPPING element may contain any number
of SERVICE, INPUT-BINDING, and OUTPUT-BINDING elements. The
WIDL-MAPPING element has the following attributes:

NAME This required attribute establishes an interface name.
An interface name is case sensitive. It represents
either a service name for naming or directory
services.

VERSION This is a required attribute that must have a value of
“3.0”. This indicates WIDL 3.0 mapping
conformance.

BASEURL This optional attribute is similar to the <BASE
HREF=“”> statement in HTML. Some of the services
within a given mapping may be hosted from the same
base URL. If BASEURL is defined, the URL for
various services can be defined relative to
BASEURL. This feature is useful for replicated sites
that can be addressed by changing only the
BASEURL, instead of the URL for each service.

DEFAULT-CONTENT This optional attribute specifies the default content
type of VALUE and BINDINGREF elements. The
default value is “WOM”.

COMMENT
This is optional descriptive information of this
element.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

SERVICE Empty-Element

The SERVICE empty-element defines an HTTP request, including requests to
CGI scripts or applications that have been integrated through NSAPI, ISAPI,
or other back-end Web server products. Web servers take a set of input
parameters, perform some processing, then return a dynamically generated
XML, HTML, or text document. A WIDL service can also describe a query
within a single document or within a directory structure.

The attributes of the SERVICE empty-element map an abstract service name
into an actual URL, specify the HTTP method to be used to access the Web
server, and designate “bindings” for input and output parameters. The
attributes are:

NAME This required attribute establishes a unique service name. The
service name is case sensitive. It represents either a mapping
name for naming or directory services.

INPUT This optional attribute designates the INPUT-BINDING used
to define the input parameters for programs that call the
service. The value is the NAME of an INPUT-BINDING
found within the same mapping. The value may also take the
following form: “<mapping-name>:<binding-name>”, where
<mapping-name> is the name of another mapping, and where
<binding-name> is the name of an INPUT-BINDING within
that other mapping. This allows multiple mappings to share
the same input parameter definitions. Sharing bindings across
multiple mappings is only supported within the B2B
Integration Server.

OUTPUT This optional attribute designates the OUTPUT-BINDING
used to define the output parameters for programs that call the
service. The value is the NAME of an OUTPUT-BINDING
found within the same mapping. The value may also take the
following form: “<mapping-name>:<binding-name>”, where
<mapping-name> is the name of another mapping, and where
<binding-name> is the name of an OUTPUT-BINDING
within that other mapping. This allows multiple mappings to
share the same output parameter definitions. Sharing bindings
across multiple mappings is only supported within the B2B
Integration Server.

URL This required attribute specifies the Uniform Resource
Locator (URL) for the target document. A service URL can
be either a fully qualified URL or a partial URL that is
relative to the BASEURL provided as an attribute of the
WIDL-MAPPING element.

METHOD This required attribute specifies the HTTP method used to
access the service. The valid values are “GET” (the default)
and “POST”.

AUTHUSER
This optional attribute establishes the HTTP authentication
username.

AUTHPASS
This optional attribute establishes the HTTP authentication
password.

SOURCE This optional attribute sets the HTTP REFERER header
variable. Sites can check this variable to ensure that the client
originated from a particular page. A mapping may also set the
REFERER variable by defining a VALUE parameter within
the service’s input binding, where the parameter is named
“REFERER” and where the USAGE attribute is set to
“HEADER”. When present, a service’s SOURCE attribute
always overrides this parameter.

TIMEOUT
This optional attribute is the number of seconds before the
service times out.

RETRIES
This optional attribute is the number of retries before failing
the service.

COMMENT This is optional descriptive information of this element.

INPUT-BINDING Element

The INPUT-BINDING element defines the input parameters of a service. This
element contains one or more VALUE elements, each of which corresponds to
an input parameter of the service. Input-bindings describe the data submitted in
an HTTP request, and are similar to the input fields in an HTML form. For
static HTML documents, no input fields are required.

NAME This required attribute identifies the binding for reference by
SERVICE elements. No two bindings may have the same
name within a given WIDL-MAPPING. Input bindings and
output bindings use the same namespace.

COMMENT This is optional descriptive information of this element.

OUTPUT-BINDING Element

The OUTPUT-BINDING element defines a group of output parameters. A
service may specify its output parameters by setting its OUTPUT attribute to
the name of an output binding. An output binding may contain parameters that
are themselves other output bindings, so that bindings may nest within
bindings to form complex output structures.

An output binding sets the values of its parameters by extracting information
from an XML or HTML document or from a portion of an XML or HTML
document. The process of pulling information out of a document in order to
assign parameters is known as binding.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

When a service’s OUTPUT attribute names a binding, each parameter binds
against the entire document. When the RECORD attribute of a BINDINGREF
element names a binding, each parameter binds against the portion of the
document that the BINDINGREF element identifies. By including
BINDINGREF parameters within output bindings, one may create structures
of nested records. Each record is the result of having applied any output
binding to any portion of the document. Also, a given binding might be
applied multiple times against multiple portions of the document.

An OUTPUT-BINDING consists of any number of REGION, CONDITION,
VALUE and BINDINGREF child elements. The VALUE and BINDINGREF
elements define the output binding’s parameters. The attributes of
OUTPUT-BINDING follow:

NAME This required attribute identifies the binding for reference by
SERVICE and BINDINGREF elements. No two bindings
may have the same name within a given WIDL-MAPPING.
INPUT-BINDING and OUTPUT-BINDING names belong to
the same namespace.

COMMENT This is optional descriptive information of this element.

CONDITION Sub-Element

The CONDITION empty-element specifies success and failure conditions for
the extraction of data to be returned to calling programs in output bindings.
Conditions enable branching logic within service definitions. These conditions
are used to attempt alternate bindings when initial bindings fail and to initiate
service chains, whereby the output variables from one service are passed into
the input bindings of a second service.

Conditions also define error messages returned to calling programs when
services fail. Any output binding parameter that returns a NULL value causes

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

the entire binding to fail, unless the NULLOK attribute of that parameter has
been set to “TRUE”. Conditions can catch the success or failure of either a
specific object reference or of an entire binding. In the case where a condition
initiates a service chain, it is important that all parameters bind properly.

TYPE This required attribute specifies whether a condition is
checking for the “SUCCESS” or the “FAILURE” of a binding
attempt. The other attributes of the CONDITION element
specify the operation to perform under this condition. Also,
TYPE may assume a value of “RETRY” to indicate the
response to a server-busy indication. In this case, the
condition performs a number of retries with a given timeout
(TIMEOUT and RETRIES attributes).

REFERENCE This optional attribute specifies an object reference that
extracts data from the XML or HTML document returned as
the result of a service invocation. The REFERENCE attribute
for conditions is equivalent to the element content of VALUE
and BINDINGREF elements.

MATCH This optional attribute specifies a text pattern that compares
the object property referenced by the REFERENCE attribute.

WAIT This optional attribute is the number of seconds to wait before
retrying for document retrieval after a server has returned a
“service busy” error. Applies only to conditions of type
“RETRY”.

MASK This optional attribute specifies a portion of the text that
REASONREF returns. This portion becomes the returned
reason string. The syntax of a mask is the same as the syntax
defined for masks in object references.

Note: It is not necessary to use this attribute, since the WOM expression
found in REASONREF may perform the masking.

REBIND This optional attribute specifies an alternate output binding.
Typically a failure condition indicates the document returned
cannot be bound properly. REBIND redirects the binding
attempt to another output binding. Rebinding is useful in
situations where the documents returned by a service are
dependent upon the input criteria that were submitted. The
use of REBIND allows a condition to determine the
appropriate binding for extracting the desired data.

SERVICE This optional attribute specifies a service to invoke with the
results of an output binding, thus implementing a service
chain. The value is the name of a SERVICE found within the
same mapping. The value may also take the following form:
“<mapping-name>:<service-name>,” where
<mapping-name> is the name of another mapping, and where
<service-name> is the name of a SERVICE within that other
mapping. This allows chaining across the services of
multiple mappings, but this feature is only supported within
the B2B Integration Server.

REASONREF This optional attribute is an object reference pointing to a
value to be returned as an error message when a service fails.
A condition cannot contain values for both REASONTEXT
and REASONREF.

REASONTEXT This optional attribute returns the text for an error message
when a service fails. A condition cannot contain values for
both REASONTEXT and REASONREF.

RETRIES This optional attribute is the number of times to retry before
failing the service. Applies only to conditions of type
“RETRY”.

COMMENT This is optional descriptive information of this element.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

REGION Sub-Element

The REGION empty-element in an output binding defines targeted sub-regions
of a document. Regions are useful in services that return variable arrays of
information in structures that can be located between well-known elements of
a page.

Note: Regions are critical for poorly designed HTML documents where it is
otherwise impossible to differentiate between desired data elements and
elements that also match the search criteria.

NAME This required attribute specifies a region’s name. This name
can then be used as the root of an object reference. For
instance, a region named “foo” can be used in object
references such as: foo.p[0].text.

Note: The origins of “foo” could be for food, for fool, or for file
object-oriented.

START This optional object reference determines the beginning of a
region.

END This optional object reference determines the termination of a
region.

NULLOK This optional attribute is either “TRUE” or “FALSE”. This is
the indicator that determines whether it is acceptable for the
parameter’s object reference to fail to bind. When false, if
object reference does not bind, the entire binding fails.
CONDITION elements may then be used to handle the failed
binding. By default, a failure to bind any parameter fails the
entire binding.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

PATTERN This optional attribute defines a pattern of elements to match
within a region. A pattern consists of a set of space-delimited
element type names. The resulting region consists of these
elements. The asterisk matches any number of elements but
does not select elements for inclusion in the region.

COMMENT This is optional descriptive information of this element.

VALUE Sub-Element

The VALUE element represents a string parameter of an input binding or an
output binding. As an input parameter it defines the value of an input variable
that is submitted to a Web server. As an output parameter it defines how the
parameter’s value is extracted from the documents that the server returns.

VALUE does not contain any child elements, but the content enclosed between
the VALUE start-tag and the VALUE end-tag has significance. An input
parameter need not have any content between these tags, in which case only an
empty start-tag (such as <VALUE NAME=“N1”/>) need be specified. This
signifies that the program that calls the service provides the parameter value.
When an input parameter does have content, the content represents a string
constant that is to be submitted to the server as the value of the input variable.
In this case, the program does not provide a value.

An output parameter must have content between the VALUE start-tag and
end-tag. The content represents either a constant or an object reference. When
it represents a constant, the parameter always returns the content as its value.
Constants may use the %% notation for parameter substitution (see the
USAGE attribute), so that the parameter’s value is a concatenation of constant
strings and dynamically assigned parameter values. When the content
represents an object reference, the object reference extracts information from
the XML or HTML page that the server returns, and the resulting information
becomes the value of the parameter.

NAME This required attribute identifies the parameter to calling
programs. No two parameters may have the same name
within a given binding. VALUE and BINDINGREF names
belong to the same namespace.

DIM This optional attribute defines a parameter’s dimensions.
• “1” indicates a single-dimensional array of strings.
• “2” indicates a two-dimensional array or table of strings.
• “0” (the default) indicates there is not an array, but a string.

TYPE This optional attribute specifies the data type of the
parameter. When present, this parameter must take a value of
“STRING”.

CONTENT This optional attribute identifies the type of expression found
within the content of the element, where the content is the
string that resides between the VALUE start-tag and the
VALUE end-tag. The valid values are “WOM” and
“CONSTANT”. WOM is an abbreviation for webMethods
Object Model, which defines object references. If the
CONTENT attribute is absent, the value of the attribute
assumes the value of the WIDL-MAPPING element’s
DEFAULT-CONTENT attribute. Input parameters may not
have a content type of “WOM”.

In addition to the above attributes, input parameters must have the following
attribute, FORMNAME:

FORMNAME This required attribute specifies the variable name to be
submitted through the HTTP GET or POST method. The
calling program provides the value that is assigned to the
variable, unless the CONTENT attribute is set to
“CONSTANT”, in which case the element’s content is
submitted as the value.
The FORMNAME attribute allows one to assign meaningful
names to obscure form name variables. One may set
FORMNAME to the empty string (“”) to pass only the value
of the input variable and not also a variable name, as required
by some Web services.

USAGE This is an optional attribute. The DEFAULT usage of
variables is for specification of input and output parameters.
Parameters can pass HEADER information (for example,
USER-AGENT or REFERER) in an HTTP request.
One may also reference INTERNAL parameters from within
attributes and element content by using the syntax
“%<parameter>%”. This performs string substitution for
string parameters and parameter value assignment otherwise.
(The syntax may also be used for non-internal parameters.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

In addition to the common attributes, an output parameter may have the
following attribute, NULLOK:

NULLOK This optional attribute is either “TRUE” or “FALSE”. This is
the indicator that determines whether it is acceptable for the
parameter’s object reference to fail to bind. When false, if
object reference does not bind, the entire binding fails.
CONDITION elements may then be used to handle the failed
binding. By default, a failure to bind any parameter fails the
entire binding.

COMMENT This is optional descriptive information of this element.

BINDINGREF Sub-Element

The BINDINGREF element represents a structured record parameter of an
output binding. The element serves as a reference to another binding. Each
BINDINGREF provides a parameter name and the name of an output binding
that the parameter represents. This element provides the mechanism by which
bindings are nested within bindings. BINDINGREF is like VALUE in that
both are binding parameters.

Each BINDINGREF contains an object reference between the BINDINGREF
start-tag and the BINDINGREF end-tag. The object reference identifies one or
more portions of an XML or HTML document. If the binding reference’s DIM
attribute is “0” or not present, the binding reference represents a single
instance of another binding, and the object reference identifies a single portion
of the document. If the DIM attribute is “1”, the binding reference represents
an array of bindings, and the object reference represents an array of portions of
the document. The multiplicity of the object reference must agree with the
dimensionality of the BINDINGREF.

Also, the object reference of a BINDINGREF never specifies the document

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

element and never specifies an object property. Instead, the object reference is
always expressed relative to the object reference of the containing
OUTPUT-BINDING. For example, “TR[]”, “TR[].TD[0]”, and “product[]” are
all valid BINDINGREF object references, while “doc.TR[]”,
“TR[].TD[0].source”, and “doc.product[].source” are not valid in binding
references. The attributes are:

NAME This required attribute identifies the parameter to calling
programs. To access parameters within the nested binding, the
program must refer to those parameters relative to the binding
reference’s name. No two parameters may have the same
name within a given binding. VALUE and BINDINGREF
names belong to the same namespace.

DIM This optional attribute defines a parameter’s dimensions.
• “1” indicates an array of bindings.
• “2” is not valid.
• “0” (the default) indicates there is a single binding.

RECORD This required attribute identifies the output binding that the
binding reference is to nest within its parent output binding.
The value is the name of an OUTPUT-BINDING found
within the same mapping. The value may also take the
following form: “<mapping-name>:<binding- name>”, where
<mapping-name> is the name of another mapping, and where
<binding- name> is the name of an OUTPUT-BINDING
within that other mapping. This allows multiple mappings to
share the same output bindings. Sharing bindings across
multiple mappings is only supported within the B2B
Integration Server.

CONTENT This optional attribute identifies the type of expression found
within the content of the element, where the content is the
string that resides between the BINDINGREF start-tag and
the </BINDINGREF> end-tag. When present, the value must
be “WOM”. WOM is an abbreviation for webMethods Object
Model, which defines object references. If the CONTENT
attribute is absent, the value of the attribute assumes the value
of the WIDL-MAPPING element’s DEFAULT-CONTENT
attribute.

In addition to the above attributes, input parameters must have the following
attribute, FORMNAME:

FORMNAME This required attribute specifies the variable name to be
submitted through the HTTP GET or POST method. The
calling program provides the value that is assigned to the
variable, unless the CONTENT attribute is set to
“CONSTANT”, in which case the element’s content is
submitted as the value.

The FORMNAME attribute allows one to assign meaningful
names to obscure form name variables. One may set
FORMNAME to the empty string (“”) to pass only the value
of the input variable and not also a variable name, as required
by some Web services.

USAGE This is an optional attribute. The DEFAULT usage of
variables is for specification of input and output parameters.
Parameters can pass HEADER information (for example,
USER-AGENT or REFERER) in an HTTP request.
One may also reference INTERNAL parameters from within
attributes and element content by using the syntax
“%<parameter>%”. This performs string substitution for
string parameters and parameter value assignment otherwise.
(The syntax may also be used for non-internal parameters.)

In addition to the common attributes, an output parameter may have the
following attribute, NULLOK:

NULLOK This optional attribute is either “TRUE” or “FALSE”. This is
the indicator that determines whether it is acceptable for the
parameter’s object reference to fail to bind. When false, if
object reference does not bind, the entire binding fails.
CONDITION elements may then be used to handle the failed
binding. By default, a failure to bind any parameter fails the
entire binding.

COMMENT This is optional descriptive information of this element.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

WIDL Implications for XML and CORBA

As is seen in other parts of this book the notion or functionality of an Interface
Definition Language (IDL) is not unique. In CORBA the IDL describes the
interfaces to CORBA objects in a distributed environment. WIDL from webMethods
describes Web resources so a user can automate all XML and HTML documents and
forms interactions. WIDL follows the trend to describe data within documents rather
than the documents themselves.

The WIDL specification provides an abstract description for an API to services,
while the WIDL mapping provides the interactions among XML and HTML
documents.

Note: A service is a function that resides behind a Web XML or HTML document
such as a Common Gateway Interface (CGI) script. An interface is a collection of
services.

WIDL describes the location of services at the highest Web level, URL. The input
parameters to be submitted to a service are described in the WIDL-MAPPING root
element and its SERVICE element with its METHOD attribute. The output
parameters to be returned for a service are described likewise.

XML and WIDL-SPEC Interface

Below is a template example of an XML implementation for a service using
WIDL-SPEC. This template can be the basis for developing an interface to a book
catalog service.

<WIDL-SPEC NAME="com.wordware.books.catalog"
VERSION="3.0">

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<METHOD NAME="getbook"
 INPUT="BookList"
 OUTPUT="BookCatalog" />
<RECORD NAME="Title">
 <VALUE NAME="CORBA Developer's Guide with XML" />
</RECORD
<RECORD NAME="Author">
 <RECORDREF NAME="LastName"
 RECORD="Doss" />
 <RECORDREF NAME="FirstName"
 RECORD="George" />
</RECORD>

</WIDL-SPEC>

WIDL is parsed as an XML document. This process extracts relevant data about
services declared. To retrieve available services in a given WIDL file, this simple
object reference would be used:

widl.service[].name

Note: Similar object references would be used to retrieve a URL, a service method,
and input and output variables.

Condition Handling

Because there is no standard for handling errors for document formats, WIDL’s
CONDITION is very useful. CONDITION can handle object references that return
either meaningless data or null values. A simple CONDITION declaration is:

<CONDITION TYPE="FAILURE"
 REFERENCE="doc.xml[0].value"
 MATCH="*error condition*"
 REASONTEXT="error condition" />

Note: By using REASONREF, conditions can divert a service to an alternate set of
object references for output variables.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch06/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Part II
CORBA: Why and What

Chapter 7
CORBA Headlines
Included in This Chapter:

• Headlines on CORBA Objects

• Headlines on the ORB

• Headlines on CORBA Domains

• Headlines on CORBAservices

• Headlines on Security Service

• Headlines on CORBAfacilities

• Basic Designed XML/CORBA DTD

The selection of “headlines” as a part of this chapter’s title is important to a
discussion of CORBA and XML. A headline in a newspaper is a method of
attracting one to read a story; if a good one, it should also be a theme or
viewpoint of the story. Consider what you think when you see these headlines:

• Octuplets born in Houston

• Storm causes 500 car accidents

Each of these headlines generates a different set of images and emotions. Are
the images and emotions correct? Until one knows that the octuplets are
human children and not elephants, one might have a different image than is
expected. Also, with accidents one might wonder if there were any deaths.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Where does this lead? It seems that we humans are always seeking
clarification. When one sees a statement such as “CORBA is a dynamic
paradigm that is going to shift a system administrator’s view of networking
significantly,” what images and emotions are generated? Perhaps chaotic
images and fearful emotions are generated.

If one considers when one first heard about the client/server paradigm, one
might also have the same type of images and emotions. But the key word is
image. Just as with the octuplets example, one must clarify CORBA or
client/server. It is a given here that one already has experience with the
client/server paradigm (a two-sided view point). Actually, we have many
two-sided paradigms, and the client/server is a key one for the computer
environment. Other associated computer paradigms include:

• Parent/child

• Input/output

• Data/information

• Hardware/software

What fundamentally makes the CORBA paradigm different from the
client/server paradigm? There are five basic concepts that make the difference;
all else is commentary:

• Common (There is “sameness.”)

• Object (There is something “perceptible.”)

• Request (There is the act “of asking.”)

• Broker (There is the “handler” of the asking.)

• Architecture (There is the “design and structure” for containing the
other four.)

XML has a user-defined architecture, the document type definition (DTD). A
DTD should be able to handle common objects and requests. In a client/server
XML DTD one might have an attribute list of “yes” and “no”; however, in a
CORBA XML DTD one might have an attribute list of “yes”, “no”, and
“maybe”. The absolute “either-or” dichotomy is less relevant in the CORBA
paradigm. An important concept of CORBA is that an object can be accessed
by another object and it can also access another object. In other words, a client
can be a server, and a server can be a client. An XML DTD can be designed to
permit one to define an object either way. Thus, the octuplets in the first
headline could be defined as a group, not as a number, in XML markup as:

 <anmlgrp>octuplets</anmlgrp >
 <hmngrp>octuplets</hmngrp >
 <group>octuplets</group>

Note: An XML tag set should be meaningful. Here is an example of
thinking about design. In a database about animals and humans one could
have an element—start-tag, content, end-tag—have the same content but
different representations. One could also associate a group with animal or
human and not need the other two tag sets.

This chapter is a commentary on the five basic concepts using headlines. It is
not an overview. It is not a view of the world from Mt. Olympus or Mt. Sinai.
It is not an “essentials” discussion. What one does not know is always the
essential need. It is not highlights of CORBA. Lowlights can also be
important. This chapter comments on these key areas: CORBA object, the
ORB, domains, CORBAservices, the Security Service, and CORBAfacilities.
This chapter is primarily concerned with the design or structure of CORBA
rather than the how-it-works. It is a search for the components, contents,
constituents, ingredients, parts, or widgets of CORBA. In XML terminology or
jargon, it is a search for elements, attributes, and entities. The chapter ends
with a basic designed XML/CORBA DTD that represents a fundamental
design pattern for more complex designed DTDs developed in Part III of this
book.

To develop a set of headlines for CORBA one might think of a house. If a
realtor was to show you through a house, the type of headlines the realtor
would use are:

• “This is the hallway.”

• “This is the living room.”

• “This is the bedroom.”

• “This is ‘x’.”

One would get images as to what should go in that room or not go in that
room. You would not expect to put your bed in the living room. A television
might go in both rooms. So a room can be considered in computer jargon as a
feature or function, while a bed or television can be considered an attribute. A
room can be considered an entity because it holds things. For example,
CORBA has COMMON Facilities.

Note: A headline may only give a partial view of reality. It takes the
commentary or detailed text to clarify.

Headlines on CORBA Objects

A CORBA object may be consider a foundational abstraction for
comprehending this object-oriented paradigm. These headlines are a place to
start thinking about an object as an element, an attribute, or an entity; they are
not the place to end. Here are 20 random headlines for a CORBA object:

• An object is unique.

• Objects have versions.

• An object contains data.

• An object cannot change type.

• An object can be accessed by name.

• CORBA can handle internationalization.

• Object relationships need to be expressed.

• An object is a discrete software component.

• An object receives messages through the ORB.

• The object model is the object’s most abstract form.

• A CORBA object is an interface definition in IDL.

• An object has operations, attributes, and exceptions.

• An object has a state different from any other object.

• “Namespaces” and “object handles” support naming.

• An object instance can be considered a template or a class.

• A CORBA object is similar to a programming object, but not the
same.

• Object distribution is based on a number of areas including location
and access.

• CORBA has four objects/interfaces: application, domain, facility, and
service.

• Operational performance has a number of objectives including
scalability and throughput.

• An object can be invoked through three methods: intraprocess,
interprocess, and intermachine.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

What can one identify from these headlines about a CORBA object? A key
idea is that a CORBA object might be equated to an XML entity because it
contains data. (An XML entity is a container.) An object can be identified with
a number of attributes such as operational performance and distribution. The
places of a CORBA object in an XML DTD are discussed in Chapters 11-14.

Note: The design logic based on the above is that a CORBA object is a
container. CORBAservices and CORBAfacilities are CORBA objects; thus
they are containers. An XML entity is a container. The root entity or
top-level entity is the document entity. A document type is a root entity. A
CORBA service or CORBA facility could be equated to a document type.

Headlines on the ORB

CORBA can be viewed in two ways. First, CORBA can be Common Object
Request Broker Architecture. This implies an architecture that has a unified
environment, sees components as unique, handles the acts of asking, and
manipulates the acts of asking. Second, CORBA can be Common ORB
Architecture. This view gives a new perspective in which common modifies a
unique actor, the Object Request Broker. The actor has architecture in that it
has a structure or is a system. These headlines reflect the emphasis on the
second view stated here.

The ORB is an abstract bus. Two concrete types of buses are the one that
carries passengers and the electrical bus. Bus is an abbreviated form of
omnibus, or “vehicle for all.” This is a textual way of not drawing a figure that
is different between versions of CORBA, but the ORB is the centerpiece of the
architecture because all messaging goes through it. An orb can be viewed as a
sphere or as a range of activities or influences. The ORB influences everything
else in the architecture.

Since a precedent has been established, here are 20 headlines on the ORB:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• The ORB has objects.

• An ORB is a type of proxy.

• An ORB is location transparent.

• The ORB ID is a string identifier.

• The ORB conveys messages to objects.

• ORB is an instance of CORBA, a class.

• The ORB skeleton interface is proprietary.

• An ORB domain is one implementation instance.

• The ORB handles any CORBA object invocation.

• A client may transparently use any number of ORBs.

• The ORB does not have all the capabilities of a broker.

• The ORB is middleware that interfaces to a set of APIs.

• The ORB is a type of scaling implement or mechanism.

• The ORB is a major component of the OMG Reference Model.

• Any ORB is known by the scope of its objrefs, object references.

• The ORB is not an object-oriented remote procedure call (OO RPC).

• The ORB is a communication platform that facilitates object
interoperability.

• The interface between an ORB and an object implementation is an
object adapter.

• An ORB can provide invocation either by interprocess, intraprocess,
or intermachine.

• The ORB interface is a collection of operations that provides common
services to clients and servers.

From these headlines one can determine that an ORB is a facilitator of objects
and the ORB has a number of functional attributes. One can also determine
some of its relationship to other CORBA components. Would you consider an
ORB an XML entity?

Headlines on CORBA Domains

A simple definition of a CORBA domain is a set of objects for a defined
function. This definition of a domain is very close to one in the common
language, “a sphere (area) of activity or function.” There are a number of
domain types including network addressing, network connectivity, reference,
and transaction. The OMG is working on specific domain objects such as
electronic commerce, manufacturing, and telecommunications.

Domain is looked at in more detail in Chapter 11. Here are 20 headlines
related to domain:

• A domain has a common set of rules.

• A domain has transparent distribution.

• A domain can be modeled as an object.

• Naming domains may not need bridging.

• A domain is important to interoperability.

• Domains are connected to each other through bridges.

• In CORBA a domain is a modeling concept.

• A domain has a set of common characteristics.

• A domain can be a member of another domain.

• A concept important to domain is object references.

• The concept domain is a work in progress by the OMG.

• Domains relate through either containment or federation.

• A key word to describe a domain is scope, a meaningful limit.

• A domain boundary needs to be identified by a meaningful identifier.

• There are many domain types (business, language, management, etc.).

• One domain can coexist with another domain through common
objects.

• A simple notation of a domain is that it comprises the set of objects of
one ORB.

• Two or more domains can be mapped either by mediated bridging or
immediate bridging.

• A domain allows system partitioning into components with common
characteristics.

• A complex notation of a domain is that it comprises all the ORBs of a
service such as networking.

Headlines on CORBAservices

CORBAservices are interfaces that have been standardized by the OMG for
use by developers. In theory, this means common usage across platforms and
products is possible. In practice, this simply shows to what degree developers
have implemented the CORBAservices. More details on CORBAservices are
discussed in Chapters 8, 12, and 13. Here are 20 headlines for
CORBAservices:

• CORBAservices are inherent to most objects.

• CORBAservices are service-defined interfaces.

• CORBAservices provide for the creation of objects.

• CORBAservices provide for access control of objects.

• CORBAservices address the functions of applications.

• CORBAservices are also referred to as Object Services.

• The Naming Service registers and locates objects by name.

• CORBAservices do not have standardized implementations.

• CORBAservices provide maintenance of object relationships.

• The Property Service enables objects to define sets of properties.

• CORBAservices are a growth area (at least 15 and counting).

• CORBAservices defines conventions for distributed applications.

• The Event Service manages which objects send or receive events.

• The Concurrency Control Service uses locks to manage concurrency.

• CORBAservices are defined through the Interface Definition
Language.

• The Persistent Object Service manages objects that persist over a time
period.

• The Licensing Service supports three policies: consumer, time, and
value mapping.

• The Life Cycle Service facilitates the creating, deleting, copying, and
moving of objects.

• The Object Trader Service locates objects in three ways: function,
location, and operation name.

• The Security Service handles the basic components of a security
policy such as identification and authentication.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

What can one learn from these headlines? CORBAservices can be generalized,
but the characteristics of a specific service may give more insight. Since this is
a very dynamic area, one should adhere to a key programming guideline—be
scalable. Implementation is left to the developer, usually read as vendor.

Headlines on Security Service

All services may be equal, but perhaps some are more equal than others. The
basic service is the Naming Service; however, from more than a technical view
a service that comes quickly to a developer’s mind is security. The vision for
the Security Service is for it to handle basic components of a security policy.
The Security Service is discussed in more detail in Chapter 13. Here are ten
Security Service headlines:

• Security Service is a work in progress.

• Security Service has to be enforceable.

• Security Service is fundamentally a security policy.

• Security Service has to reflect business and regulatory requirements.

• Security Service has to be consistent, scalable, portable, and usable.

• Having a Security Service does not mean being able to do more, but
less.

• Security Service architecture is based on components rather than
implementations.

• Security Service is concerned with functions, mechanisms, services,
policies, and threats.

• Security Service architecture is based on a white paper written by
security specialists (1994).

• Security Service is important because natural boundaries of protection
are blurred in an object-oriented environment.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Headlines on CORBAfacilities

CORBAfacilities are more complex than CORBAservices because of the level
of aggregation of the services. CORBAfacilities are optional, while
CORBAservices are not. The identified components for CORBAfacilities
applications cover a wide spectrum of domains. CORBAfacilities are
discussed in more detail in Chapters 9 and 14. Here are ten CORBAfacilities
headlines:

• CORBAfacilities use the ORB to communicate.

• CORBAfacilities are also known as Common Facilities.

• CORBAfacilities have been divided into four basic types by the
OMG.

• CORBAfacilities can be considered vertical when the applications are
generic.

• CORBAfacilities can be considered horizontal when the applications
are specific.

• The User Interface Facility encompasses major user interface
enablers.

• The development for CORBAfacilities is more dynamic than that for
CORBAservices.

• The System Management Facility is difficult to develop even after a
lengthy period.

• The Task Management Facility is concerned with the automation and
execution of user tasks.

• The vision for the Information Management Facility is to have a
standard set of services to manipulate OMA-based schema.

Basic Designed XML/CORBA DTD

XML uses the document type metaphor to permit one to design anything using
the logical and physical structures of a document. So for any application or
operational design that includes XML one must have a design comprehension
of both a document type and the subject type that is to be metamorphosed
(transformed into) as a document. A document type can be many things: a
memo, a letter, a textbook, a novel, etc. The subject type of interest here is
CORBA.

One could look at CORBA perhaps as either a textbook or a novel. The
textbook has a detailed logical structure of chapter number, title, a number of
header levels, paragraphs, figures, and ordered and unordered lists. A novel
might only have a chapter number and paragraphs. However, each could have
more components (elements). Other chapters in this book illustrate how the
textbook metaphor can be fully used with CORBA. Here is a very simple
example of an XML DTD for CORBA:

<DOCTYPE CORBA [
<!ELEMENT API (#PCDATA)>
<!ELEMENT ORB (#PCDATA)>

<!ELEMENT domain (#PCDATA)
<!ELEMENT service (#PCDATA)
<!ELEMENT facility (PCDATA)
]

What does this DTD for you? It gives the basic components or elements of
CORBA. Later chapters give the details so that each element of the DTD can
become a document type. One could also develop this DTD into a very
complex one using attributes with the elements and then making further
refinements. The key guideline here is that one can structure an XML DTD for
CORBA based on one’s skills or needs. There is no one way to do this; you
have to decide what the specific design goal is and structure the DTD
accordingly.

Note: With HTML one can easily see—because of a logical definition of
numbers (not common sense) that 1 goes before 2 in a sequence— that the
<h1> tag comes before the <h2> tag, but with XML you have to know what
you want to be first and then second. In the DTD example, the order
establishes a type of relationship among the five elements, <!ELEMENT
…>.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch07/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 8
Essentials of CORBAservices
Included in This Chapter

• CORBAservices Highlights

• Core Design Principles for CORBAservices

• Concurrency Control Service Essentials

• Event Service Essentials

• Externalization Service Essentials

• Licensing Service Essentials

• Life Cycle Service Essentials

• Naming Service Essentials

• Object Collections Service Essentials

• Object Trader Service Essentials

• Persistent Object Service Essentials

• Property Service Essentials

• Query Service Essentials

• Relationship Service Essentials

• Security Service Essentials

• Time Service Essentials

• Transaction Service Essentials

This chapter briefly looks at CORBAservices to establish descriptive
information for the development of a document type definition (DTD) using
CORBAservices as a document type labeled services (Chapter 12). The
information on the services is kept to essentials for DTD design purposes. A

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Security Service DTD is developed in Chapter 13 with a document type
labeled security, and more details are given there.

CORBAservices Highlights

CORBAservices are interfaces that have been standardized by the OMG for
use by developers. The manner of implementation is not defined in the model,
but the types of interfaces are. Here are the services used to design the
CORBAservices DTD in Chapter 12 along with their primary purposes:

CORBAservices Primary Purposes

Concurrency Control Regulates resources using a lock manager. Defines
locks according to different access categories.

Event Allows for asynchronous events, event “fan-in,” event
“fan-out,” and reliable event delivery.

Externalization Provides a standard way for getting data into and out
of a component by defining externalization protocols
and conventions.

Licensing Provides a method for metering usage of a component
(controls use of intellectual property). Three controls
are supported: consumer (user or machine
assignment), time (end and start date, duration), and
value mapping (for example, resource usage).

Life Cycle Defines conventions for object creating, deleting,
copying, and moving in different locations.

Naming Enables the location of an object by name (human
readable) on the network rather than by address. A
key notion is the naming context (a set of unique
names).

Object Collections Provides a uniform method to create and manipulate
generically the most common collections (groups of
objects).

Object Trader Provides a matchmaking service for objects.

Persistent Object
Allows for an object to be retrieved when there is a
system crash.

Property Permits an object to store information on another
object. An application can define a set of standard
properties for its objects. These properties could then
be handled in a uniform method.

Query Enables the location of an object to be found by a
method other than name such as indexing.

Relationship Provides a method to create dynamic associations
such as one-to-one or one-to-many.

Security Supports access control, administration, auditing,
authentication, authorization, confidentiality,
identification, non-repudiation, and secure
communications.

Time Permits synchronization in a distributed environment
(current time together with its associated error
estimate).

Transaction Enables an operation to be defined across multiple
objects as a single transaction in either a flat or nested
model.

Core Design Principles for CORBAservices

This section looks at only a few of the design principles that might be
considered relevant to the design of a DTD for the CORBAservices. More
technical details are found in the CORBAservices Specification.

A service can be broken up (decomposed) into different interfaces that provide
client views. For example, the Event Service has three interfaces:
PushConsumer, PullSupplier, and Event Channel.

Some services have callback interfaces. They are required for client objects
that support invocation of some operation.

Some services employ element identifiers. The scope of an identifier is limited
to a context.

There are two types of return codes—exceptional and normal. The first is
represented by error returns, while the second is represented by a DONE return
code.

A part of the designing vision is to consider future CORBAservices as their
related current services. Here is a list of these services with their associates:

Future Object Services Associated Services

Archive Externalization, Persistent Object
Backup/Restore Externalization, Persistent Object, Transaction
Change Management Persistent Object
Data Interchange Externalization, Persistent Object
Implementation Repository Persistent Object
Internationalization Naming
Logging Transaction
Recovery Transaction
Replication Persistent Object
Startup Persistent Object

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

While CORBAServices do not depend upon specific software, some services
have dependencies on other services. Here is a list of the services and whether
there are dependencies or not:

Services Service Needed

Concurrency Control None
Event None
Externalization Life Cycle, Relationship
Licensing Event, Property, Query, Relationship, Security
Life Cycle Naming, Relationship
Naming None
Object Collections None
Object Trader None
Persistent Object Externalization, Life Cycle
Property None
Query None
Relationship None
Security None
Time None
Transaction Concurrency Control, Persistent Object

These design principles can be used in defining attributes and relationships in
the DTD.

Some of the attributes may be defined as “yes” or “no.”

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Concurrency Control Service Essentials

Concurrency Control Service regulates resources using lock management.
Locks are defined according to different access categories. This service may be
used to restrict the number of clients using a database (only one at a time) or
the ability of a client to manipulate a file, either read or write.

The service provides for lock granularity and locking modes. The granularity
can be either coarse-grained or fine-grained. There are at least five types of
locking modes:

• Read

• Write

• Upgrade

• Intention Read

• Intention Write

Note: Perhaps a better name for the Concurrency Control Service is Lock
Management Service.

Event Service Essentials

Event Service allows four types of events: asynchronous, “fan-in,” “fan-out,”
and reliable event delivery. The data can be either generic or specific. The
three key components of the Event Service architecture are supplier (event
data producer), event channel, and consumer (event data processor).

The service uses two models, push and pull. There can be a push or pull
consumer as well as a push or pull supplier. An event channel functionally is
all four types.

Event communication can be generic or typed. OMG IDL can describe event
communication. There can be proxies for each of the four push/pull and
consumer/supplier variations.

Externalization Service Essentials

Externalization Service standardizes a method for getting data into and out of a
component by using a set of protocols and conventions. From a programming
view an object is externalized at one location and internalized at a remote
location. The Externalization Service uses the Relationship Service and the
Life Cycle Service to achieve its goals.

Note: The name of this service implies only half of its functions since it also
does internalization.

Licensing Service Essentials

Licensing Service provides a method for controlling intellectual property. It
uses three types of controls: consumer, time, and value mapping. The interface

is generic so a variety of licensing models can be handled such as
charge-per-use or charge-per-hour.

These three controls also have attributes:

• Consumer Assignment and Reservation
• Time Duration and Expiration
• Value
mapping

Allocative, Consumptive, and Unit

Life Cycle Service Essentials

Life Cycle Service is a set of standards for deleting, copying, and moving an
object. The implementing programmer must state how the action is to happen.
These operations can be performed in different locations.

A key concept of this service is factory. Any object that creates other objects is
a factory. For example, a factory object would be useful when reports had to
be created using compound documents. A factory object might be registered
with the Naming Service and Trading Service so other clients can access it.

Naming Service Essentials

Naming Service is the initial service called as soon as a client connects to an
ORB. It enables an object to be located by name rather than by address. Two
important concepts associated with this service are naming context and naming
library.

The Naming Service handles name associations or name hierarchies. It does
not handle such things as what the object does.

Names can be either public or private. A standards body could define a set of
objects for public use. Private names could define a set that belongs to a
corporation or even an individual.

This service can handle either names for objects or operations. This makes the
management of something that is complex a little easier.

A naming context may have an identifier field (name of a server), a kind field
(represents application information), name components, and an unnamed root
context. The name components also can have identifier and kind fields.

The organization for naming contexts can be hierarchical or random. This is
also true for name components.

A Name needs at least three things. They are:

• An ORB pointer

• A server object pointer

• An unbound sequence that is a path for each naming context that leads
to a final name component

Object Collections Service Essentials

Object Collections Service enables a group of objects to be manipulated as
one. It handles generically the most common components.

Object Collections Service has a number of interfaces based on collection
properties. Here is an abbreviated list of collection properties used:

• Unordered

• Unique

• Map

• KeySet

• Set

• Multiple

• Relation

• KeyBag

• Bag

• Heap

• Ordered

• Sorted

• Unique

• SortedMap

• KeySortedSet

• SortedSet

• Multiple

• SortedRelation

• KeySortedBag

• SortedBag

• Sequential

• Multiple

• Equality Sequence

• Sequence

The Collection interface represents the most abstract view of a collection. The
interface defines operations for:

• Adding elements

• Removing elements

• Replacing elements

• Retrieving elements

• Inquiring collection information

• Creating iterators

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Object Trader Service Essentials

Object Trader Service provides a matchmaking service for objects. It allows an
object to publicize and bid for a job. This service is like the telephone Yellow
Pages in that it lets you search by category. The Object Trader Service queries
five types of offers:

• Potential

• Considered

• Matched

• Ordered

• Returned

Persistent Object Service Essentials

Persistent Object Service (POS) allows for an object to be retrieved when there
is a system crash. This means an object’s state has to be preserved over a
period of time. For example, the application that is used to write this document
retains the original state of the document when it is revised; the original is
hidden from view until such time as the function “save as” is done. This is a
simple example of a more complex reality.

Without getting into details, there are certain things one should know about the
POS for designing a CORBAservices DTD, such as the basic architectural
components and control types.

The fundamental architectural components of the POS may be:

• Client

• Persistent Object and its associated Persistent Identifier

• Persistent Object Manager

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Persistent Data Service and its protocol interface

• Database or a flat file (data storage type)

The two methods for controlling persistence are connection and store/restore.
The two types of connection operations are “connect” and “disconnect.” The
types of store/restore operations are obvious.

Property Service Essentials

Property Service permits an object to store information on another object. An
application can define a set of standard properties (attributes) for its objects so
these properties can be handled uniformly. In CORBA parlance an attribute is
a variable defined in an object’s IDL (Interface Definition Language). A
property has both a name and a value.

Property Service supports a number of operations. The PropertySet interface
supports defining, deleting, enumerating, and checking for the existence of
properties.

Clients can manipulate property modes individually or in batches. Five
mutually exclusive property modes have been defined and they are as follows:

• Normal

• Readonly

• Fixed_Normal

• Fixed_Readonly

• Undefined

Query Service Essentials

Query Service enables an object’s location to be found by something other
than name, such as indexing. The Query Service specifies an interface so
CORBA objects and both object-oriented and relational databases can be
viewed as a single query target. A query can be directed toward a single object
or a collection of objects.

Query supports interoperability across a variety of query systems by
supporting two major query languages. These languages are SQL-92 Query
and OQL-93.

Query Service supports major query operations. These operations are
selection, insertion, updating, and deletion of collections.

Query Service supports two types of service, Collections and Query
Framework. The Collection interface uses association for query, while the
Query Framework interface uses association and inheritance.

Query Service defines only a top-level, basic Collection interface that supports
query on arbitrary collections without restriction on any particular type. Some
of the types commonly used are Equality Collection, Key Collection, and
Ordered Collection (Sequential and Sorted).

Relationship Service Essentials

Relationship Service provides a method to create dynamic associations such as
one-to-one or one-to-many. All the chapters in this book have been written. It
now is time to put them all together; they need to be related. This where the
Relationship Service comes to the front. The chapters (files) are distinct
objects and need to be related to each other and as a whole. That which is
simply stated is not simply done. This is outside of the goals of this book.

The comprehension of the Relationship Service might on first glance appear to
be easy; however, that might need a second consideration. Here are five
categories of relationships:

Cardinality Number (maximum) of relationships involved such as a
chapter in a book might be related to a number of chapters.

Degree Number of required roles such as a chapter is a part of a book,
a chapter is before and after other chapters, and other chapters
reference a chapter.

Roles Types of relationships an object may assume such as a
chapter in the body of the book or an appendix of the book.

Semantics Defines relationship attributes such as chapter number as the
attribute of chapter-order relationship.

Types Name of the relationships among or between objects such as
table of content relationship of chapters to book or the author
relationship of a person (writer) to a book.

Security Service Essentials

Security Service supports the basic components of a security policy: access
control, administration, auditing, authentication, authorization, confidentiality,
identification, non-repudiation, and secure communications. The design for
this service is based on a white paper written by security specialists in 1994.
This service is discussed in detail in Chapter 13.

Time Service Essentials

Time Service permits synchronization in a distributed environment. It gives
the current time together with its associated error parameter. Greenwich Mean
Time is the base standard time (referred to in the Specification as Universal
Time Coordinate (UTC)), while the base date is October 15, 1582.

Note: When Pope Gregory XIII proclaimed the Gregorian calendar to be the
calendar of the Church it was October 15, 1582 (Gregorian calendar), while
the prior day was October 4, 1582 (Julian calendar). The Gregorian calendar
did not become the dating standard in Europe until the time of the
Communist Revolution.

Time Service handles both objects and events. There are two core interfaces,
TimeService and TimeEventService.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Transaction Service Essentials

Transaction Service enables an operation to be defined across multiple objects
as a single transaction in either a flat (required) or nested (optional) model. An
object is considered either transactional or recoverable. There are four key
transaction concepts:

Atomicity Changes are completely committed (done) or undone.
Consistency Changes are handled in the same method all the time.
Isolation Changes are handled independently of each other.
Durability Changes are persistent.

Transaction Service manages context in two ways, direct and indirect. It
handles propagation in two ways, explicit and implicit. The end result is that
transactions can be handled in four ways:

• Direct context with explicit propagation

• Direct context with implicit propagation

• Indirect context with explicit propagation

• Indirect context with implicit propagation

Transaction Service supports application through five basic entities. These
entities are:

• Transactional Client

• Transactional Objects

• Recoverable Objects

• Transactional Servers

• Recoverable Servers

Transaction Service has a number of interfaces. These interfaces include:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Coordinator

• Current

• Recovery Coordinator

• Resource

• Subtransaction Aware Resource

• Synchronization

• Terminator

• Transactional Object

• TransactionFactory

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch08/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 9
Essentials of CORBAfacilities
Included in This Chapter

• User Interface Facility Essentials

• Information Management Facility Essentials

• System Management Facility Essentials

• Task Management Facility Essentials

• Vertical Facilities Essentials

• Essentials on CORBAservices Support

CORBAfacilities is the place in CORBA that is for the end user. This is the
place where an end user’s formatted document or spreadsheet is handled. This
is the area for application development for both horizontal and vertical
facilities. A horizontal facility is for the use of almost everyone, such as
compound document administration or network (system) administration. A
vertical facility is for a specialized market that has many different applications
but a common goal (environment), such as publishing or telecommunications.

Note: This is the place of speculation and thoughts on the field of dreams.
Using a well-worn cliché, this is an area of dynamic growth.

Perhaps the Object Management Architecture (OMA) can be stated as a simple
formula:

ORB = Common Access

CORBAservices = Services for objects

CORBAfacilities = Services for applications

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

OMA = ORB + CORBAservices + CORBAfacilities

Note: There is more to the OMA than stated above; however, it does cover
the basics.

Horizontal common facilities have been broken down into four types. The
types are:

• User Interface (Chapter 2 of the CORBAfacilities Specification)

• Information Management (Chapter 3 of the CORBAfacilities
Specification)

• Systems Management (Chapter 4 of the CORBAfacilities
Specification)

• Task Management (Chapter 5 of the CORBAfacilities Specification)

Vertical market facilities have been broken down into specialized markets
(Chapter 6 of the CORBAfacilities Specification). The markets are:

• Imagery

• Information Superhighways

• Manufacturing

• Distributed Simulation

• Oil and Gas Industry

• Accounting

• Application Development

• Mapping

Finally, the place of two CORBAservices, Internationalization and Security,
have to be discussed. It is the goal of the OMG that these two CORBAservices
support all of the Common Facilities. The language and protection
requirements need to be considered for all users.

Note: As with the discussion on CORBAservices in Chapter 8, the goal of
this chapter is to look at the architecture rather than the “how-to” for the
purpose of gaining information for designing an XML document type
definition (DTD) for CORBAfacilities in Chapter 14.

User Interface Facility Essentials

User Interface handles both user access and their needs. The User Interface
facility is an interaction between a user and applications. The key components
are:

• User interface style

• Workstation hardware

• User interface enablers

• Work management system

• Task and process automation

To do this the User Interface has been divided into five components:

• Rendering Management

• Compound Presentation

• User Support

• Desktop Management

• Scripting

Rendering and Scripting have general user interfaces, while the other three
have special user interfaces for particular domains. Again what is given here
on these five components is what is stated publicly rather than what is future
development. The key to XML DTD design is to have scalability and
flexibility. It is always easier to design the framework than develop the end
product.

The Rendering Management Facility provides for output devices such as
screens and printers, and for input devices such as a mouse or a keyboard. It
includes support for:

• Window management

• Class libraries for user interface objects

• User interface dialogue objects

• Input and output device abstractions

The Compound Presentation Facility provides manipulating functions for
window display. Some of the areas to be addressed are:

• Geometry management

• Human interface event distribution

• Shared human interface control management

• Rendering management

The User Support Facility covers cross-application functions such as help and
spell and grammar checking. Some of the areas to be addressed are:

• Annotating

• Graphic functions

• Spreadsheet functions

• Versioning

The Desktop Management Facility is ultimately concerned with the end-user’s
desktop. The facility is to look at three key user objects:

• Information

• Aggregations (hierarchies)

• Versions (evolution)

• Configurations (consistency)

• Tools

• Browsers

• Editors

• System tools (management)

• Hardware tools (printers)

• Tasks (based on operational workflow)

The Scripting Facility handles the automation of scripts and functional
decomposition. Scripting considers such things as recordings for keystrokes
and mouse clicks.

Information Management Facility Essentials

This facility is another one where one can hang out the “Under Construction”
sign. The subject subdivisions as compared to operational relationships for this
facility are:

• Information modeling

• Information storage and retrieval

• Information interchange

• Data encoding and representation

From this paradigm six components were defined as key to this facility.
Information Management should cover:

• Modeling

• Definition

• Storage

• Retrieval

• Management

• Information Interchange

An Information Modeling Facility’s goals are the structuring, accessing, and
maintaining of information (data). It should reflect informational models such
as relational and object. The facility should describe at least:

• Object interfaces

• Service interfaces

• Object relationships

• Atomic data types

An Information Storage and Retrieval Facility should embrace all database
products. This includes text, images, graphics, etc. This facility should be used
with a number of domains including:

• Application development

• Data warehousing

• Systems management

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

A basic issue of retrieval is how to handle metadata. This facility should have
interfaces that handle the basic services of an information retrieval system:

• Initialization

• Search

• Retrieve

• Access control

• Termination

Information interchange facilities (Compound Interchange, Data Interchange,
and Information Exchange) should allow for exchange of information between
users and different software components. This requires conversions among
different models, media, and encodings. Basically, this facility handles data
interchange in compound documents.

The Compound Interchange Facility should be a framework for data object
storage and interchange. It should address data object:

• Binding

• Annotation

• Conversion

• Exchange

• Linking

• Reference storage

The Data Interchange Facility enables objects to be interoperable through data
exchanges. This facility allows different forms and kinds of data transfer such
as:

• Domain-specific object representations

• Formatted data

• Bulk data transfer

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Structured data

• Legacy data

The Information Exchange Facility should enable data exchanges among
applications over three layers of interchange. These layers from lowest to
highest are:

• Infrastructure

• Enabling technology

• Semantics

This facility needs to handle mediated information exchange. To achieve this
goal, four services have to be deployed:

• Content language

• Vocabulary

• Communication

• Interaction control

Interfaces for a Data Encoding and Representation Facility should support
practical interworking and information interchange. The transport modes
should include shared storage media, networking protocols, and direct
programming interfaces.

The interfaces should specify data types to be encoded and quality of service
requirements. There should be at least four interfaces to generalized services
for:

• Data compression

• Data decompression

• Representation to canonical conversion

• Canonical to representation conversion

The Time Operations Facility’s purpose is to have interfaces for the
manipulation of time and calendar data. There should be capabilities to have
services for:

• Time stamping

• Time duration

• Time range

• Time comparison

• Time instance manipulation

System Management Facility Essentials

The System Management Facility is concerned with complex, multi-vendor
information systems. It should have a set of utility interfaces for system
administration functions. Four classes of users have been identified that could
be affected by this facility:

• Users (system administrators)

• Developers (management application)

• Service providers (system)

• Enterprise (resource planners)

As a start, ten System Management Facilities have been identified. They are as
follows:

• Policy Management

• Policy application for manageable components

• Manipulation of manageable components

• Quality of Service Management

• Availability

• Performance

• Reliability

• Recovery

• Instrumentation

• Workload (object creation and deletion counts, etc.)

• Object allocation to physical resources

• Responsiveness

• Data Collection

• Logging

• History Management

• Security Management

• Collection Management

• Queried

• Applied

• Instance Management

• Scheduling Management

• Customization

• Event Management

• Generation

• Registration

• Filtration

• Aggregation

• Event notification

Task Management Facility Essentials

Task Management Facility’s goals are to handle the automation of user and
system processes. The facility should be a set of interfaces for the task
management infrastructure. Four facilities are considered as points of
development:

• Workflow

• Flows

• Long transactions

• Agent

• Functions

• Agent off-load

• Load bookkeeping

• Agent

• Mobile

• Control Service

• Communication Service

• Message Service

• Static

• Basic Information Services

• Simple Query Services

• Multi-response Services

• Assertion Services

• Generation Services

• Capability Services

• Notification Services

• Extension Services

• Networking Services

• Facilitation Services

• Database Services

• Adaptation Services

• Error Correction Services

• Automatic Retransmission Services

• Registration Service

• Home

• Visitor

• Security Services

• Response encryption

• Access control

• Management Services

• Rule Management

• Scripting

• Storage

• Interpretation

• Automation

• Method Invocation

• Object Specifier

Vertical Facilities Essentials

Vertical facilities define unique requirements within a specific market. This
area has great potential for growth, particularly by standards groups and
industrial alliances. Some of the market facilities that have been defined are as
follows:

• Imagery

• Information Superhighways

• Manufacturing

• Distributed Simulation

• Oil and Gas Industry

• Accounting

• Application Development

• Mapping

The Imagery Facility should be able to have interfaces that handle imagery
interchange, imagery being a two- or more dimensional data array derived
either from sensors or produced artificially. The facility should include
imagery manipulations for:

• Examining

• Processing

• Annotating

• Storing

• Displaying

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

The Information Superhighways Facility could be called the Intranet/ Internet
Facility because of its associated protocols and conventions. The basic
infrastructure of this facility is:

• Commercial Operations Facility

• Advertisement

• Monitoring

• Costing

• Resource Discovery Facility

• Intermediaries Facility

• Broker

• Intelligent agent

• Mediator

• Trader

• Teleconferencing Facilities

• Collaboration

• Mentoring

• Experimentation Facility

• User Access Facility

• Interface level (novice or expert)

• User profile management

• Group association

The Manufacturing Facility represents integration of computational and
manufacturing resources. Three areas have been identified for development:

• Policy variable management (business rules)

• History management

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Access

• Control

• Product data service (STEP standards)

• Concurrent engineering support

• Information technological integration support

• Encapsulated object-oriented interface

• Fast execution of large models of fine-grained objects

The Distributed Simulation Facility should have facilities for simulations for
air traffic control, war gaming, and video games. This facility should have at
least these services:

• Simulation management

• Simulation configuring

• Component choosing

• Connection specifying

• Component allocating

• Component instantiating

• Component start ensuring

• Component status monitoring

• Component shut-down

• Simulation identifying

• Component state checking

• Time management

• Initial simulation time prior to start

• Basic component commands (start, pause, resume, and stop)

• Aircraft and vehicle state

• Entity maintenance and administration

• Database snapshots

• Callback establishments

• State information

• Flight data

• Allows components to subscribe or unsubscribe

• Publishes initial plans and changes to subscribers

• Adaptation

• Location of airways

• Fixes

• Airspace definitions

• Environment

• Weather

• Terrain

The Oil and Gas Industry Exploration and Production Facility is concerned

with process. The business processes involve a large quantity of data, complex
algorithms, and long-term data storage.

The Accounting Facility is concerned with the computer type as compared to
the manual type. The facility seeks to resolve the business reality that most
accounting software interfaces are custom-designed and proprietary. The
facility should involve:

• Money exchange

• Payroll

• Purchases

• Sales

• Online charges

The Application Development Facility covers the selection, development,
building, and evolution of enterprise information systems. The referenced
model is for describing the environments that support projects that engineer,
develop, and manage computer-based systems (object-oriented). Basic
expected interfaces are as follows:

• Technical engineering

• System

• Software

• Process

• Applications components for reuse

• Frameworks and patterns

• Domain-specific

• Technical management

• Change

• Reuse

• Project management

• Plan

• Estimate

• Risk analysis

• Tracking

• Support

• Text processing

• Numeric processing

• Figure processing

• Framework

• Object management

• Process management

• Communication

• Operating system

• User

• Policy enforcement

The Mapping Facility covers those services required for applications that
access and display geospatial data. A function not to be covered is analysis;
however, the two that are to be covered are:

• Access

• Display

Three basic requirements have been identified for this facility. They are as
follows:

• Database querying

• Access to modeling and analysis facilities

• Presentation production assistance

Essentials on CORBAservices Support

It is the goal of the OMG that two CORBAservices, Internationalization and
Security, support all of the Common Facilities. The language and protection
requirements need to be considered for all users.

Internationalization means that users can work with and in their own language
and cultural conventions. The Internationalization Facility allows:

• Language support for operating system

• Language for stored information

• User’s mathematical conventions

• User’s date and time conventions

• User’s currency conventions

• User’s text sorting and string comparing conventions

• User’s rendering for page display conventions

The Security Facility is concerned with the management of the variety of
OMA-compliant security systems. The facility is to be designed and developed
using the OMG White Paper on Security (1994). The goal is to have a set of
interfaces that do not affect the core security of a system.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch09/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Part III
XML Applications

Chapter 10
Design and Development Issues
Included in This Chapter:

• General Software Design and Development Principles

• Some CORBA Design Issues

• Some XML DTD Design Issues

• Some HTML Design Issues

• Some JAVA Design Issues

Whether one is deigning to use CORBA, XML, Java, or HTML, there are
some basic software design principles that should be adhered to at all times.
Here are ten design and development principles:

• Abstraction

• Flexibility

• Interoperability

• Modularity

• Reconfigurability

• Reusability

• Scalability

• Simplicity

• Stability

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Use good project management practices

Above the door or on the wall of any design group should be written, “Know
Thy Subject.” This means one does not sit down and start programming or
doing XML markup when one gets a project. This chapter discusses some
design issues for CORBA and some for XML.

Besides the preceding list of general principles, one needs to consider specific
issues. These issues come in two categories, single environment or multiple
environments. This chapter discusses both categories for CORBA, XML,
HTML, and Java.

In some cases, “it is” statements are given. One might immediately wonder
why that statement is an issue. The reply is that if you do not think about the
obvious, it can become an issue. For example, CORBA is fundamentally a set
of standard interfaces concerned with services of various aggregations: single
service, a group of services (facilities), and groups of services (domains). What
does this mean to you as a developer? No matter what programming or markup
language you use, your implementation involves interface design issues.

General Software Design and Development
Principles

There are nine software design principles given and one fundamental project
management principle. The last one has its own set of guidelines. Some basic
project management guidelines are given with a minimal of clarification. The
nine software design principles could be stated in a number of ways.

Abstraction

Why should a programmer be concerned with abstraction? One has to be
concerned about CORBA objects, an abstraction. A network infrastructure is
made of concrete and abstract components. A concrete component would be a
computer, while the abstract component is the scalability of the computer or
the amount of upgrade possible. Another abstract example that is very
pertinent to software design is life cycle.

Flexibility

Flexibility does not mean instability. It means having system modules that can
handle change. For example, domain properties are probably unknown as of
the beginning of the development. One should design a module to handle these
properties as development progresses.

Interoperability

Interoperability means literally “between operations,” or to what degree one
operation works with another. The operations can be either features
(functionality) or data interchange. Some of the problems of interoperability
are handled by CORBA. CORBA has the Object Service definitions that are
uniform access mechanisms that handle universal communications. In XML
you have to consider elements as parsed or unparsed data.

Modularity

Modularity is the ability to design a system that separates components
(modules) to handle stability and flexibility issues. For CORBA, the use of the
Interface Definition Language (IDL) results in a hierarchy of files such as base
class interfaces and APIs.

Reconfigurability

When one considers reconfigurability, one has to consider metadata. Metadata
describes data (attributes and formats). It is the resource that eliminates hard
coding all calls to a service. Reconfigurability or symmetry is writing common
interfaces. Each interface can be implemented for a broad area of services,
facilities, or applications.

Reusability

Reusability means that the code or markup can be used for more than one
function or data type. A key principal object-oriented method for code
reusability is inheritance. CORBA supports inheritance at the interface level.
An important tool for assisting in the code reusability design is the Interface
Definition Language (IDL).

Scalability

Scalability, or extensibility, is the ability for the system to grow or adapt. This
principle is basic to software life cycle architecture. Scalability is not
functionality (number of features). It is the opportunity for increased
functionality. One needs to consider compatibility of code design and data
format.

Simplicity

Simplicity is probably the most important design principle. Is the code or
markup easy to read? Have the customer’s stated goals been done, neither less
nor more? The key phrase is “nor more.” There is a tendency to enhance the
code. To program something because it is a nice idea is not simplicity; it is
duplicity. Do not confuse simplicity with functionality. Functionality means a
new feature is added. Has the functionality been stated in the written goals
agreed upon by the customer?

Stability

A complete system (complex program implementation) cannot be designed as
stable, but some parts can be considered stable. These parts or system modules
should be designed as “separate” components. A critical system component is
the API designs.

Use Good Project Management Practices

What is given here is a nutshell, a very small one at that, on correct basic

project management guidelines. You may state a solution in a brief paragraph
when you do a very simple design program or you may need reams of paper
for a complex project. The guidelines given here are for an XML project. For
CORBA, guidelines 1-5 and 10 are pertinent.

Guideline 1: Define Goals and Customer Expectations

Because XML permits you to define your own tag sets (start-tag and end-tags
as well as the content type that is delimited by these two tags) or an
empty-element tag, one needs to establish clearly one’s design goals. Also,
XML is used to handle both text and data transactions.

Guideline 2: Define Control Process

There is the tendency to define the quality control process, if at all, at the end
of a project definition. Testing criteria should be established up front because
these criteria are usually stated in the context of the known. You are seeking to
achieve success in an unknown environment.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Guideline 3: Define Skill Process

Defining the skill requirements is different from defining the people
requirements. The resource requirements, materials, and equipment are
inherent to Guideline 5. It is not the number of people that matters, but the
skill levels and types available either internally or externally. A skill level can
range from a novice to an expert.

Guideline 4: Define Time Requirements

Only two dates are really important to a project. They are the start date and the
customer’s expected end date. The ultimate question is “Can the expected
goals be achieved realistically by the end date?” If not, negotiate a new end
date if possible. All other dates are just management milestones to achieve
success.

Guideline 5: Define Resource Requirements

This guideline is concerned with the materials and equipment requirements. In
a small design and development project, the materials and equipment required
are probably easily or already available. The materials and equipment may not
be available for a large project.

Guideline 6: Design an XML Document

Designing an XML document follows the basic ideas of good programming.
Basically outline what you want to do, develop testing criteria, develop what
you said you would do, test what you said you would do by the stated testing
criteria, and implement what you said you have done in a production
environment. The devil is in the details.

Guideline 7: Develop an XML Document

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

One needs to create a goal definition and a core document type definition
(DTD) before developing the markup for the XML. The key to developing an
XML is to have:

• A goal definition

• A document type definition (DTD) based on the goal definition

• Markup based on the DTD

• Adherence (conformance) to the well-formedness and validity
constraints

Guideline 8: Adhere to Well-Formedness Constraints

The rule for violating a well-formedness constraint is harsh, in fact, it is fatal.
Any validating processor must report this type of violation in the content of the
document entity (the root entity where the processor starts validation) and any
other parsed entity and stop its processing.

Guideline 9: Adhere to Validity Constraints

Not adhering to a validity constraint may or may not cause an error. However,
a valid XML document adheres to all these constraints. A validating XML
processor must report errors of validity constraints at the user’s option. User’s
option means you can enable or disable the reporting mechanism for these
constraints.

Guideline 10: Consider Special Local Situation

There is no one answer for every situation and every location. You do need to
consider your environment. You must factor in legacy. Legacy is any software
you have placed in production status or any hardware now active in the
system.

Some CORBA Design Issues

CORBA is fundamentally a set of standard interfaces concerned with services
of various aggregations: single service, a group of services (facilities), and
groups of services (domains). What does this mean to you as a developer? No
matter what programming or markup language you use, your implementation
involves interface design issues.

You need to identify the places of definition and modeling languages in your
design process. Chapter 5 covers Distributed Component Architecture
Modeling (DCAM), Organization Management Group’s (OMG) Interface
Definition Language (IDL), and Rational Software’s Unified Modeling
Language. Chapter 6 covers webMethods’ Web Interface Definition Language
(WIDL).

You need to select a formal methodology that includes object-oriented
analysis. This means you should do some up front planning rather than just sit
down and start coding. You can use paper or a computer, just have an
organized strategy. Chapter 7 gives a broad sweep of the structure of CORBA.

Chapters 8 and 9 detail the architecture of CORBAservices and
CORBAfacilites for designing XML document type definitions in Chapters 11
through 14.

The first level of design should pertain to states of objects (local variables).
This part of the design plan should state which variables are IDL attributes.

Since you are working with CORBA you are implementing an application in a
distributed system. Object selection should use this fact as a criterion in
identifying applicable objects.

When you name your objects, consider how these names might be used with
IDL. IDL does require consistency in naming conventions because some of the
language binding is case-dependent.

For an ORB product to be compliant it must comply with the CORBA Core
Specification and have an IDL compiler for at least one programming
language. What must be adhered to are the:

• CORBA Object Model

• CORBA architecture

• OMG IDL syntax and semantics

• Dynamic Invocation Interface (DII)

• Dynamic Skeleton Interface (DSI)

• Interface Repository (IR)

• ORB Interface

• Basic Object Adapter

Note: This book is concerned with the CORBA model and architecture for
designing XML document type definitions that reflect the implications of
CORBA general design principles.

Your user role has an impact on your design. The magic word is
interoperability. In a distributed system you can have one or more of these
roles:

• User

• Administrator or maintainer

• Object developer

• ORB agent (one who implements)

Each of the roles requires a different level of comprehension and perspective
of CORBA. The user views CORBA in a transparent manner while the
developer must know all the nuts and bolts. A developer does not just know
some of the rules but all the rules, and adheres to them.

For CORBA designing one needs to comprehend the boundaries of domains,
services, facilities, and APIs. In comparison one needs to know the
implications of XML logical and physical structures and the resulting
elements, attributes, and entities.

If one uses Rational Software Corporation’s Unified Modeling Language

(UML) as a part of one’s design methodology, one must consider a key
element of UML, the class diagram. A class diagram describes classes and
their static relationships to other classes. From a class diagram, one might
select classes that might be used to declare XML elements and entities. Can a
relationship be considered an XML attribute?

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Perhaps a design principle can be established for relating IDL and XML. IDL is a definition
language that defines interfaces in CORBA. XML is a markup language that can declare the
structures of CORBA interfaces using the document metaphor.

Note: The word used with XML is “declare” rather than “define” since you have element, attribute,
and entity declarations.

Some XML DTD Design Issues

To use the full functionality of XML one must have a document type definition (DTD). Yes, you
can do XML markup without a DTD by using an implied one. A DTD is used to define or declare
the rules of your markup. Without your own DTD you must follow or adhere to some else’s rules
and you may not get what you expect.

Note: You can actually use a set of document type definitions. The XML dialect Chemical Markup
Language (CML) uses three. This book discusses four DTDs that might be considered integral to each
other.

In the section called “Use Good Project Management Practices” earlier in this chapter, the example
guidelines given are pertinent to XML. The ones that should be written and kept where you can see
them at all times are:

• Guideline 1: You define you own tag sets (start-tag and end-tag) or empty-element tag.

• Guideline 8: Adhere to well-formedness constraints. (Listed in Appendix D)

• Guideline 9: Adhere to validity constraints. (Listed in Appendix D)

Note: Well-formedness and validity processor constraints are discussed in the context of production
rules in Chapter 2. As a part of XML jargon, XML documents are well-formed and valid.

XML was not designed or developed to replace HTML. XML was designed to enhance a subset of
SGML to enable SGML legacy documents to be used on the Internet. XML uses the logical and
physical document metaphor. In an object-oriented environment, a document might be used as an
object or a class.

XML looks like and feels like HTML; however, it does not taste like it. XML has tag sets and they
must be used in pairs, no exception. XML is more concerned with structure than form. XML design

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

has to be based on a set of production rules (89) and a set of processor constraints (31) rather than
rules for tags as is in HTML.

The basic rule of system designing is the system requirements and capabilities. This activity should
lead to defining system objects. Why is this important? You could have a document type called
system (a document description) that has at least these three declared elements. This DTD could
initially begin as:

<!DOCTYPE system [
<!ELEMENT system (requirement, capability, object)+ >
<!ELEMENT requirement (#PCDATA) >
<!ELEMENT capability (#PCDATA) >
<!ELEMENT object (#PCDATA) >
]>

Note: See Chapter 3 for a further discussion on designing an XML DTD.

Some HTML Design Issues

HTML and XML were developed from the same source, Standard Generalized Markup Language
(SGML). This makes them siblings—children of a common source. HTML represents a Web page
markup language, while XML represents a Web document markup language. One gives links; the
other gives structure.

HTML has a defined set of tags. In many cases it is easy to understand the ordering or nesting of the
tags, such as <h1> before <h2> and that <h1> should not be nested inside <h2>. An XML DTD
establishes the ordering and nesting rules for a document type.

HTML permits you on occasion to omit the end-tag while XML does not. Perhaps this capability is
more an implementation issue than a design issue. If you want to translate HTML to XML, this
becomes a real issue with a complex page document.

If the appearance of an HTML file on the Web is more important than structure, then converting an
HTML file to XML may lead to an unsatisfactory conclusion. XML is not a formatting language.
One way this problem is being resolved is through the Extensible Stylesheet Language (XSL).

Note: There are a number of efforts going on to resolve differences between HTML and XML.
However, this discussion is limited primarily to designing XML document type definitions in the
context of CORBA.

Some Java Design Issues

The concern here is with design, not implementation. It is the knowledge of the architecture of
CORBA, the structure of an XML DTD, and the priority of HTML tags that can impact Java
programming design. It is the equating of CORBA objects, XML elements and HTML tags to
Java’s classes, interfaces, packages, and tokens.

Any design with Java has to consider the degree of two implementations. The first is found in Java
Platform 1.2 API Specification, package org.omg.CORBA. The second is IBM packages for the
Java API, org.w3c.dom and com.ibm.xml.parser.

Note: JDK 1.2 provides Java IDL as an Object Request Broker (ORB).

There are a number of efforts going on to resolve the integration of Java as an operating language
and XML as a markup language. However, this discussion is limited primarily to designing XML

document type definitions in the context of CORBA.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch10/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 11
Designing an XML DTD for CORBA
Domains
Included in This Chapter:

• Declaring the Document Type: Domains

• Before Declaring Any Element

• Declaring Element Type: Reference

• Declaring Element Type: Represent

• Declaring Element Type: Addressing

• Declaring Element Type: Connect

• Declaring Element Type: Security

• Declaring Element Type: Type

• Declaring Element Type: Transaction

• Possible XML Solution

This chapter considers the design issues for developing XML DTDs for
CORBA domains at a very high level. It is important to distinguish among
three major parts (CORBAservices, CORBAfacilities, and domains) of the
CORBA infrastructure, a structure that is concrete and abstract. While one
might see these parts as blocks connected to an Object Request Broker (ORB),
one could visualize these parts together without their distinctive relations to
the ORB as a pyramid with CORBAservices on the bottom, CORBAfacilities
in the middle, and domains on top. Another visual would be a set of circles
like a bull’s-eye with the inner circle being CORBAservices and the outside
one being domains.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Now that you are confused trying to do visuals, let’s try three definitions. The
key word is service in each definition.

• CORBAservices provide services for objects.

• CORBAfacilities provide services for applications.

• CORBA domains provide services for functions.

One of the many definitions for “service” is “work for another.” Another
definition is “an act of assistance.” Perhaps a contextual definition is that these
three CORBA components, sets of interfaces, process variables that are
defined by objects, applications, or functions.

Now that the word “service” is as clear as the Mississippi River, what is a
“domain”? Perhaps more clearly, what types of domains are being defined by
or may be defined by CORBA committees? Some potential types of domains
are management, language, security, telecommunications, electronic
commerce, financial, and transportation. Some domains may further extend
services or facilities such as security or electronic commerce from the facility
accounting.

The premise here is that an XML document can handle data and that one can
also use the concepts developed for CORBA domains as a starting point for
eventual CORBA/XML integration.

The information here is a loosely defined structure for looking at the issue of
CORBA/XML integration for domains. A number of actions have to be
completed prior to having a clearly defined model. The obvious first step is the
development of clear or clearer definitions for basic CORBA- services and
CORBAfacilities by the various CORBA development committees.

Also see Chapter 12 (Services) and Chapter 14 (Facilities) for parallel thoughts
on this type of activity. This chapter looks at the potential use of CORBA
domains and of XML with various domains through discussions of seven
interoperability issues.

Declaring the Document Type: Domains

The first two declarations required are an XML declaration (Rule 23) and a
document type declaration (Rule 28). Also included at this point is the element
type declaration (Rule 39) for domains. Everything else goes between the start
of the document type declaration and the end “]>”. This document type of
domains implies that a full set of CORBA domains includes the specified
features (interfaces). Also included as appropriate are attributes, entities, and
notations. All of these declarations constitute the document type definition
(DTD).

<?xml version="1.0">
<DOCTYPE domains [
<!ELEMENT domains (reference, … , transaction)>
]<

The data that goes within the ellipsis are the other interoperability areas for

any CORBA domain. This chapter looks at seven interoperability areas.
Included here are brief discussions of DTD design considerations for creating
a separate DTD for each interoperability area.

Note: The CORBA Specification V2.2 does refer to the interoperability
issues or areas as domains. This discussion tries to consider that any idea
given here is evolving. As there are common services, there may be common
domains.

Some of the interoperability areas are changed for ease of markup, such as
addressing for Network Addressing. The seven areas used in this chapter are as
follows:

• Reference

• Represent (Representation)

• Addressing (Network Addressing)

• Connect (Network Connectivity)

• Security

• Type

• Transaction

Note: Security can be considered a CORBAservice, a CORBAfacility, and a
CORBA domain. See Chapters 12, 13, and 14 for further comments on this
matter.

Each of the following seven sections are high-level speculations on designing
the logical and physical structure of an XML DTD called domains. The
number of elements with the DTD are open for discussion. However, there
must be at least one entity, the document entity, or as labeled here, domains.

Warning: The information given here should be considered a minimal
beginning, perhaps not even a real start. It is a form of speculation (less
formulated than ideas) for relating concepts from CORBA with those from
XML.

One defines any interoperability area by its scope. A scope establishes a range
of operations or a place where there is a common view of interoperability.
Why are interoperability areas (issues) used instead of a potential domain such
as telecommunications? There are two reasons. The first is the key word
“potential.” The second is that no matter what domains are developed they
have seven issues that must be resolved in the design.

Note: This author was once involved in the issue of writing
on-the-job-training (OJT) manuals for a number of managers. I said first
write one manual and then change the jargon and the adjective level of
authority or responsibility (company, division, or department). The same can
be said here also. A domain acts as a type of service manager. Any proper
domain design responds to seven interoperability issues within a specialized
language. A file in telecommunications for a telephone switch may be called
a “table” and in electronic commerce an “account,” but in both cases they
have to be referenced, represented, addressed, connected to others of the
same nature, secured, typed, and have identified types of transactions.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Before Declaring Any Element

Before one can look at declaring an element for the document type domains,
one must consider the architecture or model for CORBA domains. This model
includes:

• Technical definition of domain

• Bridging

• Place of ORBs

• Definition of interoperability

• Architecture of interoperability

These five areas should be used in the fundamental design of the seven
components of the domains DTD. For example, one might need to declare
bridge types.

The CORBA Specification says that a domain partitions a system into
component collections that have a set of common characteristics. A domain’s
scope is a collection of objects and is a member of the domain through
association with common characteristics. In each of the following sections, a
scope definition is given for each element. For example, the common
characteristic for reference is meaning or the object reference (objref).

One can relate domains in two ways, containment and federation. First,
containment is where one domain resides within another. Second, federation is
where two or more domains are related through a mutual agreement. The
mutual administrators set up a federation.

A bridge is a mapping mechanism that serves as a kind of “translator” to
handle requests between domains. A bridge resides at the boundary between
the domains. A bridge more technically stated is an “inter-ORB bridge.”

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Bridging, the action of the bridge, is to handle an invocation between a client
and a server object. Each of course is in a different domain. There are two
types of bridging:

• In-line

• Request-level

A bridge needs also to manage proxy objects. There are two proxy
management techniques:

• Reference translation

• Reference encapsulation

Everything seems to come in pairs. There are two types of request-level
bridges:

• Interface-specific

• Generic

Within the CORBA Core Specifications some interfaces have been defined
that are relevant to developing a generic request-level bridge. Five of these
interfaces are:

• CORBA Object References

• Dynamic Invocation Interface (DII)

• Dynamic Skeleton Interface (DSI)

• Interface Repositories

• Object Adapters

An ORB’s place in life is to handle messaging in a transparent manner. A
consequence of this transparency is interoperability. Any given CORBA
service can be handled separately or independently with one or more domain.
Do not expect a universal ORB. Expect vendors to develop meaningful, that
means marketable, ORBs.

One can have at least seven interoperability concerns as given above. One can
have a broad non-meaningful definition of interoperability or one can have a
meaningful one within a specific context such as the structure of CORBA.

One way to look at interoperability is to consider its elements, not XML
elements. There are at least three identified elements:

• ORB interoperability architecture

• Inter-ORB support

• General and Internet inter-ORB Protocols (GIOPs and IIOPs)

A second way to look at interoperability is through relationships. The
centerpiece is the method of selecting CORBAservices to CORBA domains.
The method created may be how one resolves the seven interoperability issues.

The ORB interoperability has two interesting keystones for its framework. The
first keystone is having either immediate or mediated bridging. The second
keystone is the implementation of half-bridges for mediated bridge domains.

When there need to be local control domains, there is the need for inter-ORB

bridge support. This support element specifies ORB APIs and conventions to
ensure the appropriate content and semantics mapping controls. This function
is not a CORBA responsibility but one for vendors or system administrators.

When one looks at the protocol issues, one needs to think about protocol issues
in general as well as CORBA specific. A specific instance is a relationship of
protocols and IDL.

Note: The element declarations given here are primarily placeholder
because attribute lists have to be agreed upon by two or more domain
administrators.

Declaring Element Type: Reference

Reference is the scope of an object reference (objref). It identifies where an
object has meaning.

<!ELEMENT reference EMPTY >
<!ATTLIST reference meaning CDATA #REQUIRED >

This simple example requires a meaningful name for an object reference.

Declaring Element Type: Represent

Representation’s scope is the transfer syntax and protocol for a message. It is
the location where a message can be received and interpreted.

<!ELEMENT represent EMPTY >
<!ATTLIST represent
 syntax CDATA #REQUIRED
 protocol CDATA #REQUIRED >

For representation to define a location, one needs stated message syntax and a
protocol name.

Declaring Element Type: Addressing

The scope of networking addressing is all the addresses of the network. This is
the identification of the location where addresses can be comprehended and
retrieved.

<!ELEMENT addressing EMPTY >

This example is a placeholder.

Declaring Element Type: Connect

The scope of network connectivity is the potential or extent of the paths
available for messaging. This element is for declaring the hardware endpoints
for the connections of object references and object implementation.

<!ELEMENT connect EMPTY >
<ATTLIST connect
 objref CDATA #REQUIRED
 objimp CDATA #REQUIRED >

In this example the two key attributes for connection identification are
declared. The attribute contents should be the name of an object reference and
its associated object implementation.

Declaring Element Type: Security

The scope is the degree of enforceable security. It is a reflection of a security
policy. It is important to design in the context of the security defined for
CORBAservices and CORBAfacilities.

<!ELEMENT security EMPTY >

This is a placeholder. One needs to consider accountability, accessibility, and
confidentiality. For further information on security, see Chapter 13.

As a part of the ORB Interoperability Architecture, at least three types of
security domains have been defined. They are policy, environment, and
technological.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

A security policy domain governs aspects as determined by the security
authority that needs to be enforced. This is where the security authority’s
scope is delimited. This is the place for rules and criteria for:

• Access control

• Accountability

• Authentication

• Delegation

Note: Two concerns are the domain’s levels of scalability and granularity.

Policy can be impacted by at least four types of domain relationship types.
Broadly stated these types are:

• Hierarchy

• Federation

• System

• Application

CORBA has considered two types of environmental domains for security,
message protection, and object identity. In either case, these domains should
not be visible to applications or Security Services.

The security technological domain is based on the methods of the
Authentication services. The technological domain is concerned with the
how-to of the policy domain.

Declaring Element Type: Type

The scope of the element is an object’s type identifier. This type should be
meaningful and known.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<!ELEMENT type EMPTY>

This is a placeholder.

Declaring Element Type: Transaction

This element identifies the scope of a given transaction service. It is the
location allowed for a particular transaction service to be interoperable.

<!ELEMENT transaction EMPTY>

This is a placeholder.

Possible XML Solution

Recognizing that domain is more encompassing than either CORBAservices or
CORBAfacilites for handling a number of services, then perhaps the DTD
should be more of a “traffic cop,” like the one standing in the middle of the
street when a traffic light goes off, for processing applications and external
databases.

Some of the design considerations are:

• Have pointers to files that have the variables required for associated
CORBAservices or CORBAfacilities.

• Have pointers to processing applications.

• Have controlling variables within the DTD.

Until there is a clearer definition of CORBA domains, one should look at the
potential of XML rather than the actual uses of XML in this area.

Note: Microsoft has generated an “evolutionary” stage of XML that may be
used in this area. The concept is “data islands.” At this time it is not a part of
the XML standard.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch11/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 12
Designing an XML DTD for CORBAservices
Included in This Chapter:

• Declaring the Document Type: Services

• Declaring Element Type: Naming

• Declaring Element Type: Event

• Declaring Element Type: Persistent

• Declaring Element Type: LifeCycle

• Declaring Element Type: Concurrency

• Declaring Element Type: Externalization

• Declaring Element Type: Relationship

• Declaring Element Type: Transaction

• Declaring Element Type: Query

• Declaring Element Type: Licensing

• Declaring Element Type: Property

• Declaring Element Type: Time

• Declaring Element Type: Security

• Declaring Element Type: Trader

• Declaring Element Type: Collections

This chapter uses the premise that an XML document can handle data and that CORBA is fundamentally a
series of interfaces; thus, one can design an XML document that organizes and declares the variables that
might go into the interfaces. This chapter uses “brainstorming” to state important concepts about the
structures and values of CORBAservices interfaces that are necessary knowledge for the fundamentals for
planning, designing, and developing any XML DTD or DTDs for CORBAservices. The brainstorming
information comes from Chapter 8 and from the CORBAservices Specification (various chapters are dated
1996-1997).

The idea for a document type definition (DTD) for CORBAservices as given here is broadly structured using
the interfaces for declaring XML elements. The information given here is a high-level guideline (a way, not
the way) for looking at the issue of CORBA/XML integration. It is recognized that an object-oriented
programming language such as Java would be required to complete this integration.

In Chapter 13 the Security Service details more than the other services in this chapter. Also see Chapter 11

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

(Domains) and Chapter 14 (Facilities) for parallel considerations.

Declaring the Document Type: Services

The first two declarations required are an XML declaration (Rule 23) and a document type declaration (Rule
28). Also included at this point is the element type declaration (Rule 39) for services. Everything else goes
between the start of the document type declaration and the end “]>” . This document of services says that a
full set of CORBAservices includes the specified features (interfaces). Also included are appropriate
attributes, entities, and notations. All of these declarations constitute the document type definition (DTD).

<?xml version="1.0">
<DOCTYPE services [
<!ELEMENT services (naming, … , collections)>
]<

The data that goes within the ellipsis are the other 13 services. Five of the service names are changed for ease
of markup (Life Cycle, Persistent Object, Concurrency Control, Object Trader, and Object Collections). The
15 services as used in this chapter are as follows:

• Naming

• Event

• Persistent

• LifeCycle

• Concurrency

• Externalization

• Relationship

• Transaction

• Query

• Licensing

• Property

• Time

• Security

• Trader

• Collections

Each of the following sections begins with a kind of brainstorming of each service based on information
from Chapter 8 and from the CORBAservices Specification. The focus of the brainstorming is to establish a
“draft” framework of the logical structure of each service. This in turn is the basis for developing a logical
XML structure and in some cases an enhanced physical structure for a service. There is one necessary entity,
the document entity.

Warning: The information given here should NOT be considered complete. It is procedural guidelines for
relating concepts from CORBA with those from XML. These declarations are commented to reflect possible
alternatives to the ones given.

Declaring Element Type: Naming

Here are some basic points one might get from brainstorming about the Naming Service:

• Initial service called

• Four interfaces

• LName

• LNameComponent

• NamingContext

• BindingIterator

• Key concepts

• Name binding

• Naming context

• Naming Library

• Names can be simple or compound (sequence)

• Name component has

• Name

• Identifier attribute

• Kind attribute

• Handles name associations or hierarchies

• Names can be public or private

• Name needs

• ORB pointer

• Server object pointer

• Unbound sequence path

• Need to know values for each interface

With these brainstorming ideas and technical data from the Specification, one can begin to declare the
<!ELEMENT naming>.

<- - Naming Service has four interfaces. - ->
<!ELEMENT naming (LName, LNameComponent, NamingContext, BindingIterator)>
<!ELEMENT LName EMPTY>
<!ATTLIST LName name CDATA #REQUIRED
 id CDATA #REQUIRED
 kind CDATA #REQUIRED>
<!ELEMENT LNameComponent EMPTY>
<!ELEMENT NamingContext EMPTY>
<!ELEMENT BindingIterator EMPTY>

The EMPTY content specification type used with the entire “interface elements” permits attribute lists to
define values where appropriate.

Declaring Element Type: Event

Here are some basic points one might get from brainstorming about the Event Service:

• Event types

• Asynchronous

• “Fan-in”

• “Fan-out”

• Reliable event delivery

• Seven interfaces

• PushSupplier

• SupplierAdmin

• ProxyPushConsumer

• EventChannel

• PullConsumer

• ConsumerAdmin

• ProxyPullSupplier

• Key components

• Consumer

• Supplier

• Event channel

• Data either generic or specific

• Uses push and pull models

• Communication either generic or typed

• Proxy types

• Push/consumer

• Pull/consumer

• Push/supplier

• Pull/supplier

<- - Event Service has seven interfaces. - ->
<!ELEMENT event (PushSupplier, SupplierAdmin,
ProxyPushConsumer, Event
 Channel, PullConsumer, ConsumerAdmin,
ProxyPullSupplier)>
<!ELEMENT PushSupplier EMPTY>
<!ELEMENT SupplierAdmin EMPTY>
<!ELEMENT ProxyPushConsumer EMPTY>
<- - Put values in a file called PPCdb.xml - ->
<!ENTITY PPCdb SYSTEM "PPCdb.xml">
<!ELEMENT EventChannel EMPTY>
<!ELEMENT PullConsumer EMPTY>
<!ELEMENT ConsumerAdmin EMPTY>
<!ELEMENT ProxyPullSupplier EMPTY>

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

This example is mostly placeholders. One can put values of each <!Element> in a separate file. An
<!ENTITY … > signifies a container for ProxyPushConsumer data.

Declaring Element Type: Persistent

Here are some basic points one might get from brainstorming about the Persistent Object Service:

• Handles object over time

• Components

• Client

• Persistent Object (PO) and Identifier (PID)

• Persistent Object Manager (POM)

• Persistent Data Service (PDS)

• Database or flat file

• Protocol

• Controlling methods

• Connection/disconnect

• Store/restore

• Twenty-eight interfaces

• PID

• PID_DB

• PID_SQLDB

• PID_OODB

• PIDFactory

• PO

• POFactory

• SD (Synchronized Data)

• PDS

• PID_DA

• DAObject

• DAObjectFactory

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• DAObjectFactoryFinder

• PDS_DA

• DynamicAttributeAccess

• PDS_ClusteredDA

• POM

• Protocol

• Datastore

• UserEnvironment

• Connection

• ConnectionFactory

• Cursor

• CursorFactory

• PID_CLI (call level interface)

• Datastore_CLI

• Object

• DDO (Dynamic Data Object)

• Non-CORBA interfaces can be used.

<- - Persistent Service has 9 primary interfaces. - ->
<- - 19 secondary interfaces - ->
<- - Consider the use of non-CORBA interfaces - ->
<!ELEMENT persistent (PID, …, DDO)>
<!ELEMENT PID EMPTY>
<!ELEMENT PO EMPTY>

One must consider in the design if non-CORBA interfaces are used. If a non-CORBA interface is
used, XML does permit the calling of external entities. One needs to consider in the original design
only those interfaces that require input variables.

Declaring Element Type: LifeCycle

Here are some basic points one might get from brainstorming about the Life Cycle Service:

• Defines conventions for object

• Creating

• Deleting

• Copying

• Moving

• Twenty interfaces including:

• DocFactory (create)

• LifeCycleObject (copy or move)

• FactoryFinder (copy or move)

• GenericFactory (copy or move)

• CosCompoundLifeCycle::Operations

• CosCompoundLifeCycle::Node

• CosCompoundLifeCycle::Role

• CosCompoundLifeCycle::Relationship

• There are 12 additional interfaces in the CosCompoundLifeCycle module.

• Need to define differences between life cycle and compound life cycle

<- - LifeCycle Service has 4 interfaces. - ->
<- - Compound Life Cycle (CLC) has 4 key interfaces - ->
<- - CLC also has 12 other interfaces - ->
<!ELEMENT lifecycle (DocFactory, …,)>
<!ELEMENT DocFactory EMPTY>

For the design of a DTD for LifeCycle it is important to notice there is a “regular” life cycle and
there is a compound life cycle. One should also consider how one would resolve functionality, that
is, DocFactory only creates objects, while the other three key interfaces can be used for copying and
moving objects.

Declaring Element Type: Concurrency

Here are some basic points one might get from brainstorming about the Concurrency Control
Service:

• Better name would be Lock Manager

• Four interfaces

• LockSet

• LockSetFactory

• TransactionalLockSet

• LockCoordinator

• Locks are on or off

• Lock granularity

• Coarse

• Fine

• Lock modes

• Read

• Write

• Upgrade

• Intention read

• Intention write

• Interfaces support operations and clients that are:

• Transactional

• Non-transactional

• Services can be:

• Implicit

• Explicit

• Each lock has a single client and a single resource association.

<- - Concurrency Control Service has 4 interfaces. - ->
<!ELEMENT concurrency (LockSet, …, LockCoordinator)>
<!ELEMENT LockSet EMPTY)>
<!ATTLIST LockSet
 state (off | lock_mode) "lock_mode"
 lock_mode (read | write | |upgrade |
intention_read |
 intention_write) "read">

<!ELEMENT LockSetFactory EMPTY>
<!ELEMENT TransactionalLockSet EMPTY>
<!ELEMENT LockCoordinator EMPTY>

Notice that instead of lock states of “on” and “off,” the states are “lock_mode” and “off.” This
declaration enables one to relate to a variable from CORBA coding.

Declaring Element Type: Externalization

Here are some basic points one might get from brainstorming about the Externalization Service:

• Handles the way of getting data into and out of a component.

• Defines protocols and conventions for achieving goals.

• Protocol definitions for views of:

• Client

• Object

• Stream

• Six major interfaces

• Stream (client)

• StreamFactory

• StreamIO (object)

• Streamable (stream)

• StreamableFactory

• Node (stream)

• Role (stream)

• Relationship (stream)

• PropagationCriteriaFactory

• ContainsRole

• ContainedInRole

• ReferencesRole

• ReferencedByRole

• Interfaces from Relationship and Life Cycle Services are used in processing

<- - Externalization Service has 6 major interfaces. - ->
<- - Has a number of secondary interfaces - ->
<- - Uses interfaces from Relationship and Life Cycle Services - ->
<!ELEMENT externalization (Stream, …, Relationship)>
<!ELEMENT LockSetFactory EMPTY>

Any DTD or any part of a DTD design for Externalization needs to think about the use of three
views of the protocols and conventions that are used to achieve expected goals. These views are
client, object, and stream. It is also important to consider what interfaces are used to handle each
view. This example is a placeholder for further development.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Declaring Element Type: Relationship

Here are some basic points one might get from brainstorming about the
Relationship Service:

• Relationships can be:

• One-to-one

• One-to-many

• Provides dynamic relationships

• Categories

• Cardinality

• Degree

• Roles

• Semantic

• Types

• Kinds of objects

• Roles

• Relationships

• Levels of service

• Base

• Graph

• Specific

• Two core interfaces

• Relationship

• Role

• Secondary interfaces (some)

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• RelationshipFactory

• RoleFactory

• RelationshipIterator

• Need to have clear definitions of relationships and roles for design

<- - Relationship Service has two major interfaces. - ->
<- - Has a number of secondary interfaces - ->
<!ELEMENT relationship (RelationI, RoleI)>
<!ELEMENT RelationI EMPTY>
<!ELEMENT RoleI EMPTY>

One needs in this design to distinguish between what is a “relationship” and what is
a “role.” This example uses RelationI for relationship interface and RoleI for role
interface. While there is an abbreviated “name” in each case, these “names” are
meaningful for a reader of the markup. Under relationship, one can develop a
logical structure based on types of categories, objects, and service levels. Under
role, one could include in the structure declarations for secondary interfaces.

Declaring Element Type: Transaction

Here are some basic points one might get from brainstorming about the Transaction
Service:

• Manages context directly or indirectly

• Interfaces are:

• Coordinator

• Current

• RecoveryCoordinator

• Resource

• SubtransactionAwareResource

• Synchronization

• Terminator

• TransactionalObject

• TransactionFactory

• Characteristic

• Atomic

• Consistent

• Isolated

• Durable

• Object types

• Transactional

• Client

• Object

• Server

• Recoverable

• Object

• Server

• Handling types

• Direct/explicit

• Direct/implicit

• Indirect/explicit

• Indirect/implicit

• Application types

• Transaction client

• Transactional client

• Recoverable object

• Transactional servers

• Recoverable servers

<- - Transaction Service has nine interfaces. - ->
<- - Order interfaces by programming use - ->
<!ELEMENT transaction (Current, …, TransactionalObject)>
<!ELEMENT Current EMPTY>
<!ELEMENT TransactionFactory EMPTY>

Under Transaction Service one can use characteristics and types to establish
specific value types within <!ATTLIST>. This example implies that the interfaces
are the second level of the logical structure and third level of the document. The
root level, or first level, of the document is the document type, domains. This is a
part of the physical structure since it is the document entity, (!DOCTYPE
domains>, the ultimate container.

Declaring Element Type: Query

Here are some basic points one might get from brainstorming about the Query
Service:

• Enables search by methods other than indexing

• Supports two query languages

• SQL-92 Query

• OQL-93

• Eight interfaces

• CollectionFactory

• Collection

• Iterator

• QueryLanguage

• QueryEvaluator

• QueryableCollection

• QueryManager

• Query

• Used with Object Collections Service

• Supports top-level querying

• Some types of query collection that can be used

• Equality

• Key

• Ordered (sort or sequential)

<- - Query Service has eight interfaces. - ->
<!ELEMENT query (CollectionFactory, …, Query)>
<- - creates collections - ->
<!ELEMENT CollectionFactory EMPTY>
<- - aggregates objects - ->
<!ELEMENT Collection EMPTY>
<- - iterates over collections - ->
<!ELEMENT Iterator EMPTY>
<- - represents query language types - ->
<!ELEMENT QueryLanguage EMPTY>
<- - evaluates query predicates - ->
<- - executes query operations - ->
<!ELEMENT QueryEvaluator EMPTY>
<- - represent query scope and result - ->
<!ELEMENT QueryableCollection EMPTY>
<- - creates query objects - ->
<- - processes queries - ->
<!ELEMENT QueryManager EMPTY>
<- - represents queries - ->
<!ELEMENT Query EMPTY>

How one designs XML markup, the DTD, is based on three factors. The first factor
is what type of query language is used and its associated “jargon.” The second
factor is types of queries that are to be used. The final factor is the level to which
one wants to integrate their query abilities into CORBAservices.

Declaring Element Type: Licensing

Here are some basic points one might get from brainstorming about the Licensing
Service:

• Assists in controlling intellectual property

• Two interfaces

• LicenseServiceManager

• ProductSpecificLicenseService

• Controls supported

• Consumer

• Assignment

• Reservation

• Time

• Expiration

• Duration

• Value mapping

<- - Licensing Service has two interfaces. - ->
<- - Shorten names of interfaces - ->
<!ELEMENT licensing (License, Product)>
<- - full name LicenseServiceManager - ->
<!ELEMENT License EMPTY>
<- - full name ProductSpecificLicenseService - ->
<!ELEMENT Product EMPTY>

While the brainstorming for Licensing appears to be one of the shortest of all done
here, that does not mean it is the easiest. One needs to reflect on local legal
conditions for each involved product. Notice the active word is “each.” Design for
Licensing should be done on a general level. While the licensing for two products
(objects) may have the appearance of being the same, they may only be similar.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Declaring Element Type: Property

Here are some basic points one might get from brainstorming about the Property Service:

• An object can store information on another object.

• Property has a name and value

• Supports:

• Defining

• Deleting

• Enumerating

• Checking

• Property modes

• Normal

• Readonly

• Fixed_Normal

• Fixed_Readonly

• Undefined

• Interfaces that must be supported

• PropertySet

• PropertySetDef

• Other interfaces

• PropertiesIterator

• PropertyNamesIterator

• PropertySetFactory

• PropertySetDefFactory

<- - Property Service has two interfaces that must be supported - ->
<- - Has four other interfaces - ->
<!ELEMENT property (Set, SetDef)>
<- - full name is PropertySet - ->
<- - supports a set of properties - ->

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<!ELEMENT Set EMPTY>
<- - full name is PropertySetDef - ->
<- - exposes a property's characteristics (metadata) - ->
<!ELEMENT SetDef EMPTY>

In this design two ideas must be taken into account. The first is an answer to the question, “Why
should information from an object be stored with another object?” The second idea is that any
property has a name and a value. One needs also to determine how the four functions (creating,
deleting, enumerating, and checking) are implemented in the basic DTD design.

Declaring Element Type: Time

Here are some basic points one might get from brainstorming about the Time Service:

• Synchronizes events

• Six interfaces

• TimeService

• TimeEventService

• TIO (Time Interval Object)

• UTO (Universal Time Object)

• TimerEventHandler

• TimerEventService

• Uses Greenwich Mean Time

• Base date of October 15, 1582 (Gregorian calendar)

• Conformance points

• Basic Time Service

• Timer Event Service

• Authorized personnel can only set time.

• Implementation requires how time values for time synchronization are protected while they
are transmitted over a network. (Secure is either equal to “yes” or “no” .)

<- - Time Service has two major service interfaces - ->
<- - Has four other interfaces - ->
<- -transmission secure state - ->
<!ELEMENT time EMPTY>
<!ATTLIST time state (yes | no) "yes">

When integrating this service into your system, one must comprehend the significance of the two
rules that define time. The base date is October 15, 1582 (Gregorian calendar). The base time is
Greenwich Mean Time. The question that needs to be asked about base time is “What is the effect of
daylight savings time?”

Note: When Pope Gregory XIII proclaimed the Gregorian calendar to be the calendar of the Church it
was October 15, 1582 (Gregorian calendar), while the prior day was October 4, 1582 (Julian calendar).
The Gregorian calendar did not become the dating standard in Europe until the time of the Communist
Revolution.

Declaring Element Type: Security

The Security Service impacts all of the other services, including those defined and those yet to be
defined. Because of its importance, Chapter 13 details more on security than the information given
here for any other service discussed.

Declaring Element Type: Trader

Here are some basic points one might get from brainstorming about the Object Trader Service:

• Provides an object matchmaking service

• Offer types

• Potential

• Considered

• Matched

• Ordered

• Returned

• Three core interfaces

• DynamicPropEval

• ServiceTypeRepository

• TraderComponents

• TradeComponents has a series of interfaces based on the functions:

• Lookup

• Register

• Link

• Proxy

• Admin

• Property mode attributes

• Mandatory

• Readonly

• Preference types

• Max expression

• Min expression

• With expression

• Random

• First

• Conformance is by interface rather than by service.

<- - Trading Object Service has three major service interfaces - ->
<- - Has a large number of interfaces based on functionality - ->
<!ELEMENT trading EMPTY>
<!ELEMENT type (potential | considered | matched | ordered
| returned)
 "potential">
<!ELEMENT function (lookup | register | link | proxy |
admin) "lookup">
<!ELEMENT preference (max | min | with | random | first)
'with'>

The keys for developing a design for the Object Trader Service are types of offers and functionality,
in particular those of the TraderComponents Interface. This example shows how to use “or” (|) in
<!ELEMENT>. The default is the value within the double quotation marks or the single quotation
marks, such as “potential” or ‘with.’

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Declaring Element Type: Collections

Here are some basic points one might get from brainstorming about the Object
Collections Service:

• Manipulates a group of objects as one

• Some collection properties

• Unordered

• Unique

• Map

• KeySet

• Set

• Multiple

• Relation

• KeyBag

• Bag

• Heap

• Ordered

• Sorted

• Unique

• Sorted Map

• Key Sorted Set

• SortedSet

• Multiple

• Sorted Relation

• Key SortedBag

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Sorted Bag

• Sequential

• Multiple

• Equality Sequence

• Sequence

• Operation types

• Creating

• Adding

• Removing

• Replacing

• Retrieving

• Inquiring

• Client selects a collection interface that offers grouping properties
that match needs.

• Collection

• OrderedCollection

• KeyCollection

• EqualityCollection

• SortedCollection

• SequentialCollection

• EqualitySequentialCollection

• EqualityKeyCollection

• KeySortedCollection

• EqualityKeySortedCollection

• There is a series of interfaces based on functions.

• Operations

• Command

• Comparator

• There are 32 interfaces for concrete collections and their factories.

• There are ten interfaces for restricted access collections and their
factories.

• There are 11 iterator interfaces.

• There are a total of 67 Object Collections interfaces.

• Required element information

• How to do comparisons

• How to test equality

• How to do checking

The design for <!ELEMENT collections (…) > should be within the grouping
interfaces such as follows:

<!ELEMENT collection (…) >

<!ELEMENT Collection (yes | no) "yes" >
<!ELEMENT OrderedCollection (yes | no) "no" >
…
<!ELEMENT EqualityKeySortedCollection (yes | no) "no" >

The fact there are 67 Object Collections interfaces says something about design
difficulties for this service. The example implies that use of “yes” and “no” for
establishing the availability of each property for defining collections may be a
potential design that can be used.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch12/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 13
Designing an XML DTD for the
Security Service
Included in This Chapter:

• Speaking “Policy”

• Identifying Attributes

• Using the Application Developer’s Interfaces

• Using the Administrator’s Interfaces

• Using the Implementor’s Interfaces

• Planning an XML Security Service DTD System

• Guidelines for Developing DTDs for Security

There is only one security principle; everything else is commentary. The
highest level of security is the weakest link in the system.

Within CORBA security is the mechanism or policy1 infrastructure that
defines and enforces access control on objects and their constituents. In a
broader sense the security mechanism authenticates and validates a user’s
identification and protects a system’s integrity that is its communication
component, requests and responses. This mechanism should be as transparent
to the client as possible. Simply stated, the key functions of security are:

1The OMG security specification is based on the implementation of a “local”
security policy. The framework is generic. This policy serves as a framework
for a security reference model. Developers, administrators, and implementors
determine the implementation result.

• Access control

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Administration

• Auditing

• Authentication

• Authorization

• Identification

• Non-repudiation

• Secure communication

Note: These eight functions need to be considered in the design of any
security DTD. The methodology focus with CORBA is on its interfaces.

What should be the design goals of a CORBA security service? This list
sounds like the reasons for the design goals or principles of XML. They are as
follows:

• Accountability

• Confidentiality

• Consistency

• Flexibility

• Access control

• Audit policy

• Profiles

• Interoperability

• Minimal performance overhead

• Object-oriented

• Portability

• Scalability

• Simplicity

• Technologically neutral

• Usability

• Administrators

• Developers

• End users

In the context of defining functions and establishing goals for security, one
needs to identify various types of attributes. Three broad attribute types are:

• Public

• Authenticated

• Delegated

Because of the importance of security, extensive development is going on in
CORBAservices, CORBAfacilities, and domains. Security is briefly alluded to
in Chapters 11 and 14. Security is a fundamental component of the CORBA
infrastructure.

Besides considering the importance of CORBA interfaces and related
attributes, design principles, and functions for security, there are other items
one should put in the design. They include:

• Security associations

• Server implications

The key to security association is trust. There needs to be a persistent method
for security between a client and a target object. Besides trust, there also need
to be methodologies for establishing credentials and a protected context.

Note: Persistent is the functionality that handles objects over time. It is a
transtemporal and transcending function.

Each server style has its implications for the degree of security possible. Its
object adapter determines the server style. In the design of the CORBA
Security Service, one needs to look at the functionality of least four server
types:

• Shared

• Unshared

• Per method

• Persistent

To design and develop an XML DTD2 that reflects key security functionality
and CORBA implementation of a security service, one must be knowledgeable
of two items:

2While “an XML DTD” is used here perhaps it is more practical to use the
phrase “an XML DTD system” to further enhance the protection of the
security infrastructure.

• Fundamental security attributes

• CORBA Security Service interfaces

The interfaces are for three types of people:

• Administrator

• Application developer

• Implementor

This chapter closes with guidelines for designing an XML DTD system for a
CORBA security service. Local factors determine an actual model.

Speaking “Policy”

One can more easily comprehend the CORBA security infrastructure when one
can define the basic functionality of each policy type. Policy applies to the
objects, while security technology focuses on how to implement the
functionality.

Client invocation
access

The access decision is either yes or no. Does the client
have the right to invoke the access?

Target invocation
access

The access decision is either yes or no. Does the
target have the right to do this invocation?

Application access Domain manager determines the granularity of access.
Client invocation audit The nature of the event and criteria determines policy

control for the client.
Target invocation audit The nature of the event and criteria determines policy

control for the target.
Application audit The application may determine policy control rather

than the security domain.
Delegation The nature or type of delegating determines policy

control. Delegation includes the roles and
responsibilities of intermediaries.

Client secure
invocation

This invocation’s determination includes resolutions
for confidentiality, integrity, and privacy. It also
invokes authentication for the client.

Target secure
invocation

This invocation’s determination includes resolutions
for confidentiality, integrity, and privacy. It also
invokes authentication for the target.

Non-repudiation This optional facility provides evidence of acts by an
application in a form that cannot be repudiated at a
later time.

Construction This policy controls the creation of domains.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Identifying Attributes

There is no simple list of attributes for a security service because of local goals
and legacy hardware and software. Perhaps there are some common attributes
or attribute types. A common attribute would be a client’s identification. A
common attribute type would be level of trust. One might define an attribute as
a specific characteristic with a specific instance. An attribute type might be
defined as a generally characteristic with its own secondary characteristics.
One general thinks of read, write, and read-write levels of protection, but
perhaps there are different levels of protection such as ones for e-mail and
those for chat.

The obvious area to look at for attributes is the access control function. There
may be three types of access control attributes:

• Privilege

• Control

• Rights

Some of the privilege attributes are:

• Client’s identification

• Client’s function(s) or role(s)

• Client’s organizational affiliation(s)

• Client’s clearance level

• Client’s operational level

Some of the control attributes are:

• Control list types

• Information labels

• Sharing capabilities

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

Rights can be established on:

• Individual basis

• Group basis

• Functional basis

• Operational basis

The second area for identifying attributes is for the auditing function. Auditing
can be divided into broad categories: system and application. An audit
structure is usually called a policy. Auditing can involve logging events, alerts,
or alarms. An audit invocation can include types of:

• Object

• Operation

• Event

• State (success or failure)

The third area for identifying attributes is the delegation function. At least two
types of delegation schema are privilege and reference. Delegation can involve
four objects:

• Initiator

• Invoker

• Intermediary

• Receptor

When considering the privilege delegation, there are two concepts that have to
be considered: control type and delegation type. Control type comes in three
flavors:

• Privileges delegated

• Target restrictions

• Privileges used

The delegation types that are used by CORBA security interfaces include:

• None

• Simple

• Composite

• Combined

• Trace

• Time control

The fourth area for identifying attributes is the non-repudiation function. This
function makes users accountable for their actions. CORBA uses application
control rather than object invocation. The three key components of
non-repudiation are:

• Evidence

• Time

• Date

• Data origin

• Data integrity

• Proof of creation

• Proof of reception

• Action or event type

• Action or event parameters

Using the Application Developer’s Interfaces

The interfaces used by the application developer are based on the developer’s
responsible for business objects in the system. Because in many cases
application security is transparent to the developer, the ORB security services
are based on automatic object invocation. Some of the items included in the
CORBA security model are:

• Specified quality of protection

• Independent auditing

• Attributes definitions for:

• Authentication

• Privilege

• Rights

• Access control

Interfaces for application developer include for:

• The ORB

• Credentials

• Audit decision

• Audit channel

• Access decision

• Delegation

• Non-repudiation

However, for designing an XML DTD, the important requirement is
knowledge about the “gets,” “sets,” “overrides,” and type definitions. It is the
parameter requirements that are significant.

There are four important types used in these interfaces. They are used in
developing local security policies and mechanism. They are as follows:

• Service Options for Service Type Security

• SecurityLevel1 = 1

• SecurityLevel2 = 2

• NonRepudiation = 3

• SecurityORBServiceReady = 4

• SecurityServiceReady = 5

• ReplaceORBServices = 6

• ReplaceSecurityServices = 7

• StandardSecureInteroperability = 8

• DCESecureInteroperability = 9

• Attributes Types for Privilege Attributes

• Public = 1

• AccessId = 2

• PrimaryGroupId = 3

• GroupId = 4

• Role = 5

• AttributeSet = 6

• Clearance = 7

• Capability = 8

• Association Options for Context Initialization

• NoProtection = 1

• Integrity = 2

• Confidentiality = 4

• DetectReplay = 8

• DetectMisordering = 16

• EstablishTrustInTarget = 32

• EstablishTrustInClient = 64

• Selector Types for Audit Events

• InterfaceRef =1

• ObjectRef = 2

• Operation = 3

• Initiator = 4

• SuccessFailure = 5

• Time = 6

Note: There are other values that also need to be considered.

The interface ORB has two parameters for “in” and “out” information. They
are:

• service_type

• service_information

A Credentials object has four “in” and three “out” attributes. They are:

• method

• security_name

• auth_data

• privileges

• creds

• continuation_data

• auth_specific_data

For an authentication that requires multiple operations, there are one “in,” one
“in-out,” and two “out” attributes:

• response_data

• creds

• continuation_data

• auth_specific_data

There are three Boolean attributes (true or false) to set privilege. Two are “in.”
They are:

• force_commit

• requested_privileges

• actual_privileges

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

A client application that is security-aware can perform certain operations to
specific security policy. These operations include:

• override_default_credentials

• override_default_QOP

• get_active_credentials

• get_security_features

• get_policy

• get_security_mechanism

• override_default_mechanism

• get_security_names

The Current object represents service-specific state information associated
with the current execution context. The information can use one or more of
these credential types:

• Invocation

• Own

• Received

• Non-repudiation

The Audit Channel object receives an audit record. The record must contain:

• Event type

• Actor with credentials

• Event-specific data (varies by event type)

• Time

In the delegation chain the intermediate object can do one of three actions.
These actions are:

• Delegate credentials to next object in the chain.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Act for itself.

• Supply privileges from both initiator and self.

Warning: This section highlighted only some of the interface variables and
some of their associated variables. These data assist one in creating a
modeling process using CORBA data for designing an XML DTD with the
document type of security.

Using the Administrator’s Interfaces

The interfaces to be used by the administrator are based on the policy for user
control or management. CORBA permits multiple administrators. The
administrator is concerned with administrative groupings. The administrator is
responsible for defining the security and privilege attributes for both human
and electronic (application) users.

Note: One area of the model that needs development is one for explicit
management interfaces.

The key interfaces for an administrator include:

• Policy

• DomainManager

• ConstructionPolicy:Policy

• Object

• RequiredRights

• AccessPolicy

• DomainAccessPolicy

As with the developer, the important requirement for the administrator is
knowledge about the “gets,” “sets,” and attributes. The first step is actually
defining the attributes of the administrator.

The domain manager provides mechanisms for handling security relationships
and policies. It involves two important parameters. They are:

• policy_type

• object_type

Invocation security policies are automatically enforced for four types of
invocations:

• Access

• Audit

• Delegation

• Secure

Note: There is one standard interface for application access, but not one for
administration.

The get_required_rights operation has three “in” and two “out” attributes.

They are:

• obj

• operation_name

• interface_name

• rights

• rights_combination

Note: The last four are used in the set_required_rights.

There are three standard rights in CORBA:

• “g” (get)

• “s” (set)

• “m” (manage)

They are used in the form corba:gsm with one or more as a suffix.

There are four attributes for three DomainAccessPolicy operations,
grant_rights, revoke_rights, and replace_rights. They are:

• priv_attr

• del_state

• rights_family

• rights

The retrieve rights operation uses the first three attributes.

The four audit selectors (set, clear, replace, and get) have the same three
attributes. They are:

• object_type

• events

• selectors

There are attributes for other operations such as object associations, invocation
delegation, and evidence (non-repudiation).

Warning: This section highlighted only some of the interface variables and
some of their associated variables. These data assist one in creating a
modeling process using CORBA data for designing an XML DTD with the
document type of security.

Using the Implementor’s Interfaces

There are three actions an implementor must do to have a secure object
system:

• Develop an ORB.

• Develop other associated services and facilities.

• Develop the security services required to provide expected features.

The implementor is concerned with such items as protection boundaries, local

security requirements, and credentials.

The key type of interfaces of interest to an implementor is the interceptor.
Interceptors include those for the:

• Request-level

• Message-level

The primary parameters an implementor would be interested in, as far as XML
DTD design is involved, are those that establish context.

When working with implementor interfaces, there are two important words to
remember: generic and context. The generic concept is represented by such
operations as get_policy and get_credentials. The attributes
init_security_context and accept_security_context can illustrate the content
concept.

The init_security_context operation initiates a security association with the
target. There are eight “in” and two “out” attributes. They are:

• creds_list

• target_security_name

• target

• delegation_mode

• association_mode

• mechanism

• mech_data

• chan_bindings

• security_token

• security_context

The accept_security_context operation seeks to get an acceptance from the
target for a security association with the client. There are three “in” and two
“out” attributes. They are:

• creds_list

• chan_bindings

• in_token

• out_token

• security_context

Besides the attributes listed above, there are attributes for such objects as:

• Security Context

• Access Decision

• Audit Decision

• Audit Channel

Warning: This section highlighted only some of the interface variables and
some of their associated variables. These data assist one in creating a
modeling process using CORBA data for designing an XML DTD with the
document type of security.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Planning an XML Security Service DTD System

Based on the CORBA Specification, there are three views or users of the
CORBA security infrastructure. They are developers, administrators, and
implementors. There are also at least ten activities that these users need to
consider in the implementation of a CORBA security service. They are:

• Associating client and target through an ORB.

• Identifying access control decision points.

• Defining the client’s privilege attributes (a principal).

• Defining the target’s control attributes.

• Defining the privileges or controls of any intermediaries.

• Establishing policy domains.

• Identifying the role of each domain manager.

• Delegating operations to any external security mechanism.

• Determining the role and impact of the Object Transaction Service
(OTS).

• Implementing security defaults.

When one gets ready to develop an XML DTD that assists in an integration of
XML, CORBA, and the legacy environment, one must consider a number of
issues:

• What are the criteria for using an object-oriented programming
language such as Java in designing and developing this integration?

• Acknowledge that the ORB in and of itself offers minimal security
and there needs to be an infrastructure that establishes local goals for a
perceived secure level.

• Identify all the values in the CORBA Specification for a Security
ORB with its associated interfaces and operations.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Consider the design proposal that the “gets,” “sets,” etc., are a
potential way of designing the DTD.

• What should be the level of detail of the XML DTD for designing a
CORBA Security ORB?

• Has one accounted for all the key functions of security such as
confidentiality and accountability?

• Has one ensured that the five key security services have been
implemented in the DTD design?

• Authentication

• Authorization

• Confidentiality

• Integrity

• Non-repudiation

• Has the DTD design established the places of the client and target
objects?

• Has the DTD design considered adequately all privilege and control
attributes?

• Has the DTD design taken into account the delegation roles of the
initiator, intermediaries, and final target?

• Has there been a review of the differences between Level One and
Level Two security?

• Have all the criteria of the 11 security policies of the ORB been
evaluated as to how they affect the local security infrastructure?

• Application accesses and audits

• Client and target invocation accesses

• Client and target invocation audits

• Client and target secure invocations

• Construction

• Delegation

• Non-repudiation

• Have the operations of the request and message interceptors been
considered in the design?

• Has the place of families (group with mutual characteristics) been
determined?

• Have data types been identified that are necessary for developing each
of the services?

• Have the developmental steps been defined for each type of user—the
application developer, the administrator, and the implementor?

• Can there be a common DTD template that can be used by all three
user types?

These seventeen issues reflect that the designing of an XML DTD for Security
Services may not be an easy task. In fact, the last question may be the key
design question. Should there be only one DTD? That answer is perhaps. It can

be no because there are different document types as established in other
chapters. There can be different views of the same data. The working word is
data, not text. Each individual must work out her or his own DTD; however,
there may be a common process. The detail evolves out of one’s XML
experience, security infrastructure experience, and needs. Perhaps in a later
evolution in knowledge of CORBA and of XML implications there can be an
answer of yes.

Guidelines for Developing DTDs for Security

Guidelines are given here rather than specific examples because the final set of
XML DTDs should be based on local declarations. Also, to further ensure
security it is recognized that hackers have accessed systems because someone
used examples from some documentation verbatim.

Perhaps one needs to consider an “XML DTD system” rather that just a single
DTD or a DTD each for development, administration, and implementation.
The specification may have established separate interfaces for each of these
three areas; however, the ultimate goal is to have an integrated security policy.

The first step might be to establish a “root DTD” that has a set of entity
declarations for each policy type. These policy types are found in module
CORBA enumerated under PolicyType (policy types are listed earlier in this
chapter). As appropriate, one could comment out any policy type not a part of
one’s view.

The second step would be to identify associated interfaces and their variables
by policy type. There are sections in this chapter that highlight some of these
interfaces and variables for each user.

The third step is to develop DTDs according to the user’s responsibilities.

• Application Developer: handles business objects in the system.

• Administrator: handles user control or management.

• Implementor: handles such activities as boundary definitions, security
requirements, and credentials.

The fourth step is to create DTDs for each interface as an element and use
attribute lists to declare the variables.

The fifth step is the addition of any data relevant to the user’s responsibilities
and refinements for local security policy. This one includes the responsibilities
of any domain managers.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch13/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 14
Designing an XML DTD for CORBAfacilities
Included in This Chapter

• Declaring the Document Type: Facilities

• Declaring Element Type: UserIf

• Declaring Element Type: Information

• Declaring Element Type: Systems

• Declaring Element Type: Task

• Declaring Element Type: Imagery

• Declaring Element Type: InfoSuper

• Declaring Element Type: Manufacturing

• Declaring Element Type: Simulation

• Declaring Element Type: OAGI

• Declaring Element Type: Accounting

• Declaring Element Type: AppDev

• Declaring Element Type: Mapping

This chapter declares some XML elements and attribute lists for some of the 12
facilities that make up CORBAfacilities based on information from Chapter 9 and the
CORBAfacilities: Common Facilities Architecture V4.0 November 1995 Specification.
The premise here is that an XML document can handle data and that one uses the
concepts developed for CORBAfacilities as a starting point for eventual CORBA/XML
integration. This chapter is basically a “what-if” one rather than a “how-to” chapter.

The XML examples for CORBAfacilities are broadly structured using the interfaces for
declaring XML elements. The information given here is a set of brainstorming sessions

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

looking at the issue of CORBA/XML integration. It is recognized that a number of
applications would be required to complete this integration.

Also see Chapter 11 (Domains) and Chapter 12 (Services) for similar considerations.
This chapter looks at the potential of CORBAfacilities and the potential use of XML
with various facilities.

Declaring the Document Type: Facilities

The first two declarations required are an XML declaration (Rule 23) and a document
type declaration (Rule 28). Also included at this point is the element type declaration
(Rule 39) for facilities. Everything else goes between the start of the document type
declaration and the end “]>”. This document of facilities says that a full set of
CORBAfacilities includes the specified features (interfaces). Also included are the
appropriate attributes, entities, and notations. All of these declarations constitute the
document type definition (DTD).

<?xml version="1.0">
<DOCTYPE facilities [
<!ELEMENT facilities (rendering, … , mapping)>
]<

The data that goes within the ellipsis are the other CORBAfacilities. This chapter looks
at both horizontal and vertical CORBAfacilities. There are various DTD design
considerations as creating two document types facilities-hor and facilities-ver. This
design is one possibility with the facilities given sequentially as in the Specification.

Some of the facility names are changed for ease of markup, such as rendering for
Rendering Management. The 12 facilities as used in this chapter are as follows:

• UserIf (User Interface Common Facility)

• Information (Information Management Common Facility)

• Systems (System Management Common Facility)

• Task (Task Management Common Facility)

• Imagery

• InfoSuper (Information Superhighways)

• Manufacturing

• Simulation (Distributed Simulation)

• OAGI (Oil and Gas Industry Exploration and Production)

• Accounting

• AppDev (Application Development)

• Mapping

Note: The two special CORBAfacilities, Internationalization and Security, are not
discussed in this chapter.

Each of the following 12 sections begins with a kind of brainstorming of each facility
based on information from Chapter 9 and from the CORBAfacilities Specification. The
focus of the “brainstorming” is to establish a “draft” framework of the logical structure

of each facility. This, in turn, is the basis for developing a logical XML structure and in
some cases an enhanced physical structure for a facility. There is one necessary entity,
the document entity.

Warning: The information given here should NOT be considered complete. It is ideas,
or even better, it is speculations for relating concepts from CORBA with those from
XML. These declarations are commented to reflect ideas for design.

Declaring Element Type: UserIf

Here are some basic points one might get from brainstorming about the User Interface
Facility:

• Five major areas

• Rendering Management

• Compound Presentation

• User Support

• Desktop Management

• Scripting

• Rendering concerns

• Window management

• User interface objects

• Dialogue objects

• Device abstractions

• Presentation concerns

• Geometry management

• Event distribution (human interface)

• Controls (human interface)

• Rendering management

• User support concerns

• Annotating

• Graphic functions

• Spreadsheet functions

• Versioning

• Desktop concerns

• Information issues

• Aggregations (hierarchies)

• Versions (evolution)

• Configurations (consistency)

• Tools

• Editors

• Browsers

• System tools

• Hardware tools

• Operational tasks

With these brainstorming ideas and other data from the Specification, one can begin to
declare the <!ELEMENT UserIf>.

<- - Five areas - ->
<!ELEMENT UserIf (rendering, presentation, support,
desktop, scripting)
<!ELEMENT rendering EMPTY>
<!ATTLIST rendering
 winmgt CDATA #REQUIRED
 classlib CDATA #REQUIRED
 dialogobj CDATA #REQUIRED
 indevice CDATA #REQUIRED
 outdevice CDATA #REQUIRED >
<!ELEMENT presentation EMPTY>
<!ATTLIST presentation
 geometry CDATA #REQUIRED
 eventif CDATA #REQUIRED
 shareif method (menu | palette | button | other)
"menu"
 manager CDATA #REQUIRED >
<!ELEMENT support EMPTY>
<!ATTLIST support
 function ftype (help | speller | grammar | other)
"other" >
<!ELEMENT desktop EMPTY>
<!ATTLIST desktop
 info itype (agg | ver | config) "agg"
 tool type (editor | browser | system | hardware)
"system"
 task CDATA #REQUIRED >
<!ELEMENT scripting EMPTY>

The EMPTY content specification type is used to develop a logical framework for a
facility. The ATTLIST declarations are used to establish types of content, values,
attributes, and placeholders for applications.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

This is a broad sweep of the possibilities for the User Interface Facility. Where CDATA is used perhaps is the
location for identifying an applications and its location. Another area to be expanded is Desktop Management and its
functions.

Declaring Element Type: Information

Here are some basic points one might get from brainstorming about the Information Management Facility:

• Four areas of interest

• Modeling

• Storage

• Information interchange

• Information exchange

• Modeling areas

• Object interfaces

• Service interfaces

• Object relationships

• Atomic data types

• Storage focuses

• Application development

• Data warehousing

• Systems management

• Retrieval transactions

• Initialization

• Search

• Retrieve

• Access control

• Termination

• Information interchange could almost be considered a facility unto itself.

• Compound interchange

• Binding

• Annotation

• Conversion

• Exchange

• Linking

• Reference storage

• Data interchange

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Domain-specific object representations

• Formatted data

• Bulk data transfer

• Structured data

• Legacy data

• Information exchange

• Infrastructure

• Enabling technology

• Semantics

• Support

• Mediated information exchange

• Content language

• Vocabulary

• Communication

• Interaction control

• Data encoding

• Storage media

• Networking protocols

• Programming interfaces

• Data types

• Compression

• Decompression

• Representation to canonical conversion

• Canonical to representation conversion

• Quality of service

• Time manipulation

• Stamping

• Duration

• Range

• Comparison

• Instance manipulation

<- - Four areas - ->
<!ELEMENT information (modeling, storage, interchange,
exchange)
<!ELEMENT modeling EMPTY >
<- - objif = object interface - ->
<- - svcif = service interface set - ->
<- - objrelation = relationships between objects - ->
<- - datatype = describe exchanged data and atomic types -
->
<- - graphicedit = graphical editor for diagram drawing -
->
<- - datareposdb = persistent data repository for object
handling - ->
<- - browser = capability to see repository contents - ->
<- - datareposapp = application program interface to the
repository - ->
<- - typeext = type extension capability for new object
types - ->
<- - rptsys = reporting system to support project documentation standards - ->
<!ATTLIST modeling
 objif CDATA #REQUIRED
 svcif CDATA #REQUIRED

 objrelation CDATA #REQUIRED
 datatype CDATA #REQUIRED
 graphicedit CDATA #REQUIRED
 datareposdb CDATA #REQUIRED
 browser CDATA #REQUIRED
 datareposapp CDATA #REQUIRED
 typeext CDATA #REQUIRED
 rptsys CDATA #REQUIRED >
<!ELEMENT storage EMPTY >
<- - service types initialization, search, retrieval, - ->
<- - access-control, termination - ->
<!ATTLIST storage
 initialsvc CDATA #REQUIRED
 searchsvc CDATA #REQUIRED
 retlsvc CDATA #REQUIRED
 accesssvc CDATA #REQUIRED
 termsvc CDATA #REQUIRED >
<!ELEMENT interchange (compound, data) >
<- - need attribute list declarations - ->
<!ELEMENT compound EMPTY >
<!ELEMENT data EMPTY>
<!ELEMENT exchange (language, vocabulary, communication,
control) >
<- - need attribute list declarations - ->
<!ELEMENT language EMPTY >
<!ELEMENT vocabulary EMPTY >
<!ELEMENT communication EMPTY >
<!ELEMENT control EMPTY >

The facility could have an extensive DTD because the information system or information technology environment
has such a high level of definition. This example only brushes on possibilities.

Declaring Element Type: Systems

Here are some basic points one might get from brainstorming about the System Management Facility:

• Eleven facilities

• User types

• Policy management

• Quality of service management

• Instrumentation

• Data logging

• Security management

• Collection management

• Instance management

• Scheduling management

• Customization

• Event management

• Types of users

• Users

• Developers

• Service providers

• Resource planners

• Quality of service concerns

• Availability

• Performance

• Reliability

• Recovery

• Instrumentation issues

• Workload

• Object allocation

• Responsiveness

• Collection types

• Queried

• Applied

• Event activities

• Generation

• Registration

• Filtration

• Aggregation

• Notification

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

<- - eleven facilities - ->
<- - see X/Open Resolution 20.6, Interfaces for a Distributed
Systems - ->}
<- - Management Framework, (IDSMF) - ->
<!ELEMENT systems (user, …, event) >
<- - user types (user, developer, service provider,
enterprise) - ->
<- - not limited to these four - ->
<!ELEMENT user EMPTY>
<- - policy management to support policy definition - ->
<- - to support a common interface's application - ->
<- - component creation, deletion, modification - ->
<- - to group resources by policy region - ->
<!ELEMENT policy EMPTY>
<- - quality of service mgt - ->
<- - concern with availability, performance, reliability, -
->
<- - and recovery - ->
<!ELEMENT QoS EMPTY>
<- - Instrumentation provides for resource-specific data -
->
<- - gathering, managing, and disseminating - ->
<!ELEMENT instrument EMPTY>
<- - Data collection includes Logging and History
Management - ->
<- - gathering functionality - ->
<!ELEMENT datalog EMPTY>
<- - Security management - ->
<- - get ideas from Security Facility and Domain - ->
<- - focus is on resource security - ->
<!ELEMENT secmgt EMPTY>

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<- - Collection Management requires two-way object
references - ->
<- - querying or applying - ->
<!ELEMENT collection EMPTY >
<- - Instance Management provides infrastructure for
objects to be - ->
<- - logically associated - ->
<- - support for a single instance and multiple instances -
->
<!ELEMENT instance EMPTY>
<- - Scheduling Management for tasks on a regular basis -
->
<- - Look at the Time Facility - ->
<!ELEMENT schedule EMPTY>
<- - Customization provides for object instances to be
extended - ->
<- - while retaining type safety - ->
<- - replacing a piece of hardware through an upgrade - ->
<!ELEMENT customization EMPTY>
<- - Event Management provides for generating, registering,
- ->
<- - filtering, aggregating, and forwarding of event
notifications - ->
<- -to management applications - ->
<!ELEMENT eventmgt EMPTY>
<- - a placeholder for expansion - ->
<!ELEMENT other EMPTY>

This example shows how one could heavily comment a first draft of a DTD. Also note at
the end of the example there is a placeholder for future expansion.

Declaring Element Type: Task

Here are some basic points one might get from brainstorming about the Task Management
Facility:

• Four areas for applications and desktops

• Work flows

• Agent

• Rule management

• Automation

• Interacts with the ORB through high-level messaging

• Workflow types

• Flows

• Long transactions

• Agency

• Functions

• Agent types (mobile and static)

• Function issues

• Agent off-load

• Load bookkeeping

• Mobile agent services

• Control

• Communication

• Messaging

• Static agent services

• Basic information

• Simply query

• Multi-response

• Assertion

• Generation

• Capability

• Notification

• Extension

• Types of extension services

• Networking

• Facilitation

• Database

• Adaptation

• Error correction

• Automatic retransmission

• Registration (home and visitor)

• Security (encryption and access)

• Rule management considerations

• Scripting

• Storing

• Interpreting

• Automation focuses

• Method invocation

• Object specifier

<- - four facilities - ->
<- - uses many of the services including Event, Life Cycle,
Persistent - ->
<- - Object, Transaction, relation, Query, Concurrency
 Control - ->
<- - rulemgt = rule management - ->
<!ELEMENT task (workflow, agent, rulemgt, automation) >
<- - ref.: Workflow Management Coalition, Glossary, August
1994 - ->
<!ELEMENT workflow EMPTY >
<- - ad hoc = coordination-based work flow - ->

<- - pre-defined = production-based work flow - ->
<!ATTLIST workflow
 type (ad hoc | pre-defined) "pre-defined" >
<!ELEMENT agent EMPTY >
<- - ensure you declare all the services - ->
<- - errorcorrect = error correction - ->
<!ATTLIST agent
 mobile (content | communication | messaging |
no) "no"
 static (basic | query | multi-response |
assertion |
 generation | notification | extension | no)
"no">
 extension (networking | facilitation | database |
adaptation
 errorcorrect | retransmit | registration |
security | no)
 "no"
 registration (home | visitor) "home"
 security (encryption | access) "access" >
<!ELEMENT rulemgt EMPTY >
<!ATTLIST rulemgt
 function (scripting | storing | interpreting)
"scripting" >
<!ELEMENT automation EMPTY >
<- - method invocation, object specifier - ->
<!ATTLIST automation
 type (invocation | specifier) "invocation" >

This example shows two things. First, in the attribute list with specified values a “no” can
be included. Second, a value can be further refined, such as registration in extension and
then values of “home” and “visitor.”

Declaring Element Type: Imagery

Here are some basic points one might get from brainstorming about the Imagery Facility:

• Imagery activities

• Examining

• Processing

• Annotating

• Storing

• Displaying

<- - five activities - ->
<- - a vertical market facility - ->
<!ELEMENT imagery (examining, processing, annotating,
storing, displaying) >
<- - see ISO/IEC JTC SC24 WG1 Image Processing Interchange
- ->

<!ELEMENT examining EMPTY >
<!ELEMENT processing EMPTY >
<!ELEMENT annotating EMPTY >
<!ELEMENT storing EMPTY >
<!ELEMENT displaying EMPTY >

This example is a “first draft” type since it only states five imaging activities without any
attributes. You need more than this to be useful. Things that need to be considered are
imagery applications and archives. Another important element is support applications that
access imagery-related data. One also needs to consider image types, quality, annotations,
and standards.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Declaring Element Type: InfoSuper

Here are some basic points one might get from brainstorming about the Information
Superhighways Facility:

• Think Internet functionality

• Six areas

• Commerce

• Resource discovery (search)

• Intermediaries

• Teleconferencing

• Experimentation

• User access

• Commercial concerns

• Advertising

• Monitoring

• Costing

• Types of intermediaries

• Broker

• Intelligent agent

• Mediator

• Trader

• Types of teleconferencing

• Collaboration

• Mentoring

• User access issues

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

• Interface level (novice or expert)

• Profile management

• Group association

<- - six potential facilities - ->
<- - a vertical market facility - ->
<- - search = resource discovery - ->
<- - access = user access - ->
<!ELEMENT InfoSuper (commerce, search, intermediaries,
teleconferencing,
 experimentation, access) >
<- - see ISO/IEC JTC SC24 WG1 Image Processing Interchange
- ->
<!NOTATION ISA1 SYSTEM "http://www.myplace.com/comapp.exe"
>
<!NOTATION ISA2 SYSTEM "http://www.myplace.com/search.exe"
>
<!NOTATION ISA3 SYSTEM "http://www.myplace.com/annapp.exe"
>
<!NOTATION ISA4 SYSTEM "http://www.myplace.com/storapp.exe"
>
<!NOTATION ISA5 SYSTEM "http://www.myplace.com/display.exe"
>
<!ELEMENT commerce EMPTY >
<ATTLIST commerce
 app notation (none | ISA1) "ISA1" >
<!ELEMENT search EMPTY >
<ATTLIST search
 app notation (none | ISA2) "ISA2" >
<!ELEMENT annotating EMPTY >
<ATTLIST annotating
 app notation (none | ISA3) "ISA3" >
<!ELEMENT storing EMPTY >
<ATTLIST storing
 app notation (none | ISA4) "ISA4" >
<!ELEMENT displaying EMPTY >
<ATTLIST displaying
 app notation (none | ISA5) "ISA5" >

This theoretical example shows how one might call applications for processing. The
ISA1 to ISA5 are arbitrary names representing InfoSuper application.

Declaring Element Type: Manufacturing

Here are some basic points one might get from brainstorming about the Manufacturing
Facility:

• Three types of specialization

• Policy variable management

• History management

• STEP standards

• Concerns of history management

• Access

• Controls

• Issues for a product data service

• Engineering concurrency

• Technological integration

• Encapsulated object-oriented interface

• Fast large model execution (fine-grained object level)

<- - three identified types of specialization - ->
<- - a dozen plus potential types - ->
<- - see Standard Data Access Interface Specification - ->
<- - Part 22 ISO 10303-22, 1994 or updates - ->
<- - spec1 = policy variable management - ->
<- - spec2 = history management - ->
<- - spec3 = product data service - ->
<!ELEMENT Manufacturing (spec1, spec2, spec3) >
<- - manufacturing into our company may not be - ->
<- - introduced prior to 2005 - ->

<- - need to identify FUNCTIONS such as engineering, - ->
<- - process and quality controls, sales, finance, human
resources - ->

<- - need to identify computational resource COMPONENTS -
->
<- - such as operating systems, databases, - ->
<- - equipment interfaces, hardware - ->

<- - for spec1 need to access business rules and policy
variables - ->
<- - need processing applications - ->

<- - for spec2 need storage location, format and type - ->
<- - also need access application - ->
<- - identify objects as events; be able to display
response - ->
<- - consider Event Facility - ->

<- - for spec3 need to integrate STEP standard - ->

In this example rather than concrete names such as policy, history, or product, abstract
names were used to show how one can continue to add to an element if there are
additions. For example, spec4 could be factory simulation which has been identified as
a potential specialization.

This example is a placeholder for later enhancements. It does show how one can make
comments in a DTD for further use.

Declaring Element Type: Simulation

Here are some basic points one might get from brainstorming about the Distributed
Simulation Facility:

• Seven areas

• Types

• Simulation management

• Time management

• Aircraft and vehicle states

• Flight data

• Adaptation

• Environment

• Categories of simulation

• Air traffic control

• War gaming

• Video gaming

• Management issues

• Configuring

• Component control

• Choosing

• Specifying

• Allocating

• Instantiating

• Start ensuring

• Status monitoring

• Shut-down

• State checking

• Identifying

• Basic component commands

• Start

• Pause

• Resume

• Stop

• Adaptation issues

• Location of airways

• Fixes

• Airspace definitions

• Environmental types

• Weather

• Terrain

Because this facility requires highly specialized knowledge for industries such as the
military, gaming design, aircraft traffic control, and weather prediction, it is not
discussed further here.

Declaring Element Type: OAGI

Here are some basic points one might get from brainstorming about the Oil and Gas
Industry Facility:

• Three concerns

• Data (large amount)

• Algorithms

• Storage

• Specific industry definitions

Because this facility requires highly specialized knowledge for a particular industry, it
is not discussed further here.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Declaring Element Type: Accounting

Here are some basic points one might get from brainstorming about the Accounting
Facility:

• Specific functionality across industries

• Activities (electronic)

• Money exchange

• Payroll

• Purchases

• Sales

• Online charges

<- - consider the incorporation of CORBAservices such as -
->
<- - Life Cycle, Trader, Transaction, Security, Query,
Licensing - ->

<- - from Financial Accounting Standards Board (FASB) see -
->
<- - Generally Accepted Accounting Principles (GAAP) - ->
<- - Generally Accepted Auditing Standards (GAAS) - ->

<- - consider using other facilities such as Information
Superhighways, - ->
<- - Distributed Simulation - ->

<- - consider its use by other facilities such as
manufacturing - ->

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

<!ELEMENT accounting (receive, pay) >
<- - identify the local accounting infrastructure logically
first - ->
<- - integrate the standards as possible - ->

This is also a placeholder. What is important is to use XML to assist in identifying the
local accounting system logically. Most accounting systems are proprietary, but are
built on GAAP, GAAS, and IRS requirements.

Declaring Element Type: AppDev

Here are some basic points one might get from brainstorming about the Application
Development Facility:

• Six areas

• Technical engineering

• Applications components for reuse

• Technical management (change and reuse)

• Project management

• Processing support

• Framework

• Types of technical engineering

• System

• Software

• Process

• Phases of project management

• Plan

• Estimate

• Risk analysis

• Tracking

• Types of processing support

• Text

• Numerical

• Figure

• Concerns of framework

• Object management

• Process management

• Communication

• Operating system

• User

• Policy enforcement

<- - three identified types of specialization - ->
<- - a dozen-plus potential types - ->
<- - see Standard Data Access Interface Specification - ->

<- - Part 22 ISO 10303-22, 1994 or updates - ->
<- - if1 = system engineering interfaces - ->
<- - if2 = software engineering interfaces - ->
<- - if3 = life cycle process engineering interfaces - ->
<!ELEMENT AppDev (if1, if2, if3) >
<- - need to consider the location of data and type of
processing - ->
<- - applications required for each interface - ->
<- - make this module by individual interface - ->

This is also a placeholder. This facility requires a large number of interfaces and tools.
The tool types include technical engineering, technical management, project
management, and support. Here is a “brief” list of interface types (number of identified
interfaces for that type):

• System engineering (9)

• Software engineering (13)

• Life cycle process engineering (4)

• Technical management (5)

• Project management (5)

• Support (6)

• User communication (3)

• Environment administration (8)

• Framework (7)

Would you need to work with all 60 of these interfaces? The answer is probably no.
Remember that this facility is a generic place for handling the selection, development,
building, and evolution of the applications needed to support an informational systems
strategy.

Declaring Element Type: Mapping

Here are some basic points one might get from brainstorming about the Mapping
Facility:

• Two areas

• Access

• Display

• Needs to move from special use to everyday use

<- - generally bundled as data access, analysis, and
display - ->
<- - analysis function should be under modeling and
simulation - ->
<!ELEMENT mapping (access, display)

This is a placeholder. This facility is being specified by OGIS Ltd. The effort is known
as the Open Geodata Interoperability Specification.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch14/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Chapter 15
Final Thoughts, Summary, and
Conclusions
Included in This Chapter:

• Final Thoughts

• Summary

• Conclusions

This chapter is divided into three areas. Final thoughts are just ideas that have
evolved out of doing this book. The summary relies on the basic principle of
telling people what you are going to say (introduction), telling them in detail
(the body of the book), and reminding them of what you said (final chapter).
Conclusions are where one can go with this information and what actions or
consequences result from the information in the book.

Final Thoughts

The Common Object Request Broker Architecture (CORBA) and the
Extensible Markup Language (XML) are two very dynamic technologies for
handling object-oriented data. Perhaps their evolutions can have a common
path of friendship. It seems that:

• CORBA has to have further growth defining its CORBAfacilities and
domains.

• XML has to grow to handle data in multiple locations and in multiple
display formats.

It appears there is a potential for some kind of integration of CORBA and

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

XML. An area that must be included is modeling and the place of the Interface
Definition Language (IDL) in this “merging” of technologies.

Summary

The book began with a look at the practical implications of XML such as its
grammar and benefits. There were also three comparisons given as XML to
SGML, HTML, and Java.

The next discussion was concerned with the place and order of a production
rule because of its importance in an implementing context. There was an
overview of key XML concepts:

• Production rules overview

• Well-formed documents

• Valid documents

• Logical structures

• Physical structures

• XML processor constraints

Next there was a discussion of ten frequently asked questions about a DTD.
The rest of the book is an outgrowth of the answers from this FAQ.

Then there was a look at the fundamental process for developing a document
type definition (DTD). The ideas were extended in the chapters on developing
DTDs for CORBAservices and CORBAfacilities. This look also included
discussions on key tools for developing a DTD and XML documents—parsers,
editors, and browsers.

The next topic covered was modeling. The focus was on the Document Object
Model (DOM). It was shown how the DOM permits one to view an XML
document as a data holder and as an object of the CORBA paradigm. It was
stated that the DOM should be the API standard for handling XML documents
in applications, browsers, and editors. Also included was a four-part example
of Java code, an XML DTD, XML markup, and DOM output.

Three developing Web technologies and their implications for developing
XML applications for CORBA were then discussed:

• Distributed Component Architecture Modeling (DCAM)

• Interface Definition Language (IDL)

• Unified Modeling Language (UML)

To close out model and definitional languages there was a discussion on the
importance of Web Interface Definition Language (WIDL), a new Web
technology for conceptually developing XML applications for CORBA from
webMethods. It was stated that this technology goes hand-in-hand with the
Document Object Model (DOM) and Distributed Component Architecture
Modeling (DCAM) technologies.

The “headlines” metaphor was used to establish the fundamentals of CORBA.
This was a “search” for the components, features, functions, or parts of
CORBA that can be equated to XML elements, attributes, or entities. The

search included a look at the architecture, the ORB, domains, CORBAservices,
Security Service, and CORBAfacilities.

Next there was a brief review of the essentials of CORBAservices. This review
established descriptive information for the development for XML examples
using CORBAservices as a document type labeled services (Chapter 12).

Then there was a brief review of the essentials of CORBAfacilities. This
review was used to establish descriptive information for the development of a
document type definition (DTD) using CORBAfacilities as a document type
labeled facilities (Chapter 14).

Next was a consideration of the ten general key design and development
issues. Specific issues were also considered. These issues come in two
categories, single environment or multiple environments. A single
environment is considering CORBA itself. A multiple environment is
considering CORBA and XML integration.

The next four chapters dealt with the design issues for developing XML DTDs
for CORBA domains, CORBAservices, security as a CORBA service, and
CORBAfacilities. The discussion on the DTD CORBA domains was at a very
high level because of the level of development on domains. The discussion on
a DTD for CORBAservices presented a model filled with potentials. The
premise was that an XML document can handle data and that CORBA is
fundamentally a series of interfaces, thus, one can design an XML document
that organizes and declares the variables that might go into the interfaces. The
discussion on DTD security as a service was a look at the potentials in the
DTD for CORBAservices. The final discussion was on developing XML
examples for CORBAfacilities. This discussion was basically a “what-if” one
rather than a “how-to” chapter.

Conclusions

The major conclusion is that one needs to have experiences with both XML
and CORBA to see where object-oriented technology may go. Both of these
technologies are in stages of growth and potential.

If one wants to further the ideas given in this book, the place to begin is
CORBAservices. If one is a vendor, one should consider in the design of a
facility or a domain how XML might be used to enhance the interface or
product.

This book acknowledges the first design goal of the XML Recommendation
states “XML shall be straightforwardly usable over the Internet,” but it has
been demonstrated that XML has broad application in such as areas as
e-commerce. Taking a broad sweep, this book focused on XML design using
the structures of CORBA so one might get a new perspective on programming
in an object-oriented environment.

This book does not teach XML, but discusses design for experienced
object-oriented developers. One needs to comprehend how an analysis of an
environment, CORBA, assists in design and development of XML elements,
attributes, and entities that reflect that environment.

The potentials of CORBA and XML have not yet begun to be explored or
exploited. The future is full of possibilities!

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch15/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Part IV
Appendixes

Included in This Part:

• Appendix A—Terms and Definitions

• Appendix B—XML Alphabetical Production Rules List

• Appendix C—XML Production Rules

• Appendix D—Constraints

• Appendix E—XML Web Sites

• Appendix F—XML Markup Examples

Appendix A
Terms and Definitions

Note: When “Rule n” is referred to in this glossary, it is a reference to a
production rule in XML Recommendation 1.0 (10 February 1998). Appendix
C lists these production rules.1

1When “rule” is used in the definitions, it is a reference to a “production
rule.”

Term Definition

application The software module on behalf of which an XML
processor does its work.

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

attribute Governed by Rule 41. Used to associate name-value
pairs with elements.

attribute list The specified or declared attributes within a tag.
attribute-list
declaration

Governed by Rules 52-53. Specifies the name, data
type, and default value (if any) of each attribute
associated with a given element type.

attribute type Governed by Rule 54. Three kinds: a string type, a set
of tokenized types, and enumerated types.

CDATA section Governed by Rules 18-21. May occur anywhere
character data may occur. It is used to escape blocks
of text containing characters that would otherwise be
recognized as markup. It begins with the string
“<![CDATA[” and ends with the string “]]>”.

character Governed by Rules 2 and 84-89. An atomic unit of
text as specified by ISO/IEC 10646. Legal characters
are tab, carriage return, line feed, and the legal
graphic characters of Unicode and ISO/IEC 10646.

character data Governed by Rule 14. It is any text that is not markup.
character reference Governed by Rule 66. A specific character in the

ISO/IEC 10646 character set; for example, one not
directly accessible from available input devices.

children Governed by Rules 47-50. Elements without content.
class Within XML, a class is a document type. Within the

publishing world, examples are manuals, novels, and
letters. Examples as used in this book are domains,
services, and facilities.

comment Governed by Rule 15. Marked off by <-- -->. May
appear anywhere in a document outside other markup.
It may appear within the document type declaration at
places allowed by the grammar.

compatibility A feature of XML included solely to ensure that XML
remains compatible with SGML.

conditional section Governed by Rules 61-65. Portion of the document
type declaration external subset which is included in,
or excluded from, the logical structure of the DTD
based on the keyword which governs it.

constraint A rule for an XML processor for determining
declaration errors. A constraint can be either one of
well-formedness or validity.

content Governed by Rule 43. It usually is the text between an
element’s start-tag and end-tag. It can also be
character data, entity references, CDATA sections,
processing instructions, and comments.

content model Describes what might occur with instances of a given
element type. It is found in the DTD.

content of elements Governed by Rule 43. The text between the start-tag
and end-tag is called the element’s content.

CORBAservices Provides services for objects.
CORBAfacilities Provides services for applications.
CORBA domains Provides services for functions.
declaration A formal statement for production. Rules that declare

include document types, element types, attribute lists,
entity, text, and notation.

default declaration Governed by Rule 60. Declares how an XML
processor should react if a declared attribute is absent
in a document.

delimited text Text surrounded by a delimiter that is a special
character that states the limits of a string. Common
delimiters are quotation marks, single and double.

document Not defined in the XML Recommendation. Since
XML is a subset of SGML, one might use the
definition in ISO 8879. A document can be “a
collection of information that is processed as a unit.”
A document can be located in more than one physical
location or unit.

document element See root element.
document entity Governed by Rule 1. Serves as the starting point for

the XML processor and may contain the whole
document.

document type
A document class with a common set of properties.
See class.

document type
declaration

Defines constraints on the logical structure and to
support the use of predefined storage units and must
appear before the first element in the document.

document type
definition

(DTD) The grammar for a class of documents found
in the XML document type declaration that contains
or points to markup declarations.

EBNF Extended Backus-Naur Form of notation. The
notation to form the production rules that uses as its
basic form the right-handed form of symbol ::=
expression. This reads that a symbol consists of an
expression. The expression can have multiple parts.

element Governed by Rule 39. Content of a document
delimited by start-tags and end-tags or, for empty
elements, by an empty-element tag. A logical unit
within an XML document.

element type
declaration

Governed by Rule 45. Constrains the element’s
content.

empty-element tag Governed by Rule 44. A logical structure delimiter.
May be used for any element that has no content.

encoding declaration Governed by Rule 78. Parsed entities stored in an
encoding other than UTF-8 or UTF-16 must begin
with a text declaration containing an encoding
declaration. It is part of the XML declaration.

end-tag Governed by Rule 42. It is the end of every
non-empty XML element. It echoes the element’s
type as given in the start-tag.

entity
Any data that can be treated as a “virtual” storage
unit.

entity declaration Governed by Rules 70-74. The Name identifies the
entity in an entity reference or, in the case of an
unparsed entity, in the value of an ENTITY or
ENTITIES attribute.

entity reference Governed by Rule 67. The content of a named entity.
It signifies that a copy of the entity is to be included at
this point.

entity value Governed by Rule 9. It is the literal text within an
internal entity declaration.

enumerated attributes
type

Governed by Rule 57. There are two kinds of
enumerated types: notation and enumeration.

error A violation of the rules of the Working
Recommendation. The results are undefined. A
conforming processor may detect and report an error
and may recover from it.

Extended Backus-Naur
Form

See EBNF.

Extensible Markup
Language

(XML) Describes a class of data objects called XML
documents and partially describes the behavior of
computer programs which process them. XML is an
application profile or restricted form of SGML, the
Standard Generalized Markup Language (ISO 8879).
By construction, XML documents conform to SGML
documents.

external entity
Governed by Rule 75. Any entity not an internal
entity.

external subset Governed by Rule 30. Consists of a series of complete
markup declarations of the types allowed by the
non-terminal symbol markupdecl, interspersed with
white space or parameter-entity references.

fatal error An error which a conforming XML processor must
detect and report to the application. Once a fatal error
is detected, however, the processor must not continue
normal processing (that is, it must not continue to pass
character data and information about the document’s
logical structure to the application in the normal way).

generic identifier The name assigned to an element type. The “name” of
a tag <GI> </GI>.

general entities Entities for use within the document content.
grammar (XML) The rules for creating markup that are defined by a

document type definition (DTD) and the parsing
constraints of the XML Recommendation.

IANA (Internet Assigned Numbers Authority) “Official
Names for Character Sets,” ed. Keld Simonsen et al.
See ftp://ftp.isi.edu/in-notes/iana/
assignments/character-sets.

IETF RFC 1766 (Internet Engineering Task Force). RFC 1766: “Tags
for the Identification of Languages,” ed. H.
Alvestrand. 1995.

internal entity An entity whose value is given in its entity declaration
in the DTD. An internal entity is a parsed entity. For
example, <!ENTITY QoS "Quality of Service">.

interoperability A non-binding recommendation to increase the
chances that XML documents can be processed by the
existing installed base of SGML processors which
predate the Web SGML Adaptations Annex to ISO
8879.

ISO Refers to the International Organization for
Standardization (English) or Organisation
Internationale de Normalisation (French). It is not an
acronym.

ISO 639 (International Organization for Standardization). ISO
639:1988 (E). Code for the representation of names of
languages. [Geneva]: International Organization for
Standardization, 1988.

ISO 3166 (International Organization for Standardization). ISO
3166-1:1997 (E). Codes for the representation of
names of countries and their subdivisions—Part 1:
Country codes [Geneva]: International Organization
for Standardization, 1997.

ISO/IEC 10646 (International Organization for Standardization).
ISO/IEC 10646-1993 (E). Information
technology—Universal Multiple-Octet Coded
Character Set (UCS)—Part 1: Architecture and Basic
Multilingual Plane. [Geneva]: International
Organization for Standardization, 1993 (plus
amendments AM 1 through AM 7).

language identification Governed by Rules 33-38. Identifies the natural or
formal language in which the content is written. The
language identifiers as defined by IETF RFC 1766,
“Tags for the Identification of Languages.”

letter Consists of an alphabetic or syllabic base character
possibly followed by one or more combining
characters, or of an ideographic character.

literal Any quoted string not containing the quotation mark
used as a delimiter for that string. Literals are used for
specifying the content of internal entities
(EntityValue, Rule 9), the values of attributes
(AttValue, Rule 10), and external identifiers
(SystemLiteral, Rule 11).

ftp://ftp.isi.edu/in-notes/iana/ assignments/character-sets
ftp://ftp.isi.edu/in-notes/iana/ assignments/character-sets

logical structure The document structure that is declarations, elements,
comments, character references, and processing
instructions, all of which are indicated in the
document by explicit markup.

markup The tags that describe the document’s storage layout
and logical structure: start-tags, end-tags,
empty-element tags, entity references, character
references, comments, CDATA section delimiters,
document type declarations, and processing
instructions.

markup declaration Either an element type declaration, an attribute-list
declaration, an entity declaration, or a notation
declaration.

match (of strings or
names)

Two strings or names being compared must be
identical. Characters with multiple possible
representations in ISO/IEC 10646 match only if they
have the same representation in both strings.

mixed content Governed by Rule 51. Mixed content is when
elements of an element type may contain character
data, optionally interspersed with child elements.

name Governed by Rules 5-8. A token beginning with a
letter or one of a few punctuation characters, and
continuing with letters, digits, hyphens, underscores,
colons, or full stops, together known as name
characters.

namespace A set of unique names. The colon (:) may be used to
resolve the issue when a document uses two DTDs
that both use an element type or entity with the same
name. For example, the namespaces would be
DTDname1:samename and DTDname2:samename.

nesting A property of well-formed documents, that is, the
logical instances are contained correctly within each
other.

Nmtoken (name token) Any mixture of name characters.
non-validating parser A parser that checks the well-formedness constraints.
notation declaration Governed by Rule 82. Identifies by name the format

of unparsed entities, the format of elements that bear a
notation attribute, or the application to which a
processing instruction is addressed. For example, the
format could be BMP image.

parameter entities Entities for use within the DTD.
parsed data Data that has to be parsed are made up of characters,

either character or markup.
parsed entity Contains text, a sequence of characters, which may

represent markup or character data. Invoked by name
using entity references.

parser A process that analyzes notated text and determines if
a notation is correct in accordance with defined
grammar. An XML parser analyzes markup and
content and uses well-formedness constraints and
perhaps validity constraints.

physical structure The document structure that is units or entities. A
document begins in a “root” or document entity.

processing instruction (PI) Governed by Rule 16. Allows documents to
contain instructions for applications.

processor A software module that reads XML documents and
provides access to their content and structure. It reads
XML data and the information and provides the
results to an application.

production rule See Appendix B for a listing of XML production
rules. Uses the EBNF notation of symbol ::=
expression.

prolog The part of the XML document (Rule 1) that includes
the XML declaration and DTD. It precedes the actual
document element.

replacement text A parsed entity’s contents and this text are considered
an integral part of the document.

reserved names Any name beginning with the string “xml”, or any
string which would match (('X'|'x') ('M'|'m') ('L'|'l')).

root element The element that contains all the other elements. The
root element is specified in the document type
declaration. It is the point where the parser begins
processing.

standalone document
declaration

Governed by Rule 32. May appear as a component of
the XML declaration. Signals whether or not there are
such declarations which appear external to the
document entity.

start-tag Governed by Rule 40. The beginning of every
non-empty XML element.

string A sequence of characters usually delimited by
quotation marks, single or double.

style sheet An instruction set that specifies how each structural
object within an XML document is to be formatted.

tag A type of markup that is delimited by a less-than
symbol or right-handed bracket and the greater-than
symbol or left-handed bracket. Usually refers to the
start-tag and end-tag of an element.

text Consists of intermingled character data and markup.

text declaration Governed by Rule 77. External parsed entities may
each begin with a text declaration. The text
declaration must be provided literally, not by
reference to a parsed entity. No text declaration may
appear at any position other than the beginning of an
external parsed entity.

textual object It is a well-formed XML document if: it matches the
production labeled document, meets all the XML
Specification’s well-formedness constraints, and each
of the referenced parsed entities is well-formed.

token A document indivisible unit type. Examples as used in
markup are DOCTYPE, ELEMENT, and ATTLIST.

Unicode The Unicode Consortium. The Unicode Standard,
Version 2.0. Reading, Mass.: Addison-Wesley
Developers Press, 1996.

unparsed entities Invoked by name, given in the value of ENTITY or
ENTITIES attributes.

valid document An XML document that follows all the rules specified
by its document type declaration.

validating parser A parser that checks for the constraints as defined in
the XML Recommendation.

validity constraint A rule that applies to all valid XML documents.
Violations of validity constraints are errors; they
must, at user option, be reported by validating XML
processors.

well-formed document An XML document that conforms to the XML
Recommendation but does not necessarily adhere to
the validity constraints. A textual object is a
well-formed XML document if:
• Taken as a whole, it matches the production labeled
document.
• It meets all the well-formedness constraints given in
this specification.
• Each of the parsed entities referenced directly or
indirectly within the document is well-formed.

well-formedness
constraint

A rule which applies to all well-formed XML
documents. Violations of well-formedness constraints
are fatal errors.

white space Governed by Rule 3. Consists of one or more space
(#x20) characters, carriage returns, line feeds, or tabs.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch16/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Appendix B
XML Alphabetical Production Rules
List
The number following each production rule refers to its number. Please see
Appendix C.

AttDef 53

AttlistDecl 52

Attribute 41

AttType 54

AttValue 10

BaseChar 85

CData 20

CDEnd 21

CDSect 18

CDStart 19

Char 2

CharData 14

CharRef 66

children 47

choice 49

CombiningChar 87

Comment 15

conditionalSect 61

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

content 43

contentspec 46

cp 48

DefaultDecl 60

Digit 88

doctypedecl 28

document 1

element 39

elementdecl 45

EmptyElemTag 44

EncName 81

EncodingDecl 80

EntityDecl 70

EntityDef 73

EntityRef 68

EntityValue 9

EnumeratedType 57

Enumeration 59

Eq 25

ETag 42

Extender 89

ExternalID 75

extParsedEnt 78

extPE 79

extSubset 30

extSubsetDecl 31

GEDecl 71

Iana Code 36

Ideographic 86

Ignore 65

ignoreSect 63

ignoreSectContents 64

includeSect 62

ISO639Code 35

Langcode 34

LanguageID 33

Letter 84

markupdecl 29

Misc 27

Mixed 51

Name 5

NameChar 4

Names 6

NDataDecl 76

Nmtoken 7

Nmtokens 8

NotationDecl 82

NotationType 58

PEDecl 72

PEDef 74

PEReference 69

PI 16

PITarget 17

prolog 22

PubidChar 13

PubidLiteral 12

PublicID 83

Reference 67

S3

SDDecl 32

seq 50

STag 40

StringType 55

Subcode 38

SystemLiteral 11

TextDecl 77

TokenizedType 56

UserCode 37

VersionInfo 24

VersionNum 26

XMLDecl 23

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch17/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Appendix C
XML Production Rules

Note: These rules are from Extensible Markup Language 1.0 W3C Recommendation (10
February 1998).

[1] document ::= prolog element Misc*

[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] |
 [#xE000-#xFFFD] | [#x10000-#x10FFFF]/* any
Unicode
 character, excluding the surrogate blocks,
FFFE, and
 FFFF. */

[3] S ::= (#x20 | #x9 | #xD | #xA)+

[4] NameChar ::= Letter | Digit | '.' | '-' | '_' |
':' |
 CombiningChar | Extender
[5] Name ::= (Letter | '_' | ':') (NameChar)*
[6] Names ::= Name (S Name)*
[7] Nmtoken ::= (NameChar)+
[8] Nmtokens ::= Nmtoken (S Nmtoken)*

[9] EntityValue ::= '"' ([^%&"] | PEReference |
Reference)* '"'
 | "'" ([^%&'] | PEReference | Reference)* "'"

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

[10] AttValue ::= '"' ([^<&"] | Reference)* '"'
 | "'" ([^<&'] | Reference)* "'"
[11] SystemLiteral ::= ('"' [^"]* '"') | ("'" [^']*
"'")
[12] PubidLiteral ::= '"' PubidChar* '"' | "'"
(PubidChar
 - "'")* "'"
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] |
 [-'()+,./:=?;!*#@$_%]

[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)

[15] Comment ::= '<!--' ((Char - '-') | ('-' (Char -
 '-')))* '-->'

[16] PI ::= '<?' PITarget (S (Char* - (Char* '?>'
 Char*)))? '?>'
[17] PITarget ::= Name - (('X' | 'x') ('M' | 'm') ('L' |
 'l'))

[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= '<![CDATA['
[20] CData ::= (Char* - (Char* ']]>' Char*))
[21] CDEnd ::= ']]>'

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= '<?xml' VersionInfo EncodingDecl?
 SDDecl? S? '?>'
[24] VersionInfo ::= S 'version' Eq (' VersionNum ' |
"
 VersionNum ")
[25] Eq ::= S? '=' S?
[26] VersionNum ::= ([a-zA-Z0-9_.:] | '-')+
[27] Misc ::= Comment | PI | S

Warning: [24] implies that one can state version=1.0. This is incorrect; it has to be
either version='1.0' or version="1.0". The quotation marks are literals. [24] should read
VersionInfo ::= S 'version' Eq ("'"VersionNum"'" | '"' VersionNum '"').

[28] doctypedecl ::= '<!DOCTYPE' S Name (S
ExternalID)?
 S? ('[' (markupdecl | PEReference | S)* ']'
S?)? '>'[
 VC: Root Element Type]
[29] markupdecl ::= elementdecl | AttlistDecl |
 EntityDecl | NotationDecl | PI | Comment [VC:
Proper
 Declaration/PE Nesting]
 [WFC: PEs in Internal Subset]

[30] extSubset ::= TextDecl? extSubsetDecl
[31] extSubsetDecl ::= (markupdecl | conditionalSect
|
 PEReference | S)*

[32] SDDecl ::= S 'standalone' Eq (("'" ('yes' |
'no')
 "'") | ('"' ('yes' | 'no') '"')) [VC:
Standalone
 Document Declaration]

[33] LanguageID ::= Langcode ('-' Subcode)*
[34] Langcode ::= ISO639Code | IanaCode | UserCode
[35] ISO639Code ::= ([a-z] | [A-Z]) ([a-z] | [A-Z])
[36] IanaCode ::= ('i' | 'I') '-' ([a-z] | [A-Z])+
[37] UserCode ::= ('x' | 'X') '-' ([a-z] | [A-Z])+
[38] Subcode ::= ([a-z] | [A-Z])+

[39] element ::= EmptyElemTag
 | STag content ETag[WFC: Element Type Match]
 [VC: Element Valid]

[40] STag ::= '<' Name (S Attribute)* S? '>'[WFC:
Unique
 Att Spec]
[41] Attribute ::= Name Eq AttValue[VC: Attribute
Value
 Type]

 [WFC: No External Entity References]
 [WFC: No < in Attribute Values]
[42] ETag ::= '</' Name S? '>'

[43] content ::= (element | CharData | Reference |
CDSect
 | PI | Comment)*

[44] EmptyElemTag ::= '<' Name (S Attribute)* S?
'/>'[
 WFC: Unique Att Spec]

[45] elementdecl ::= '<!ELEMENT' S Name S contentspec
S?
 '>'[VC: Unique Element Type Declaration]
[46] contentspec ::= 'EMPTY' | 'ANY' | Mixed |
children

[47] children ::= (choice | seq) ('?' | '*' | '+')?
[48] cp ::= (Name | choice | seq) ('?' | '*' | '+')?
[49] choice ::= '(' S? cp (S? '|' S? cp)* S? ')'[

VC:
 Proper Group/PE Nesting]
[50] seq ::= '(' S? cp (S? ',' S? cp)* S? ')'[VC:
 Proper Group/PE Nesting]

[51] Mixed ::= '(' S? '#PCDATA' (S? '|' S? Name)* S?
')*'

 | '(' S? '#PCDATA' S? ')' [VC: Proper
Group/PE Nesting]
 [VC: No Duplicate Types]

[52] AttlistDecl ::= '<!ATTLIST' S Name AttDef* S?
'>'

[53] AttDef ::= S Name S AttType S DefaultDecl
[54] AttType ::= StringType | TokenizedType |
 EnumeratedType
[55] StringType ::= 'CDATA'
[56] TokenizedType ::= 'ID'[VC: ID]
 [VC: One ID per Element Type]
 [VC: ID Attribute Default]
 | 'IDREF'[VC: IDREF]
 | 'IDREFS'[VC: IDREF]
 | 'ENTITY'[VC: Entity Name]
 | 'ENTITIES'[VC: Entity Name]
 | 'NMTOKEN'[VC: Name Token]
 | 'NMTOKENS'[VC: Name Token]

[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= 'NOTATION' S '(' S? Name (S?
'|' S?
 Name)* S? ')' [VC: Notation Attributes]
[59] Enumeration ::= '(' S? Nmtoken (S? '|' S?
Nmtoken)*
 S? ')'[VC: Enumeration]

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED'
 | (('#FIXED' S)? AttValue)[VC: Required
Attribute]
 [VC: Attribute Default Legal]
 [WFC: No < in Attribute Values]
 [VC: Fixed Attribute Default]

[61] conditionalSect ::= includeSect | ignoreSect
[62] includeSect ::= '<![' S? 'INCLUDE' S? '['
 extSubsetDecl ']]>'
[63] ignoreSect ::= '<![' S? 'IGNORE' S? '['
 ignoreSectContents* ']]>'
[64] ignoreSectContents ::= Ignore ('<!['

 ignoreSectContents ']]>' Ignore)*
[65] Ignore ::= Char* - (Char* ('<![' | ']]>') Char*)

[66] CharRef ::= '&#' [0-9]+ ';'
 | '&#x' [0-9a-fA-F]+ ';'[WFC: Legal Character
]

[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= '&' Name ';'[WFC: Entity Declared
]

 [VC: Entity Declared]
 [WFC: Parsed Entity]
 [WFC: No Recursion]
[69] PEReference ::= '%' Name ';'[VC: Entity Declared]
 [WFC: No Recursion]
 [WFC: In DTD]

[70] EntityDecl ::= GEDecl | PEDecl
[71] GEDecl ::= '<!ENTITY' S Name S EntityDef S? '>'
[72] PEDecl ::= '<!ENTITY' S '%' S Name S PEDef S?
'>'
[73] EntityDef ::= EntityValue | (ExternalID
NDataDecl?)
[74] PEDef ::= EntityValue | ExternalID

[75] ExternalID ::= 'SYSTEM' S SystemLiteral
 | 'PUBLIC' S PubidLiteral S SystemLiteral
[76] NDataDecl ::= S 'NDATA' S Name[VC: Notation
 Declared]

[77] TextDecl ::= '<?xml' VersionInfo? EncodingDecl
S?
 '?>'

[78] extParsedEnt ::= TextDecl? content
[79] extPE ::= TextDecl? extSubsetDecl

[80] EncodingDecl ::= S 'encoding' Eq ('"' EncName
'"' |
 "'" EncName "'")
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | '-')*/*
 Encoding name contains only Latin characters
*/
[82] NotationDecl ::= '<!NOTATION' S Name S
(ExternalID |
 PublicID) S? '>'
[83] PublicID ::= 'PUBLIC' S PubidLiteral

[84] Letter ::= BaseChar | Ideographic
[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] |
 [#x00C0-#x00D6] | [#x00D8-#x00F6] |
[#x00F8-#x00FF] |
 [#x0100-#x0131] | [#x0134-#x013E] |
[#x0141-#x0148] |
 [#x014A-#x017E] | [#x0180-#x01C3] |
[#x01CD-#x01F0] |
 [#x01F4-#x01F5] | [#x01FA-#x0217] |
[#x0250-#x02A8] |
 [#x02BB-#x02C1] | #x0386 | [#x0388-#x038A] |
#x038C |
 [#x038E-#x03A1] | [#x03A3-#x03CE] |
[#x03D0-#x03D6] |
 #x03DA | #x03DC | #x03DE | #x03E0 |
[#x03E2-#x03F3] |
 [#x0401-#x040C] | [#x040E-#x044F] |
[#x0451-#x045C] |
 [#x045E-#x0481] | [#x0490-#x04C4] |
[#x04C7-#x04C8] |
 [#x04CB-#x04CC] | [#x04D0-#x04EB] |
[#x04EE-#x04F5] |
 [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 |
 [#x0561-#x0586] | [#x05D0-#x05EA] |
[#x05F0-#x05F2] |
 [#x0621-#x063A] | [#x0641-#x064A] |
[#x0671-#x06B7] |
 [#x06BA-#x06BE] | [#x06C0-#x06CE] |
[#x06D0-#x06D3] |
 #x06D5 | [#x06E5-#x06E6] | [#x0905-#x0939] |
#x093D |
 [#x0958-#x0961] | [#x0985-#x098C] |
[#x098F-#x0990] |
 [#x0993-#x09A8] | [#x09AA-#x09B0] | #x09B2 |
 [#x09B6-#x09B9] | [#x09DC-#x09DD] |
[#x09DF-#x09E1] |
 [#x09F0-#x09F1] | [#x0A05-#x0A0A] |
[#x0A0F-#x0A10] |
 [#x0A13-#x0A28] | [#x0A2A-#x0A30] |
[#x0A32-#x0A33] |
 [#x0A35-#x0A36] | [#x0A38-#x0A39] |
[#x0A59-#x0A5C] |
 #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B] |
#x0A8D |
 [#x0A8F-#x0A91] | [#x0A93-#x0AA8] |
[#x0AAA-#x0AB0] |
 [#x0AB2-#x0AB3] | [#x0AB5-#x0AB9] |
#x0ABD | #x0AE0 |
 [#x0B05-#x0B0C] | [#x0B0F-#x0B10] |
[#x0B13-#x0B28] |

 [#x0B2A-#x0B30] | [#x0B32-#x0B33] |
[#x0B36-#x0B39] |
 #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61] |
 [#x0B85-#x0B8A] | [#x0B8E-#x0B90] |
[#x0B92-#x0B95] |
 [#x0B99-#x0B9A] | #x0B9C | [#x0B9E-#x0B9F] |
 [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] |
[#x0BAE-#x0BB5] |
 [#x0BB7-#x0BB9] | [#x0C05-#x0C0C] |
[#x0C0E-#x0C10] |
 [#x0C12-#x0C28] | [#x0C2A-#x0C33] |
[#x0C35-#x0C39] |
 [#x0C60-#x0C61] | [#x0C85-#x0C8C] |
[#x0C8E-#x0C90] |
 [#x0C92-#x0CA8] | [#x0CAA-#x0CB3] |
[#x0CB5-#x0CB9] |
 #x0CDE | [#x0CE0-#x0CE1] | [#x0D05-#x0D0C] |
 [#x0D0E-#x0D10] | [#x0D12-#x0D28] |
[#x0D2A-#x0D39] |
 [#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30 |
 [#x0E32-#x0E33] | [#x0E40-#x0E45] |
[#x0E81-#x0E82] |
 #x0E84 | [#x0E87-#x0E88] | #x0E8A | #x0E8D |
 [#x0E94-#x0E97] | [#x0E99-#x0E9F] |
[#x0EA1-#x0EA3] |
 #x0EA5 | #x0EA7 | [#x0EAA-#x0EAB] |
[#x0EAD-#x0EAE] |
 #x0EB0 | [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4] |
 [#x0F40-#x0F47] | [#x0F49-#x0F69] |
[#x10A0-#x10C5] |
 [#x10D0-#x10F6] | #x1100 | [#x1102-#x1103] |
 [#x1105-#x1107] | #x1109 | [#x110B-#x110C] |
 [#x110E-#x1112] | #x113C | #x113E | #x1140 |
#x114C |
 #x114E | #x1150 | [#x1154-#x1155] | #x1159 |
 [#x115F-#x1161] | #x1163 | #x1165 | #x1167 |
#x1169 |
 [#x116D-#x116E] | [#x1172-#x1173] | #x1175 |
#x119E |
 #x11A8 | #x11AB | [#x11AE-#x11AF] |
[#x11B7-#x11B8] |
 #x11BA | [#x11BC-#x11C2] | #x11EB | #x11F0 |
#x11F9 |
 [#x1E00-#x1E9B] | [#x1EA0-#x1EF9] |
[#x1F00-#x1F15] |
 [#x1F18-#x1F1D] | [#x1F20-#x1F45] |
[#x1F48-#x1F4D] |
 [#x1F50-#x1F57] | #x1F59 | #x1F5B | #x1F5D |
 [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] |
[#x1FB6-#x1FBC] |

 #x1FBE | [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] |
 [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB] |
[#x1FE0-#x1FEC] |
 [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126 |
 [#x212A-#x212B] | #x212E | [#x2180-#x2182] |
 [#x3041-#x3094] | [#x30A1-#x30FA] |
[#x3105-#x312C] |
 [#xAC00-#xD7A3]
[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 |
 [#x3021-#x3029]
[87] CombiningChar ::= [#x0300-#x0345] |
[#x0360-#x0361]
 | [#x0483-#x0486] | [#x0591-#x05A1] |
[#x05A3-#x05B9] |
 [#x05BB-#x05BD] | #x05BF | [#x05C1-#x05C2] |
#x05C4 |
 [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] |
 [#x06DD-#x06DF] | [#x06E0-#x06E4] |
[#x06E7-#x06E8] |
 [#x06EA-#x06ED] | [#x0901-#x0903] | #x093C |
 [#x093E-#x094C] | #x094D | [#x0951-#x0954] |
 [#x0962-#x0963] | [#x0981-#x0983] | #x09BC |
#x09BE |
 #x09BF | [#x09C0-#x09C4] | [#x09C7-#x09C8] |
 [#x09CB-#x09CD] | #x09D7 | [#x09E2-#x09E3] |
#x0A02 |
 #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] |
 [#x0A47-#x0A48] | [#x0A4B-#x0A4D] |
[#x0A70-#x0A71] |
 [#x0A81-#x0A83] | #x0ABC | [#x0ABE-#x0AC5] |
 [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD] |
[#x0B01-#x0B03] |
 #x0B3C | [#x0B3E-#x0B43] | [#x0B47-#x0B48] |
 [#x0B4B-#x0B4D] | [#x0B56-#x0B57] |
[#x0B82-#x0B83] |
 [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] |
 #x0BD7 | [#x0C01-#x0C03] | [#x0C3E-#x0C44] |
 [#x0C46-#x0C48] | [#x0C4A-#x0C4D] |
[#x0C55-#x0C56] |
 [#x0C82-#x0C83] | [#x0CBE-#x0CC4] |
[#x0CC6-#x0CC8] |
 [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6] |
[#x0D02-#x0D03] |
 [#x0D3E-#x0D43] | [#x0D46-#x0D48] |
[#x0D4A-#x0D4D] |
 #x0D57 | #x0E31 | [#x0E34-#x0E3A] |
[#x0E47-#x0E4E] |
 #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] |
 [#x0EC8-#x0ECD] | [#x0F18-#x0F19] | #x0F35 |
#x0F37 |

 #x0F39 | #x0F3E | #x0F3F | [#x0F71-#x0F84] |
 [#x0F86-#x0F8B] | [#x0F90-#x0F95] | #x0F97 |
 [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9 |
 [#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] | #x3099 |
#x309A
[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] |
 [#x06F0-#x06F9] | [#x0966-#x096F] |
[#x09E6-#x09EF] |
 [#x0A66-#x0A6F] | [#x0AE6-#x0AEF] |
[#x0B66-#x0B6F] |
 [#x0BE7-#x0BEF] | [#x0C66-#x0C6F] |
[#x0CE6-#x0CEF] |
 [#x0D66-#x0D6F] | [#x0E50-#x0E59] |
[#x0ED0-#x0ED9] |
 [#x0F20-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 |
 #x0640 | #x0E46 | #x0EC6 | #x3005 |
[#x3031-#x3035] |
 [#x309D-#x309E] | [#x30FC-#x30FE]

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch18/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Appendix D
Constraints
There are two types of constraints: well-formedness and validity. They are
consequences for not following the production rules that are used to check for
XML encoding errors by a conforming XML processor. This is a processor
that follows or adheres or conformsA to the well-formedness constraints in the
Extensible Markup Language (XML) 1.0 W3 Recommendation (10 February
1998).

A well-formedness constraint is a rule that when not adhered to produces a
fatal error and a conforming XML processor must report to the application.
The processor terminates and gives a message. The processor cannot continue
to pass character data and information about the document’s logical structure
to the application in the normal way.

A validity constraint is rule that when not adhered to produces an error where
the results are unpredictable. A conforming processor may detect and report an
error and may recover from it. Validating XML processors must report the
errors at user option.

The constraints are grouped by subject. Any production rule that applies is
given at the end of each constraint.

Note: For ease of readability, what is given below in many cases is synopses
of the rules.

Well-Formedness Constraints

Element Type Match

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

The Name in an element’s end-tag must match the element type in the
start-tag. (Rule 39)

Entity Declared

In a document without a DTD, a document with only an internal DTD subset
which contains no parameter entity references, or a document with
“standalone='yes'”, the Name given in the entity reference must match that in
an entity declaration. Exception: Well-formed documents need not declare:
amp, lt, gt, apos, or quot. (Rule 68)

In DTD

Parameter-entity references may only appear in the DTD. (Rule 69)

Legal Character

Characters referred to using character references must match the production
for Char (Rule 2). If the character reference begins with “”, the digits and
letters up to the terminating ; provide a hexadecimal representation of the
character’s code point in ISO/IEC 10646. If it begins just with “”, the digits up
to the terminating ; provide a decimal representation. (Rule 66)

No External Entity References

An attribute value cannot contain entity references to external entities. (Rule
41)

No Recursion

A parsed entity must not contain a recursive reference to itself, either directly
or indirectly. (Rule 69)

No < in Attribute Values

The replacement text of a referenced entity in an attribute value (other than
“<”) must not contain a <. (Rules 41 and 60)

Parsed Entity

An entity reference must not contain the name of an unparsed entity. Unparsed
entities may be referred to only in attribute values declared to be of type
ENTITY or ENTITIES. (Rule 68)

PEs in Internal Subset

Parameter-entity references must be outside markup declarations. (This does
not apply to references that occur in external parameter entities or to the
external subset.) (Rule 29)

Unique Att Spec

An attribute name can appear once in the same start-tag or empty-element tag.
(Rules 40 and 44)

Validity Constraints

Attribute Default Legal

The declared default value must meet the lexical constraints of the declared
attribute type (Rules 54 and 60)

Attribute Value Type

The attribute must have been declared. The value must be of the type declared
for it. (Rule 41)

Element Valid

An element is valid if there is a declaration matching elementdecl where the
Name matches the element type, and one of the following holds:

• The declaration matches EMPTY and the element has no content.

• The declaration matches children (Rule 47) and the child element
sequence belongs to the content model language, with optional white
space (Rule 3) between each child element.

• The declaration matches MIXED (Rule 51)and the content consists of
character data (Rule 14) and child elements whose types match names in
the content model.

• The declaration matches ANY, and the types of any child elements
have been declared. (Rule 39)

Entity Declared

In a document with an external subset or external parameter entities with
“standalone='no'”, the Name given in the entity reference must match that in
an entity declaration. For interoperability, valid documents should declare the
entities amp, lt, gt, apos, and quot in the form specified in “4.6 Predefined
Entities” of the Recommendation. (Rules 68 and 69)

Entity Name

Values of types ENTITY and ENTITIES must match the Name and Names
production (Rules 5 and 6) respectively. Each Name must match the name of
an unparsed entity declared in the DTD. (Rule 56)

Enumeration

Values of this type must match one of the Nmtoken tokens in the declaration.
For interoperability, the same Nmtoken should not occur more than once in the
enumerated attribute types of a single element type. (Rule 59)

Fixed Attribute Default

When the default is #FIXED, the instances of that attribute must match the
default value. (Rule 60)

ID

Values of type ID must match the Name production (Rule 5). ID values must
uniquely identify the elements that bear them. (Rule 56)

One ID per Element Type

An element type must have only one ID attribute specified. (Rule 56)

ID Attribute Default

An ID attribute must have a declared default of #IMPLIED or #REQUIRED.
(Rule 56)

IDREF

Values of types IDREF and IDREFS must match the Name and Names
production (Rules 5 and 6) respectively. IDEF values must match the value of
some ID attributes. (Rule 56)

Name Token

Values of types NMTOKEN and NMTOKENS must match the Nmtoken and
NmTokens production. (Rules 7, 8, and 56)

No Duplicate Types

The same name must not appear more than once in a single mixed-content
declaration. (Rule 51)

Notation Attributes

Values of this type must match one of the notation names included in the
declaration; all notation names in the declaration must be declared. (Rule 58)

Notation Declared

The Name must match the declared name of a notation (Rule 82).

The SystemLiteral is called the entity’s system identifier. The PubidLiteral is
an external identifier, public. (Rule 76)

Proper Declaration/PE Nesting

Parameter-entity replacement text must be properly nested with markup
declarations. If either the first character or the last character of a markup
declaration is contained in the replacement text for a parameter-entity
reference, both must be contained in the same replacement text. (Rule 29)

Proper Group/PE Nesting

Parameter-entity replacement text must be properly nested within parentheses.

For interoperability, if a parameter-entity reference appears in a choice, seq, or
Mixed construct, its replacement text should not be empty. A connector (| or ,)
should not be the first nor last non-blank character of the replacement text.
(Rules 49, 50, and 51)

Required Attribute

When the default declaration is #REQUIRED, the attribute must be specified
for all elements of the type in the attribute-list declaration. (Rules 52 and 60)

Root Element Type

The Name in the document type declaration must match the element type of
the root element. (Rule 29)

Standalone Document Declaration

It must equal “no” if any external markup declarations contain a declaration of:

• An attribute with default values and the attribute elements appear
without specifications for these attribute values.

• An entity (other than amp, lt, gt, apos, or quot) is referenced in the
document.

• An attribute with values subject to normalization appears in the
document with a value that can change as a result of normalization.

• An element type with element content and white space occurs directly
within any instance of the element type. (Rule 32)

Unique Element Type Declaration

No element type may be declared more than once. (Rule 45)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch19/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Appendix E
XML Web Sites
New XML sites are being created every day. This selection is one based on mid-1999. The key three
are the big two and Robin Cover’s site, listed under individual Web sites.

Big Two Web Sites

World Wide Web Consortium is where the latest as well as the earlier versions of the XML
Recommendations or Standards are located. This is the technical source for all XML.

http://www.w3.org/XML/

Note: This book uses XML Recommendation 1.0 (10 February 1998) found at:

http://www.w3.org/TR/1998/REC-xml-19980210

The Recommendation uses the Extended Backus-Naur Form (EBNF) notation for the XML formal
grammar. To find out more information on EBNF, go to:

http://www.xml.com/xml/pub/98/10/guide5.html

The XML FAQ (Frequently Asked Questions) site is maintained by the W3C’s XML Working Group.
This is a quick way to get at some of the key issues or concerns with XML. It is found at:

http://www.ucc.ie/xml/

Web Sites of Organizations and Companies

See ArborText’s site to find out about the ADEPT XML editor and other tools. ArborText is a pioneer
in this area for SGML and XML.

http://www.arbortext.com

To learn more about document management systems and XML publishing, visit the site that belongs to
Veo Systems, Inc.

http://www.veosystems.com

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();
http://www.w3.org/xml/
http://www.w3.org/tr/1998/rec-xml-19980210
http://www.xml.com/xml/pub/98/10/guide5.html
http://www.ucc.ie/xml/
http://www.arbortext.com/
http://www.veosystems.com/

One of the areas in which XML is being used is push technology. For more details on this
development area, see DataChannel’s site:

http://www.datachannel.com

Some librarians and computer specialists have undertaken a project, Dublin Core, to devise a
searchable language oriented towards documents.

http://www.uk.oln.ac.uk/metadata/resources/dc

To get more information about XML conferences, courses, and publications in general, the Graphics
Communication Association’s site is the place to go:

http://www.gca.org/conf/whatxml/files/whatisxml.htm

Microsoft has its own MSXML and parser. To find out the latest on Microsoft’s view of XML, see its
home page:

http://msdn.microsoft.com

To learn more about Virtual database (VDB) technology and how XML is involved, see Junglee’s site:

http://www.junglee.com/tech/index.html

Note: Microsoft frequently revises its pages. If this URL does not work, just use the top page. Microsoft
has many types of pages on XML; for example, to find out about the Extensible Stylesheet Language
(XSL), do a search on XSL at

http://msdn.microsoft.com

The Platform for Internet Content Selection (PICS) is a project concerned with Web site content to
control over user access:

http://www.w3.org/PICS/

Poet Software has developed an object-oriented database based on the principles of the Common
Object Request Broker Association (CORBA) model as discussed in this book. The company is also
involved in XML technology. The site includes white papers.

http://www.poet.com

For a tutorial on XML, see Architag University’s site:

http://www.sgmlu.com/

SoftQuad has developed Panorama Publisher and Panorama Viewer for multiple platforms. These
tools support XML.

http://www.softquad.com

The Unicode Consortium’s site has details on character sets, the Unicode Standard (Unicode 2.1).

http://charts.unicode.org/

A number of XML dialects have been developed. One of them is Chemical Markup Language (CML).
For details on CML, check the site of Venus Internet of London, England.

http://www.venus.co.uk/

To look at information in the electronic commerce area, a site to go to is the one that belongs to
webMethods. The company has an XML toolkit for data accessing, data handling, and data securing.

http://www.webmethods.com/

http://www.datachannel.com/
http://www.uk.oln.ac.uk/metadata/resources/dc
http://www.gca.org/conf/whatxml/files/whatisxml.htm
http://msdn.microsoft.com/
http://www.junglee.com/tech/index.html
http://msdn.microsoft.com/
http://www.w3.org/pics/
http://www.poet.com/
http://www.sgmlu.com/
http://www.softquad.com/
http://charts.unicode.org/
http://www.venus.co.uk/
http://www.webmethods.com/

Note: webMethods has information also on Web Interface Definition Language (WIDL), which is
important to object-oriented development. For a free download of the toolkit, go to:

http://www.webmethods.com/products/QueryView

The World Wide Web Consortium looks at a variety of, and perhaps all, forms of Web technology.
One area is based on the idea that a Web resource can be represented as an object. This technology is
Resource Description Framework (RDF). For details on RDF’s grammar, tags, and attributes, see:

http://www.w3.org/TR/PR-rdf-syntax/

Yahoo has collected together a set of XML development links.

http://www.yahoo.com/computers_and_Internet/Information_and_Documentation/Data_Formats/XML

Web Sites of Individuals

Tim Bray is a founding father of XML. He is one of the co-authors of XML Recommendation 1.0. He
is also a programmer. He developed Lark, a Java-based XML processor, to validate the XML design
requirements.

http://www.textuality.com/Lark/

James Clark is dedicated to the development of SGML and XML tools. Most of his work is free.

http://www.jclark.com/

Robin Cover, an expert on SGML and XML, maintains the most extensive resource site on these two
areas by an individual. Besides having source materials, the site has many links.

http://www.oasis-open.org/cover/xml.html

Because XML is a subset of SGML, there may be reasons for understanding this markup language
better. Look at Dianne Kennedy’s SGML Resource Center:

http:// www.mcs.net/<dken/xml.htm

Other Sites Referenced in the Book

http://www.sun.com

http://www.w3.org/Style/XSL

http://www.w3.org/DOM

http://www.w3.org/TR

http://www.omg.org/corba/corbaiiop.htm

http://java.sun.com/docs/books/jls

http://www.ecma.ch/stand/ECMA-262.htm

http://www.rational.com/uml/index.jhtml

http://transactnet.com/products/toolkit/userguide/refman/widl/overview.html

Previous Table of Contents Next

http://www.webmethods.com/products/queryview
http://www.w3.org/tr/pr-rdf-syntax/
http://www.yahoo.com/computers_and_internet/information_and_documentation/data_formats/xml
http://www.textuality.com/lark/
http://www.jclark.com/
http://www.oasis-open.org/cover/xml.html
http:// www.mcs.net/<dken/xml.htm
http://www.sun.com/
http://www.w3.org/style/xsl
http://www.w3.org/dom
http://www.w3.org/tr
http://www.omg.org/corba/corbaiiop.htm
http://java.sun.com/docs/books/jls
http://www.ecma.ch/stand/ecma-262.htm
http://www.rational.com/uml/index.jhtml
http://transactnet.com/products/toolkit/userguide/refman/widl/overview.html

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch20/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Previous Table of Contents Next

Appendix F
XML Markup Examples
The first declaration is the XML declaration (Rules 23-26). It is to be used only if the
document is well-formed, that is, the document adheres to the well-formedness constraints
given in XML Recommendation 1.0. See Appendix D, “Constraints.”

<?xml version="1.0"?>

The second declaration is the document type declaration (Rule 28), which can be followed by
markup declaration(s) (Rule 29) and element declarations (Rule 45).

<!DOCTYPE Database [
<!ELEMENT Database (Author)* >
<!ELEMENT Author (Name, Title, pubdate, pages, ISBN, price)
>
<!ELEMENT Name (LastName, FirstName) >
<!ELEMENT LastName (#PCDATA) >
<!ELEMENT FirstName (#PCDATA) >
<!ELEMENT Title (#PCDATA) >
<!ELEMENT pubdata (#PCDATA) >
<!ELEMENT pages (#PCDATA) >
<!ELEMENT ISBN (#PCDATA) >
<!ELEMENT price (#PCDATA) >
]>
<Database>
<!-- This is where the data goes (Comment, Rule 15) -->
</Database>

Example of nesting:

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

 <para1> First level paragraph
 <para2> Second level paragraph</para2>
 </para1>

 <para1> </para1> cannot be a content of <para2> </para2>.

Example of a comment:

 <!-- Any comment goes here. -->

An example of a CDATA section where <greeting> and </greeting> are recognized as
character data rather than as markup.

 <![CDATA[<greeting>Hello from the Big D!</greeting>]]>

Example of an external declaration:

 <?xml version="1.0"?>
 <!DOCTYPE greeting SYSTEM "hello.dtd"
 <greeting>Hello from the Big D</greeting>

The system identifier hello.dtd gives the URI of a DTD for the document.

Note: URI as used here is defined by Berners-Lee et al., a work in progress expected to
update IETF RFC1738 and IETF RFC1808.

Example of an internal declaration:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE greeting [
 <!ELEMENT greeting (#PCDATA)>
]>
 <greeting>Hello from the Big D</greeting>

Example of a standalone document declaration:

 <?xml version="1.0" standalone="yes"?>

Example of an xml:space declaration:

 <!ATTLIST poem xml:space (default|preserve) 'preserve'>

Example of a simple xml:lang declaration:

 xml:lang NMTOKEN #IMPLIED

Example of an xml:lang declaration with default values:

 <!ATTLIST book xml:lang NMTOKEN 'grc'>

 <!ATTLIST gloss xml:lang NMTOKEN 'de'>
 <!ATTLIST note xml:lang NMTOKEN 'en'>

Example of a start-tag and end-tag:

 <termdef id="dt-feline" term="cat">
 </termdef>

Examples of element type declarations:

 <!ELEMENT br EMPTY>

 <!ELEMENT container ANY>

 <!ELEMENT p (#PCDATA|emph)* >

 <!ELEMENT %name.para; %content.para; >

Examples of element-content models:

 <!ELEMENT div1 (head, (p | list | note)*, div2*)>

 <!ELEMENT spec (front, body, back?)>

 <!ELEMENT dictionary-body (%div.mix; | %dict.mix;)*>

Examples of mixed-content declarations:

 <!ELEMENT p (#PCDATA|a|ul|b|i|em)*>

 <!ELEMENT p (#PCDATA | %font; | %phrase; | %special; |
 %form;)* >

 <!ELEMENT b (#PCDATA)>

Examples of attribute-list declarations:

 <!ATTLIST termdef
 id ID #REQUIRED
 name CDATA #IMPLIED>
 <!ATTLIST list
 type (bullets|ordered|glossary) "ordered">
 <!ATTLIST form
 method CDATA #FIXED "POST">

Example of conditional sections:

 <!ENTITY %draft 'INCLUDE'>
 <!ENTITY %final 'IGNORE'>

 <![%draft;[
 <!ELEMENT book (comments*, title, body, supplements?)>
]]>
 <![%final;[
 <!ELEMENT book (title, body, supplements?)>
]]>

Example of character and entity references:

 Type <key>less-than</key> (<) to save options.
 This document was prepared on &docdate; and is
 classified &security-level;.

Example of parameter-entity reference:

 <!-- declare the parameter entity "ISOLat2"... -->
 <!ENTITY %ISOLat2
 SYSTEM "hhtp://www.xml.com/iso/isolat2-xml.entities">
 <!-- … now reference it -->
 %ISOLat2

Example of an internal entity declaration:

 <!ENTITY Pub-Status "This is a pre-release of the
 specification">

Examples of external entity declarations:

 <!ENTITY galley
 SYSTEM "http://www.myplace.com/template/Galley.xml">
 <!ENTITY galley
 PUBLIC "-//Myplace//TEXT Standard galley
 template//EN"
 "http://www.myplace.com/template/Galley.xml">
 <!ENTITY galley
 SYSTEM "../grafix/Galley.gif"
 NDATA gif>

Examples of encoding declarations:

 <?xml encoding='UTF-8'?>
 <?xml encoding='ISO-10646-UCS-2'?>
 <?xml encoding='ISO-8859-1'?>
 <?xml encoding="EUC-JP"?>

Example declarations:

 <!ENTITY lt "&#60;">
 <!ENTITY gt ">">
 <!ENTITY amp "&&">

 <!ENTITY apos "'">
 <!ENTITY quot """>

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ch21/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

CORBA Developer's Guide with XML
(Publisher: Wordware Publishing, Inc.)
Author(s): George Doss
ISBN: 1556226683
Publication Date: 06/01/99

Search this book:

Table of Contents

Index
#FIXED, 29

#IMPLIED, 29

#REQUIRED, 29

A
abstraction, 158

Accounting Facility, 236-237

ancestor, 70

application access, 204

application audit, 204

Application Development Facility, 237-239

Archive Service, 130

atomicity, 138

AttDef, 26

AttlistDecl, 26

Attr Interface (DOM), 66

Attribute, 21

attribute type, 26

AttType, 26

B
Backup/Restore Service, 130

http://www.itknowledge.com/
http://www.itknowledge.com/pick-account.html
http://www.itknowledge.com/PSUser/usrreg.htm?AdminAction=InitAdd&Locale=en&URI=/
http://www.itknowledge.com/PSUser/psuserauth.htm?cmd=login&URI=/
http://www.itknowledge.com/search/
http://www.itknowledge.com/PSUser/EWIPOMain.html
http://www.itknowledge.com/faq/faq.html
http://www.itknowledge.com/sitemap.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/
http://www.itknowledge.com/search/search-tips.html
javascript:bookMarkit();

C
CDATASection Interface (DOM), 67

Change Management Service, 130

Char, 6

character reference, 31

CharacterData Interface (DOM), 67

CharData, 6

CharRef, 31

child, 70

children, 24

choice, 24

client invocation access, 204

client invocation audit, 204

client secure invocation, 204

Collections Service, 197-199

Comment, 19

Comment Interface (DOM), 67

Concurrency Control Service, 128, 130, 132, 186-187

conditional section, 30, 49

conditionalSect, 30

consistent, 138

construction, 205

content, 22

content model, 70

contentspec, 23

context, 70

cooked model, 70

CORBA domain definition, 120-121

CORBA objects definition, 118

CORBA ORB, see ORB

CORBA security model, 207

CORBA Security Service definition 122-123

CORBAfacilities definition, 123-124

CORBAservices definition, 121-122

CORBAservices list, 128-129

CORBAservices support, 154

cp, 24

cursor, 71

D

Data Interchange Service, 130

data model, 71

DCAM obstacles, 80

DefaultDecl, 28

delegation, 204 206

descendant, 71

document, 8, 19, 48

Document Interface (DOM), 68

document type definition (DTD), 44, 46

DocumentFragment Interface (DOM), 68

DocumentTypeInterface (DOM), 68

DOM, 59-78

DOM, definition, 60-61

DOM interface hierarchy, 65

DSSSL, 13

durability, 138

E
EBNF, 5-9

element, 20

element (DOM), 71

element attribute, 25

element content, 23

Element Interface (DOM), 68

element type, 20

element type declaration, 20

elementdecl, 23

empty element, 22

EmptyElemTag, 22

EncName, 36

encoding, 36

EncodingDecl, 36

entity, 49

Entity Interface (DOM), 69

entity reference, 32

EntityDecl, 33, 35

EntityRef, 32

EntityReference Interface (DOM), 69

EnumeratedType, 27

Enumeration, 27

equivalence, 71

ETag, 22

Event Service, 128, 130-131, 183-184

Extended Backus-Naus Form, see EBNF

external entity, 34

ExternalID, 34

Externalization Service, 128, 130-131, 188

extParsedEnt, 18

extPE, 79

F
flexibility, 159

G
GEDecl, 33

I
Ignore, 30

ignoreSect, 30

ignoreSectContents, 30

Imagery Facility, 231-232

Implementation Repository Service, 130

includeSect, 30

Information Management Facility, 144-147, 223-226

Information Superhighways Facility, 232-233

inheritance, 71

initial structure model, 71

interface, 72

internal entity, 33

Internationalization Service, 130

interoperability 159

isolation, 138

L
language binding, 72

Licensing Service, 128, 130, 132, 193

Life Cycle Service, 128, 130, 132, 186

Logging Service, 130

logical structure, 20, 47

M
Manufacturing Facility 233-234

Mapping Facility, 239

method, 72

Mixed, 25

mixed content, 24

model, 72

model definition, 79

modularity, 159

N
NamedNodeMap Interface (DOM), 65

Names, 7

Naming Service, 128, 130, 132, 181-182

NDataDecl, 34

Node Interface (DOM), 66

non-repudiation, 205

notation, 49

notation declaration, 35

Notation Interface (DOM), 69

NotationDecl, 82

NotationType, 27

O
OAGI Facility, 236

Object Collections Service, 128, 130, 133

object model, 72

Object Request Broker, see ORB

Object Trader Service, 128, 130, 134

ORB, 119-120

P
parent, 72

parsed entity, 35

PEDecl, 35

PEDef, 35

PEReference, 32

persistent, 203

Persistent Object Service, 128, 130, 135, 184-185

physical structure definition, 31, 47

PITarget, 8

processing instruction, 49

ProcessingInstruction Interface (DOM), 69

processor constraints, 16

processor guidelines, 36-41

processor role, 56

production rule definition, 17

program design principles 157-158

project management practices, 160-162

Property Service, 129-130, 135, 193-194

PublicLiteral, 34

Q
Query Service, 129-130, 136, 191-192

R
reconfigurability, 159

Recovery Service, 130

Relationship Service, 129-130, 136, 189 -190

Replication Service, 130

reusability, 159

root node, 72

S
S (white space), 8

scalability, 160

security policy, 204

Security Service, 129-130, 137, 196, 201-207

seq, 24

sibling, 72

simplicity, 160

Simulation Facility, 235-236

stability, 160

STag, 21

Startup Service, 130

string comparison, 72

StringType, 26

System Management Facility, 147-148, 226-228

SystemLiteral, 7, 34

T
tag valid document, 72

target invocation access, 204

target invocation audit, 204

target secure invocation, 204

Task Management Facility 148-150, 229-231

text declaration, 35

Text Interface (DOM), 67

TextDecl, 35

Time Service, 129-130, 137, 195

TokenizedType, 26

Trader Service, 196-197

Transaction Service, 129-130, 137, 190-191

type valid document, 72

U
uncooked model, 72

unparsed entity treatment, 37

User Interface Facility, 143-144, 221-223

V
valid document, 19

validity constraint, 16

vc, 9

Vertical Facilities, 150-154

W
well-formed document, 18, 72

well-formedness constraint, 16

wfc, 9

WIDL, 90-110

WIDL definition, 90

X
XML and HTML differences, 11-12

XML and SGML differences, 11

XML background 4

XML benefits, 10

XML design policy, 15-41

XML productions

AttDef, 26

AttlistDecl, 26

Attribute, 21

AttType, 26

Char, 6

CharData, 6

CharRef, 31

children, 24

choice, 24

Comment, 19

conditionalSect, 30

contentspec, 23

cp, 24

DefaultDecl, 28

document, 8, 19, 48

element, 20

elementdecl, 23

EmptyElemTag, 22

EncName, 36

EncodingDecl, 36

EntityDecl, 33, 35

EntityRef, 32

EnumeratedType, 27

Enumeration, 27

ETag, 22

ExternalID, 34

extParsedEnt, 18

extPE, 79

GEDecl, 33

Ignore, 30

ignoreSect, 30

ignoreSectContents, 30

includeSect, 30

Mixed, 25

Names, 7

NDataDecl, 34

PEDecl, 35

PEDef, 35

PEReference, 32

PITarget, 8

PI, 49

PublidLiteral, 34

S (white space), 8

seq, 24

STag, 21

StringType, 26

SystemLiteral, 7, 34

TextDecl, 35

XML production rules, 259-267

rule 1, 8, 19, 48

rule 3, 8

rule 6, 7

rule 11, 7

rule 15, 19

rule 16, 20

rule 39, 20, 48

rule 40, 21

rule 41, 21, 48

rule 42, 22

rule 43, 22, 48

rule 44, 22, 48

rule 45, 23

rule 46, 23

rule 47, 24

rule 48, 24

rule 49, 24

rule 50, 24

rule 51, 25

rule 52, 26

rule 53, 26

rule 54, 26

rule 55, 26

rule 56, 26

rule 57, 27

rule 58, 27

rule 59, 27

rule 60, 28

rule 61, 30

rule 62, 30

rule 63, 30

rule 64, 30

rule 65, 30

rule 66, 31

rule 67, 32

rule 68, 32

rule 69, 32

rule 70, 33

rule 71, 33

rule 72, 34

rule 73, 34

rule 74, 35

rule 75, 34

rule 76, 34

rule 77, 35

rule 78, 18

rule 79, 18

rule 80, 36

rule 81, 36

rule 82, 35

rule 83, 36

XML Security Service DTD plan, 214-216

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

http://www.itknowledge.com/products.html
http://www.itknowledge.com/contactus.html
http://www.itknowledge.com/aboutus.html
http://www.earthweb.com/about_us/privacy.html
http://www.itmarketer.com/
http://www.itknowledge.com/
http://www.itknowledge.com/agreement.html
http://www.itknowledge.com/copyright.html
http://itnews.earthweb.com/
http://www.earthweb.com/about_us/privacy.html
http://www.itknowledge.com/reference/standard/1556226683/ITKN1a2b3c4d5e6f7g8h9idefcon4.html

	MKDIABKNCEEBPOOFPMIJMOOGBFIBIFEI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	LKCDNLLDFMAHILMJEBCKGEMCPIGBFNHMEA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	DLPACDDEGEFKCDAKNJGHIBOPNPMFGCND:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	JKBKCDBEAGJDLMFKIDIAIIFMAHIJEGNILJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	OHLJPKOFMANAJCLBEGKGMJOJPEILDBNF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	FLNBLGCCKAGIDCMLGEEDIDEICMFMAHHKPA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	IAKGDEDJJACMEBDEFGDFOMNDFMFMEEIOOL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	DCOAFDABEKGGBBKEHNOLJFKDDBMIBHMA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	FAHGKONDJALABMJOFKFBAGIPJKFHBHLA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	FBOKANGMHNMBPEEJCEGCPCGJENDNNOKP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	BOHGNKAEDBIDMNKKJBGMNMHIJJELBOHH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	JDNHGGEGALEAGIPFIKIJBMAIDPAFJLHI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	NAKDIKFJBFLLOHBNCFPCIECPPGJNILAH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	DFJEGNBAFBGJFODILDHPCMEHPILPGKKJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	ADMFKKPHJPJIPOFFGFFADFFBMGHEFJBC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	IPCEIIIGKOIEJKIFJNMGIDDPPKCIANIP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	BDMEHBMFHAFNEBDCMPFDGLEBPDDHDIHP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	MAHDAMBENOJDLBPDKNBLFANHKOLOABEI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	MFIILACHIFEKGFLOIFGDGOCKBEINCPLB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	ONOIFFAGMALNOPKLAINBOLJGALJKMPNI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	IIIDJBDMMKBPCGMMICKMFGDDDLHCNEFK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	OCGHKEIGJIGAHJPHLACECCJHGIOKHAMF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	FMDAOKKKPKEMKFPIOPMOMADDBKJIKFBIPJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	KNNDJLEHLBMENIIPDPPAFMDAJPFILAOPPA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	EOMPJDIKNANFJNODCDOEFCKPBMGNGDJC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	FFJPIALGHEHKHBAIGHLMCKBDALFMDAKODO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	KNIOGLDDMJMLDKFMDAFDODFMDAJKKECAIPFG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	AMLAMCKLHMLGJAOGOCPKINANIKJHOAFI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	KMOPLHDFINJBHMHHJDKPPAFMFMLPLFIBHA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	EDMLAOACOOBOEJDJLGOLPHOHPHKFOCEP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	GGADCMLDFLFHKCGPHMEAMOHKHKCHLNEF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	CFANBBDJDOOFGHMJPEFJNOGAPELHMKMD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	NCBFNDIIGJFMDAHABFNAFINPFHOLKGGMAE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	ACACAOBDBPOGAMOEMJBNCMKNGJCCEBPB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	IIOPNFKGEALHPDLAELBPIOANKGPLEKLK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	IKFDJBHKDCMBBOPHKGMNDHDILDDMOJEK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	KLMNDJFLLFKCPKAOFLNJBJJNEHIBJMMD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	CGGNNDLFPOBKBMPJHCABJDIOOAMAEOLI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	PGHCHBFENFICDPIJKPOHFIIJPMCLOECC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	JCFOEMCMMEHGOKIGMABDPJEKGOPDLLKF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	NFNIHDCLCMBILPDBJGLIHNAFODLIOLIE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	MDOJJNPMCCMOPOKDEIHLCCDKBHKFCCPP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	KJNKEBIPDJEEIMKECIJHGMCLDIBCDNGL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	OHAIFOFHCMDLKKJCDNMOCEJNEICJBBCP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	ALIAEFFONOOGLILFDGNHHNKALAEOAGBB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	CNDFCCOLJGMGNIEPAMLDMFGJPGBOFKGC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	CAFMFMPOPAEFKGJAMNLBLEEALBFMDAPBFAEP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	HLGBOJGPFCGCDPJEHONMNPLOKMJGHLGC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	IJICIJLAJAMEDFHIIAHLNACEEFOLKEFN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	PKHAIKPLBCAPMLJLIMNHDHMKLJCKDMGM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	PLFDFEBBCPLPLKPKECFLBCOHPKHFBLDL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	JDCFDHDJNAKBDHHBEJLNNDJDDDCCPOAH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	MFEDNPPLGCCDNPFGFJDFKNCJGPBLGMMO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	NPCNPLFALOBIPKGNKBCCIFPMLLIGFCFL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	BKGIMFKBGAOIGAGKJPKONECBCNLMBFJG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	EONJKNBOOHEBFNPFCDCHHBKNFHIHFFBP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	PLBFDMPPDMFJIFHEEDIGDLKFMNFHNJBB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	PPDPCLDPMMPKBFFMDAANGABOGFCNJMOOOK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	GJOELMHEHFNLKAICDHPNHFABPIEHNCIM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	AMPDIBPLFPBBIHJFNBPAPLHGFILCBJPJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	BAEGLIMGFNIAIEHNHPHCPFNAHMHCODPE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	EJEBPCFCILMFIJOHMFOKENPKOFOIGAAO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	ELOFBJJJCAPJGHDNPFHDCNDDHJDBDDFG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	IPHFOIBCJDFPBFFHMGAMAHONBJLPLOHL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	EDNEPDECNNBMCPNFIPLDGHIJLLDKLHNA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	NFNAHBFHHOLBHINLFMAHCFMALJDCIKIBDK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	FBHFOEKDDGAGHGIJLFHIEJBBLCDHPLND:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

	DOEIMEACJPBFCGKHDDNCKCCGDKMDBCDD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/standard/1556226683/
	f8:
	f9: Go!

	f10:

