
www.dbebooks.com - Free Books & magazines

T H I R D E D I T I O N

C O M P U T E R

N E T W O R K S
A Systems Approach

The Morgan Kaufmann Series in Networking

Series Editor, David Clark, M.I.T.

Computer Networks: A Systems Approach, 3e

Larry L. Peterson and Bruce S. Davie

Network Architecture, Analysis, and Design, 2e

James D. McCabe

MPLS Network Management: MIBs, Tools, and Techniques

Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service Providers and Vendors

Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age

Sharon K. Black

Optical Networks: A Practical Perspective, 2e

Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms

Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers

Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers

Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming, and Applications

Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications

Bruce Davie and Yakov Rekhter

High-Performance Communication Networks, 2e

Jean Walrand and Pravin Varaiya

Internetworking Multimedia

Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course

David G. Messerschmitt

Integrated Management of Networked Systems: Concepts, Architectures,

and their Operational Application

Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair

Virtual Private Networks: Making the Right Connection

Dennis Fowler

Networked Applications: A Guide to the New Computing Infrastructure

David G. Messerschmitt

Modern Cable Television Technology: Video, Voice, and Data Communications

Walter Ciciora, James Farmer, and David Large

Switching in IP Networks: IP Switching, Tag Switching, and Related Technologies

Bruce S. Davie, Paul Doolan, and Yakov Rekhter

Wide Area Network Design: Concepts and Tools for Optimization

Robert S. Cahn

Frame Relay Applications: Business and Technology Case Studies

James P. Cavanagh

For further information on these books and for a list of forthcoming titles, please visit

our website at http://www.mkp.com

T H I R D E D I T I O N

Larry L. Peterson & Bruce S. Davie

C O M P U T E R

N E T W O R K S
A Systems Approach

Senior Editor Rick Adams
Publishing Services Manager Simon Crump
Developmental Editor Karyn Johnson
Cover Design Ross Carron Design
Cover Image Vasco de Gama Bridge, Lisbon, Portugal
Composition/Illustration International Typesetting and Composition
Copyeditor Ken DellaPenta
Proofreader Jennifer McClain
Indexer Steve Rath
Printer Courier Corporation

Designations used by companies to distinguish their products are often claimed as trademarks
or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a
claim, the product names appear in initial capital or all capital letters. Readers, however, should
contact the appropriate companies for more complete information regarding trademarks and
registration.

Morgan Kaufmann Publishers
An Imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
www.mkp.com

© 2003 by Elsevier Science (USA)
All rights reserved
Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopying, or otherwise—without the
prior written permission of the publisher.

Library of Congress Control Number: xxxxxxxxxx

ISBN: 1-55860-832-X (Casebound)

ISBN: 1-55860-833-8 (Paperback)

This book is printed on acid-free paper.

To Lee Peterson and Robert Davie

This Page Intentionally Left Blank

F O R E W O R D

David Clark

Massachusetts Institute of Technology

T
his third edition represents another major upgrade to this classic networking

book. The field continues to change fast, and new concepts emerge with amaz-

ing speed. This version expands its discussion of a lot of important new top-

ics, including peer-to-peer networks, Ipv6, overlay and content distribution networks,

MPLS and switching, wireless and mobile technology, and more. It also contains an

earlier and stronger focus on applications, which reflects the student and professional’s

increased familiarity with a wide range of networked applications. The book continues

its tradition of giving you the facts you need to understand today’s world.

But it has not lost track of its larger goal, to tell you not only the facts but the

why behind the facts. The philosophy of the book remains the same: to be timely but

timeless. What this book will teach you in today’s networked world will give you the

insight needed to work in tomorrow’s landscape. And that is important, since there

is no reason to believe that the evolution of networks is going to slow down anytime

soon.

It is hard to remember what the world looked like only ten years ago. Back then

the Internet was not really a commercial reality. Ten megabits per second was really

fast. We didn’t worry about spam and virus attacks—we left our computers unguarded

and hardly worried. Those times were simpler, but today may be more exciting. And

you better believe that tomorrow will be different from today: at least as exciting, with

luck no less trustworthy, and certainly bigger, faster and filled with fresh innovation.

So I hope Larry and Bruce can relax for a little before they have to start the next

revision. Meanwhile, use this book to learn about today and get ready for tomorrow.

Have fun.

This Page Intentionally Left Blank

F O R E W O R D T O T H E F I R S T E D I T I O N

David Clark

Massachusetts Institute of Technology

T
he term spaghetti code is universally understood as an insult. All good computer

scientists worship the god of modularity, since modularity brings many benefits,

including the all-powerful benefit of not having to understand all parts of a

problem at the same time in order to solve it. Modularity thus plays a role in presenting

ideas in a book, as well as in writing code. If a book’s material is organized effectively—

modularly—the reader can start at the beginning and actually make it to the end.

The field of network protocols is perhaps unique in that the “proper” modularity

has been handed down to us in the form of an international standard: the seven-layer

reference model of network protocols from the ISO. This model, which reflects a

layered approach to modularity, is almost universally used as a starting point for

discussions of protocol organization, whether the design in question conforms to the

model or deviates from it.

It seems obvious to organize a networking book around this layered model.

However, there is a peril to doing so, because the OSI model is not really successful

at organizing the core concepts of networking. Such basic requirements as reliability,

flow control, or security can be addressed at most, if not all, of the OSI layers. This

fact has led to great confusion in trying to understand the reference model. At times it

even requires a suspension of disbelief. Indeed, a book organized strictly according to

a layered model has some of the attributes of spaghetti code.

Which brings us to this book. Peterson and Davie follow the traditional layered

model, but they do not pretend that this model actually helps in the understanding of

the big issues in networking. Instead, the authors organize discussion of fundamental

concepts in a way that is independent of layering. Thus, after reading the book, readers

will understand flow control, congestion control, reliability enhancement, data rep-

resentation, and synchronization, and will separately understand the implications of

addressing these issues in one or another of the traditional layers.

This is a timely book. It looks at the important protocols in use today—especially

the Internet protocols. Peterson and Davie have a long involvement in and much

experience with the Internet. Thus their book reflects not just the theoretical issues in

x Foreword to the First Edition

protocol design, but the real factors that matter in practice. The book looks at some of

the protocols that are just emerging now, so the reader can be assured of an up-to-date

perspective. But most importantly, the discussion of basic issues is presented in a way

that derives from the fundamental nature of the problem, not the constraints of the

layered reference model or the details of today’s protocols. In this regard, what this

book presents is both timely and timeless. The combination of real-world relevance,

current examples, and careful explanation of fundamentals makes this book unique.

C O N T E N T S

Foreword vii

Foreword to the First Edition ix

Preface xix

1 Foundation

Problem: Building a Network 2

1.1 Applications 4

1.2 Requirements 6

1.2.1 Connectivity 7

1.2.2 Cost-Effective Resource Sharing 10

1.2.3 Support for Common Services 15

1.3 Network Architecture 19

1.3.1 Layering and Protocols 20

1.3.2 OSI Architecture 26

1.3.3 Internet Architecture 27

1.4 Implementing Network Software 30

1.4.1 Application Programming Interface (Sockets) 31

1.4.2 Example Application 33

1.4.3 Protocol Implementation Issues 36

1.5 Performance 40

1.5.1 Bandwidth and Latency 40

1.5.2 Delay × Bandwidth Product 44

1.5.3 High-Speed Networks 46

1.5.4 Application Performance Needs 48

1.6 Summary 50

Open Issue: Ubiquitous Networking 51

Further Reading 52

Exercises 55

xii Contents

2 Direct Link Networks

Problem: Physically Connecting Hosts 64

2.1 Hardware Building Blocks 66

2.1.1 Nodes 66

2.1.2 Links 67

2.2 Encoding (NRZ, NRZI, Manchester, 4B/5B) 75

2.3 Framing 79

2.3.1 Byte-Oriented Protocols (BISYNC, PPP, DDCMP) 80

2.3.2 Bit-Oriented Protocols (HDLC) 83

2.3.3 Clock-Based Framing (SONET) 84

2.4 Error Detection 88

2.4.1 Two-Dimensional Parity 89

2.4.2 Internet Checksum Algorithm 90

2.4.3 Cyclic Redundancy Check 92

2.5 Reliable Transmission 97

2.5.1 Stop-and-Wait 98

2.5.2 Sliding Window 101

2.5.3 Concurrent Logical Channels 110

2.6 Ethernet (802.3) 111

2.6.1 Physical Properties 112

2.6.2 Access Protocol 114

2.6.3 Experience with Ethernet 119

2.7 Token Rings (802.5, FDDI) 120

2.7.1 Physical Properties 121

2.7.2 Token Ring Media Access Control 122

2.7.3 Token Ring Maintenance 125

2.7.4 Frame Format 126

2.7.5 FDDI 127

2.8 Wireless (802.11) 131

2.8.1 Physical Properties 132

2.8.2 Collision Avoidance 133

2.8.3 Distribution System 134

2.8.4 Frame Format 136

2.9 Network Adaptors 137

2.9.1 Components 138

2.9.2 View from the Host 139

2.9.3 Memory Bottleneck 144

2.10 Summary 146

Contents xiii

Open Issue: Does It Belong in Hardware? 147

Further Reading 148

Exercises 150

3 Packet Switching

Problem: Not All Networks Are Directly Connected 164

3.1 Switching and Forwarding 166

3.1.1 Datagrams 168

3.1.2 Virtual Circuit Switching 170

3.1.3 Source Routing 177

3.2 Bridges and LAN Switches 180

3.2.1 Learning Bridges 181

3.2.2 Spanning Tree Algorithm 185

3.2.3 Broadcast and Multicast 189

3.2.4 Limitations of Bridges 190

3.3 Cell Switching (ATM) 192

3.3.1 Cells 193

3.3.2 Segmentation and Reassembly 198

3.3.3 Virtual Paths 203

3.3.4 Physical Layers for ATM 204

3.3.5 ATM in the LAN 205

3.4 Implementation and Performance 210

3.4.1 Ports 212

3.4.2 Fabrics 216

3.5 Summary 220

Open Issue: The Future of ATM 221

Further Reading 221

Exercises 223

4 Internetworking

Problem: There Is More Than One Network 234

4.1 Simple Internetworking (IP) 236

4.1.1 What Is an Internetwork? 236

4.1.2 Service Model 238

4.1.3 Global Addresses 250

4.1.4 Datagram Forwarding in IP 252

4.1.5 Address Translation (ARP) 258

4.1.6 Host Configuration (DHCP) 263

xiv Contents

4.1.7 Error Reporting (ICMP) 266

4.1.8 Virtual Networks and Tunnels 267

4.2 Routing 271

4.2.1 Network as a Graph 272

4.2.2 Distance Vector (RIP) 274

4.2.3 Link State (OSPF) 282

4.2.4 Metrics 291

4.2.5 Routing for Mobile Hosts 295

4.3 Global Internet 299

4.3.1 Subnetting 301

4.3.2 Classless Routing (CIDR) 306

4.3.3 Interdomain Routing (BGP) 308

4.3.4 Routing Areas 316

4.3.5 IP Version 6 (IPv6) 318

4.4 Multicast 331

4.4.1 Link-State Multicast 332

4.4.2 Distance-Vector Multicast 332

4.4.3 Protocol Independent Multicast (PIM) 336

4.5 Multiprotocol Label Switching (MPLS) 340

4.5.1 Destination-Based Forwarding 340

4.5.2 Explicit Routing 346

4.5.3 Virtual Private Networks and Tunnels 348

4.6 Summary 352

Open Issue: Deployment of IPV6 353

Further Reading 354

Exercises 355

5 End-to-End Protocols

Problem: Getting Processess to Communicate 374

5.1 Simple Demultiplexer (UDP) 376

5.2 Reliable Byte Stream (TCP) 378

5.2.1 End-to-End Issues 379

5.2.2 Segment Format 382

5.2.3 Connection Establishment and Termination 384

5.2.4 Sliding Window Revisited 389

5.2.5 Triggering Transmission 395

5.2.6 Adaptive Retransmission 397

5.2.7 Record Boundaries 401

Contents xv

5.2.8 TCP Extensions 402

5.2.9 Alternative Design Choices 403

5.3 Remote Procedure Call 405

5.3.1 Bulk Transfer (BLAST) 408

5.3.2 Request/Reply (CHAN) 414

5.3.3 Dispatcher (SELECT) 423

5.3.4 Putting It All Together (SunRPC, DCE) 424

5.4 Performance 431

5.5 Summary 434

Open Issue: Application-Specific Protocols 435

Further Reading 436

Exercises 437

6 Congestion Control and Resource Allocation

Problem: Allocating Resources 450

6.1 Issues in Resource Allocation 452

6.1.1 Network Model 452

6.1.2 Taxonomy 456

6.1.3 Evaluation Criteria 458

6.2 Queuing Disciplines 461

6.2.1 FIFO 462

6.2.2 Fair Queuing 463

6.3 TCP Congestion Control 468

6.3.1 Additive Increase/Multiplicative Decrease 468

6.3.2 Slow Start 471

6.3.3 Fast Retransmit and Fast Recovery 476

6.4 Congestion-Avoidance Mechanisms 478

6.4.1 DECbit 478

6.4.2 Random Early Detection (RED) 480

6.4.3 Source-Based Congestion Avoidance 486

6.5 Quality of Service 492

6.5.1 Application Requirements 493

6.5.2 Integrated Services (RSVP) 499

6.5.3 Differentiated Services (EF, AF) 509

6.5.4 ATM Quality of Service 513

6.5.5 Equation-Based Congestion Control 517

6.6 Summary 518

xvi Contents

Open Issue: Inside versus Outside the Network 519

Further Reading 520

Exercises 521

7 End-to-End Data

Problem: What Do We Do with the Data? 534

7.1 Presentation Formatting 536

7.1.1 Taxonomy 537

7.1.2 Examples (XDR, ASN.1, NDR) 541

7.1.3 Markup Languages (XML) 545

7.2 Data Compression 548

7.2.1 Lossless Compression Algorithms 550

7.2.2 Image Compression (JPEG) 552

7.2.3 Video Compression (MPEG) 557

7.2.4 Transmitting MPEG over a Network 562

7.2.5 Audio Compression (MP3) 566

7.3 Summary 568

Open Issue: Computer Networks Meet Consumer Electronics 568

Further Reading 569

Exercises 570

8 Network Security

Problem: Securing the Data 578

8.1 Cryptographic Algorithms 580

8.1.1 Requirements 582

8.1.2 Secret Key Encryption (DES) 583

8.1.3 Public Key Encryption (RSA) 588

8.1.4 Message Digest Algorithms (MD5) 591

8.1.5 Implementation and Performance 593

8.2 Security Mechanisms 594

8.2.1 Authentication Protocols 594

8.2.2 Message Integrity Protocols 598

8.2.3 Public Key Distribution (X.509) 601

8.3 Example Systems 604

8.3.1 Pretty Good Privacy (PGP) 605

8.3.2 Secure Shell (SSH) 607

8.3.3 Transport Layer Security (TLS, SSL, HTTPS) 610

8.3.4 IP Security (IPSEC) 614

Contents xvii

8.4 Firewalls 617

8.4.1 Filter-Based Firewalls 618

8.4.2 Proxy-Based Firewalls 620

8.4.3 Limitations 622

8.5 Summary 622

Open Issue: Denial-of-Service Attacks 623

Further Reading 624

Exercises 625

9 Applications

Problem: Applications Need Their Own Protocols 632

9.1 Name Service (DNS) 634

9.1.1 Domain Hierarchy 635

9.1.2 Name Servers 636

9.1.3 Name Resolution 640

9.2 Traditional Applications 643

9.2.1 Electronic Mail (SMTP, MIME, IMAP) 644

9.2.2 World Wide Web (HTTP) 650

9.2.3 Network Management (SNMP) 657

9.3 Multimedia Applications 660

9.3.1 Real-time Transport Protocol (RTP) 660

9.3.2 Session Control and Call Control (SDP, SIP, H.323) 671

9.4 Overlay Networks 680

9.4.1 Routing Overlays 682

9.4.2 Peer-to-Peer Networks 690

9.4.3 Content Distribution Networks 698

9.5 Summary 704

Open Issue: New Network Artichitecture 704

Further Reading 705

Exercises 707

Glossary 715

Bibliography 743

Solutions to Selected Exercises 763

Index 777

About the Authors 810

This Page Intentionally Left Blank

P R E F A C E

W
hen the first edition of this book was published in 1996, it was a novelty to

be able to order merchandise on the Internet, and a company that advertised

its domain name was considered cutting edge. Today, Internet commerce is

a fact of life, and “.com” stocks have gone through an entire boom and bust cycle.

A host of new technologies ranging from optical switches to wireless networks are

now becoming mainstream. It seems the only predictable thing about the Internet is

constant change.

Despite these changes the question we asked in the first edition is just as valid

today: What are the underlying concepts and technologies that make the Internet

work? The answer is that much of the TCP/IP architecture continues to function just

as was envisioned by its creators nearly 30 years ago. This isn’t to say that the Internet

architecture is uninteresting, quite the contrary. Understanding the design principles

that underlie an architecture that has not only survived but fostered the kind of growth

and change that the Internet has seen over the past three decades is precisely the right

place to start. Like the previous editions, the third edition makes the “why” of the

Internet architecture its cornerstone.

Audience

Our intent is that the book should serve as the text for a comprehensive networking

class, at either the graduate or upper-division undergraduate level. We also believe that

the book’s focus on core concepts should be appealing to industry professionals who

are retraining for network-related assignments, as well as current network practitioners

who want to understand the “whys” behind the protocols they work with every day

and to see the big picture of networking.

It is our experience that both students and professionals learning about networks

for the first time often have the impression that network protocols are some sort of edict

handed down from on high, and that their job is to learn as many TLAs (three-letter

acronyms) as possible. In fact, protocols are the building blocks of a complex system

developed through the application of engineering design principles. Moreover, they

are constantly being refined, extended, and replaced based on real-world experience.

xx Preface

With this in mind, our goal with this book is to do more than survey the protocols

in use today. Instead, we explain the underlying principles of sound network design.

We feel that this grasp of underlying principles is the best tool for handling the rate of

change in the networking field.

Changes in the Third Edition

Even though our focus is on the underlying principles of networking, we illustrate

these principles using examples from today’s working Internet. Therefore, we added a

significant amount of new material to track many of the important recent advances in

networking. We also deleted, reorganized, and changed the focus of existing material

to reflect changes that have taken place over the past seven years.

Perhaps the most significant change we have noticed since writing the first edition

is that almost every reader now has some familiarity with networked applications such

as the World Wide Web and email. For this reason, we have increased the focus on

applications, starting in the first chapter. We use applications as the motivation for

the study of networking, and to derive a set of requirements that a useful network

must meet if it is to support both current and future applications on a global scale.

However, we retain the problem-solving approach of previous editions that starts with

the problem of interconnecting hosts and works its way up the layers to conclude with

a detailed examination of application-layer issues. We believe it is important to make

the topics covered in the book relevant by starting with applications and their needs. At

the same time, we feel that higher-layer issues, such as application-layer and transport-

layer protocols, are best understood after the basic problems of connecting hosts and

switching packets have been explained.

Another important change in this edition is in the exercises. We have increased

the number and quality of exercises; we have attempted to identify those that are

especially difficult or that require above-average levels of mathematical knowledge

(these are marked with an icon); and in each chapter we have added a number of

exercises with worked solutions that are included in the book. As before, the complete

set of exercise solutions is available only to instructors.

As we did in the second edition, we have added or increased coverage of im-

portant new topics and brought other topics up-to-date. Major new or substantially

updated topics in this edition are

■ a new section on Multiprotocol Label Switching (MPLS), including coverage

of traffic engineering and virtual private networks

■ a new section on overlay networks, including “peer-to-peer” networking and

“content distribution networks”

Preface xxi

■ greatly expanded coverage on protocols for multimedia applications, such as

Session Initiation Protocol (SIP) and Session Description Protocol (SDP)

■ updated coverage of congestion-control mechanisms, including selective ac-

knowledgments for TCP, equation-based congestion control, and explicit con-

gestion notification

■ updated security coverage, including distributed denial of service (DDoS) at-

tacks

■ updated material on wireless technology, including spread spectrum tech-

niques and the emerging 802.11 standards

Finally, the book is now supplemented by a comprehensive set of laboratory exer-

cises designed to illustrate the key concepts through simulation experiments. Sections

that discuss material covered by the laboratory exercises are marked with the icon

shown in the margin. Details on this new feature of the book appear below.

Approach

For an area that’s as dynamic and changing as computer networks, the most important

thing a textbook can offer is perspective—to distinguish between what’s important and

what’s not, and between what’s lasting and what’s superficial. Based on our experi-

ence over the past 20 years doing research that has led to new networking technology,

teaching undergraduate and graduate students about the latest trends in network-

ing, and delivering advanced networking products to market, we have developed a

perspective—which we call the systems approach—that forms the soul of this book.

The systems approach has several implications:

■ Rather than accept existing artifacts as gospel, we start with first principles

and walk you through the thought process that led to today’s networks. This

allows us to explain why networks look like they do. It is our experience that

once you understand the underlying concepts, any new protocol that you are

confronted with will be relatively easy to digest.

■ Although the material is loosely organized around the traditional network

layers, starting at the bottom and moving up the protocol stack, we do not

adopt a rigid layered approach. Many topics—congestion control and security

are good examples—have implications up and down the hierarchy, and so

we discuss them outside the traditional layered model. In short, we believe

layering makes a good servant but a poor master; it’s more often useful to

take an end-to-end perspective.

xxii Preface

■ Rather than explain how protocols work in the abstract, we use the most

important protocols in use today—many of them from the TCP/IP Internet—

to illustrate how networks work in practice. This allows us to include real-

world experiences in the discussion.

■ Although at the lowest levels networks are constructed from commodity hard-

ware that can be bought from computer vendors and communication services

that can be leased from the phone company, it is the software that allows net-

works to provide new services and adapt quickly to changing circumstances.

It is for this reason that we emphasize how network software is implemented,

rather than stopping with a description of the abstract algorithms involved.

We also include code segments taken from a working protocol stack to illus-

trate how you might implement certain protocols and algorithms.

■ Networks are constructed from many building-block pieces, and while it is

necessary to be able to abstract away uninteresting elements when solving

a particular problem, it is essential to understand how all the pieces fit to-

gether to form a functioning network. We therefore spend considerable time

explaining the overall end-to-end behavior of networks, not just the individ-

ual components, so that it is possible to understand how a complete network

operates, all the way from the application to the hardware.

■ The systems approach implies doing experimental performance studies, and

then using the data you gather both to quantitatively analyze various design

options and to guide you in optimizing the implementation. This emphasis on

empirical analysis pervades the book.

■ Networks are like other computer systems—for example, operating systems,

processor architectures, distributed and parallel systems, and so on. They

are all large and complex. To help manage this complexity, system builders

often draw on a collection of design principles. We highlight these design

principles as they are introduced throughout the book, illustrated, of course,

with examples from computer networks.

Pedagogy and Features

The third edition retains several features that we encourage you to take advantage of:

■ Problem statements. At the start of each chapter, we describe a problem that

identifies the next set of issues that must be addressed in the design of a

network. This statement introduces and motivates the issues to be explored

in the chapter.

Preface xxiii

■ Shaded sidebars. Throughout the text, shaded sidebars elaborate on the topic

being discussed or introduce a related advanced topic. In many cases, these

sidebars relate real-world anecdotes about networking.

■ Highlighted paragraphs. These paragraphs summarize an important nugget

of information that we want you to take away from the discussion, such as a

widely applicable system design principle.

■ Real protocols. Even though the book’s focus is on core concepts rather than

existing protocol specifications, real protocols are used to illustrate most of the

important ideas. As a result, the book can be used as a source of reference for

many protocols. To help you find the descriptions of the protocols, each appli-

cable section heading parenthetically identifies the protocols described in that

section. For example, Section 5.2, which describes the principles of reliable

end-to-end protocols, provides a detailed description of TCP, the canonical

example of such a protocol.

■ Open issues. We conclude the main body of each chapter with an important

issue that is currently being debated in the research community, the commer-

cial world, or society as a whole. We have found that discussing these issues

helps to make the subject of networking more relevant and exciting.

■ Further reading. These highly selective lists appear at the end of each chapter.

Each list generally contains the seminal papers on the topics just discussed.

We strongly recommend that advanced readers (e.g., graduate students) study

the papers in this reading list to supplement the material covered in the

chapter.

Road Map and Course Use

The book is organized as follows:

■ Chapter 1 introduces the set of core ideas that are used throughout the rest

of the text. Motivated by widespread applications, it discusses what goes into

network architecture, and it defines the quantitative performance metrics that

often drive network design.

■ Chapter 2 surveys a wide range of low-level network technologies, ranging

from Ethernet to token ring to wireless. It also describes many of the issues

that all data link protocols must address, including encoding, framing, and

error detection.

xxiv Preface

■ Chapter 3 introduces the basic models of switched networks (datagrams versus

virtual circuits) and describes one prevalent switching technology (ATM) in

some detail. It also discusses the design of hardware-based switches.

■ Chapter 4 introduces internetworking and describes the key elements of the

Internet Protocol (IP). A central question addressed in this chapter is how

networks that scale to the size of the Internet are able to route packets.

■ Chapter 5 moves up to the transport level, describing both the Internet’s Trans-

mission Control Protocol (TCP) and Remote Procedure Call (RPC) used to

build client/server applications in detail.

■ Chapter 6 discusses congestion control and resource allocation. The issues

in this chapter cut across both the network level (Chapters 3 and 4) and the

transport level (Chapter 5). Of particular note, this chapter describes how

congestion control works in TCP, and it introduces the mechanisms used by

both the Internet and ATM to provide quality of service.

■ Chapter 7 considers the data sent through a network. This includes the prob-

lems of both presentation formatting and data compression. The discussion

of compression includes explanations of how MPEG video compression and

MP3 audio compression work.

■ Chapter 8 discusses network security, ranging from an overview of cryptog-

raphy protocols (DES, RSA, MD5), to protocols for security services (authen-

tication, digital signature, message integrity), to complete security systems

(privacy enhanced email, IPSEC). The chapter also discusses pragmatic issues

like firewalls.

■ Chapter 9 describes a representative sample of network applications and the

protocols they use, including traditional applications like email and the Web,

multimedia applications such as IP telephony and video streaming, and overlay

networks like peer-to-peer file sharing and content distribution networks.

For an undergraduate course, extra class time will most likely be needed to help

students digest the introductory material in the first chapter, probably at the expense

of the more advanced topics covered in Chapters 6 through 8. Chapter 9 then returns

to the popular topic of network applications. In contrast, the instructor for a graduate

course should be able to cover the first chapter in only a lecture or two—with students

studying the material more carefully on their own—thereby freeing up additional

class time to cover the last four chapters in depth. Both graduate and undergraduate

classes will want to cover the core material contained in the middle four chapters

Preface xxv

(Chapters 2–5), although an undergraduate class might choose to skim the more ad-

vanced sections (e.g., Sections 2.2, 2.9, 3.4, and 4.4).

For those of you using the book in self-study, we believe that the topics we have

selected cover the core of computer networking, and so we recommend that the book

be read sequentially, from front to back. In addition, we have included a liberal supply

of references to help you locate supplementary material that is relevant to your specific

areas of interest, and we have included solutions to selected exercises.

The book takes a unique approach to the topic of congestion control by pulling

all topics related to congestion control and resource allocation together in a single

place—Chapter 6. We do this because the problem of congestion control cannot be

solved at any one level, and we want you to consider the various design options at

the same time. (This is consistent with our view that strict layering often obscures

important design trade-offs.) A more traditional treatment of congestion control is

possible, however, by studying Section 6.2 in the context of Chapter 3 and Section 6.3

in the context of Chapter 5.

Exercises

Significant effort has gone into improving the exercises in both the second and third

editions. In the second edition we greatly increased the number of problems and, based

on class testing, dramatically improved their quality. In this edition, we added a few

more exercises, but made two other important changes:

■ For those exercises that we feel are particularly challenging or require special

knowledge not provided in the book (e.g., probability expertise), we have

added an icon to indicate the extra level of difficulty.

■ In each chapter we added some extra representative exercises for which worked

solutions are provided in the back of the book. These exercises, marked ,

are intended to provide some help in tackling the other exercises in the book.

The current sets of exercises are of several different styles:

■ Analytical exercises that ask the student to do simple algebraic calculations

that demonstrate their understanding of fundamental relationships

■ Design questions that ask the student to propose and evaluate protocols for

various circumstances

■ Hands-on questions that ask the student to write a few lines of code to test

an idea or to experiment with an existing network utility

xxvi Preface

■ Library research questions that ask the student to learn more about a partic-

ular topic

Also, as described in more detail below, socket-based programming assignments,

as well as simulation labs, are available online.

Supplemental Materials and Online Resources

To assist instructors, we have prepared an instructor’s manual that contains solutions

to selected exercises. The manual is available from the publisher.

Additional support materials, including lecture slides, figures from the text,

socket-based programming assignments, and sample exams and programming assign-

ments are available through the Morgan Kaufmann Web site at http://www.mkp.com

(search for Computer Networks). We suggest that you visit the page for this book

every few weeks, as we will be adding support materials and establishing links to

networking-related sites on a regular basis.

And finally, new with the third edition, a set of laboratory experiments supple-

ments the book. These labs, developed by Professor Emad Aboelela from the University

of Massachusetts Dartmouth, use simulation to explore the behavior, scalability, and

performance of protocols covered in the book. The simulations use the OPNET simu-

lation toolset, which is available for free to anyone using Computer Networks in their

course.

Acknowledgments

This book would not have been possible without the help of many people. We would

like to thank them for their efforts in improving the end result. Before we do so,

however, we should mention that we have done our best to correct the mistakes that

the reviewers have pointed out and to accurately describe the protocols and mech-

anisms that our colleagues have explained to us. We alone are responsible for any

remaining errors. If you should find any of these, please send email to our publisher,

Morgan Kaufmann, at netbugs@mkp.com, and we will endeavor to correct them in

future printings of this book.

First, we would like to thank the many people who reviewed drafts of all or

parts of the manuscript. In addition to those who reviewed prior editions, we wish

to thank Carl Emberger, Isaac Ghansah, and Bobby Bhattacharjee for their thor-

ough reviews. Thanks also to Peter Druschel, Limin Wang, Aki Nakao, Dave Oran,

George Swallow, Peter Lei, and Michael Ramalho for their reviews of various sec-

tions. We also wish to thank all those who provided feedback and input to help us

decide what to do in this edition: Chedley Aouriri, Peter Steenkiste, Esther A. Hughes,

Ping-Tsai Chung, Doug Szajda, Mark Andersland, Leo Tam, C. P. Watkins,

Preface xxvii

Brian L. Mark, Miguel A. Labrador, Gene Chase, Harry W. Tyrer, Robert Siegfried,

Harlan B. Russell, John R. Black, Robert Y. Ling, Julia Johnson, Karen Collins, Clark

Verbrugge, Monjy Rabemanantsoa, Kerry D. LaViolette, William Honig, Kevin Mills,

Murat Demirer, J Rufinus, Manton Matthews, Errin W. Fulp, Wayne Daniel, Luiz

DaSilva, Don Yates, Raouf Boules, Nick McKeown, Neil T. Spring, Kris Verma, Szuecs

Laszlo, Ted Herman, Mark Sternhagen, Zongming Fei, Dulal C. Kar, Mingyan Liu,

Ken Surendran, Rakesh Arya, Mario J. Gonzalez, Annie Stanton, Tim Batten, and Paul

Francis.

Second, several members of the Network Systems Group at Princeton contributed

ideas, examples, corrections, data, and code to this book. In particular, we would like

to thank Andy Bavier, Tammo Spalink, Mike Wawrzoniak, Zuki Gottlieb, George

Tzanetakis, and Chad Mynhier. As before, we want to thank the Defense Advanced

Research Projects Agency, the National Science Foundation, Intel Corporation, and

Cisco Systems, Inc. for supporting our networking research over the past several years.

Third, we would like to thank our series editor, David Clark, as well as all

the people at Morgan Kaufmann who helped shepherd us through the book-writing

process. A special thanks is due to our original sponsoring editor, Jennifer Mann; our

editor for the third edition, Rick Adams; our developmental editor, Karyn Johnson;

and our production manager, Simon Crump. The whole crew at MKP has been a

delight to work with.

This Page Intentionally Left Blank

Foundation

I must Create a System, or be enslav’d by another Man’s; I will not
Reason and Compare: my business is to Create.

—William Blake

S
uppose you want to build a computer network, one that has the potential to

grow to global proportions and to support applications as diverse as telecon-

ferencing, video-on-demand, electronic commerce, distributed computing, and

digital libraries. What available technologies would serve as the underlying build-

ing blocks, and what kind of software architecture would you design to integrate

P R O B L E M

Building a Network

these building blocks into an effec-

tive communication service? Answer-

ing this question is the overriding

goal of this book—to describe the

available building materials and then

to show how they can be used to con-

struct a network from the ground up.

Before we can understand how to design a computer network, we should first

agree on exactly what a computer network is. At one time, the term network meant

the set of serial lines used to attach dumb terminals to mainframe computers. To

some, the term implies the voice telephone network. To others, the only interesting

network is the cable network used to disseminate video signals. The main thing these

networks have in common is that they are specialized to handle one particular kind of

data (keystrokes, voice, or video) and they typically connect to special-purpose devices

(terminals, hand receivers, and television sets).

What distinguishes a computer network from these other types of networks?

Probably the most important characteristic of a computer network is its generality.

Computer networks are built primarily from general-purpose programmable hard-

ware, and they are not optimized for a particular application like making phone calls or

delivering television signals. Instead, they are able to carry many different types of data,

and they support a wide, and ever-growing, range of applications. This chapter looks

1
at some typical applications of computer networks and

discusses the requirements that a network designer who

wishes to support such applications must be aware of.

Once we understand the requirements, how do we

proceed? Fortunately, we will not be building the first net-

work. Others, most notably the community of researchers

responsible for the Internet, have gone before us. We will

use the wealth of experience generated from the Internet

to guide our design. This experience is embodied in a net-

work architecture that identifies the available hardware

and software components and shows how they can be

arranged to form a complete network system.

To start us on the road toward understanding how

to build a network, this chapter does four things. First, it

explores the requirements that different applications and

different communities of people (such as network users

and network operators) place on the network. Second, it

introduces the idea of a network architecture, which lays

the foundation for the rest of the book. Third, it intro-

duces some of the key elements in the implementation of

computer networks. Finally, it identifies the key metrics

that are used to evaluate the performance of computer

networks.

4 1 Foundation

1.1 Applications

Most people know the Internet through its applications: the World Wide Web, email,

streaming audio and video, chat rooms, and music (file) sharing. The Web, for example,

presents an intuitively simple interface. Users view pages full of textual and graphical

objects, click on objects that they want to learn more about, and a corresponding new

page appears. Most people are also aware that just under the covers, each selectable

object on a page is bound to an identifier for the next page to be viewed. This identifier,

called a uniform resource locator (URL), uniquely names every possible page that can

be viewed from your Web browser. For example,

http://www.mkp.com/pd3e

is the URL for a page representing this book at Morgan Kaufmann: The string http

indicates that the HyperText Transfer Protocol (HTTP) should be used to download

the page, www.mkp.com is the name of the machine that serves the page, and pd3e

uniquely identifies the page at the publisher’s site.

What most Web users are not aware of, however, is that by clicking on just one

such URL, as many as 17 messages may be exchanged over the Internet, and this

assumes the page itself is small enough to fit in a single message. This number includes

up to six messages to translate the server name (www.mkp.com) into its Internet address

(213.38.165.180), three messages to set up a Transmission Control Protocol (TCP)

connection between your browser and this server, four messages for your browser

to send the HTTP “get” request and the server to respond with the requested page

(and for each side to acknowledge receipt of that message), and four messages to tear

down the TCP connection. Of course, this does not include the millions of messages

exchanged by Internet nodes throughout the day, just to let each other know that they

exist and are ready to serve Web pages, translate names to addresses, and forward

messages toward their ultimate destination.

Although not yet as common as surfing the Web, another emerging application

of the Internet is streaming audio and video. Although an entire video file could first

be fetched from a remote machine and then played on the local machine, similar to

the process of downloading and displaying a Web page, this would entail waiting for

the last second of the video file to be delivered before starting to look at it. Streaming

video implies that the sender and the receiver are, respectively, the source and the sink

for the video stream. That is, the source generates a video stream (perhaps using a

video capture card), sends it across the Internet in messages, and the sink displays the

stream as it arrives.

To be more precise, video is not an application; it is a type of data. One example

of a video application is video-on-demand, which reads a preexisting movie from disk

1.1 Applications 5

and transmits it over the network. Another kind of application is videoconferencing,

which is actually the more interesting case because it has very tight timing constraints.

Just as when using the telephone, the interactions among the participants must be

timely. When a person at one end gestures, then that action must be displayed at

the other end as quickly as possible. Too much delay makes the system unusable. In

contrast, if it takes several seconds from the time the user starts the video until the

first image is displayed, then the service is still deemed satisfactory. Also, interactive

video usually implies that video is flowing in both directions, while a video-on-demand

application is most likely sending video in only one direction.

The Unix application vic is an example of a popular videoconferencing tool.

Figure 1.1 shows the control panel for a vic session. Note that vic is actually one

of a suite of conferencing tools designed at Lawrence Berkeley Laboratory and

Figure 1.1 The vic video application.

6 1 Foundation

UC Berkeley. The others include a whiteboard application (wb) that allows users to

send sketches and slides to each other, a visual audio tool called vat, and a session

directory (sdr) that is used to create and advertise videoconferences. All these tools

run on Unix—hence their lowercase names—and are freely available on the Internet.

Similar tools are available for other operating systems.

Although they are just two examples, downloading pages from the Web and

participating in a videoconference demonstrate the diversity of applications that can

be built on top of the Internet and hint at the complexity of the Internet’s design.

Starting from the beginning, and addressing one problem at a time, the rest of this

book explains how to build a network that supports such a wide range of applications.

Chapter 9 concludes the book by revisiting these two specific applications, as well as

several others that have become popular on today’s Internet.

1.2 Requirements

We have just established an ambitious goal for ourselves: to understand how to build

a computer network from the ground up. Our approach to accomplishing this goal

will be to start from first principles, and then ask the kinds of questions we would

naturally ask if building an actual network. At each step, we will use today’s proto-

cols to illustrate various design choices available to us, but we will not accept these

existing artifacts as gospel. Instead, we will be asking (and answering) the question

of why networks are designed the way they are. While it is tempting to settle for just

understanding the way it’s done today, it is important to recognize the underlying con-

cepts because networks are constantly changing as the technology evolves and new

applications are invented. It is our experience that once you understand the funda-

mental ideas, any new protocol that you are confronted with will be relatively easy to

digest.

The first step is to identify the set of constraints and requirements that influence

network design. Before getting started, however, it is important to understand that the

expectations you have of a network depend on your perspective:

■ An application programmer would list the services that his or her application

needs, for example, a guarantee that each message the application sends will

be delivered without error within a certain amount of time.

■ A network designer would list the properties of a cost-effective design, for

example, that network resources are efficiently utilized and fairly allocated to

different users.

■ A network provider would list the characteristics of a system that is easy to

administer and manage, for example, in which faults can be easily isolated

and where it is easy to account for usage.

1.2 Requirements 7

This section attempts to distill these different perspectives into a high-level

introduction to the major considerations that drive network design, and in doing

so, identifies the challenges addressed throughout the rest of this book.

1.2.1 Connectivity

Starting with the obvious, a network must provide connectivity among a set of com-

puters. Sometimes it is enough to build a limited network that connects only a few

select machines. In fact, for reasons of privacy and security, many private (corporate)

networks have the explicit goal of limiting the set of machines that are connected. In

contrast, other networks (of which the Internet is the prime example) are designed

to grow in a way that allows them the potential to connect all the computers in the

world. A system that is designed to support growth to an arbitrarily large size is said

to scale. Using the Internet as a model, this book addresses the challenge of scalability.

Links, Nodes, and Clouds

Network connectivity occurs at many different levels. At the lowest level, a network

can consist of two or more computers directly connected by some physical medium,

such as a coaxial cable or an optical fiber. We call such a physical medium a link, and

we often refer to the computers it connects as nodes. (Sometimes a node is a more

specialized piece of hardware rather than a computer, but we overlook that distinction

for the purposes of this discussion.) As illustrated in Figure 1.2, physical links are

sometimes limited to a pair of nodes (such a link is said to be point-to-point), while

in other cases, more than two nodes may share a single physical link (such a link is

said to be multiple access). Whether a given link supports point-to-point or multiple-

access connectivity depends on how the node is attached to the link. It is also the case

that multiple-access links are often limited in size, in terms of both the geographical

distance they can cover and the number of nodes they can connect. The exception is

a satellite link, which can cover a wide geographic area.

(a)

(b)
…

Figure 1.2 Direct links: (a) point-to-point; (b) multiple-access.

8 1 Foundation

Figure 1.3 Switched network.

If computer networks were limited to situations in which all nodes are directly

connected to each other over a common physical medium, then either networks would

be very limited in the number of computers they could connect, or the number of wires

coming out of the back of each node would quickly become both unmanageable and

very expensive. Fortunately, connectivity between two nodes does not necessarily imply

a direct physical connection between them—indirect connectivity may be achieved

among a set of cooperating nodes. Consider the following two examples of how a

collection of computers can be indirectly connected.

Figure 1.3 shows a set of nodes, each of which is attached to one or more point-

to-point links. Those nodes that are attached to at least two links run software that for-

wards data received on one link out on another. If organized in a systematic way, these

forwarding nodes form a switched network. There are numerous types of switched net-

works, of which the two most common are circuit switched and packet switched. The

former is most notably employed by the telephone system, while the latter is used for

the overwhelming majority of computer networks and will be the focus of this book.

The important feature of packet-switched networks is that the nodes in such a network

send discrete blocks of data to each other. Think of these blocks of data as correspond-

ing to some piece of application data such as a file, a piece of email, or an image. We

call each block of data either a packet or a message, and for now we use these terms

interchangeably; we discuss the reason they are not always the same in Section 1.2.2.

Packet-switched networks typically use a strategy called store-and-forward. As

the name suggests, each node in a store-and-forward network first receives a complete

1.2 Requirements 9

packet over some link, stores the packet in its internal memory, and then forwards

the complete packet to the next node. In contrast, a circuit-switched network first

establishes a dedicated circuit across a sequence of links and then allows the source

node to send a stream of bits across this circuit to a destination node. The major

reason for using packet switching rather than circuit switching in a computer network

is efficiency, discussed in the next subsection.

The cloud in Figure 1.3 distinguishes between the nodes on the inside that

implement the network (they are commonly called switches, and their sole func-

tion is to store and forward packets) and the nodes on the outside of the cloud that

use the network (they are commonly called hosts, and they support users and run

application programs). Also note that the cloud in Figure 1.3 is one of the most

important icons of computer networking. In general, we use a cloud to denote any

type of network, whether it is a single point-to-point link, a multiple-access link, or a

switched network. Thus, whenever you see a cloud used in a figure, you can think of

it as a placeholder for any of the networking technologies covered in this book.

A second way in which a set of computers can be indirectly connected is shown in

Figure 1.4. In this situation, a set of independent networks (clouds) are interconnected

to form an internetwork, or internet for short. We adopt the Internet’s convention

of referring to a generic internetwork of networks as a lowercase i internet, and the

Figure 1.4 Interconnection of networks.

10 1 Foundation

currently operational TCP/IP Internet as the capital I Internet. A node that is connected

to two or more networks is commonly called a router or gateway, and it plays much

the same role as a switch—it forwards messages from one network to another. Note

that an internet can itself be viewed as another kind of network, which means that an

internet can be built from an interconnection of internets. Thus, we can recursively

build arbitrarily large networks by interconnecting clouds to form larger clouds.

Just because a set of hosts are directly or indirectly connected to each other does

not mean that we have succeeded in providing host-to-host connectivity. The final

requirement is that each node must be able to say which of the other nodes on the

network it wants to communicate with. This is done by assigning an address to each

node. An address is a byte string that identifies a node; that is, the network can use

a node’s address to distinguish it from the other nodes connected to the network.

When a source node wants the network to deliver a message to a certain destination

node, it specifies the address of the destination node. If the sending and receiving

nodes are not directly connected, then the switches and routers of the network use this

address to decide how to forward the message toward the destination. The process

of determining systematically how to forward messages toward the destination node

based on its address is called routing.

This brief introduction to addressing and routing has presumed that the source

node wants to send a message to a single destination node (unicast). While this is

the most common scenario, it is also possible that the source node might want to

broadcast a message to all the nodes on the network. Or a source node might want

to send a message to some subset of the other nodes, but not all of them, a situation

called multicast. Thus, in addition to node-specific addresses, another requirement of

a network is that it support multicast and broadcast addresses.

◮ The main idea to take away from this discussion is that we can define a network

recursively as consisting of two or more nodes connected by a physical link, or as two

or more networks connected by a node. In other words, a network can be constructed

from a nesting of networks, where at the bottom level, the network is implemented by

some physical medium. One of the key challenges in providing network connectivity is

to define an address for each node that is reachable on the network (including support

for broadcast and multicast connectivity), and to be able to use this address to route

messages toward the appropriate destination node(s).

1.2.2 Cost-Effective Resource Sharing

As stated above, this book focuses on packet-switched networks. This section explains

the key requirement of computer networks—efficiency—that leads us to packet switch-

ing as the strategy of choice.

1.2 Requirements 11

Given a collection of nodes indirectly connected by a nesting of networks, it is

possible for any pair of hosts to send messages to each other across a sequence of

links and nodes. Of course, we want to do more than support just one pair of com-

municating hosts—we want to provide all pairs of hosts with the ability to exchange

messages. The question then is, How do all the hosts that want to communicate share

the network, especially if they want to use it at the same time? And, as if that problem

isn’t hard enough, how do several hosts share the same link when they all want to use

it at the same time?

To understand how hosts share a network, we need to introduce a fundamental

concept, multiplexing, which means that a system resource is shared among multiple

users. At an intuitive level, multiplexing can be explained by analogy to a timesharing

computer system, where a single physical CPU is shared (multiplexed) among multiple

jobs, each of which believes it has its own private processor. Similarly, data being sent

by multiple users can be multiplexed over the physical links that make up a network.

To see how this might work, consider the simple network illustrated in Figure 1.5,

where the three hosts on the left side of the network (L1–L3) are sending data to the

three hosts on the right (R1–R3) by sharing a switched network that contains only

one physical link. (For simplicity, assume that host L1 is communicating with host R1,

and so on.) In this situation, three flows of data—corresponding to the three pairs of

hosts—are multiplexed onto a single physical link by switch 1 and then demultiplexed

back into separate flows by switch 2. Note that we are being intentionally vague about

exactly what a “flow of data” corresponds to. For the purposes of this discussion,

assume that each host on the left has a large supply of data that it wants to send to its

counterpart on the right.

There are several different methods for multiplexing multiple flows onto one phy-

sical link. One common method is synchronous time-division multiplexing (STDM).

The idea of STDM is to divide time into equal-sized quanta and, in a round-robin

L2

L3

R2

R3

L1 R1

Switch 1 Switch 2

Figure 1.5 Multiplexing multiple logical flows over a single physical link.

12 1 Foundation

fashion, give each flow a chance to send its data over the physical link. In other words,

during time quantum 1, data from the first flow is transmitted; during time quantum

2, data from the second flow is transmitted; and so on. This process continues until all

the flows have had a turn, at which time the first flow gets to go again, and the process

repeats. Another method is frequency-

division multiplexing (FDM). The idea of

FDM is to transmit each flow over the phys-

ical link at a different frequency, much the

same way that the signals for different TV

stations are transmitted at a different fre-

quency on a physical cable TV link.

Although simple to understand, both

STDM and FDM are limited in two ways.

First, if one of the flows (host pairs) does not

have any data to send, its share of the phys-

ical link—that is, its time quantum or its

frequency—remains idle, even if one of the

other flows has data to transmit. For com-

puter communication, the amount of time

that a link is idle can be very large—for

example, consider the amount of time you

spend reading a Web page (leaving the link

idle) compared to the time you spend fetch-

ing the page. Second, both STDM and FDM

are limited to situations in which the max-

imum number of flows is fixed and known

ahead of time. It is not practical to resize the

quantum or to add additional quanta in the

case of STDM or to add new frequencies in

the case of FDM.

The form of multiplexing that we

make most use of in this book is called

statistical multiplexing. Although the name

is not all that helpful for understanding

the concept, statistical multiplexing is really

quite simple, with two key ideas. First,

it is like STDM in that the physical link

is shared over time—first data from one

flow is transmitted over the physical link,

SANs, LANs, MANs,

and WANs

One way to characterize networks

is according to their size. Two well-

known examples are LANs (local

area networks) and WANs (wide

area networks); the former typi-

cally extend less than 1 km, while

the latter can be worldwide. Other

networks are classified as MANs

(metropolitan area networks),

which usually span tens of kilome-

ters. The reason such classifications

are interesting is that the size of a

network often has implications for

the underlying technology that can

be used, with a key factor being the

amount of time it takes for data

to propagate from one end of the

network to the other; we discuss

this issue more in later chapters.

An interesting historical note is

that the term “wide area network”

was not applied to the first WANs

because there was no other sort

of network to differentiate them

from. When computers were in-

credibly rare and expensive, there

was no point in thinking about

how to connect all the computers

in the local area—there was only

one computer in that area. Only as

1.2 Requirements 13

then data from another flow is transmitted, and so on. Unlike STDM, however, data is

transmitted from each flow on demand rather than during a predetermined time slot.

Thus, if only one flow has data to send, it gets to transmit that data without waiting

for its quantum to come around and thus without having to watch the quanta assigned

computers began to proliferate did

LANs become necessary, and the

term “WAN” was then introduced

to describe the larger networks that

interconnected geographically dis-

tant computers.

Another kind of network that

we need to be aware of is SANs

(system area networks). SANs are

usually confined to a single room

and connect the various compo-

nents of a large computing sys-

tem. For example, HiPPI (High

Performance Parallel Interface) and

Fiber Channel are two common

SAN technologies used to connect

massively parallel processors to

scalable storage servers and data

vaults. (Because they often connect

computers to storage servers, SANs

are sometimes defined as storage

area networks.) Although this book

does not describe such networks

in detail, they are worth knowing

about because they are often at the

leading edge in terms of perfor-

mance, and because it is increas-

ingly common to connect such net-

works into LANs and WANs.

to the other flows go by unused. It is this

avoidance of idle time that gives packet

switching its efficiency.

As defined so far, however, statistical

multiplexing has no mechanism to ensure

that all the flows eventually get their turn to

transmit over the physical link. That is, once

a flow begins sending data, we need some

way to limit the transmission, so that the

other flows can have a turn. To account for

this need, statistical multiplexing defines an

upper bound on the size of the block of data

that each flow is permitted to transmit at a

given time. This limited-size block of data

is typically referred to as a packet, to distin-

guish it from the arbitrarily large message

that an application program might want

to transmit. Because a packet-switched net-

work limits the maximum size of packets,

a host may not be able to send a com-

plete message in one packet. The source may

need to fragment the message into several

packets, with the receiver reassembling the

packets back into the original message.

In other words, each flow sends a se-

quence of packets over the physical link,

with a decision made on a packet-by-packet

basis as to which flow’s packet to send next.

Notice that if only one flow has data to send,

then it can send a sequence of packets back-

to-back. However, should more than one of

the flows have data to send, then their pack-

ets are interleaved on the link. Figure 1.6

depicts a switch multiplexing packets from

multiple sources onto a single shared link.

14 1 Foundation

…

Figure 1.6 A switch multiplexing packets from multiple sources onto one shared link.

The decision as to which packet to send next on a shared link can be made in a

number of different ways. For example, in a network consisting of switches inter-

connected by links such as the one in Figure 1.5, the decision would be made by

the switch that transmits packets onto the shared link. (As we will see later, not all

packet-switched networks actually involve switches, and they may use other mech-

anisms to determine whose packet goes onto the link next.) Each switch in a packet-

switched network makes this decision independently, on a packet-by-packet basis.

One of the issues that faces a network designer is how to make this decision in a

fair manner. For example, a switch could be designed to service packets on a first-

in-first-out (FIFO) basis. Another approach would be to service the different flows

in a round-robin manner, just as in STDM. This might be done to ensure that cer-

tain flows receive a particular share of the link’s bandwidth, or that they never have

their packets delayed in the switch for more than a certain length of time. A net-

work that allows flows to request such treatment is said to support quality of service

(QoS).

Also, notice in Figure 1.6 that since the switch has to multiplex three incoming

packet streams onto one outgoing link, it is possible that the switch will receive packets

faster than the shared link can accommodate. In this case, the switch is forced to buffer

these packets in its memory. Should a switch receive packets faster than it can send them

for an extended period of time, then the switch will eventually run out of buffer space,

and some packets will have to be dropped. When a switch is operating in this state,

it is said to be congested.

1.2 Requirements 15

◮ The bottom line is that statistical multiplexing defines a cost-effective way for

multiple users (e.g., host-to-host flows of data) to share network resources (links and

nodes) in a fine-grained manner. It defines the packet as the granularity with which the

links of the network are allocated to different flows, with each switch able to schedule

the use of the physical links it is connected to on a per-packet basis. Fairly allocating

link capacity to different flows and dealing with congestion when it occurs are the key

challenges of statistical multiplexing.

1.2.3 Support for Common Services

While the previous section outlined the challenges involved in providing cost-effective

connectivity among a group of hosts, it is overly simplistic to view a computer network

as simply delivering packets among a collection of computers. It is more accurate to

think of a network as providing the means for a set of application processes that are

distributed over those computers to communicate. In other words, the next require-

ment of a computer network is that the application programs running on the hosts

connected to the network must be able to communicate in a meaningful way.

When two application programs need to communicate with each other, there

are a lot of complicated things that need to happen beyond simply sending a mes-

sage from one host to another. One option would be for application designers to

build all that complicated functionality into each application program. However, since

many applications need common services, it is much more logical to implement those

common services once and then to let the application designer build the application

using those services. The challenge for a network designer is to identify the right set

of common services. The goal is to hide the complexity of the network from the ap-

plication without overly constraining the application designer.

Intuitively, we view the network as providing logical channels over which

application-level processes can communicate with each other; each channel provides

the set of services required by that application. In other words, just as we use a cloud

to abstractly represent connectivity among a set of computers, we now think of a chan-

nel as connecting one process to another. Figure 1.7 shows a pair of application-level

processes communicating over a logical channel that is, in turn, implemented on top

of a cloud that connects a set of hosts. We can think of the channel as being like a

pipe connecting two applications, so that a sending application can put data in one

end and expect that data to be delivered by the network to the application at the other

end of the pipe.

The challenge is to recognize what functionality the channels should provide

to application programs. For example, does the application require a guarantee that

16 1 Foundation

Host

HostHost

Channel

Application

Host

Application

Host

Figure 1.7 Processes communicating over an abstract channel.

messages sent over the channel are delivered, or is it acceptable if some messages fail to

arrive? Is it necessary that messages arrive at the recipient process in the same order in

which they are sent, or does the recipient not care about the order in which messages

arrive? Does the network need to ensure that no third parties are able to eavesdrop

on the channel, or is privacy not a concern? In general, a network provides a variety

of different types of channels, with each application selecting the type that best meets

its needs. The rest of this section illustrates the thinking involved in defining useful

channels.

Identifying Common Communication Patterns

Designing abstract channels involves first understanding the communication needs

of a representative collection of applications, then extracting their common commu-

nication requirements, and finally incorporating the functionality that meets these

requirements in the network.

One of the earliest applications supported on any network is a file access pro-

gram like FTP (File Transfer Protocol) or NFS (Network File System). Although many

details vary—for example, whether whole files are transferred across the network or

only single blocks of the file are read/written at a given time—the communication

1.2 Requirements 17

component of remote file access is characterized by a pair of processes, one that re-

quests that a file be read or written and a second process that honors this request. The

process that requests access to the file is called the client, and the process that supports

access to the file is called the server.

Reading a file involves the client sending a small request message to a server and

the server responding with a large message that contains the data in the file. Writing

works in the opposite way—the client sends a large message containing the data to be

written to the server, and the server responds with a small message confirming that the

write to disk has taken place. A digital library, as exemplified by the World Wide Web,

is another application that behaves in a similar way: A client process makes a request,

and a server process responds by returning the requested data.

Using file access, a digital library, and the two video applications described in the

introduction (videoconferencing and video-on-demand) as a representative sample, we

might decide to provide the following two types of channels: request/reply channels

and message stream channels. The request/reply channel would be used by the file

transfer and digital library applications. It would guarantee that every message sent

by one side is received by the other side and that only one copy of each message is

delivered. The request/reply channel might also protect the privacy and integrity of the

data that flows over it, so that unauthorized parties cannot read or modify the data

being exchanged between the client and server processes.

The message stream channel could be used by both the video-on-demand and

videoconferencing applications, provided it is parameterized to support both one-way

and two-way traffic and to support different delay properties. The message stream

channel might not need to guarantee that all messages are delivered, since a video appli-

cation can operate adequately even if some frames are not received. It would, however,

need to ensure that those messages that are delivered arrive in the same order in which

they were sent, to avoid displaying frames out of sequence. Like the request/reply

channel, the message stream channel might want to ensure the privacy and integrity of

the video data. Finally, the message stream channel might need to support multicast,

so that multiple parties can participate in the teleconference or view the video.

While it is common for a network designer to strive for the smallest number

of abstract channel types that can serve the largest number of applications, there is

a danger in trying to get away with too few channel abstractions. Simply stated, if

you have a hammer, then everything looks like a nail. For example, if all you have

are message stream and request/reply channels, then it is tempting to use them for the

next application that comes along, even if neither type provides exactly the semantics

needed by the application. Thus, network designers will probably be inventing new

types of channels—and adding options to existing channels—for as long as application

programmers are inventing new applications.

18 1 Foundation

Also note that independent of exactly what functionality a given channel pro-

vides, there is the question of where that functionality is implemented. In many cases,

it is easiest to view the host-to-host connectivity of the underlying network as simply

providing a bit pipe, with any high-level communication semantics provided at the

end hosts. The advantage of this approach is it keeps the switches in the middle of the

network as simple as possible—they simply forward packets—but it requires the end

hosts to take on much of the burden of supporting semantically rich process-to-process

channels. The alternative is to push additional functionality onto the switches, thereby

allowing the end hosts to be “dumb” devices (e.g., telephone handsets). We will see this

question of how various network services are partitioned between the packet switches

and the end hosts (devices) as a reoccurring issue in network design.

Reliability

As suggested by the examples just considered, reliable message delivery is one of the

most important functions that a network can provide. It is difficult to determine how

to provide this reliability, however, without first understanding how networks can fail.

The first thing to recognize is that computer networks do not exist in a perfect world.

Machines crash and later are rebooted, fibers are cut, electrical interference corrupts

bits in the data being transmitted, switches run out of buffer space, and if these sorts

of physical problems aren’t enough to worry about, the software that manages the

hardware sometimes forwards packets into oblivion. Thus, a major requirement of a

network is to mask (hide) certain kinds of failures, so as to make the network appear

more reliable than it really is to the application programs using it.

There are three general classes of failure that network designers have to worry

about. First, as a packet is transmitted over a physical link, bit errors may be introduced

into the data; that is, a 1 is turned into a 0 or vice versa. Sometimes single bits are

corrupted, but more often than not, a burst error occurs—several consecutive bits are

corrupted. Bit errors typically occur because outside forces, such as lightning strikes,

power surges, and microwave ovens, interfere with the transmission of data. The good

news is that such bit errors are fairly rare, affecting on average only one out of every

106 to 107 bits on a typical copper-based cable and one out of every 1012 to 1014

bits on a typical optical fiber. As we will see, there are techniques that detect these bit

errors with high probability. Once detected, it is sometimes possible to correct for such

errors—if we know which bit or bits are corrupted, we can simply flip them—while

in other cases the damage is so bad that it is necessary to discard the entire packet. In

such a case, the sender may be expected to retransmit the packet.

The second class of failure is at the packet, rather than the bit, level; that is, a

complete packet is lost by the network. One reason this can happen is that the packet

contains an uncorrectable bit error and therefore has to be discarded. A more likely

1.3 Network Architecture 19

reason, however, is that one of the nodes that has to handle the packet—for example,

a switch that is forwarding it from one link to another—is so overloaded that it has

no place to store the packet, and therefore is forced to drop it. This is the problem of

congestion mentioned in Section 1.2.2. Less commonly, the software running on one of

the nodes that handles the packet makes a mistake. For example, it might incorrectly

forward a packet out on the wrong link, so that the packet never finds its way to the

ultimate destination. As we will see, one of the main difficulties in dealing with lost

packets is distinguishing between a packet that is indeed lost and one that is merely

late in arriving at the destination.

The third class of failure is at the node and link level; that is, a physical link is cut,

or the computer it is connected to crashes. This can be caused by software that crashes,

a power failure, or a reckless backhoe operator. While such failures can eventually be

corrected, they can have a dramatic effect on the network for an extended period of

time. However, they need not totally disable the network. In a packet-switched net-

work, for example, it is sometimes possible to route around a failed node or link. One of

the difficulties in dealing with this third class of failure is distinguishing between a failed

computer and one that is merely slow, or in the case of a link, between one that has been

cut and one that is very flaky and therefore introducing a high number of bit errors.

◮ The key idea to take away from this discussion is that defining useful chan-

nels involves both understanding the applications’ requirements and recognizing the

limitations of the underlying technology. The challenge is to fill in the gap between

what the application expects and what the underlying technology can provide. This is

sometimes called the semantic gap.

1.3 Network Architecture

In case you hadn’t noticed, the previous section established a pretty substantial set of

requirements for network design—a computer network must provide general, cost-

effective, fair, and robust connectivity among a large number of computers. As if this

weren’t enough, networks do not remain fixed at any single point in time, but must

evolve to accommodate changes in both the underlying technologies upon which they

are based as well as changes in the demands placed on them by application programs.

Designing a network to meet these requirements is no small task.

To help deal with this complexity, network designers have developed general

blueprints—usually called a network architecture—that guide the design and imple-

mentation of networks. This section defines more carefully what we mean by a network

architecture by introducing the central ideas that are common to all network archi-

tectures. It also introduces two of the most widely referenced architectures—the OSI

architecture and the Internet architecture.

20 1 Foundation

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Figure 1.8 Example of a layered network system.

1.3.1 Layering and Protocols

When the system gets complex, the system designer introduces another level of ab-

straction. The idea of an abstraction is to define a unifying model that can capture

some important aspect of the system, encapsulate this model in an object that provides

an interface that can be manipulated by other components of the system, and hide the

details of how the object is implemented from the users of the object. The challenge

is to identify abstractions that simultaneously provide a service that proves useful in a

large number of situations and that can be efficiently implemented in the underlying

system. This is exactly what we were doing when we introduced the idea of a channel

in the previous section: We were providing an abstraction for applications that hides

the complexity of the network from application writers.

Abstractions naturally lead to layering, especially in network systems. The gen-

eral idea is that you start with the services offered by the underlying hardware, and

then add a sequence of layers, each providing a higher (more abstract) level of ser-

vice. The services provided at the high layers are implemented in terms of the services

provided by the low layers. Drawing on the discussion of requirements given in the

previous section, for example, we might imagine a network as having two layers of

abstraction sandwiched between the application program and the underlying hard-

ware, as illustrated in Figure 1.8. The layer immediately above the hardware in this

case might provide host-to-host connectivity, abstracting away the fact that there may

be an arbitrarily complex network topology between any two hosts. The next layer up

builds on the available host-to-host communication service and provides support for

process-to-process channels, abstracting away the fact that the network occasionally

loses messages, for example.

Layering provides two nice features. First, it decomposes the problem of building

a network into more manageable components. Rather than implementing a monolithic

piece of software that does everything you will ever want, you can implement several

layers, each of which solves one part of the problem. Second, it provides a more mod-

ular design. If you decide that you want to add some new service, you may only need

1.3 Network Architecture 21

Hardware

Host-to-host connectivity

Request/reply
channel

Message stream
channel

Application programs

Figure 1.9 Layered system with alternative abstractions available at a given layer.

to modify the functionality at one layer, reusing the functions provided at all the other

layers.

Thinking of a system as a linear sequence of layers is an oversimplification,

however. Many times there are multiple abstractions provided at any given level of

the system, each providing a different service to the higher layers but building on the

same low-level abstractions. To see this, consider the two types of channels discussed

in Section 1.2.3: One provides a request/reply service, and one supports a message

stream service. These two channels might be alternative offerings at some level of a

multilevel networking system, as illustrated in Figure 1.9.

Using this discussion of layering as a foundation, we are now ready to discuss the

architecture of a network more precisely. For starters, the abstract objects that make

up the layers of a network system are called protocols. That is, a protocol provides

a communication service that higher-level objects (such as application processes, or

perhaps higher-level protocols) use to exchange messages. For example, we could imag-

ine a network that supports a request/reply protocol and a message stream protocol,

corresponding to the request/reply and message stream channels discussed above.

Each protocol defines two different interfaces. First, it defines a service inter-

face to the other objects on the same computer that want to use its communication

services. This service interface defines the operations that local objects can perform

on the protocol. For example, a request/reply protocol would support operations by

which an application can send and receive messages. Second, a protocol defines a peer

interface to its counterpart (peer) on another machine. This second interface defines

the form and meaning of messages exchanged between protocol peers to implement

the communication service. This would determine the way in which a request/reply

protocol on one machine communicates with its peer on another machine. In other

words, a protocol defines a communication service that it exports locally, along with

a set of rules governing the messages that the protocol exchanges with its peer(s) to

implement this service. This situation is illustrated in Figure 1.10.

22 1 Foundation

Host 1 Host 2

Service
interface

Peer-to-peer
interface

High-level
object

High-level
object

Protocol Protocol

Figure 1.10 Service and peer interfaces.

Except at the hardware level where peers directly communicate with each other

over a link, peer-to-peer communication is indirect—each protocol communicates with

its peer by passing messages to some lower-level protocol, which in turn delivers the

message to its peer. In addition, there are potentially multiple protocols at any given

level, each providing a different communication service. We therefore represent the

suite of protocols that make up a network system with a protocol graph. The nodes of

the graph correspond to protocols, and the edges represent a depends-on relation. For

example, Figure 1.11 illustrates a protocol graph for the hypothetical layered system

we have been discussing—protocols RRP (Request/Reply Protocol) and MSP (Mes-

sage Stream Protocol) implement two different types of process-to-process channels,

and both depend on HHP (Host-to-Host Protocol), which provides a host-to-host

connectivity service.

In this example, suppose that the file access program on host 1 wants to send

a message to its peer on host 2 using the communication service offered by protocol

RRP. In this case, the file application asks RRP to send the message on its behalf.

To communicate with its peer, RRP then invokes the services of HHP, which in turn

transmits the message to its peer on the other machine. Once the message has arrived

at protocol HHP on host 2, HHP passes the message up to RRP, which in turn delivers

the message to the file application. In this particular case, the application is said to

employ the services of the protocol stack RRP/HHP.

Note that the term protocol is used in two different ways. Sometimes it refers to

the abstract interfaces—that is, the operations defined by the service interface and the

form and meaning of messages exchanged between peers—and sometimes it refers to

the module that actually implements these two interfaces. To distinguish between the

1.3 Network Architecture 23

Host 1

RRP MSP

HHP

Host 2

RRP MSP

HHP

File
application

Digital
library

application

Video
application

File
application

Digital
library

application

Video
application

Figure 1.11 Example of a protocol graph.

interfaces and the module that implements these interfaces, we generally refer to the

former as a protocol specification. Specifications are generally expressed using a combi-

nation of prose, pseudocode, state transition diagrams, pictures of packet formats, and

other abstract notations. It should be the case that a given protocol can be implemented

in different ways by different programmers, as long as each adheres to the specification.

The challenge is ensuring that two different implementations of the same specification

can successfully exchange messages. Two or more protocol modules that do accurately

implement a protocol specification are said to interoperate with each other.

We can imagine many different protocols and protocol graphs that satisfy the

communication requirements of a collection of applications. Fortunately, there exist

standardization bodies, such as the International Standards Organization (ISO) and

the Internet Engineering Task Force (IETF), that establish policies for a particular pro-

tocol graph. We call the set of rules governing the form and content of a protocol

graph a network architecture. Although beyond the scope of this book, standardiza-

tion bodies such as the ISO and the IETF have established well-defined procedures for

24 1 Foundation

introducing, validating, and finally approving protocols in their respective architec-

tures. We briefly describe the architectures defined by the ISO and the IETF shortly,

but first there are two additional things we need to explain about the mechanics of a

protocol graph.

Encapsulation

Consider what happens in Figure 1.11 when one of the application programs sends a

message to its peer by passing the message to protocol RRP. From RRP’s perspective,

the message it is given by the application is an uninterpreted string of bytes. RRP does

not care that these bytes represent an array of integers, an email message, a digital

image, or whatever; it is simply charged with sending them to its peer. However, RRP

must communicate control information to its peer, instructing it how to handle the

message when it is received. RRP does this by attaching a header to the message.

Generally speaking, a header is a small data structure—from a few bytes to a few

dozen bytes—that is used among peers to communicate with each other. As the name

suggests, headers are usually attached to the front of a message. In some cases, however,

this peer-to-peer control information is sent at the end of the message, in which case

it is called a trailer. The exact format for the header attached by RRP is defined by

its protocol specification. The rest of the message—that is, the data being transmitted

on behalf of the application—is called the message’s body or payload. We say that the

application’s data is encapsulated in the new message created by protocol RRP.

This process of encapsulation is then repeated at each level of the protocol graph;

for example, HHP encapsulates RRP’s message by attaching a header of its own. If we

now assume that HHP sends the message to its peer over some network, then when the

message arrives at the destination host, it is processed in the opposite order: HHP first

strips its header off the front of the message, interprets it (i.e., takes whatever action

is appropriate given the contents of the header), and passes the body of the message

up to RRP, which removes the header that its peer attached, takes whatever action

is indicated by that header, and passes the body of the message up to the application

program. The message passed up from RRP to the application on host 2 is exactly the

same message as the application passed down to RRP on host 1; the application does

not see any of the headers that have been attached to it to implement the lower-level

communication services. This whole process is illustrated in Figure 1.12. Note that in

this example, nodes in the network (e.g., switches and routers) may inspect the HHP

header at the front of the message.

Note that when we say a low-level protocol does not interpret the message it is

given by some high-level protocol, we mean that it does not know how to extract any

meaning from the data contained in the message. It is sometimes the case, however,

that the low-level protocol applies some simple transformation to the data it is given,

such as to compress or encrypt it. In this case, the protocol is transforming the entire

1.3 Network Architecture 25

Host 1 Host 2

Application
program

Application
program

RRP

Data Data

HHP

RRP

HHP

Application
program

Application
program

RRP Data RRP Data

HHP RRP Data

Figure 1.12 High-level messages are encapsulated inside of low-level messages.

body of the message, including both the original application’s data and all the headers

attached to that data by higher-level protocols.

Multiplexing and Demultiplexing

Recall from Section 1.2.2 that a fundamental idea of packet switching is to multiplex

multiple flows of data over a single physical link. This same idea applies up and down

the protocol graph, not just to switching nodes. In Figure 1.11, for example, we can

think of RRP as implementing a logical communication channel, with messages from

two different applications multiplexed over this channel at the source host and then

demultiplexed back to the appropriate application at the destination host.

Practically speaking, all this means is that the header that RRP attaches to its

messages contains an identifier that records the application to which the message

belongs. We call this identifier RRP’s demultiplexing key, or demux key for short.

At the source host, RRP includes the appropriate demux key in its header. When the

message is delivered to RRP on the destination host, it strips its header, examines the

demux key, and demultiplexes the message to the correct application.

26 1 Foundation

RRP is not unique in its support for multiplexing; nearly every protocol imple-

ments this mechanism. For example, HHP has its own demux key to determine which

messages to pass up to RRP and which to pass up to MSP. However, there is no uniform

agreement among protocols—even those within a single network architecture—on ex-

actly what constitutes a demux key. Some protocols use an 8-bit field (meaning they can

support only 256 high-level protocols), and others use 16- or 32-bit fields. Also, some

protocols have a single demultiplexing field in their header, while others have a pair of

demultiplexing fields. In the former case, the same demux key is used on both sides of

the communication, while in the latter case, each side uses a different key to identify the

high-level protocol (or application program) to which the message is to be delivered.

1.3.2 OSI Architecture

The ISO was one of the first organizations to formally define a common way to connect

computers. Their architecture, called the Open Systems Interconnection (OSI) architec-

ture and illustrated in Figure 1.13, defines a partitioning of network functionality into

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Figure 1.13 OSI network architecture.

1.3 Network Architecture 27

seven layers, where one or more protocols implement the functionality assigned to a

given layer. In this sense, the schematic given in Figure 1.13 is not a protocol graph, per

se, but rather a reference model for a protocol graph. The ISO, usually in conjunction

with a second standards organization known as the International Telecommunications

Union (ITU),1 publishes a series of protocol specifications based on the OSI archi-

tecture. This series is sometimes called the “X dot” series since the protocols are given

names like X.25, X.400, X.500, and so on. There have been several networks based on

these standards, including the public X.25 network and private networks like Tymnet.

Starting at the bottom and working up, the physical layer handles the transmis-

sion of raw bits over a communications link. The data link layer then collects a stream

of bits into a larger aggregate called a frame. Network adaptors, along with device

drivers running in the node’s OS, typically implement the data link level. This means

that frames, not raw bits, are actually delivered to hosts. The network layer handles

routing among nodes within a packet-switched network. At this layer, the unit of data

exchanged among nodes is typically called a packet rather than a frame, although

they are fundamentally the same thing. The lower three layers are implemented on all

network nodes, including switches within the network and hosts connected along the

exterior of the network. The transport layer then implements what we have up to this

point been calling a process-to-process channel. Here, the unit of data exchanged is

commonly called a message rather than a packet or a frame. The transport layer and

higher layers typically run only on the end hosts and not on the intermediate switches

or routers.

There is less agreement about the definition of the top three layers. Skipping

ahead to the top (seventh) layer, we find the application layer. Application layer pro-

tocols include things like the File Transfer Protocol (FTP), which defines a protocol by

which file transfer applications can interoperate. Below that, the presentation layer is

concerned with the format of data exchanged between peers, for example, whether an

integer is 16, 32, or 64 bits long and whether the most significant bit is transmitted

first or last, or how a video stream is formatted. Finally, the session layer provides a

name space that is used to tie together the potentially different transport streams that

are part of a single application. For example, it might manage an audio stream and a

video stream that are being combined in a teleconferencing application.

1.3.3 Internet Architecture

The Internet architecture, which is also sometimes called the TCP/IP architecture after

its two main protocols, is depicted in Figure 1.14. An alternative representation is given

in Figure 1.15. The Internet architecture evolved out of experiences with an earlier

1A subcommittee of the ITU on telecommunications (ITU-T) replaces an earlier subcommittee of the ITU, which
was known by its French name, Comité Consultatif International de Télégraphique et Téléphonique (CCITT).

28 1 Foundation

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

Figure 1.14 Internet protocol graph.

TCP UDP

IP

Network

Application

Figure 1.15 Alternative view of the Internet architecture.

packet-switched network called the ARPANET. Both the Internet and the ARPANET

were funded by the Advanced Research Projects Agency (ARPA), one of the R&D

funding agencies of the U.S. Department of Defense. The Internet and ARPANET

were around before the OSI architecture, and the experience gained from building

them was a major influence on the OSI reference model.

While the seven-layer OSI model can, with some imagination, be applied to the

Internet, a four-layer model is often used instead. At the lowest level are a wide variety

of network protocols, denoted NET1, NET2, and so on. In practice, these protocols

are implemented by a combination of hardware (e.g., a network adaptor) and soft-

ware (e.g., a network device driver). For example, you might find Ethernet or Fiber

Distributed Data Interface (FDDI) protocols at this layer. (These protocols in turn

may actually involve several sublayers, but the Internet architecture does not presume

anything about them.) The second layer consists of a single protocol—the Internet

Protocol (IP). This is the protocol that supports the interconnection of multiple net-

working technologies into a single, logical internetwork. The third layer contains two

main protocols—the Transmission Control Protocol (TCP) and the User Datagram

Protocol (UDP). TCP and UDP provide alternative logical channels to application

1.3 Network Architecture 29

programs: TCP provides a reliable byte-stream channel, and UDP provides an un-

reliable datagram delivery channel (datagram may be thought of as a synonym for

message). In the language of the Internet, TCP and UDP are sometimes called end-to-

end protocols, although it is equally correct to refer to them as transport protocols.

Running above the transport layer are a range of application protocols, such as

FTP, TFTP (Trivial File Transport Protocol), Telnet (remote login), and SMTP (Simple

Mail Transfer Protocol, or electronic mail), that enable the interoperation of popular

applications. To understand the difference between an application layer protocol and

an application, think of all the different World Wide Web browsers that are available

(e.g., Mosaic, Netscape, Internet Explorer, Lynx, etc.). There are a similarly large

number of different implementations of Web servers. The reason that you can use any

one of these application programs to access a particular site on the Web is because

they all conform to the same application layer protocol: HTTP (HyperText Transport

Protocol). Confusingly, the same word sometimes applies to both an application and

the application layer protocol that it uses (e.g., FTP).

The Internet architecture has three features that are worth highlighting. First, as

best illustrated by Figure 1.15, the Internet architecture does not imply strict layering.

The application is free to bypass the defined transport layers and to directly use IP or

one of the underlying networks. In fact, programmers are free to define new channel

abstractions or applications that run on top of any of the existing protocols.

Second, if you look closely at the protocol graph in Figure 1.14, you will notice

an hourglass shape—wide at the top, narrow in the middle, and wide at the bottom.

This shape actually reflects the central philosophy of the architecture. That is, IP serves

as the focal point for the architecture—it defines a common method for exchanging

packets among a wide collection of networks. Above IP can be arbitrarily many trans-

port protocols, each offering a different channel abstraction to application programs.

Thus, the issue of delivering messages from host to host is completely separated from

the issue of providing a useful process-to-process communication service. Below IP,

the architecture allows for arbitrarily many different network technologies, ranging

from Ethernet to FDDI to ATM to single point-to-point links.

A final attribute of the Internet architecture (or more accurately, of the IETF

culture) is that in order for someone to propose a new protocol to be included in the

architecture, they must produce both a protocol specification and at least one (and

preferably two) representative implementations of the specification. The existence of

working implementations is required for standards to be adopted by the IETF. This

cultural assumption of the design community helps to ensure that the architecture’s

protocols can be efficiently implemented. Perhaps the value the Internet culture places

on working software is best exemplified by a quote on T-shirts commonly worn at

IETF meetings:

30 1 Foundation

We reject kings, presidents, and voting. We believe in rough consensus and running
code.

(Dave Clark)

◮ Of these three attributes of the Internet architecture, the hourglass design philos-

ophy is important enough to bear repeating. The hourglass’s narrow waist represents

a minimal and carefully chosen set of global capabilities that allows both higher-level

applications and lower-level communication technologies to coexist, share capabili-

ties, and evolve rapidly. The narrow-waisted model is critical to the Internet’s ability

to adapt rapidly to new user demands and changing technologies.

1.4 Implementing Network Software

Network architectures and protocol specifications are essential things, but a good

blueprint is not enough to explain the phenomenal success of the Internet: The number

of computers connected to the Internet has been doubling every year since 1981 and is

now approaching 200 million; the number of people who use the Internet is estimated

at well over 600 million; and it is believed that the number of bits transmitted over the

Internet surpassed the corresponding figure for the voice phone system sometime in

2001.

What explains the success of the Internet? There are certainly many contributing

factors (including a good architecture), but one thing that has made the Internet such

a runaway success is the fact that so much of its functionality is provided by software

running in general-purpose computers. The significance of this is that new function-

ality can be added readily with “just a small matter of programming.” As a result,

new applications and services—electronic commerce, videoconferencing, and packet

telephony, to name a few—have been showing up at a phenomenal pace.

A related factor is the massive increase in computing power available in commod-

ity machines. Although computer networks have always been capable in principle of

transporting any kind of information, such as digital voice samples, digitized images,

and so on, this potential was not particularly interesting if the computers sending and

receiving that data were too slow to do anything useful with the information. Virtually

all of today’s computers are capable of playing back digitized voice at full speed and can

display video at a speed and resolution that is useful for some (but by no means all)

applications. Thus, today’s networks have begun to support multimedia, and their

support for it will only improve as computing hardware becomes faster.

The point to take away from this is that knowing how to implement network

software is an essential part of understanding computer networks. With this in mind,

this section first introduces some of the issues involved in implementing an application

program on top of a network, and then goes on to identify the issues involved in

1.4 Implementing Network Software 31

implementing the protocols running within the network. In many respects, network

applications and network protocols are very similar—the way an application engages

the services of the network is pretty much the same as the way a high-level protocol

invokes the services of a low-level protocol. As we will see later in the section, however,

there are a couple of important differences.

1.4.1 Application Programming Interface (Sockets)

The place to start when implementing a network application is the interface exported

by the network. Since most network protocols are implemented in software (espe-

cially those high in the protocol stack), and nearly all computer systems implement

their network protocols as part of the operating system, when we refer to the inter-

face “exported by the network,” we are generally referring to the interface that the

OS provides to its networking subsystem. This interface is often called the network

application programming interface (API).

Although each operating system is free to define its own network API (and most

have), over time certain of these APIs have become widely supported; that is, they

have been ported to operating systems other than their native system. This is what has

happened with the socket interface originally provided by the Berkeley distribution of

Unix, which is now supported in virtually all popular operating systems. The advantage

of industrywide support for a single API is that applications can be easily ported from

one OS to another. It is important to keep in mind, however, that application programs

typically interact with many parts of the OS other than the network; for example, they

read and write files, fork concurrent processes, and output to the graphical display.

Just because two systems support the same network API does not mean that their

file system, process, or graphic interfaces are the same. Still, understanding a widely

adopted API like Unix sockets gives us a good place to start.

Before describing the socket interface, it is important to keep two concerns sep-

arate in your mind. Each protocol provides a certain set of services, and the API

provides a syntax by which those services can be invoked in this particular OS.

The implementation is then responsible for mapping the tangible set of operations

and objects defined by the API onto the abstract set of services defined by the pro-

tocol. If you have done a good job of defining the interface, then it will be possible

to use the syntax of the interface to invoke the services of many different protocols.

Such generality was certainly a goal of the socket interface, although it’s far from

perfect.

The main abstraction of the socket interface, not surprisingly, is the socket. A

good way to think of a socket is as the point where a local application process attaches

to the network. The interface defines operations for creating a socket, attaching the

socket to the network, sending/receiving messages through the socket, and closing the

32 1 Foundation

socket. To simplify the discussion, we will limit ourselves to showing how sockets are

used with TCP.

The first step is to create a socket, which is done with the following operation:

int socket(int domain, int type, int protocol)

The reason that this operation takes three arguments is that the socket interface was

designed to be general enough to support any underlying protocol suite. Specifically, the

domain argument specifies the protocol family that is going to be used: PF INET denotes

the Internet family, PF UNIX denotes the Unix pipe facility, and PF PACKET denotes

direct access to the network interface (i.e., it bypasses the TCP/IP protocol stack). The

type argument indicates the semantics of the communication. SOCK STREAM is used to

denote a byte stream. SOCK DGRAM is an alternative that denotes a message-oriented

service, such as that provided by UDP. The protocol argument identifies the specific

protocol that is going to be used. In our case, this argument is UNSPEC because the

combination of PF INET and SOCK STREAM implies TCP. Finally, the return value from

socket is a handle for the newly created socket, that is, an identifier by which we can

refer to the socket in the future. It is given as an argument to subsequent operations

on this socket.

The next step depends on whether you are a client or a server. On a server

machine, the application process performs a passive open—the server says that it is

prepared to accept connections, but it does not actually establish a connection. The

server does this by invoking the following three operations:

int bind(int socket, struct sockaddr *address, int addr len)

int listen(int socket, int backlog)

int accept(int socket, struct sockaddr *address, int *addr len)

The bind operation, as its name suggests, binds the newly created socket to the

specified address. This is the network address of the local participant—the server. Note

that, when used with the Internet protocols, address is a data structure that includes

both the IP address of the server and a TCP port number. (As we will see in Chapter 5,

ports are used to indirectly identify processes. They are a form of demux keys as de-

fined in Section 1.3.1.) The port number is usually some well-known number specific

to the service being offered; for example, Web servers commonly accept connections

on port 80.

The listen operation then defines how many connections can be pending on

the specified socket. Finally, the accept operation carries out the passive open. It is

a blocking operation that does not return until a remote participant has established

a connection, and when it does complete, it returns a new socket that corresponds

to this just-established connection, and the address argument contains the remote

1.4 Implementing Network Software 33

participant’s address. Note that when accept returns, the original socket that was

given as an argument still exists and still corresponds to the passive open; it is used in

future invocations of accept.

On the client machine, the application process performs an active open; that is,

it says who it wants to communicate with by invoking the following single operation:

int connect(int socket, struct sockaddr *address, int addr len)

This operation does not return until TCP has successfully established a connection, at

which time the application is free to begin sending data. In this case, address contains

the remote participant’s address. In practice, the client usually specifies only the remote

participant’s address and lets the system fill in the local information. Whereas a server

usually listens for messages on a well-known port, a client typically does not care

which port it uses for itself; the OS simply selects an unused one.

Once a connection is established, the application processes invoke the following

two operations to send and receive data:

int send(int socket, char *message, int msg len, int flags)

int recv(int socket, char *buffer, int buf len, int flags)

The first operation sends the given message over the specified socket, while the second

operation receives a message from the specified socket into the given buffer. Both

operations take a set of flags that control certain details of the operation.

1.4.2 Example Application

We now show the implementation of a simple client/server program that uses the socket

interface to send messages over a TCP connection. The program also uses other Unix

networking utilities, which we introduce as we go. Our application allows a user on

one machine to type in and send text to a user on another machine. It is a simplified

version of the Unix talk program, which is similar to the program at the core of a Web

chat room.

Client

We start with the client side, which takes the name of the remote machine as an

argument. It calls the Unix utility gethostbyname to translate this name into the remote

host’s IP address. The next step is to construct the address data structure (sin) expected

by the socket interface. Notice that this data structure specifies that we’ll be using the

socket to connect to the Internet (AF INET). In our example, we use TCP port 5432

as the well-known server port; this happens to be a port that has not been assigned to

any other Internet service. The final step in setting up the connection is to call socket

and connect. Once the connect operation returns, the connection is established and the

34 1 Foundation

client program enters its main loop, which reads text from standard input and sends

it over the socket.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define SERVER_PORT 5432
#define MAX_LINE 256

int
main(int argc, char * argv[])
{
FILE *fp;
struct hostent *hp;
struct sockaddr_in sin;
char *host;
char buf[MAX_LINE];
int s;
int len;

if (argc==2) {
host = argv[1];

}
else {
fprintf(stderr, "usage: simplex-talk host\n");
exit(1);

}

/* translate host name into peer's IP address */
hp = gethostbyname(host);
if (!hp) {
fprintf(stderr, "simplex-talk: unknown host: %s\n", host);
exit(1);

}

/* build address data structure */
bzero((char *)&sin, sizeof(sin));
sin.sin_family = AF_INET;
bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);
sin.sin_port = htons(SERVER_PORT);

/* active open */
if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("simplex-talk: socket");
exit(1);

1.4 Implementing Network Software 35

}
if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0) {
perror("simplex-talk: connect");
close(s);
exit(1);

}
/* main loop: get and send lines of text */
while (fgets(buf, sizeof(buf), stdin)) {
buf[MAX_LINE-1] = '\0';
len = strlen(buf) + 1;
send(s, buf, len, 0);

}
}

Server

The server is equally simple. It first constructs the address data structure by filling in

its own port number (SERVER PORT). By not specifying an IP address, the application

program is willing to accept connections on any of the local host’s IP addresses. Next,

the server performs the preliminary steps involved in a passive open: creates the socket,

binds it to the local address, and sets the maximum number of pending connections

to be allowed. Finally, the main loop waits for a remote host to try to connect, and

when one does, receives and prints out the characters that arrive on the connection.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define SERVER_PORT 5432
#define MAX_PENDING 5
#define MAX_LINE 256

int
main()
{
struct sockaddr_in sin;
char buf[MAX_LINE];
int len;
int s, new_s;

/* build address data structure */
bzero((char *)&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(SERVER_PORT);

36 1 Foundation

/* setup passive open */
if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("simplex-talk: socket");
exit(1);

}
if ((bind(s, (struct sockaddr *)&sin, sizeof(sin))) < 0) {
perror("simplex-talk: bind");
exit(1);

}
listen(s, MAX_PENDING);

/* wait for connection, then receive and print text */
while(1) {

if ((new_s = accept(s, (struct sockaddr *)&sin, &len)) < 0){

perror("simplex-talk: accept");
exit(1);
}
while (len = recv(new_s, buf, sizeof(buf), 0))
fputs(buf, stdout);

close(new_s);
}

}

1.4.3 Protocol Implementation Issues

As mentioned at the beginning of this section, the way application programs interact

with the underlying network is similar to the way a high-level protocol interacts with

a low-level protocol. For example, TCP needs an interface to send outgoing messages

to IP, and IP needs to be able to deliver incoming messages to TCP. This is exactly the

service interface introduced in Section 1.3.1.

Since we already have a network API (e.g., sockets), we might be tempted to use

this same interface between every pair of protocols in the protocol stack. Although

certainly an option, in practice the socket interface is not used in this way. The reason

is that there are inefficiencies built into the socket interface that protocol implementers

are not willing to tolerate. Application programmers tolerate them because they sim-

plify their programming task and because the inefficiency only has to be tolerated once,

but protocol implementers are often obsessed with performance and must worry about

getting a message through several layers of protocols. The rest of this section discusses

the two primary differences between the network API and the protocol-to-protocol

interface found lower in the protocol graph.

Process Model

Most operating systems provide an abstraction called a process, or alternatively, a

thread. Each process runs largely independently of other processes, and the OS is

1.4 Implementing Network Software 37

(a) (b)

Figure 1.16 Alternative process models: (a) process-per-protocol; (b) process-per-
message.

responsible for making sure that resources, such as address space and CPU cycles,

are allocated to all the current processes. The process abstraction makes it fairly

straightforward to have a lot of things executing concurrently on one machine; for

example, each user application might execute in its own process, and various things

inside the OS might execute as other processes. When the OS stops one process from

executing on the CPU and starts up another one, we call the change a context switch.

When designing the network subsystem, one of the first questions to answer

is, “Where are the processes?” There are essentially two choices, as illustrated in

Figure 1.16. In the first, which we call the process-per-protocol model, each protocol

is implemented by a separate process. This means that as a message moves up or down

the protocol stack, it is passed from one process/protocol to another—the process that

implements protocol i processes the message, then passes it to protocol i − 1, and so

on. How one process/protocol passes a message to the next process/protocol depends

on the support the host OS provides for interprocess communication. Typically, there

is a simple mechanism for enqueuing a message with a process. The important point,

however, is that a context switch is required at each level of the protocol graph—

typically a time-consuming operation.

The alternative, which we call the process-per-message model, treats each pro-

tocol as a static piece of code and associates the processes with the messages.

38 1 Foundation

That is, when a message arrives from the network, the OS dispatches a process that

it makes responsible for the message as it moves up the protocol graph. At each level,

the procedure that implements that protocol is invoked, which eventually results in the

procedure for the next protocol being invoked, and so on. For outbound messages, the

application’s process invokes the necessary procedure calls until the message is deliv-

ered. In both directions, the protocol graph is traversed in a sequence of procedure calls.

Although the process-per-protocol model is sometimes easier to think about—

I implement my protocol in my process, and you implement your protocol in your

process—the process-per-message model is generally more efficient for a simple reason:

A procedure call is an order of magnitude more efficient than a context switch on most

computers. The former model requires the expense of a context switch at each level,

while the latter model costs only a procedure call per level.

Now think about the relationship between the service interface as defined above

and the process model. For an outgoing message, the high-level protocol invokes a

send operation on the low-level protocol. Because the high-level protocol has the

message in hand when it calls send, this operation can be easily implemented as a

procedure call; no context switch is required. For incoming messages, however, the

high-level protocol invokes the receive operation on the low-level protocol, and then

must wait for a message to arrive at some unknown future time; this basically forces a

context switch. In other words, the process running in the high-level protocol receives a

message from the process running in the low-level protocol. This isn’t a big deal if only

the application process receives messages from the network subsystem—in fact, it’s the

right interface for the network API since application programs already have a process-

centric view of the world—but it does have a significant impact on performance if such

a context switch occurs at each layer of the protocol stack.

It is for this reason that most protocol implementations replace the receive oper-

ation with a deliver operation. That is, the low-level protocol does an upcall—a pro-

cedure call up the protocol stack—to deliver the message to the high-level protocol.

Figure 1.17 shows the resulting interface between two adjacent protocols, TCP and IP

in this case. In general, messages move down the protocol graph through a sequence of

send operations, and up the protocol graph through a sequence of deliver operations.

Message Buffers

A second inefficiency of the socket interface is that the application process provides

the buffer that contains the outbound message when calling send, and similarly it

provides the buffer into which an incoming message is copied when invoking the

receive operation. This forces the topmost protocol to copy the message from the ap-

plication’s buffer into a network buffer, and vice versa, as shown in Figure 1.18. It turns

out that copying data from one buffer to another is one of the most expensive things a

1.4 Implementing Network Software 39

sendIP (message) deliverTCP (message)

TCP

IP

Figure 1.17 Protocol-to-protocol interface.

send()
deliver()

Topmost protocol

Application process

Figure 1.18 Copying incoming/outgoing messages between application buffer and
network buffer.

protocol implementation can do. This is because while processors are becoming faster

at an incredible pace, memory is not getting faster as quickly as processors are.

Instead of copying message data from one buffer to another at each layer in the

protocol stack, most network subsystems define an abstract data type for messages

that is shared by all protocols in the protocol graph. Not only does this abstraction

permit messages to be passed up and down the protocol graph without copying, but

it usually provides copy-free ways of manipulating messages in other ways, such as

adding and stripping headers, fragmenting large messages into a set of small messages,

and reassembling a collection of small messages into a single large message. The exact

form of this message abstraction differs from OS to OS, but it generally involves a

linked list of pointers to message buffers, similar to the one shown in Figure 1.19.

We leave it as an exercise for you to define a general copy-free message abstraction.

40 1 Foundation

Figure 1.19 Example message data structure.

1.5 Performance
Up to this point, we have focused primar-

ily on the functional aspects of networks.

Like any computer system, however, com-

puter networks are also expected to perform

well, since the effectiveness of computations

distributed over the network often depends

directly on the efficiency with which the net-

work delivers the computation’s data. While

the old programming adage “First get it

right and then make it fast” is valid in many

settings, in networking it is usually neces-

sary to “design for performance.” It is there-

fore important to understand the various

factors that impact network performance.

1.5.1 Bandwidth and

Latency

Network performance is measured in two

fundamental ways: bandwidth (also called

throughput) and latency (also called delay).

The bandwidth of a network is given by

the number of bits that can be transmitted

over the network in a certain period of time.

For example, a network might have a band-

width of 10 million bits/second (Mbps),

meaning that it is able to deliver 10 million

Bandwidth and

Throughput

Bandwidth and throughput are two

of the most confusing terms used

in networking. While we could try

to give you a precise definition of

each term, it is important that you

know how other people might use

them and for you to be aware that

they are often used interchange-

ably. First of all, bandwidth is lit-

erally a measure of the width of

a frequency band. For example,

a voice-grade telephone line sup-

ports a frequency band ranging

from 300 to 3300 Hz; it is said

to have a bandwidth of 3300 Hz −
300 Hz = 3000 Hz. If you see the

word “bandwidth” used in a situa-

tion in which it is being measured

in hertz, then it probably refers to

the range of signals that can be

accommodated.

When we talk about the band-

width of a communication link, we

1.5 Performance 41

bits every second. It is sometimes useful to think of bandwidth in terms of how long it

takes to transmit each bit of data. On a 10-Mbps network, for example, it takes 0.1

microsecond (μs) to transmit each bit.

While you can talk about the bandwidth of the network as a whole, sometimes

you want to be more precise, focusing, for example, on the bandwidth of a single

physical link or of a logical process-to-process channel. At the physical level, band-

width is constantly improving, with no end in sight. Intuitively, if you think of a second

of time as a distance you could measure with a ruler, and bandwidth as how many

bits fit in that distance, then you can think of each bit as a pulse of some width. For

example, each bit on a 1-Mbps link is 1 μs wide, while each bit on a 2-Mbps link

is 0.5 μs wide, as illustrated in Figure 1.20. The more sophisticated the transmitting

and receiving technology, the narrower each bit can become, and thus, the higher the

normally refer to the number of

bits per second that can be trans-

mitted on the link. We might say

that the bandwidth of an Ethernet

is 10 Mbps. A useful distinction

might be made, however, between

the bandwidth that is available on

the link and the number of bits per

second that we can actually trans-

mit over the link in practice. We

tend to use the word “throughput”

to refer to the measured perfor-

mance of a system. Thus, because of

various inefficiencies of implemen-

tation, a pair of nodes connected by

a link with a bandwidth of 10 Mbps

might achieve a throughput of only

2 Mbps. This would mean that an

application on one host could send

data to the other host at 2 Mbps.

Finally, we often talk about

the bandwidth requirements of an

application—the number of bits

bandwidth. For logical process-to-process

channels, bandwidth is also influenced by

other factors, including how many times the

software that implements the channel has to

handle, and possibly transform, each bit of

data.

The second performance metric, la-

tency, corresponds to how long it takes a

message to travel from one end of a network

to the other. (As with bandwidth, we could

be focused on the latency of a single link

or an end-to-end channel.) Latency is mea-

sured strictly in terms of time. For example,

a transcontinental network might have a la-

tency of 24 milliseconds (ms); that is, it takes

a message 24 ms to travel from one end of

North America to the other. There are many

situations in which it is more important to

know how long it takes to send a message

from one end of a network to the other and

back, rather than the one-way latency. We

call this the round-trip time (RTT) of the

network.

We often think of latency as having

three components. First, there is the speed-

of-light propagation delay. This delay oc-

curs because nothing, including a bit on

a wire, can travel faster than the speed

42 1 Foundation

1 second

(a)

1 second

(b)

Figure 1.20 Bits transmitted at a particular bandwidth can be regarded as having some
width: (a) bits transmitted at 1 Mbps (each bit 1 µs wide); (b) bits transmitted at 2 Mbps
(each bit 0.5 µs wide).

of light. If you know the distance between two points, you can calculate the speed-of-

light latency, although you have to be careful because light travels across different medi-

ums at different speeds: It travels at 3.0×108 m/s in a vacuum, 2.3×108 m/s in a cable,

and 2.0×108 m/s in a fiber. Second, there is the amount of time it takes to transmit a unit

of data. This is a function of the network bandwidth and the size of the packet in which

the data is carried. Third, there may be queuing delays inside the network, since packet

switches generally need to store packets for some time before forwarding them on an

outbound link, as discussed in Section 1.2.2. So, we could define the total latency as

Latency = Propagation + Transmit + Queue

Propagation = Distance/SpeedOfLight

Transmit = Size/Bandwidth

where Distance is the length of the wire over

which the data will travel, SpeedOfLight

is the effective speed of light over that

wire, Size is the size of the packet, and

Bandwidth is the bandwidth at which the

packet is transmitted. Note that if the

message contains only one bit and we are

talking about a single link (as opposed to

a whole network), then the Transmit and

Queue terms are not relevant, and latency

corresponds to the propagation delay only.

Bandwidth and latency combine to de-

fine the performance characteristics of a

given link or channel. Their relative impor-

tance, however, depends on the application.

For some applications, latency dominates

per second that it needs to trans-

mit over the network to perform

acceptably. For some applications,

this might be “whatever I can get”;

for others, it might be some fixed

number (preferably no more than

the available link bandwidth); and

for others, it might be a number

that varies with time. We will pro-

vide more on this topic later in this

section.

1.5 Performance 43

bandwidth. For example, a client that sends a 1-byte message to a server and receives

a 1-byte message in return is latency bound. Assuming that no serious computation

is involved in preparing the response, the application will perform much differently

on a transcontinental channel with a 100-ms RTT than it will on an across-the-room

channel with a 1-ms RTT. Whether the channel is 1 Mbps or 100 Mbps is relatively in-

significant, however, since the former implies that the time to transmit a byte (Transmit)

is 8 μs and the latter implies Transmit = 0.08 μs.

In contrast, consider a digital library program that is being asked to fetch a

25-megabyte (MB) image—the more bandwidth that is available, the faster it will be

able to return the image to the user. Here, the bandwidth of the channel dominates

performance. To see this, suppose that the channel has a bandwidth of 10 Mbps. It will

take 20 seconds to transmit the image, making it relatively unimportant if the image

is on the other side of a 1-ms channel or a 100-ms channel; the difference between a

20.001-second response time and a 20.1-second response time is negligible.

Figure 1.21 gives you a sense of how latency or bandwidth can dominate perfor-

mance in different circumstances. The graph shows how long it takes to move objects

10,000

5000

2000

1000

500

200

100

50

20

10

5

2

1

10010
RTT (ms)

1-MB object, 1.5-Mbps link

1-MB object, 10-Mbps link

2-KB object, 1.5-Mbps link

2-KB object, 10-Mbps link

1-byte object, 1.5-Mbps link

1-byte object, 10-Mbps linkP
er

ce
iv

ed
 l
at

en
cy

 (
m

s)

Figure 1.21 Perceived latency (response time) versus round-trip time for various ob-
ject sizes and link speeds.

44 1 Foundation

of various sizes (1 byte, 2 KB, 1 MB) across networks with RTTs ranging from 1 to

100 ms and link speeds of either 1.5 or 10 Mbps. We use logarithmic scales to show

relative performance. For a 1-byte object (say, a keystroke), latency remains almost

exactly equal to the RTT, so that you cannot distinguish between a 1.5-Mbps network

and a 10-Mbps network. For a 2-KB object (say, an email message), the link speed

makes quite a difference on a 1-ms RTT network but a negligible difference on a 100-

ms RTT network. And for a 1-MB object (say, a digital image), the RTT makes no

difference—it is the link speed that dominates performance across the full range of RTT.

Note that throughout this book we use the terms latency and delay in a generic

way, that is, to denote how long it takes to perform a particular function such as

delivering a message or moving an object. When we are referring to the specific

amount of time it takes a signal to propagate from one end of a link to another,

we use the term propagation delay. Also, we make it clear in the context of the

discussion whether we are referring to the one-way latency or the round-trip time.

As an aside, computers are becoming

so fast that when we connect them to net-

works, it is sometimes useful to think, at

least figuratively, in terms of instructions per

mile. Consider what happens when a com-

puter that is able to execute 1 billion instruc-

tions per second sends a message out on a

channel with a 100-ms RTT. (To make the

math easier, assume that the message covers

a distance of 5000 miles.) If that computer

sits idle the full 100 ms waiting for a reply

message, then it has forfeited the ability to

execute 100 million instructions, or 20,000

instructions per mile. It had better have been

worth going over the network to justify this

waste.

1.5.2 Delay × Bandwidth

Product

It is also useful to talk about the product of

these two metrics, often called the delay ×
bandwidth product. Intuitively, if we think

of a channel between a pair of processes

as a hollow pipe (see Figure 1.22), where

How Big Is a Mega?

There are several pitfalls you need

to be aware of when working with

the common units of networking—

MB, Mbps, KB, and Kbps. The

first is to distinguish carefully be-

tween bits and bytes. Throughout

this book, we always use a lower-

case b for bits and a capital B for

bytes. The second is to be sure you

are using the appropriate definition

of mega (M) and kilo (K). Mega,

for example, can mean either 220

or 106. Similarly, kilo can be either

210 or 103. What is worse, in net-

working we typically use both def-

initions. Here’s why.

Network bandwidth, which is

often specified in terms of Mbps,

is typically governed by the speed

of the clock that paces the trans-

mission of the bits. A clock that is

1.5 Performance 45

Bandwidth

Delay

Figure 1.22 Network as a pipe.

the latency corresponds to the length of the pipe and the bandwidth gives the diameter

of the pipe, then the delay × bandwidth product gives the volume of the pipe—the

number of bits it holds. Said another way, if latency (measured in time) corresponds

to the length of the pipe, then given the width of each bit (also measured in time),

you can calculate how many bits fit in the pipe. For example, a transcontinental chan-

nel with a one-way latency of 50 ms and a bandwidth of 45 Mbps is able to hold

running at 10 MHz is used to trans-

mit bits at 10 Mbps. Because the

mega in MHz means 106 hertz,

Mbps is usually also defined as 106

bits per second. (Similarly, Kbps is

103 bits per second.) On the other

hand, when we talk about a mes-

sage that we want to transmit, we

often give its size in kilobytes. Be-

cause messages are stored in the

computer’s memory, and memory

is typically measured in powers of

two, the K in KB is usually taken

to mean 210. (Similarly, MB usu-

ally means 220.) When you put

the two together, it is not un-

common to talk about sending a

32-KB message over a 10-Mbps

channel, which should be inter-

preted to mean 32 × 210 × 8 bits

are being transmitted at a rate of

50 × 10−3 seconds × 45 × 106 bits/second

= 2.25 × 106 bits

or approximately 280 KB of data. In other

words, this example channel (pipe) holds as

many bytes as the memory of a personal

computer from the early 1980s could hold.

The delay × bandwidth product is im-

portant to know when constructing high-

performance networks because it corre-

sponds to how many bits the sender must

transmit before the first bit arrives at the

receiver. If the sender is expecting the re-

ceiver to somehow signal that bits are start-

ing to arrive, and it takes another channel

latency for this signal to propagate back

to the sender (i.e., we are interested in the

channel’s RTT rather than just its one-way

latency), then the sender can send up to

two delay × bandwidth’s worth of data be-

fore hearing from the receiver that all is

well. The bits in the pipe are said to be “in

flight,” which means that if the receiver tells

the sender to stop transmitting, it might re-

ceive up to a delay × bandwidth’s worth of

46 1 Foundation

data before the sender manages to respond.

In our example above, that amount corre-

sponds to 5.5 × 106 bits (671 KB) of data.

On the other hand, if the sender does not fill

the pipe—send a whole delay × bandwidth

product’s worth of data before it stops to

wait for a signal—the sender will not fully

utilize the network.

Note that most of the time we are

interested in the RTT scenario, which we

simply refer to as the delay × bandwidth

product, without explicitly saying that

this product is multiplied by two. Again,

whether the “delay” in “delay × band-

width” means one-way latency or RTT is

made clear by the context.

1.5.3 High-Speed Networks

The bandwidths available on today’s net-

works are increasing at a dramatic rate, and

there is eternal optimism that network band-

width will continue to improve. This causes

network designers to start thinking about

what happens in the limit, or stated another

way, what is the impact on network design

of having infinite bandwidth available.

Although high-speed networks bring

a dramatic change in the bandwidth avail-

able to applications, in many respects their

impact on how we think about networking

comes in what does not change as band-

width increases: the speed of light. To quote

Scotty from Star Trek, “You cannae change

the laws of physics.” In other words, “high

speed” does not mean that latency improves

at the same rate as bandwidth; the transcon-

tinental RTT of a 1-Gbps link is the same

100 ms as it is for a 1-Mbps link.

10×106 bits per second. This is the

interpretation we use throughout

the book, unless explicitly stated

otherwise.

The good news is that many

times we are satisfied with a

back-of-the-envelope calculation,

in which case it is perfectly reason-

able to pretend that a byte has 10

bits in it (making it easy to convert

between bits and bytes) and that

106 is really equal to 220 (making

it easy to convert between the two

definitions of mega). Notice that

the first approximation introduces

a 20% error, while the latter intro-

duces only a 5% error.

To help you in your quick-

and-dirty calculations, 100 ms is

a reasonable number to use for a

cross-country round-trip time—at

least when the country in question

is the United States—and 1 ms is

a good approximation of an RTT

across a local area network. In the

case of the former, we increase the

48-ms round-trip time implied by

the speed of light over a fiber to

100 ms because there are, as we

have said, other sources of delay,

such as the processing time in the

switches inside the network. You

can also be sure that the path taken

by the fiber between two points will

not be a straight line.

1.5 Performance 47

1-Mbps cross-country link

1-Gbps cross-country link

(b)

1 MB

.

.

.

(a)

Source

Source

.1 Mb

.1 Mb

.1 Mb

.1 Mb

Destination

Destination

Figure 1.23 Relationship between bandwidth and latency. With a 1-MB file, (a) the
1-Mbps link has 80 pipes full of data; (b) the 1-Gbps link has 1/12 of one pipe full of
data.

To appreciate the significance of ever-increasing bandwidth in the face of fixed

latency, consider what is required to transmit a 1-MB file over a 1-Mbps network

versus over a 1-Gbps network, both of which have an RTT of 100 ms. In the case

of the 1-Mbps network, it takes 80 round-trip times to transmit the file; during each

RTT, 1.25% of the file is sent. In contrast, the same 1-MB file doesn’t even come close

to filling 1 RTT’s worth of the 1-Gbps link, which has a delay × bandwidth product

of 12.5 MB.

Figure 1.23 illustrates the difference between the two networks. In effect, the

1-MB file looks like a stream of data that needs to be transmitted across a 1-Mbps

network, while it looks like a single packet on a 1-Gbps network. To help drive this

point home, consider that a 1-MB file is to a 1-Gbps network what a 1-KB packet is

to a 1-Mbps network.

◮ Another way to think about the situation is that more data can be transmitted

during each RTT on a high-speed network, so much so that a single RTT becomes a

significant amount of time. Thus, while you wouldn’t think twice about the difference

48 1 Foundation

between a file transfer taking 101 RTTs rather than 100 RTTs (a relative difference

of only 1%), suddenly the difference between 1 RTT and 2 RTTs is significant—a

100% increase. In other words, latency, rather than throughput, starts to dominate

our thinking about network design.

Perhaps the best way to understand the relationship between throughput and

latency is to return to basics. The effective end-to-end throughput that can be achieved

over a network is given by the simple relationship

Throughput = TransferSize/TransferTime

where TransferTime includes not only the elements of one-way Latency identified earlier

in this section, but also any additional time spent requesting or setting up the transfer.

Generally, we represent this relationship as

TransferTime = RTT + 1/Bandwidth × TransferSize

We use RTT in this calculation to account for a request message being sent across the

network and the data being sent back. For example, consider a situation where a user

wants to fetch a 1-MB file across a 1-Gbps network with a round-trip time of 100 ms.

The TransferTime includes both the transmit time for 1 MB (1/1 Gbps × 1 MB = 8 ms),

and the 100-ms RTT, for a total transfer time of 108 ms. This means that the effective

throughput will be

1 MB/108 ms = 74.1 Mbps

not 1 Gbps. Clearly, transferring a larger amount of data will help improve the ef-

fective throughput, where in the limit, an infinitely large transfer size will cause the

effective throughput to approach the network bandwidth. On the other hand, having

to endure more than 1 RTT—for example, to retransmit missing packets—will hurt

the effective throughput for any transfer of finite size and will be most noticeable for

small transfers.

1.5.4 Application Performance Needs

The discussion in this section has taken a network-centric view of performance; that

is, we have talked in terms of what a given link or channel will support. The unstated

assumption has been that application programs have simple needs—they want as much

bandwidth as the network can provide. This is certainly true of the aforementioned

digital library program that is retrieving a 25-MB image; the more bandwidth that is

available, the faster the program will be able to return the image to the user.

However, some applications are able to state an upper limit on how much band-

width they need. Video applications are a prime example. Suppose you want to stream

1.5 Performance 49

a video image that is one-quarter the size of a standard TV image; that is, it has a

resolution of 352 by 240 pixels. If each pixel is represented by 24 bits of information,

as would be the case for 24-bit color, then the size of each frame would be

(352 × 240 × 24)/8 = 247.5 KB

If the application needs to support a frame rate of 30 frames per second, then it might

request a throughput rate of 75 Mbps. The ability of the network to provide more

bandwidth is of no interest to such an application because it has only so much data to

transmit in a given period of time.

Unfortunately, the situation is not as simple as this example suggests. Because

the difference between any two adjacent frames in a video stream is often small, it is

possible to compress the video by transmitting only the differences between adjacent

frames. This compressed video does not flow at a constant rate, but varies with time

according to factors such as the amount of action and detail in the picture and the

compression algorithm being used. Therefore, it is possible to say what the average

bandwidth requirement will be, but the instantaneous rate may be more or less.

The key issue is the time interval over which the average is computed. Suppose

that this example video application can be compressed down to the point that it needs

only 2 Mbps, on average. If it transmits 1 megabit in a 1-second interval and 3 megabits

in the following 1-second interval, then over the 2-second interval it is transmitting at

an average rate of 2 Mbps; however, this will be of little consolation to a channel that

was engineered to support no more than 2 megabits in any one second. Clearly, just

knowing the average bandwidth needs of an application will not always suffice.

Generally, however, it is possible to put an upper bound on how big of a burst an

application like this is likely to transmit. A burst might be described by some peak rate

that is maintained for some period of time. Alternatively, it could be described as the

number of bytes that can be sent at the peak rate before reverting to the average rate

or some lower rate. If this peak rate is higher than the available channel capacity, then

the excess data will have to be buffered somewhere, to be transmitted later. Knowing

how big of a burst might be sent allows the network designer to allocate sufficient

buffer capacity to hold the burst. We will return to the subject of describing bursty

traffic accurately in Chapter 6.

Analogous to the way an application’s bandwidth needs can be something other

than “all it can get,” an application’s delay requirements may be more complex than

simply “as little delay as possible.” In the case of delay, it sometimes doesn’t matter so

much whether the one-way latency of the network is 100 ms or 500 ms as how much

the latency varies from packet to packet. The variation in latency is called jitter.

Consider the situation in which the source sends a packet once every 33 ms,

as would be the case for a video application transmitting frames 30 times a second.

50 1 Foundation

Network

{Interpacket gap

Packet
source

Packet
sink

1234 1234

Figure 1.24 Network-induced jitter.

If the packets arrive at the destination spaced out exactly 33 ms apart, then we can

deduce that the delay experienced by each packet in the network was exactly the same.

If the spacing between when packets arrive at the destination—sometimes called the

interpacket gap—is variable, however, then the delay experienced by the sequence of

packets must have also been variable, and the network is said to have introduced

jitter into the packet stream, as shown in Figure 1.24. Such variation is generally

not introduced in a single physical link, but it can happen when packets experience

different queuing delays in a multihop packet-switched network. This queuing delay

corresponds to the Queue component of latency defined earlier in this section, which

varies with time.

To understand the relevance of jitter, suppose that the packets being transmitted

over the network contain video frames, and in order to display these frames on the

screen the receiver needs to receive a new one every 33 ms. If a frame arrives early,

then it can simply be saved by the receiver until it is time to display it. Unfortunately,

if a frame arrives late, then the receiver will not have the frame it needs in time to

update the screen, and the video quality will suffer; it will not be smooth. Note that it

is not necessary to eliminate jitter, only to know how bad it is. The reason for this is

that if the receiver knows the upper and lower bounds on the latency that a packet can

experience, it can delay the time at which it starts playing back the video (i.e., displays

the first frame) long enough to ensure that in the future it will always have a frame to

display when it needs it. The receiver delays the frame, effectively smoothing out the

jitter, by storing it in a buffer. We return to the topic of jitter in Chapter 9.

1.6 Summary

Computer networks like the Internet have experienced enormous growth over the

past decade and are now positioned to provide a wide range of services—remote file

access, digital libraries, videoconferencing—to hundreds of millions of users. Much

of this growth can be attributed to the general-purpose nature of computer networks,

and in particular to the ability to add new functionality to the network by writing

Open Issue: Ubiquitous Networking 51

software that runs on affordable, high-performance computers. With this in mind,

the overriding goal of this book is to describe computer networks in such a way that

when you finish reading it, you should feel that if you had an army of programmers

at your disposal, you could actually build a fully functional computer network from

the ground up. This chapter lays the foundation for realizing this goal.

The first step we have taken toward this goal is to carefully identify exactly

what we expect from a network. For example, a network must first provide cost-

effective connectivity among a set of computers. This is accomplished through a nested

interconnection of nodes and links, and by sharing this hardware base through the use

of statistical multiplexing. This results in a packet-switched network, on top of which

we then define a collection of process-to-process communication services.

The second step is to define a layered architecture that will serve as a blueprint for

our design. The central objects of this architecture are network protocols. Protocols

both provide a communication service to higher-level protocols and define the form

and meaning of messages exchanged with their peers running on other machines. We

have briefly surveyed two of the most widely used architectures: the OSI architecture

and the Internet architecture. This book most closely follows the Internet architecture,

both in its organization and as a source of examples.

The third step is to implement the network’s protocols and application programs,

usually in software. Both protocols and applications need an interface by which they

invoke the services of other protocols in the network subsystem. The socket interface is

the most widely used interface between application programs and the network subsys-

tem, but a slightly different interface is typically used within the network subsystem.

Finally, the network as a whole must offer high performance, where the two

performance metrics we are most interested in are latency and throughput. As we will

see in later chapters, it is the product of these two metrics—the so-called delay ×
bandwidth product—that often plays a critical role in protocol design.

There is little doubt that computer

networks are becoming an integral

part of the everyday lives of vast

numbers of people. What began over

20 years ago as experimental sys-

tems like the ARPANET—connecting

mainframe computers over long-

O P E N I S S U E

Ubiquitous Networking

distance telephone lines—has turned into big business. And where there is big busi-

ness, there are lots of players. In this case, there is the computing industry, which has

52 1 Foundation

become increasingly involved in supporting packet-switched networking products; the

telephone carriers, which recognize the market for carrying all sorts of data, not just

voice; and the cable TV industry, which currently owns the entertainment portion of

the market.

Assuming that the goal is ubiquitous networking—to bring the network into

every household—the first problem that must be addressed is how to establish the

necessary physical links. Although it could be argued that the ultimate answer is to

bring an optical fiber into every home, at an estimated $1000 per house and 100 million

homes in the U.S. alone, this is a $100 billion proposition. The most widely discussed

alternatives make use of either the existing cable TV facilities or the copper pairs used

to deliver telephone service. Each of these approaches has its own set of problems. For

example, today’s cable facilities are asymmetric—you can deliver 150 channels into

every home, but the outgoing bandwidth is severely limited. Such asymmetry implies

that there are a small number of information providers, but that most of us are simply

information consumers. Many people would argue that in a democracy we should

all have an equal opportunity to provide information. Digital subscriber line (DSL)

technology need not be asymmetric, but can only offer high-bandwidth connections

to a subset of consumers over the existing telephone wires.

How the struggle between the computer companies, the telephone companies,

and the cable industry will play out in the marketplace is anyone’s guess. (If we knew

the answer, we’d be charging a lot more for this book.) All we know is that there

are many technical obstacles—issues of connectivity, levels of service, performance,

reliability, and fairness—that stand between the current state of the art and the sort of

global, ubiquitous, heterogeneous network that we believe is possible and desirable.

It is these challenges that are the focus of this book.

F U R T H E R R E A D I N G

Computer networks are not the first communication-oriented technology to have

found their way into the everyday fabric of our society. For example, the early part

of this century saw the introduction of the telephone, and then during the 1950s tele-

vision became widespread. When considering the future of networking—how widely

it will spread and how we will use it—it is instructive to study this history. Our first

reference is a good starting point for doing this (the entire issue is devoted to the first

100 years of telecommunications).

The second and third papers are the seminal papers on the OSI and Internet

architectures, respectively. The Zimmerman paper introduces the OSI architecture, and

the Clark paper is a retrospective. The final two papers are not specific to networking,

Further Reading 53

but ones that every systems person should read. The Saltzer et al. paper motivates

and describes one of the most widely applied rules of system design—the end-to-end

argument. The paper by Mashey describes the thinking behind RISC architectures; as

we will soon discover, making good judgments about where to place functionality in

a complex system is what system design is all about.

■ Pierce, J. Telephony—a personal view. IEEE Communications 22(5):116–120,

May 1984.

■ Zimmerman, H. OSI reference model—the ISO model of architecture for

open systems interconnection. IEEE Transactions on Communications COM-

28(4):425–432, April 1980.

■ Clark, D. The design philosophy of the DARPA Internet protocols. Proceed-

ings of the SIGCOMM ’88 Symposium, pages 106–114, August 1988.

■ Saltzer, J., D. Reed, and D. Clark. End-to-end arguments in system design.

ACM Transactions on Computer Systems 2(4):277–288, November 1984.

■ Mashey, J. RISC, MIPS, and the motion of complexity. UniForum 1986 Con-

ference Proceedings, pages 116–124, 1986.

Several texts offer an introduction to computer networking: Stallings gives an

encyclopedic treatment of the subject, with an emphasis on the lower levels of the OSI

hierarchy [Sta00a]; Tanenbaum uses the OSI architecture as an organizational model

[Tan02]; Comer gives an overview of the Internet architecture [Com00]; and Bertsekas

and Gallager discuss networking from a performance modeling perspective [BG92].

To put computer networking into a larger context, two books—one dealing

with the past and the other looking toward the future—are must reading. The first is

Holzmann and Pehrson’s The Early History of Data Networks [HP95]. Surprisingly,

many of the ideas covered in the book you are now reading were invented during

the 1700s. The second is Realizing the Information Future: The Internet and Beyond,

a book prepared by the Computer Science and Telecommunications Board of the

National Research Council [NRC94].

To follow the history of the Internet from its beginning, you are encouraged to

peruse the Internet’s Request for Comments (RFC) series of documents. These docu-

ments, which include everything from the TCP specification to April Fools’ jokes, are

retrievable at http://www.ietf.org/rfc.html. For example, the protocol specifications for

TCP, UDP, and IP are available in RFC 793, 768, and 791, respectively.

To gain a better appreciation for the Internet philosophy and culture, two ref-

erences are must reading; both are also quite entertaining. Padlipsky gives a good

description of the early days, including a pointed comparison of the Internet and OSI

54 1 Foundation

architectures [Pad85]. For a more up-to-date account of what really happens behind

the scenes at the Internet Engineering Task Force, we recommend Boorsook’s article

[Boo95].

There are a wealth of articles discussing various aspects of protocol implemen-

tations. A good starting point is to understand two complete protocol implementation

environments: the Stream mechanism from System V Unix [Rit84] and the x-kernel

[HP91]. In addition, [LMKQ89] and [SW95] describe the widely used Berkeley Unix

implementation of TCP/IP.

More generally, there is a large body of work addressing the issue of structuring

and optimizing protocol implementations. Clark was one of the first to discuss the

relationship between modular design and protocol performance [Cla82]. Later pa-

pers then introduce the use of upcalls in structuring protocol code [Cla85] and study

the processing overheads in TCP [CJRS89]. Finally, [WM87] describes how to gain

efficiency through appropriate design and implementation choices.

Several papers have introduced specific techniques and mechanisms that can be

used to improve protocol performance. For example, [HMPT89] describes some of

the mechanisms used in the x-kernel, [MD93] discusses various implementations of

demultiplexing tables, [VL87] introduces the timing wheel mechanism used to manage

protocol events, and [DP93] describes an efficient buffer management strategy. Also,

the performance of protocols running on parallel processors—locking is a key issue in

such environments—is discussed in [BG93] and [NYKT94].

Because many aspects of protocol implementation depend on an understanding

of the basics of operating systems, we recommend Finkel [Fin88], Bic and Shaw [BS88],

and Tanenbaum [Tan01] for an introduction to OS concepts.

Finally, we conclude the “Further Reading” section of each chapter with a set

of live references, that is, URLs for locations on the World Wide Web where you can

learn more about the topics discussed in that chapter. Since these references are live,

it is possible that they will not remain active for an indefinite period of time. For this

reason, we limit the set of live references at the end of each chapter to sites that either

export software, provide a service, or report on the activities of an ongoing working

group or standardization body. In other words, we only give URLs for the kinds of

material that cannot easily be referenced using standard citations. For this chapter, we

include four live references:

■ http://www.mkp.com: information about this book, including supplements,

addendums, and so on

■ http://www.acm.org/sigcomm/sos.html: status of various networking stan-

dards, including those of the IETF, ISO, and IEEE

Exercises 55

■ http://www.ietf.org/: information about the IETF and its working groups

■ http://www.cs.columbia.edu/˜ hgs/netbib/: searchable bibliography of network-

related research papers

E X E R C I S E S

1 Use anonymous FTP to connect to ftp.isi.edu (directory in-notes), and retrieve the

RFC index. Also retrieve the protocol specifications for TCP, IP, and UDP.

2 Look up the Web site

http://www.cs.princeton.edu/nsg

Here you can read about current network research under way at Princeton Uni-

versity and see a picture of author Larry Peterson. Follow links to find a picture

of author Bruce Davie.

3 Use a Web search tool to locate useful, general, and noncommercial information

about the following topics: MBone, ATM, MPEG, IPv6, and Ethernet.

4 The Unix utility whois can be used to find the domain name corresponding to

an organization, or vice versa. Read the man page documentation for whois and

experiment with it. Try whois princeton.edu and whois princeton, for starters.

5 Calculate the total time required to transfer a 1000-KB file in the following cases,

assuming an RTT of 100 ms, a packet size of 1 KB and an initial 2 × RTT of

“handshaking” before data is sent.

(a) The bandwidth is 1.5 Mbps, and data packets can be sent continuously.

(b) The bandwidth is 1.5 Mbps, but after we finish sending each data packet we

must wait one RTT before sending the next.

(c) The bandwidth is “infinite,” meaning that we take transmit time to be zero,

and up to 20 packets can be sent per RTT.

(d) The bandwidth is infinite, and during the first RTT we can send one packet

(21−1), during the second RTT we can send two packets (22−1), during the third

we can send four (23−1), and so on. (A justification for such an exponential

increase will be given in Chapter 6.)

56 1 Foundation

6 Calculate the total time required to transfer a 1.5-MB file in the following cases,

assuming an RTT of 80 ms, a packet size of 1 KB and an initial 2 × RTT of “hand-

shaking” before data is sent.

(a) The bandwidth is 10 Mbps, and data packets can be sent continuously.

(b) The bandwidth is 10 Mbps, but after we finish sending each data packet we

must wait one RTT before sending the next.

(c) The link allows infinitely fast transmit, but limits bandwidth such that only

20 packets can be sent per RTT.

(d) Zero transmit time as in (c), but during the first RTT we can send one packet,

during the second RTT we can send two packets, during the third we can send

four = 23−1, and so on. (A justification for such an exponential increase will

be given in Chapter 6.)

7 Consider a point-to-point link 2 km in length. At what bandwidth would propa-

gation delay (at a speed of 2×108 m/s) equal transmit delay for 100-byte packets?

What about 512-byte packets?

8 Consider a point-to-point link 50 km in length. At what bandwidth would propa-

gation delay (at a speed of 2×108 m/s) equal transmit delay for 100-byte packets?

What about 512-byte packets?

9 What properties of postal addresses would be likely to be shared by a network

addressing scheme? What differences might you expect to find? What properties

of telephone numbering might be shared by a network addressing scheme?

10 One property of addresses is that they are unique; if two nodes had the same

address it would be impossible to distinguish between them. What other properties

might be useful for network addresses to have? Can you think of any situations

in which network (or postal or telephone) addresses might not be unique?

11 Give an example of a situation in which multicast addresses might be beneficial.

12 What differences in traffic patterns account for the fact that STDM is a cost-

effective form of multiplexing for a voice telephone network and FDM is a cost-

effective form of multiplexing for television and radio networks, yet we reject both

as not being cost-effective for a general-purpose computer network?

13 How “wide” is a bit on a 1-Gbps link? How long is a bit in copper wire, where

the speed of propagation is 2.3 × 108 m/s?

Exercises 57

14 How long does it take to transmit x KB over a y-Mbps link? Give your answer as

a ratio of x and y.

15 Suppose a 100-Mbps point-to-point link is being set up between Earth and a new

lunar colony. The distance from the moon to Earth is approximately 385,000 km,

and data travels over the link at the speed of light—3 × 108 m/s.

(a) Calculate the minimum RTT for the link.

(b) Using the RTT as the delay, calculate the delay × bandwidth product for the

link.

(c) What is the significance of the delay × bandwidth product computed in (b)?

(d) A camera on the lunar base takes pictures of Earth and saves them in digital

format to disk. Suppose Mission Control on Earth wishes to download the

most current image, which is 25 MB. What is the minimum amount of time

that will elapse between when the request for the data goes out and the transfer

is finished?

16 Suppose a 128-Kbps point-to-point link is set up between Earth and a rover on

Mars. The distance from Earth to Mars (when they are closest together) is approx-

imately 55 Gm, and data travels over the link at the speed of light—3 × 108 m/s.

(a) Calculate the minimum RTT for the link.

(b) Calculate the delay × bandwidth product for the link.

(c) A camera on the rover takes pictures of its surroundings and sends these to

Earth. How quickly after a picture is taken can it reach Mission Control on

Earth? Assume that each image is 5 Mb in size.

17 For each of the following operations on a remote file server, discuss whether they

are more likely to be delay sensitive or bandwidth sensitive.

(a) Open a file.

(b) Read the contents of a file.

(c) List the contents of a directory.

(d) Display the attributes of a file.

18 Calculate the latency (from first bit sent to last bit received) for the following:

(a) 10-Mbps Ethernet with a single store-and-forward switch in the path, and

a packet size of 5000 bits. Assume that each link introduces a propagation

delay of 10 μs and that the switch begins retransmitting immediately after it

has finished receiving the packet.

58 1 Foundation

(b) Same as (a) but with three switches.

(c) Same as (a) but assume the switch implements “cut-through” switching: It is

able to begin retransmitting the packet after the first 200 bits have been

received.

19 Calculate the latency (from first bit sent to last bit received) for the following:

(a) 1-Gbps Ethernet with a single store-and-forward switch in the path, and a

packet size of 5000 bits. Assume that each link introduces a propagation delay

of 10 μs and that the switch begins retransmitting immediately after it has

finished receiving the packet.

(b) Same as (a) but with three switches.

(c) Same as (b) but assume the switch implements “cut-through” switching: It

is able to begin retransmitting the packet after the first 128 bits have been

received.

20 Calculate the effective bandwidth for the following cases. For (a) and (b) assume

there is a steady supply of data to send; for (c) simply calculate the average over

12 hours.

(a) 10-Mbps Ethernet through three store-and-forward switches as in Exercise

18(b). Switches can send on one link while receiving on the other.

(b) Same as (a) but with the sender having to wait for a 50-byte acknowledgment

packet after sending each 5000-bit data packet.

(c) Overnight (12-hour) shipment of 100 compact disks (650 MB each).

21 Calculate the bandwidth × delay product for the following links. Use one-way

delay, measured from first bit sent to first bit received.

(a) 10-Mbps Ethernet with a delay of 10 μs.

(b) 10-Mbps Ethernet with a single store-and-forward switch like that of

Exercise 18(a), packet size 5000 bits, and 10 μs per link propagation delay.

(c) 1.5-Mbps T1 link, with a transcontinental one-way delay of 50 ms.

(d) 1.5-Mbps T1 link through a satellite in geosynchronous orbit, 35,900 km

high. The only delay is speed-of-light propagation delay.

22 Hosts A and B are each connected to a switch S via 10-Mbps links as in

Figure 1.25. The propagation delay on each link is 20 μs. S is a store-and-

forward device; it begins retransmitting a received packet 35 μs after it has finished

receiving it. Calculate the total time required to transmit 10,000 bits from

A to B

Exercises 59

A S B

Figure 1.25 Diagram for Exercise 22.

(a) as a single packet

(b) as two 5000-bit packets sent one right after the other

23 Suppose a host has a 1-MB file that is to be sent to another host. The file takes

1 second of CPU time to compress 50%, or 2 seconds to compress 60%.

(a) Calculate the bandwidth at which each compression option takes the same

total compression + transmission time.

(b) Explain why latency does not affect your answer.

24 Suppose that a certain communications protocol involves a per-packet overhead

of 100 bytes for headers and framing. We send 1 million bytes of data using this

protocol; however, one data byte is corrupted and the entire packet containing it

is thus lost. Give the total number of overhead + loss bytes for packet data sizes

of 1000, 5000, 10,000, and 20,000 bytes. Which size is optimal?

25 Assume you wish to transfer an n-byte file along a path composed of the source,

destination, seven point-to-point links, and five switches. Suppose each link has a

propagation delay of 2 ms, bandwidth of 4 Mbps, and that the switches support

both circuit and packet switching. Thus you can either break the file up into 1-KB

packets, or set up a circuit through the switches and send the file as one contiguous

bit stream. Suppose that packets have 24 bytes of packet header information and

1000 bytes of payload, that store-and-forward packet processing at each switch

incurs a 1-ms delay after the packet has been completely received, that packets

may be sent continuously without waiting for acknowledgments, and that circuit

setup requires a 1-KB message to make one round-trip on the path incurring a

1-ms delay at each switch after the message has been completely received. Assume

switches introduce no delay to data traversing a circuit. You may also assume that

file size is a multiple of 1000 bytes.

(a) For what file size n bytes is the total number of bytes sent across the network

less for circuits than for packets?

(b) For what file size n bytes is the total latency incurred before the entire file

arrives at the destination less for circuits than for packets?

60 1 Foundation

(c) How sensitive are these results to the number of switches along the path? To

the bandwidth of the links? To the ratio of packet size to packet header size?

(d) How accurate do you think this model of the relative merits of circuits and

packets is? Does it ignore important considerations that discredit one or the

other approach? If so, what are they?

26 Consider a closed-loop network (e.g., token ring) with bandwidth 100 Mbps and

propagation speed of 2 × 108 m/s. What would the circumference of the loop be

to exactly contain one 250-byte packet, assuming nodes do not introduce delay?

What would the circumference be if there was a node every 100 m, and each node

introduced 10 bits of delay?

27 Compare the channel requirements for voice traffic with the requirements for the

real-time transmission of music, in terms of bandwidth, delay, and jitter. What

would have to improve? By approximately how much? Could any channel re-

quirements be relaxed?

28 For the following, assume that no data compression is done; this would in prac-

tice almost never be the case. For (a)–(c), calculate the bandwidth necessary for

transmitting in real time:

(a) Video at a resolution of 640 × 480, 3 bytes/pixel, 30 frames/second.

(b) 160 × 120 video, 1 byte/pixel, 5 frames/second.

(c) CD-ROM music, assuming one CD holds 75 minutes’ worth and takes

650 MB.

(d) Assume a fax transmits an 8 × 10-inch black-and-white image at a resolution

of 72 pixels per inch. How long would this take over a 14.4-Kbps modem?

29 For the following, as in the previous problem, assume that no data compression

is done. Calculate the bandwidth necessary for transmitting in real time:

(a) HDTV high-definition video at a resolution of 1920 × 1080, 24 bits/pixel,

30 frames/second.

(b) POTS (plain old telephone service) voice audio of 8-bit samples at 8 KHz.

(c) GSM mobile voice audio of 260-bit samples at 50 Hz.

(d) HDCD high-definition audio of 24-bit samples at 88.2 KHz.

30 Discuss the relative performance needs of the following applications, in terms of

average bandwidth, peak bandwidth, latency, jitter, and loss tolerance:

Exercises 61

(a) File server

(b) Print server

(c) Digital library

(d) Routine monitoring of remote weather instruments

(e) Voice

(f) Video monitoring of a waiting room

(g) Television broadcasting

31 Suppose a shared medium M offers to hosts A1, A2, . . . , AN in round-robin fashion

an opportunity to transmit one packet; hosts that have nothing to send immediately

relinquish M. How does this differ from STDM? How does network utilization

of this scheme compare with STDM?

32 Consider a simple protocol for transferring files over a link. After some initial

negotiation, A sends data packets of size 1 KB to B; B then replies with an ac-

knowledgment. A always waits for each ACK before sending the next data packet;

this is known as stop-and-wait. Packets that are overdue are presumed lost and

are retransmitted.

(a) In the absence of any packet losses or duplications, explain why it is not

necessary to include any “sequence number” data in the packet headers.

(b) Suppose that the link can lose occasional packets, but that packets that do

arrive always arrive in the order sent. Is a 2-bit sequence number (that is, N

mod 4) enough for A and B to detect and resend any lost packets? Is a 1-bit

sequence number enough?

(c) Now suppose that the link can deliver out of order, and that sometimes a

packet can be delivered as much as 1 minute after subsequent packets. How

does this change the sequence number requirements?

33 Suppose hosts A and B are connected by a link. Host A continuously transmits the

current time from a high-precision clock, at a regular rate, fast enough to consume

all the available bandwidth. Host B reads these time values and writes them each

paired with its own time from a local clock synchronized with A’s. Give qualitative

examples of B’s output assuming the link has

(a) high bandwidth, high latency, low jitter

(b) low bandwidth, high latency, high jitter

(c) high bandwidth, low latency, low jitter, occasional lost data

62 1 Foundation

For example, a link with zero jitter, a bandwidth high enough to write on every

other clock tick, and a latency of 1 tick might yield something like (0000, 0001),

(0002, 0003), (0004, 0005).

34 Obtain and build the simplex-talk sample socket program shown in the text. Start

one server and one client, in separate windows. While the first client is running,

start 10 other clients that connect to the same server; these other clients should

most likely be started in the background with their input redirected from a file.

What happens to these 10 clients? Do their connect()s fail, or time out, or succeed?

Do any other calls block? Now let the first client exit. What happens? Try this

with the server value MAX PENDING set to 1 as well.

35 Modify the simplex-talk socket program so that each time the client sends a line

to the server, the server sends the line back to the client. The client (and server)

will now have to make alternating calls to recv() and send().

36 Modify the simplex-talk socket program so that it uses UDP as the transport pro-

tocol, rather than TCP. You will have to change SOCK STREAM to SOCK DGRAM

in both client and server. Then, in the server, remove the calls to listen() and ac-

cept(), and replace the two nested loops at the end with a single loop that calls

recv() with socket s. Finally, see what happens when two such UDP clients simul-

taneously connect to the same UDP server, and compare this to the TCP behavior.

37 Investigate the different options and parameters that you can set for a TCP con-

nection. (Do man tcp on Unix.) Experiment with various parameter settings to see

how they affect TCP performance.

38 The Unix utility ping can be used to find the RTT to various Internet hosts. Read

the man page for ping, and use it to find the RTT to www.cs.princeton.edu in New

Jersey and www.cisco.com in California. Measure the RTT values at different times

of day, and compare the results. What do you think accounts for the differences?

39 The Unix utility traceroute, or its Windows equivalent tracert, can be used to find

the sequence of routers through which a message is routed. Use this to find the

path from your site to some others. How well does the number of hops correlate

with the RTT times from ping? How well does the number of hops correlate with

geographical distance?

40 Use traceroute, above, to map out some of the routers within your organization

(or to verify none are used).

This Page Intentionally Left Blank

Direct Link Networks

It is a mistake to look too far ahead. Only one link in the chain of
destiny can be handled at a time.

—Winston Churchill

T
he simplest network possible is one in which all the hosts are directly connected

by some physical medium. This may be a wire or a fiber, and it may cover a small

area (e.g., an office building) or a wide area (e.g., transcontinental). Connecting

two or more nodes with a suitable medium is only the first step, however. There are

five additional problems that must be addressed before the nodes can successfully

exchange packets.

P R O B L E M

Physically Connecting Hosts

The first is encoding bits onto the

wire or fiber so that they can be un-

derstood by a receiving host. Second

is the matter of delineating the

sequence of bits transmitted over the

link into complete messages that can

be delivered to the end node. This is

called the framing problem, and the messages delivered to the end hosts are often

called frames. Third, because frames are sometimes corrupted during transmission, it

is necessary to detect these errors and take the appropriate action; this is the error

detection problem. The fourth issue is making a link appear reliable in spite of the

fact that it corrupts frames from time to time. Finally, in those cases where the link is

shared by multiple hosts—as opposed to a simple point-to-point link—it is necessary

to mediate access to this link. This is the media access control problem.

Although these five issues—encoding, framing, error detection, reliable delivery,

and access mediation—can be discussed in the abstract, they are very real problems

that are addressed in different ways by different networking technologies. This chapter

considers these issues in the context of four specific network technologies: point-to-

point links, Carrier Sense Multiple Access (CSMA) networks (of which Ethernet is the

most famous example), token rings (of which IEEE Standard 802.5 and FDDI are the

2
most famous examples), and wireless (for which 802.11 is

an emerging standard). The goal of this chapter is simul-

taneously to survey the available network technology and

to explore these five fundamental issues.

Before tackling the specific issues of connecting hosts,

this chapter begins by examining the building blocks that

will be used: nodes and links. We then explore the first

three issues—encoding, framing, and error detection—in

the context of a simple point-to-point link. The techniques

introduced in these three sections are general and there-

fore apply equally well to multiple-access networks. The

problem of reliable delivery is considered next. Since link-

level reliability is usually not implemented in shared-access

networks, this discussion focuses on point-to-point links

only. Finally, we address the media access problem in the

context of CSMA, token rings, and wireless.

Note that these five functions are, in general, imple-

mented in a network adaptor—a board that plugs into a

host’s I/O bus on one end and into the physical medium

on the other end. In other words, bits are exchanged be-

tween adaptors, but correct frames are exchanged between

nodes. This adaptor is controlled by software running on

the node—the device driver—which, in turn, is typically

represented as the bottom protocol in a protocol graph.

This chapter concludes with a concrete example of a net-

work adaptor and sketches the device driver for such an

adaptor.

66 2 Direct Link Networks

2.1 Hardware Building Blocks

As we saw in Chapter 1, networks are constructed from two classes of hardware

building blocks: nodes and links. This statement is just as true for the simplest possible

network—one in which a single point-to-point link connects a pair of nodes—as it is for

a worldwide internet. This section gives a brief overview of what we mean by nodes

and links and, in so doing, defines the underlying technology that we will assume

throughout the rest of this book.

2.1.1 Nodes

Nodes are often general-purpose computers, like a desktop workstation, a multipro-

cessor, or a PC. For our purposes, let’s assume it’s a workstation-class machine. This

workstation can serve as a host that users run application programs on, it might be

used inside the network as a switch that forwards messages from one link to another,

or it might be configured as a router that forwards internet packets from one network

to another. In some cases, a network node—most commonly a switch or router inside

the network, rather than a host—is implemented by special-purpose hardware. This

is usually done for reasons of performance and cost: It is generally possible to build

custom hardware that performs a particular function faster and cheaper than a general-

purpose processor can perform it. When this happens, we will first describe the basic

function being performed by the node as though this function is being implemented

in software on a general-purpose workstation, and then explain why and how this

functionality might instead be implemented by special hardware.

Although we could leave it at that, it is useful to know a little bit about what a

workstation looks like on the inside. This information becomes particularly important

when we become concerned about how well the network performs. Figure 2.1 gives

a simple block diagram of the workstation-class machine we assume throughout this

book. There are three key features of this figure that are worth noting.

First, the memory on any given machine is finite. It may be 4 MB or it may be

128 MB, but it is not infinite. As pointed out in Section 1.2.2, this is important because

memory turns out to be one of the two scarce resources in the network (the other is

link bandwidth) that must be carefully managed if we are to provide a fair amount of

network capacity to each user. Memory is a scarce resource because on a node that

serves as a switch or router, packets must be buffered in memory while waiting their

turn to be transmitted over an outgoing link.

Second, each node connects to the network via a network adaptor. This adaptor

generally sits on the system’s I/O bus and delivers data between the workstation’s

memory and the network link. A software module running on the workstation—the

device driver—manages this adaptor. It issues commands to the adaptor, telling it,

2.1 Hardware Building Blocks 67

I/O bus

(To network)

CPU

Memory

Network
adaptor

Cache

Figure 2.1 Example workstation architecture.

for example, from what memory location outgoing data should be transmitted and

into what memory location incoming data should be stored. Adaptors are discussed

in more detail in Section 2.9.

Finally, while CPUs are becoming faster at an unbelievable pace, the same is

not true of memory. Recent performance trends show processor speeds doubling every

18 months, but memory latency improving at a rate of only 7% each year. The relevance

of this difference is that as a network node, a workstation runs at memory speeds, not

processor speeds, to a first approximation. This means that the network software needs

to be careful about how it uses memory and, in particular, about how many times it

accesses memory as it processes each message. We do not have the luxury of being

sloppy just because processors are becoming infinitely fast.

2.1.2 Links

Network links are implemented on a variety of different physical media, including

twisted pair (the wire that your phone connects to), coaxial cable (the wire that your

TV connects to), optical fiber (the medium most commonly used for high-bandwidth,

long-distance links), and space (the stuff that radio waves, microwaves, and infrared

beams propagate through). Whatever the physical medium, it is used to propagate

signals. These signals are actually electromagnetic waves traveling at the speed of

light. (The speed of light is, however, medium dependent—electromagnetic waves

traveling through copper and fiber do so at about two-thirds the speed of light in a

vacuum.)

68 2 Direct Link Networks

One important property of an electromagnetic wave is the frequency, measured in

hertz, with which the wave oscillates. The distance between a pair of adjacent maxima

or minima of a wave, typically measured in meters, is called the wave’s wavelength.

Since all electromagnetic waves travel at the speed of light, that speed divided by the

wave’s frequency is equal to its wavelength. We have already seen the example of a

voice-grade telephone line, which carries continuous electromagnetic signals ranging

between 300 Hz and 3300 Hz; a 300-Hz wave traveling through copper would have

a wavelength of

SpeedOfLightInCopper ÷ Frequency

= 2/3 × 3 × 108 ÷ 300

= 667 × 103 meters

Generally, electromagnetic waves span a much wider range of frequencies, ranging

from radio waves, to infrared light, to visible light, to X rays and gamma rays. Figure

2.2 depicts the electromagnetic spectrum and shows which media are commonly used

to carry which frequency bands.

So far we understand a link to be a physical medium carrying signals in the form

of electromagnetic waves. Such links provide the foundation for transmitting all sorts

of information, including the kind of data we are interested in transmitting—binary

data (1s and 0s). We say that the binary data is encoded in the signal. The problem of

encoding binary data onto electromagnetic signals is a complex topic. To help make

the topic more manageable, we can think of it as being divided into two layers. The

lower layer is concerned with modulation—varying the frequency, amplitude, or phase

of the signal to effect the transmission of information. A simple example of modulation

Radio Infrared UVMicrowave

f(Hz)

FM

Coax

Satellite

TV

AM Terrestrial microwave

Fiber optics

X ray

100

104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016

102 106 108 1010 1012 1014 1016 1018 1020 1022 1024104

Gamma ray

Figure 2.2 Electromagnetic spectrum.

2.1 Hardware Building Blocks 69

is to vary the power (amplitude) of a single wavelength. Intuitively, this is equivalent

to turning a light on and off. Because the issue of modulation is secondary to our

discussion of links as a building block for computer networks, we simply assume

that it is possible to transmit a pair of distinguishable signals—think of them as a

“high” signal and a “low” signal—and we consider only the upper layer, which is

concerned with the much simpler problem of encoding binary data onto these two

signals. Section 2.2 discusses such encodings.

Another attribute of a link is how many bit streams can be encoded on it at

a given time. If the answer is only one, then the nodes connected to the link must

share access to the link. This is the case for the multiple-access links described in

Sections 2.6 and 2.7. For point-to-point links, however, it is often the case that two bit

streams can be simultaneously transmitted over the link at the same time, one going in

each direction. Such a link is said to be full-duplex. A point-to-point link that supports

data flowing in only one direction at a time—such a link is called half-duplex—requires

that the two nodes connected to the link alternate using it. For the purposes of this

book, we assume that all point-to-point links are full-duplex.

The only other property of a link that we are interested in at this stage is a very

pragmatic one—how do you go about getting one? The answer depends on how far

the link needs to reach, how much money you have to spend, and whether or not you

know how to operate earth-moving equipment. The following is a survey of different

link types you might use to build a computer network.

Cables

If the nodes you want to connect are in the same room, in the same building, or even

on the same site (e.g., a campus), then you can buy a piece of cable and physically

string it between the nodes. Exactly what type of cable you choose to install depends

on the technology you plan to use to transmit data over the link; we’ll see several

examples later in this chapter. For now, a list of the common cable (fiber) types is

given in Table 2.1.

Of these, Category 5 (Cat-5) twisted pair—it uses a thicker gauge than the twisted

pair you find in your home—is quickly becoming the within-building norm. Because

of the difficulty and cost in pulling new cable through a building, every effort is made

to make new technologies use existing cable; Gigabit Ethernet, for example, has been

designed to run over Cat-5 wiring. Fiber is typically used to connect buildings at a site.

Leased Lines

If the two nodes you want to connect are on opposite sides of the country, or even

across town, then it is not practical to install the link yourself. Your only option is to

lease a dedicated link from the telephone company, in which case all you’ll need to be

able to do is conduct an intelligent conversation with the phone company customer

70 2 Direct Link Networks

Cable Typical Bandwidths Distances

Category 5 twisted pair 10–100 Mbps 100 m

Thin-net coax 10–100 Mbps 200 m

Thick-net coax 10–100 Mbps 500 m

Multimode fiber 100 Mbps 2 km

Single-mode fiber 100–2400 Mbps 40 km

Table 2.1 Common types of cables and fibers available for local links.

Service Bandwidth

DS1 1.544 Mbps

DS3 44.736 Mbps

STS-1 51.840 Mbps

STS-3 155.250 Mbps

STS-12 622.080 Mbps

STS-48 2.488320 Gbps

STS-192 9.953280 Gbps

Table 2.2 Common bandwidths available from the carriers.

service representative. Table 2.2 gives the common services that can be leased from

the phone company. Again, more details are given throughout this chapter.

While these bandwidths appear somewhat arbitrary, there is actually some

method to the madness. DS1 and DS3 (they are also sometimes called T1 and T3,

respectively) are relatively old technologies that were orginally defined for copper-

based transmission media. DS1 is equal to the aggregation of 24 digital voice circuits of

64 Kbps each, and DS3 is equal to 28 DS1 links. All the STS-N links are for optical fiber

(STS stands for Synchronous Transport Signal). STS-1 is the base link speed, and each

STS-N has N times the bandwidth of STS-1. An STS-N link is also sometimes called

an OC-N link (OC stands for optical carrier). The difference between STS and OC is

subtle: The former refers to the electrical transmission on the devices connected to the

link, and the latter refers to the actual optical signal that is propagated over the fiber.

Keep in mind that the phone company does not implement the “link” we just

ordered as a single, unbroken piece of cable or fiber. Instead, it implements the link

2.1 Hardware Building Blocks 71

on its own network. Although the telephone network has historically looked much

different from the kind of network described in this book—it was built primarily to

provide a voice service and used circuit-switching technology—the current trend is

toward the style of networking described in this book, including the asynchronous

transfer mode (ATM) network described in Chapter 3. This is not surprising—the

potential market for carrying data, voice, and video is huge.

In any case, whether the link is physical or a logical connection through the

telephone network, the problem of building a computer network on top of a collection

of such links remains the same. So, we will proceed as though each link is implemented

by a single cable/fiber, and only when we are done will we worry about whether we

have just built a computer network on top of the underlying telephone network, or

the computer network we have just built could itself serve as the backbone for the

telephone network.

Last-Mile Links

If you can’t afford a dedicated leased line—they range in price from roughly a thousand

dollars a month for a cross-country DS1 link to “if you have to ask, you can’t afford

it”—then there are less expensive options available. We call these “last-mile” links

because they often span the last mile from the home to a network service provider.

These services, which are summarized in Table 2.3, typically connect a home to an

existing network. This means they are probably not suitable for use in building a com-

plete network from scratch, but if you’ve already succeeded in building a network—and

“you” happen to be either the telephone company or the cable company—then you

can use these links to reach millions of customers.

The first option is a conventional modem over POTS (plain old telephone ser-

vice). Today it is possible to buy a modem that transmits data at 56 Kbps over a

standard voice-grade line for less than a hundred dollars. The technology is already

at its bandwidth limit, however, which has led to the development of the second

option: ISDN (Integrated Services Digital Network). An ISDN connection includes two

Service Bandwidth

POTS 28.8–56 Kbps

ISDN 64–128 Kbps

xDSL 16 Kbps–55.2 Mbps

CATV 20–40 Mbps

Table 2.3 Common services available to connect your home.

72 2 Direct Link Networks

1.554–8.448 Mbps

16–640 Kbps

Local loop

Central
office

Subscriber
premises

Figure 2.3 ADSL connects the subscriber to the central office via the local loop.

64-Kbps channels, one that can be used to transmit data and another that can be

used for digitized voice. (A device that encodes analog voice into a digital ISDN link

is called a CODEC, for coder/decoder.) When the voice channel is not in use, it can

be combined with the data channel to support up to 128 Kbps of data bandwidth.

For many years ISDN was viewed

as the future for modest bandwidth into

the home. ISDN has now been largely

overtaken, however, by two newer tech-

nologies: xDSL (digital subscriber line) and

cable modems. The former is actually a

collection of technologies that are able

to transmit data at high speeds over the

standard twisted pair lines that currently

come into most homes in the United States

(and many other places). The one in most

widespread use today is ADSL (asymmetric

digital subscriber line). As its name implies,

ADSL provides a different bandwidth from

the subscriber to the telephone company’s

central office (upstream) than it does from

the central office to the subscriber (down-

stream). The exact bandwidth depends on

the length of the line running from the

subscriber to the central office. This line

is called the local loop, as illustrated in

Figure 2.3, and runs over existing copper.

Downstream bandwidths range from

1.544 Mbps (18,000 feet) to 8.448 Mbps

(9000 feet), while upstream bandwidths

range from 16 Kbps to 640 Kbps.

Shannon’s Theorem

Meets Your Modem

There has been an enormous body

of work done in the related areas

of signal processing and informa-

tion theory, studying everything

from how signals degrade over dis-

tance to how much data a given sig-

nal can effectively carry. The most

notable piece of work in this area

is a formula known as Shannon’s

theorem. Simply stated, Shannon’s

theorem gives an upper bound to

the capacity of a link, in terms of

bits per second (bps), as a function

of the signal-to-noise ratio of the

link, measured in decibels (dB).

Shannon’s theorem can be used

to determine the data rate at which

a modem can be expected to trans-

mit binary data over a voice-grade

phone line without suffering from

2.1 Hardware Building Blocks 73

STS-N

over fiber

VDSL at 12.96–55.2 Mbps

over 1000–4500 feet of copper
Central
office

Subscriber
premises

Neighborhood optical
network unit

Figure 2.4 VDSL connects the subscriber to the optical network that reaches the
neighborhood.

An alternative technology that has yet to be widely deployed—very high data rate

digital subscriber line (VDSL)—is symmetric, with data rates ranging from 12.96 Mbps

to 55.2 Mbps. VDSL runs over much shorter distances—1000 to 4500 feet—which

means that it will not typically reach from the home to the central office. Instead,

the telephone company would have to put VDSL transmission hardware in neighbor-

hoods, with some other technology (e.g., STS-N running over fiber) connecting the

too high an error rate. For example,

we assume that a voice-grade

phone connection supports a fre-

quency range of 300 Hz to 3300

Hz.

Shannon’s theorem is typically

given by the following formula:

C = B log2(1 + S/N)

where C is the achievable channel

capacity measured in hertz, B is the

bandwidth of the line (3300 Hz −
300 Hz = 3000 Hz), S is the av-

erage signal power, and N is the

average noise power. The signal-

to-noise ratio (S/N) is usually

expressed in decibels, related as fol-

lows:

dB = 10 × log10(S/N)

neighborhood to the central office, as illus-

trated in Figure 2.4. This is sometimes called

“fiber to the neighborhood” (contrasting

with more ambitious schemes such as “fiber

to the home” and “fiber to the curb”).

Cable modems are an alternative to

the various types of DSL. As the name

suggests, this technology uses the cable

TV (CATV) infrastructure, which currently

reaches 95% of the households in the

United States. (Only 65% of U.S. homes

actually subscribe.) In this approach, some

subset of the available CATV channels

are made available for transmitting dig-

ital data, where a single CATV channel

has a bandwidth of 6 MHz. CATV, like

ADSL, is used in an asymmetric way, with

downstream rates much greater than up-

stream rates. The technology is currently

able to achieve 40 Mbps downstream on

a single CATV channel, with 100 Mbps

as the theoretical capacity. The upstream

rate is roughly half the downstream rate

(i.e., 20 Mbps) due to a 1000-fold de-

crease in the signal-to-noise ratio. It is also

the case that fewer CATV channels are

74 2 Direct Link Networks

dedicated to upstream traffic than to downstream traffic. Unlike DSL, the bandwidth

is shared among all subscribers in a neighborhood (a fact that led to some amusing

advertising from DSL providers). This means that some method for arbitrating access

to the shared medium—similar to the 802 standards described later in this chapter—

needs to be used. Finally, like DSL, it is unlikely that cable modems will be used to

connect arbitrary node A at one site to arbitrary node B at some other site. Instead,

cable modems are seen as a means to connect node A in your home to the cable

company, with the cable company then defining what the rest of the network looks

like.

Wireless Links

The field of wireless communication is exploding, both economically and technologi-

cally. The Advanced Mobile Phone System (AMPS) has been the standard for cellular

phones in the United States for several years. AMPS, which is based on analog technol-

ogy, is rapidly giving way to digital cellular–PCS (Personal Communication Services)

in the United States and Canada, and GSM (Global System for Mobile Communi-

cation) in the rest of the world. All three

systems currently use a system of towers

to transmit signals, although some signifi-

cant efforts have been made to supplement

this infrastructure by ringing the globe with

a grid of medium- and low-orbit satellites.

These projects—which include ICO, Glob-

alstar, Iridium, and Teledesic—have had

mixed success. Those that are still viable are

mostly focusing on delivery of telephone ser-

vice to those increasingly rare parts of the

globe where cellular service is not available.

Thinking a bit less globally, frequency

bands from the radio and infrared portions

of the electromagnetic spectrum can be used

to provide wireless links over short dis-

tances, such as inside office buildings, cof-

fee shops, building complexes, and cam-

puses. In the case of infrared, signals with

wavelengths in the 850–950-nanometer

range can be used to transmit data at

1-Mbps rates over distances of about 10 m.

Assuming a typical decibel ratio

of 30 dB, this means that S/N =
1000. Thus, we have

C = 3000 × log2(1001)

which equals approximately 30

Kbps, roughly the limit of a 28.8-

Kbps modem.

Given this fundamental limit,

why is it possible to buy 56-Kbps

modems at any electronics store?

One reason is that such rates de-

pend on improved line quality, that

is, a higher signal-to-noise ratio

than 30 dB. Another reason is

that changes within the phone sys-

tem have largely eliminated analog

lines that are bandwidth-limited to

3300 Hz.

2.2 Encoding (NRZ, NRZI, Manchester, 4B/5B) 75

This technology does not require line of sight, but is limited to in-building environ-

ments. In the case of radio, several different bands are currently being made available

for data communication. For example, bands at 5.2 GHz and 17 GHz are allocated

to HIPERLAN (High Performance European Radio LAN) in Europe. Similarly, band-

width at 2.4 GHz has been set aside in many countries for use with the IEEE 802.11

standard for wireless LANs. (Additional bandwidth is available at 5 GHz, but unfor-

tunately it is subject to interference from microwave ovens.) IEEE 802.11, which is an

evolving standard that supports data rates of up to 54 Mbps, will be discussed more

fully in Section 2.8.

Another interesting development in the wireless arena is the Bluetooth radio

interface that operates in the 2.45-GHz frequency band. Bluetooth is designed for

short distances (on the order of 10 m) with a bandwidth of 1 Mbps. Its developers

envision it being used in all devices (e.g., printers, workstations, laptops, projectors,

PDAs, mobile phones), thereby eliminating the need for wires and cables in the office

(or between the various devices on your body, perhaps). Networks of such devices are

starting to be called piconets.

2.2 Encoding (NRZ, NRZI, Manchester, 4B/5B)

The first step in turning nodes and links into usable building blocks is to understand

how to connect them in such a way that bits can be transmitted from one node to the

other. As mentioned in the preceding section, signals propagate over physical links.

The task, therefore, is to encode the binary data that the source node wants to send

into the signals that the links are able to carry, and then to decode the signal back

into the corresponding binary data at the receiving node. We ignore the details of

modulation and assume we are working with two discrete signals: high and low. In

practice, these signals might correspond to two different voltages on a copper-based

link, or two different power levels on an optical link.

As we have said, most of the functions discussed in this chapter are performed by

a network adaptor—a piece of hardware that connects a node to a link. The network

adaptor contains a signalling component that actually encodes bits into signals at the

sending node and decodes signals into bits at the receiving node. Thus, as illustrated

in Figure 2.5, signals travel over a link between two signalling components, and bits

flow between network adaptors.

Let’s return to the problem of encoding bits onto signals. The obvious thing to

do is to map the data value 1 onto the high signal and the data value 0 onto the low

signal. This is exactly the mapping used by an encoding scheme called, cryptically

enough, non-return to zero (NRZ). For example, Figure 2.6 schematically depicts the

NRZ-encoded signal (bottom) that corresponds to the transmission of a particular

sequence of bits (top).

76 2 Direct Link Networks

Signalling component

Signal

Bits

Node NodeAdaptor Adaptor

Figure 2.5 Signals travel between signalling components; bits flow between adaptors.

Bits

NRZ

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

Figure 2.6 NRZ encoding of a bit stream.

The problem with NRZ is that a sequence of several consecutive 1s means that

the signal stays high on the link for an extended period of time, and similarly, sev-

eral consecutive 0s means that the signal stays low for a long time. There are two

fundamental problems caused by long

strings of 1s or 0s. The first is that it leads

to a situation known as baseline wander.

Specifically, the receiver keeps an average of

the signal it has seen so far, and then uses this

average to distinguish between low and high

signals. Whenever the signal is significantly

lower than this average, the receiver con-

cludes that it has just seen a 0, and likewise,

a signal that is significantly higher than the

average is interpreted to be a 1. The prob-

lem, of course, is that too many consecutive

1s or 0s cause this average to change, mak-

ing it more difficult to detect a significant

change in the signal.

The second problem is that frequent

transitions from high to low and vice versa

are necessary to enable clock recovery.

Intuitively, the clock recovery problem is

that both the encoding and the decoding

Bit Rates and Baud Rates

Many people use the terms bit

rate and baud rate interchangeably,

even though as we see with the

Manchester encoding, they are not

the same thing. While the Man-

chester encoding is an example of

a case in which a link’s baud rate

is greater than its bit rate, it is also

possible to have a bit rate that is

greater than the baud rate. This

would imply that more than one bit

is encoded on each pulse sent over

the link.

To see how this might happen,

suppose you could transmit four

2.2 Encoding (NRZ, NRZI, Manchester, 4B/5B) 77

Bits

NRZ

Clock

Manchester

NRZI

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

Figure 2.7 Different encoding strategies.

processes are driven by a clock—every clock cycle the sender transmits a bit and the

receiver recovers a bit. The sender’s and the receiver’s clocks have to be precisely

synchronized in order for the receiver to recover the same bits the sender trans-

mits. If the receiver’s clock is even slightly faster or slower than the sender’s clock,

then it does not correctly decode the signal. You could imagine sending the clock

to the receiver over a separate wire, but this is typically avoided because it makes

the cost of cabling twice as high. So instead, the receiver derives the clock from the

distinguished signals over a link

rather than just two. On an analog

link, for example, these four signals

might correspond to four different

frequencies. Given four different

signals, it is possible to encode two

bits of information on each signal.

That is, the first signal means 00,

the second signal means 01, and so

on. Now, a sender (receiver) that

is able to transmit (detect) 1000

pulses per second would be able to

send (receive) 2000 bits of informa-

tion per second. That is, it would

be a 1000-baud/2000-bps link.

received signal—the clock recovery process.

Whenever the signal changes, such as on

a transition from 1 to 0 or from 0 to 1,

then the receiver knows it is at a clock

cycle boundary, and it can resynchronize

itself. However, a long period of time with-

out such a transition leads to clock drift.

Thus, clock recovery depends on having lots

of transitions in the signal, no matter what

data is being sent.

One approach that addresses this

problem, called non-return to zero inverted

(NRZI), has the sender make a transition

from the current signal to encode a 1 and

stay at the current signal to encode a 0.

This solves the problem of consecutive 1s,

but obviously does nothing for consecu-

tive 0s. NRZI is illustrated in Figure 2.7.

An alternative, called Manchester encod-

ing, does a more explicit job of merging

78 2 Direct Link Networks

the clock with the signal by transmitting the exclusive-OR of the NRZ-encoded data

and the clock. (Think of the local clock as an internal signal that alternates from low

to high; a low/high pair is considered one clock cycle.) The Manchester encoding is

also illustrated in Figure 2.7. Observe that the Manchester encoding results in 0 being

encoded as a low-to-high transition and 1 being encoded as a high-to-low transition.

Because both 0s and 1s result in a transition to the signal, the clock can be effectively

recovered at the receiver. (There is also a variant of the Manchester encoding, called

differential Manchester, in which a 1 is encoded with the first half of the signal equal

to the last half of the previous bit’s signal and a 0 is encoded with the first half of the

signal opposite to the last half of the previous bit’s signal.)

The problem with the Manchester encoding scheme is that it doubles the rate

at which signal transitions are made on the link, which means that the receiver has

half the time to detect each pulse of the signal. The rate at which the signal changes

is called the link’s baud rate. In the case of the Manchester encoding, the bit rate is

half the baud rate, so the encoding is considered only 50% efficient. Keep in mind

that if the receiver had been able to keep up with the faster baud rate required by the

Manchester encoding in Figure 2.7, then both NRZ and NRZI could have been able

to transmit twice as many bits in the same time period.

A final encoding that we consider, called 4B/5B, attempts to address the inef-

ficiency of the Manchester encoding without suffering from the problem of having

extended durations of high or low signals. The idea of 4B/5B is to insert extra bits

into the bit stream so as to break up long sequences of 0s or 1s. Specifically, every

4 bits of actual data are encoded in a 5-bit code that is then transmitted to the

receiver; hence the name 4B/5B. The 5-bit codes are selected in such a way that each

one has no more than one leading 0 and no more than two trailing 0s. Thus, when sent

back-to-back, no pair of 5-bit codes results in more than three consecutive 0s being

transmitted. The resulting 5-bit codes are then transmitted using the NRZI encoding,

which explains why the code is only concerned about consecutive 0s—NRZI already

solves the problem of consecutive 1s. Note that the 4B/5B encoding results in 80%

efficiency.

Table 2.4 gives the 5-bit codes that correspond to each of the 16 possible 4-bit

data symbols. Notice that since 5 bits are enough to encode 32 different codes, and

we are using only 16 of these for data, there are 16 codes left over that we can use

for other purposes. Of these, code 11111 is used when the line is idle, code 00000

corresponds to when the line is dead, and 00100 is interpreted to mean halt. Of the

remaining 13 codes, 7 of them are not valid because they violate the “one leading 0,

two trailing 0s” rule, and the other 6 represent various control symbols. As we will

see later in this chapter, some framing protocols (e.g., FDDI) make use of these control

symbols.

2.3 Framing 79

4-Bit Data Symbol 5-Bit Code

0000 11110

0001 01001

0010 10100

0011 10101

0100 01010

0101 01011

0110 01110

0111 01111

1000 10010

1001 10011

1010 10110

1011 10111

1100 11010

1101 11011

1110 11100

1111 11101

Table 2.4 4B/5B encoding.

2.3 Framing

Now that we have seen how to transmit a sequence of bits over a point-to-point link—

from adaptor to adaptor—let’s consider the scenario illustrated in Figure 2.8. Recall

from Chapter 1 that we are focusing on packet-switched networks, which means that

blocks of data (called frames at this level), not bit streams, are exchanged between

nodes. It is the network adaptor that enables the nodes to exchange frames. When

node A wishes to transmit a frame to node B, it tells its adaptor to transmit a frame

from the node’s memory. This results in a sequence of bits being sent over the link.

The adaptor on node B then collects together the sequence of bits arriving on the link

and deposits the corresponding frame in B’s memory. Recognizing exactly what set of

bits constitutes a frame—that is, determining where the frame begins and ends—is the

central challenge faced by the adaptor.

80 2 Direct Link Networks

Frames

Bits

Node A Node BAdaptor Adaptor

Figure 2.8 Bits flow between adaptors, frames between hosts.

S
Y

N

Header Body

8 8 8 8 168

S
Y

N

S
O

H

S
T

X

E
T

X
CRC

Figure 2.9 BISYNC frame format.

There are several ways to address the framing problem. This section uses several

different protocols to illustrate the various points in the design space. Note that while

we discuss framing in the context of point-to-point links, the problem is a fundamental

one that must also be addressed in multiple-access networks like Ethernet and token

rings.

2.3.1 Byte-Oriented Protocols (BISYNC, PPP, DDCMP)

One of the oldest approaches to framing—it has its roots in connecting terminals to

mainframes—is to view each frame as a collection of bytes (characters) rather than

a collection of bits. Such a byte-oriented approach is exemplified by the BISYNC

(Binary Synchronous Communication) protocol developed by IBM in the late 1960s,

and the DDCMP (Digital Data Communication Message Protocol) used in Digital

Equipment Corporation’s DECNET. Sometimes these protocols assume a particular

character set—for example, BISYNC can support ASCII, EBCDIC, and IBM’s 6-bit

Transcode—but this is not necessarily the case.

Although similar in many respects, these two protocols are examples of two

different framing techniques, the sentinel approach and the byte-counting approach.

Sentinel Approach

The BISYNC protocol illustrates the sentinel approach to framing; its frame format is

depicted in Figure 2.9. This figure is the first of many that you will see in this book

that are used to illustrate frame or packet formats, so a few words of explanation

2.3 Framing 81

are in order. We show a packet as a sequence of labeled fields. Above each field is a

number indicating the length of that field in bits. Note that the packets are transmitted

beginning with the leftmost field.

The beginning of a frame is denoted by sending a special SYN (synchronization)

character. The data portion of the frame is then contained between special sentinel

characters: STX (start of text) and ETX (end of text). The SOH (start of header)

field serves much the same purpose as the STX field. The problem with the sentinel

approach, of course, is that the ETX character might appear in the data portion of the

frame. BISYNC overcomes this problem by “escaping” the ETX character by preceding

it with a DLE (data-link-escape) character whenever it appears in the body of a frame;

the DLE character is also escaped (by preceding it with an extra DLE) in the frame

body. (C programmers may notice that this is analogous to the way a quotation mark

is escaped by the backslash when it occurs inside a string.) This approach is often

called character stuffing because extra characters are inserted in the data portion of

the frame.

The frame format also includes a field labeled CRC (cyclic redundancy check)

that is used to detect transmission errors; various algorithms for error detection are

presented in Section 2.4. Finally, the frame contains additional header fields that

are used for, among other things, the link-level reliable delivery algorithm. Examples

of these algorithms are given in Section 2.5.

The more recent Point-to-Point Protocol (PPP), which is commonly run over dial-

up modem links, is similar to BISYNC in that it uses character stuffing. The format for

a PPP frame is given in Figure 2.10. The special start-of-text character, denoted as the

Flag field in Figure 2.10, is 01111110. The Address and Control fields usually contain

default values, and so are uninteresting. The Protocol field is used for demultiplexing:

It identifies the high-level protocol such as IP or IPX (an IP-like protocol developed

by Novell). The frame payload size can be negotiated, but it is 1500 bytes by default.

The Checksum field is either 2 (by default) or 4 bytes long.

The PPP frame format is unusual in that several of the field sizes are negotiated

rather than fixed. This negotiation is conducted by a protocol called LCP (Link Control

Protocol). PPP and LCP work in tandem: LCP sends control messages encapsulated

in PPP frames—such messages are denoted by an LCP identifier in the PPP Protocol

ProtocolControlAddressFlag Payload

88 816168

FlagChecksum

Figure 2.10 PPP frame format.

82 2 Direct Link Networks

S
Y

N

Header Body

8 8 4214 168

S
Y

N

C
la

s
s

CRCCount

Figure 2.11 DDCMP frame format.

field—and then turns around and changes PPP’s frame format based on the information

contained in those control messages. LCP is also involved in establishing a link between

two peers when both sides detect the carrier signal.

Byte-Counting Approach

As every Computer Sciences 101 student

knows, the alternative to detecting the end

of a file with a sentinel value is to include the

number of items in the file at the beginning

of the file. The same is true in framing—the

number of bytes contained in a frame can

be included as a field in the frame header.

DECNET’s DDCMP protocol uses this

approach, as illustrated in Figure 2.11. In

this example, the COUNT field specifies how

many bytes are contained in the frame’s

body.

One danger with this approach is

that a transmission error could corrupt the

COUNT field, in which case the end of the

frame would not be correctly detected. (A

similar problem exists with the sentinel-

based approach if the ETX field becomes

corrupted.) Should this happen, the receiver

will accumulate as many bytes as the bad

COUNT field indicates and then use the error

detection field to determine that the frame

is bad. This is sometimes called a framing

error. The receiver will then wait until it sees

the next SYN character to start collecting

the bytes that make up the next frame. It is

What’s in a Layer?

One of the important contribu-

tions of the OSI reference model

presented in Chapter 1 was to pro-

vide some vocabulary for talking

about protocols and, in particular,

protocol layers. This vocabulary

has provided fuel for plenty of

arguments along the lines of “Your

protocol does function X at layer Y,

and the OSI reference model says it

should be done at layer Z—that’s

a layer violation.” In fact, figuring

out the right layer at which to

perform a given function can be

very difficult, and the reasoning

is usually a lot more subtle than

“What does the OSI model say?”

It is partly for this reason that

this book avoids a rigidly layerist

approach. Instead, it shows you

a lot of functions that need to be

performed by protocols and looks

at some ways that they have been

successfully implemented.

2.3 Framing 83

Header Body

8 16 16 8

CRC
Beginning
sequence

Ending
sequence

Figure 2.12 HDLC frame format.

therefore possible that a framing error will cause back-to-back frames to be incorrectly

received.

In spite of our nonlayerist

approach, sometimes we need con-

venient ways to talk about classes

of protocols, and the name of the

layer at which they operate is often

the best choice. Thus, for exam-

ple, this chapter focuses primar-

ily on link-layer protocols. (Bit

encoding, described in Section 2.2,

is the exception, being considered

a physical-layer function.) Link-

layer protocols can be identified

by the fact that they run over sin-

gle links—the type of network dis-

cussed in this chapter. Network-

layer protocols, by contrast, run

over switched networks that con-

tain lots of links interconnected by

switches or routers. Topics related

to network-layer protocols are dis-

cussed in Chapters 3 and 4.

Note that protocol layers are

supposed to be helpful—they pro-

vide helpful ways to talk about

2.3.2 Bit-Oriented Protocols

(HDLC)

Unlike these byte-oriented protocols, a bit-

oriented protocol is not concerned with byte

boundaries—it simply views the frame as

a collection of bits. These bits might come

from some character set, such as ASCII, they

might be pixel values in an image, or they

could be instructions and operands from an

executable file. The Synchronous Data Link

Control (SDLC) protocol developed by IBM

is an example of a bit-oriented protocol;

SDLC was later standardized by the ISO as

the High-Level Data Link Control (HDLC)

protocol. In the following discussion, we use

HDLC as an example; its frame format is

given in Figure 2.12.

HDLC denotes both the beginning

and the end of a frame with the distin-

guished bit sequence 01111110. This sequ-

ence is also transmitted during any times

that the link is idle so that the sender and

receiver can keep their clocks synchro-

nized. In this way, both protocols essentially

use the sentinel approach. Because this se-

quence might appear anywhere in the body

of the frame—in fact, the bits 01111110

84 2 Direct Link Networks

might cross byte boundaries—bit-oriented protocols use the analog of the DLE char-

acter, a technique known as bit stuffing.

Bit stuffing in the HDLC protocol works as follows. On the sending side, any

time five consecutive 1s have been transmitted from the body of the message (i.e.,

excluding when the sender is trying to transmit the distinguished 01111110 sequence),

the sender inserts a 0 before transmitting the next bit. On the receiving side, should

five consecutive 1s arrive, the receiver makes its decision based on the next bit it sees

(i.e., the bit following the five 1s). If the next bit is a 0, it must have been stuffed, and

so the receiver removes it. If the next bit is a 1, then one of two things is true: Either

this is the end-of-frame marker or an error has been introduced into the bit stream.

By looking at the next bit, the receiver can distinguish between these two cases: If it

sees a 0 (i.e., the last eight bits it has looked at are 01111110), then it is the end-of-

frame marker; if it sees a 1 (i.e., the last eight bits it has looked at are 01111111), then

there must have been an error and the whole frame is discarded. In the latter case, the

receiver has to wait for the next 01111110 before it can start receiving again, and as a

consequence, there is the potential that the receiver will fail to receive two consecutive

frames. Obviously, there are still ways that framing errors can go undetected, such as

when an entire spurious end-of-frame pattern is generated by errors, but these failures

are relatively unlikely. Robust ways of detecting errors are discussed in Section 2.4.

An interesting characteristic of bit

stuffing, as well as character stuffing, is that

the size of a frame is dependent on the data

that is being sent in the payload of the frame.

It is in fact not possible to make all frames

exactly the same size, given that the data

that might be carried in any frame is arbi-

trary. (To convince yourself of this, consider

what happens if the last byte of a frame’s

body is the ETX character.) A form of fram-

ing that ensures that all frames are the same

size is described in the next subsection.

2.3.3 Clock-Based Framing

(SONET)

A third approach to framing is exempli-

fied by the Synchronous Optical Network

(SONET) standard. For lack of a widely

accepted generic term, we refer to this

approach simply as clock-based framing.

classes of protocols, and they help

us divide the problem of build-

ing networks into manageable sub-

tasks. However, they are not meant

to be overly restrictive—the mere

fact that something is a layer vio-

lation does not end the argument

about whether it is a worthwhile

thing to do. In other words, lay-

ering makes a good slave, but a

poor master. A particularly interest-

ing argument about the best layer

to place a certain function comes up

when we look at congestion control

in Chapter 6.

2.3 Framing 85

SONET was first proposed by Bell Communications Research (Bellcore), and then

developed under the American National Standards Institute (ANSI) for digital trans-

mission over optical fiber; it has since been adopted by the ITU-T. Who standardized

what and when is not the interesting issue, though. The thing to remember about

SONET is that it is the dominant standard for long-distance transmission of data over

optical networks.

An important point to make about SONET before we go any further is that the

full specification is substantially larger than this book. Thus, the following discussion

will necessarily cover only the high points of the standard. Also, SONET addresses

both the framing problem and the encoding problem. It also addresses a problem

that is very important for phone companies—the multiplexing of several low-speed

links onto one high-speed link. We begin with framing and discuss the other issues

following.

As with the previously discussed framing schemes, a SONET frame has some

special information that tells the receiver where the frame starts and ends. However,

that is about as far as the similarities go. Notably, no bit stuffing is used, so that a

frame’s length does not depend on the data being sent. So the question to ask is, How

does the receiver know where each frame starts and ends? We consider this question

for the lowest-speed SONET link, which is known as STS-1 and runs at 51.84 Mbps.

An STS-1 frame is shown in Figure 2.13. It is arranged as nine rows of 90 bytes each,

and the first 3 bytes of each row are overhead, with the rest being available for data

that is being transmitted over the link. The first 2 bytes of the frame contain a special

bit pattern, and it is these bytes that enable the receiver to determine where the frame

starts. However, since bit stuffing is not used, there is no reason why this pattern will

not occasionally turn up in the payload portion of the frame. To guard against this,

the receiver looks for the special bit pattern consistently, hoping to see it appearing

Overhead Payload

90 columns

9 rows

Figure 2.13 A SONET STS-1 frame.

86 2 Direct Link Networks

once every 810 bytes, since each frame is 9 × 90 = 810 bytes long. When the special

pattern turns up in the right place enough times, the receiver concludes that it is in

sync and can then interpret the frame correctly.

One of the things we are not describing due to the complexity of SONET is the

detailed use of all the other overhead bytes. Part of this complexity can be attributed

to the fact that SONET runs across the carrier’s optical network, not just over a single

link. (Recall that we are glossing over the fact that the carriers implement a network,

and we are instead focusing on the fact that we can lease a SONET link from them and

then use this link to build our own packet-switched network.) Additional complexity

comes from the fact that SONET provides a considerably richer set of services than

just data transfer. For example, 64 Kbps of a SONET link’s capacity is set aside for a

voice channel that is used for maintenance.

The overhead bytes of a SONET frame are encoded using NRZ, the simple

encoding described in the previous section where 1s are high and 0s are low. However,

to ensure that there are plenty of transitions to allow the receiver to recover the sender’s

clock, the payload bytes are scrambled. This is done by calculating the exclusive-OR

(XOR) of the data to be transmitted and by the use of a well-known bit pattern. The bit

pattern, which is 127 bits long, has plenty of transitions from 1 to 0, so that XORing

it with the transmitted data is likely to yield a signal with enough transitions to enable

clock recovery.

SONET supports the multiplexing of multiple low-speed links in the following

way. A given SONET link runs at one of a finite set of possible rates, ranging from

51.84 Mbps (STS-1) to 2488.32 Mbps (STS-48) and beyond. (See Table 2.2 in Section

2.1 for the full set of SONET data rates.) Note that all of these rates are integer

multiples of STS-1. The significance for framing is that a single SONET frame can

contain subframes for multiple lower-rate channels. A second related feature is that

each frame is 125 μs long. This means that at STS-1 rates, a SONET frame is 810 bytes

long, while at STS-3 rates, each SONET frame is 2430 bytes long. Notice the synergy

between these two features: 3 × 810 = 2430, meaning that three STS-1 frames fit

exactly in a single STS-3 frame.

Intuitively, the STS-N frame can be thought of as consisting of N STS-1 frames,

where the bytes from these frames are interleaved; that is, a byte from the first frame is

transmitted, then a byte from the second frame is transmitted, and so on. The reason for

interleaving the bytes from each STS-N frame is to ensure that the bytes in each STS-1

frame are evenly paced; that is, bytes show up at the receiver at a smooth 51 Mbps,

rather than all bunched up during one particular 1/Nth of the 125-μs interval.

Although it is accurate to view an STS-N signal as being used to multiplex N STS-

1 frames, the payload from these STS-1 frames can be linked together to form a larger

STS-N payload; such a link is denoted STS-Nc (for concatenated). One of the fields in

2.3 Framing 87

STS-1

H
d

r

STS-1

H
d

r

STS-1

H
d

r

STS-3cHdr

Figure 2.14 Three STS-1 frames multiplexed onto one STS-3c frame.

Frame 0

Frame 1

87 columns

9 rows

Figure 2.15 SONET frames out of phase.

the overhead is used for this purpose. Figure 2.14 schematically depicts concatenation

in the case of three STS-1 frames being concatenated into a single STS-3c frame. The

significance of a SONET link being designated as STS-3c rather than STS-3 is that, in

the former case, the user of the link can view it as a single 155.25-Mbps pipe, whereas

an STS-3 should really be viewed as three 51.84-Mbps links that happen to share a

fiber.

Finally, the preceding description of SONET is overly simplistic in that it

assumes that the payload for each frame is completely contained within the frame.

(Why wouldn’t it be?) In fact, we should view the STS-1 frame just described as simply

a placeholder for the frame, where the actual payload may float across frame bound-

aries. This situation is illustrated in Figure 2.15. Here we see both the STS-1 payload

floating across two STS-1 frames, and the payload shifted some number of bytes to

the right and, therefore, wrapped around. One of the fields in the frame overhead

points to the beginning of the payload. The value of this capability is that it simplifies

the task of synchronizing the clocks used throughout the carriers’ networks, which is

something that carriers spend a lot of their time worrying about.

88 2 Direct Link Networks

2.4 Error Detection

As discussed in Chapter 1, bit errors are sometimes introduced into frames. This

happens, for example, because of electrical interference or thermal noise. Although

errors are rare, especially on optical links, some mechanism is needed to detect these

errors so that corrective action can be taken. Otherwise, the end user is left wondering

why the C program that successfully compiled just a moment ago now suddenly has

a syntax error in it, when all that happened in the interim is that it was copied across

a network file system.

There is a long history of techniques for dealing with bit errors in computer

systems, dating back to Hamming and Reed/Solomon codes that were developed

for use when storing data on magnetic disks and in early core memories. This sec-

tion describes some of the error detection techniques most commonly used in net-

working.

Detecting errors is only one part of the problem. The other part is correcting

errors once detected. There are two basic approaches that can be taken when the

recipient of a message detects an error. One is to notify the sender that the message

was corrupted so that the sender can retransmit a copy of the message. If bit errors

are rare, then in all probability the retransmitted copy will be error-free. Alternatively,

there are some types of error detection algorithms that allow the recipient to recon-

struct the correct message even after it has been corrupted; such algorithms rely on

error-correcting codes, discussed below.

One of the most common techniques for detecting transmission errors is a tech-

nique known as the cyclic redundancy check (CRC). It is used in nearly all the link-level

protocols discussed in the previous section—for example, HDLC, DDCMP—as well

as in the CSMA and token ring protocols described later in this chapter. Section 2.4.3

outlines the basic CRC algorithm. Before discussing that approach, we consider two

simpler schemes that are also widely used: two-dimensional parity and checksums.

The former is used by the BISYNC protocol when it is transmitting ASCII characters

(CRC is used as the error code when BISYNC is used to transmit EBCDIC), and the

latter is used by several Internet protocols.

The basic idea behind any error detection scheme is to add redundant information

to a frame that can be used to determine if errors have been introduced. In the extreme,

we could imagine transmitting two complete copies of the data. If the two copies are

identical at the receiver, then it is probably the case that both are correct. If they

differ, then an error was introduced into one (or both) of them, and they must be

discarded. This is a rather poor error detection scheme for two reasons. First, it sends

n redundant bits for an n-bit message. Second, many errors will go undetected—any

error that happens to corrupt the same bit positions in the first and second copies of

the message.

2.4 Error Detection 89

Fortunately, we can do a lot better than this simple scheme. In general, we can

provide quite strong error detection capability while sending only k redundant bits for

an n-bit message, where k ≪ n. On an Ethernet, for example, a frame carrying up to

12,000 bits (1500 bytes) of data requires only a 32-bit CRC code, or as it is commonly

expressed, uses CRC-32. Such a code will catch the overwhelming majority of errors,

as we will see below.

We say that the extra bits we send are redundant because they add no new

information to the message. Instead, they are derived directly from the original mes-

sage using some well-defined algorithm. Both the sender and the receiver know exactly

what that algorithm is. The sender applies the algorithm to the message to generate the

redundant bits. It then transmits both the message and those few extra bits. When the

receiver applies the same algorithm to the received message, it should (in the absence of

errors) come up with the same result as the sender. It compares the result with the one

sent to it by the sender. If they match, it can conclude (with high likelihood) that no

errors were introduced in the message during transmission. If they do not match, it can

be sure that either the message or the redundant bits were corrupted, and it must take

appropriate action, that is, discarding the message, or correcting it if that is possible.

One note on the terminology for these extra bits. In general, they are referred

to as error-detecting codes. In specific cases, when the algorithm to create the code

is based on addition, they may be called a checksum. We will see that the Internet

checksum is appropriately named: It is an error check that uses a summing algorithm.

Unfortunately, the word “checksum” is often used imprecisely to mean any form of

error-detecting code, including CRCs. This can be confusing, so we urge you to use

the word “checksum” only to apply to codes that actually do use addition and to use

“error-detecting code” to refer to the general class of codes described in this section.

2.4.1 Two-Dimensional Parity

Two-dimensional parity is exactly what the name suggests. It is based on “simple”

(one-dimensional) parity, which usually involves adding one extra bit to a 7-bit code

to balance the number of 1s in the byte. For example, odd parity sets the eighth bit to

1 if needed to give an odd number of 1s in the byte, and even parity sets the eighth bit

to 1 if needed to give an even number of 1s in the byte. Two-dimensional parity does

a similar calculation for each bit position across each of the bytes contained in the

frame. This results in an extra parity byte for the entire frame, in addition to a parity

bit for each byte. Figure 2.16 illustrates how two-dimensional even parity works for

an example frame containing 6 bytes of data. Notice that the third bit of the parity

byte is 1 since there are an odd number of 1s in the third bit across the 6 bytes in the

frame. It can be shown that two-dimensional parity catches all 1-, 2-, and 3-bit errors,

and most 4-bit errors. In this case, we have added 14 bits of redundant information

90 2 Direct Link Networks

1011110 1

1101001 0

0101001 1

1011111 0

0110100 1

0001110 1

1111011 0

Parity
bits

Parity
byte

Data

Figure 2.16 Two-dimensional parity.

to a 42-bit message, and yet we have stronger protection against common errors than

the “repetition code” described above.

2.4.2 Internet Checksum Algorithm

A second approach to error detection is exemplified by the Internet checksum.

Although it is not used at the link level, it nevertheless provides the same sort of

functionality as CRCs and parity, so we discuss it here. We will see examples of its use

in Sections 4.1, 5.1, and 5.2.

The idea behind the Internet checksum is very simple—you add up all the words

that are transmitted and then transmit the result of that sum. The result is called

the checksum. The receiver performs the same calculation on the received data and

compares the result with the received checksum. If any transmitted data, including the

checksum itself, is corrupted, then the results will not match, so the receiver knows

that an error occurred.

You can imagine many different variations on the basic idea of a checksum. The

exact scheme used by the Internet protocols works as follows. Consider the data being

checksummed as a sequence of 16-bit integers. Add them together using 16-bit ones

complement arithmetic (explained below) and then take the ones complement of the

result. That 16-bit number is the checksum.

In ones complement arithmetic, a negative integer −x is represented as the

complement of x; that is, each bit of x is inverted. When adding numbers in ones

complement arithmetic, a carryout from the most significant bit needs to be added

to the result. Consider, for example, the addition of −5 and −3 in ones complement

arithmetic on 4-bit integers. +5 is 0101, so −5 is 1010; +3 is 0011, so −3 is 1100.

2.4 Error Detection 91

If we add 1010 and 1100 ignoring the carry, we get 0110. In ones complement arith-

metic, the fact that this operation caused a carry from the most significant bit causes

us to increment the result, giving 0111, which is the ones complement representation

of −8 (obtained by inverting the bits in 1000), as we would expect.

The following routine gives a straightforward implementation of the Internet’s

checksum algorithm. The count argument gives the length of buf measured in 16-bit

units. The routine assumes that buf has already been padded with 0s to a 16-bit

boundary.

u_short
cksum(u_short *buf, int count)
{

register u_long sum = 0;

while (count--)
{

sum += *buf++;
if (sum & 0xFFFF0000)
{

/* carry occurred,
so wrap around */

sum &= 0xFFFF;
sum++;

}
}

return ˜(sum & 0xFFFF);
}

This code ensures that the calculation uses ones complement arithmetic, rather

than the twos complement that is used in most machines. Note the if statement inside

the while loop. If there is a carry into the top 16 bits of sum, then we increment sum

just as in the previous example.

Compared to our repetition code, this algorithm scores well for using a small

number of redundant bits—only 16 for a message of any length—but it does not score

extremely well for strength of error detection. For example, a pair of single-bit errors,

one of which increments a word, one of which decrements another word by the same

amount, will go undetected. The reason for using an algorithm like this in spite of its

relatively weak protection against errors (compared to a CRC, for example) is simple:

This algorithm is much easier to implement in software. Experience in the ARPANET

suggested that a checksum of this form was adequate. One reason it is adequate is that

this checksum is the last line of defense in an end-to-end protocol; the majority of errors

are picked up by stronger error detection algorithms, such as CRCs, at the link level.

92 2 Direct Link Networks

2.4.3 Cyclic Redundancy

Check

It should be clear by now that a major goal

in designing error detection algorithms is to

maximize the probability of detecting errors

using only a small number of redundant

bits. Cyclic redundancy checks use some

fairly powerful mathematics to achieve

this goal. For example, a 32-bit CRC gives

strong protection against common bit

errors in messages that are thousands of

bytes long. The theoretical foundation of

the cyclic redundancy check is rooted in a

branch of mathematics called finite fields.

While this may sound daunting, the basic

ideas can be easily understood.

To start, think of an (n + 1)-bit mes-

sage as being represented by a polynomial

of degree n, that is, a polynomial whose

highest-order term is xn. The message is rep-

resented by a polynomial by using the value

of each bit in the message as the coefficient

for each term in the polynomial, starting

with the most significant bit to represent the

highest-order term. For example, an 8-bit

message consisting of the bits 10011010 cor-

responds to the polynomial

M(x) = 1 × x7 + 0 × x6 + 0 × x5 + 1 × x4

+ 1 × x3 + 0 × x2 + 1 × x1

+ 0 × x0

= x7 + x4 + x3 + x1

Simple Probability

Calculations

When dealing with network er-

rors and other unlikely (we hope)

events, we often have use for simple

back-of-the-envelope probability

estimates. A useful approximation

here is that if two independent

events have small probabilities p

and q, then the probability of either

event is p + q; the exact answer is

1 − (1 − p)(1 − q) = p + q − pq.

For p = q = .01, this estimate is

.02, while the exact value is .0199.

For a simple application of this,

suppose that the per-bit error rate

on a link is 1 in 107. Assuming bit

errors are all independent (which

they aren’t), we can estimate that

the probability of at least one error

in a 10,000-bit packet is 104/107 =
10−3. The exact answer, computed

as 1 − P(no errors), would be 1 −
(1 − 10−7)10,000 = .00099950.

For a slightly more complex

application, we compute the proba-

bility of two errors in such a packet;

this is the probability of an error

We can thus think of a sender and a receiver as exchanging polynomials with each

other.

For the purposes o f calculating a CRC, a sender and receiver have to agree on

a divisor polynomial, C(x). C(x) is a polynomial of degree k. For example, suppose

C(x) = x3 + x2 + 1. In this case, k = 3. The answer to the question “Where did

2.4 Error Detection 93

that would sneak past a 1-parity-bit

checksum. Let Ei j be the event that

bits i and j are bad, for 0 ≤ i < j <

104; the probability of this event is

about p = 10−7 × 10−7 = 10−14.

For a fixed j , the number of events

Ei j with i < j is j ; adding up the

number of these events for all j <

104, we get 1+2+· · ·+(104 −1) ≈
1
2 108. The final probability is thus
1
2 108 × 10−14 = 1

2 10−6.

Note that had we attempted

to estimate P(two errors) = P(first

error) × P(second error), and taken

these last two to be P(one error)

= 10−3, we would have obtained

10−6 here, which is rather far off;

the problem with this approach is

that not all i are equally likely to

be the position of the first error.

Or, looked at another way, we have

overstated the true probability by a

factor of two because we counted

errors at positions (i, j) and (j, i)

separately when they should only

be counted once.

C(x) come from?” is, in most practical

cases, “You look it up in a book.” In fact, the

choice of C(x) has a significant impact on

what types of errors can be reliably detected,

as we discuss below. There are a handful

of divisor polynomials that are very good

choices for various environments, and the

exact choice is normally made as part of the

protocol design. For example, the Ethernet

standard uses a well-known polynomial of

degree 32.

When a sender wishes to transmit a

message M(x) that is n + 1 bits long, what

is actually sent is the (n + 1)-bit message

plus k bits. We call the complete transmit-

ted message, including the redundant bits,

P(x). What we are going to do is contrive

to make the polynomial representing P(x)

exactly divisible by C(x); we explain how

this is achieved below. If P(x) is transmit-

ted over a link and there are no errors intro-

duced during transmission, then the receiver

should be able to divide P(x) by C(x) exact-

ly, leaving a remainder of zero. On the other

hand, if some error is introduced into P(x)

during transmission, then in all likelihood

the received polynomial will no longer be

exactly divisible by C(x), and thus the re-

ceiver will obtain a nonzero remainder, im-

plying that an error has occurred.

It will help to understand the follow-

ing if you know a little about polynomial

arithmetic; it is just slightly different from normal integer arithmetic. We are dealing

with a special class of polynomial arithmetic here, where coefficients may be only one

or zero, and operations on the coefficients are performed using modulo 2 arithmetic.

This is referred to as “polynomial arithmetic modulo 2.” Since this is a networking

book, not a mathematics text, let’s focus on the key properties of this type of arithmetic

for our purposes (which we ask you to accept on faith):

94 2 Direct Link Networks

■ Any polynomial B(x) can be divided by a divisor polynomial C(x) if B(x) is

of higher degree than C(x).

■ Any polynomial B(x) can be divided once by a divisor polynomial C(x) if

B(x) is of the same degree as C(x).

■ The remainder obtained when B(x) is divided by C(x) is obtained by sub-

tracting C(x) from B(x).

■ To subtract C(x) from B(x), we simply perform the exclusive-OR (XOR)

operation on each pair of matching coefficients.

For example, the polynomial x3 + 1 can be divided by x3 + x2 + 1 (because they

are both of degree 3) and the remainder would be 0×x3 +1×x2 +0×x1 +0×x0 = x2

(obtained by XORing the coefficients of each term). In terms of messages, we could

say that 1001 can be divided by 1101 and leaves a remainder of 0100. You should be

able to see that the remainder is just the bitwise exclusive-OR of the two messages.

Now that we know the basic rules for dividing polynomials, we are able to do long

division, which is necessary to deal with longer messages. An example appears below.

Recall that we wanted to create a polynomial for transmission that is derived

from the original message M(x), is k bits longer than M(x), and is exactly divisible by

C(x). We can do this in the following way:

1 Multiply M(x) by xk; that is, add k zeroes at the end of the message. Call this

zero-extended message T(x).

2 Divide T(x) by C(x) and find the remainder.

3 Subtract the remainder from T(x).

It should be obvious that what is left at this point is a message that is exactly

divisible by C(x). We may also note that the resulting message consists of M(x) fol-

lowed by the remainder obtained in step 2, because when we subtracted the remainder

(which can be no more than k bits long), we were just XORing it with the k zeroes

added in step 1. This part will become clearer with an example.

Consider the message x7 + x4 + x3 + x1, or 10011010. We begin by multiplying

by x3, since our divisor polynomial is of degree 3. This gives 10011010000. We divide

this by C(x), which corresponds to 1101 in this case. Figure 2.17 shows the polynomial

long division operation. Given the rules of polynomial arithmetic described above, the

long division operation proceeds much as it would if we were dividing integers. Thus

in the first step of our example, we see that the divisor 1101 divides once into the

first four bits of the message (1001), since they are of the same degree, and leaves

a remainder of 100 (1101 XOR 1001). The next step is to bring down a digit from

2.4 Error Detection 95

Generator 1101
11111001
10011010000 Message
1101

1001
1101

1000
1101

1011
1101

1100
1101

1000
1101

101 Remainder

Figure 2.17 CRC calculation using polynomial long division.

the message polynomial until we get another polynomial with the same degree as

C(x), in this case 1001. We calculate the remainder again (100) and continue until the

calculation is complete. Note that the “result” of the long division, which appears at

the top of the calculation, is not really of much interest—it is the remainder at the end

that matters.

You can see from the very bottom of Figure 2.17 that the remainder of the

example calculation is 101. So we know that 10011010000 minus 101 would be

exactly divisible by C(x), and this is what we send. The minus operation in polynomial

arithmetic is the logical XOR operation, so we actually send 10011010101. As noted

above, this turns out to be just the original message with the remainder from the long

division calculation appended to it. The recipient divides the received polynomial by

C(x) and, if the result is 0, concludes that there were no errors. If the result is nonzero,

it may be necessary to discard the errored message; with some codes, it may be possible

to correct a small error (e.g., if the error affected only one bit). A code that enables

error correction is called an error-correcting code (ECC).

Now we will consider the question of where the polynomial C(x) comes from.

Intuitively, the idea is to select this polynomial so that it is very unlikely to divide evenly

into a message that has errors introduced into it. If the transmitted message is P(x), we

may think of the introduction of errors as the addition of another polynomial E(x),

so the recipient sees P(x) + E(x). The only way that an error could slip by undetected

would be if the received message could be evenly divided by C(x), and since we know

that P(x) can be evenly divided by C(x), this could only happen if E(x) can be divided

evenly by C(x). The trick is to pick C(x) so that this is very unlikely for common types

of errors.

96 2 Direct Link Networks

CRC C(x)

CRC-8 x8 + x2 + x1 + 1

CRC-10 x10 + x9 + x5 + x4 + x1 + 1

CRC-12 x12 + x11 + x3 + x2 + 1

CRC-16 x16 + x15 + x2 + 1

CRC-CCITT x16 + x12 + x5 + 1

CRC-32 x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Table 2.5 Common CRC polynomials.

One common type of error is a single-bit error, which can be expressed as E(x) =
xi when it affects bit position i . If we select C(x) such that the first and the last term are

nonzero, then we already have a two-term polynomial that cannot divide evenly into

the one term E(x). Such a C(x) can, therefore, detect all single-bit errors. In general,

it is possible to prove that the following types of errors can be detected by a C(x) with

the stated properties:

■ All single-bit errors, as long as the

xk and x0 terms have nonzero coef-

ficients.

■ All double-bit errors, as long as

C(x) has a factor with at least three

terms.

■ Any odd number of errors, as long

as C(x) contains the factor (x + 1).

■ Any “burst” error (i.e., sequence of

consecutive errored bits) for which

the length of the burst is less than

k bits. (Most burst errors of larger

than k bits can also be detected.)

Six versions of C(x) are widely used in

link-level protocols (shown in Table 2.5).

Error Detection

or Error Correction?

We have mentioned that it is possi-

ble to use codes that not only detect

the presence of errors but also en-

able errors to be corrected. Since

the details of such codes require yet

more complex mathematics than

that required to understand CRCs,

we will not dwell on them here.

However, it is worth considering

the merits of correction versus de-

tection.

At first glance, it would seem

that correction is always better,

since with detection we are forced

to throw away the message and,

2.5 Reliable Transmission 97

x0 x1
XOR gate x2

Message

Figure 2.18 CRC calculation using shift register.

For example, the Ethernet and 802.5 networks described later in this chapter use

CRC-32, while HDLC uses CRC-CCITT. ATM, as described in Chapter 3, uses CRC-

8, CRC-10, and CRC-32.

Finally, we note that the CRC algorithm, while seemingly complex, is easily

implemented in hardware using a k-bit shift register and XOR gates. The number of

bits in the shift register equals the degree of the generator polynomial (k). Figure 2.18

shows the hardware that would be used for the generator x3+x2+1 from our previous

example. The message is shifted in from the left, beginning with the most significant

bit and ending with the string of k zeroes that is attached to the message, just as

in general, ask for another copy to

be transmitted. This uses up band-

width and may introduce latency

while waiting for the retransmis-

sion. However, there is a downside

to correction: It generally requires a

greater number of redundant bits to

send an error-correcting code that

is as strong (that is, able to cope

with the same range of errors) as a

code that only detects errors. Thus,

while error detection requires more

bits to be sent when errors occur,

error correction requires more bits

to be sent all the time. As a result,

in the long division example. When all the

bits have been shifted in and appropriately

XORed, the register contains the remainder,

that is, the CRC (most significant bit on the

right). The position of the XOR gates is de-

termined as follows: If the bits in the shift

register are labelled 0 through k − 1, left

to right, then put an XOR gate in front of

bit n if there is a term xn in the generator

polynomial. Thus, we see an XOR gate in

front of positions 0 and 2 for the generator

x3 + x2 + x0.

2.5 Reliable Transmission

As we saw in the previous section, frames

are sometimes corrupted while in tran-

sit, with an error code like CRC used to

detect such errors. While some error codes

are strong enough also to correct errors,

in practice the overhead is typically too

98 2 Direct Link Networks

large to handle the range of bit and burst errors that can be introduced on a network

link. Even when error-correcting codes are used (e.g., on wireless links), some errors

will be too severe to be corrected. As a result, some corrupt frames must be discarded.

A link-level protocol that wants to deliver frames reliably must somehow recover from

these discarded (lost) frames.

This is usually accomplished using a combination of two fundamental

mechanisms—acknowledgments and timeouts. An acknowledgment (ACK for short)

is a small control frame that a protocol sends back to its peer saying that it has received

an earlier frame. By control frame we mean a header without any data, although a

protocol can piggyback an ACK on a data frame it just happens to be sending in the

opposite direction. The receipt of an acknowledgment indicates to the sender of the

original frame that its frame was successfully delivered. If the sender does not receive

an acknowledgment after a reasonable amount of time, then it retransmits the original

frame. This action of waiting a reasonable amount of time is called a timeout.

The general strategy of using acknowledgments and timeouts to implement re-

liable delivery is sometimes called automatic repeat request (normally abbreviated

ARQ). This section describes three different ARQ algorithms using generic language;

that is, we do not give detailed information about a particular protocol’s header fields.

2.5.1 Stop-and-Wait

The simplest ARQ scheme is the stop-and-

wait algorithm. The idea of stop-and-wait

is straightforward: After transmitting one

frame, the sender waits for an acknowledg-

ment before transmitting the next frame. If

the acknowledgment does not arrive after a

certain period of time, the sender times out

and retransmits the original frame.

Figure 2.19 illustrates four different

scenarios that result from this basic algo-

rithm. This figure is a timeline, a com-

mon way to depict a protocol’s behavior.

The sending side is represented on the left,

the receiving side is depicted on the right,

and time flows from top to bottom. Fig-

ure 2.19(a) shows the situation in which

the ACK is received before the timer ex-

pires, (b) and (c) show the situation in which

error correction tends to be most

useful when (1) errors are quite

probable, as they may be, for ex-

ample, in a wireless environment,

or (2) the cost of retransmission is

too high, for example, because of

the latency involved in retransmit-

ting a packet over a satellite link.

The use of error-correcting

codes in networking is sometimes

referred to as forward error cor-

rection (FEC) because the cor-

rection of errors is handled “in

advance” by sending extra infor-

mation, rather than waiting for

errors to happen and dealing with

them later by retransmission.

2.5 Reliable Transmission 99

the original frame and the ACK, respectively, are lost, and (d) shows the situation in

which the timeout fires too soon. Recall that by “lost” we mean that the frame was

corrupted while in transit, that this corruption was detected by an error code on the

receiver, and that the frame was subsequently discarded.

There is one important subtlety in the stop-and-wait algorithm. Suppose the

sender sends a frame and the receiver acknowledges it, but the acknowledgment is

either lost or delayed in arriving. This situation is illustrated in timelines (c) and (d)

of Figure 2.19. In both cases, the sender times out and retransmits the original frame,

Sender Receiver

Frame

ACK

T
im

eo
u
t

T
im

e

Sender Receiver

Frame

ACK

T
im

eo
u
t

Frame

ACK

T
im

eo
u
t

Sender Receiver

Frame

ACKT
im

eo
u
t

Frame

ACKT
im

eo
u
t

Sender Receiver

Frame

T
im

eo
u
t

Frame

ACK

T
im

eo
u
t

(a) (c)

(b) (d)

Figure 2.19 Timeline showing four different scenarios for the stop-and-wait algorithm.
(a) The ACK is received before the timer expires; (b) the original frame is lost; (c) the
ACK is lost; (d) the timeout fires too soon.

100 2 Direct Link Networks

Sender Receiver

Frame 0

ACK 0

T
im

e Frame 1

ACK 1

Frame 0

ACK 0

…

Figure 2.20 Timeline for stop-and-wait with 1-bit sequence number.

but the receiver will think that it is the next frame, since it correctly received and

acknowledged the first frame. This has the potential to cause duplicate copies of a

frame to be delivered. To address this problem, the header for a stop-and-wait protocol

usually includes a 1-bit sequence number—that is, the sequence number can take on the

values 0 and 1—and the sequence numbers used for each frame alternate, as illustrated

in Figure 2.20. Thus, when the sender retransmits frame 0, the receiver can determine

that it is seeing a second copy of frame 0 rather than the first copy of frame 1 and

therefore can ignore it (the receiver still acknowledges it, in case the first ACK was lost).

The main shortcoming of the stop-and-wait algorithm is that it allows the sender

to have only one outstanding frame on the link at a time, and this may be far below

the link’s capacity. Consider, for example, a 1.5-Mbps link with a 45-ms round-trip

time. This link has a delay × bandwidth product of 67.5 Kb, or approximately 8 KB.

Since the sender can send only one frame per RTT, and assuming a frame size of 1 KB,

this implies a maximum sending rate of

BitsPerFrame ÷ TimePerFrame

= 1024 × 8 ÷ 0.045

= 182 Kbps

or about one-eighth of the link’s capacity. To use the link fully, then, we’d like the sender

to be able to transmit up to eight frames before having to wait for an acknowledgment.

2.5 Reliable Transmission 101

◮ The significance of the bandwidth × delay product is that it represents the

amount of data that could be in transit. We would like to be able to send this much

data without waiting for the first acknowledgment. The principle at work here is often

referred to as keeping the pipe full. The algorithms presented in the following two

subsections do exactly this.

2.5.2 Sliding Window

Consider again the scenario in which the link has a delay × bandwidth product of

8 KB and frames are of 1-KB size. We would like the sender to be ready to transmit the

ninth frame at pretty much the same moment that the ACK for the first frame arrives.

The algorithm that allows us to do this is called sliding window, and an illustrative

timeline is given in Figure 2.21.

The Sliding Window Algorithm

The sliding window algorithm works as follows. First, the sender assigns a sequence

number, denoted SeqNum, to each frame. For now, let’s ignore the fact that SeqNum is

implemented by a finite-size header field and instead assume that it can grow infinitely

large. The sender maintains three variables: The send window size, denoted SWS,

gives the upper bound on the number of outstanding (unacknowledged) frames that

the sender can transmit; LAR denotes the sequence number of the last acknowledgment

received; and LFS denotes the sequence number of the last frame sent. The sender also

maintains the following invariant:

LFS − LAR ≤ SWS

This situation is illustrated in Figure 2.22.

Sender Receiver

T
im

e

…
…

Figure 2.21 Timeline for the sliding window algorithm.

102 2 Direct Link Networks

≤ SWS

LAR LFS

… …

Figure 2.22 Sliding window on sender.

≤ RWS

LFR LAF

… …

Figure 2.23 Sliding window on receiver.

When an acknowledgment arrives, the sender moves LAR to the right, thereby

allowing the sender to transmit another frame. Also, the sender associates a timer with

each frame it transmits, and it retransmits the frame should the timer expire before an

ACK is received. Notice that the sender has to be willing to buffer up to SWS frames

since it must be prepared to retransmit them until they are acknowledged.

The receiver maintains the following three variables: The receive window size,

denoted RWS, gives the upper bound on the number of out-of-order frames that the

receiver is willing to accept; LAF denotes the sequence number of the largest acceptable

frame; and LFR denotes the sequence number of the last frame received. The receiver

also maintains the following invariant:

LAF − LFR ≤ RWS

This situation is illustrated in Figure 2.23.

When a frame with sequence number SeqNum arrives, the receiver takes the

following action. If SeqNum ≤ LFR or SeqNum > LAF, then the frame is outside

the receiver’s window and it is discarded. If LFR < SeqNum ≤ LAF, then the frame is

within the receiver’s window and it is accepted. Now the receiver needs to decide

whether or not to send an ACK. Let SeqNumToAck denote the largest sequence

number not yet acknowledged, such that all frames with sequence numbers less

than or equal to SeqNumToAck have been received. The receiver acknowledges the

receipt of SeqNumToAck, even if higher-numbered packets have been received.

2.5 Reliable Transmission 103

This acknowledgment is said to be cumulative. It then sets LFR = SeqNumToAck

and adjusts LAF = LFR + RWS.

For example, suppose LFR = 5 (i.e., the last ACK the receiver sent was for

sequence number 5), and RWS = 4. This implies that LAF = 9. Should frames 7 and 8

arrive, they will be buffered because they are within the receiver’s window. However,

no ACK needs to be sent since frame 6 is yet to arrive. Frames 7 and 8 are said to have

arrived out of order. (Technically, the receiver could resend an ACK for frame 5 when

frames 7 and 8 arrive.) Should frame 6 then arrive—perhaps it is late because it was

lost the first time and had to be retransmitted, or perhaps it was simply delayed—the

receiver acknowledges frame 8, bumps LFR to 8, and sets LAF to 12. If frame 6 was

in fact lost, then a timeout will have occurred at the sender, causing it to retransmit

frame 6.

We observe that when a timeout occurs, the amount of data in transit decreases,

since the sender is unable to advance its window until frame 6 is acknowledged. This

means that when packet losses occur, this scheme is no longer keeping the pipe full.

The longer it takes to notice that a packet loss has occurred, the more severe this

problem becomes.

Notice that in this example, the receiver could have sent a negative acknowl-

edgment (NAK) for frame 6 as soon as frame 7 arrived. However, this is unnecessary

since the sender’s timeout mechanism is sufficient to catch this situation, and sending

NAKs adds additional complexity to the receiver. Also, as we mentioned, it would

have been legitimate to send additional acknowledgments of frame 5 when frames 7

and 8 arrived; in some cases, a sender can use duplicate ACKs as a clue that a frame

was lost. Both approaches help to improve performance by allowing early detection

of packet losses.

Yet another variation on this scheme would be to use selective acknowledgments.

That is, the receiver could acknowledge exactly those frames it has received, rather

than just the highest-numbered frame received in order. So, in the above example, the

receiver could acknowledge the receipt of frames 7 and 8. Giving more information

to the sender makes it potentially easier for the sender to keep the pipe full, but adds

complexity to the implementation.

The sending window size is selected according to how many frames we want to

have outstanding on the link at a given time; SWS is easy to compute for a given delay ×
bandwidth product.1 On the other hand, the receiver can set RWS to whatever it wants.

Two common settings are RWS = 1, which implies that the receiver will not buffer any

frames that arrive out of order, and RWS = SWS, which implies that the receiver can

1Easy, that is, if we know the delay and the bandwidth. Sometimes we do not, and estimating them well is a
challenge to protocol designers. We discuss this further in Chapter 5.

104 2 Direct Link Networks

buffer any of the frames the sender transmits. It makes no sense to set RWS > SWS

since it’s impossible for more than SWS frames to arrive out of order.

Finite Sequence Numbers and Sliding Window

We now return to the one simplification we introduced into the algorithm—our as-

sumption that sequence numbers can grow infinitely large. In practice, of course, a

frame’s sequence number is specified in a header field of some finite size. For example,

a 3-bit field means that there are eight possible sequence numbers, 0 . . . 7. This makes

it necessary to reuse sequence numbers or, stated another way, sequence numbers wrap

around. This introduces the problem of being able to distinguish between different in-

carnations of the same sequence numbers, which implies that the number of possible

sequence numbers must be larger than the number of outstanding frames allowed. For

example, stop-and-wait allowed one outstanding frame at a time and had two distinct

sequence numbers.

Suppose we have one more number in our space of sequence numbers than

we have potentially outstanding frames; that is, SWS ≤ MaxSeqNum − 1, where

MaxSeqNum is the number of available sequence numbers. Is this sufficient? The

answer depends on RWR. If RWS = 1, then MaxSeqNum ≥ SWS + 1 is sufficient. If

RWS is equal to SWS, then having a MaxSeqNum just one greater than the sending

window size is not good enough. To see this, consider the situation in which we

have the eight sequence numbers 0 through 7, and SWS = RWS = 7. Suppose the

sender transmits frames 0..6, they are successfully received, but the ACKs are lost. The

receiver is now expecting frames 7, 0..5, but the sender times out and sends frames 0..6.

Unfortunately, the receiver is expecting the second incarnation of frames 0..5, but gets

the first incarnation of these frames. This is exactly the situation we wanted to avoid.

It turns out that the sending window size can be no more than half as big

as the number of available sequence numbers when RWS = SWS, or stated more

precisely,

SWS < (MaxSeqNum + 1)/2

Intuitively, what this is saying is that the sliding window protocol alternates between

the two halves of the sequence number space, just as stop-and-wait alternates between

sequence numbers 0 and 1. The only difference is that it continually slides between the

two halves rather than discretely alternating between them.

Note that this rule is specific to the situation where RWS = SWS. We leave

it as an exercise to determine the more general rule that works for arbitrary val-

ues of RWS and SWS. Also note that the relationship between the window size and

the sequence number space depends on an assumption that is so obvious that it

2.5 Reliable Transmission 105

is easy to overlook, namely, that frames are not reordered in transit. This cannot

happen on a direct point-to-point link since there is no way for one frame to overtake

another during transmission. However, we will see the sliding window algorithm used

in a different environment in Chapter 5, and we will need to devise another rule.

Implementation of Sliding Window

The following routines illustrate how we might implement the sending and receiving

sides of the sliding window algorithm. The routines are taken from a working protocol

named, appropriately enough, sliding window protocol (SWP). So as not to concern

ourselves with the adjacent protocols in the protocol graph, we denote the protocol

sitting above SWP as HLP (high-level protocol) and the protocol sitting below SWP

as LINK (link-level protocol).

We start by defining a pair of data structures. First, the frame header is very

simple: It contains a sequence number (SeqNum) and an acknowledgment number

(AckNum). It also contains a Flags field that indicates whether the frame is an ACK or

carries data.

typedef u_char SwpSeqno;

typedef struct {
SwpSeqno SeqNum; /* sequence number of this frame */
SwpSeqno AckNum; /* ack of received frame */
u_char Flags; /* up to 8 bits' worth of flags */

} SwpHdr;

Next, the state of the sliding window algorithm has the following structure. For

the sending side of the protocol, this state includes variables LAR and LFS, as described

earlier in this section, as well as a queue that holds frames that have been transmit-

ted but not yet acknowledged (sendQ). The sending state also includes a counting

semaphore called sendWindowNotFull. We will see how this is used below, but gener-

ally a semaphore is a synchronization primitive that supports semWait and semSig-

nal operations. Every invocation of semSignal increments the semaphore by 1, and

every invocation of semWait decrements s by 1, with the calling process blocked (sus-

pended) should decrementing the semaphore cause its value to become less than 0. A

process that is blocked during its call to semWait will be allowed to resume as soon as

enough semSignal operations have been performed to raise the value of the semaphore

above 0.

For the receiving side of the protocol, the state includes the variable NFE. This is

the next frame expected—the frame with a sequence number one more than the last

frame received (LFR), described earlier in this section. There is also a queue that holds

frames that have been received out of order (recvQ). Finally, although not shown,

106 2 Direct Link Networks

the sender and receiver sliding window sizes are defined by constants SWS and RWS,

respectively.

typedef struct {
/* sender side state: */
SwpSeqno LAR; /* seqno of last ACK received */
SwpSeqno LFS; /* last frame sent */
Semaphore sendWindowNotFull;
SwpHdr hdr; /* preinitialized header */
struct sendQ_slot {

Event timeout; /* event associated with send-timeout */
Msg msg;

} sendQ[SWS];

/* receiver side state: */
SwpSeqno NFE; /* seqno of next frame expected */
struct recvQ_slot {

int received; /* is msg valid? */
Msg msg;

} recvQ[RWS];
} SwpState;

The sending side of SWP is implemented by procedure sendSWP. This routine

is rather simple. First, semWait causes this process to block on a semaphore until it

is OK to send another frame. Once allowed to proceed, sendSWP sets the sequence

number in the frame’s header, saves a copy of the frame in the transmit queue (sendQ),

schedules a timeout event to handle the case in which the frame is not acknowledged,

and sends the frame to the next-lower-level protocol, which we denote as LINK.

One detail worth noting is the call to store swp hdr just before the call to

msgAddHdr. This routine translates the C structure that holds the SWP header (state->

hdr) into a byte string that can be safely attached to the front of the message (hbuf).

This routine (not shown) must translate each integer field in the header into network

byte order and remove any padding that the compiler has added to the C structure.

The issue of byte order is discussed more fully in Section 7.1, but for now it is enough

to assume that this routine places the most significant bit of a multiword integer in

the byte with the highest address. Also, we assume an abstract data type, denoted

Msg, that holds a message. The Msg type supports operations like msgAddHdr and

msgSaveCopy.

Another piece of complexity in this routine is the use of semWait and the send-

WindowNotFull semaphore. sendWindowNotFull is initialized to the size of the sender’s

sliding window, SWS (this initialization is not shown). Each time the sender trans-

mits a frame, the semWait operation decrements this count and blocks the sender

should the count go to 0. Each time an ACK is received, the semSignal operation

2.5 Reliable Transmission 107

invoked in deliverSWP (see below) increments this count, thus unblocking any wait-

ing sender.

static int
sendSWP(SwpState *state, Msg *frame)
{

struct sendQ_slot *slot;
hbuf[HLEN];

/* wait for send window to open */
semWait(&state->sendWindowNotFull);
state->hdr.SeqNum = ++state->LFS;
slot = &state->sendQ[state->hdr.SeqNum % SWS];
store_swp_hdr(state->hdr, hbuf);
msgAddHdr(frame, hbuf, HLEN);
msgSaveCopy(&slot->msg, frame);
slot->timeout = evSchedule(swpTimeout, slot,

SWP_SEND_TIMEOUT);
return sendLINK(frame);

}

Now to SWP’s protocol-specific implementation of the deliver operation, which

is given in procedure deliverSWP. This routine actually handles two different kinds

of incoming messages: ACKs for frames sent earlier from this node and data frames

arriving at this node. In a sense, the ACK half of this routine is the counterpart to the

sender side of the algorithm given in sendSWP. A decision as to whether the incoming

message is an ACK or a data frame is made by checking the Flags field in the header.

Note that this particular implementation does not support piggybacking ACKs on data

frames.

When the incoming frame is an ACK, deliverSWP simply finds the slot in the

transmit queue (sendQ) that corresponds to the ACK, cancels the timeout event, and

frees the frame saved in that slot. This work is actually done in a loop since the

ACK may be cumulative. The only other thing to notice about this case is the call

to subroutine swpInWindow. This subroutine, which is given below, ensures that the

sequence number for the frame being acknowledged is within the range of ACKs that

the sender currently expects to receive.

When the incoming frame contains data, deliverSWP first calls msgStripHdr and

load swp hdr to extract the header from the frame. Routine load swp hdr is the coun-

terpart to store swp hdr discussed earlier; it translates a byte string into the C data

structure that holds the SWP header. deliverSWP then calls swpInWindow to make

sure the sequence number of the frame is within the range of sequence numbers that it

expects. If it is, the routine loops over the set of consecutive frames it has received and

passes them up to the higher-level protocol by invoking the deliverHLP routine. It also

108 2 Direct Link Networks

sends a cumulative ACK back to the sender, but does so by looping over the receive

queue (it does not use the SeqNumToAck variable used in the prose description given

earlier in this section).

static int
deliverSWP(SwpState state, Msg *frame)
{

SwpHdr hdr;
char *hbuf;

hbuf = msgStripHdr(frame, HLEN);
load_swp_hdr(&hdr, hbuf)
if (hdr->Flags & FLAG_ACK_VALID)
{

/* received an acknowledgment---do SENDER side */
if (swpInWindow(hdr.AckNum, state->LAR + 1,

state->LFS))
{

do
{

struct sendQ_slot *slot;

slot = &state->sendQ[++state->LAR % SWS];
evCancel(slot->timeout);
msgDestroy(&slot->msg);
semSignal(&state->sendWindowNotFull);

} while (state->LAR != hdr.AckNum);
}

}

if (hdr.Flags & FLAG_HAS_DATA)
{

struct recvQ_slot *slot;

/* received data packet---do RECEIVER side */
slot = &state->recvQ[hdr.SeqNum % RWS];
if (!swpInWindow(hdr.SeqNum, state->NFE,

state->NFE + RWS - 1))
{

/* drop the message */
return SUCCESS;

}
msgSaveCopy(&slot->msg, frame);
slot->received = TRUE;
if (hdr.SeqNum == state->NFE)
{

2.5 Reliable Transmission 109

Msg m;
while (slot->received)
{

deliverHLP(&slot->msg);
msgDestroy(&slot->msg);
slot->received = FALSE;
slot = &state->recvQ[++state->NFE % RWS];

}
/* send ACK: */
prepare_ack(&m, state->NFE - 1);
sendLINK(&m);
msgDestroy(&m);

}
}
return SUCCESS;

}

Finally, swpInWindow is a simple subroutine that checks to see if a given sequence

number falls between some minimum and maximum sequence number.

static bool
swpInWindow(SwpSeqno seqno, SwpSeqno min, SwpSeqno max)
{

SwpSeqno pos, maxpos;

pos = seqno - min;/* pos *should* be in range [0..MAX)*/
maxpos = max - min + 1;/* maxpos is in range [0..MAX]*/
return pos < maxpos;

}

Frame Order and Flow Control

The sliding window protocol is perhaps the best-known algorithm in computer net-

working. What is easily confusing about the algorithm, however, is that it can be used

to serve three different roles. The first role is the one we have been concentrating on

in this section—to reliably deliver frames across an unreliable link. (In general, the

algorithm can be used to reliably deliver messages across an unreliable network.) This

is the core function of the algorithm.

The second role that the sliding window algorithm can serve is to preserve the

order in which frames are transmitted. This is easy to do at the receiver—since each

frame has a sequence number, the receiver just makes sure that it does not pass a

frame up to the next-higher-level protocol until it has already passed up all frames

with a smaller sequence number. That is, the receiver buffers (i.e., does not pass along)

out-of-order frames. The version of the sliding window algorithm described in this

110 2 Direct Link Networks

section does preserve frame order, although we could imagine a variation in which

the receiver passes frames to the next protocol without waiting for all earlier frames

to be delivered. A question we should ask ourselves is whether we really need the

sliding window protocol to keep the frames in order, or whether, instead, this is un-

necessary functionality at the link level. Unfortunately, we have not yet seen enough

of the network architecture to answer this question; we first need to understand how

a sequence of point-to-point links is connected by switches to form an end-to-end

path.

The third role that the sliding window algorithm sometimes plays is to support

flow control—a feedback mechanism by which the receiver is able to throttle the

sender. Such a mechanism is used to keep the sender from overrunning the receiver,

that is, from transmitting more data than the receiver is able to process. This is usually

accomplished by augmenting the sliding window protocol so that the receiver not only

acknowledges frames it has received, but also informs the sender of how many frames

it has room to receive. The number of frames that the receiver is capable of receiving

corresponds to how much free buffer space it has. As in the case of ordered delivery, we

need to make sure that flow control is necessary at the link level before incorporating

it into the sliding window protocol.

◮ One important concept to take away from this discussion is the system design

principle we call separation of concerns. That is, you must be careful to distinguish

between different functions that are sometimes rolled together in one mechanism,

and you must make sure that each function is necessary and being supported in the

most effective way. In this particular case, reliable delivery, ordered delivery, and flow

control are sometimes combined in a single sliding window protocol, and we should

ask ourselves if this is the right thing to do at the link level. With this question in mind,

we revisit the sliding window algorithm in Chapter 3 (we show how X.25 networks

use it to implement hop-by-hop flow control) and in Chapter 5 (we describe how TCP

uses it to implement a reliable byte-stream channel).

2.5.3 Concurrent Logical Channels

The data link protocol used in the ARPANET provides an interesting alternative to

the sliding window protocol, in that it is able to keep the pipe full while still using the

simple stop-and-wait algorithm. One important consequence of this approach is that

the frames sent over a given link are not kept in any particular order. The protocol

also implies nothing about flow control.

The idea underlying the ARPANET protocol, which we refer to as concurrent

logical channels, is to multiplex several logical channels onto a single point-to-point

link and to run the stop-and-wait algorithm on each of these logical channels. There is

no relationship maintained among the frames sent on any of the logical channels, yet

2.6 Ethernet (802.3) 111

because a different frame can be outstanding on each of the several logical channels,

the sender can keep the link full.

More precisely, the sender keeps 3 bits of state for each channel: a boolean, saying

whether the channel is currently busy; the 1-bit sequence number to use the next time

a frame is sent on this logical channel; and the next sequence number to expect on

a frame that arrives on this channel. When the node has a frame to send, it uses the

lowest idle channel, and otherwise it behaves just like stop-and-wait.

In practice, the ARPANET supported 8 logical channels over each ground link

and 16 over each satellite link. In the ground-link case, the header for each frame

included a 3-bit channel number and a 1-bit sequence number, for a total of 4 bits.

This is exactly the number of bits the sliding window protocol requires to support up

to eight outstanding frames on the link when RWS = SWS.

2.6 Ethernet (802.3)
The Ethernet is easily the most successful local area networking technology of the last

20 years. Developed in the mid-1970s by researchers at the Xerox Palo Alto Research

Center (PARC), the Ethernet is a working example of the more general Carrier Sense

Multiple Access with Collision Detect (CSMA/CD) local area network technology.

As indicated by the CSMA name, the Ethernet is a multiple-access network,

meaning that a set of nodes send and receive frames over a shared link. You can,

therefore, think of an Ethernet as being like a bus that has multiple stations plugged

into it. The “carrier sense” in CSMA/CD means that all the nodes can distinguish

between an idle and a busy link, and “collision detect” means that a node listens as

it transmits and can therefore detect when a frame it is transmitting has interfered

(collided) with a frame transmitted by another node.

The Ethernet has its roots in an early packet radio network, called Aloha, de-

veloped at the University of Hawaii to support computer communication across the

Hawaiian Islands. Like the Aloha network, the fundamental problem faced by the

Ethernet is how to mediate access to a shared medium fairly and efficiently (in Aloha

the medium was the atmosphere, while in Ethernet the medium is a coax cable). That

is, the core idea in both Aloha and the Ethernet is an algorithm that controls when

each node can transmit.

Digital Equipment Corporation and Intel Corporation joined Xerox to define a

10-Mbps Ethernet standard in 1978. This standard then formed the basis for IEEE

standard 802.3. With one exception that we will see in Section 2.6.2, it is fair to view the

1978 Ethernet standard as a proper subset of the 802.3 standard; 802.3 additionally

defines a much wider collection of physical media over which Ethernet can operate,

and more recently, it has been extended to include a 100-Mbps version called Fast

112 2 Direct Link Networks

Transceiver

Ethernet cable

Adaptor

Host

Figure 2.24 Ethernet transceiver and adaptor.

Ethernet and a 1000-Mbps version called Gigabit Ethernet. The rest of this section

focuses on 10-Mbps Ethernet, since it is typically used in multiple-access mode and

we are interested in how multiple hosts share a single link. Both 100-Mbps and 1000-

Mbps Ethernets are designed to be used in full-duplex, point-to-point configurations,

which means that they are typically used in switched networks, as described in the

next chapter.

2.6.1 Physical Properties

An Ethernet segment is implemented on a coaxial cable of up to 500 m. This cable

is similar to the type used for cable TV, except that it typically has an impedance

of 50 ohms instead of cable TV’s 75 ohms. Hosts connect to an Ethernet segment by

tapping into it; taps must be at least 2.5 m apart. A transceiver—a small device directly

attached to the tap—detects when the line is idle and drives the signal when the host

is transmitting. It also receives incoming signals. The transceiver is, in turn, connected

to an Ethernet adaptor, which is plugged into the host. All the logic that makes up the

Ethernet protocol, as described in this section, is implemented in the adaptor (not the

transceiver). This configuration is shown in Figure 2.24.

Multiple Ethernet segments can be joined together by repeaters. A repeater is a de-

vice that forwards digital signals, much like an amplifier forwards analog signals. How-

ever, no more than four repeaters may be positioned between any pair of hosts, meaning

that an Ethernet has a total reach of only 2500 m. For example, using just two re-

peaters between any pair of hosts supports a configuration similar to the one illustrated

in Figure 2.25, that is, a segment running down the spine of a building with a segment

on each floor. All told, an Ethernet is limited to supporting a maximum of 1024 hosts.

2.6 Ethernet (802.3) 113

Repeater

Host

…

…

…

…

Figure 2.25 Ethernet repeater.

Any signal placed on the Ethernet by a host is broadcast over the entire network;

that is, the signal is propagated in both directions, and repeaters forward the signal

on all outgoing segments. Terminators attached to the end of each segment absorb

the signal and keep it from bouncing back and interfering with trailing signals. The

Ethernet uses the Manchester encoding scheme described in Section 2.2.

In addition to the system of segments and repeaters just described, alternative

technologies have been introduced over the years. For example, rather than using a

50-ohm coax cable, an Ethernet can be constructed from a thinner cable known as

10Base2; the original cable is called 10Base5 (the two cables are commonly called thin-

net and thick-net, respectively). The “10” in 10Base2 means that the network operates

at 10 Mbps, “Base” refers to the fact that the cable is used in a baseband system, and

the “2” means that a given segment can be no longer than 200 m (a segment of the

original 10Base5 cable can be up to 500 m long). Today, a third cable technology is

predominantly used, called 10BaseT, where the “T” stands for twisted pair. Typically,

Category 5 twisted pair wiring is used. A 10BaseT segment is usually limited to under

100 m in length. (Both 100-Mbps and 1000-Mbps Ethernets also run over Category

5 twisted pair, up to distances of 100 m.)

114 2 Direct Link Networks

Hub Hub

Figure 2.26 Ethernet hub.

Because the cable is so thin, you do not tap into a 10Base2 or 10BaseT cable in the

same way as you would with 10Base5 cable. With 10Base2, a T-joint is spliced into the

cable. In effect, 10Base2 is used to daisy-chain a set of hosts together. With 10BaseT,

the common configuration is to have several point-to-point segments coming out of

a multiway repeater, sometimes called a hub, as illustrated in Figure 2.26. Multiple

100-Mbps Ethernet segments can also be connected by a hub, but the same is not true

of 1000-Mbps segments.

It is important to understand that whether a given Ethernet spans a single seg-

ment, a linear sequence of segments connected by repeaters, or multiple segments

connected in a star configuration by a hub, data transmitted by any one host on that

Ethernet reaches all the other hosts. This is the good news. The bad news is that all

these hosts are competing for access to the same link, and as a consequence, they are

said to be in the same collision domain.

2.6.2 Access Protocol

We now turn our attention to the algorithm that controls access to the shared Ethernet

link. This algorithm is commonly called the Ethernet’s media access control (MAC).

It is typically implemented in hardware on the network adaptor. We will not describe

the hardware per se, but instead focus on the algorithm it implements. First, however,

we describe the Ethernet’s frame format and addresses.

Frame Format

Each Ethernet frame is defined by the format given in Figure 2.27. The 64-bit preamble

allows the receiver to synchronize with the signal; it is a sequence of alternating 0s

and 1s. Both the source and destination hosts are identified with a 48-bit address.

The packet type field serves as the demultiplexing key; that is, it identifies to which

of possibly many higher-level protocols this frame should be delivered. Each frame

contains up to 1500 bytes of data. Minimally, a frame must contain at least 46 bytes of

data, even if this means the host has to pad the frame before transmitting it. The reason

2.6 Ethernet (802.3) 115

Dest
addr

64 48 32

CRCPreamble Src
addr

Type Body

1648

Figure 2.27 Ethernet frame format.

for this minimum frame size is that the frame must be long enough to detect a collision;

we discuss this more below. Finally, each frame includes a 32-bit CRC. Like the HDLC

protocol described in Section 2.3.2, the Ethernet is a bit-oriented framing protocol.

Note that from the host’s perspective, an Ethernet frame has a 14-byte header: two

6-byte addresses and a 2-byte type field. The sending adaptor attaches the preamble,

CRC, and postamble before transmitting, and the receiving adaptor removes them.

The frame format just described is taken from the Digital-Intel-Xerox Ethernet

standard. The 802.3 frame format is exactly the same, except it substitutes a 16-bit

length field for the 16-bit type field. 802.3 is usually paired with an encapsulation

standard that defines a type field used to demultiplex incoming frames. This type field

is the first thing in the data portion of the 802.3 frames; that is, it immediately follows

the 802.3 header. Fortunately, since the Ethernet standard has avoided using any type

values less than 1500 (the maximum length found in an 802.3 header), and the type and

length fields are in the same location in the header, it is possible for a single device to

accept both formats, and for the device driver running on the host to interpret the last

16 bits of the header as either a type or a length. In practice, most hosts follow the

Digital-Intel-Xerox format and interpret this field as the frame’s type.

Addresses

Each host on an Ethernet—in fact, every Ethernet host in the world—has a unique

Ethernet address. Technically, the address belongs to the adaptor, not the host; it is

usually burned into ROM. Ethernet addresses are typically printed in a form humans

can read as a sequence of six numbers separated by colons. Each number corresponds

to 1 byte of the 6-byte address and is given by a pair of hexadecimal digits, one for each

of the 4-bit nibbles in the byte; leading 0s are dropped. For example, 8:0:2b:e4:b1:2 is

the human-readable representation of Ethernet address

00001000 00000000 00101011 11100100 10110001 00000010

To ensure that every adaptor gets a unique address, each manufacturer of Eth-

ernet devices is allocated a different prefix that must be prepended to the address on

every adaptor they build. For example, Advanced Micro Devices has been assigned the

116 2 Direct Link Networks

24-bit prefix x080020 (or 8:0:20). A given manufacturer then makes sure the address

suffixes it produces are unique.

Each frame transmitted on an Ethernet is received by every adaptor connected

to that Ethernet. Each adaptor recognizes those frames addressed to its address and

passes only those frames on to the host. (An adaptor can also be programmed to run

in promiscuous mode, in which case it delivers all received frames to the host, but this

is not the normal mode.) In addition to these unicast addresses, an Ethernet address

consisting of all 1s is treated as a broadcast address; all adaptors pass frames addressed

to the broadcast address up to the host. Similarly, an address that has the first bit set

to 1 but is not the broadcast address is called a multicast address. A given host can

program its adaptor to accept some set of multicast addresses. Multicast addresses are

used to send messages to some subset of the hosts on an Ethernet (e.g., all file servers).

To summarize, an Ethernet adaptor receives all frames and accepts

■ frames addressed to its own address

■ frames addressed to the broadcast address

■ frames addressed to a multicast address, if it has been instructed to listen to

that address

■ all frames, if it has been placed in promiscuous mode

It passes to the host only the frames that it accepts.

Transmitter Algorithm

As we have just seen, the receiver side of the Ethernet protocol is simple; the real smarts

are implemented at the sender’s side. The transmitter algorithm is defined as follows.

When the adaptor has a frame to send and the line is idle, it transmits the frame

immediately; there is no negotiation with the other adaptors. The upper bound of

1500 bytes in the message means that the adaptor can occupy the line for only a fixed

length of time.

When an adaptor has a frame to send and the line is busy, it waits for the line to go

idle and then transmits immediately.2 The Ethernet is said to be a 1-persistent protocol

because an adaptor with a frame to send transmits with probability 1 whenever a busy

line goes idle. In general, a p-persistent algorithm transmits with probability 0 ≤ p ≤ 1

after a line becomes idle, and defers with probability q = 1− p. The reasoning behind

choosing a p < 1 is that there might be multiple adaptors waiting for the busy line

2To be more precise, all adaptors wait 9.6 μs after the end of one frame before beginning to transmit the next
frame. This is true for the sender of the first frame, as well as those nodes listening for the line to become idle.

2.6 Ethernet (802.3) 117

to become idle, and we don’t want all of them to begin transmitting at the same time.

If each adaptor transmits immediately with a probability of, say, 33%, then up to

three adaptors can be waiting to transmit and the odds are that only one will begin

transmitting when the line becomes idle. Despite this reasoning, an Ethernet adaptor

always transmits immediately after noticing that the network has become idle and has

been very effective in doing so.

To complete the story about p-persistent protocols for the case when p < 1, you

might wonder how long a sender that loses the coin flip (i.e., decides to defer) has

to wait before it can transmit. The answer for the Aloha network, which originally

developed this style of protocol, was to divide time into discrete slots, with each slot

corresponding to the length of time it takes to transmit a full frame. Whenever a node

has a frame to send and it senses an empty (idle) slot, it transmits with probability p

and defers until the next slot with probability q = 1− p. If that next slot is also empty,

the node again decides to transmit or defer, with probabilities p and q, respectively. If

that next slot is not empty—that is, some other station has decided to transmit—then

the node simply waits for the next idle slot and the algorithm repeats.

Returning to our discussion of the Ethernet, because there is no centralized con-

trol it is possible for two (or more) adaptors to begin transmitting at the same time,

either because both found the line to be idle or because both had been waiting for a

busy line to become idle. When this happens, the two (or more) frames are said to

collide on the network. Each sender, because the Ethernet supports collision detec-

tion, is able to determine that a collision is in progress. At the moment an adaptor

detects that its frame is colliding with another, it first makes sure to transmit a 32-bit

jamming sequence and then stops the transmission. Thus, a transmitter will mini-

mally send 96 bits in the case of a collision: 64-bit preamble plus 32-bit jamming

sequence.

One way that an adaptor will send only 96 bits—which is sometimes called

a runt frame—is if the two hosts are close to each other. Had the two hosts been

farther apart, they would have had to transmit longer, and thus send more bits, before

detecting the collision. In fact, the worst-case scenario happens when the two hosts are

at opposite ends of the Ethernet. To know for sure that the frame it just sent did not

collide with another frame, the transmitter may need to send as many as 512 bits. Not

coincidentally, every Ethernet frame must be at least 512 bits (64 bytes) long: 14 bytes

of header plus 46 bytes of data plus 4 bytes of CRC.

Why 512 bits? The answer is related to another question you might ask about

an Ethernet: Why is its length limited to only 2500 m? Why not 10 or 1000 km? The

answer to both questions has to do with the fact that the farther apart two nodes

are, the longer it takes for a frame sent by one to reach the other, and the network is

vulnerable to a collision during this time.

118 2 Direct Link Networks

(a)

(b)

(c)

A B

A B

A B

A B

(d)

Figure 2.28 Worst-case scenario: (a) A sends a frame at time t; (b) A’s frame arrives at
B at time t + d; (c) B begins transmitting at time t + d and collides with A’s frame; (d) B’s
runt (32-bit) frame arrives at A at time t +2d.

Figure 2.28 illustrates the worst-case scenario, where hosts A and B are at op-

posite ends of the network. Suppose host A begins transmitting a frame at time t, as

shown in (a). It takes it one link latency (let’s denote the latency as d) for the frame to

reach host B. Thus, the first bit of A’s frame arrives at B at time t + d, as shown in (b).

Suppose an instant before host A’s frame arrives (i.e., B still sees an idle line), host B

begins to transmit its own frame. B’s frame will immediately collide with A’s frame,

and this collision will be detected by host B (c). Host B will send the 32-bit jamming

sequence, as described above. (B’s frame will be a runt.) Unfortunately, host A will not

know that the collision occurred until B’s frame reaches it, which will happen one link

latency later, at time t +2×d, as shown in (d). Host A must continue to transmit until

this time in order to detect the collision. In other words, host A must transmit for 2×d

to be sure that it detects all possible collisions. Considering that a maximally config-

ured Ethernet is 2500 m long, and that there may be up to four repeaters between

any two hosts, the round-trip delay has been determined to be 51.2 μs, which on

a 10-Mbps Ethernet corresponds to 512 bits. The other way to look at this situa-

tion is that we need to limit the Ethernet’s maximum latency to a fairly small value

2.6 Ethernet (802.3) 119

(e.g., 51.2 μs) for the access algorithm to work; hence, an Ethernet’s maximum length

must be something on the order of 2500 m.

Once an adaptor has detected a collision and stopped its transmission, it waits

a certain amount of time and tries again. Each time it tries to transmit but fails,

the adaptor doubles the amount of time it waits before trying again. This strategy of

doubling the delay interval between each retransmission attempt is a general technique

known as exponential backoff. More precisely, the adaptor first delays either 0 or

51.2 μs, selected at random. If this effort fails, it then waits 0, 51.2, 102.4, or 153.6 μs

(selected randomly) before trying again; this is k × 51.2 for k = 0..3. After the third

collision, it waits k× 51.2 for k = 0..23 − 1, again selected at random. In general, the

algorithm randomly selects a k between 0 and 2n − 1 and waits k × 51.2 μs, where

n is the number of collisions experienced so far. The adaptor gives up after a given

number of tries and reports a transmit error to the host. Adaptors typically retry up

to 16 times, although the backoff algorithm caps n in the above formula at 10.

2.6.3 Experience with Ethernet

Because Ethernets have been around for so many years and are so popular, we have a

great deal of experience in using them. One of the most important observations people

have made about Ethernets is that they work best under lightly loaded conditions. This

is because under heavy loads—typically, a utilization of over 30% is considered heavy

on an Ethernet—too much of the network’s capacity is wasted by collisions.

Fortunately, most Ethernets are used in a far more conservative way than the

standard allows. For example, most Ethernets have fewer than 200 hosts connected to

them, which is far fewer than the maximum of 1024. (See if you can discover a reason

for this upper limit of around 200 hosts in Chapter 4.) Similarly, most Ethernets are

far shorter than 2500 m, with a round-trip delay of closer to 5 μs than 51.2 μs.

Another factor that makes Ethernets practical is that, even though Ethernet adaptors

do not implement link-level flow control, the hosts typically provide an end-to-end

flow-control mechanism. As a result, it is rare to find situations in which any one host

is continuously pumping frames onto the network.

Finally, it is worth saying a few words about why Ethernets have been so suc-

cessful, so that we can understand the properties we should emulate with any LAN

technology that tries to replace it. First, an Ethernet is extremely easy to administer

and maintain: There are no switches that can fail, no routing or configuration tables

that have to be kept up-to-date, and it is easy to add a new host to the network. It is

hard to imagine a simpler network to administer. Second, it is inexpensive: Cable is

cheap, and the only other cost is the network adaptor on each host. Any switch-based

approach will involve an investment in some relatively expensive infrastructure (the

switches), in addition to the incremental cost of each adaptor. As we will see in the

120 2 Direct Link Networks

next chapter, the most successful LAN switching technology in use today is itself based

on Ethernet.

2.7 Token Rings (802.5, FDDI)
Alongside the Ethernet, token rings are the other significant class of shared-media

network. There are more different types of token rings than there are types of Ethernets;

this section will discuss the type that was for years the most prevalent, known as the

IBM Token Ring. Like the Xerox Ethernet, IBM’s Token Ring has a nearly identical

IEEE standard, known as 802.5. Where necessary, we note the differences between the

IBM and 802.5 token rings.

Most of the general principles of token ring networks can be understood once

the IBM and 802.5 standards have been discussed. However, the FDDI (Fiber Dis-

tributed Data Interface) standard—a newer, faster type of token ring—warrants some

discussion, which we provide at the end of this section. At the time of writing, yet

another token ring standard, called Resilient Packet Ring or 802.17, is nearing com-

pletion.

As the name suggests, a token ring network consists of a set of nodes connected

in a ring (see Figure 2.29). Data always flows in a particular direction around the ring,

with each node receiving frames from its upstream neighbor and then forwarding them

to its downstream neighbor. This ring-based topology is in contrast to the Ethernet’s

bus topology. Like the Ethernet, however, the ring is viewed as a single shared medium;

it does not behave as a collection of independent point-to-point links that just happen

Figure 2.29 Token ring network.

2.7 Token Rings (802.5, FDDI) 121

to be configured in a loop. Thus, a token ring shares two key features with an Ethernet:

First, it involves a distributed algorithm that controls when each node is allowed to

transmit, and second, all nodes see all frames, with the node identified in the frame

header as the destination saving a copy of the frame as it flows past.

The word “token” in token ring comes from the way access to the shared

ring is managed. The idea is that a token, which is really just a special sequence

of bits, circulates around the ring; each node receives and then forwards the token.

When a node that has a frame to transmit sees the token, it takes the token off the

ring (i.e., it does not forward the special bit pattern) and instead inserts its frame

into the ring. Each node along the way simply forwards the frame, with the desti-

nation node saving a copy and forwarding the message onto the next node on the

ring. When the frame makes its way back around to the sender, this node strips its

frame off the ring (rather than continuing to forward it) and reinserts the token.

In this way, some node downstream will have the opportunity to transmit a frame.

The media access algorithm is fair in the sense that as the token circulates around

the ring, each node gets a chance to transmit. Nodes are serviced in a round-robin

fashion.

2.7.1 Physical Properties

One of the first things you might worry about with a ring topology is that any link

or node failure would render the whole network useless. This problem is addressed

by connecting each station into the ring using an electromechanical relay. As long as

the station is healthy, the relay is open and the station is included in the ring. If the

station stops providing power, the relay closes and the ring automatically bypasses the

station. This is illustrated in Figure 2.30.

Host

From previous
host

To next
host

Relay

(a)

Host

Host Host

From previous
host

To next
host

Relay

(b)

Figure 2.30 Relay used on a token ring: (a) relay open—host active; (b) relay closed—
host bypassed.

122 2 Direct Link Networks

Host

Host

Host

Host

From previous
MSAU

To next
MSAU

MSAU

Figure 2.31 Multistation access unit.

Several of these relays are usually packed into a single box, known as a multi-

station access unit (MSAU). This has the interesting effect of making a token ring

actually look more like a star topology, as shown in Figure 2.31. It also makes it very

easy to add stations to and remove stations from the network, since they can just be

plugged into or unplugged from the nearest MSAU, while the overall wiring of the

network can be left unchanged. One of the small differences between the IBM Token

Ring specification and 802.5 is that the former actually requires the use of MSAUs,

while the latter does not. In practice, MSAUs are almost always used because of the

need for robustness and ease of station addition and removal.

There are a few other physical details to know about 802.5 and IBM Token

Rings. The data rate may be either 4 Mbps or 16 Mbps. The encoding of bits uses

differential Manchester encoding, as described in Section 2.2. IBM Token Rings may

have up to 260 stations per ring, while 802.5 sets the limit at 250. The physical medium

is twisted pair for IBM, but is not specified in 802.5.

2.7.2 Token Ring Media Access Control

It is now time to look a little more closely at how the MAC protocol operates on a

token ring. The network adaptor for a token ring contains a receiver, a transmitter, and

one or more bits of data storage between them. When none of the stations connected

to the ring has anything to send, the token circulates around the ring. Obviously, the

ring has to have enough “storage capacity” to hold an entire token. For example, the

2.7 Token Rings (802.5, FDDI) 123

802.5 token is 24 bits long. If every station could hold only 1 bit (as is the norm for

802.5 networks), and the stations were close enough together that the time for a bit to

propagate from one station to another was negligible, we would need to have at least

24 stations on the ring before it would operate correctly. This situation is avoided by

having one designated station, called the monitor, add some additional bits of delay to

the ring if necessary. The operation of the monitor is described in more detail below.

As the token circulates around the ring, any station that has data to send may

“seize” the token, that is, drain it off the ring and begin sending data. In 802.5 net-

works, the seizing process involves simply modifying 1 bit in the second byte token; the

first 2 bytes of the modified token now become the preamble for the subsequent data

packet. Once a station has the token, it is allowed to send one or more packets—exactly

how many more depends on some factors described below.

Each transmitted packet contains the destination address of the intended receiver;

it may also contain a multicast (or broadcast) address if it is intended to reach more

than one (or all) receivers. As the packet flows past each node on the ring, each node

looks inside the packet to see if it is the intended recipient. If so, it copies the packet

into a buffer as it flows through the network adaptor, but it does not remove the packet

from the ring. The sending station has the responsibility of removing the packet from

the ring. For any packet that is longer than the number of bits that can be stored in

the ring, the sending station will be draining the first part of the packet from the ring

while still transmitting the latter part.

One issue we must address is how much data a given node is allowed to transmit

each time it possesses the token, or said another way, how long a given node is allowed

to hold the token. We call this the token holding time (THT). If we assume that most

nodes on the network do not have data to send at any given time—a reasonable

assumption, and certainly one that the Ethernet takes advantage of—then we could

make a case for letting a node that possesses the token transmit as much data as it

has before passing the token on to the next node. This would mean setting the THT

to infinity. It would be silly in this case to limit a node to sending a single message

and to force it to wait until the token circulates all the way around the ring before

getting a chance to send another message. Of course, “as much data as it has” would

be dangerous because a single station could keep the token for an arbitrarily long time,

but we could certainly set the THT to significantly more than the time to send one

packet.

It is easy to see that the more bytes a node can send each time it has the token, the

better the utilization of the ring you can achieve in the situation in which only a single

node has data to send. The downside, of course, is that this strategy does not work

well when multiple nodes have data to send—it favors nodes that have a lot of data

to send over nodes that have only a small message to send, even when it is important

124 2 Direct Link Networks

to get this small message delivered as soon as possible. The situation is analogous to

finding yourself in line at the bank behind a customer who is taking out a car loan,

even though you simply want to cash a check. In 802.5 networks, the default THT is

10 ms.

There is a little subtlety to the use of the THT. Before putting each packet onto

the ring, the station must check that the amount of time it would take to transmit the

packet would not cause it to exceed the token holding time. This means keeping track

of how long it has already held the token, and looking at the length of the next packet

that it wants to send.

From the token holding time we can derive another useful quantity, the token

rotation time (TRT), which is the amount of time it takes a token to traverse the ring

as viewed by a given node. It is easy to see that

TRT ≤ ActiveNodes × THT + RingLatency

where RingLatency denotes how long it takes the token to circulate around the ring

when no one has data to send, and ActiveNodes denotes the number of nodes that

have data to transmit.

The 802.5 protocol provides a form of reliable delivery using 2 bits in the packet

trailer, the A and C bits. These are both 0 initially. When a station sees a frame for

which it is the intended recipient, it sets the A bit in the frame. When it copies the frame

into its adaptor, it sets the C bit. If the sending station sees the frame come back over

the ring with the A bit still 0, it knows that the intended recipient is not functioning

or absent. If the A bit is set but not the C bit, this implies that for some reason (e.g.,

lack of buffer space) the destination could not accept the frame. Thus, the frame might

reasonably be retransmitted later in the hope that buffer space had become available.

Another detail of the 802.5 protocol concerns the support of different levels of

priority. The token contains a 3-bit priority field, so we can think of the token having

a certain priority n at any time. Each device that wants to send a packet assigns a

priority to that packet, and the device can only seize the token to transmit a packet if

the packet’s priority is at least as great as the token’s. The priority of the token changes

over time due to the use of three reservation bits in the frame header. For example, a

station X waiting to send a priority n packet may set these bits to n if it sees a data

frame going past and the bits have not already been set to a higher value. This causes

the station that currently holds the token to elevate its priority to n when it releases it.

Station X is responsible for lowering the token priority to its old value when it is done.

Note that this is a strict priority scheme, in the sense that no lower-priority pack-

ets get sent when higher-priority packets are waiting. This may cause lower-priority

packets to be locked out of the ring for extended periods if there is a sufficient supply

of high-priority packets.

2.7 Token Rings (802.5, FDDI) 125

Token

Fr
am

e
Token Frame

(a) (b)

Figure 2.32 Token release: (a) early versus (b) delayed.

One final issue will complete our discussion of the MAC protocol, which is the

matter of exactly when the sending node releases the token. As illustrated in Figure

2.32, the sender can insert the token back onto the ring immediately following its

frame (this is called early release) or after the frame it transmits has gone all the way

around the ring and been removed (this is called delayed release). Clearly, early release

allows better bandwidth utilization, especially on large rings. 802.5 originally used

delayed token release, but support for early release was subsequently added.

2.7.3 Token Ring Maintenance

As we noted above, token rings have a designated monitor station. The monitor’s job

is to ensure the health of the ring. Any station on the ring can become the monitor,

and there are defined procedures by which the monitor is elected when the ring is first

connected or on the failure of the current monitor. A healthy monitor periodically

announces its presence with a special control message; if a station fails to see such a

message for some period of time, it will assume that the monitor has failed and will try

to become the monitor. The procedures for electing a monitor are the same whether

the ring has just come up or the active monitor has just failed.

When a station decides that a new monitor is needed, it transmits a “claim token”

frame, announcing its intent to become the new monitor. If that token circulates back

to the sender, it can assume that it is OK for it to become the monitor. If some other

station is also trying to become the monitor at the same instant, the sender might see

a claim token message from that other station first. In this case, it will be necessary to

break the tie using some well-defined rule like “highest address wins.”

126 2 Direct Link Networks

Once the monitor is agreed upon, it plays a number of roles. We have already

seen that it may need to insert additional delay into the ring. It is also responsible

for making sure that there is always a token somewhere in the ring, either circulating

or currently held by a station. It should be clear that a token may vanish for several

reasons, such as a bit error, or a crash on the part of a station that was holding it. To

detect a missing token, the monitor watches for a passing token and maintains a timer

equal to the maximum possible token rotation time. This interval equals

NumStations × THT + RingLatency

where NumStations is the number of stations on the ring, and RingLatency is the total

propagation delay of the ring. If the timer expires without the monitor seeing a token,

it creates a new one.

The monitor also checks for corrupted or orphaned frames. The former have

checksum errors or invalid formats, and without monitor intervention, they could

circulate forever on the ring. The monitor drains them off the ring before reinserting

the token. An orphaned frame is one that was transmitted correctly onto the ring but

whose “parent” died; that is, the sending station went down before it could remove

the frame from the ring. These are detected using another header bit, the “‘monitor”

bit. This is 0 on transmission and set to 1 the first time the packet passes the monitor.

If the monitor sees a packet with this bit set, it knows the packet is going by for the

second time and it drains the packet off the ring.

One additional ring maintenance function is the detection of dead stations. The

relays in the MSAU can automatically bypass a station that has been disconnected

or powered down, but may not detect more subtle failures. If any station suspects a

failure on the ring, it can send a beacon frame to the suspect destination. Based on

how far this frame gets, the status of the ring can be established, and malfunctioning

stations can be bypassed by the relays in the MSAU.

2.7.4 Frame Format

We are now ready to define the 802.5 frame format, which is depicted in Figure 2.33.

As noted above, 802.5 uses differential Manchester encoding. This fact is used by the

frame format, which uses “illegal” Manchester codes in the start and end delimiters.

Body ChecksumSrc
addr

Variable48

Dest
addr

48 32

End
delimiter

8

Frame
status

8

Frame
control

8

Access
control

8

Start
delimiter

8

Figure 2.33 802.5/token ring frame format.

2.7 Token Rings (802.5, FDDI) 127

After the start delimiter comes the access control byte, which includes the frame priority

and the reservation priority mentioned above. The frame control byte is a demux key

that identifies the higher-layer protocol.

Similar to the Ethernet, 802.5 addresses are 48 bits long. The standard actually

allows for smaller 16-bit addresses, but 48-bit addresses are typically used. When 48-

bit addresses are used, they are interpreted in exactly the same way as on an Ethernet.

The frame also includes a 32-bit CRC. This is followed by the frame status byte, which

includes the A and C bits for reliable delivery.

2.7.5 FDDI

In many respects, FDDI is similar to 802.5 and IBM Token Rings. However, there

are significant differences—some arising because it runs on fiber, not copper, and some

arising from innovations that were made subsequent to the invention of the IBM Token

Ring. We discuss some of the significant differences below.

Physical Properties

Unlike 802.5 networks, an FDDI network consists of a dual ring—two independent

rings that transmit data in opposite directions, as illustrated in Figure 2.34(a). The

second ring is not used during normal operation but instead comes into play only if

the primary ring fails, as depicted in Figure 2.34(b). That is, the ring loops back on

the secondary fiber to form a complete ring, and as a consequence, an FDDI network

is able to tolerate a single break in the cable or the failure of one station.

Because of the expense of the dual-ring configuration, FDDI allows nodes to

attach to the network by means of a single cable. Such nodes are called single

(a) (b)

Figure 2.34 Dual-fiber ring: (a) normal operation; (b) failure of the primary ring.

128 2 Direct Link Networks

Concentrator (DAS)

SAS SAS SAS SAS

Upstream
neighbor

Downstream
neighbor

Figure 2.35 SASs connected to a concentrator.

attachment stations (SAS); their dual-connected counterparts are called, not surpris-

ingly, dual attachment stations (DAS). A concentrator is used to attach several SASs

to the dual ring, as illustrated in Figure 2.35. Notice how the single-cable (two-fiber)

connection into an SAS forms a connected piece of the ring. Should this SAS fail, the

concentrator detects this situation and uses an optical bypass to isolate the failed SAS,

thereby keeping the ring connected. This is analogous to the relays inside MSAUs used

in 802.5 rings. Note that in this illustration, the second (backup) ring is denoted with

a dotted line.

As in 802.5, each network adaptor holds some number of bits between its input

and output interfaces. Unlike 802.5, however, the buffer can be of different sizes in

different stations, although never less than 9 bits nor more than 80 bits. It is also

possible for a station to start transmitting bits out of this buffer before it is full. Of

course, the total time it takes for a token to pass around the network is a function of

the size of these buffers. For example, because FDDI is a 100-Mbps network, it has

a 10-nanosecond (ns) bit time (each bit is 10 ns wide). If each station implements a

10-bit buffer and waits for the buffer to be half full before starting to transmit, then

each station introduces a 5 × 10 ns = 50-ns delay into the total ring rotation time.

FDDI has other physical characteristics. For example, the standard limits a single

network to at most 500 stations (hosts), with a maximum distance of 2 km between

any pair of stations. Overall, the network is limited to a total of 200 km of fiber, which

means that, because of the dual nature of the ring, the total amount of cable connecting

all stations is limited to 100 km. Also, although the “F” in FDDI implies that optical

fiber serves as the underlying physical medium, the standard has been defined to run

over a number of different physical media, including coax and twisted pair. Of course,

you still have to be careful about the total distance covered by the ring. As we will

2.7 Token Rings (802.5, FDDI) 129

see below, the amount of time it takes the token to traverse the network plays an

important role in the access control algorithm.

FDDI uses 4B/5B encoding, as discussed in Section 2.2. Since FDDI was the

first popular networking technology to use fiber, and 4B/5B chip sets operating at

FDDI rates became widely available, 4B/5B has enjoyed considerable popularity as an

encoding scheme for fiber.

Timed Token Algorithm

The rules governing token holding times are a little more complex in FDDI than in

802.5. The THT for each node is defined as before and is configured to some suitable

value. In addition, to ensure that a given node has the opportunity to transmit within

a certain amount of time—that is, to put an upper bound on the TRT observed by any

node—we define a target token rotation time (TTRT), and all nodes agree to live within

the limits of the TTRT. (How the nodes agree to a particular TTRT is described in the

next subsection.) Specifically, each node measures the time between successive arrivals

of the token. We call this the node’s measured TRT. If this measured TRT is greater

than the agreed-upon TTRT, then the token is late, and the node does not transmit any

data. If this measured TRT is less than the TTRT, then the token is early, and the node

is allowed to hold the token for the difference between TTRT and the measured TRT.

Although it may seem that we are now done, the algorithm we have just developed

does not ensure that a node concerned with sending a frame with a bounded delay will

actually be able to do so. The problem is that a node with lots of data to send has the

opportunity, upon seeing an early token, to hold the token for so long that by the time

a downstream node gets the token, its measured TRT is equal to or exceeds the TTRT,

meaning that it still cannot transmit its frame. To account for this possibility, FDDI

defines two classes of traffic: synchronous and asynchronous.3 When a node receives

a token, it is always allowed to send synchronous data, without regard for whether

the token is early or late. In contrast, a node can send asynchronous traffic only when

the token is early.

Note that the terms synchronous and asynchronous are somewhat misleading.

By synchronous, FDDI means that the traffic is delay sensitive. For example, you

would send voice or video as synchronous traffic on an FDDI network. In contrast,

asynchronous means that the application is more interested in throughput than delay.

A file transfer application would be asynchronous FDDI traffic.

Are we done yet? Not quite. Because synchronous traffic can transmit without

regard to whether the token is early or late, it would seem that if each node had a sizable

3Originally, FDDI defined two subclasses of asynchronous traffic: restricted and unrestricted. In practice, however,
the restricted asynchronous case is not supported, and so we describe only the unrestricted case and refer to it
simply as “asynchronous.”

130 2 Direct Link Networks

amount of synchronous data to send, then the target rotation time would again be

meaningless. To account for this, the total amount of synchronous data that can be sent

during one token rotation is also bounded by TTRT. This means that in the worst case,

the nodes with asynchronous traffic first use up one TTRT’s worth of time, and then the

nodes with synchronous data consume another TTRT’s worth of time, meaning that

it is possible for the measured TRT at any given node to be as much as 2 × TTRT.

Note that if the synchronous traffic has already consumed one TTRT’s worth of time,

then the nodes with asynchronous traffic will not send any data because the token

will be late. Thus, while it is possible for a single rotation of the token to take as long

as 2 × TTRT, it is not possible to have back-to-back rotations that take 2 × TTRT

amount of time.

One final detail concerns precisely how a node determines if it can send asyn-

chronous traffic. As stated above, a node sends if the measured TRT is less than the

TTRT. The question then arises: What if the measured TRT is less than the TTRT,

but by such a small amount that it’s not possible to send the full message without

exceeding the TTRT? The answer is that the node is allowed to send in this case. As a

consequence, the measured TRT is actually bounded by TTRT plus the time it takes

to send a full FDDI frame.

Token Maintenance

The FDDI mechanisms for ensuring that a valid token is always in circulation are also

different from those in 802.5, as they are intertwined with the process of setting the

TTRT. First, all nodes on an FDDI ring monitor the ring to be sure that the token

has not been lost. Observe that in a correctly functioning ring, each node should see

a valid transmission—either a data frame or the token—every so often. The greatest

idle time between valid transmissions that a given node should experience is equal to

the ring latency plus the time it takes to transmit a full frame, which on a maximally

sized ring is a little less than 2.5 ms. Therefore, each node sets a timer event that fires

after 2.5 ms. If this timer expires, the node suspects that something has gone wrong

and transmits a “claim” frame. Every time a valid transmission is received, however,

the node resets the timer back to 2.5 ms.

The claim frames in FDDI differ from those in 802.5 because they contain the

node’s bid for the TTRT, that is, the token rotation time that the node needs so that the

applications running on the node can meet their timing constraints. A node can send

a claim frame without holding the token and typically does so whenever it suspects a

failure or when it first joins the network. If this claim frame makes it all the way

around the ring, then the sender removes it, knowing that its TTRT bid was the lowest.

That node now holds the token—that is, it is responsible for inserting a valid token

on the ring—and may proceed with the normal token algorithm.

2.8 Wireless (802.11) 131

Control

8 8 8 24

CRC
Start of
frame

End of
frame

Dest
addr

Body

4848

Src
addr

Status

32

Figure 2.36 FDDI frame format.

When a node receives a claim frame, it checks to see if the TTRT bid in the frame

is less than its own. If it is, then the node resets its local definition of the TTRT to that

contained in the claim frame and forwards the frame to the next node. If the bid TTRT

is greater than that node’s minimum required TTRT, then the claim frame is removed

from the ring and the node enters the bidding process by putting its own claim frame

on the ring. Should the bid TTRT be equal to the node’s required TTRT, the node

compares the address of the claim frame’s sender with its own and the higher address

wins. Thus, if a claim frame makes it all the way back around to the original sender,

that node knows that it is the only active bidder and that it can safely claim the token.

At the same time, all nodes are now in agreement about the TTRT that will be short

enough to keep all nodes happy.

Frame Format

The FDDI frame format, depicted in Figure 2.36, differs in very few ways from that

for 802.5. Because FDDI uses 4B/5B encoding instead of Manchester, it uses 4B/5B

control symbols rather than illegal Manchester symbols in the start- and end-of-frame

markers. The other significant differences are the presence of a bit in the header to

distinguish synchronous from asynchronous traffic, and the lack of the access control

bits of 802.5.

2.8 Wireless (802.11)

Wireless networking is a rapidly evolving technology for connecting computers. As we

saw earlier in this chapter, the possibilities for building wireless networks are almost

endless, ranging from using infrared signals within a single building to constructing

a global network from a grid of low-orbit satellites. This section takes a closer look

at a specific technology centered around the emerging IEEE 802.11 standard. Like its

Ethernet and token ring siblings, 802.11 is designed for use in a limited geographical

area (homes, office buildings, campuses), and its primary challenge is to mediate access

to a shared communication medium—in this case, signals propagating through space.

802.11 supports additional features (e.g., time-bounded services, power management,

and security mechanisms), but we focus our discussion on its base functionality.

132 2 Direct Link Networks

2.8.1 Physical Properties

802.11 was designed to run over three different physical media—two based on spread

spectrum radio and one based on diffused infrared. The radio-based versions currently

run at 11 Mbps, but may soon run at 54 Mbps.

The idea behind spread spectrum is to spread the signal over a wider frequency

band than normal, so as to minimize the impact of interference from other devices.

(Spread spectrum was originally designed for military use, so these “other devices”

were often attempting to jam the signal.) For example, frequency hopping is a spread

spectrum technique that involves transmitting the signal over a random sequence of

frequencies; that is, first transmitting at one frequency, then a second, then a third,

and so on. The sequence of frequencies is not truly random, but is instead computed

algorithmically by a pseudorandom number generator. The receiver uses the same

algorithm as the sender—and initializes it with the same seed—and hence is able to

hop frequencies in sync with the transmitter to correctly receive the frame.

A second spread spectrum technique, called direct sequence, achieves the same

effect by representing each bit in the frame by multiple bits in the transmitted signal.

For each bit the sender wants to transmit, it actually sends the exclusive-OR of that

bit and n random bits. As with frequency hopping, the sequence of random bits is

generated by a pseudorandom number generator known to both the sender and the

receiver. The transmitted values, known as an n-bit chipping code, spread the signal

across a frequency band that is n times wider than the frame would have otherwise

required. Figure 2.37 gives an example of a 4-bit chipping sequence.

802.11 defines one physical layer using frequency hopping (over 79 1-MHz-wide

frequency bandwidths) and a second using direct sequence (using an 11-bit chipping

sequence). Both standards run in the 2.4-GHz frequency band of the electromagnetic

spectrum. In both cases, spread spectrum also has the interesting characteristic of

making the signal look like noise to any receiver that does not know the pseudorandom

sequence.

Random sequence: 0100101101011001

Data stream: 1010

XOR of the two: 1011101110101001

0

0

0

1

1

1

Figure 2.37 Example 4-bit chipping sequence.

2.8 Wireless (802.11) 133

A B C D

Figure 2.38 Example wireless network.

The third physical standard for 802.11 is based on infrared signals. The trans-

mission is diffused, meaning that the sender and receiver do not have to be aimed at

each other and do not need a clear line of sight. This technology has a range of up to

about 10 m and is limited to the inside of buildings only.

2.8.2 Collision Avoidance

At first glance, it might seem that a wireless protocol would follow exactly the same

algorithm as the Ethernet—wait until the link becomes idle before transmitting and

back off should a collision occur—and to a first approximation, this is exactly what

802.11 does. The problem is more complicated in a wireless network, however, because

not all nodes are always within reach of each other.

Consider the situation depicted in Figure 2.38, where each of four nodes is able

to send and receive signals that reach just the nodes to its immediate left and right.

For example, B can exchange frames with A and C but it cannot reach D, while C

can reach B and D but not A. (A and D’s reach is not shown in the figure.) Suppose

both A and C want to communicate with B and so they each send it a frame. A and C

are unaware of each other since their signals do not carry that far. These two frames

collide with each other at B, but unlike an Ethernet, neither A nor C is aware of this

collision. A and C are said to be hidden nodes with respect to each other.

A related problem, called the exposed node problem, occurs under the following

circumstances. Suppose B is sending to A in Figure 2.38. Node C is aware of this

communication because it hears B’s transmission. It would be a mistake for C to

conclude that it cannot transmit to anyone just because it can hear B’s transmission.

For example, suppose C wants to transmit to node D. This is not a problem since

C’s transmission to D will not interfere with A’s ability to receive from B. (It would

interfere with A sending to B, but B is transmitting in our example.)

134 2 Direct Link Networks

802.11 addresses these two problems with an algorithm called Multiple Access

with Collision Avoidance (MACA). The idea is for the sender and receiver to exchange

control frames with each other before the sender actually transmits any data. This

exchange informs all nearby nodes that a transmission is about to begin. Specifically,

the sender transmits a Request to Send (RTS) frame to the receiver; the RTS frame

includes a field that indicates how long the sender wants to hold the medium (i.e., it

specifies the length of the data frame to be transmitted). The receiver then replies with

a Clear to Send (CTS) frame; this frame echoes this length field back to the sender.

Any node that sees the CTS frame knows that it is close to the receiver, and therefore

cannot transmit for the period of time it takes to send a frame of the specified length.

Any node that sees the RTS frame but not the CTS frame is not close enough to the

receiver to interfere with it, and so is free to transmit.

There are two more details to complete the picture. First, the receiver sends an

ACK to the sender after successfully receiving a frame. All nodes must wait for this

ACK before trying to transmit.4 Second, should two or more nodes detect an idle link

and try to transmit an RTS frame at the same time, their RTS frames will collide with

each other. 802.11 does not support collision detection, but instead the senders realize

the collision has happened when they do not receive the CTS frame after a period

of time, in which case they each wait a random amount of time before trying again.

The amount of time a given node delays is defined by the same exponential backoff

algorithm used on the Ethernet (see Section 2.6.2).

2.8.3 Distribution System

As described so far, 802.11 would be suitable for an ad hoc configuration of nodes

that may or may not be able to communicate with all other nodes, depending on how

far apart they are. Moreover, since one of the advantages of a wireless network is

that nodes are free to move around—they are not tethered by wire—the set of directly

reachable nodes may change over time. To help deal with this mobility and partial

connectivity, 802.11 defines additional structure on a set of nodes. Nodes are free to

directly communicate with each other as just described, but in practice, they operate

within this structure.

Instead of all nodes being created equal, some nodes are allowed to roam (e.g.,

your laptop) and some are connected to a wired network infrastructure. The latter

are called access points (AP), and they are connected to each other by a so-called

distribution system. Figure 2.39 illustrates a distribution system that connects three

access points, each of which services the nodes in some region. Each of these regions

4This ACK was not part of the original MACA algorithm, but was instead proposed in an extended version called
MACAW: MACA for Wireless LANs.

2.8 Wireless (802.11) 135

B

H

A

F

G

D

AP-2

AP-3AP-1

C E

Distribution system

Figure 2.39 Access points connected to a distribution network.

is analogous to a cell in a cellular phone system, with the APs playing the same role

as a base station. The details of the distribution system are not important to this

discussion—it could be an Ethernet or a token ring, for example. The only important

point is that the distribution network runs at layer 2 of the ISO architecture; that is,

it does not depend on any higher-level protocols.

Although two nodes can communicate directly with each other if they are within

reach of each other, the idea behind this configuration is that each node associates

itself with one access point. For node A to communicate with node E, for example,

A first sends a frame to its access point (AP-1), which forwards the frame across

the distribution system to AP-3, which finally transmits the frame to E. How AP-1

knew to forward the message to AP-3 is beyond the scope of 802.11; it may have

used the bridging protocol described in the next chapter (Section 3.2). What 802.11

does specify is how nodes select their access points and, more interestingly, how this

algorithm works in light of nodes moving from one cell to another.

The technique for selecting an AP is called scanning and involves the following

four steps:

1 The node sends a Probe frame.

2 All APs within reach reply with a Probe Response frame.

3 The node selects one of the access points and sends that AP an Association

Request frame.

4 The AP replies with an Association Response frame.

136 2 Direct Link Networks

B

H

A

F

G

D

AP-2

AP-3AP-1

EC

C

Distribution system

Figure 2.40 Node mobility.

A node engages this protocol whenever it joins the network, as well as when it becomes

unhappy with its current AP. This might happen, for example, because the signal from

its current AP has weakened due to the node moving away from it. Whenever a node

acquires a new AP, the new AP notifies the old AP of the change (this happens in step 4)

via the distribution system.

Consider the situation shown in Figure 2.40, where node C moves from the cell

serviced by AP-1 to the cell serviced by AP-2. As it moves, it sends Probe frames, which

eventually result in Probe Response frames from AP-2. At some point, C prefers AP-2

over AP-1, and so it associates itself with that access point.

The mechanism just described is called active scanning since the node is actively

searching for an access point. APs also periodically send a Beacon frame that advertises

the capabilities of the access point; these include the transmission rates supported by

the AP. This is called passive scanning, and a node can change to this AP based on the

Beacon frame simply by sending it an Association Request frame back to the access

point.

2.8.4 Frame Format

Most of the 802.11 frame format, which is depicted in Figure 2.41, is exactly what

we would expect. The frame contains the source and destination node addresses, each

of which are 48 bits long; up to 2312 bytes of data; and a 32-bit CRC. The Control

field contains three subfields of interest (not shown): a 6-bit Type field that indicates

whether the frame carries data, is an RTS or CTS frame, or is being used by the

2.9 Network Adaptors 137

Addr4 PayloadSeqCtrlAddr3Addr2Addr1 CRC

0–18,4964816 32484848

Duration

16

Control

16

Figure 2.41 802.11 frame format.

scanning algorithm; and a pair of 1-bit fields—called ToDS and FromDS—that are

described below.

The peculiar thing about the 802.11 frame format is that it contains four, rather

than two, addresses. How these addresses are interpreted depends on the settings of the

ToDS and FromDS bits in the frame’s Control field. This is to account for the possibility

that the frame had to be forwarded across the distribution system, which would mean

that the original sender is not necessarily the same as the most recent transmitting

node. Similar reasoning applies to the destination address. In the simplest case, when

one node is sending directly to another, both the DS bits are 0, Addr1 identifies the

target node, and Addr2 identifies the source node. In the most complex case, both DS

bits are set to 1, indicating that the message went from a wireless node onto the dis-

tribution system, and then from the distribution system to another wireless node.

With both bits set, Addr1 identifies the ultimate destination, Addr2 identifies the

immediate sender (the one that forwarded the frame from the distribution system to

the ultimate destination), Addr3 identifies the intermediate destination (the one that ac-

cepted the frame from a wireless node and forwarded it across the distribution system),

and Addr4 identifies the original source. In terms of the example given in Figure 2.39,

Addr1 corresponds to E, Addr2 identifies AP-3, Addr3 corresponds to AP-1, and Addr4

identifies A.

2.9 Network Adaptors

Nearly all the networking functionality described in this chapter is implemented in the

network adaptor: framing, error detection, and the media access protocol. The only

exceptions are the point-to-point automatic repeat request (ARQ) schemes described

in Section 2.5, which are typically implemented in the lowest-level protocol running

on the host. We conclude this chapter by describing the design of a generic network

adaptor and the device driver software that controls it.

When reading this section, keep in mind that no two network adaptors are

exactly alike; they vary in countless small details. Our focus, therefore, is on their

general characteristics, although we do include some examples from an actual adaptor

to make the discussion more tangible.

138 2 Direct Link Networks

H
o
st

 I
/O

 b
u
s

Adaptor

Network link
Bus

interface
Link

interface

Figure 2.42 Block diagram of a typical network adaptor.

2.9.1 Components

A network adaptor serves as an interface between the host and the network, and as

a result, it can be thought of as having two main components: a bus interface that

understands how to communicate with the host and a link interface that speaks the

correct protocol on the network. There must also be a communication path between

these two components, over which incoming and outgoing data is passed. A simple

block diagram of a network adaptor is depicted in Figure 2.42.

Network adaptors are always designed for a specific I/O bus, which often pre-

cludes moving an adaptor from one vendor’s machine to another.5 Each bus, in effect,

defines a protocol that is used by the host’s CPU to program the adaptor, by the adap-

tor to interrupt the host’s CPU, and by the adaptor to read and write memory on the

host. One of the main features of an I/O bus is the data transfer rate that it supports.

For example, a typical bus might have a 32-bit-wide data path (i.e., it can transfer

32 bits of data in parallel) running at 33 MHz (i.e., the bus’s cycle time is 33 ns),

giving it a peak transfer rate of approximatley 1 Gbps, which would be enough to

support a (unidirectional) 622-Mbps STS-12 link. Of course, the peak rate tells us

almost nothing about the average rate, which may be much lower.

The link-half of the adaptor implements the link-level protocol. For fairly mature

technologies like Ethernet, the link-half of the adaptor is implemented by a chip set

that can be purchased on the commodity market. For newer link technologies, how-

ever, the link-level protocol may be implemented in software on a general-purpose

microprocessor or perhaps with some form of programmable hardware, such as a

field-programmable gate array (FPGA). These approaches generally add to the cost of

5Fortunately, there are standards in bus design just as there are in networking, so some adaptors can be used on
machines from several vendors.

2.9 Network Adaptors 139

the adaptor but make it more flexible—it is easier to modify software than hardware

and easier to reprogram FPGAs than to redesign boards.

Because the host’s bus and the network link are, in all probability, running at

different speeds, there is a need to put a small amount of buffering between the two

halves of the adaptor. Typically, a small FIFO (byte queue) is enough to hide the

asynchrony between the bus and the link.

2.9.2 View from the Host

Since we have spent most of this chapter discussing various protocols that are imple-

mented by the link-half of the adaptor, we now turn our attention to the host’s view

of the network adaptor.

Control Status Register

A network adaptor, like any other device, is ultimately programmed by software run-

ning on the CPU. From the CPU’s perspective, the adaptor exports a control status

register (CSR) that is readable and writable from the CPU. The CSR is typically located

at some address in the memory, thereby making it possible for the CPU to read and

write just like any other memory location. The CPU writes to the CSR to instruct it to

transmit and/or receive a frame and reads from the CSR to learn the current state of

the adaptor.

The following is an example CSR from the Lance Ethernet device, which is

manufactured by Advanced Micro Devices (AMD). The Lance device actually has four

different control status registers; the following shows the bit masks used to interpret

the 16-bit CSR0. To set a bit on the adaptor, the CPU does an inclusive-OR of CSRO

and the mask corresponding to the bit it wants to set. To determine if a particular bit

is set, the CPU compares the AND of the contents of CSR0 and the mask against 0.

/*
* Control and status bits for CSR0.
*
* Legend:
* RO - Read Only

* RC - Read/Clear (writing 1 clears, writing 0 has no effect)

* RW - Read/Write

* W1 - Write-1-only (writing 1 sets, writing 0 has no effect)

* RW1 - Read/Write-1-only

(writing 1 sets, writing 0 has no effect)

*/
#define LE_ERR 0x8000 /* RO BABL | CERR | MISS | MERR */
#define LE_BABL 0x4000 /* RC transmitted too many bits */
#define LE_CERR 0x2000 /* RC No Heartbeat */

140 2 Direct Link Networks

#define LE_MISS 0x1000 /* RC Missed an incoming packet */
#define LE_MERR 0x0800 /* RC Memory Error; no acknowledge */
#define LE_RINT 0x0400 /* RC Received packet Interrupt */
#define LE_TINT 0x0200 /* RC Transmitted packet Interrupt */
#define LE_IDON 0x0100 /* RC Initialization Done */
#define LE_INTR 0x0080 /* RO BABL|MISS|MERR|RINT|TINT|IDON */
#define LE_INEA 0x0040 /* RW Interrupt Enable */
#define LE_RXON 0x0020 /* RO Receiver On */
#define LE_TXON 0x0010 /* RO Transmitter On */
#define LE_TDMD 0x0008 /* W1 Transmit Demand (send it now) */
#define LE_STOP 0x0004 /* RW1 Stop */
#define LE_STRT 0x0002 /* RW1 Start */
#define LE_INIT 0x0001 /* RW1 Initialize */

This definition says, for example, that the host writes a 1 to the least significant

bit of CSR0 (0x0001) to initialize the Lance chip. Similarly, if the host sees a 1 in the

sixth significant bit (0x0020) and in the fifth significant bit (0x0010), then it knows that

the Lance chip is enabled to receive and transmit frames, respectively.

Interrupts

The host CPU could sit in a tight loop reading the adaptor’s control status register

until something interesting happens and then take the appropriate action. On the

Lance chip, for example, it could continually watch for a 1 in the 11th significant bit

(0x0400), which would indicate that a frame has just arrived. This is called polling,

and although it is not an unreasonable design in certain situations (e.g., a network

router that has nothing better to do than wait for the next frame), it is not typically

done on end hosts that could better spend their time running application programs.

Instead of polling, most hosts only pay attention to the network device when the

adaptor interrupts the host. The device raises an interrupt when an event that requires

host intervention occurs—for example, a frame has been successfully transmitted or

received, or an error occurred when the device was attempting to transmit or receive

a frame. The host’s architecture includes a mechanism that causes a particular proce-

dure inside the operating system to be invoked when such an interrupt occurs. This

procedure is known as an interrupt handler, and it inspects the CSR to determine the

cause of the interrupt and then takes the appropriate action.

While servicing an interrupt, the host typically disables additional interrupts.

This keeps the device driver from having to service multiple interrupts at one time.

Because interrupts are disabled, the device driver must finish its job quickly (it does not

have the time to execute the entire protocol stack), and under no circumstances can it

afford to block (that is, suspend execution while awaiting some event). For example,

this might be accomplished by having the interrupt handler dispatch a process to take

2.9 Network Adaptors 141

care of the frame and then return. Thus, the handler makes sure that the frame will get

processed without having to spend valuable time actually processing the frame itself.

Direct Memory Access versus Programmed I/O

One of the most important issues in network adaptor design is how the bytes of a

frame are transferred between the adaptor and the host memory. There are two basic

mechanisms: direct memory access (DMA) and programmed I/O (PIO). With DMA,

the adaptor directly reads and writes the host’s memory without any CPU involvement;

the host simply gives the adaptor a memory address and the adaptor reads to (writes

from) it. With PIO, the CPU is directly responsible for moving data between the adaptor

and the host memory: To send a frame, the CPU sits in a tight loop that first reads a

word from host memory and then writes it to the adaptor; to receive a frame, the CPU

reads words from the adaptor and writes them to memory. We now consider DMA

and PIO in more detail.

When using DMA, there is no need to buffer frames on the adaptor; the adaptor

reads and writes host memory. (A few bytes of buffering are needed to stage data

between the bus and the link, as described above, but complete frames are not buffered

on the adaptor.) The CPU is therefore responsible for giving the adaptor a pair of buffer

descriptor lists: one to transmit out of and one to receive into. A buffer descriptor list

is an array of address/length pairs, as illustrated in Figure 2.43.

When receiving frames, the adaptor uses as many buffers as it needs to hold the

incoming frame. For example, the descriptor illustrated in Figure 2.43 would cause

Buffer
descriptor
list

Memory buffers

100

1400

1500

1500

1500

…

Figure 2.43 Buffer descriptor list.

142 2 Direct Link Networks

an Ethernet adaptor that was attempting to

receive a 1450-byte frame to put the first

100 bytes in the first buffer and the next

1350 bytes in the second buffer. If a sec-

ond 1500-byte frame arrived immediately

after the first, it would be placed entirely

in the third buffer. That is, separate frames

are placed in separate buffers, although a

single frame may be scattered across mul-

tiple buffers. This latter feature is usually

called scatter-read. In practice, scatter-read

is used when the network’s maximum frame

size is so large that it is wasteful to allocate

all buffers big enough to contain the largest

possible arriving frame. An OS-specific mes-

sage data structure, similar to the ones de-

scribed in Section 1.4.3, would then be used

to link together all the buffers that make

up a single frame. Scatter-read is typically

not used on an Ethernet because preallocat-

ing 1500-byte buffers does not excessively

waste memory.

Output works in a similar way. When

the host has a frame to transmit, it puts a

pointer to the buffer that contains the frame

in the transmit descriptor list. Devices that

support gather-write allow the frame to be

fragmented across multiple physical buffers.

In practice, gather-write is more widely used

than scatter-read because outgoing frames

are often constructed in a piecemeal fashion,

with more than one protocol contributing

a buffer. For example, by the time a mes-

sage makes it down the protocol stack and

is ready to be transmitted, it consists of a

buffer that contains the aggregate header

(the collection of headers attached by var-

ious protocols that processed the message)

and a separate buffer that contains the ap-

plication’s data.

Frames, Buffers,

and Messages

As this section has suggested, the

network adaptor is the place where

the network comes in physical con-

tact with the host. It also happens

to be the place where three differ-

ent worlds intersect: the network,

the host architecture, and the host

operating system. It turns out that

each of these has a different termi-

nology for talking about the same

thing. It is important to recognize

when this is happening.

From the network’s perspec-

tive, the adaptor transmits frames

from the host and receives frames

into the host. Most of this chapter

has been presented from the net-

work perspective, so you should

have a good understanding of

what the term “frame” means.

From the perspective of the host

architecture, each frame is re-

ceived into or transmitted from a

buffer, which is simply a region

of main memory of some length

and starting at some address. Fi-

nally, from the operating system’s

perspective, a message is an ab-

stract object that holds network

frames. Messages are implemented

by a data structure that includes

pointers to different memory loca-

tions (buffers). We saw an exam-

ple of a message data structure in

Chapter 1.

2.9 Network Adaptors 143

Host

Adaptor Memory

CPU

Memory

Memory

Figure 2.44 Programmed I/O.

In the case of PIO, the network adaptor must contain some amount of buffering—

the CPU copies frames between host memory and this adaptor memory, as illustrated

in Figure 2.44. The basic fact that necessitates buffering is that, with most operating

systems, you can never be sure when the CPU will get around to doing something,

so you need to be prepared to wait for it. One important question that must be ad-

dressed is how much memory is needed on the adaptor. There certainly needs to be

at least one frame’s worth of memory in both the transmit and the receive direction.

In addition, adaptors that use PIO usually have additional memory that can be used

to hold a small number of incoming frames until the CPU can get around to copy-

ing them into host memory. Although the computer system axiom that “memory is

cheap” would seem to suggest putting a huge amount of memory on the adaptor, this

memory must be of the more expensive dual-ported type because both the CPU and

the adaptor read/write it. PIO-based adaptors typically have something on the order

of 64–256 KB of adaptor memory, although there are adaptors with as much as 1 MB

of memory.

Device Drivers

A device driver is a collection of operating system routines that effectively anchor the

protocol stack to the network hardware. It typically includes routines to initialize the

device, transmit frames on the link, and field interrupts. The code is often difficult to

read because it’s full of device-specific details, but the overall logic is actually quite

simple.

For example, a transmit routine first makes sure there is a free transmit buffer

on the device to handle the message. If not, it has to block the process until one is

available. Once there is an available transmit buffer, the invoking process disables

144 2 Direct Link Networks

interrupts to protect itself from interference. It then translates the message from the

internal OS format to that expected by the device, sets the CSR to instruct the device

to transmit, and enables interrupts.

The logic for the interrupt handler is equally simple. It first disables additional

interrupts that might interfere with the processing of this interrupt. It then inspects the

CSR to determine what caused the interrupt. There are three possibilities: (1) an error

has occurred, (2) a transmit request has completed, or (3) a frame has been received.

In the first case, the handler prints a message and clears the error bits. In the second

case, we know that a transmit request that was queued earlier by the transmit routine

has completed, meaning that there is now a free transmit buffer that can be reused. In

the third case, the handler calls a receive routine to extract the incoming frame from

the receive buffer list and place it in the OS’s internal message data structure, and then

start a process to shepherd the message up the protocol stack.

2.9.3 Memory Bottleneck

As discussed in Section 2.1.1, host memory performance is often the limiting factor in

network performance. Nowhere is this possibility more critical than at the host/adaptor

interface. To help drive this point home, consider Figure 2.45. This diagram shows

the bandwidth available between various components of a modern PC. While the I/O

bus is fast enough to transfer frames between the network adaptor and host memory

at gigabit rates, there are two potential problems.

The first is that the advertised I/O bus speed corresponds to its peak bandwidth;

it is the product of the bus’s width and clock speed (e.g., a 32-bit-wide bus running

at 33 MHz has a peak transfer rate of 1056 Mbps). The real limitation is the size

of the data block that is being transferred across the I/O bus, since there is a certain

amount of overhead involved in each bus transfer. On some architectures, for example,

I/O bus
235 Mbps 1056 Mbps

CPU

Memory

Crossbar

Figure 2.45 Memory bandwidth on a modern PC-class machine.

2.9 Network Adaptors 145

it takes 8 clock cycles to acquire the bus for the purpose of transferring data from the

adaptor to host memory. This overhead is independent of the number of data bytes

transferred. Thus, if you want to transfer a 64-byte payload across the I/O bus—this

happens to be the size of a minimum Ethernet packet—then the whole transfer takes

24 cycles: 8 cycles to acquire the bus and 16 cycles to transfer the data. (The bus

is 32 bits wide, which means that it can transfer a 4-byte word during each clock

cycle; 64 bytes divided by 4 bytes per cycle equals 16 cycles.) This means that the

maximum bandwidth you can achieve is

16 ÷ (8 + 16) × 1056 = 704 Mbps

not the peak 1056 Mbps.

The second problem is that the memory/CPU bandwidth, which is 235 MBps

(1880 Mbps), is the same order of magnitude as the bandwidth of the I/O bus. Fortu-

nately, this is a measured number rather than an advertised peak rate. The ramification

is that while it is possible to deliver frames across the I/O bus and into memory and

then to load the data from memory into the CPU’s registers at network bandwidths, it

is impractical for the device driver, operating system, and application to go to mem-

ory multiple times for each word of data in a network packet, possibly because it

needs to copy the data from one buffer to another. In particular, if the memory/CPU

path is crossed n times, then it might be the case that the bandwidth your applica-

tion sees is 235 MBps/n. (The performance might be better if the data is cached, but

often caches don’t help with data arriving from the network.) For example, if the

various software layers need to copy the message from one buffer to another four

times—not an uncommon situation—then the application might see a throughput of

58.75 MBps (470 Mbps), a far cry from the 1056 Mbps we thought this machine could

support.

◮ As an aside, it is important to recognize that there are many parallels between

moving a message to and from memory and moving a message across a network. In

particular, the effective throughput of the memory system is defined by the same two

formulas given in Section 1.5.

Throughput = TransferSize/TransferTime

TransferTime = RTT + 1/Bandwidth × TransferSize

In the case of the memory system, however, the transfer size corresponds to how

big a unit of data we can move across the bus in one transfer (i.e., cache line versus

small cells versus large message), and the RTT corresponds to the memory latency, that

146 2 Direct Link Networks

is, whether the memory is on-chip cache, off-chip cache, or main memory. Just as in the

case of the network, the larger the transfer size and the smaller the latency, the better

the effective throughput. Also similar to a network, the effective memory throughput

does not necessarily equal the peak memory bandwidth (i.e., the bandwidth that can

be achieved with an infinitely large transfer).

The main point of this discussion is that we must be aware of the limits memory

bandwidth places on network performance. If carefully designed, the system can work

around these limits. For example, it is possible to integrate the buffers used by the

device driver, the operating system, and the application in a way that minimizes data

copies. The system also needs to be aware of when data is brought into the cache, so

it can perform all necessary operations on the data before it gets bumped from the

cache. The details of how this is accomplished are beyond the scope of this book, but

can be found in papers referenced at the end of the chapter.

Finally, there is a second important lesson lurking in this discussion: when the

network isn’t performing as well as you think it should, it’s not always the network’s

fault. In many cases, the actual bottleneck in the system is one of the machines con-

nected to the network. For example, when it takes a long time for a Web page to

appear on your browser, it might be network congestion, but it’s just as likely the case

that the server at the other end of the network can’t keep up with the workload.

2.10 Summary

This chapter introduced the hardware building blocks of a computer network—nodes

and links—and discussed the five key problems that must be solved so that two or

more nodes that are directly connected by a physical link can exchange messages with

each other.

First, physical links carry signals. It is therefore necessary to encode the bits that

make up a binary message into the signal at the source node and then to recover the

bits from the signal at the receiving node. This is the encoding problem, and it is made

challenging by the need to keep the sender’s and receiver’s clocks synchronized. We

discussed four different encoding techniques—NRZ, NRZI, Manchester, and 4B/5B—

which differ largely in how they encode clock information along with the data being

transmitted. One of the key attributes of an encoding scheme is its efficiency, that is,

the ratio of signal pulses to encoded bits.

Once it is possible to transmit bits between nodes, the next step is to figure out

how to package these bits into frames. This is the framing problem, and it boils down

to being able to recognize the beginning and end of each frame. Again, we looked at

several different techniques, including byte-oriented protocols, bit-oriented protocols,

and clock-based protocols.

Open Issue: Does It Belong in Hardware? 147

Assuming that each node is able to recognize the collection of bits that make up a

frame, the third problem is to determine if those bits are in fact correct, or if they have

possibly been corrupted in transit. This is the error detection problem, and we looked

at three different approaches: cyclic redundancy check, two-dimensional parity, and

checksums. Of these, the CRC approach gives the strongest guarantees and is the most

widely used at the link level.

Given that some frames will arrive at the destination node containing errors

and thus will have to be discarded, the next problem is how to recover from such

losses. The goal is to make the link appear reliable. The general approach to this

problem is called ARQ and involves using a combination of acknowledgments and

timeouts. We looked at three specific ARQ algorithms: stop-and-wait, sliding window,

and concurrent channels. What makes these algorithms interesting is how effectively

they use the link, with the goal being to keep the pipe full.

The final problem is not relevant to point-to-point links, but it is the central

issue in multiple-access links: how to mediate access to a shared link so that all nodes

eventually have a chance to transmit their data. In this case, we looked at three dif-

ferent media access protocols—Ethernet, token ring, and wireless—which have been

put to practical use in building local area networks. What these technologies have in

common is that control over the network is distributed over all the nodes connected

to the network; there is no dependence on a central arbitrator.

We concluded the chapter by observing that, in practice, most of the algorithms

that address these five problems are implemented on the adaptor that connects the

host to the link. It turns out that the design of this adaptor is of critical importance in

how well the network, as a whole, performs.

One of the most important questions

in the design of any computer system

is, What belongs in hardware and

what belongs in software? In the case

of networking, the network adaptor

finds itself at the heart of this ques-

tion. For example, why is the Ether-

O P E N I S S U E

Does It Belong in Hardware?

net algorithm, presented in Section 2.6 of this chapter, typically implemented on the

network adaptor, while the higher-level protocols discussed later in this book are not?

It is certainly possible to put a general-purpose microprocessor on the network

adaptor, which gives you the opportunity to move high-level protocols there, such as

TCP/IP. The reason that this is typically not done is complicated, but it comes down to

148 2 Direct Link Networks

the economics of computer design: The host processor is usually the fastest processor

on a computer, and it would be a shame if this fast host processor had to wait for a

slower adaptor processor to run TCP/IP when it could have done the job faster itself.

On the flip side, some protocol processing does belong on the network adaptor. The

general rule of thumb is that any processing for which a fixed processor can keep pace

with the link speed—that is, a faster processor would not improve the situation—is a

good candidate for being moved to the adaptor. In other words, any function that is

already limited by the link speed, as opposed to the processor at the end of the link,

might be effectively implemented on the adaptor.

Historically, the decision as to what functionality belonged on the network adap-

tor and what belonged on the host computer was a complex one that generated quite

a body of research. In modern systems, it is almost always the case that the MAC layer

and below are performed by the adaptor, while the IP layer and above are performed

on the host. Interestingly, however, the same debate about how much hardware assis-

tance is required above the MAC layer continues in the design of switches and routers,

which is a topic for the next two chapters.

Independent of exactly what protocols are implemented on the network adaptor,

generally the data will eventually find its way onto the main computer, and when it

does, the efficiency with which the data is moved between the adaptor and the com-

puter’s memory is very important. Recall from Section 2.9.3 that memory bandwidth—

the rate at which data can be moved from one memory location to another—has the

potential to be a limiting factor in how a workstation-class machine performs. An

inefficient host/adaptor data transfer mechanism can, therefore, limit the through-

put rate seen by application programs running on the host. First, there is the issue of

whether DMA or programmed I/O is used; each has advantages in different situations.

Second, there is the issue of how well the network adaptor is integrated with the oper-

ating system’s buffer mechanism; a carefully integrated system is usually able to avoid

copying data at a higher level of the protocol graph, thereby improving application-

to-application throughput.

F U R T H E R R E A D I N G

One of the most important contributions in computer networking over the last 20 years

is the original paper by Metcalf and Boggs (1976) introducing the Ethernet. Many

years later, Boggs, Mogul, and Kent (1988) reported their practical experiences with

Ethernet, debunking many of the myths that had found their way into the literature

over the years. Both papers are must reading. The third and fourth papers discuss the

issues involved in integrating high-speed network adaptors with system software.

Further Reading 149

■ Metcalf, R., and D. Boggs. Ethernet: Distributed packet switching for local

computer networks. Communications of the ACM 19(7):395–403, July 1976.

■ Boggs, D., J. Mogul, and C. Kent. Measured capacity of an Ethernet. Pro-

ceedings of the SIGCOMM ’88 Symposium, pages 222–234, August 1988.

■ Metcalf, R. Computer/network interface design lessons from Arpanet and Eth-

ernet. IEEE Journal of Selected Areas in Communication (JSAC) 11(2):173–

180, February 1993.

■ Druschel, P., M. Abbot, M. Pagels, and L. L. Peterson. Network subsystem

design. IEEE Network (Special Issue on End-System Support for High Speed

Networks) 7(4):8–17, July 1993.

There are countless textbooks with a heavy emphasis on the lower levels of

the network hierarchy, with a particular focus on telecommunications—networking

from the phone company’s perspective. Books by Spragins et al. [SHP91] and Minoli

[Min93] are two good examples. Several other books concentrate on various local area

network technologies. Of these, Stallings’s book is the most comprehensive [Sta00b],

while Jain gives a thorough description of FDDI [Jai94]. Jain’s book also gives a good

introduction to the low-level details of optical communication. Also, a comprehensive

overview of FDDI can be found in Ross’s article [Ros86].

For an introduction to information theory, Blahut’s book is a good place to start

[Bla87], along with Shannon’s seminal paper on link capacity [Sha48].

For a general introduction to the mathematics behind error codes, Rao and

Fujiwara [RF89] is recommended. For a detailed discussion of the mathematics of

CRCs in particular, along with some more information about the hardware used to

calculate them, see Peterson and Brown [PB61].

On the topic of network adaptor design, much work was done in the early 1990s

by researchers trying to connect hosts to networks running at higher and higher rates.

In addition to the two examples given in the reading list, see Traw and Smith [TS93],

Ramakrishnan [Ram93], Edwards et al. [EWL+94], Druschel et al. [DPD94], Kanakia

and Cheriton [KC88], Cohen et al. [CFFD93], and Steenkiste [Ste94a]. Recently, a new

generation of interface cards, ones that utilize network processors, are coming onto

the market. Spalink et al. demonstrate how these new processors can be programmed

to implement various network functionality [SKPG01].

For general information on computer architecture, Hennessy and Patterson’s

book [HP02] is an excellent reference.

Finally, we recommend the following live reference:

■ http://standards.ieee.org/: status of various IEEE network-related standards

150 2 Direct Link Networks

E X E R C I S E S

1 Show the NRZ, Manchester, and NRZI encodings for the bit pattern shown in

Figure 2.46. Assume that the NRZI signal starts out low.

2 Show the 4B/5B encoding, and the resulting NRZI signal, for the following bit

sequence:

1110 0101 0000 0011

3 Show the 4B/5B encoding, and the resulting NRZI signal, for the following bit

sequence:

1101 1110 1010 1101 1011 1110 1110 1111

4 In the 4B/5B encoding (Table 2.4), only two of the 5-bit codes used end in two 0s.

How many possible 5-bit sequences are there (used by the existing code or not)

that meet the stronger restriction of having at most one leading and at most one

trailing 0? Could all 4-bit sequences be mapped to such 5-bit sequences?

5 Assuming a framing protocol that uses bit stuffing, show the bit sequence trans-

mitted over the link when the frame contains the following bit sequence:

110101111101011111101011111110

Mark the stuffed bits.

6 Suppose the following sequence of bits arrives over a link:

1101011111010111110010111110110

Bits

NRZ

1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1

Clock

Manchester

NRZI

Figure 2.46 Diagram for Exercise 1.

Exercises 151

Show the resulting frame after any stuffed bits have been removed. Indicate any

errors that might have been introduced into the frame.

7 Suppose the following sequence of bits arrive over a link:

011010111110101001111111011001111110

Show the resulting frame after any stuffed bits have been removed. Indicate any

errors that might have been introduced into the frame.

8 Suppose you want to send some data using the BISYNC framing protocol, and

the last 2 bytes of your data are DLE and ETX. What sequence of bytes would be

transmitted immediately prior to the CRC?

9 For each of the following framing protocols, give an example of a byte/bit sequence

that should never appear in a transmission.

(a) BISYNC

(b) HDLC

10 Assume that a SONET receiver resynchronizes its clock whenever a 1 bit appears;

otherwise, the receiver samples the signal in the middle of what it believes is the

bit’s time slot.

(a) What relative accuracy of the sender’s and receiver’s clocks is required in order

to receive correctly 48 0 bytes (one ATM AAL5 cell’s worth) in a row?

(b) Consider a forwarding station A on a SONET STS-1 line, receiving frames

from the downstream end B and retransmitting them upstream. What relative

accuracy of A’s and B’s clocks is required to keep A from accumulating more

than one extra frame per minute?

11 Show that two-dimensional parity allows detection of all 3-bit errors.

12 Give an example of a 4-bit error that would not be detected by two-dimensional

parity, as illustrated in Figure 2.16. What is the general set of circumstances under

which 4-bit errors will be undetected?

13 Show that two-dimensional parity provides the receiver enough information to

correct any 1-bit error (assuming the receiver knows only 1 bit is bad), but not

any 2-bit error.

152 2 Direct Link Networks

14 Show that the Internet checksum will never be 0xFFFF (that is, the final value of

sum will not be 0x0000) unless every byte in the buffer is 0. (Internet specifications

in fact require that a checksum of 0x0000 be transmitted as 0xFFFF; the value

0x0000 is then reserved for an omitted checksum. Note that, in ones complement

arithmetic, 0x0000 and 0xFFFF are both representations of the number 0.)

15 Prove the Internet checksum computation shown in the text is independent of

byte order (host order or network order) except that the bytes in the final check-

sum should be swapped later to be in the correct order. Specifically, show that

the sum of 16-bit word integers can be computed in either byte order. For exam-

ple, if the ones complement sum (denoted by +′) of 16-bit words is represented

as

[A, B] +′ [C, D] +′ · · · +′ [Y, Z]

the following swapped sum is the same as the original sum above:

[B, A] +′ [D, C] +′ · · · +′ [Z, Y]

16 Suppose that one byte in a buffer covered by the Internet checksum algorithm needs

to be decremented (e.g., a header hop count field). Give an algorithm to compute

the revised checksum without rescanning the entire buffer. Your algorithm should

consider whether the byte in question is low order or high order.

17 Show that the Internet checksum can be computed by first taking the 32-bit ones

complement sum of the buffer in 32-bit units, then taking the 16-bit ones com-

plement sum of the upper and lower halfwords, and finishing as before by com-

plementing the result. (To take a 32-bit ones complement sum on 32-bit twos

complement hardware, you need access to the “overflow” bit.)

18 Suppose we want to transmit the message 11001001 and protect it from errors

using the CRC polynomial x3 + 1.

(a) Use polynomial long division to determine the message that should be trans-

mitted.

(b) Suppose the leftmost bit of the message is inverted due to noise on the trans-

mission link. What is the result of the receiver’s CRC calculation? How does

the receiver know that an error has occurred?

Exercises 153

19 Suppose we want to transmit the message 1011 0010 0100 1011 and protect it from

errors using the CRC-8 polynomial x8 + x2 + x1 + 1.

(a) Use polynomial long division to determine the message that should be trans-

mitted.

(b) Suppose the leftmost bit of the message is inverted due to noise on the trans-

mission link. What is the result of the receiver’s CRC calculation? How does

the receiver know that an error has occurred?

20 The CRC algorithm as presented in this chapter requires lots of bit manipulations.

It is, however, possible to do polynomial long division taking multiple bits at a

time, via a table-driven method, that enables efficient software implementations of

CRC. We outline the strategy here for long division 3 bits at a time (see Table 2.6);

in practice we would divide 8 bits at a time, and the table would have 256 entries.

Let the divisor polynomial C = C(x) be x3 + x2 + 1, or 1101. To build the table

for C, we take each 3-bit sequence, p, append three trailing 0s, and then find the

quotient q = p⌢000÷C, ignoring the remainder. The third column is the product

C × q, the first 3 bits of which should equal p.

(a) Verify, for p = 110, that the quotients p⌢000 ÷ C and p⌢111 ÷ C are the

same; that is, it doesn’t matter what the trailing bits are.

(b) Fill in the missing entries in the table.

p q = p⌢000÷C C × q

000 000 000 000

001 001 001 101

010 011 010

011 0 011

100 111 100 011

101 110 101 110

110 100 110

111 111

Table 2.6 Table-driven CRC calculation.

154 2 Direct Link Networks

(c) Use the table to divide 101 001 011 001 100 by C. Hint: The first 3 bits of

the dividend are p = 101, so from the table the corresponding first 3 bits

of the quotient are q = 110. Write the 110 above the second 3 bits of the divi-

dend, and subtract C×q = 101 110, again from the table, from the first 6 bits

of the dividend. Keep going in groups of 3 bits. There should be no remainder.

21 With 1 parity bit we can detect all 1-bit errors. Show that at least one generalization

fails, as follows:

(a) Show that if messages m are 8 bits long, then there is no error detection code

e = e(m) of size 2 bits that can detect all 2-bit errors. Hint: Consider the set

M of all 8-bit messages with a single 1 bit; note that any message from M can

be transmuted into any other with a 2-bit error, and show that some pair of

messages m1 and m2 in M must have the same error code e.

(b) Find an N (not necessarily minimal) such that no 32-bit error detection code

applied to N-bit blocks can detect all errors altering up to 8 bits.

22 Consider an ARQ protocol that uses only negative acknowledgments (NAKs),

but no positive acknowledgments (ACKs). Describe what timeouts would need

to be scheduled. Explain why an ACK-based protocol is usually preferred to a

NAK-based protocol.

23 Consider an ARQ algorithm running over a 20-km point-to-point fiber link.

(a) Compute the propagation delay for this link, assuming that the speed of light

is 2 × 108 m/s in the fiber.

(b) Suggest a suitable timeout value for the ARQ algorithm to use.

(c) Why might it still be possible for the ARQ algorithm to time out and retransmit

a frame, given this timeout value?

24 Suppose you are designing a sliding window protocol for a 1-Mbps point-to-point

link to the moon, which has a one-way latency of 1.25 seconds. Assuming that

each frame carries 1 KB of data, what is the minimum number of bits you need

for the sequence number?

25 Suppose you are designing a sliding window protocol for a 1-Mbps point-to-point

link to a stationary satellite revolving around the earth at 3 × 104 km altitude.

Assuming that each frame carries 1 KB of data, what is the minimum number of

bits you need for the sequence number in the following cases? Assume the speed

of light is 3 × 108 m/s.

Exercises 155

(a) RWS = 1

(b) RWS = SWS

26 The text suggests that the sliding window protocol can be used to implement flow

control. We can imagine doing this by having the receiver delay ACKs, that is, not

send the ACK until there is free buffer space to hold the next frame. In doing so,

each ACK would simultaneously acknowledge the receipt of the last frame and

tell the source that there is now free buffer space available to hold the next frame.

Explain why implementing flow control in this way is not a good idea.

27 Implicit in the stop-and-wait scenarios of Figure 2.19 is the notion that the re-

ceiver will retransmit its ACK immediately on receipt of the duplicate data frame.

Suppose instead that the receiver keeps its own timer and retransmits its ACK

only after the next expected frame has not arrived within the timeout interval.

Draw timelines illustrating the scenarios in Figure 2.19(b)–(d); assume the re-

ceiver’s timeout value is twice the sender’s. Also redraw (c) assuming the receiver’s

timeout value is half the sender’s.

28 In stop-and-wait transmission, suppose that both sender and receiver retransmit

their last frame immediately on receipt of a duplicate ACK or data frame; such

a strategy is superficially reasonable because receipt of such a duplicate is most

likely to mean the other side has experienced a timeout.

(a) Draw a timeline showing what will happen if the first data frame is somehow

duplicated, but no frame is lost. How long will the duplications continue?

This situation is known as the Sorcerer’s Apprentice bug.

(b) Suppose that, like data, ACKs are retransmitted if there is no response within

the timeout period. Suppose also that both sides use the same timeout interval.

Identify a reasonably likely scenario for triggering the Sorcerer’s Apprentice

bug.

29 Give some details of how you might augment the sliding window protocol with

flow control by having ACKs carry additional information that reduces the SWS

as the receiver runs out of buffer space. Illustrate your protocol with a timeline

for a transmission; assume the initial SWS and RWS are 4, the link speed is instan-

taneous, and the receiver can free buffers at the rate of one per second (i.e., the

receiver is the bottleneck). Show what happens at T = 0, T = 1, . . . , T = 4 sec-

onds.

156 2 Direct Link Networks

30 Describe a protocol combining the sliding window algorithm with selective ACKs.

Your protocol should retransmit promptly, but not if a frame simply arrives one or

two positions out of order. Your protocol should also make explicit what happens

if several consecutive frames are lost.

31 Draw a timeline diagram for the sliding window algorithm with SWS = RWS =
3 frames for the following two situations. Use a timeout interval of about 2×RTT.

(a) Frame 4 is lost.

(b) Frames 4–6 are lost.

32 Draw a timeline diagram for the sliding window algorithm with SWS = RWS = 4

frames for the following two situations. Assume the receiver sends a duplicate

acknowledgement if it does not receive the expected frame. For example, it sends

DUPACK[2] when it expects to see FRAME[2] but receives FRAME[3] instead. Also,

the receiver sends a cumulative acknowledgment after it receives all the outstand-

ing frames. For example, it sends ACK[5] when it receives the lost frame FRAME[2]

after it already received FRAME[3], FRAME[4], and FRAME[5]. Use a timeout inter-

val of about 2 × RTT.

(a) Frame 2 is lost. Retransmission takes place upon timeout (as usual).

(b) Frame 2 is lost. Retransmission takes place either upon receipt of the first

DUPACK or upon timeout. Does this scheme reduce the transaction time? Note

that some end-to-end protocols (e.g., variants of TCP) use a similar scheme

for fast retransmission.

33 Suppose that we attempt to run the sliding window algorithm with SWS = RWS =
3 and with MaxSeqNum = 5. The Nth packet DATA[N] thus actually contains N

mod 5 in its sequence number field. Give an example in which the algorithm

becomes confused; that is, a scenario in which the receiver expects DATA[5] and

accepts DATA[0]—which has the same transmitted sequence number—in its stead.

No packets may arrive out of order. Note this implies MaxSeqNum ≥ 6 is necessary

as well as sufficient.

34 Consider the sliding window algorithm with SWS = RWS = 3, with no out-of-

order arrivals, and with infinite-precision sequence numbers.

(a) Show that if DATA[6] is in the receive window, then DATA[0] (or in general

any older data) cannot arrive at the receiver (and hence that MaxSeqNum = 6

would have sufficed).

Exercises 157

A R B

Figure 2.47 Diagram for Exercises 36–38.

(b) Show that if ACK[6] may be sent (or, more literally, that DATA[5] is in the

sending window), then ACK[2] (or earlier) cannot be received.

These amount to a proof of the formula given in Section 2.5.2, particularized to

the case SWS = 3. Note that part (b) implies that the scenario of the previous

problem cannot be reversed to involve a failure to distinguish ACK[0] and ACK[5].

35 Suppose that we run the sliding window algorithm with SWS = 5 and RWS = 3,

and no out-of-order arrivals.

(a) Find the smallest value for MaxSeqNum. You may assume that it suffices to

find the smallest MaxSeqNum such that if DATA[MaxSeqNum] is in the receive

window, then DATA[0] can no longer arrive.

(b) Give an example showing that MaxSeqNum − 1 is not sufficient.

(c) State a general rule for the minimum MaxSeqNum in terms of SWS and RWS.

36 Suppose A is connected to B via an intermediate router R, as shown in Figure 2.47.

The A–R and R–B links each accept and transmit only one packet per second in

each direction (so two packets take 2 seconds), and the two directions trans-

mit independently. Assume A sends to B using the sliding window protocol with

SWS = 4.

(a) For Time = 0, 1, 2, 3, 4, 5, state what packets arrive at and leave each node,

or label them on a timeline.

(b) What happens if the links have a propagation delay of 1.0 seconds, but accept

immediately as many packets as are offered (i.e., latency = 1 second but

bandwidth is infinite)?

37 Suppose A is connected to B via an intermediate router R, as in the previous

problem. The A–R link is instantaneous, but the R–B link transmits only one

packet each second, one at a time (so two packets take 2 seconds). Assume A sends

to B using the sliding window protocol with SWS = 4. For Time = 0, 1, 2, 3, 4,

state what packets arrive at and are sent from A and B. How large does the queue

at R grow?

158 2 Direct Link Networks

38 Consider the situation in the previous exercise, except this time assume that the

router has a queue size of 1; that is, it can hold one packet in addition to the one

it is sending (in each direction). Let A’s timeout be 5 seconds, and let SWS again

be 4. Show what happens at each second from T = 0 until all four packets from

the first windowful are successfully delivered.

39 Why is it important for protocols configured on top of the Ethernet to have a

length field in their header, indicating how long the message is?

40 What kinds of problems can arise when two hosts on the same Ethernet share

the same hardware address? Describe what happens and why that behavior is a

problem.

41 The 1982 Ethernet specification allowed between any two stations up to 1500 m

of coaxial cable, 1000 m of other point-to-point link cable, and two repeaters.

Each station or repeater connects to the coaxial cable via up to 50 m of “drop

cable.” Typical delays associated with each device are given in Table 2.7 (where

c = speed of light in a vacuum = 3 × 108 m/s). What is the worst-case round-trip

propagation delay, measured in bits, due to the sources listed? (This list is not

complete; other sources of delay include sense time and signal rise time.)

42 Coaxial cable Ethernet was limited to a maximum of 500 m between repeaters,

which regenerate the signal to 100% of its original amplitude. Along one 500-m

segment, the signal could decay to no less than 14% of its original value (8.5 dB).

Along 1500 m, then, the decay might be (0.14)3 = 0.3%. Such a signal, even

along 2500 m, is still strong enough to be read; why then are repeaters required

every 500 m?

Item Delay

Coaxial cable propagation speed .77c

Link/drop cable propagation speed .65c

Repeaters approximately 0.6 μs each

Transceivers approximately 0.2 μs each

Table 2.7 Typical delays associated with various devices (Exercise 41).

Exercises 159

43 Suppose the round-trip propagation delay for Ethernet is 46.4 μs. This yields a

minimum packet size of 512 bits (464 bits corresponding to propagation delay +
48 bits of jam signal).

(a) What happens to the minimum packet size if the delay time is held constant,

and the signalling rate rises to 100 Mbps?

(b) What are the drawbacks to so large a minimum packet size?

(c) If compatibility were not an issue, how might the specifications be written so

as to permit a smaller minimum packet size?

44 Let A and B be two stations attempting to transmit on an Ethernet. Each has a

steady queue of frames ready to send; A’s frames will be numbered A1, A2, and

so on, and B’s similarly. Let T = 51.2 μs be the exponential backoff base unit.

Suppose A and B simultaneously attempt to send frame 1, collide, and happen to

choose backoff times of 0 × T and 1 × T, respectively, meaning A wins the race

and transmits A1 while B waits. At the end of this transmission, B will attempt

to retransmit B1 while A will attempt to transmit A2. These first attempts will

collide, but now A backs off for either 0 × T or 1 × T, while B backs off for time

equal to one of 0 × T, . . . , 3 × T.

(a) Give the probability that A wins this second backoff race immediately after

this first collision; that is, A’s first choice of backoff time k × 51.2 is less than

B’s.

(b) Suppose A wins this second backoff race. A transmits A3, and when it is

finished, A and B collide again as A tries to transmit A4 and B tries once

more to transmit B1. Give the probability that A wins this third backoff race

immediately after the first collision.

(c) Give a reasonable lower bound for the probability that A wins all the remaining

backoff races.

(d) What then happens to the frame B1?

This scenario is known as the Ethernet capture effect.

45 Suppose the Ethernet transmission algorithm is modified as follows: After each suc-

cessful transmission attempt, a host waits one or two slot times before attempting

to transmit again, and otherwise backs off the usual way.

(a) Explain why the capture effect of the previous exercise is now much less likely.

(b) Show how the strategy above can now lead to a pair of hosts capturing the

Ethernet, alternating transmissions, and locking out a third.

160 2 Direct Link Networks

(c) Propose an alternative approach, for example, by modifying the exponential

backoff. What aspects of a station’s history might be used as parameters to

the modified backoff?

46 Ethernets use Manchester encoding. Assuming that hosts sharing the Ethernet are

not perfectly synchronized, why does this allow collisions to be detected soon after

they occur, without waiting for the CRC at the end of the packet?

47 Suppose A, B, and C all make their first carrier sense, as part of an attempt to

transmit, while a fourth station D is transmitting. Draw a timeline showing one

possible sequence of transmissions, attempts, collisions, and exponential backoff

choices. Your timeline should also meet the following criteria: (i) initial transmis-

sion attempts should be in the order A, B, C, but successful transmissions should

be in the order C, B, A, and (ii) there should be at least four collisions.

48 Repeat the previous exercise, now with the assumption that Ethernet is p-persistent

with p = 0.33 (that is, a waiting station transmits immediately with probability

p when the line goes idle, and otherwise defers one 51.2-μs slot time and repeats

the process). Your timeline should meet criterion (i) of the previous problem, but

in lieu of criterion (ii), you should show at least one collision and at least one run

of four deferrals on an idle line. Again, note that many solutions are possible.

49 Suppose Ethernet physical addresses are chosen at random (using true random

bits).

(a) What is the probability that on a 1024-host network, two addresses will be

the same?

(b) What is the probability that the above event will occur on some one or more

of 220 networks?

(c) What is the probability that of the 230 hosts in all the networks of (b), some

pair has the same address?

Hint: The calculation for (a) and (c) is a variant of that used in solving the so-

called Birthday Problem: Given N people, what is the probability that two of their

birthdays (addresses) will be the same? The second person has probability 1 − 1
365

of having a different birthday from the first, the third has probability 1 − 2
365

of having a different birthday from the first two, and so on. The probability all

birthdays are different is thus

(

1 −
1

365

)

×
(

1 −
2

365

)

× · · · ×
(

1 −
N − 1

365

)

Exercises 161

which for smallish N is about

1 −
1 + 2 + · · · + (N − 1)

365

50 Suppose five stations are waiting for another packet to finish on an Ethernet. All

transmit at once when the packet is finished and collide.

(a) Simulate this situation up until the point when one of the five waiting stations

succeeds. Use coin flips or some other genuine random source to determine

backoff times. Make the following simplifications: Ignore interframe spacing,

ignore variability in collision times (so that retransmission is always after an

exact integral multiple of the 51.2-μs slot time), and assume that each collision

uses up exactly one slot time.

(b) Discuss the effect of the listed simplifications in your simulation versus the

behavior you might encounter on a real Ethernet.

51 Write a program to implement the simulation discussed above, this time with N

stations waiting to transmit. Again model time as an integer, T, in units of slot

times, and again treat collisions as taking one slot time (so a collision at time

T followed by a backoff of k = 0 would result in a retransmission attempt at

time T + 1). Find the average delay before one station transmits successfully, for

N = 20, N = 40, and N = 100. Does your data support the notion that the delay

is linear in N? Hint: For each station, keep track of that station’s NextTimeToSend

and CollisionCount. You are done when you reach a time T for which there is only

one station with NextTimeToSend == T. If there is no such station, increment T. If

there are two or more, schedule the retransmissions and try again.

52 Suppose that N Ethernet stations, all trying to send at the same time, require N/2

slot times to sort out who transmits next. Assuming the average packet size is 5

slot times, express the available bandwidth as a function of N.

53 Consider the following Ethernet model. Transmission attempts are at random

times with an average spacing of λ slot times; specifically, the interval between

consecutive attempts is an exponential random variable x = −λ log u, where

u is chosen randomly in the interval 0 ≤ u ≤ 1. An attempt at time t re-

sults in a collision if there is another attempt in the range from t − 1 to t + 1,

where t is measured in units of the 51.2-μs slot time; otherwise the attempt

succeeds.

(a) Write a program to simulate, for a given value of λ, the average number of slot

times needed before a successful transmission, called the contention interval.

162 2 Direct Link Networks

Find the minimum value of the contention interval. Note that you will have

to find one attempt past the one that succeeds, in order to determine if there

was a collision. Ignore retransmissions, which probably do not fit the random

model above.

(b) The Ethernet alternates between contention intervals and successful trans-

missions. Suppose the average successful transmission lasts 8 slot times (512

bytes). Using your minimum length of the contention interval from above,

what fraction of the theoretical 10-Mbps bandwidth is available for transmis-

sions?

54 What conditions would have to hold for a corrupted frame to circulate forever on

a token ring without a monitor? How does the monitor fix this problem?

55 An IEEE 802.5 token ring has five stations and a total wire length of 230 m. How

many bits of delay must the monitor insert into the ring? Do this for both 4 Mbps

and 16 Mbps; use a propagation rate of 2.3 × 108 m/s.

56 Consider a token ring network like FDDI in which a station is allowed to hold the

token for some period of time (the token holding time, or THT). Let RingLatency

denote the time it takes the token to make one complete rotation around the

network when none of the stations have any data to send.

(a) In terms of THT and RingLatency, express the efficiency of this network when

only a single station is active.

(b) What setting of THT would be optimal for a network that had only one station

active (with data to send) at a time?

(c) In the case where N stations are active, give an upper bound on the token

rotation time, or TRT, for the network.

57 Consider a token ring with a ring latency of 200 μs. Assuming that the delayed

token release strategy is used, what is the effective throughput rate that can be

achieved if the ring has a bandwidth of 4 Mbps? What is the effective throughput

rate that can be achieved if the ring has a bandwidth of 100 Mbps? Answer for

both a single active host and for “many” hosts; for the latter, assume there are

sufficiently many hosts transmitting that the time spent advancing the token can

be ignored. Assume a packet size of 1 KB.

58 For a 100-Mbps token ring network with a token rotation time of 200 μs that

allows each station to transmit one 1-KB packet each time it possesses the token,

Exercises 163

calculate the maximum effective throughput rate that any one host can achieve.

Do this assuming (a) immediate release and (b) delayed release.

59 Suppose a 100-Mbps delayed-release token ring has 10 stations, a ring latency of

30 μs, and an agreed-upon TTRT of 350 μs.

(a) How many synchronous frame bytes could each station send, assuming all are

allocated the same amount?

(b) Assume stations A, B, C are in increasing order on the ring. Due to uniform

synchronous traffic, the TRT without asynchronous data is 300 μs. B sends a

200-μs (2.5-Kb) asynchronous frame. What TRT will A, B, and C then see on

their next measurement? Who may transmit such a frame next?

Packet Switching

Nature seems . . .to reach many of her ends by long circuitous routes.

—Rudolph Lotze

T
he directly connected networks described in the previous chapter suffer from

two limitations. First, there is a limit to how many hosts can be attached. For

example, only two hosts can be attached to a point-to-point link, and an Eth-

ernet can connect up to only 1024 hosts. Second, there is a limit to how large of a

geographic area a single network can serve. For example, an Ethernet can span only

P R O B L E M

Not All Networks Are Directly

Connected

2500 m, and even though point-to-

point links can be quite long, they do

not really serve the area between the

two ends. Since our goal is to build

networks that can be global in scale,

the next problem is therefore to en-

able communication between hosts

that are not directly connected.

This problem is not unlike the one addressed in the telephone network: Your

phone is not directly connected to every person you might want to call, but instead

is connected to an exchange that contains a switch. It is the switches that create the

impression that you have a connection to the person at the other end of the call. Simi-

larly, computer networks use packet switches (as distinct from the circuit switches

used for telephony) to enable packets to travel from one host to another, even when

no direct connection exists between those hosts. This chapter introduces the major

concepts of packet switching, which lies at the heart of computer networking.

A packet switch is a device with several inputs and outputs leading to and from

the hosts that the switch interconnects. The core job of a switch is to take packets

that arrive on an input and forward (or switch) them to the right output so that they

will reach their appropriate destination. There are a variety of ways that the switch

can determine the “right” output for a packet, which can be broadly categorized as

connectionless and connection-oriented approaches.

3
A key problem that a switch must deal with is the

finite bandwidth of its outputs. If packets destined for a

certain output arrive at a switch and their arrival rate ex-

ceeds the capacity of that output, then we have a problem

of contention. The switch queues (buffers) packets until

the contention subsides, but if it lasts too long, the switch

will run out of buffer space and be forced to discard pack-

ets. When packets are discarded too frequently, the switch

is said to be congested. The ability of a switch to handle

contention is a key aspect of its performance, and many

high-performance switches use exotic hardware to reduce

the effects of contention.

This chapter introduces the issues of forwarding and

contention in packet switches. We begin by considering the

various approaches to switching, including the connec-

tionless and connection-oriented models. We then exam-

ine two particular technologies in detail. The first is LAN

switching, which has evolved from Ethernet bridging to

become one of the dominant technologies in today’s LAN

environments. The second noteworthy switching technol-

ogy is asynchronous transfer mode (ATM), which is pop-

ular among telecommunications service providers in wide

area networks. Finally, we consider some of the aspects

of switch design that must be taken into account when

building large-scale networks.

166 3 Packet Switching

3.1 Switching and Forwarding

In the simplest terms, a switch is a mechanism that allows us to interconnect links to

form a larger network. A switch is a multi-input, multi-output device, which transfers

packets from an input to one or more outputs. Thus, a switch adds the star topol-

ogy (see Figure 3.1) to the point-to-point link, bus (Ethernet), and ring (802.5 and

FDDI) topologies established in the last chapter. A star topology has several attractive

properties:

■ Even though a switch has a fixed number of inputs and outputs, which limits

the number of hosts that can be connected to a single switch, large networks

can be built by interconnecting a number of switches.

■ We can connect switches to each other and to hosts using point-to-point links,

which typically means that we can build networks of large geographic scope.

■ Adding a new host to the network by connecting it to a switch does not

necessarily mean that the hosts already connected will get worse performance

from the network.

This last claim cannot be made for the shared-media networks discussed in the

last chapter. For example, it is impossible for two hosts on the same Ethernet to transmit

continuously at 10 Mbps because they share the same transmission medium. Every host

on a switched network has its own link to the switch, so it may be entirely possible for

many hosts to transmit at the full link speed (bandwidth), provided that the switch is

designed with enough aggregate capacity. Providing high aggregate throughput is one

Figure 3.1 A switch provides a star topology.

3.1 Switching and Forwarding 167

T3 T3 STS-1

Switching
protocol

Figure 3.2 Example protocol graph running on a switch.

Input
ports

T3

T3

STS-1

T3

T3

STS-1

Switch

Output
ports

Figure 3.3 Example switch with three input and output ports.

of the design goals for a switch; we return to this topic below. In general, switched

networks are considered more scalable (i.e., more capable of growing to large numbers

of nodes) than shared-media networks because of this ability to support many hosts

at full speed.

A switch is connected to a set of links and, for each of these links, runs the

appropriate data link protocol to communicate with the node at the other end of the

link. A switch’s primary job is to receive incoming packets on one of its links and to

transmit them on some other link. This function is sometimes referred to as either

switching or forwarding, and in terms of the OSI architecture, it is the main function

of the network layer. Figure 3.2 shows the protocol graph that would run on a switch

that is connected to two T3 links and one STS-1 SONET link. A representation of this

same switch is given in Figure 3.3. In this figure, we have split the input and output

halves of each link, and we refer to each input or output as a port. (In general, we

assume that each link is bidirectional, and hence supports both input and output.) In

other words, this example switch has three input ports and three output ports.

The question then is, How does the switch decide which output port to place

each packet on? The general answer is that it looks at the header of the packet

for an identifier that it uses to make the decision. The details of how it uses this

identifier vary, but there are two common approaches. The first is the datagram or

168 3 Packet Switching

connectionless approach. The second is the virtual circuit or connection-oriented ap-

proach. A third approach, source routing, is less common than these other two, but it

is simple to explain and does have some useful applications.

One thing that is common to all networks is that we need to have a way to iden-

tify the end nodes. Such identifiers are usually called addresses. We have already seen

examples of addresses in the previous chapter, for example, the 48-bit address used

for Ethernet. The only requirement for Ethernet addresses is that no two nodes on a

network have the same address. This is accomplished by making sure that all Ethernet

cards are assigned a globally unique identifier. For the following discussions, we assume

that each host has a globally unique address. Later on, we consider other useful prop-

erties that an address might have, but global uniqueness is adequate to get us started.

Another assumption that we need to make is that there is some way to identify the

input and output ports of each switch. There are at least two sensible ways to identify

ports: One is to number each port, and the other is to identify the port by the name of

the node (switch or host) to which it leads. For now, we use numbering of the ports.

3.1.1 Datagrams

The idea behind datagrams is incredibly simple: You just make sure that every packet

contains enough information to enable any switch to decide how to get it to its des-

tination. That is, every packet contains the complete destination address. Consider

the example network illustrated in Figure 3.4, in which the hosts have addresses A,

B, C, and so on. To decide how to forward a packet, a switch consults a forwarding

table (sometimes called a routing table), an example of which is depicted in Table 3.1.

Destination Port

A 3

B 0

C 3

D 3

E 2

F 1

G 0

H 0

Table 3.1 Forwarding table for switch 2.

3.1 Switching and Forwarding 169

0

13
2

0

1 3

2

0

13

2

Switch 3 Host B

Switch 2

Host A

Switch 1

Host C

Host D

Host E
Host F

Host G

Host H

Figure 3.4 Datagram forwarding: an example network.

This particular table shows the forwarding information that switch 2 needs to forward

datagrams in the example network. It is pretty easy to figure out such a table when you

have a complete map of a simple network like that depicted here; we could imagine a

network operator configuring the tables statically. It is a lot harder to create the for-

warding tables in large, complex networks with dynamically changing topologies and

multiple paths between destinations. That harder problem is known as routing and is

the topic of Section 4.2. We can think of routing as a process that takes place in the

background so that, when a data packet turns up, we will have the right information

in the forwarding table to be able to forward, or switch, the packet.

Connectionless (datagram) networks have the following characteristics:

■ A host can send a packet anywhere at any time, since any packet that turns

up at a switch can be immediately forwarded (assuming a correctly populated

forwarding table). As we will see, this contrasts with most connection-oriented

networks, in which some “connection state” needs to be established before

the first data packet is sent.

■ When a host sends a packet, it has no way of knowing if the network is capable

of delivering it or if the destination host is even up and running.

170 3 Packet Switching

■ Each packet is forwarded independently of previous packets that might have

been sent to the same destination. Thus, two successive packets from host A

to host B may follow completely different paths (perhaps because of a change

in the forwarding table at some switch in the network).

■ A switch or link failure might not have any serious effect on communication

if it is possible to find an alternate route around the failure and to update the

forwarding table accordingly.

This last fact is particularly important to the history of datagram networks. One

of the important goals of the ARPANET, forerunner to the Internet, was to develop

networking technology that would be robust in a military environment, where you

might expect links and nodes to fail because of active attacks such as bombing. It was

the ability to route around failures that led to a datagram-based design.

3.1.2 Virtual Circuit Switching

A widely used technique for packet switching, which differs significantly from the

datagram model, uses the concept of a virtual circuit (VC). This approach, which is also

called a connection-oriented model, requires that we first set up a virtual connection

from the source host to the destination host before any data is sent. To understand how

this works, consider Figure 3.5, where host A again wants to send packets to host B.

We can think of this as a two-stage process. The first stage is “connection setup.” The

second is data transfer. We consider each in turn.

In the connection setup phase, it is necessary to establish “connection state” in

each of the switches between the source and destination hosts. The connection state

0

1

2

3
0

1

2

3

0

1

2

3

0

1

2

3

Host A

Host B

Switch 3

Switch 2Switch 1

Figure 3.5 An example of a virtual circuit network.

3.1 Switching and Forwarding 171

for a single connection consists of an entry in a “VC table” in each switch through

which the connection passes. One entry in the VC table on a single switch contains

■ a virtual circuit identifier (VCI) that uniquely identifies the connection at this

switch and that will be carried inside the header of the packets that belong to

this connection

■ an incoming interface on which packets for this VC arrive at the switch

■ an outgoing interface in which packets for this VC leave the switch

■ a potentially different VCI that will be used for outgoing packets

The semantics of one such entry is as follows: If a packet arrives on the designated

incoming interface and that packet contains the designated VCI value in its header,

then that packet should be sent out the specified outgoing interface with the specified

outgoing VCI value first having been placed in its header.

Note that the combination of the VCI of packets as they are received at the switch

and the interface on which they are received uniquely identifies the virtual connection.

There may of course be many virtual connections established in the switch at one

time. Also, we observe that the incoming and outgoing VCI values are generally not

the same. Thus, the VCI is not a globally significant identifier for the connection;

rather, it has significance only on a given link—that is, it has link local scope.

Whenever a new connection is created, we need to assign a new VCI for that

connection on each link that the connection will traverse. We also need to ensure that

the chosen VCI on a given link is not currently in use on that link by some existing

connection.

There are two broad classes of approach to establishing connection state. One is

to have a network administrator configure the state, in which case the virtual circuit is

“permanent.” Of course, it can also be deleted by the administrator, so a permanent

virtual circuit (PVC) might best be thought of as a long-lived or administratively

configured VC. Alternatively, a host can send messages into the network to cause the

state to be established. This is referred to as signalling, and the resulting virtual circuits

are said to be switched. The salient characteristic of a switched virtual circuit (SVC)

is that a host may set up and delete such a VC dynamically without the involvement

of a network administrator. Note that an SVC should more accurately be called a

“signalled” VC, since it is the use of signalling (not switching) that distinguishes an

SVC from a PVC.

Let’s assume that a network administrator wants to manually create a new virtual

connection from host A to host B. First, the administrator needs to identify a path

through the network from A to B. In the example network of Figure 3.5, there is only

172 3 Packet Switching

Incoming Outgoing

Interface Incoming VCI Interface Outgoing VCI

2 5 1 11

(a)

Incoming Outgoing

Interface Incoming VCI Interface Outgoing VCI

3 11 2 7

(b)

Incoming Outgoing

Interface Incoming VCI Interface Outgoing VCI

0 7 1 4

(c)

Table 3.2 Virtual circuit table entries for (a) switch 1, (b) switch 2 and (c) switch 3.

one such path, but in general this may not be the case. The administrator then picks a

VCI value that is currently unused on each link for the connection. For the purposes

of our example, let’s suppose that the VCI value 5 is chosen for the link from host A

to switch 1, and that 11 is chosen for the link from switch 1 to switch 2. In that case,

switch 1 needs to have an entry in its VC table configured as shown in Table 3.2(a).

Similarly, suppose that the VCI of 7 is chosen to identify this connection on

the link from switch 2 to switch 3, and that a VCI of 4 is chosen for the link from

switch 3 to host B. In that case, switches 2 and 3 need to be configured with VC table

entries as shown in Table 3.2. Note that the “outgoing” VCI value at one switch is the

“incoming” VCI value at the next switch.

Once the VC tables have been set up, the data transfer phase can proceed, as

illustrated in Figure 3.6. For any packet that it wants to send to host B, A puts the VCI

value of 5 in the header of the packet and sends it to switch 1. Switch 1 receives any

such packet on interface 2, and it uses the combination of the interface and the VCI

in the packet header to find the appropriate VC table entry. As shown in Table 3.2,

the table entry in this case tells switch 1 to forward the packet out of interface 1 and

3.1 Switching and Forwarding 173

0

1

2

3

0

13

0

1

2

3

0

1

2
2

3

Host A Host B

Switch 3

Switch 2Switch 1

5

11

Figure 3.6 A packet is sent into a virtual circuit network.

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Host A Host B

Switch 3

Switch 2Switch 1

7

11

Figure 3.7 A packet makes its way through a virtual circuit network.

to put the VCI value 11 in the header when the packet is sent. Thus, the packet will

arrive at switch 2 on interface 3 bearing VCI 11. Switch 2 looks up interface 3 and VCI

11 in its VC table (as shown in Table 3.2) and sends the packet on to switch 3 after

updating the VCI value in the packet header appropriately, as shown in Figure 3.7.

This process continues until it arrives at host B with the VCI value of 4 in the packet.

To host B, this identifies the packet as having come from host A.

In real networks of reasonable size, the burden of configuring VC tables cor-

rectly in a large number of switches would quickly become excessive using the above

procedures. Thus, some sort of signalling is almost always used, even when setting up

“permanent” VCs. In the case of PVCs, signalling is initiated by the network adminis-

trator, while SVCs are usually set up using signalling by one of the hosts. We consider

now how the same VC just described could be set up by signalling from the host.

To start the signalling process, host A sends a setup message into the network,

that is, to switch 1. The setup message contains, among other things, the complete

destination address of host B. The setup message needs to get all the way to B to create

the necessary connection state in every switch along the way. We can see that getting

174 3 Packet Switching

the setup message to B is a lot like getting a datagram to B, in that the switches have

to know which output to send the setup message to so that it eventually reaches B.

For now, let’s just assume that the switches know enough about the network topology

to figure out how to do that, so that the setup message flows on to switches 2 and 3

before finally reaching host B.

When switch 1 receives the connection request, in addition to sending it on to

switch 2, it creates a new entry in its virtual circuit table for this new connection. This

entry is exactly the same as shown previously in Table 3.2. The main difference is that

now the task of assigning an unused VCI value on the interface is performed by the

switch. In this example, the switch picks the value 5. The virtual circuit table now

has the following information: “When packets arrive on port 2 with identifier 5, send

them out on port 1.” Another issue is that, somehow, host A will need to learn that it

should put the VCI value of 5 in packets that it wants to send to B; we will see how

that happens below.

When switch 2 receives the setup message, it performs a similar process; in this

example it picks the value 11 as the incoming VCI value. Similarly, switch 3 picks

7 as the value for its incoming VCI. Each switch can pick any number it likes, as

long as that number is not currently in use for some other connection on that port of

that switch. As noted above, VCIs have “link local scope”; that is, they have no global

significance.

Finally, the setup message arrives at host B. Assuming that B is healthy and willing

to accept a connection from host A, it too allocates an incoming VCI value, in this

case 4. This VCI value can be used by B to identify all packets coming from host A.

Now, to complete the connection, everyone needs to be told what their down-

stream neighbor is using as the VCI for this connection. Host B sends an acknowledg-

ment of the connection setup to switch 3 and includes in that message the VCI that it

chose (4). Now switch 3 can complete the virtual circuit table entry for this connection,

since it knows the outgoing value must be 4. Switch 3 sends the acknowledgment on to

switch 2, specifying a VCI of 7. Switch 2 sends the message on to switch 1, specifying

a VCI of 11. Finally, switch 1 passes the acknowledgment on to host A, telling it to

use the VCI of 5 for this connection.

At this point, everyone knows all that is necessary to allow traffic to flow from

host A to host B. Each switch has a complete virtual circuit table entry for the con-

nection. Furthermore, host A has a firm acknowledgment that everything is in place

all the way to host B. At this point, the connection table entries are in place in all

three switches just as in the administratively configured example above, but the whole

process happened automatically in response to the signalling message sent from A.

The data transfer phase can now begin and is identical to that used in the PVC case.

When host A no longer wants to send data to host B, it tears down the connection

by sending a teardown message to switch 1. The switch removes the relevant entry from

3.1 Switching and Forwarding 175

its table and forwards the message on to the other switches in the path, which similarly

delete the appropriate table entries. At this point, if host A were to send a packet with

a VCI of 5 to switch 1, it would be dropped as if the connection had never existed.

There are several things to note about virtual circuit switching:

■ Since host A has to wait for the connection request to reach the far side of the

network and return before it can send its first data packet, there is at least one

RTT of delay before data is sent.1

■ While the connection request contains the full address for host B (which might

be quite large, being a global identifier on the network), each data packet

contains only a small identifier, which is only unique on one link. Thus, the

per-packet overhead caused by the header is reduced relative to the datagram

model.

■ If a switch or a link in a connection fails, the connection is broken and a new

one will need to be established. Also, the old one needs to be torn down to

free up table storage space in the switches.

■ The issue of how a switch decides which link to forward the connection request

on has been glossed over. In essence, this is the same problem as building up

the forwarding table for datagram forwarding, which requires some sort of

routing algorithm. Routing is described in Section 4.2, and the algorithms

described there are generally applicable to routing setup requests as well as

datagrams.

One of the nice aspects of virtual circuits is that by the time the host gets the

go-ahead to send data, it knows quite a lot about the network—for example, that

there really is a route to the receiver and that the receiver is willing and able to receive

data. It is also possible to allocate resources to the virtual circuit at the time it is

established. For example, an X.25 network—a packet-switched network that uses the

connection-oriented model—employs the following three-part strategy:

1 Buffers are allocated to each virtual circuit when the circuit is initialized.

2 The sliding window protocol is run between each pair of nodes along the virtual

circuit, and this protocol is augmented with flow control to keep the sending

node from overrunning the buffers allocated at the receiving node.

3 The circuit is rejected by a given node if not enough buffers are available at that

node when the connection request message is processed.

1This is not strictly true. Some people have proposed “optimistically” sending a data packet immediately after
sending the connection request. However, most current implementations wait for connection setup to complete
before sending data.

176 3 Packet Switching

In doing these three things, each node is ensured of having the buffers it needs to queue

the packets that arrive on that circuit. This basic strategy is usually called hop-by-hop

flow control.

By comparison, a datagram network has no connection establishment phase,

and each switch processes each packet independently, making it less obvious how

a datagram network would allocate resources in a meaningful way. Instead, each

arriving packet competes with all other

packets for buffer space. If there are no free

buffers, the incoming packet must be dis-

carded. We observe, however, that even in

a datagram-based network, a source host

often sends a sequence of packets to the

same destination host. It is possible for each

switch to distinguish among the set of pack-

ets it currently has queued, based on the

source/destination pair, and thus for the

switch to ensure that the packets belonging

to each source/destination pair are receiv-

ing a fair share of the switch’s buffers. We

discuss this idea in much greater depth in

Chapter 6.

In the virtual circuit model, we could

imagine providing each circuit with a differ-

ent quality of service (QoS). In this setting,

the term “quality of service” is usually taken

to mean that the network gives the user

some kind of performance-related guaran-

tee, which in turn implies that switches set

aside the resources they need to meet this

guarantee. For example, the switches along

a given virtual circuit might allocate a per-

centage of each outgoing link’s bandwidth

to that circuit. As another example, a se-

quence of switches might ensure that pack-

ets belonging to a particular circuit not be

delayed (queued) for more than a certain

amount of time. We return to the topic of

quality of service in Section 6.5.

The most popular examples of virtual

circuit technologies are Frame Relay and

Introduction to Congestion

Recall the distinction between con-

tention and congestion: Contention

occurs when multiple packets have

to be queued at a switch be-

cause they are competing for the

same output link, while congestion

means that the switch has so many

packets queued that it runs out of

buffer space and has to start drop-

ping packets. We return to the topic

of congestion in Chapter 6, after

we have seen the transport proto-

col component of the network ar-

chitecture. At this point, however,

we observe that the decision as to

whether your network uses virtual

circuits or datagrams has an impact

on how you deal with congestion.

On the one hand, suppose

that each switch allocates enough

buffers to handle the packets

belonging to each virtual circuit it

supports, as is done in an X.25

network. In this case, the net-

work has defined away the problem

of congestion—a switch never en-

counters a situation in which it has

more packets to queue than it has

buffer space, since it does not allow

the connection to be established in

the first place unless it can dedicate

3.1 Switching and Forwarding 177

Variable

Control

8

Address

16

Frame
checksum

16

Flag
(0x7E)

8

Flag
(0x7E)

8

Data

Figure 3.8 Frame Relay packet format.

enough resources to it to avoid this

situation. The problem with this

approach, however, is that it is ex-

tremely conservative—it is unlikely

that all the circuits will need to use

all of their buffers at the same time,

and as a consequence, the switch is

potentially underutilized.

On the other hand, the data-

gram model seemingly invites

congestion—you do not know that

there is enough contention at a

switch to cause congestion until

you run out of buffers. At that

point, it is too late to prevent the

congestion, and your only choice is

to try to recover from it. The good

news, of course, is that you may

be able to get better utilization out

of your switches since you are not

holding buffers in reserve for a

worst-case scenario that is unlikely

to happen.

As is quite often the case, noth-

ing is strictly black and white—

there are design advantages for

defining congestion away (as the

X.25 model does) and for doing

nothing about congestion until

after it happens (as the simple

datagram model does). We describe

some of these design points in

Chapter 6.

asynchronous transfer mode (ATM). ATM

has a number of interesting properties that

we discuss in Section 3.3. Frame Relay is

a rather straightforward implementation of

virtual circuit technology, and its simplic-

ity has made it extremely popular. Many

network service providers offer Frame Re-

lay PVC services. One of the applications

of Frame Relay is the construction of vir-

tual private networks (VPNs), a subject dis-

cussed in Section 4.1.8.

Frame Relay provides some basic

quality of service and congestion-avoidance

features, but these are rather lightweight

compared to X.25 and ATM. The Frame

Relay packet format (see Figure 3.8) pro-

vides a good example of a packet used for

virtual circuit switching.

3.1.3 Source Routing

A third approach to switching that uses nei-

ther virtual circuits nor conventional data-

grams is known as source routing. The name

derives from the fact that all the information

about network topology that is required to

switch a packet across the network is pro-

vided by the source host.

There are various ways to implement

source routing. One would be to assign

a number to each output of each switch

and to place that number in the header of

the packet. The switching function is then

very simple: For each packet that arrives on

an input, the switch would read the port

178 3 Packet Switching

0

13

2

0

1 3

2

0

13

2

0

13

2

3 0 1 3 01

30 1

Switch 3

Host B

Switch 2

Host A

Switch 1

Figure 3.9 Source routing in a switched network (where the switch reads the right-
most number).

number in the header and transmit the packet on that output. However, since there will

in general be more than one switch in the path between the sending and the receiving

host, the header for the packet needs to contain enough information to allow every

switch in the path to determine which output the packet needs to be placed on. One

way to do this would be to put an ordered list of switch ports in the header and to

rotate the list so that the next switch in the path is always at the front of the list.

Figure 3.9 illustrates this idea.

In this example, the packet needs to traverse three switches to get from host A

to host B. At switch 1, it needs to exit on port 1, at the next switch it needs to exit

at port 0, and at the third switch it needs to exit at port 3. Thus, the original header

when the packet leaves host A contains the list of ports (3, 0, 1), where we assume

that each switch reads the rightmost element of the list. To make sure that the next

switch gets the appropriate information, each switch rotates the list after it has read

its own entry. Thus, the packet header as it leaves switch 1 en route to switch 2 is now

(1, 3, 0); switch 2 performs another rotation and sends out a packet with (0, 1, 3) in

the header. Although not shown, switch 3 performs yet another rotation, restoring the

header to what it was when host A sent it.

There are several things to note about this approach. First, it assumes that host

A knows enough about the topology of the network to form a header that has all

the right directions in it for every switch in the path. This is somewhat analogous to

the problem of building the forwarding tables in a datagram network or figuring out

3.1 Switching and Forwarding 179

Optical Switching

To a casual observer of the net-

working industry around the year

2000, it might have appeared that

the most interesting sort of switch-

ing was optical switching. Indeed,

optical switching did become an

important technology in the late

1990s, due to a confluence of sev-

eral factors. One factor was the

commercial availability of dense

wavelength division multiplexing

(DWDM) equipment, which makes

it possible to send a great deal of

information down a single fiber by

transmitting on a large number of

optical wavelengths (or colors) at

once. Thus, for example, you might

send data on 100 or more different

wavelengths, and each wavelength

might carry as much as 10 Gbps of

data.

A second factor was the com-

mercial availability of optical am-

plifiers. Optical signals are atten-

uated as they pass through fiber,

and after some distance (about 40

km or so) they need to be made

stronger in some way. Before opti-

cal amplifiers, it was necessary to

place repeaters in the path to re-

cover the optical signal, convert it

to a digital electronic signal, and

then convert it back to optical

again. Before you could get the data

into a repeater, you would have to

where to send a setup packet in a virtual cir-

cuit network. Second, observe that we can-

not predict how big the header needs to be,

since it must be able to hold one word of

information for every switch on the path.

This implies that headers are probably of

variable length with no upper bound, un-

less we can predict with absolute certainty

the maximum number of switches through

which a packet will ever need to pass. Third,

there are some variations on this approach.

For example, rather than rotate the header,

each switch could just strip the first element

as it uses it. Rotation has an advantage over

stripping, however: Host B gets a copy of

the complete header, which may help it fig-

ure out how to get back to host A. Yet an-

other alternative is to have the header carry

a pointer to the current “next port” entry,

so that each switch just updates the pointer

rather than rotating the header; this may

be more efficient to implement. We show

these three approaches in Figure 3.10. In

each case, the entry that this switch needs to

read is A, and the entry that the next switch

needs to read is B.

Source routing can be used in both

datagram networks and virtual circuit net-

works. For example, the Internet Proto-

col, which is a datagram protocol, includes

a source route option that allows selected

packets to be source routed, while the ma-

jority are switched as conventional data-

grams. Source routing is also used in some

virtual circuit networks as the means to get

the initial setup request along the path from

source to destination.

Finally, we note that source routing

suffers from a scaling problem. In any

180 3 Packet Switching

Header entering
switch

Header leaving
switch

(a) (b) (c)

D C B A D C B A

D C BA D C B

Ptr D C B A

Ptr D C B A

Figure 3.10 Three ways to handle headers for source routing: (a) rotation; (b) stripping;
(c) pointer. The labels are read right to left.

reasonably large network, it is very hard for

a host to get the complete path information

it needs to construct correct headers.

3.2 Bridges and LAN
Switches

Having discussed some of the basic ideas be-

hind switching, we now focus more closely

on some specific switching technologies. We

begin by considering a class of switches

that is used to forward packets between

shared-media LANs such as Ethernets. Such

switches are sometimes known by the obvi-

ous name of LAN switches; historically they

have also been referred to as bridges.

Suppose you have a pair of Ether-

nets that you want to interconnect. One ap-

proach you might try is to put a repeater

between them, as described in Chapter 2.

This would not be a workable solution,

however, if doing so exceeded the physi-

cal limitations of the Ethernet. (Recall that

no more than two repeaters between any

pair of hosts and no more than a total of

2500 m in length is allowed.) An alternative

demultiplex it using a DWDM ter-

minal. Thus, a large number of

DWDM terminals would be needed

just to drive a single fiber pair for

a long distance. Optical amplifiers,

unlike repeaters, are analog devices

that boost whatever signal is sent

along the fiber, even if it is sent on

a hundred different wavelengths.

Optical amplifiers therefore made

DWDM gear much more attrac-

tive, because now a pair of DWDM

terminals could talk to each other

when separated by a distance of

hundreds of kilometers. Further-

more, you could even upgrade the

DWDM gear at the ends without

touching the optical amplifiers in

the middle of the path, because they

will amplify 100 wavelengths as

easily as 50 wavelengths.

With DWDM and optical am-

plifiers, it became possible to build

optical networks of huge capac-

ity. But at least one more type

3.2 Bridges and LAN Switches 181

would be to put a node between the two Ethernets and have the node forward frames

from one Ethernet to the other. This node would be in promiscuous mode, accepting

all frames transmitted on either of the Ethernets, so it could forward them to the other.

The node we have just described is typically called a bridge, and a collection of

LANs connected by one or more bridges is usually said to form an extended LAN. In

their simplest variants, bridges simply accept LAN frames on their inputs and forward

them out on all other outputs. This simple strategy was used by early bridges, but has

since been refined to make bridges a more effective mechanism for interconnecting a

set of LANs. The rest of this section fills in the more interesting details.

Note that a bridge meets our definition of a switch from the previous section:

a multi-input, multi-output device, which transfers packets from an input to one or

of device is needed to make

these networks useful—the opti-

cal switch. Most so-called opti-

cal switches today actually perform

their switching function electron-

ically, and from an architectural

point of view they have more in

common with the circuit switches

of the telephone network than the

packet switches described in this

chapter. A typical optical switch

has a large number of interfaces

that understand SONET framing

and is able to cross-connect a

SONET channel from an incoming

interface to an outgoing interface.

Thus, with an optical switch, it be-

comes possible to provide SONET

channels from point A to point B

via point C even if there is no di-

rect fiber path from A to B—there

just needs to be a path from A to

C, a switch at C, and a path from

C to B. In this respect, an optical

more outputs. And recall that this provides

a way to increase the total bandwidth of

a network. For example, while a single

Ethernet segment can carry only 10 Mbps

of total traffic, an Ethernet bridge can carry

as much as 10n Mbps, where n is the num-

ber of ports (inputs and outputs) on the

bridge.

3.2.1 Learning Bridges

The first optimization we can make to a

bridge is to observe that it need not for-

ward all frames that it receives. Consider

the bridge in Figure 3.11. Whenever a frame

from host A that is addressed to host B

arrives on port 1, there is no need for the

bridge to forward the frame out over port 2.

The question, then, is, How does a bridge

come to learn on which port the various

hosts reside?

One option would be to have a human

download a table into the bridge similar to

the one given in Table 3.3. Then, whenever

the bridge receives a frame on port 1 that is

addressed to host A, it would not forward

182 3 Packet Switching

the frame out on port 2; there would be no

need because host A would have already di-

rectly received the frame on the LAN con-

nected to port 1. Anytime a frame addressed

to host A was received on port 2, the bridge

would forward the frame out on port 1.

Note that a bridge using such a table

would be using the datagram (or connec-

tionless) model of forwarding described in

Section 3.1.1. Each packet carries a global

address, and the bridge decides which out-

put to send a packet on by looking up that

address in a table.

Having a human maintain this table is

quite a burden, especially considering that

there is a simple trick by which a bridge

can learn this information for itself. The

idea is for each bridge to inspect the source

address in all the frames it receives. Thus,

when host A sends a frame to a host on

either side of the bridge, the bridge receives

this frame and records the fact that a frame

from host A was just received on port 1. In

this way, the bridge can build a table just

like Table 3.3.

When a bridge first boots, this table is

empty; entries are added over time. Also, a

timeout is associated with each entry, and

the bridge discards the entry after a speci-

fied period of time. This is to protect against

the situation in which a host—and as a

consequence, its LAN address—is moved

from one network to another. Thus, this ta-

ble is not necessarily complete. Should the

bridge receive a frame that is addressed to

a host not currently in the table, it goes

ahead and forwards the frame out on all the

switch bears some relationship to

the switches in Figure 3.5, in that

it creates the illusion of a con-

netion between two points even

when there is no direct physical

connection between them. How-

ever, optical switches do not pro-

vide virtual circuits; they provide

“real” circuits (e.g., a SONET

channel). There are even some

newer types of optical switches

that use microscopic mirrors to

deflect all the light from one

switch port to another, so that

there could be an uninterrupted

optical channel from point A to

point B.

We don’t cover optical net-

working extensively in this book,

in part because of space considera-

tions. For many practical purposes,

you can think of optical networks

as a piece of the infrastructure that

enables telephone companies to

provide SONET links or other

types of circuits where and when

you need them. However, it is

worth noting that many of the tech-

nologies that are discussed later in

this book, such as routing protocols

and Multiprotocol Label Switch-

ing, do have application to the

world of optical networking.

3.2 Bridges and LAN Switches 183

A

Bridge

B C

X Y Z

Port 1

Port 2

Figure 3.11 Illustration of a learning bridge.

Host Port

A 1

B 1

C 1

X 2

Y 2

Z 2

Table 3.3 Forwarding table maintained by a bridge.

other ports. In other words, this table is simply an optimization that filters out some

frames; it is not required for correctness.

Implementation

The code that implements the learning bridge algorithm is quite simple, and we sketch it

here. Structure BridgeEntry defines a single entry in the bridge’s forwarding table; these

are stored in a Map structure (which supports mapCreate, mapBind, and MapResolve

operations) to enable entries to be efficiently located when packets arrive from sources

already in the table. The constant MAX TTL specifies how long an entry is kept in the

table before it is discarded.

184 3 Packet Switching

#define BRIDGE_TAB_SIZE 1024 /* max. size of bridging table */
#define MAX_TTL 120 /* time (in seconds) before an

entry is flushed */

typedef struct {
MacAddr destination; /* MAC address of a node */
int ifnumber; /* interface to reach it */
u_short TTL; /* time to live */
Binding binding; /* binding in the Map */

} BridgeEntry;

int numEntries = 0;
Map bridgeMap = mapCreate(BRIDGE_TAB_SIZE,

sizeof(BridgeEntry));

The routine that updates the forwarding table when a new packet arrives is

given by updateTable. The arguments passed are the source MAC address contained

in the packet and the interface number on which it was received. Another routine, not

shown here, is invoked at regular intervals, scans the entries in the forwarding table,

and decrements the TTL (time to live) field of each entry, discarding any entries whose

TTL has reached 0. Note that the TTL is reset to MAX TTL every time a packet arrives

to refresh an existing table entry, and that the interface on which the destination can

be reached is updated to reflect the most recently received packet.

void
updateTable (MacAddr src, int inif)
{

BridgeEntry *b;

if (mapResolve(bridgeMap, &src, (void **)&b) == FALSE)
{

/* this address is not in the table, so try to add it */
if (numEntries < BRIDGE_TAB_SIZE)
{

b = NEW(BridgeEntry);
b->binding = mapBind(bridgeMap, &src, b);
/* use source address of packet as dest. address in

table */
b->destination = src;
numEntries++;

}
else
{

/* can't fit this address in the table now, so give
up */

3.2 Bridges and LAN Switches 185

return;
}

}
/* reset TTL and use most recent input interface */
b->TTL = MAX_TTL;
b->ifnumber = inif;

}

Note that this implementation adopts a simple strategy in the case where the

bridge table has become full to capacity—it simply fails to add the new address. Recall

that completeness of the bridge table is not necessary for correct forwarding; it just

optimizes performance. If there is some entry in the table that is not currently being

used, it will eventually time out and be removed, creating space for a new entry. An

alternative approach would be to invoke some sort of cache replacement algorithm

on finding the table full; for example, we might locate and remove the entry with the

smallest TTL to accommodate the new entry.

3.2.2 Spanning Tree Algorithm

The preceding strategy works just fine until the extended LAN has a loop in it, in

which case it fails in a horrible way—frames potentially loop through the extended

LAN forever. This is easy to see in the example depicted in Figure 3.12, where, for

example, bridges B1, B4, and B6 form a loop. How does an extended LAN come to

have a loop in it? One possibility is that the network is managed by more than one

administrator, for example, because it spans multiple departments in an organization.

In such a setting, it is possible that no single person knows the entire configuration of

the network, meaning that a bridge that closes a loop might be added without anyone

knowing. A second, more likely scenario is that loops are built into the network on

purpose—to provide redundancy in case of failure.

Whatever the cause, bridges must be able to correctly handle loops. This problem

is addressed by having the bridges run a distributed spanning tree algorithm. If you

think of the extended LAN as being represented by a graph that possibly has loops

(cycles), then a spanning tree is a subgraph of this graph that covers (spans) all the

vertices, but contains no cycles. That is, a spanning tree keeps all of the vertices of the

original graph, but throws out some of the edges. For example, Figure 3.13 shows a

cyclic graph on the left and one of possibly many spanning trees on the right.

The spanning tree algorithm, which was developed by Radia Perlman at Digital,

is a protocol used by a set of bridges to agree upon a spanning tree for a particu-

lar extended LAN. (The IEEE 802.1 specification for LAN bridges is based on this

algorithm.) In practice, this means that each bridge decides the ports over which it

186 3 Packet Switching

A

C

E

D

B

K

F

H

J

G

I

B3

B7

B4

B2

B5

B1

B6

Figure 3.12 Extended LAN with loops.

(a) (b)

Figure 3.13 Example of (a) a cyclic graph; (b) a corresponding spanning tree.

is and is not willing to forward frames. In a sense, it is by removing ports from the

topology that the extended LAN is reduced to an acyclic tree.2 It is even possible that

an entire bridge will not participate in forwarding frames, which seems strange when

you consider that the one reason we intentionally have loops in the network in the first

2Representing an extended LAN as an abstract graph is a bit awkward. Basically, you let both the bridges and
the LANs correspond to the vertices of the graph and the ports correspond to the graph’s edges. However, the
spanning tree we are going to compute for this graph needs to span only those nodes that correspond to networks.
It is possible that nodes corresponding to bridges will be disconnected from the rest of the graph. This corresponds
to a situation in which all the ports connecting a bridge to various networks get removed by the algorithm.

3.2 Bridges and LAN Switches 187

place is to provide redundancy. The algorithm is dynamic, however, meaning that the

bridges are always prepared to reconfigure themselves into a new spanning tree should

some bridge fail.

The main idea of the spanning tree is for the bridges to select the ports over

which they will forward frames. The algorithm selects ports as follows. Each bridge

has a unique identifier; for our purposes, we use the labels B1, B2, B3, and so on. The

algorithm first elects the bridge with the smallest id as the root of the spanning tree;

exactly how this election takes place is described below. The root bridge always for-

wards frames out over all of its ports. Next, each bridge computes the shortest path

to the root and notes which of its ports is on this path. This port is also selected as the

bridge’s preferred path to the root. Finally, all the bridges connected to a given LAN

elect a single designated bridge that will be responsible for forwarding frames toward

the root bridge. Each LAN’s designated bridge is the one that is closest to the root, and

if two or more bridges are equally close to the root, then the bridges’ identifiers are

used to break ties; the smallest id wins. Of course, each bridge is connected to more

than one LAN, so it participates in the election of a designated bridge for each LAN

it is connected to. In effect, this means that each bridge decides if it is the designated

bridge relative to each of its ports. The bridge forwards frames over those ports for

which it is the designated bridge.

Figure 3.14 shows the spanning tree that corresponds to the extended LAN

shown in Figure 3.12. In this example, B1 is the root bridge, since it has the smallest id.

Notice that both B3 and B5 are connected to LAN A, but B5 is the designated bridge

since it is closer to the root. Similarly, both B5 and B7 are connected to LAN B, but

in this case, B5 is the designated bridge since it has the smaller id; both are an equal

distance from B1.

While it is possible for a human to look at the extended LAN given in Figure 3.12

and to compute the spanning tree given in Figure 3.14 according to the rules given

above, the bridges in an extended LAN do not have the luxury of being able to see

the topology of the entire network, let alone peek inside other bridges to see their ids.

Instead, the bridges have to exchange configuration messages with each other and then

decide whether or not they are the root or a designated bridge based on these messages.

Specifically, the configuration messages contain three pieces of information:

1 the id for the bridge that is sending the message

2 the id for what the sending bridge believes to be the root bridge

3 the distance, measured in hops, from the sending bridge to the root bridge

Each bridge records the current “best” configuration message it has seen on each of

its ports (“best” is defined below), including both messages it has received from other

bridges and messages that it has itself transmitted.

188 3 Packet Switching

A

C

E

D

B

K

F

H

J

G

I

B5

B2

B3

B7

B4

B1

B6

Figure 3.14 Spanning tree with some ports not selected.

Initially, each bridge thinks it is the root, and so it sends a configuration message

out on each of its ports identifying itself as the root and giving a distance to the root of

0. Upon receiving a configuration message over a particular port, the bridge checks to

see if that new message is better than the current best configuration message recorded

for that port. The new configuration message is considered “better” than the currently

recorded information if

■ it identifies a root with a smaller id or

■ it identifies a root with an equal id but with a shorter distance or

■ the root id and distance are equal, but the sending bridge has a smaller id.

If the new message is better than the currently recorded information, the bridge discards

the old information and saves the new information. However, it first adds 1 to the

distance-to-root field since the bridge is one hop farther away from the root than the

bridge that sent the message.

When a bridge receives a configuration message indicating that it is not the root

bridge—that is, a message from a bridge with a smaller id—the bridge stops generating

configuration messages on its own and instead only forwards configuration messages

from other bridges, after first adding 1 to the distance field. Likewise, when a bridge

3.2 Bridges and LAN Switches 189

receives a configuration message that indicates it is not the designated bridge for that

port—that is, a message from a bridge that is closer to the root or equally far from

the root but with a smaller id—the bridge stops sending configuration messages over

that port. Thus, when the system stabilizes, only the root bridge is still generating

configuration messages, and the other bridges are forwarding these messages only

over ports for which they are the designated bridge.

To make this more concrete, consider what would happen in Figure 3.14 if the

power had just been restored to the building housing this network, so that all the

bridges boot at about the same time. All the bridges would start off by claiming to

be the root. We denote a configuration message from node X in which it claims to

be distance d from root node Y as (Y, d, X). Focusing on the activity at node B3, a

sequence of events would unfold as follows:

1 B3 receives (B2, 0, B2).

2 Since 2 < 3, B3 accepts B2 as root.

3 B3 adds one to the distance advertised by B2 (0) and thus sends (B2, 1, B3)

toward B5.

4 Meanwhile, B2 accepts B1 as root because it has the lower id, and it sends

(B1, 1, B2) toward B3.

5 B5 accepts B1 as root and sends (B1, 1, B5) toward B3.

6 B3 accepts B1 as root, and it notes that both B2 and B5 are closer to the root

than it is. Thus B3 stops forwarding messages on both its interfaces.

This leaves B3 with both ports not selected, as shown in Figure 3.14.

Even after the system has stabilized, the root bridge continues to send configura-

tion messages periodically, and the other bridges continue to forward these messages as

described in the previous paragraph. Should a particular bridge fail, the downstream

bridges will not receive these configuration messages, and after waiting a specified

period of time, they will once again claim to be the root, and the algorithm just des-

cribed will kick in again to elect a new root and new designated bridges.

One important thing to notice is that although the algorithm is able to recon-

figure the spanning tree whenever a bridge fails, it is not able to forward frames over

alternative paths for the sake of routing around a congested bridge.

3.2.3 Broadcast and Multicast

The preceding discussion has focused on how bridges forward unicast frames from

one LAN to another. Since the goal of a bridge is to transparently extend a LAN

across multiple networks, and since most LANs support both broadcast and multicast,

190 3 Packet Switching

then bridges must also support these two features. Broadcast is simple—each bridge

forwards a frame with a destination broadcast address out on each active (selected)

port other than the one on which the frame was received.

Multicast can be implemented in exactly the same way, with each host deciding

for itself whether or not to accept the message. This is exactly what is done in practice.

Notice, however, that since not all the LANs in an extended LAN necessarily have

a host that is a member of a particular multicast group, it is possible to do better.

Specifically, the spanning tree algorithm can be extended to prune networks over which

multicast frames need not be forwarded. Consider a frame sent to group M by a host

on LAN A in Figure 3.14. If there is no host on LAN J that belongs to group M, then

there is no need for bridge B4 to forward the frames over that network. On the other

hand, not having a host on LAN H that belongs to group M does not necessarily mean

that bridge B1 can avoid forwarding multicast frames onto LAN H. It all depends on

whether or not there are members of group M on LANs I and J.

How does a given bridge learn whether it should forward a multicast frame over

a given port? It learns exactly the same way that a bridge learns whether it should for-

ward a unicast frame over a particular port—by observing the source addresses that it

receives over that port. Of course, groups are not typically the source of frames, so we

have to cheat a little. In particular, each host that is a member of group M must period-

ically send a frame with the address for group M in the source field of the frame header.

This frame would have as its destination address the multicast address for the bridges.

Note that while the multicast extension just described has been proposed, it is

not widely adopted. Instead, multicast is implemented in exactly the same way as

broadcast on today’s extended LANs.

3.2.4 Limitations of Bridges

The bridge-based solution just described is meant to be used in only a fairly limited

setting—to connect a handful of similar LANs. The main limitations of bridges become

apparent when we consider the issues of scale and heterogeneity.

On the issue of scale, it is not realistic to connect more than a few LANs by

means of bridges, where in practice “few” typically means “tens of.” One reason for

this is that the spanning tree algorithm scales linearly; that is, there is no provision for

imposing a hierarchy on the extended LAN. A second reason is that bridges forward

all broadcast frames. While it is reasonable for all hosts within a limited setting (say,

a department) to see each other’s broadcast messages, it is unlikely that all the hosts

in a larger environment (say, a large company or university) would want to have to be

bothered by each other’s broadcast messages. Said another way, broadcast does not

scale, and as a consequence, extended LANs do not scale.

3.2 Bridges and LAN Switches 191

W X

B1 B2

Y Z

VLAN 100 VLAN 100

VLAN 200 VLAN 200

Figure 3.15 Two virtual LANs share a common backbone.

One approach to increasing the scalability of extended LANs is the virtual LAN

(VLAN). VLANs allow a single extended LAN to be partitioned into several seemingly

separate LANs. Each virtual LAN is assigned an identifier (sometimes called a color),

and packets can only travel from one segment to another if both segments have the

same identifier. This has the effect of limiting the number of segments in an extended

LAN that will receive any given broadcast packet.

We can see how VLANs work with an example. Figure 3.15 shows four hosts on

four different LAN segments. In the absence of VLANs, any broadcast packet from

any host will reach all the other hosts. Now let’s suppose that we define the segments

connected to hosts W and X as being in one VLAN, which we’ll call VLAN 100. We

also define the segments that connect to hosts Y and Z as being in VLAN 200. To do

this, we need to configure a VLAN ID on each port of bridges B1 and B2. The link

between B1 and B2 is considered to be in both VLANs.

When a packet sent by host X arrives at bridge B2, the bridge observes that it

came in a port that was configured as being in VLAN 100. It inserts a VLAN header

between the Ethernet header and its payload. The interesting part of the VLAN header

is the VLAN ID; in this case, that ID is set to 100. The bridge now applies its normal

rules for forwarding to the packet, with the extra restriction that the packet may not

be sent out an interface that is not part of VLAN 100. Thus, under no circumstances

will the packet—even a broadcast packet—be sent out the interface to host Z, which

is in VLAN 200. The packet is, however, forwarded to bridge B1, which follows the

same rules, and thus may forward the packet to host W but not to host Y.

An attractive feature of VLANs is that it is possible to change the logical topology

without moving any wires or changing any addresses. For example, if we wanted to

make the segment that connects to host Z be part of VLAN 100, and thus enable X,

W, and Z to be on the same virtual LAN, we would just need to change one piece of

configuration on bridge B2.

192 3 Packet Switching

On the issue of heterogeneity, bridges are fairly limited in the kinds of networks

they can interconnect. In particular, bridges make use of the network’s frame header

and so can support only networks that have exactly the same format for addresses.

Thus, bridges can be used to connect Ethernets to Ethernets, 802.5 to 802.5, and

Ethernets to 802.5 rings, since both networks support the same 48-bit address format.

Bridges do not readily generalize to other kinds of networks, such as ATM.3

Despite their limitations, bridges are a very important part of the complete net-

working picture. Their main advantage is that they allow multiple LANs to be trans-

parently connected; that is, the networks can be connected without the end hosts

having to run any additional protocols (or even be aware, for that matter). The one

potential exception is when the hosts are expected to announce their membership in a

multicast group, as described in Section 3.2.3.

Notice, however, that this transparency can be dangerous. If a host, or more pre-

cisely, the application and transport protocol running on that host, is programmed

under the assumption that it is running on a single LAN, then inserting bridges

between the source and destination hosts can have unexpected consequences. For

example, if a bridge becomes congested, it may have to drop frames; in contrast, it

is rare that a single Ethernet ever drops a frame. As another example, the latency

between any pair of hosts on an extended LAN becomes both larger and more highly

variable; in contrast, the physical limitations of a single Ethernet make the latency both

small and predictable. As a final example, it is possible (although unlikely) that frames

will be reordered in an extended LAN; in contrast, frame order is never shuffled on

a single Ethernet. The bottom line is that it is never safe to design network software

under the assumption that it will run over a single Ethernet segment. Bridges happen.

3.3 Cell Switching (ATM)

Another switching technology that deserves special attention is asynchronous transfer

mode (ATM). ATM became an important technology in the 1980s and early 1990s for

a variety of reasons, not the least of which is that it was embraced by the telephone

industry, which has historically been less than active in data communications except

as a supplier of links on top of which other people have built networks. ATM also

happened to be in the right place at the right time, as a high-speed switching technology

that appeared on the scene just when shared media like Ethernet and 802.5 were

starting to look a bit too slow for many users of computer networks. In some ways

ATM is a competing technology with Ethernet switching, but the areas of application

for these two technologies only partially overlap.

3As we will see in Section 3.3.5, there are techniques to make ATM networks look more like “conventional” LANs
such as Ethernets, and bridges do have a role in this environment.

3.3 Cell Switching (ATM) 193

ATM is a connection-oriented, packet-switched technology, which is to say, it

uses virtual circuits very much in the manner described in Section 3.1.2. In ATM

terminology, the connection setup phase is called signalling. The main ATM signalling

protocol is known as Q.2931. In addition to discovering a suitable route across an

ATM network, Q.2931 is also responsible for allocating resources at the switches

along the circuit. This is done in an effort to ensure the circuit a particular quality

of service. Indeed, the QoS capabilities of ATM are one of its greatest strengths. We

return to this topic in Chapter 6, where we discuss it in the context of similar efforts

to implement QoS.

When any virtual connection is set up, it is necessary to put the address of the

destination in the signalling message. In ATM, this address can be in one of several

formats, the most common ones being E.164 and NSAP (network service access point);

the details are not terribly important here, except to note that they are different from

the MAC addresses used in traditional LANs.

One thing that makes ATM really unusual is that the packets that are switched in

an ATM network are of fixed length. That length happens to be 53 bytes—5 bytes of

header followed by 48 bytes of payload—a rather interesting choice that is discussed

in more detail below. To distinguish these fixed-length packets from the more common

variable-length packets normally used in computer networks, they are given a special

name: cells. ATM may be thought of as the canonical example of cell switching.

3.3.1 Cells

All the packet-switching technologies we have looked at so far have used variable-

length packets. Variable-length packets are normally constrained to fall within some

bounds. The lower bound is set by the minimum amount of information that needs to

be contained in the packet, which is typically a header with no optional extensions.

The upper bound may be set by a variety of factors; the maximum FDDI packet size,

for example, determines how long each station is allowed to transmit without passing

on the token, and thus determines how long a station might have to wait for the token

to reach it. Cells, in contrast, are both fixed in length and small in size. While this

seems like a simple enough design choice, there are actually a lot of factors involved,

as explained in the following paragraphs.

Cell Size

Variable-length packets have some nice characteristics. If you only have 1 byte to send

(e.g., to acknowledge the receipt of a packet), you put it in a minimum-sized packet.

If you have a large file to send, however, you break it up into as many maximum-

sized packets as you need. You do not need to send any extraneous padding in the

first case, and in the second, you drive down the ratio of header to data bytes, thus

194 3 Packet Switching

increasing bandwidth efficiency. You also minimize the total number of packets sent,

thereby minimizing the total processing incurred by per-packet operations. This can be

particularly important in obtaining high throughput, since many network devices are

limited not by how many bits per second they can process but rather by the number

of packets per second.

So, why use fixed-length cells? One of the main reasons was to facilitate the

implementation of hardware switches. When ATM was being created in the mid- and

late 1980s, 10-Mbps Ethernet was the cutting-edge technology in terms of speed. To go

much faster, most people thought in terms of hardware. Also, in the telephone world,

people think big when they think of switches—telephone switches often serve tens of

thousands of customers. Fixed-length packets turn out to be a very helpful thing if you

want to build fast, highly scalable switches. There are two main reasons for this:

1 It is easier to build hardware to do simple jobs, and the job of processing packets

is simpler when you already know how long each one will be.

2 If all packets are the same length, then you can have lots of switching elements

all doing much the same thing in parallel, each of them taking the same time to

do its job.

This second reason, the enabling of parallelism, greatly improves the scalability of

switch designs. It would be overstating the case to say that fast parallel hardware

switches can only be built using fixed-length cells. However, it is certainly true that

cells ease the task of building such hardware and that there was a lot of knowledge

available about how to build cell switches in hardware at the time the ATM standards

were being defined.

Another nice property of cells relates to the behavior of queues. Queues build

up in a switch when traffic from several inputs may be heading for a single output. In

general, once you extract a packet from a queue and start transmitting it, you need

to continue until the whole packet is transmitted; it is not practical to preempt the

transmission of a packet. The longest time that a queue output can be tied up is equal

to the time it takes to transmit a maximum-sized packet. Fixed-length cells mean that

a queue output is never tied up for more than the time it takes to transmit one cell,

which is almost certainly shorter than the maximum-sized packet on a variable-length

packet network. Thus, if tight control over the latency that is being experienced by

cells when they pass through a queue is important, cells provide some advantage. Of

course, long queues can still build up, and there is no getting around the fact that some

cells will have to wait their turn. What you get from cells is not much shorter queues

but potentially finer control over the behavior of queues.

3.3 Cell Switching (ATM) 195

An example will help to clarify this idea. Imagine a network with variable-length

packets, where the maximum packet length is 4 KB and the link speed is 100 Mbps.

The time to transmit a maximum-sized packet is 4096 × 8/100 = 327.68 μs. Thus, a

high-priority packet that arrives just after the switch starts to transmit a 4-KB packet

will have to sit in the queue 327.68 μs waiting for access to the link. In contrast, if the

switch were forwarding 53-byte cells, the longest wait would be 53×8/100 = 4.24 μs.

This may not seem like a big deal, but the ability to control delay and especially to

control its variation with time (jitter) can be important for some applications.

Queues of cells also tend to be a little shorter than queues of packets, for the

following reason. When a packet begins to arrive in an empty queue, it is typical for the

switch to have to wait for the whole packet to arrive before it can start transmitting

the packet on an outgoing link. This means that the link sits idle while the packet

arrives. However, if you imagine a large packet being replaced by a “train” of small

cells, then as soon as the first cell in the train has entered the queue, the switch can

transmit it. Imagine in the example above what would happen if two 4-KB packets

arrived in a queue at about the same time. The link would sit idle for 327.68 μs while

these two packets arrive, and at the end of that period we would have 8 KB in the

queue. Only then could the queue start to empty. If those same two packets were sent

as trains of cells, then transmission of the cells could start 4.24 μs after the first train

started to arrive. At the end of 327.68 μs, the link would have been active for a little

over 323 μs, and there would be just over 4 KB of data left in the queue, not 8 KB as

before. Shorter queues mean less delay for all the traffic.

Having decided to use small, fixed-length packets, the next question is, What is

the right length to fix them at? If you make them too short, then the amount of header

information that needs to be carried around relative to the amount of data that fits

in one cell gets larger, so the percentage of link bandwidth that is actually used to

carry data goes down. Even more seriously, if you build a device that processes cells at

some maximum number of cells per second, then as cells get shorter, the total data rate

drops in direct proportion to cell size. An example of such a device might be a network

adaptor that reassembles cells into larger units before handing them up to the host.

The performance of such a device depends directly on cell size. On the other hand, if

you make the cells too big, then there is a problem of wasted bandwidth caused by the

need to pad transmitted data to fill a complete cell. If the cell payload size is 48 bytes

and you want to send 1 byte, you’ll need to send 47 bytes of padding. If this happens

a lot, then the utilization of the link will be very low.

Efficient link utilization is not the only factor that influences cell size. For ex-

ample, cell size has a particular effect on voice traffic, and since ATM grew out of

the telephony community, one of the major concerns was that it be able to carry

196 3 Packet Switching

voice effectively. The standard digital en-

coding of voice is done at 64 Kbps (8-bit

samples taken at 8 KHz). To maximize ef-

ficiency, you want to collect a full cell’s

worth of voice samples before transmitting

a cell. A sampling rate of 8 KHz means that

1 byte is sampled every 125 μs, so the time

it takes to fill an n-byte cell with samples

is n × 125 μs. If cells are, say, 1000 bytes

long, it would take 125 ms just to collect

a full cell of samples before you even start

to transmit it to the receiver. That amount

of latency starts to be quite noticeable to a

human listener. Even considerably smaller

latencies create problems for voice, partic-

ularly in the form of echoes. Echoes can be

eliminated by a piece of technology called an

echo canceler, but this adds cost to a tele-

phone network that many network opera-

tors would rather avoid.

All of the above factors caused a great

deal of debate in the international standards

bodies when ATM was being standardized,

and the fact that no length was perfect in all

cases was used by those opposed to ATM to

argue that fixed-length cells were a bad idea

in the first place. As is so often the case with

standards, the end result was a compromise

that pleased almost no one: 48 bytes was

chosen as the length for the ATM cell pay-

load. Probably the greatest tragedy of this

choice is that it is not a power of two, which

means that it is quite a mismatch to most

things that computers handle, like pages and

cache lines. Rather less controversially, the

header was fixed at 5 bytes. The format

of an ATM cell is shown in Figure 3.16;

note that this figure shows the field lengths

in bits.

A Compromise of 48 Bytes

The explanation for why the pay-

load of an ATM cell is 48 bytes

is an interesting one and is an ex-

cellent case study in the process

of standardization. As the ATM

standard was evolving, the U.S.

telephone companies were pushing

for a 64-byte cell size, while the

European companies were advo-

cating 32-byte cells. The reason

that the Europeans wanted the

smaller size was that since the coun-

tries they served were of a small

enough size, they would not have

to install echo cancelers if they were

able to keep the latency induced

by generating a complete cell small

enough. Thirty-two-byte cells were

adequate for this purpose. In con-

trast, the United States is a large

enough country that the phone

companies had to install echo can-

celers anyway, and so the larger cell

size reflected a desire to improve the

header-to-payload ratio.

Averaging is a classic form

of compromise—48 bytes is sim-

ply the average of 64 bytes and

32 bytes. So as not to leave the

false impression that this use of

compromise-by-averaging is an iso-

lated incident, we note that the

seven-layer OSI model was actu-

ally a compromise between six and

eight layers.

3.3 Cell Switching (ATM) 197

GFC HEC (CRC-8)

4 16 3 18

VPI VCI CLPType Payload

384 (48 bytes)8

Figure 3.16 ATM cell format at the UNI.

Cell Format

The ATM cell actually comes in two different formats, depending on where you look

in the network. The one shown in Figure 3.16 is called the UNI (user-network inter-

face) format; the alternative is the NNI (network-network interface). The UNI format

is used, of course, at the user-to-network interface. This is likely to be the interface

between a telephone company and one of its customers. The network-to-network

interface is likely to be between a pair of phone companies. The only significant dif-

ference in cell formats is that the NNI format replaces the GFC field with 4 extra bits

of VPI. Clearly, understanding all the three-letter acronyms (TLAs) is a key part of

understanding ATM.

Starting from the leftmost byte of the cell (which is the first one transmitted), the

UNI cell has 4 bits for generic flow control (GFC). These bits have not been widely used,

but they were intended to have local significance at a site and could be overwritten in

the network. The basic idea behind the GFC bits was to provide a means to arbitrate

access to the link if the local site used some shared medium to connect to ATM.

The next 24 bits contain an 8-bit virtual path identifier (VPI) and a 16-bit virtual

circuit identifier (VCI). The difference between the two is explained below, but for

now it is adequate to think of them as a single 24-bit identifier that is used to identify

a virtual connection, just as in Section 3.1.2. Following the VPI/VCI is a 3-bit Type

field that has eight possible values. Four of them, when the first bit in the field is set,

relate to management functions. When that bit is clear, it means that the cell contains

user data. In this case, the second bit is the “explicit forward congestion indication”

(EFCI) bit, and the third is the “user signalling” bit. The former can be set by a

congested switch to tell an end node that it is congested; it has its roots in the DECbit

described in Section 6.4.1; in ATM, it is used for congestion control in conjunction

with the available bit rate (ABR) service class described in Section 6.5.4. The third bit

is used primarily in conjunction with ATM Adaptation Layer 5 to delineate frames, as

discussed below.

Next is a bit to indicate cell loss priority (CLP); a user or network element may set

this bit to indicate cells that should be dropped preferentially in the event of overload.

For example, a video coding application could set this bit for cells that, if dropped,

would not dramatically degrade the quality of the video. A network element might set

198 3 Packet Switching

this bit for cells that have been transmitted by a user in excess of the amount that was

negotiated.

The last byte of the header is an 8-bit CRC, known as the header error check

(HEC). It uses the CRC-8 polynomial given in Section 2.4.3 and provides error detection

and single-bit error correction capability on the cell header only. Protecting the cell

header is particularly important because an error in the VCI will cause the cell to be

misdelivered.

3.3.2 Segmentation and Reassembly

Up to this point, we have assumed that a low-level protocol could just accept the

packet handed down to it by a high-level protocol, attach its own header, and pass the

packet on down. This is not possible with ATM, however, since the packets handed

down from above are often larger than 48 bytes, and thus, will not fit in the payload

of an ATM cell. The solution to this problem is to fragment the high-level message

into low-level packets at the source, transmit the individual low-level packets over the

network, and then reassemble the fragments back together at the destination. This

general technique is usually called fragmentation and reassembly. In the case of ATM,

however, it is often called segmentation and reassembly (SAR).

Segmentation is not unique to ATM, but it is much more of a problem than in a

network with a maximum packet size of, say, 1500 bytes. To address the issue, a pro-

tocol layer was added that sits between ATM and the variable-length packet protocols

that might use ATM, such as IP. This layer is called the ATM Adaptation Layer (AAL),

and to a first approximation, the AAL header simply contains the information needed

by the destination to reassemble the individual cells back into the original message.

The relationship between the AAL and ATM is illustrated in Figure 3.17.

Because ATM was designed to support all sorts of services, including voice,

video, and data, it was felt that different services would have different AAL needs.

… …

AAL

ATM

AAL

ATM

Figure 3.17 Segmentation and reassembly in ATM.

3.3 Cell Switching (ATM) 199

Thus, four adaptation layers were originally defined: 1 and 2 were designed to support

applications, like voice, that require guaranteed bit rates, while 3 and 4 were intended

to provide support for packet data running over ATM. The idea was that AAL3 would

be used by connection-oriented packet services (such as X.25) and AAL4 would be

used by connectionless services (such as IP). Eventually, the reasons for having different

AALs for these two types of service were found to be insufficient, and the AALs

merged into one that is inconveniently known as AAL3/4. Meanwhile, some perceived

shortcomings in AAL3/4 caused a fifth AAL to be proposed, called AAL5. Thus, there

are now four AALs: 1, 2, 3/4, and 5. The two that support computer communications

are described below.

ATM Adaptation Layer 3/4

The main function of AAL3/4 is to provide enough information to allow variable-

length packets to be transported across the ATM network as a series of fixed-length

cells. That is, the AAL supports the segmentation and reassembly process. Since we

are now working at a new layer of the network hierarchy, convention requires us

to introduce a new name for a packet—in this case, we call it a protocol data unit

(PDU). The task of segmentation/reassembly involves two different packet formats.

The first of these is the convergence sublayer protocol data unit (CS-PDU), as depicted

in Figure 3.18. The CS-PDU defines a way of encapsulating variable-length PDUs prior

to segmenting them into cells. The PDU passed down to the AAL layer is encapsulated

by adding a header and a trailer, and the resultant CS-PDU is segmented into ATM

cells.

The CS-PDU format begins with an 8-bit common part indicator (CPI), which

indicates which version of the CS-PDU format is in use. Only the value 0 is currently

defined. The next 8 bits contain the beginning tag (Btag), which is supposed to match

the end tag (Etag) for a given PDU. This protects against the situation in which the

loss of the last cell of one PDU and the first cell of another causes two PDUs to be

inadvertently joined into a single PDU and passed up to the next layer in the protocol

stack. The buffer allocation size (BASize) field is not necessarily the length of the PDU

(which appears in the trailer); it is supposed to be a hint to the reassembly process as

to how much buffer space to allocate for the reassembly. The reason for not including

CPI Btag BASize Pad 0 Etag Len

8 16 0–24 8 8 16< 64 KB8

User data

Figure 3.18 ATM Adaptation Layer 3/4 packet format.

200 3 Packet Switching

ATM header Length CRC-10

40 2 4

SEQ MIDType Payload

352 (44 bytes)10 6 10

Figure 3.19 ATM cell format for AAL3/4.

Value Name Meaning

10 BOM Beginning of message

00 COM Continuation of message

01 EOM End of message

11 SSM Single-segment message

Table 3.4 AAL3/4 Type field.

the actual length here is that the sending host might not have known how long the

CS-PDU was when it transmitted the header. Before adding the CS-PDU trailer, the

user data is padded to one byte less than a multiple of 4 bytes, by adding up to 3 bytes

of padding. This padding, plus the 0-filled byte, ensures that the trailer is aligned on

a 32-bit boundary, making for more efficient processing. The CS-PDU trailer itself

contains the Etag and the real length of the PDU (Len).

In addition to the CS-PDU header and trailer, AAL3/4 specifies a header and

trailer that are carried in each cell, as depicted in Figure 3.19. Thus, the CS-PDU is

actually segmented into 44-byte chunks; an AAL3/4 header and trailer is attached to

each one, bringing it up to 48 bytes, which is then carried as the payload of an ATM

cell.

The first two bits of the AAL3/4 header contain the Type field, which indicates

if this is the first cell of a CS-PDU, the last cell of a CS-PDU, a cell in the middle of

a CS-PDU, or a single-cell PDU (in which case it is both first and last). The official

names for these four conditions are shown in Table 3.4, along with the bit encodings.

Next is a 4-bit sequence number (SEQ), which is intended simply to detect cell

loss or misordering so that reassembly can be aborted. Clearly, a sequence number this

small can miss cell losses if the number of lost cells is large enough. This is followed

by a multiplexing identifier (MID), which can be used to multiplex several PDUs onto

a single connection. The 6-bit Length field shows the number of bytes of PDU that are

contained in the cell; it must equal 44 for BOM and COM cells. Finally, a 10-bit CRC

is used to detect errors anywhere in the 48-byte cell payload.

3.3 Cell Switching (ATM) 201

CS-PDU
header

CS-PDU
trailer

User data

44 bytes 44 bytes 44 bytes ≤ 44 bytes

ATM header

AAL header

Cell payload

AAL trailer

Padding

Figure 3.20 Encapsulation and segmentation for AAL3/4.

Figure 3.20 shows the entire encapsulation and segmentation process for AAL3/4.

At the top, the user data is encapsulated with the CS-PDU header and trailer. The

CS-PDU is then segmented into 44-byte payloads, which are encapsulated as ATM

cells by adding the AAL3/4 header and trailer as well as the 5-byte ATM header. Note

that the last cell is only partially filled whenever the CS-PDU is not an exact multiple

of 44 bytes.

One thing to note about AAL3/4 is that it exacerbates the fixed per-cell overhead

that we discussed above. With 44 bytes of data to 9 bytes of header, the best possible

bandwidth utilization would be 83%. Note that the efficiency can be considerably less

than that, as illustrated by Figure 3.20, because of the CS-PDU encapsulation and the

partial filling of the last cell.

ATM Adaptation Layer 5

One thing you may have noticed in the discussion of AAL3/4 is that it seems to

take a lot of fields and thus a lot of overhead to perform the conceptually simple

function of segmentation and reassembly. This observation was, in fact, made by

several people in the early days of ATM, and numerous competing proposals arose

for an AAL to support computer communications over ATM. There was a movement,

known informally as “Back the Bit,” that argued that if we could just have 1 bit in

the ATM header (as opposed to the AAL header) to delineate the end of a frame, then

segmentation and reassembly could be accomplished without using any of the 48-byte

ATM payload for segmentation/reassembly information. This movement eventually led

to the definition of the user signalling bit described above and to the standardization

of AAL5.

202 3 Packet Switching

CRC-32

< 64 KB 0–47 bytes 16 16

ReservedPad Len

32

Data

Figure 3.21 ATM Adaptation Layer 5 packet format.

User data

48 bytes 48 bytes 48 bytes

ATM header Cell payload

Padding

CS-PDU
trailer

Figure 3.22 Encapsulation and segmentation for AAL5.

What AAL5 does is replace the 2-bit Type field of AAL3/4 with 1 bit of framing

information in the ATM cell header. By setting that 1 bit, we can identify the last cell

of a PDU; the next cell is assumed to be the first cell of the next PDU, and subsequent

cells are assumed to be COM cells until another cell is received with the user sig-

nalling bit set. All the pieces of AAL3/4 that provide protection against lost, corrupt,

or misordered cells, including the loss of an EOM cell, are provided by the AAL5

CS-PDU packet format depicted in Figure 3.21.

The AAL5 CS-PDU consists simply of the data portion (the PDU handed down

by the higher-layer protocol) and an 8-byte trailer. To make sure that the trailer always

falls at the tail end of an ATM cell, there may be up to 47 bytes of padding between

the data and the trailer. It is necessary to force the trailer to be at the end of a cell, as

otherwise there would be no way for the entity performing reassembly of the CS-PDU

to find the trailer. The first 2 bytes of the trailer are currently reserved and must be

0. The length field (Len) is the number of bytes carried in the PDU, not including the

trailer or any padding before the trailer. Finally, there is a 32-bit CRC.

Figure 3.22 shows the encapsulation and segmentation process for AAL5. Just

like AAL3/4, the user data is encapsulated to form a CS-PDU (although using only a

3.3 Cell Switching (ATM) 203

trailer in this case). The resulting PDU is then cut up into 48-byte chunks, which are

carried directly inside the payload of ATM cells without any further encapsulation.

Somewhat surprisingly, AAL5 provides almost the same functionality as AAL3/4

without using an extra 4 bytes out of every cell. For example, the CRC-32 detects lost

or misordered cells as well as bit errors in the data. In fact, having a checksum over

the entire PDU rather than doing it on a per-cell basis as in AAL3/4 provides stronger

protection. For example, it protects against the loss of 16 consecutive cells, an event

that would not be picked up by the sequence number checking of AAL3/4. Also, a

32-bit CRC protects against longer burst errors than a 10-bit CRC.

The main feature missing from AAL5 is the ability to provide an additional layer

of multiplexing onto one virtual circuit using the MID. It is not clear whether this is

a significant loss. It is still possible to multiplex traffic from many applications and

higher-layer protocols onto a single VC using AAL5 by carrying a demux key of the

sort described in Section 1.3.1. It just becomes necessary to do the multiplexing on a

packet-by-packet, rather than a cell-by-cell, basis.

There are positive and negative aspects to multiplexing traffic from a lot of

different applications onto a single VC. For example, if you are being charged for

every virtual circuit you set up across a network, then multiplexing traffic from lots of

different applications onto one connection might be a plus. However, this approach

has the drawback that all applications will have to live with whatever quality of service

(e.g., delay and bandwidth guarantees) has been chosen for that one connection, which

may mean that some applications are not receiving appropriate service.

In general, AAL5 has been wholeheartedly embraced by the computer commu-

nications community (at least by that part of the community that has embraced ATM

at all). For example, it is the preferred AAL in the IETF for transmitting IP datagrams

over ATM. Its more efficient use of bandwidth and simple design are the main features

that make it more appealing than AAL3/4.

3.3.3 Virtual Paths

As mentioned above, ATM uses a 24-bit identifier for virtual circuits, and these circuits

operate almost exactly like the ones described in Section 3.1.2. The one twist is that the

24-bit identifier is split into two parts: an 8-bit virtual path identifier (VPI) and a 16-bit

virtual circuit identifier (VCI). This effectively creates a two-level hierarchy of virtual

connections. To understand how such a hierarchy might work, consider the following

example. (We ignore the fact that in some places there might be a network-network

interface with a different-sized VPI; just assume that 8-bit VPIs are used everywhere.)

Suppose that a corporation has two sites that connect to a public ATM network,

and that at each site the corporation has a network of ATM switches. We could imagine

establishing a virtual path between two sites using only the VPI field. Thus, the switches

204 3 Packet Switching

Public network

Network BNetwork A

Figure 3.23 Example of a virtual path.

in the public network would use the VPI as the only field on which to make forwarding

decisions. From their point of view, this is a virtual circuit network with 8-bit circuit

identifiers. The 16-bit VCI is of no interest to these public switches, and they neither

use the field for switching nor remap it. Within the corporate sites, however, the full

24-bit space is used for switching. Any traffic that needs to flow between the two sites

is routed to a switch that has a connection to the public network, and its top 8 bits

(the VPI) are mapped onto the appropriate value to get the data to the other site. This

idea is illustrated in Figure 3.23. Note that the virtual path acts like a fat pipe that

contains a bundle of virtual circuits, all of which have the same 8 bits in their most

significant byte.

The advantage of this approach is clear: Although there may be thousands or

millions of virtual connections across the public network, the switches in the public

network behave as if there is only one connection. This means that there needs to be

much less connection-state information stored in the switches, avoiding the need for

big, expensive tables of per-VCI information.

3.3.4 Physical Layers for ATM

While the layered approach to protocol design might lead you to think that we do not

need to worry about what type of point-to-point link ATM runs on top of, this turns

out not to be the case. From a simple pragmatic point of view, when you buy an ATM

adaptor for a workstation or an ATM switch, it comes with some physical medium

over which ATM cells will be sent. Of course, this is also true for other networking

protocols such as 802.5 and Ethernet. Like these protocols, ATM can also run over

several different physical media and physical-layer protocols.

From early in the process of standardizing ATM, it was assumed that ATM would

run on top of a SONET physical layer (see Section 2.3.3). Some people even get ATM

and SONET confused because they have been so tightly coupled for so long. While

it is true that standard ways of carrying ATM cells inside a SONET frame have been

defined, and that you can now buy ATM-over-SONET products, the two are entirely

3.3 Cell Switching (ATM) 205

separable. For example, you can lease a SONET link from a phone company and send

whatever you want over it, including variable-length packets. Also, you can send ATM

cells over many other physical layers instead of SONET, and standards have been (or

are being) defined for these encapsulations. A notable early physical layer for ATM

was TAXI, the physical layer used in FDDI (Section 2.7). Wireless physical layers for

ATM are also being defined.

When you send ATM cells over some physical medium, the main issue is how to

find the boundaries of the ATM cells; this is exactly the framing problem described in

Chapter 2. With SONET, there are two easy ways to find the boundaries. One of the

overhead bytes in the SONET frame can be used as a pointer into the SONET payload

to the start of an ATM cell. Having found the start of one cell, it is known that the

next cell starts 53 bytes further on in the SONET payload, and so on. In theory, you

only need to read this pointer once, but in practice, it makes sense to read it every time

the SONET overhead goes by so that you can detect errors or resynchronize if needed.

The other way to find the boundaries of ATM cells takes advantage of the fact

that every cell has a CRC in the fifth byte of the cell. Thus, if you run a CRC calculation

over the last 5 bytes received and the answer comes out to indicate no errors, then it is

probably true that you have just read an ATM header. If this happens several times in

a row at 53-byte intervals, you can be pretty sure you have found the cell boundary.

3.3.5 ATM in the LAN

As we mentioned above, ATM grew out of the telephony community, who envisioned

it as a way to build large public networks that could transport voice, video, and

data traffic. However, it was subsequently embraced by segments of the computer and

data communications industries as a technology to be used in LANs—a replacement

for Ethernet and 802.5. Its popularity in this realm at a particular point in time can

be attributed to two main factors:

■ ATM is a switched technology, whereas Ethernet and 802.5 were originally

envisioned as shared-media technologies.

■ ATM was designed to operate on links with speeds of 155 Mbps and above,

compared to the original 10 Mbps of Ethernet and 4 or 16 Mbps of token

rings.

When ATM switches first became available, these were significant advantages

over the existing solutions. In particular, switched networks have a big performance

advantage over shared-media networks: A single shared-media network has a fixed

total bandwidth that must be shared among all hosts, whereas each host gets its own

206 3 Packet Switching

dedicated link to the switch in a switched network. Thus the performance of switched

networks scales better than that of shared-media networks.

However, it should be apparent that the distinction between shared-media and

switched networks is not all that clear-cut. A bridge that connects a number of shared-

media networks together is also a switch, and it is possible (and quite common) to

connect only one host to each segment, giving it dedicated access to that bandwidth.

At the same time as ATM switches were appearing on the scene, high-performance

Ethernet switches became available. These devices have large numbers of ports and

high total throughput. The 100-Mbps Ethernet standard was defined, and so the link

speed of Ethernet—which could be achieved over copper—began to approach that of

ATM.

All this was not enough to kill off ATM in the LAN. One advantage of ATM

over Ethernet that remains is the lack of distance limitation for ATM links. Also,

higher-speed ATM links (e.g., 622 Mbps) soon became available. This made ATM

fairly popular for the high-performance “backbone” of larger LANs. One common

configuration was to connect hosts to Ethernet switches, which in turn could be in-

terconnected by ATM switches, as depicted in Figure 3.24. High-performance servers

might also be connected directly to the ATM switch, as with host H7 in this example.

More recently, the technology that has probably overtaken ATM for LAN back-

bones and server connections is Gigabit Ethernet. Gigabit Ethernet links use the same

framing as lower-speed Ethernets but are usually point-to-point fiber links and can run

over relatively long distances (up to several kilometers). And the same basic approach

is now scaling up to provide 10-Gbps links.

ATM links

Ethernet links

Ethernet switch

ATM switch

ATM-attached
host

E1

H5

H6

H7

H1
E3

H2

H4

H3

E2

Figure 3.24 ATM used as a LAN backbone.

3.3 Cell Switching (ATM) 207

One significant problem with running ATM in a LAN is that it doesn’t look like

a “traditional” LAN. Because most LANs (i.e., Ethernets and token rings) are shared-

media networks (i.e., every node on the LAN is connected to the same link), it is easy

to implement broadcast (sending to everybody) and multicast (sending to a group).

Thus, many of the protocols that people depend on in their LANs—for example,

the Address Resolution Protocol (ARP) described in Section 4.1.5—depend in turn

on the ability of the LAN to support multicast and broadcast. However, because of

its connection-oriented and switched nature, ATM behaves rather differently than a

shared-media LAN. For example, how can you broadcast to all nodes on an ATM

LAN if you don’t know all their addresses and set up VCs to all of them?

There are two possible solutions to this problem, and both of them have been

explored. One is to redesign the protocols that make assumptions about LANs that

are not in fact true of ATM. Thus, for example, there is a new protocol called

ATMARP that, unlike traditional ARP, does not depend on broadcast. We discuss

this in Section 4.1.5. The alternative is to make ATM behave more like a shared-media

LAN—in the sense of supporting multicast and broadcast—without losing the per-

formance advantages of a switched network. This approach has been specified by the

ATM Forum as “LAN emulation” or LANE (which might be more correctly called

“shared-media emulation”). This approach aims to add functionality to ATM LANs

so that anything that runs over a shared-media LAN can operate over an ATM LAN.

While LANE might now be considered something of a historical curiosity, it does pro-

vide an interesting case study in how layering can work in a network. By making the

“ATM layer” look more like an Ethernet, higher-layer protocols that worked well over

Ethernet continue to work without modification.

One aspect of LAN emulation that can be confusing is the variety of different

addresses and identifiers that are used. All ATM devices must have an ATM address,

which is used when signalling to establish a VC. As noted above, these addresses are

different from the standard IEEE 802 MAC addresses used in Ethernets, token rings,

and so on. If we want to emulate the behavior of these types of LANs, each device will

also need to have a standard (48-bit, globally unique) MAC address. And finally, recall

that a virtual circuit identifier is very different from an address. It is the shorthand that

is used to get cells along an established connection, but you must first establish a

connection, and to do that you need an ATM address.

LAN emulation does not actually change the functionality of ATM switches,

but adds functionality to the network through the addition of a number of servers.

Devices that connect to the ATM network—hosts, bridges, routers—are referred to

as LAN emulation clients (LECs). The interactions between LECs and the various

servers result in network behavior that, from the point of view of any higher-layer

protocol, is indistinguishable from that of an Ethernet or token ring network.

208 3 Packet Switching

Host Switch Host

Ethernet-like
interface

Higher-layer
protocols

(IP, ARP, . . .)

Signalling
+ LANE

AAL5

ATM

PHY

Higher-layer
protocols

(IP, ARP, . . .)

Signalling
+ LANE

AAL5

ATM

PHY

ATM

PHY PHY

Figure 3.25 Protocol layers in LAN emulation.

Figure 3.25 illustrates the protocol layers in the case where a pair of hosts communi-

cate across an ATM network that is emulating a LAN. By “Ethernet-like interface,”

we mean that the services offered up to higher layers are like those of an Ethernet:

Frames can be delivered to any MAC address on the LAN, frames can be broadcast

to all destinations on the LAN, and so on.

The servers that are required to build an emulated LAN are

■ the LAN emulation configuration server (LECS)

■ the LAN emulation server (LES)

■ the broadcast and unknown server (BUS)

These servers can be physically located in one or more devices, perhaps in one of the

hosts or other devices connected to the ATM network. The LECS and LES primarily

perform configuration functions, while the BUS has a central role in making data

transfer in an ATM network resemble that of a shared-media LAN.

The LECS enables a newly attached or rebooted LAN emulation client (e.g., a

host) to get some essential information. First, the client must find the LECS, which

it may do by using a well-known, predefined VC that is always set up; alternatively,

the client must have prior knowledge of the ATM address of the LECS so it can set

up a VC to it. Once connected to the LECS, the client provides the LECS with its

ATM address, and the LECS responds by telling the client what type of LAN is being

emulated (Ethernet or token ring), what the maximum packet size is, and the ATM

address of the LES. One LECS might support many separate emulated LANs.

3.3 Cell Switching (ATM) 209

BUSLES
ATM network

Point-to-point VC

Point-to-multipoint VC

H1
H2

Figure 3.26 Servers and clients in an emulated LAN.

The client now signals for a connection to the LES whose ATM address it just

learned. Once connected to the LES, the client registers its MAC and ATM addresses

with the LES. Among other things, the LES provides the client with the ATM address

of the BUS.

The BUS maintains a single point-to-multipoint VC that connects it to all regis-

tered clients. It should be apparent that the BUS and this multipoint VC are crucial to

LAN emulation: They enable the broadcast capability of traditional LANs to be em-

ulated in a virtual circuit environment. Once a LEC has the ATM address of the BUS,

it signals for a connection to the BUS. The BUS in turn adds the LEC to the point-to-

multipoint VC. At this point, everything is ready for the LEC to participate in data

transfer. The arrangement where two hosts have connected to the LES and the BUS,

and the BUS has formed the point-to-multipoint VC to both of them, is shown in

Figure 3.26. The LECS is not shown.

This might seem like a lot of work to get the LEC connected to the BUS, but

the separation of functions among servers is helpful from a network management

standpoint. For example, a great deal of information can be centralized in a single

LECS rather than having to be distributed to many LESs, and the amount of special

configuration needed in each host is kept to a bare minimum.

It should be clear that the BUS is the place to send any packet that needs to be

broadcast to all clients on the LAN. While it could also be used for delivery of unicast

packets, this would be inefficient. Delivery of unicast packets operates as follows.

Assume that a host has a packet that it wants to deliver to a particular MAC address.

In a traditional LAN, the packet could be placed on the wire and would be picked up

by the intended recipient. In an emulated LAN, the packet needs to be delivered to

the recipient over a virtual circuit. But a newly attached host would only have a VC

to the LES and the BUS, not the recipient. To make matters worse, it would not even

know the ATM address of the recipient, which is required to set up a VC. Thus, the

host performs the following steps:

210 3 Packet Switching

■ It sends the packet to the BUS, which it knows can deliver the packet to the

destination using its point-to-multipoint VC.

■ It sends an “address resolution” request to the LES, of the form “What ATM

address corresponds to this MAC address?”

Since all clients should have registered their MAC and ATM addresses with the

LES, the LES should be able to answer the query and provide an ATM address to the

client. The client can now signal for a VC to the recipient, which it may use to forward

subsequent frames to the destination. The reason for using the BUS to send the first

packet is to minimize delay, since it may take some time to get a response from the

LES and establish a VC.

One detail in this process is that LANs are not supposed to deliver frames out

of order, and an emulated LAN should be no different. But if some frames are sent

via the BUS and then later frames are sent on a direct connection, misordering may

occur. LAN emulation procedures include a “flush” mechanism to ensure that the last

packet sent down one path has arrived before another one is sent on a new path, thus

ensuring in-order delivery.

With the above process, a client would eventually end up with direct VCs to

all destinations that it has ever sent data to. This might be an excessive number of

VCs, and so a client may use a caching algorithm to dispose of VCs that are no longer

carrying traffic. A “cache miss” (i.e., the arrival of a packet that needs to be sent to a

destination for which no VC exists) will be handled by sending the packet to the BUS.

3.4 Implementation and Performance

So far, we have talked about what a switch must do without discussing how to do it.

There is a very simple way to build a switch: Buy a general-purpose workstation and

equip it with a number of network interfaces. Such a device, running suitable software,

can receive packets on one of its interfaces, perform any of the switching functions

described above, and send packets out another of its interfaces. This is, in fact, a

popular way to build experimental switches when you want to be able to do things

like develop new routing protocols, because it offers extreme flexibility and a familiar

programming environment. It is also not too far removed from the architecture of many

low-end routers (which, as we will see in the next chapter, have much in common with

switches).

Figure 3.27 shows a workstation with three network interfaces used as a switch.

The figure shows a path that a packet might take from the time it arrives on interface

1 until it is output on interface 2. We have assumed here that the workstation has a

mechanism to move data directly from an interface to its main memory without having

3.4 Implementation and Performance 211

I/O bus

Interface 1

Interface 2

Interface 3

CPU

Main memory

Figure 3.27 A workstation used as a packet switch.

to be directly copied by the CPU, that is, direct memory access (DMA) as described in

Section 2.9. Once the packet is in memory, the CPU examines its header to determine

which interface the packet should be sent out on. It then uses DMA to move the packet

out to the appropriate interface. Note that Figure 3.27 does not show the packet going

to the CPU because the CPU inspects only the header of the packet; it does not have

to read every byte of data in the packet.

The main problem with using a workstation as a switch is that its performance

is limited by the fact that all packets must pass through a single point of contention:

In the example shown, each packet crosses the I/O bus twice and is written to and

read from main memory once. The upper bound on aggregate throughput of such a

device (the total sustainable data rate summed over all inputs) is, thus, either half the

main memory bandwidth or half the I/O bus bandwidth, whichever is less. (Usually,

it’s the I/O bus bandwidth.) For example, a workstation with a 33-MHz, 32-bit-wide

I/O bus can transmit data at a peak rate of a little over 1 Gbps. Since forwarding a

packet involves crossing the bus twice, the actual limit is 500 Mbps, which is enough to

support five 100-Mbps Ethernet interface cards. In practice, the peak bus bandwidth

isn’t sustainable, so it’s more likely such a workstation would support only three or

four such interface cards.

Moreover, this upper bound also assumes that moving data is the only problem—

a fair approximation for long packets but a bad one when packets are short. In the latter

case, the cost of processing each packet—parsing its header and deciding which output

link to transmit it on—is likely to dominate. Suppose, for example, that a worksta-

tion can perform all the necessary processing to switch 500,000 packets each second.

212 3 Packet Switching

This is sometimes called the packet per sec-

ond (pps) rate. (This number is representa-

tive of what is achievable on today’s high-

end PCs.) If the average packet is short, say,

64 bytes, this would imply

Throughput = pps × (BitsPerPacket)

= 500 × 103 × 64 × 8

= 256 × 106

that is, a throughput of 256 Mbps—

substantially below the range that users are

demanding from their networks today. Bear

in mind that this 256 Mbps would be shared

by all users connected to the switch, just as

the 10 Mbps of an Ethernet is shared among

all users connected to the shared medium.

Thus, for example, a 10-port switch with

this aggregate throughput would only be

able to cope with an average data rate of

25.6 Mbps on each port.

To address this problem, hardware de-

signers have come up with a large array

of switch designs that reduce the amount

of contention and provide high aggregate

throughput. Note that some contention is

unavoidable: If every input has data to send

to a single output, then they cannot all send

it at once. However, if data destined for dif-

ferent outputs is arriving at different inputs,

a well-designed switch will be able to move

data from inputs to outputs in parallel, thus

increasing the aggregate throughput.

3.4.1 Ports

Most switches look conceptually similar to

the one shown in Figure 3.28. They con-

sist of a number of input ports and output

ports and a fabric. There is usually at least

Defining Throughput

It turns out to be difficult to de-

fine precisely the throughput of a

switch. Intuitively, we might think

that if a switch has n inputs that

each support a link speed of si , then

the throughput would just be the

sum of all the si . This is actually

the best possible throughput that

such a switch could provide, but

in practice almost no real switch

can guarantee that level of perfor-

mance. One reason for this is sim-

ple to understand. Suppose that, for

some period of time, all the traf-

fic arriving at the switch needed

to be sent to the same output. As

long as the bandwidth of that out-

put is less than the sum of the input

bandwidths, then some of the traf-

fic will need to be either buffered

or dropped. With this particular

traffic pattern, the switch could

not provide a sustained through-

put higher than the link speed of

that one output. However, a switch

might be able to handle traffic ar-

riving at the full link speed on all

inputs if it is distributed across all

the outputs evenly; this would be

considered optimal.

Another factor that affects

the performance of switches is the

the size of packets arriving on the

inputs. For an ATM switch, this

is normally not an issue because

3.4 Implementation and Performance 213

all “packets” (cells) are the same

length. But for Ethernet switches

or IP routers, packets of widely

varying sizes are possible. Some of

the operations that a switch must

perform have a constant overhead

per packet, so a switch is likely

to perform differently depending

on whether all arriving packets are

very short, very long, or mixed.

For this reason, routers or switches

that forward variable-length pack-

ets are often characterized by a

packet per second (pps) rate as well

as a throughput in bits per second.

The pps rate is usually measured

with minimum-sized packets.

The first thing to notice about

this discussion is that the through-

put of the switch is a function of the

traffic to which it is subjected. One

of the things that switch designers

spend a lot of their time doing is

trying to come up with traffic mod-

els that approximate the behavior

of real data traffic. It turns out that

it is extremely difficult to achieve

accurate models. A traffic model at-

tempts to answer several important

questions: (1) When do packets ar-

rive? (2) What outputs are they des-

tined for? And (3) how big are they?

Traffic modeling is a well-

established science that has been

extremely successful in the world of

telephony, enabling telephone com-

panies to engineer their networks

one control processor in charge of the whole

switch that communicates with the ports

either directly or, as shown here, via the

switch fabric. The ports communicate with

the outside world. They may contain fiber

optic receivers and lasers, buffers to hold

packets that are waiting to be switched or

transmitted, and often a significant amount

of other circuitry that enables the switch

to function. The fabric has a very simple

and well-defined job: When presented with

a packet, deliver it to the right output port.

One of the jobs of the ports, then, is to

deal with the complexity of the real world

in such a way that the fabric can do its

relatively simple job. For example, suppose

that this switch is supporting a virtual cir-

cuit model of communication. In general,

the virtual circuit mapping tables described

in Section 3.1.2 are located in the ports.

The ports maintain lists of virtual circuit

identifiers that are currently in use, with

information about what output a packet

should be sent out on for each VCI and

how the VCI needs to be remapped to ensure

uniqueness on the outgoing link. Similarly,

the ports of an Ethernet switch store tables

that map between Ethernet addresses and

output ports (bridge forwarding tables as

described in Section 3.2). In general, when

a packet is handed from an input port to

the fabric, the port has figured out where

the packet needs to go, and either the port

sets up the fabric accordingly by comm-

unicating some control information to it, or

it attaches enough information to the packet

itself (e.g., an output port number) to al-

low the fabric to do its job automatically.

Fabrics that switch packets by looking only

214 3 Packet Switching

at the information in the packet are referred

to as “self-routing,” since they require no

external control to route packets. An ex-

ample of a self-routing fabric is discussed

below.

The input port is the first place to

look for performance bottlenecks. The in-

put port has to receive a steady stream of

packets, analyze information in the header

of each one to determine which output port

(or ports) the packet must be sent to, and

pass the packet on to the fabric. The type of

header analysis that it performs can range

from a simple table lookup on a VCI to

complex matching algorithms that examine

many fields in the header. This is the type of

operation that sometimes becomes a prob-

lem when the average packet size is very

small. For example, 64-byte packets arriv-

ing on a port connected to an OC-48 link

have to process packets at a rate of

2.48 × 109 ÷ (64 × 8) = 4.83 × 106 pps

In other words, when small packets are

arriving as fast as possible on this link (the

worst-case scenario that most ports are

engineered to handle), the input port has

approximately 200 nanoseconds to process

each packet.

Another key function of ports is

buffering. Observe that buffering can hap-

pen in either the input or the output

port; it can also happen within the fab-

ric (sometimes called internal buffering).

Simple input buffering has some seri-

ous limitations. Consider an input buffer

to carry expected loads quite effi-

ciently. This is partly because the

way people use the phone network

does not change that much over

time: The frequency with which

calls are placed, the amount of time

taken for a call, and the tendency of

everyone to make calls on Mother’s

Day have stayed fairly constant for

many years.4 By contrast, the rapid

evolution of computer communi-

cations, where a new application

like Napster can change the traffic

patterns almost overnight, has

made effective modeling of com-

puter networks much more diffi-

cult. Nevertheless, there are some

excellent books and articles on the

subject that we list at the end of the

chapter.

To give you a sense of the range

of throughputs that designers need

to be concerned about, a high-end

router used in the Internet at the

time of writing might support 10

OC-192 links for a throughput of

approximately 100 Gbps. A 100-

Gbps switch, if called upon to han-

dle a steady stream of 64-byte pack-

ets, would need a packet per second

rate of

100 × 109 ÷ (64 × 8)

= 195 × 106 pps

4This statement has recently become less true with the advent of fax machines and modem connections to
the Internet.

3.4 Implementation and Performance 215

Switch

fabric

Control

processor

Output

port

Input

port

Figure 3.28 A 4 × 4 switch.

Switch

2

21

Port 1

Port 2

Figure 3.29 Simple illustration of head-of-line blocking.

implemented as a FIFO. As packets arrive at the switch, they are placed in the input

buffer. The switch then tries to forward the packets at the front of each FIFO to their

appropriate output port. However, if the packets at the front of several different input

ports are destined for the same output port at the same time, then only one of them

can be forwarded;5 the rest must stay in their input buffers.

The drawback of this feature is that those packets left at the front of the input

buffer prevent other packets further back in the buffer from getting a chance to go

to their chosen outputs, even though there may be no contention for those outputs.

This phenomenon is called head-of-line blocking. A simple example of head-of-line

blocking is given in Figure 3.29, where we see a packet destined for port 1 blocked

behind a packet contending for port 2. It can be shown that when traffic is uni-

formly distributed among outputs, head-of-line blocking limits the throughput of an

5For a simple input-buffered switch, exactly one packet at a time can be sent to a given output port. It is possible
to design switches that can forward more than one packet to the same output at once, at a cost of higher switch
complexity, but there is always some upper limit on the number.

216 3 Packet Switching

input-buffered switch to 59% of the theoretical maximum (which is the sum of the

link bandwidths for the switch). Thus, the majority of switches use either pure out-

put buffering or a mixture of internal and output buffering. Those that do rely on

input buffers use sophisticated buffer management schemes to avoid head-of-line

blocking.

Buffers actually perform a more complex task than just holding onto packets

that are waiting to be transmitted. Buffers are the main source of delay in a switch,

and also the place where packets are most likely to get dropped due to lack of space

to store them. The buffers therefore are the main place where the quality of service

characteristics of a switch are determined. For example, if a certain packet has been

sent along a VC that has a guaranteed delay, it cannot afford to sit in a buffer for very

long. This means that the buffers, in general, must be managed using packet scheduling

and discard algorithms that meet a wide range of QoS requirements. We talk more

about these issues in Chapter 6.

3.4.2 Fabrics

While there has been an abundance of impressive research conducted on the design

of efficient and scalable fabrics, it is sufficient for our purposes here to understand

only the high-level properties of a switch fabric. A switch fabric should be able to

move packets from input ports to output ports with minimal delay and in a way that

meets the throughput goals of the switch. That usually means that fabrics display

some degree of parallelism. A high-performance fabric with n ports can often move

one packet from each of its n ports to one of the output ports at the same time. A

sample of fabric types includes the following:

■ Shared-bus: This is the type of “fabric” found in a conventional workstation

used as a switch, as described above. Because the bus bandwidth determines

the throughput of the switch, high-performance switches usually have spe-

cially designed busses rather than the standard busses found in PCs.

■ Shared-memory: In a shared-memory switch, packets are written into a mem-

ory location by an input port and then read from memory by the output ports.

Here it is the memory bandwidth that determines switch throughput, so wide

and fast memory is typically used in this sort of design. A shared-memory

switch is similar in principle to the shared-bus switch, except it usually uses a

specially designed, high-speed memory bus rather than an I/O bus.

■ Crossbar: A crossbar switch is a matrix of pathways that can be configured

to connect any input port to any output port. Figure 3.30 shows a 4 × 4

3.4 Implementation and Performance 217

Figure 3.30 A 4 × 4 crossbar switch.

crossbar switch. The main problem with crossbars is that, in their simplest

form, they require each output port to be able to accept packets from all inputs

at once, implying that each port would have a memory bandwidth equal to the

total switch throughput. In reality, more complex designs are typically used

to address this issue (see, for example, the Knockout switch and McKeown’s

virtual output-buffered approach in the “Further Reading” section at the end

of the chapter).

■ Self-routing: As noted above, self-routing fabrics rely on some information

in the packet header to direct each packet to its correct output. Usually, a

special “self-routing header” is appended to the packet by the input port af-

ter it has determined which output the packet needs to go to, as illustrated

in Figure 3.31; this extra header is removed before the packet leaves the

switch. Self-routing fabrics are often built from large numbers of very sim-

ple 2 × 2 switching elements interconnected in regular patterns, such as the

banyan switching fabric shown in Figure 3.32. For some examples of self-

routing fabric designs, see the “Further Reading” section at the end of this

chapter.

Self-routing fabrics are among the most scalable approaches to fabric design, and

there has been a wealth of research on the topic, some of which is listed in the “Further

Reading” section. Many self-routing fabrics resemble the one shown in Figure 3.32,

218 3 Packet Switching

Switch

fabric

Output

port

Input

port

Original packet

header

Switch

fabric

Output

port

Input

port

Self-routing

header

Switch

fabric

Output

port

Input

port

(a)

(b)

(c)

Figure 3.31 A self-routing header is applied to a packet at input to enable the fabric to
send the packet to the correct output, where it is removed. (a) Packet arrives at input
port. (b) Input port attaches self-routing header to direct packet to correct output. (c)
Self-routing header is removed at output port before packet leaves switch.

consisting of regularly interconnected 2×2 switching elements. For example, the 2×2

switches in the banyan network perform a simple task: They look at 1 bit in each self-

routing header and route packets toward the upper output if it is 0 or toward the

lower output if it is 1. Obviously, if two packets arrive at a banyan element at the

3.4 Implementation and Performance 219

001

011

110

111

001

011

110

111

Figure 3.32 Routing packets through a banyan network. The 3-bit numbers represent
values in the self-routing headers of four arriving packets.

same time and both have the bit set to the same value, then they want to be routed

to the same output and a collision will occur. Either preventing or dealing with these

collisions is a main challenge for self-routing switch design. The banyan network is a

clever arrangement of 2 × 2 switching elements that routes all packets to the correct

output without collisions if the packets are presented in ascending order.

We can see how this works in an example, as shown in Figure 3.32, where the

self-routing header contains the output port number encoded in binary. The switch

elements in the first column look at the most significant bit of the output port number

and route packets to the top if that bit is a 0 or the bottom if it is a 1. Switch elements

in the second column look at the second bit in the header, and those in the last column

look at the least significant bit. You can see from this example that the packets are

routed to the correct destination port without collisions. Notice how the top outputs

from the first column of switches all lead to the top half of the network, thus getting

packets with port numbers 0–3 into the right half of the network. The next column

gets packets to the right quarter of the network, and the final column gets them to the

right output port. The clever part is the way switches are arranged to avoid collisions.

Part of the arrangement includes the “perfect shuffle” wiring pattern at the start of

the network. To build a complete switch fabric around a banyan network would require

additional components to sort packets before they are presented to the banyan. The

Batcher-banyan switch design is a notable example of such an approach. The Batcher

network, which is also built from a regular interconnection of 2×2 switching elements,

220 3 Packet Switching

sorts packets into descending order. On leaving the Batcher network, the packets are

then ready to be directed to the correct output, with no risk of collisions, by the banyan

network.

One of the interesting things about switch design is the wide range of different

types of switches that can be built using the same basic technology. For example,

the Ethernet switches and ATM switches discussed in this chapter, as well as Internet

routers discussed in the next chapter, are all built using designs such as those outlined

in this section.

3.5 Summary

This chapter has started to look at some of the issues involved in building large scalable

networks by using switches, rather than just links, to interconnect hosts. There are

several different ways to decide how to switch packets; the two main ones are the

datagram (connectionless) model and the virtual circuit (connection-oriented) model.

An important application of switching is the interconnection of shared-media

LANs. LAN switches, or bridges, use techniques such as source address learning to

improve forwarding efficiency and spanning tree algorithms to avoid looping. These

switches are extensively used in data centers, campuses, and corporate networks.

The most widespread uses of virtual circuit switching are in Frame Relay and

ATM switches. ATM introduces some particular challenges through the use of cells,

short fixed-length packets. The availability of relatively high-throughput ATM switches

has contributed to the acceptance of the technology, although it has certainly not swept

all other technologies aside as some predicted. One of the main uses of ATM today is

to interconnect widely separated sites in corporate networks.

Independent of the specifics of the switching technology, switches need to forward

packets from inputs to outputs at a high rate, and in some circumstances, switches

need to grow to a large size to accommodate hundreds or thousands of ports. Building

switches that both scale and offer high performance at acceptable cost is complicated

by the problem of contention, and as a consequence, switches often employ special-

purpose hardware rather than being built from general-purpose workstations.

In addition to the issues of contention discussed here, we observe that the related

problem of congestion has come up throughout this chapter. We will postpone our

discussion of congestion control until Chapter 6, after we have seen more of the

network architecture. We do this because it is impossible to fully appreciate congestion

(both the problem and how it to address it) without understanding both what happens

inside the network (the topic of this and the next chapter) and what happens at the

edges of the network (the topic of Chapter 5).

Further Reading 221

ATM was originally envisioned by

many of its proponents as the foun-

dation for the “Broadband Integrated

Services Digital Network,” and it was

predicted in some quarters that ATM

would displace all other networking

technologies. Hosts would acquire

O P E N I S S U E

The Future of ATM

ATM adaptors instead of Ethernet ports, enabling “ATM to the desktop.” Phone

companies everywhere would deploy ATM, and as the technology that supports all

media types—voice, video, and data—it would remove the need for any other type of

network.

It is now apparent that this scenario is unlikely to play out. The success of Eth-

ernet switches in particular has killed off the ATM-to-the-desktop movement. Gigabit

Ethernet and 10-Gigabit Ethernet technologies have successfully addressed the need

for high-speed connections to servers where ATM might once have been used. In fact,

we now hear ATM referred to as a “legacy protocol,” a term that was much used in

the heyday of ATM to refer to older protocols.

Another factor that has limited the acceptance of ATM has been the success of

the Internet. It is now a fact of life that consumers are willing to pay for Internet

access, and that means selling a service that delivers IP packets. While ATM can be

used to help deliver that service (as it is in many DSL networks, for example), simply

selling ATM connections to consumers does not meet their data networking needs. The

notable exception is corporate customers looking to interconnect many sites, where

an ATM VC may be just the right thing to economically replace a leased line. In fact,

this is the primary niche for ATM today—it is used (in conjunction with Frame Relay)

to provide wide area virtual circuit services to corporate networking customers.

The future of ATM therefore seems to hinge on the future of wide area virtual

circuit-based services. These services are unlikely to go away any time soon, but ATM’s

role is to some extent being challenged by newer technologies, such as encrypted IP

tunnels and Multiprotocol Label Switching (MPLS). Both of these technologies will

be described in the next chapter.

F U R T H E R R E A D I N G

The seminal paper on bridges, in particular the spanning tree algorithm, is the article

by Perlman below. There is a wealth of survey papers on ATM; the article by Turner,

an ATM pioneer, is one of the earliest to propose the use of a cell-based network for

integrated services. The third paper describes the Sunshine switch and is especially

222 3 Packet Switching

interesting because it provides insights into the important role of traffic analysis in

switch design. In particular, the Sunshine designers were among the first to realize that

cells were unlikely to arrive at a switch in a totally uncorrelated way and thus were

able to factor these correlations into their design. Finally, McKeown’s paper describes

an approach to switch design that uses cells internally but has been used commercially

as the basis for high-performance routers forwarding variable-length packets.

■ Perlman, R. An algorithm for distributed computation of spanning trees in an

extended LAN. Proceedings of the Ninth Data Communications Symposium,

pages 44–53, September 1985.

■ Turner, J. S. Design of an integrated services packet network. Proceedings

of the Ninth Data Communications Symposium, pages 124–133, September

1985.

■ Giacopelli, J. N., et al. Sunshine: A high-performance self-routing broadband

packet-switched architecture. IEEE Journal of Selected Areas in Communi-

cations (JSAC) 9(8):1289–1298, October 1991.

■ McKeown, N. The iSLIP scheduling algorithm for input-queued switches.

IEEE Transactions on Networking 7(2):188–201, April 1999.

A good general overview of bridges can be found in another work by Perlman

[Per00]. For a detailed description of many aspects of ATM, with a focus on building

real networks, we recommend the book by Ginsburg [Gin99]. Also, as one of the key

ATM standards-setting bodies, the ATM Forum produces new specifications for ATM;

the User-Network Interface (UNI) specification, version 4.1, is the most recent at the

time of this writing. (See the live reference below.)

There have been literally thousands of papers published on switch architectures.

One early paper that explains Batcher networks well is, not surprisingly, one by Batcher

himself [Bat68]. Sorting networks are explained by Drysdale and Young [DY75], and

the knockout switch, an interesting form of crossbar switch is described by Yeh et al.

[YHA87]. A survey of ATM switch architectures appears in Partridge [Par94], and

a good overview of the performance of different switching fabrics can be found in

Robertazzi [Rob93]. An example of the design of a switch based on variable-length

packets can be found in Gopal and Guerin [GG94].

Optical networking is a rich field in its own right, with its own journals, con-

ferences, and so on. We recommend Ramaswami and Sivarajan [RS01] as a good

introductory text in that field.

An excellent text to read if you want to learn about the mathematical analysis of

network performance is by Kleinrock [Kle75], one of the pioneers of the ARPANET.

Exercises 223

Many papers have been published on the applications of queuing theory to packet

switching. We recommend the article by Paxson and Floyd [PF94] as a significant

contribution focused on the Internet, and one by Leland et al. [LTWW94], a paper

that introduces the important concept of “long-range dependence” and shows the

inadequacy of many traditional approaches to traffic modeling.

Finally, we recommend the following live reference:

■ http://www.atmforum.com: current activities of the ATM Forum

E X E R C I S E S

1 Using the example network given in Figure 3.33, give the virtual circuit tables for

all the switches after each of the following connections is established. Assume that

the sequence of connections is cumulative; that is, the first connection is still up

when the second connection is established, and so on. Also assume that the VCI

assignment always picks the lowest unused VCI on each link, starting with 0.

(a) Host A connects to host B.

(b) Host C connects to host G.

(c) Host E connects to host I.

(d) Host D connects to host B.

(e) Host F connects to host J.

(f) Host H connects to host A.

2 Using the example network given in Figure 3.33, give the virtual circuit tables

for all the switches after each of the following connections is established. Assume

that the sequence of connections is cumulative; that is, the first connection is

still up when the second connection is established, and so on. Also assume that

the VCI assignment always picks the lowest unused VCI on each link, starting

with 0.

(a) Host D connects to host H.

(b) Host B connects to host G.

(c) Host F connects to host A.

(d) Host H connects to host C.

(e) Host I connects to host E.

(f) Host H connects to host J.

224 3 Packet Switching

0

13

2

0

1 3

2

0

13

2

Switch 3

Switch 2

Switch 4

Host A

Host BHost J

Switch 1

Host C

Host D

Host E

Host I

2

13

0

Host H

Host F

Host G

Figure 3.33 Example network for Exercises 1 and 2.

2

3

6

2

8 1

D

A

F

E

B

C

Figure 3.34 Network for Exercise 3.

3 For the network given in Figure 3.34, give the datagram forwarding table for each

node. The links are labelled with relative costs; your tables should forward each

packet via the lowest-cost path to its destination.

4 Give forwarding tables for switches S1–S4 in Figure 3.35. Each switch should

have a “default” routing entry, chosen to forward packets with unrecognized

Exercises 225

S1
1 3

2

A

B

S2
1 3

2

S3
1 3

2

C

S4
1

2

DOUT

Figure 3.35 Diagram for Exercise 4.

S1
1 3

2

A E

B

S2
1 3 3

2

C

S3
1

2

D

Figure 3.36 Diagram for Exercise 5.

Switch S1

Port VCI Port VCI

1 2 3 1

1 1 2 3

2 1 3 2

Switch S2

Port VCI Port VCI

1 1 3 3

1 2 3 2

Switch S3

Port VCI Port VCI

1 3 2 1

1 2 3 1

Table 3.5 VCI tables for switches in Figure 3.36.

destination addresses toward OUT. Any specific destination table entries dupli-

cated by the default entry should then be eliminated.

5 Consider the virtual circuit switches in Figure 3.36. Table 3.5 lists, for each switch,

what 〈port, VCI〉 (or 〈VCI, interface〉) pairs are connected to what other. Connec-

tions are bidirectional. List all endpoint-to-endpoint connections.

6 In the source routing example of Section 3.1.3, the address received by B is not

reversible and doesn’t help B know how to reach A. Propose a modification to the

delivery mechanism that does allow for reversibility. Your mechanism should not

require giving all switches globally unique names.

226 3 Packet Switching

7 Propose a mechanism that virtual circuit switches might use so that if one switch

loses all its state regarding connections, then a sender of packets along a path

through that switch is informed of the failure.

8 Propose a mechanism that might be used by datagram switches so that if one

switch loses all or part of its forwarding table, affected senders are informed of

the failure.

9 The virtual circuit mechanism described in Section 3.1.2 assumes that each link

is point-to-point. Extend the forwarding algorithm to work in the case that links

are shared-media connections, for example, Ethernet.

10 Suppose, in Figure 3.4, that a new link has been added, connecting switch 3

port 1 (where G is now) and switch 1 port 0 (where D is now); neither switch is

“informed” of this link. Furthermore, switch 3 mistakenly thinks that host B is

reached via port 1.

(a) What happens if host A attempts to send to host B, using datagram forwarding?

(b) What happens if host A attempts to connect to host B, using the virtual circuit

setup mechanism discussed in the text?

11 Give an example of a working virtual circuit whose path traverses some link twice.

Packets sent along this path should not, however, circulate indefinitely.

12 In Section 3.1.2, each switch chose the VCI value for the incoming link. Show that

it is also possible for each switch to choose the VCI value for the outbound link,

and that the same VCI values will be chosen by each approach. If each switch

chooses the outbound VCI, is it still necessary to wait one RTT before data is

sent?

13 Given the extended LAN shown in Figure 3.37, indicate which ports are not

selected by the spanning tree algorithm.

14 Given the extended LAN shown in Figure 3.37, assume that bridge B1 suffers

catastrophic failure. Indicate which ports are not selected by the spanning tree

algorithm after the recovery process and a new tree has been formed.

15 Consider the arrangement of learning bridges shown in Figure 3.38. Assuming all

are initially empty, give the forwarding tables for each of the bridges B1–B4 after

the following transmissions:

Exercises 227

A

C

E

D

B

F

H

J

G

I

B7

B1

B2

B5

B6

B3

B4

Figure 3.37 Network for Exercises 13 and 14.

B3 C

A B1 B2

B4 D

Figure 3.38 Network for Exercises 15 and 16.

■ A sends to C.

■ C sends to A.

■ D sends to C.

Identify ports with the unique neighbor reached directly from that port; that is,

the ports for B1 are to be labelled “A” and “B2.”

16 As in the previous problem, consider the arrangement of learning bridges shown

in Figure 3.38. Assuming all are initially empty, give the forwarding tables for

each of the bridges B1–B4 after the following transmissions:

228 3 Packet Switching

Z

X B1 B2 B3

Y W

Figure 3.39 Diagram for Exercise 17.

B1 B3B2

Figure 3.40 Extended LAN for Exercise 18.

■ D sends to C.

■ C sends to D.

■ A sends to C.

17 Consider hosts X, Y, Z, W and learning bridges B1, B2, B3, with initially empty

forwarding tables, as in Figure 3.39.

(a) Suppose X sends to Z. Which bridges learn where X is? Does Y’s network

interface see this packet?

(b) Suppose Z now sends to X. Which bridges learn where Z is? Does Y’s network

interface see this packet?

(c) Suppose Y now sends to X. Which bridges learn where Y is? Does Z’s network

interface see this packet?

(d) Finally, suppose Z sends to Y. Which bridges learn where Z is? Does W’s

network interface see this packet?

18 Give the spanning tree generated for the extended LAN shown in Figure 3.40, and

discuss how any ties are resolved.

Exercises 229

B1

L

M

B2

Figure 3.41 Loop for Exercises 19 and 20.

19 Suppose two learning bridges B1 and B2 form a loop as shown in Figure 3.41,

and do not implement the spanning tree algorithm. Each bridge maintains a single

table of 〈address, interface〉 pairs.

(a) What will happen if M sends to L?

(b) Suppose a short while later L replies to M. Give a sequence of events that leads

to one packet from M and one packet from L circling the loop in opposite

directions.

20 Suppose that M in Figure 3.41 sends to itself (this normally would never happen).

State what would happen, assuming

(a) the bridges’ learning algorithm is to install (or update) the new 〈sourceaddress,

interface〉 entry before searching the table for the destination address

(b) the new source address was installed after destination address lookup

21 Consider the extended LAN of Figure 3.12. What happens in the spanning tree

algorithm if bridge B1 does not participate and

(a) simply forwards all spanning tree algorithm messages?

(b) drops all spanning tree messages?

22 Suppose some repeaters (hubs), rather than bridges, are connected into a loop.

(a) What will happen when somebody transmits?

(b) Why would the spanning tree mechanism be difficult or impossible to imple-

ment for repeaters?

230 3 Packet Switching

(c) Propose a mechanism by which repeaters might detect loops and shut down

some ports to break the loop. Your solution is not required to work 100% of

the time.

23 Suppose a bridge has two of its ports on the same network. How might the bridge

detect and correct this?

24 What percentage of an ATM link’s total bandwidth is consumed by the ATM cell

headers? What percentage of the total bandwidth is consumed by all nonpayload

bits in AAL3/4 and AAL5, when the user data is 512 bytes long?

25 Explain why AAL3/4 will not detect the loss of 16 consecutive cells of a single

PDU.

26 The IP datagram for a TCP ACK message is 40 bytes long: It contains 20 bytes of

TCP header and 20 bytes of IP header. Assume that this ACK is traversing an ATM

network that uses AAL5 to encapsulate IP packets. How many ATM packets will

it take to carry the ACK? What if AAL3/4 is used instead?

27 The CS-PDU for AAL5 contains up to 47 bytes of padding, while the AAL3/4 CS-

PDU only contains up to 3 bytes of padding. Explain why the effective bandwidth

of AAL5 is always the same as, or higher than, that of AAL3/4, given a PDU of a

particular size.

28 How reliable does an ATM connection have to be in order to maintain a loss

rate of less than one per million for a higher-level PDU of size 20 cells? Assume

AAL5.

29 Assuming the 20-cell AAL5 packet from the previous problem, suppose a final cell

is tacked on the end of the PDU, and that this cell is the XOR of all the previous

cells in the PDU. This allows recovery from any one lost cell. What cell loss rate

now would yield a net one-per-million loss rate for 20-data-cell PDUs?

30 Recall that AAL3/4 has a CRC-10 checksum at the end of each cell, while AAL5

has a single CRC-32 checksum at the end of the PDU. If a PDU is carried in

12 AAL3/4 cells, then AAL3/4 devotes nearly four times as many bits to error

detection as AAL5.

(a) Suppose errors are known to come in bursts, where each burst is small enough

to be confined to a single cell. Find the probability that AAL3/4 fails to detect

Exercises 231

an error, given that it is known that exactly two cells are affected. Do the same

for three cells. Under these conditions, is AAL3/4 more or less reliable than

AAL5? Assume that an N-bit CRC fails to detect an error with probability

1/2N (which is strictly true only when all errors are equally likely).

(b) Can you think of any error distribution in which AAL3/4 would be more likely

than AAL5 to detect an error? Do you think such circumstances are likely?

31 Cell switching methods essentially always use virtual circuit routing rather than

datagram routing. Give a specific argument why this is so.

32 Suppose a workstation has an I/O bus speed of 800 Mbps and memory bandwidth

of 2 Gbps. Assuming DMA in and out of main memory, how many interfaces to

45-Mbps T3 links could a switch based on this workstation handle?

33 Suppose a workstation has an I/O bus speed of 1 Gbps and memory bandwidth

of 2 Gbps. Assuming DMA in and out of main memory, how many interfaces to

45-Mbps T3 links could a switch based on this workstation handle?

34 Suppose a switch can forward packets at a rate of 100,000 per second, regardless

(within limits) of size. Assuming the workstation parameters described in the pre-

vious problem, at what packet size would the bus bandwidth become the limiting

factor?

35 Suppose that a switch is designed to have both input and output FIFO buffering.

As packets arrive on an input port they are inserted at the tail of the FIFO. The

switch then tries to forward the packets at the head of each FIFO to the tail of the

appropriate output FIFO.

(a) Explain under what circumstances such a switch can lose a packet destined

for an output port whose FIFO is empty.

(b) What is this behavior called?

(c) Assuming the FIFO buffering memory can be redistributed freely, suggest a

reshuffling of the buffers that avoids the above problem, and explain why it

does so.

36 A stage of an n × n banyan network consists of (n/2) 2 × 2 switching elements.

The first stage directs packets to the correct half of the network, the next stage

to the correct quarter, and so on, until the packet is routed to the correct output.

232 3 Packet Switching

Derive an expression for the number of 2 × 2 switching elements needed to make

an n × n banyan network. Verify your answer for n = 8.

37 Describe how a Batcher network works. (See the “Further Reading” section.)

Explain how a Batcher network can be used in combination with a banyan network

to build a switching fabric.

38 An Ethernet switch is simply a bridge that has the ability to forward some num-

ber of packets in parallel, assuming the input and output ports are all distinct.

Suppose two such N-port switches, for a large value of N, are each able to for-

ward individually up to three packets in parallel. They are then connected to one

another in series by joining a pair of ports, one from each switch; the joining link

is the bottleneck as it can, of course, carry only one packet at a time.

(a) Suppose we choose two connections through this combined switch at random.

What is the probability that both connections can be forwarded in parallel?

Hint: This is the probability that at most one of the connections crosses the

link.

(b) What if three connections are chosen at random?

39 Suppose a 10-Mbps Ethernet hub (repeater) is replaced by a 10-Mbps switch,

in an environment where all traffic is between a single server and N “clients.”

Because all traffic must still traverse the server-switch link, nominally there is no

improvement in bandwidth.

(a) Would you expect any improvement in bandwidth? If so, why?

(b) What would your answer be if the original hub were token ring rather than

Ethernet?

(c) What other advantages and drawbacks might a switch offer versus a

hub?

This Page Intentionally Left Blank

Internetworking

Every seeming equality conceals a hierarchy.

—Mason Cooley

W
e have now seen how to build a single network using point-to-point links,

shared media, and switches. The problem is that lots of people have built

networks with these various technologies and they all want to be able to

communicate with each other, not just with the other users of a single network. This

chapter is about the problem of interconnecting different networks.

P R O B L E M

There Is More Than

One Network

There are two important prob-

lems that must be addressed when

connecting networks: heterogeneity

and scale. Simply stated, the problem

of heterogeneity is that users on one

type of network want to be able to

communicate with users on other

type of networks. To further complicate matters, establishing connectivity between

hosts on two different networks may require traversing several other networks in

between, each of which may be of yet another type. These different networks may be

Ethernets, token rings, point-to-point links, or switched networks of various kinds,

and each of them is likely to have its own addressing scheme, media access protocols,

service model, and so on. The challenge of heterogeneity is to provide a useful and

fairly predictable host-to-host service over this hodgepodge of different networks. To

understand the problem of scaling, it is worth considering the growth of the Internet,

which has roughly doubled in size each year for 20 years. This sort of growth forces us

to face a number of challenges. One of these is routing: How can you find an efficient

path through a network with millions, or perhaps billions, of nodes? Closely related

to this is the problem of addressing, the task of providing suitable identifiers for all

those nodes.

This chapter looks at a series of approaches to interconnecting networks and

the problems that must be solved. In doing so, we trace the evolution of the TCP/IP

4
Internet in an effort to understand the problems of het-

erogeneity and scale in detail, along with the general tech-

niques that can be applied to them.

The first section introduces the Internet Protocol (IP)

and shows how it can be used to build a scalable, heteroge-

neous internetwork. This section includes a discussion of

the Internet’s service model, which is the key to its ability

to handle heterogeneity. It also describes how the Internet’s

hierarchical addressing scheme has helped the Internet to

scale to a modestly large size.

A central aspect of building large heterogeneous in-

ternetworks is the problem of finding efficient, loop-free

paths through the constituent networks. The second sec-

tion introduces the principles of routing and explores the

scaling issues of routing protocols, using some of the Inter-

net’s routing protocols as examples.

The third section discusses several of the problems

(growing pains) that the Internet has experienced over the

past several years and introduces a variety of techniques

that have been employed to address these problems. The

experience gained from using these techniques has led to

the design of a new version of IP, which is IP version 6

(IPv6). Throughout all these discussions, we see the impor-

tance of hierarchy in building scalable networks.

The chapter concludes by considering a pair of sig-

nificant enhancements to the Internet’s capabilities. The

first, multicast, is an enhancement of the basic service

model. We show how multicast—the ability to deliver

packets efficiently to a set of receivers—can be incorpo-

rated into an internet, and we describe several of the rout-

ing protocols that have been developed to support mul-

ticast. The second enhancement, MPLS (Multiprotocol

Label Switching), modifies the forwarding mechanism of

IP networks. This modification has enabled some changes

in the way IP routing is performed and in the services of-

fered by IP networks.

236 4 Internetworking

4.1 Simple Internetworking (IP)

In the previous chapter, we saw that it was possible to build reasonably large LANs

using bridges and LAN switches, but that such approaches were limited in their abil-

ity to scale and to handle heterogeneity. In this chapter, we explore some ways to go

beyond the limitations of bridged networks, enabling us to build large, highly het-

erogeneous networks with reasonably efficient routing. We refer to such networks

as internetworks. In the following sections, we make a steady progression toward

larger and larger internetworks. We start with the basic functionality of the currently

deployed version of the Internet Protocol (IP), and then we examine various techniques

that have been developed to extend the scalability of the Internet in Section 4.3. This

discussion culminates with a description of IP version 6 (IPv6), also known as the

“next-generation” IP. Before delving into the details of an internetworking protocol,

however, let’s consider more carefully what the word “internetwork” means.

4.1.1 What Is an Internetwork?

We use the term “internetwork,” or sometimes just “internet” with a lowercase i, to

refer to an arbitrary collection of networks interconnected to provide some sort of host-

to-host packet delivery service. For example, a corporation with many sites might con-

struct a private internetwork by interconnecting the LANs at their different sites with

point-to-point links leased from the phone company. When we are talking about the

widely used, global internetwork to which a large percentage of networks are now con-

nected, we call it the “Internet” with a capital I. In keeping with the first-principles ap-

proach of this book, we mainly want you to learn about the principles of “lowercase i”

internetworking, but we illustrate these ideas with real-world examples from the

“big I” Internet.

Another piece of terminology that can be confusing is the difference between

networks, subnetworks, and internetworks. We are going to avoid subnetworks (or

subnets) altogether until Section 4.3. For now, we use network to mean either a directly

connected or a switched network of the kind that was discussed in the last two chapters.

Such a network uses one technology, such as 802.5, Ethernet, or ATM. An internetwork

is an interconnected collection of such networks. Sometimes, to avoid ambiguity, we

refer to the underlying networks that we are interconnecting as physical networks.

An internet is a logical network built out of a collection of physical networks. In

this context, a collection of Ethernets connected by bridges or switches would still be

viewed as a single network.

Figure 4.1 shows an example internetwork. An internetwork is often referred

to as a “network of networks” because it is made up of lots of smaller networks. In

this figure, we see Ethernets, an FDDI ring, and a point-to-point link. Each of these

4.1 Simple Internetworking (IP) 237

R2

R1

H4

H5

H3H2H1

Network 2 (Ethernet)

Network 1 (Ethernet)

H6

Network 4
(point-to-point)

H7 R3 H8

Network 3 (FDDI)

Figure 4.1 A simple internetwork. Hn = host; Rn = router.

is a single-technology network. The nodes that interconnect the networks are called

routers. They are also sometimes called gateways, but since this term has several other

connotations, we restrict our usage to router.

The Internet Protocol is the key tool used today to build scalable, heterogeneous

internetworks. It was originally known as the Kahn-Cerf protocol after its inventors.

One way to think of IP is that it runs on all the nodes (both hosts and routers) in

a collection of networks and defines the infrastructure that allows these nodes and

networks to function as a single logical internetwork. For example, Figure 4.2 shows

how hosts H1 and H8 are logically connected by the internet in Figure 4.1, including

the protocol graph running on each node. Note that higher-level protocols, such as

TCP and UDP, typically run on top of IP on the hosts.

Most of the rest of this chapter is about various aspects of IP. While it is certainly

possible to build an internetwork that does not use IP—for example, Novell created

an internetworking protocol called IPX, which was in turn based on the XNS internet

designed by Xerox—IP is the most interesting case to study simply because of the

size of the Internet. Said another way, it is only the IP Internet that has really faced

the issue of scale. Thus it provides the best case study of a scalable internetworking

protocol.

238 4 Internetworking

R1 R2 R3

H1 H8

ETH FDDI

IP

ETH

TCP

FDDI PPP PPP ETH

IP

ETH

TCP

IP IP IP

Figure 4.2 A simple internetwork, showing the protocol layers used to connect H1 to
H8 in Figure 4.1. ETH is the protocol that runs over Ethernet.

4.1.2 Service Model

A good place to start when you build an internetwork is to define its service model,

that is, the host-to-host services you want to provide. The main concern in defining a

service model for an internetwork is that we can provide a host-to-host service only if

this service can somehow be provided over each of the underlying physical networks.

For example, it would be no good deciding that our internetwork service model was

going to provide guaranteed delivery of every packet in 1 ms or less if there were

underlying network technologies that could arbitrarily delay packets. The philosophy

used in defining the IP service model, therefore, was to make it undemanding enough

that just about any network technology that might turn up in an internetwork would

be able to provide the necessary service.

The IP service model can be thought of as having two parts: an addressing scheme,

which provides a way to identify all hosts in the internetwork, and a datagram (con-

nectionless) model of data delivery. This service model is sometimes called best effort

because, although IP makes every effort to deliver datagrams, it makes no guarantees.

We postpone a discussion of the addressing scheme for now and look first at the data

delivery model.

Datagram Delivery

The IP datagram is fundamental to the Internet Protocol. Recall from Section 3.1.1 that

a datagram is a type of packet that happens to be sent in a connectionless manner over

a network. Every datagram carries enough information to let the network forward the

packet to its correct destination; there is no need for any advance setup mechanism to

tell the network what to do when the packet arrives. You just send it, and the network

makes its best effort to get it to the desired destination. The “best-effort” part means

4.1 Simple Internetworking (IP) 239

that if something goes wrong and the packet gets lost, corrupted, misdelivered, or in

any way fails to reach its intended destination, the network does nothing—it made its

best effort, and that is all it has to do. It does not make any attempt to recover from

the failure. This is sometimes called an unreliable service.

Best-effort, connectionless service is about the simplest service you could ask for

from an internetwork, and this is a great strength. For example, if you provide best-

effort service over a network that provides a reliable service, then that’s fine—you end

up with a best-effort service that just happens to always deliver the packets. If, on the

other hand, you had a reliable service model over an unreliable network, you would

have to put lots of extra functionality into the routers to make up for the deficiencies

of the underlying network. Keeping the routers as simple as possible was one of the

original design goals of IP.

The ability of IP to “run over anything” is frequently cited as one of its most

important characteristics. It is noteworthy that many of the technologies over which

IP runs today did not exist when IP was invented. So far, no networking technology

has been invented that has proven too bizarre for IP; it has even been claimed that IP

can run over a network that transports messages using carrier pigeons.

Best-effort delivery does not just mean that packets can get lost. Sometimes they

can get delivered out of order, and sometimes the same packet can get delivered more

than once. The higher-level protocols or applications that run above IP need to be

aware of all these possible failure modes.

Packet Format

Clearly, a key part of the IP service model is the type of packets that can be carried.

The IP datagram, like most packets, consists of a header followed by a number of bytes

of data. The format of the header is shown in Figure 4.3. Note that we have adopted

a different style of representing packets than the one we used in previous chapters.

This is because packet formats at the internetworking layer and above, where we will

be focusing our attention for the next few chapters, are almost invariably designed to

align on 32-bit boundaries to simplify the task of processing them in software. Thus,

the common way of representing them (used in Internet Requests for Comments, for

example) is to draw them as a succession of 32-bit words. The top word is the one

transmitted first, and the leftmost byte of each word is the one transmitted first. In

this representation, you can easily recognize fields that are a multiple of 8 bits long.

On the odd occasion when fields are not an even multiple of 8 bits, you can determine

the field lengths by looking at the bit positions marked at the top of the packet.

Looking at each field in the IP header, we see that the “simple” model of best-

effort datagram delivery still has some subtle features. The Version field specifies the

240 4 Internetworking

Version HLen TOS Length

Ident Flags Offset

TTL Protocol Checksum

SourceAddr

DestinationAddr

Options (variable) Pad
(variable)

0 4 8 16 19 31

Data

Figure 4.3 IPv4 packet header.

version of IP. The current version of IP is 4, and it is sometimes called IPv4.1 Observe

that putting this field right at the start of the datagram makes it easy for everything

else in the packet format to be redefined in subsequent versions; the header processing

software starts off by looking at the version and then branches off to process the rest

of the packet according to the appropriate format. The next field, HLen, specifies the

length of the header in 32-bit words. When there are no options, which is most of the

time, the header is 5 words (20 bytes) long. The 8-bit TOS (type of service) field has

had a number of different definitions over the years, but its basic function is to allow

packets to be treated differently based on application needs. For example, the TOS

value might determine whether or not a packet should be placed in a special queue

that receives low delay. We discuss the use of this field (and a new name for it) in more

detail in Section 6.5.3.

The next 16 bits of the header contain the Length of the datagram, including the

header. Unlike the HLen field, the Length field counts bytes rather than words. Thus,

the maximum size of an IP datagram is 65,535 bytes. The physical network over

which IP is running, however, may not support such long packets. For this reason,

IP supports a fragmentation and reassembly process. The second word of the header

contains information about fragmentation, and the details of its use are presented

under “Fragmentation and Reassembly” below.

1The next major version of IP, which is discussed later in this chapter, has a new version number 6 and is known
as IPv6. The version number 5 was used for an experimental protocol called ST-II that was not widely used.

4.1 Simple Internetworking (IP) 241

Moving on to the third word of the header, the next byte is the TTL (time to live)

field. Its name reflects its historical meaning rather than the way it is commonly used

today. The intent of the field is to catch packets that have been going around in routing

loops and discard them, rather than let them consume resources indefinitely. Originally,

TTL was set to a specific number of seconds that the packet would be allowed to live,

and routers along the path would decrement this field until it reached 0. However,

since it was rare for a packet to sit for as long as 1 second in a router, and routers did

not all have access to a common clock, most routers just decremented the TTL by 1 as

they forwarded the packet. Thus, it became more of a hop count than a timer, which is

still a perfectly good way to catch packets that are stuck in routing loops. One subtlety

is in the initial setting of this field by the sending host: Set it too high and packets could

circulate rather a lot before getting dropped; set it too low and they may not reach

their destination. The value 64 is the current default.

The Protocol field is simply a demultiplexing key that identifies the higher-level

protocol to which this IP packet should be passed. There are values defined for

TCP (6), UDP (17), and many other protocols that may sit above IP in the protocol

graph.

The Checksum is calculated by considering the entire IP header as a sequence of

16-bit words, adding them up using ones complement arithmetic, and taking the ones

complement of the result. This is the IP checksum algorithm described in Section 2.4.

Thus, if any bit in the header is corrupted in transit, the checksum will not contain

the correct value upon receipt of the packet. Since a corrupted header may contain

an error in the destination address—and, as a result, may have been misdelivered—it

makes sense to discard any packet that fails the checksum. It should be noted that this

type of checksum does not have the same strong error detection properties as a CRC,

but it is much easier to calculate in software.

The last two required fields in the header are the SourceAddr and the

DestinationAddr for the packet. The latter is the key to datagram delivery: Every packet

contains a full address for its intended destination so that forwarding decisions can be

made at each router. The source address is required to allow recipients to decide if they

want to accept the packet and to enable them to reply. IP addresses are discussed in

Section 4.1.3—for now, the important thing to know is that IP defines its own global

address space, independent of whatever physical networks it runs over. As we will see,

this is one of the keys to supporting heterogeneity.

Finally, there may be a number of options at the end of the header. The presence

or absence of options may be determined by examining the header length (HLen)

field. While options are used fairly rarely, a complete IP implementation must handle

them all.

242 4 Internetworking

Fragmentation and Reassembly

One of the problems of providing a uniform host-to-host service model over a het-

erogeneous collection of networks is that each network technology tends to have its

own idea of how large a packet can be. For example, an Ethernet can accept packets

up to 1500 bytes long, while FDDI packets may be 4500 bytes long. This leaves two

choices for the IP service model: make sure that all IP datagrams are small enough to

fit inside one packet on any network technology, or provide a means by which packets

can be fragmented and reassembled when they are too big to go over a given network

technology. The latter turns out to be a good choice, especially when you consider the

fact that new network technologies are always turning up, and IP needs to run over all

of them; this would make it hard to pick a suitably small bound on datagram size. This

also means that a host will not send needlessly small packets, which wastes bandwidth

and consumes processing resources by requiring more headers per byte of data sent.

For example, two hosts connected to FDDI networks that are interconnected by a

point-to-point link would not need to send packets small enough to fit on an Ethernet.

The central idea here is that every network type has a maximum transmission

unit (MTU), which is the largest IP datagram that it can carry in a frame. Note that this

value is smaller than the largest packet size on that network because the IP datagram

needs to fit in the payload of the link-layer frame. Also, note that in ATM networks,

the “frame” is the CS-PDU, not the ATM cell; the fact that CS-PDUs get segmented

into cells is not visible to IP.

When a host sends an IP datagram, therefore, it can choose any size that it

wants. A reasonable choice is the MTU of the network to which the host is directly

attached. Then fragmentation will only be necessary if the path to the destination

includes a network with a smaller MTU. Should the transport protocol that sits on

top of IP give IP a packet larger than the local MTU, however, then the source host

must fragment it.

Fragmentation typically occurs in a router when it receives a datagram that it

wants to forward over a network that has an MTU that is smaller than the received

datagram. To enable these fragments to be reassembled at the receiving host, they

all carry the same identifier in the Ident field. This identifier is chosen by the sending

host and is intended to be unique among all the datagrams that might arrive at the

destination from this source over some reasonable time period. Since all fragments

of the original datagram contain this identifier, the reassembling host will be able to

recognize those fragments that go together. Should all the fragments not arrive at the

receiving host, the host gives up on the reassembly process and discards the fragments

that did arrive. IP does not attempt to recover from missing fragments.

To see what this all means, consider what happens when host H1 sends a data-

gram to host H8 in the example internet shown in Figure 4.1. Assuming that the MTU

4.1 Simple Internetworking (IP) 243

H1 R1 R2 R3 H8

ETH FDDI

PPP IP (376)

PPP IP (512)

PPP IP (512) (512)

ETH IP

ETH IP

(512)ETH IP

(376)

IP (1400) IP (1400)

R1 R2 R3

Figure 4.4 IP datagrams traversing the sequence of physical networks graphed in
Figure 4.1.

is 1500 bytes for the two Ethernets, 4500 bytes for the FDDI network, and 532 bytes

for the point-to-point network, then a 1420-byte datagram (20-byte IP header plus

1400 bytes of data) sent from H1 makes it across the first Ethernet and the FDDI net-

work without fragmentation but must be fragmented into three datagrams at router

R2. These three fragments are then forwarded by router R3 across the second Ethernet

to the destination host. This situation is illustrated in Figure 4.4. This figure also serves

to reinforce two important points:

1 Each fragment is itself a self-contained IP datagram that is transmitted over a

sequence of physical networks, independent of the other fragments.

2 Each IP datagram is reencapsulated for each physical network over which it

travels.

The fragmentation process can be understood in detail by looking at the header

fields of each datagram, as is done in Figure 4.5. The unfragmented packet, shown at

the top, has 1400 bytes of data and a 20-byte IP header. When the packet arrives at

router R2, which has an MTU of 532 bytes, it has to be fragmented. A 532-byte MTU

leaves 512 bytes for data after the 20-byte IP header, so the first fragment contains

512 bytes of data. The router sets the M bit in the Flags field (see Figure 4.3), meaning

that there are more fragments to follow, and it sets the Offset to 0, since this fragment

contains the first part of the original datagram. The data carried in the second fragment

starts with the 513th byte of the original data, so the Offset field in this header is set

to 64, which is 512 ÷ 8. Why the division by 8? Because the designers of IP decided

that fragmentation should always happen on 8-byte boundaries, which means that

the Offset field counts 8-byte chunks, not bytes. (We leave it as an exercise for you to

figure out why this design decision was made.) The third fragment contains the last

244 4 Internetworking

(a)

Ident = x

Start of header

Rest of header

1400 data bytes

Offset = 00

(b)

Ident = x

Start of header

Rest of header

512 data bytes

Offset = 01

Ident = x

Rest of header

512 data bytes

Offset = 641

Start of header

Ident = x

Start of header

Rest of header

376 data bytes

Offset = 1280

Figure 4.5 Header fields used in IP fragmentation. (a) Unfragmented packet; (b) frag-
mented packets.

376 bytes of data, and the offset is now 2 × 512 ÷ 8 = 128. Since this is the last

fragment, the M bit is not set.

Observe that the fragmentation process is done in such a way that it could

be repeated if a fragment arrived at another network with an even smaller MTU.

Fragmentation produces smaller, valid IP datagrams that can be readily reassembled

4.1 Simple Internetworking (IP) 245

into the original datagram upon receipt, independent of the order of their arrival.

Reassembly is done at the receiving host and not at each router.

Implementation

We conclude this discussion of IP fragmentation and reassembly by giving a fragment

of code that performs reassembly. One reason we give this particular piece of code is

that it is representative of a large proportion of networking software—it does little

more than tedious and unglamorous bookkeeping.

First, we define the key data structure (FragList) that is used to hold the individual

fragments that arrive at the destination. Incoming fragments are saved in this data

structure until all the fragments in the original datagram have arrived, at which time

they are reassembled into a complete datagram and passed up to some higher-level

protocol. Note that each element in FragList contains either a fragment or a hole.

#define FRAGOFFMASK 0x1fff
#define FRAGOFFSET(fragflag) ((fragflag) & FRAGOFFMASK)
#define INFINITE_OFFSET 0xffff

/* structure to hold the fields that uniquely identify fragments
of the same IP datagram */

typedef struct fid {
IpHost source;
IpHost dest;
u_char prot;
u_char pad;
u_short ident;

} FragId;

typedef struct hole {
u_int first;
u_int last;

} Hole;

#define HOLE 1
#define FRAG 2

/* structure to hold a fragment or a hole */

typedef struct fragif {
u_char type;
union {

Hole hole;
Msg frag;

} u;
struct fragif *next, *prev;

} FragInfo;

246 4 Internetworking

/* structure to hold all the fragments and holes for a
single IP datagram being reassembled */

typedef struct FragList {
u_short nholes;
FragInfo head; /* dummy header node */
Binding binding;
bool gcMark; /* garbage collection flag */

} FragList;

The reassembly routine, ipReassemble, takes an incoming datagram (dg) and

the IP header for that datagram (hdr) as arguments. The third argument, fragMap,

is a Map structure (which supports mapBind, mapRemove, and MapResolve opera-

tions) used to efficiently map the incoming datagram into the appropriate FragList.

(Recall that the group of fragments that are being reassembled together are uniquely

identified by several fields in the IP header, as defined by structure FragId given

above.)

The actual work done in ipReassemble is straightforward; as stated above, it

is mostly bookkeeping. First, the routine extracts the fields from the IP header that

uniquely identify the datagram to be reassembled, constructs a key from these fields,

and looks this key up in fragMap to find the appropriate FragList. If this is the first

fragment for the datagram, a new FragList must be created and initialized. Next, the

routine inserts the new fragment into this FragList. This involves comparing the sum

of the offset and length of this fragment with the offset of the next fragment in the

list. Some of this work is done in subroutine hole create, which is given below. Finally,

ipReassemble checks to see if all the holes are filled. If all the fragments are present,

it calls the routine msgReassemble to actually reassemble the fragments into a whole

datagram and then calls deliver to pass this datagram up the protocol graph to some

high-level protocol identified as HLP.

ipReassemble(Msg *dg, IpHdr *hdr, Map fragMap)
{

FragId fragid;
FragList *list;
FragInfo *fi, *prev;
Hole *hole;
u_short offset, len;

/* extract fragmentation info from header
(offset and fragment length) */

offset = FRAGOFFSET(hdr->frag)*8;

4.1 Simple Internetworking (IP) 247

len = hdr->dlen - GET_HLEN(hdr) * 4;

/* Create the unique id for this fragment */
bzero((char *)&fragid, sizeof(FragId));
fragid.source = hdr->source;
fragid.dest = hdr->dest;
fragid.prot = hdr->prot;
fragid.ident = hdr->ident;

/* find reassembly list for this frag; create one if none exists */

if (mapResolve(fragMap, &fragid, (void **)&list) == FALSE)
{

/* first fragment of datagram - need new FragList */
list = NEW(FragList);

/* insert it into the Map structure */
list->binding = mapBind(fragMap, &fragid, list);

/* initialize list with a single hole spanning the
whole datagram */

list->nholes = 1;
list->head.next = fi = NEW(FragInfo);
fi->next = 0;
fi->type = HOLE;
fi->u.hole.first = 0;
fi->u.hole.last = INFINITE_OFFSET;

}
/* mark the current FragList as ineligible for garbage

collection */
list->gcMark = FALSE;

/* walk through the FragList to find the right hole for
this frag */

prev = &list->head;
for (fi = prev->next; fi != 0; prev = fi, fi = fi->next)
{

if (fi->type == FRAG)
{

continue;
}
hole = &fi->u.hole;
if ((offset < hole->last) && ((offset + len) >

hole->first))
{

/* check to see if frag overlaps previously
received frags */

if (offset < hole->first)

248 4 Internetworking

{
/* truncate message from left */
msgStripHdr(dg, hole->first - offset);
offset = hole->first;

}
if ((offset + len) > hole->last)
{

/* truncate message from right */
msgTruncate(dg, hole->last - offset);
len = hole->last - offset;

}

/* now check to see if new hole(s) need to be made */

if (((offset + len) < hole->last) &&
(hdr->frag & MOREFRAGMENTS))

{
/* creating new hole above */
hole_create(prev, fi, (offset+len), hole->last);

list->nholes++;
}
if (offset > hole->first)
{

/* creating new hole below */
hole_create(fi, fi->next, hole->first, (offset));

list->nholes++;
}

/* change this FragInfo structure to be FRAG */
list->nholes--;
fi->type = FRAG;
msgSaveCopy(&fi->u.frag, dg);
break;

} /* if found a hole */
} /* for loop */

/* check to see if we're done, and if so, pass datagram up */

if (list->nholes == 0)
{

Msg fullMsg;

/* now have a full datagram */
for(fi = list->head.next; fi != 0; fi = fi->next)
{

msgReassemble(&fullMsg, &fi->u.frag, &fullMsg);
}
/* get rid of FragList and its Map entry */

4.1 Simple Internetworking (IP) 249

mapRemove(fragMap, list->binding);
ipFreeFragList(list);
deliver(HLP, &fullMsg);
msgDestroy(&fullMsg);

}
return SUCCESS;

}

Subroutine hole create creates a new hole in the fragment list that begins at offset

first and continues to offset last. It makes use of the utility NEW, which creates an

instance of the given structure.

static int

hole_create(FragInfo *prev, FragInfo *next, u_int first, u_int last)
{

FragInfo *fi;

/* creating new hole from first to last */
fi = NEW(FragInfo);
fi->type = HOLE;
fi->u.hole.first = first;
fi->u.hole.last = last;
fi->next = next;
prev->next = fi;

}

Finally, note that these routines do not capture the entire picture of reassembly.

What is not shown is a background process that periodically checks to see if there

has been any recent activity on this datagram (it looks at field gcMark), and if not, it

deletes the corresponding FragList. IP does not attempt to recover from the situation

in which one or more of the fragments does not arrive; it simply gives up and reclaims

the memory that was being used for reassembly.

One thing to notice from this code is that IP reassembly is far from a simple

process. Note, for example, that if a single fragment is lost, the receiver will still

attempt to reassemble the datagram, and it will eventually give up and have to garbage-

collect the resources that were used to perform the failed reassembly. For this reason,

among others, IP fragmentation is generally considered a good thing to avoid. Hosts

are now strongly encouraged to perform “path MTU discovery,” a process by which

fragmentation is avoided by sending packets that are small enough to traverse the link

with the smallest MTU in the path from sender to receiver.

250 4 Internetworking

4.1.3 Global Addresses

In the above discussion of the IP service model, we mentioned that one of the things

that it provides is an addressing scheme. After all, if you want to be able to send data to

any host on any network, there needs to be a way of identifying all the hosts. Thus, we

need a global addressing scheme—one in which no two hosts have the same address.

Global uniqueness is the first property that should be provided in an addressing

scheme.

Ethernet addresses are globally unique, but that alone does not suffice for an

addressing scheme in a large internetwork. Ethernet addresses are also flat, which

means that they have no structure and provide very few clues to routing protocols.2

In contrast, IP addresses are hierarchical, by which we mean that they are made up of

several parts that correspond to some sort of hierarchy in the internetwork. Specifically,

IP addresses consist of two parts, a network part and a host part. This is a fairly logical

structure for an internetwork, which is made up of many interconnected networks.

The network part of an IP address identifies the network to which the host is attached;

all hosts attached to the same network have the same network part in their IP address.

The host part then identifies each host uniquely on that particular network. Thus, in

the simple internetwork of Figure 4.1, the addresses of the hosts on network 1, for

example, would all have the same network part and different host parts.

Note that the routers in Figure 4.1 are attached to two networks. They need

to have an address on each network, one for each interface. For example, router R1,

which sits between network 2 and network 3, has an IP address on the interface to

network 2 that has the same network part as the hosts on network 2, and it has an

IP address on the interface to network 3 that has the same network part as the hosts

on network 3. Thus, bearing in mind that a router might be implemented as a host

with two network interfaces, it is more precise to think of IP addresses as belonging

to interfaces than to hosts.

Now, what do these hierarchical addresses look like? Unlike some other forms

of hierarchical address, the sizes of the two parts are not the same for all addresses.

Instead, IP addresses are divided into three different classes, as shown in Figure 4.6,

each of which defines different-sized network and host parts. (There are also class D

addresses that specify a multicast group, discussed in Section 4.4, and class E addresses

that are currently unused.) In all cases, the address is 32 bits long.

The class of an IP address is identified in the most significant few bits. If the

first bit is 0, it is a class A address. If the first bit is 1 and the second is 0, it is a

2In fact, as we noted, Ethernet addresses do have a structure for the purposes of assignment—the first 24 bits
identify the manufacturer—but this provides no useful information to routing protocols since this structure has
nothing to do with network topology.

4.1 Simple Internetworking (IP) 251

Network Host

7 24

0
(a)

Network Host

14 16

1 0
(b)

Network Host

21 8

1 1 0
(c)

Figure 4.6 IP addresses: (a) class A; (b) class B; (c) class C.

class B address. If the first two bits are 1 and the third is 0, it is a class C address.

Thus, of the approximately 4 billion possible IP addresses, half are class A, one-

quarter are class B, and one-eighth are class C. Each class allocates a certain number

of bits for the network part of the address and the rest for the host part. Class A

networks have 7 bits for the network part and 24 bits for the host part, meaning

that there can be only 126 class A networks (the values 0 and 127 are reserved),

but each of them can accommodate up to 224 − 2 (about 16 million) hosts (again,

there are two reserved values). Class B addresses allocate 14 bits for the network and

16 bits for the host, meaning that each class B network has room for 65,534 hosts.

Finally, class C addresses have only 8 bits for the host and 21 for the network part.

Therefore, a class C network can have only 256 unique host identifiers, which means

only 254 attached hosts (one host identifier, 255, is reserved for broadcast, and 0

is not a valid host number). However, the addressing scheme supports 221 class C

networks.

On the face of it, this addressing scheme has a lot of flexibility, allowing networks

of vastly different sizes to be accommodated fairly efficiently. The original idea was

that the Internet would consist of a small number of wide area networks (these would

be class A networks), a modest number of site- (campus-) sized networks (these would

be class B networks), and a large number of LANs (these would be class C networks).

However, as we shall see in Section 4.3, additional flexibility has been needed, and

some innovative ways to provide it are now in use. Because one of these techniques

actually removes the distinction between address classes, the addressing scheme just

described is now known as “classful” addressing to distinguish it from the newer

“classless” approach.

Before we look at how IP addresses get used, it is helpful to look at some practical

matters, such as how you write them down. By convention, IP addresses are written

252 4 Internetworking

as four decimal integers separated by dots. Each integer represents the decimal value

contained in 1 byte of the address, starting at the most significant. For example, the

address of the computer on which this sentence was typed is 171.69.210.245.

It is important not to confuse IP addresses with Internet domain names, which

are also hierarchical. Domain names tend to be ASCII strings separated by dots, such

as cs.princeton.edu. We will be talking about those in Section 9.1. The important thing

about IP addresses is that they are what is carried in the headers of IP packets, and it

is those addresses that are used in IP routers to make forwarding decisions.

4.1.4 Datagram Forwarding in IP

We are now ready to look at the basic mechanism by which IP routers forward data-

grams in an internetwork. Recall from Chapter 3 that forwarding is the process of

taking a packet from an input and sending it out on the appropriate output, while

routing is the process of building up the tables that allow the correct output for a

packet to be determined. The discussion here focuses on forwarding; we take up rout-

ing in Section 4.2.

The main points to bear in mind as we discuss the forwarding of IP datagrams

are the following:

■ Every IP datagram contains the IP address of the destination host.

■ The “network part” of an IP address uniquely identifies a single physical

network that is part of the larger Internet.

■ All hosts and routers that share the same network part of their address are

connected to the same physical network and can thus communicate with each

other by sending frames over that network.

■ Every physical network that is part of the Internet has at least one router that,

by definition, is also connected to at least one other physical network; this

router can exchange packets with hosts or routers on either network.

Forwarding IP datagrams can therefore be handled in the following way. A data-

gram is sent from a source host to a destination host, possibly passing through sev-

eral routers along the way. Any node, whether it is a host or a router, first tries to

establish whether it is connected to the same physical network as the destination.

To do this, it compares the network part of the destination address with the net-

work part of the address of each of its network interfaces. (Hosts normally have

only one interface, while routers normally have two or more, since they are typically

connected to two or more networks.) If a match occurs, then that means that the

destination lies on the same physical network as the interface, and the packet can be

4.1 Simple Internetworking (IP) 253

directly delivered over that network. Section 4.1.5 explains some of the details of this

process.

If the node is not connected to the same physical network as the destination node,

then it needs to send the datagram to a router. In general, each node will have a choice of

several routers, and so it needs to pick the best one, or at least one that has a reasonable

chance of getting the datagram closer to its destination. The router that it chooses is

known as the next hop router. The router finds the correct next hop by consulting its

forwarding table. The forwarding table is conceptually just a list of 〈NetworkNum,

NextHop〉 pairs. (As we will see below, forwarding tables in practice often contain

some additional information related to the next hop.) Normally, there is also a default

router that is used if none of the entries in the table match the destination’s network

number. For a host, it may be quite acceptable to have a default router and nothing

else—this means that all datagrams destined for hosts not on the physical network to

which the sending host is attached will be sent out through the default router.

We can describe the datagram forwarding algorithm in the following way:

if (NetworkNum of destination = NetworkNum of one of my interfaces) then

deliver packet to destination over that interface

else

if (NetworkNum of destination is in my forwarding table) then

deliver packet to NextHop router

else

deliver packet to default router

For a host with only one interface and only a default router in its forwarding

table, this simplifies to

if (NetworkNum of destination = my NetworkNum) then

deliver packet to destination directly

else

deliver packet to default router

Let’s see how this works in the example internetwork of Figure 4.1. First, sup-

pose that H1 wants to send a datagram to H2. Since they are on the same physical

network, H1 and H2 have the same network number in their IP address. Thus, H1

deduces that it can deliver the datagram directly to H2 over the Ethernet. The one

issue that needs to be resolved is how H1 finds out the correct Ethernet address for

H2—this is the address resolution mechanism described in Section 4.1.5.

Now suppose H1 wants to send a datagram to H8. Since these hosts are on

different physical networks, they have different network numbers, so H1 deduces that

254 4 Internetworking

NetworkNum NextHop

1 R3

2 R1

Table 4.1 Example forwarding table for router R2 in Figure 4.1.

it needs to send the datagram to a router.

R1 is the only choice—the default router—

so H1 sends the datagram over the Ethernet

to R1. Similarly, R1 knows that it cannot

deliver a datagram directly to H8 because

neither of R1’s interfaces is on the same net-

work as H8. Suppose R1’s default router is

R2; R1 then sends the datagram to R2 over

the token ring network. Assuming R2 has

the forwarding table shown in Table 4.1, it

looks up H8’s network number (network 1)

and forwards the datagram to R3. Finally,

R3, since it is on the same network as H8,

forwards the datagram directly to H8.

Note that it is possible to include the

infomation about directly connected net-

works in the forwarding table. For exam-

ple, we would label the network interfaces

of router R2 as interface 0 for the point-to-

point link (network 4) and interface 1 for

the token ring (network 3). Then R2 would

have the forwarding table shown in Table

4.2.

Thus, for any network number that

R2 encounters in a packet, it knows what to

do. Either that network is directly connected

to R2, in which case the packet can be de-

livered to its destination over that network,

or the network is reachable via some next

Bridges, Switches,

and Routers

It is easy to become confused about

the distinction between bridges,

switches, and routers. There is

good reason for such confusion,

since at some level, they all forward

messages from one link to another.

One distinction people make is

based on layering: Bridges are link-

level nodes (they forward frames

from one link to another to imple-

ment an extended LAN), switches

are network-level nodes (they for-

ward packets from one link to

another to implement a packet-

switched network), and routers are

internet-level nodes (they forward

datagrams from one network to

another to implement an internet).

In some sense, however, this is an

artificial distinction. It is certainly

the case that networking compa-

nies do not ask the layering police

for permission to sell new products

that do not fit neatly into one layer

or another.

4.1 Simple Internetworking (IP) 255

NetworkNum NextHop

1 R3

2 R1

3 Interface 1

4 Interface 0

Table 4.2 Complete forwarding table for router R2 in Figure 4.1.

For example, we have already

seen that a multiport bridge is usu-

ally called an Ethernet switch or

LAN switch. Thus the distinction

between bridges and switches has

now been largely eroded. For this

reason, bridges and switches are

often grouped together as “layer

2 devices,” where layer 2 in this

context means “above the physical

layer, below the internet layer.”

There is, however, an im-

portant distinction between LAN

switches (or bridges) and ATM

switches (and other switches that

are used in WANs, such as Frame

Relay and X.25 switches). LAN

switches and bridges depend on

the spanning tree algorithm, while

WAN switches generally run rout-

ing protocols that allow each

switch to learn the topology of the

whole network. This is an impor-

tant distinction because knowing

the whole network topology allows

hop router that R2 can reach over a net-

work to which it is connected. In either case,

R2 will use ARP, described below, to find

the MAC address of the node to which the

packet is to be sent next.

The forwarding table used by R2 is

simple enough that it could be manually

configured. Usually, however, these tables

are more complex and would be built up

by running a routing protocol such as one

of those described in Section 4.2. Also note

that, in practice, the network numbers are

usually longer (e.g., 128.96).

We can now see how hierarchi-

cal addressing—splitting the address into

network and host parts—has improved the

scalability of a large network. Routers now

contain forwarding tables that list only a

set of network numbers, rather than all

the nodes in the network. In our sim-

ple example, that meant that R2 could

store the information needed to reach all

the hosts in the network (of which there

were eight) in a four-entry table. Even if

there were 100 hosts on each physical net-

work, R2 would still only need those same

four entries. This is a good first step (al-

though by no means the last) in achieving

scalability.

256 4 Internetworking

◮ This illustrates one of the most im-

portant principles of building scalable net-

works: To achieve scalability, you need to

reduce the amount of information that is

stored in each node and that is exchanged

between nodes. The most common way to

do that is hierarchical aggregation. IP intro-

duces a two-level hierarchy, with networks

at the top level and nodes at the bottom

level. We have aggregated information by

letting routers deal only with reaching the

right network; the information that a router

needs to deliver a datagram to any node on

a given network is represented by a single

aggregated piece of information.

Router Implementation

In Section 3.4 we saw a variety of ways

to build a switch, ranging from a general-

purpose workstation with a suitable num-

ber of network interfaces to some sophisti-

cated hardware designs. In general, the same

range of options is available for building

routers, most of which look something like

Figure 4.7. The control processor is respon-

sible for running the routing protocols (dis-

cussed in Section 4.2) and generally acts as

the central point of control of the router.

The switching fabric transfers packets from

one port to another, just as in a switch, and

the ports provide a range of functionality

to allow the router to interface to links of

various types (e.g., Ethernet, SONET, etc.).

A few points are worth noting about

router design and how it differs from switch

design. First, routers must be designed to

handle variable-length packets, a constraint

that does not apply to ATM switches but

the switches to discriminate among

different routes, while in contrast,

the spanning tree algorithm locks in

a single tree over which messages

are forwarded. It is also the case

that the spanning tree approach

does not scale as well.

What about switches and

routers? Are they fundamentally

the same thing, or are they different

in some important way? Here, the

distinction is much less clear. For

starters, since a single point-to-

point link is itself a legitimate

network, a router can be used to

connect a set of such links. In such

a situation, a router looks just like

a switch. It just happens to be a

switch that forwards IP packets us-

ing a datagram forwarding model

and IP routing protocols. We’ll see

more of this similarity when we

consider router implementation at

the end of this section.

One big difference between

an ATM network built from

switches and the Internet built

from routers is that the Internet is

able to accommodate heterogene-

ity, whereas ATM consists of ho-

mogeneous links. This support for

heterogeneity is one of the key rea-

sons why the Internet is so widely

deployed.

4.1 Simple Internetworking (IP) 257

Switching

fabric

Control

processor

Output

port

Input

port

Figure 4.7 Block diagram of a router.

is certainly applicable to Ethernet or Frame Relay switches. It turns out that many

high-performance routers are designed using a switching fabric that is cell based. In

such cases the ports must be able to convert variable-length packets into cells and back

again. This is very much like the standard ATM segmentation and reassembly (SAR)

problem described in Section 3.3.2.

Another consequence of the variable length of IP datagrams is that it can be

harder to characterize the performance of a router than a switch that forwards only

cells. Routers can usually forward a certain number of packets per second, and this

implies that the total throughput in bits per second depends on packet size. Router

designers generally have to make a choice as to what packet length they will support

at line rate. That is, if pps (packets per second) is the rate at which packets arriving

on a particular port can be forwarded, and linerate is the physical speed of the port in

bits per second, then there will be some packetsize in bits such that

packetsize × pps = linerate

This is the packet size at which the router can forward at line rate; it is likely to be

able to sustain line rate for longer packets but not for shorter packets. Sometimes

a designer might decide that the right packet size to support is 40 bytes, since that

is the minimum size of an IP packet that has a TCP header attached. Another choice

might be the expected average packet size, which can be determined by studying traces

of network traffic. For example, measurements of the Internet backbone suggest that

the average IP packet is around 300 bytes long. However, such a router would fall

behind and perhaps start dropping packets when faced with a long sequence of short

258 4 Internetworking

packets, which is statistically likely from time to time and also very possible if the

router is subject to an active attack (see Chapter 8). Design decisions of this type

depend heavily on cost considerations and the intended application of the router.

When it comes to the task of forwarding IP packets, routers can be broadly

characterized as having either a centralized or distributed forwarding model. In the

centralized model, the IP forwarding algorithm, outlined earlier in this section, is done

in a single processing engine that handles the traffic from all ports. In the distributed

model, there are several processing engines, perhaps one per port, or more often one

per line card, where a line card may serve one or more physical ports. Each model

has advantages and disadvantages. All things being equal, a distributed forwarding

model should be able to forward more packets per second through the router as a

whole because there is more processing power in total. But a distributed model also

complicates the software architecture because each forwarding engine typically needs

its own copy of the forwarding table, and thus it is necessary for the control processor

to ensure that the forwarding tables are updated consistently and in a timely manner.

In recent years, there has been considerable interest in the possibility of creating

network processors that could be used in the design of routers and other network-

ing hardware. A network processor is intended to be a device that is just about as

programmable as a standard workstation or PC processor, but that is more highly

optimized for networking tasks. For example, a network processor might have in-

structions that are particularly well suited to performing lookups on IP addresses or

calculating checksums on IP datagrams.

One of the interesting and ongoing debates about network processors is whether

they can do a better job than the alternatives. For example, given the continuous and

remarkable improvements in performance of conventional processors, and the huge

industry that drives those improvements, can network processors keep up? And can a

device that strives for generality do as good a job as a custom-designed chip that does

nothing except, say, IP forwarding? Part of the answer to questions like these depends

on what you mean by “do a better job.” For example, there will always be trade-offs to

be made between cost of hardware, time to market, performance, and flexibility—the

ability to change the features supported by a router after it is built. We will see in the

rest of this chapter and in later chapters just how diverse the requirements for router

functionality can be. It is safe to assume that a wide range of router designs will exist

for the foreseeable future and that network processors will have some role to play.

4.1.5 Address Translation (ARP)

In the previous section we talked about how to get IP datagrams to the right physical

network, but glossed over the issue of how to get a datagram to a particular host or

4.1 Simple Internetworking (IP) 259

router on that network. The main issue is that IP datagrams contain IP addresses, but

the physical interface hardware on the host or router to which you want to send the

datagram only understands the addressing scheme of that particular network. Thus, we

need to translate the IP address to a link-level address that makes sense on this network

(e.g., a 48-bit Ethernet address). We can then encapsulate the IP datagram inside a

frame that contains that link-level address and send it either to the ultimate destination

or to a router that promises to forward the datagram toward the ultimate destination.

One simple way to map an IP address into a physical network address is to

encode a host’s physical address in the host part of its IP address. For example, a host

with physical address 00100001 01001001 (which has the decimal value 33 in the upper

byte and 81 in the lower byte) might be given the IP address 128.96.33.81. While this

solution has been used on some networks, it is limited in that the network’s physical

addresses can be no more than 16 bits long in this example; they can be only 8 bits

long on a class C network. This clearly will not work for 48-bit Ethernet addresses.

A more general solution would be for each host to maintain a table of address

pairs; that is, the table would map IP addresses into physical addresses. While this table

could be centrally managed by a system administrator and then copied to each host

on the network, a better approach would be for each host to dynamically learn the

contents of the table using the network. This can be accomplished using the Address

Resolution Protocol (ARP). The goal of ARP is to enable each host on a network to

build up a table of mappings between IP addresses and link-level addresses. Since these

mappings may change over time (e.g., because an Ethernet card in a host breaks and

is replaced by a new one with a new address), the entries are timed out periodically

and removed. This happens on the order of every 15 minutes. The set of mappings

currently stored in a host is known as the ARP cache or ARP table.

ARP takes advantage of the fact that many link-level network technologies, such

as Ethernet and token ring, support broadcast. If a host wants to send an IP datagram

to a host (or router) that it knows to be on the same network (i.e., the sending and

receiving node have the same IP network number), it first checks for a mapping in

the cache. If no mapping is found, it needs to invoke the Address Resolution Protocol

over the network. It does this by broadcasting an ARP query onto the network. This

query contains the IP address in question (the “target IP address”). Each host receives

the query and checks to see if it matches its IP address. If it does match, the host

sends a response message that contains its link-layer address back to the originator of

the query. The originator adds the information contained in this response to its ARP

table.

The query message also includes the IP address and link-layer address of the

sending host. Thus, when a host broadcasts a query message, each host on the network

can learn the sender’s link-level and IP addresses and place that information in its

260 4 Internetworking

TargetHardwareAddr (bytes 2–5)

TargetProtocolAddr (bytes 0–3)

SourceProtocolAddr (bytes 2–3)

Hardware type = 1 ProtocolType = 0x0800

SourceHardwareAddr (bytes 4–5)

TargetHardwareAddr (bytes 0–1)

SourceProtocolAddr (bytes 0–1)

HLen = 48 PLen = 32 Operation

SourceHardwareAddr (bytes 0–3)

0 8 16 31

Figure 4.8 ARP packet format for mapping IP addresses into Ethernet addresses.

ARP table. However, not every host adds this information to its ARP table. If the host

already has an entry for that host in its table, it “refreshes” this entry; that is, it resets

the length of time until it discards the entry. If that host is the target of the query, then

it adds the information about the sender to its table, even if it did not already have an

entry for that host. This is because there is a good chance that the source host is about

to send it an application-level message, and it may eventually have to send a response

or ACK back to the source; it will need the source’s physical address to do this. If a host

is not the target and does not already have an entry for the source in its ARP table, then

it does not add an entry for the source. This is because there is no reason to believe

that this host will ever need the source’s link-level address; there is no need to clutter

its ARP table with this information.

Figure 4.8 shows the ARP packet format for IP-to-Ethernet address mappings.

In fact, ARP can be used for lots of other kinds of mappings—the major differences

are in the address sizes. In addition to the IP and link-layer addresses of both sender

and target, the packet contains

■ a HardwareType field, which specifies the type of physical network (e.g.,

Ethernet)

■ a ProtocolType field, which specifies the higher-layer protocol (e.g., IP)

■ HLen (“hardware” address length) and PLen (“protocol” address length) fields,

which specify the length of the link-layer address and higher-layer protocol

address, respectively

■ an Operation field, which specifies whether this is a request or a response

■ the source and target hardware (Ethernet) and protocol (IP) addresses

4.1 Simple Internetworking (IP) 261

Note that the results of the ARP process can be added as an extra column in

a forwarding table like the one in Table 4.1. Thus, for example, when R2 needs to

forward a packet to network 2, it not only finds that the next hop is R1, but also finds

the MAC address to place on the packet to send it to R1.

ATMARP

It should be clear that if an ATM network is to operate as part of an IP internetwork,

then it too must provide a form of ARP. However, the procedure just described will

clearly not work on a simple ATM network, because it depends on the fact that ARP

packets can be broadcast to all hosts on a single network. One solution to this problem

is to use the LAN emulation procedures described in Section 3.3.5. Since the goal of

these procedures is to make an ATM network behave just like a shared-media LAN,

which includes support for broadcast, the effect is to reduce ARP to a previously solved

problem.

There are, however, situations where it may not be desirable to treat an ATM

network as an emulated LAN. In particular, LAN emulation can be quite inefficient in

a large, wide area ATM network. Recall that in an emulated LAN many packets may

need to be sent to the broadcast and unknown server, which then floods those packets

to all nodes on the emulated LAN. Clearly, there are limits to how far this can scale.

The problem here is that adding broadcast capabilities to an intrinsically nonbroadcast

network, while useful in some circumstances, is really overkill if the only reason you

need broadcast is to enable address resolution.

For this reason, there is a different ARP procedure that may be used in an ATM

network and that does not depend on broadcast or LAN emulation. This procedure

is known as ATMARP and is part of the Classical IP over ATM model. The reason

for calling the model “classical” will become apparent shortly. Like LAN emulation,

ATMARP relies on the use of a server to resolve addresses—in this case, it is called an

ARP server, and its behavior is described below.

A key concept in the Classical IP over ATM model is the logical IP subnet (LIS).

The LIS abstraction allows us to take one large ATM network and subdivide it into

several smaller subnets. (We define “subnet” precisely in Section 4.3.1, but in this case

a subnet behaves much like a single network.) All nodes on the same subnet have the

same IP network number. And just as in “classical” IP, two nodes (hosts or routers)

that are on the same subnet can communicate directly over the ATM network, whereas

two nodes that are on different subnets will have to communicate via one or more

routers. An example of an ATM network divided into two LISs appears in Figure 4.9.

Note that the IP address of host H1 has a network number of 10, as does the router

interface that connects to the left-hand LIS, while H2 has a network number of 12, as

does the right-hand interface on the router. That is, H1 and the router connect to the

262 4 Internetworking

H2

H1

ATM network

10.0.0.2
10.0.0.1

12.0.0.3

12.0.0.5

R

LIS 10
LIS 12

Figure 4.9 Logical IP subnets.

same LIS (LIS 10) while H2 is on a different subnet (LIS 12) to which the router also

connects.

An advantage of the LIS model is that we can connect a large number of hosts and

routers to a big ATM network without necessarily giving them all addresses from the

same IP network. This may make it easier to manage address assignment, for example,

in the case where not all nodes connected to the ATM network are under the control

of the same administrative entity. The division of the ATM network into a number of

LISs also improves scalability by limiting the number of nodes that must be supported

by a single ARP server.

The basic job of an ARP server is to enable nodes on a LIS to resolve IP addresses

to ATM addresses without using broadcast. Each node in the LIS must be configured

with the ATM address of the ARP server, so that it can establish a VC to the server

when it boots. Once it has a VC to the server, the node sends a registration message

to the ARP server that contains both the IP and ATM addresses of the registering

node. Thus the ARP server builds up a complete database of all the 〈IP address, ATM

address〉 pairs. Once this is in place, any node that wants to send a packet to some

IP address can ask the ARP server to provide the corresponding ATM address. Once

this is received, the sending node can use ATM signalling to set up a VC to that ATM

address, and then send the packet. Just like conventional ARP, a cache of IP-to-ATM

address mappings can be maintained. In addition, the node can keep a VC established

to that ATM destination as long as there is enough traffic flowing to justify it, thus

avoiding the delay of setting up the VC again when the next packet arrives.

An interesting consequence of the Classical IP over ATM model is that two nodes

on the same ATM network cannot establish a direct VC between themselves if they

are on different subnets. This would violate the rule that communication from one

subnet to another must pass through a router. For example, host H1 and host H2 in

Figure 4.9 cannot establish a direct VC under the classical model. Instead, each needs

4.1 Simple Internetworking (IP) 263

to have a VC to router R. The simple explanation for this rule is that IP routing is

known to work well when that rule is obeyed, as it is in non-ATM networks. New

techniques to work around that rule have been developed, but they have introduced

considerable complexity and problems of robustness.

◮ We have now seen the basic mechanisms that IP provides for dealing with both

heterogeneity and scale. On the issue of heterogeneity, IP begins by defining a best-

effort service model that makes minimal assumptions about the underlying networks;

most notably, this service model is based on unreliable datagrams. IP then makes two

important additions to this starting point: (1) a common packet format (fragmenta-

tion/reassembly is the mechanism that makes this format work over networks with

different MTUs) and (2) a global address space for identifying all hosts (ARP is the

mechanism that makes this global address space work over networks with different

physical addressing schemes). On the issue of scale, IP uses hierarchical aggregation to

reduce the amount of information needed to forward packets. Specifically, IP addresses

are partitioned into network and host components, with packets first routed toward

the destination network and then delivered to the correct host on that network.

4.1.6 Host Configuration (DHCP)

In Section 2.6 we observed that Ethernet addresses are configured into the network

adaptor by the manufacturer, and this process is managed in such a way to ensure that

these addresses are globally unique. This is clearly a sufficient condition to ensure

that any collection of hosts connected to a single Ethernet (including an extended

LAN) will have unique addresses. Furthermore, uniqueness is all we ask of Ethernet

addresses.

IP addresses, by contrast, not only must be unique on a given internetwork, but

also must reflect the structure of the internetwork. As noted above, they contain a

network part and a host part, and the network part must be the same for all hosts

on the same network. Thus, it is not possible for the IP address to be configured once

into a host when it is manufactured, since that would imply that the manufacturer

knew which hosts were going to end up on which networks, and it would mean that

a host, once connected to one network, could never move to another. For this reason,

IP addresses need to be reconfigurable.

In addition to an IP address, there are some other pieces of information a host

needs to have before it can start sending packets. The most notable of these is the

address of a default router—the place to which it can send packets whose destination

address is not on the same network as the sending host.

Most host operating systems provide a way for a system administrator, or even

a user, to manually configure the IP information needed by a host. However, there

are some obvious drawbacks to such manual configuration. One is that it is simply

264 4 Internetworking

a lot of work to configure all the hosts in a large network directly, especially when

you consider that such hosts are not reachable over a network until they are config-

ured. Even more importantly, the configuration process is very error-prone, since it is

necessary to ensure that every host gets the correct network number and that no two

hosts receive the same IP address. For these reasons, automated configuration meth-

ods are required. The primary method uses a protocol known as the Dynamic Host

Configuration Protocol (DHCP).

DHCP relies on the existence of a DHCP server that is responsible for providing

configuration information to hosts. There is at least one DHCP server for an adminis-

trative domain. At the simplest level, the DHCP server can function just as a centralized

repository for host configuration information. Consider, for example, the problem of

administering addresses in the internetwork of a large company. DHCP saves the net-

work administrators from having to walk around to every host in the company with a

list of addresses and network map in hand and configuring each host manually. Instead,

the configuration information for each host could be stored in the DHCP server and

automatically retrieved by each host when it is booted or connected to the network.

However, the administrator would still pick the address that each host is to receive;

he would just store that in the server. In this model, the configuration information for

each host is stored in a table that is indexed by some form of unique client identifier,

typically the “hardware address” (e.g., the Ethernet address of its network adaptor).

A more sophisticated use of DHCP saves the network admininstrator from even

having to assign addresses to individual hosts. In this model, the DHCP server main-

tains a pool of available addresses that it hands out to hosts on demand. This consid-

erably reduces the amount of configuration an administrator must do, since now it is

only necessary to allocate a range of IP addresses (all with the same network number)

to each network.

Since the goal of DHCP is to minimize the amount of manual configuration

required for a host to function, it would rather defeat the purpose if each host had

to be configured with the address of a DHCP server. Thus, the first problem faced by

DHCP is that of server discovery.

To contact a DHCP server, a newly booted or attached host sends a

DHCPDISCOVER message to a special IP address (255.255.255.255) that is an IP broad-

cast address. This means it will be received by all hosts and routers on that network.

(Routers do not forward such packets onto other networks, preventing broadcast to

the entire Internet.) In the simplest case, one of these nodes is the DHCP server for the

network. The server would then reply to the host that generated the discovery message

(all the other nodes would ignore it). However, it is not really desirable to require one

DHCP server on every network because this still creates a potentially large number

of servers that need to be correctly and consistently configured. Thus, DHCP uses the

4.1 Simple Internetworking (IP) 265

DHCP
relay

DHCP
server

Unicast to server

Broadcast

Host

Other networks

Figure 4.10 A DHCP relay agent receives a broadcast DHCPDISCOVER message from
a host and sends a unicast DHCPDISCOVER message to the DHCP server.

Operation HType HLen Hops

Xid

ciaddr

yiaddr

siaddr

giaddr

chaddr (16 bytes)

sname (64 bytes)

file (128 bytes)

options

Secs Flags

Figure 4.11 DHCP packet format.

concept of a relay agent. There is at least one relay agent on each network, and it is

configured with just one piece of information: the IP address of the DHCP server. When

a relay agent receives a DHCPDISCOVER message, it unicasts it to the DHCP server and

awaits the response, which it will then send back to the requesting client. The process

of relaying a message from a host to a remote DHCP server is shown in Figure 4.10.

Figure 4.11 shows the format of a DHCP message. The message is actually sent

using a protocol called UDP (the User Datagram Protocol) that runs over IP. UDP is

266 4 Internetworking

discussed in detail in the next chapter, but the only interesting thing it does in this

context is to provide a demultiplexing key that says, “This is a DHCP packet.”

DHCP is derived from an earlier protocol called BOOTP, and some of the packet

fields are thus not strictly relevant to host configuration. When trying to obtain config-

uration information, the client puts its hardware address (e.g., its Ethernet address) in

the chaddr field. The DHCP server replies by filling in the yiaddr (“your” IP address)

field and sending it to the client. Other information such as the default router to be

used by this client can be included in the options field.

In the case where DHCP dynamically assigns IP addresses to hosts, it is clear

that hosts cannot keep addresses indefinitely, as this would eventually cause the server

to exhaust its address pool. At the same time, a host cannot be depended upon to

give back its address, since it might have crashed, been unplugged from the network,

or been turned off. Thus, DHCP allows addresses to be “leased” for some period of

time. Once the lease expires, the server is free to return that address to its pool. A host

with a leased address clearly needs to renew the lease periodically if in fact it is still

connected to the network and functioning correctly.

◮ DHCP illustrates an important aspect of scaling: the scaling of network man-

agement. While discussions of scaling often focus on keeping the state in network

devices from growing too rapidly, it is important to pay attention to growth of net-

work management complexity. By allowing network managers to configure a range

of IP addresses per network rather than one IP address per host, DHCP improves the

manageability of a network.

Note that DHCP may also introduce some more complexity into network man-

agement, since it makes the binding between physical hosts and IP addresses much

more dynamic. This may make the network manager’s job more difficult if, for exam-

ple, it becomes necessary to locate a malfunctioning host.

4.1.7 Error Reporting (ICMP)

The next issue is how the Internet treats errors. While IP is perfectly willing to drop

datagrams when the going gets tough—for example, when a router does not know

how to forward the datagram or when one fragment of a datagram fails to arrive

at the destination—it does not necessarily fail silently. IP is always configured with a

companion protocol, known as the Internet Control Message Protocol (ICMP), that

defines a collection of error messages that are sent back to the source host whenever

a router or host is unable to process an IP datagram successfully. For example, ICMP

defines error messages indicating that the destination host is unreachable (perhaps due

to a link failure), that the reassembly process failed, that the TTL had reached 0, that

the IP header checksum failed, and so on.

4.1 Simple Internetworking (IP) 267

ICMP also defines a handful of control messages that a router can send back

to a source host. One of the most useful control messages, called an ICMP-Redirect,

tells the source host that there is a better route to the destination. ICMP-Redirects are

used in the following situation. Suppose a host is connected to a network that has two

routers attached to it, called R1 and R2, where the host uses R1 as its default router.

Should R1 ever receive a datagram from the host, where based on its forwarding

table it knows that R2 would have been a better choice for a particular destination

address, it sends an ICMP-Redirect back to the host, instructing it to use R2 for all

future datagrams addressed to that destination. The host then adds this new route to

its forwarding table.

4.1.8 Virtual Networks and Tunnels

We conclude our introduction to IP by considering an issue you might not have antici-

pated, but one that is becoming increasingly important. Our discussion up to this point

has focused on making it possible for nodes on different networks to communicate with

each other in an unrestricted way. This is usually the goal in the Internet—everybody

wants to be able to send email to everybody, and the creator of a new Web site wants

to reach the widest possible audience. However, there are many situations where more

controlled connectivity is required. An important example of such a situation is the

virtual private network (VPN).

The term “VPN” is heavily overused and definitions vary, but intuitively we can

define a VPN by considering first the idea of a private network. Corporations with

many sites often build private networks by leasing transmission lines from the phone

companies and using those lines to interconnect sites. In such a network, communica-

tion is restricted to take place only among the sites of that corporation, which is often

desirable for security reasons. To make a private network virtual, the leased transmis-

sion lines—which are not shared with any other corporations—would be replaced by

some sort of shared network. A virtual circuit is a very reasonable replacement for

a leased line because it still provides a logical point-to-point connection between the

corporation’s sites. For example, if corporation X has a VC from site A to site B, then

clearly it can send packets between sites A and B. But there is no way that corpora-

tion Y can get its packets delivered to site B without first establishing its own virtual

circuit to site B, and the establishment of such a VC can be administratively prevented,

thus preventing unwanted connectivity between corporation X and corporation Y.

Figure 4.12(a) shows two private networks for two separate corporations. In

Figure 4.12(b) they are both migrated to a virtual circuit network. The limited con-

nectivity of a real private network is maintained, but since the private networks now

share the same transmission facilities and switches we say that two virtual private

networks have been created.

268 4 Internetworking

Corporation X private network

Corporation Y private network

Physical links

Physical links

Virtual circuits

(a)

(b)

C

A B

K L

M

K L

M

C

A B

Figure 4.12 An example of virtual private networks: (a) two separate private networks;
(b) two virtual private networks sharing common switches.

In Figure 4.12, a Frame Relay or ATM network is used to provide the con-

trolled connectivity among sites. It is also possible to provide a similar function

using an IP network—an internetwork—to provide the connectivity. However, we

cannot just connect the various corporations’ sites to a single internetwork because

that would provide connectivity between corporation X and corporation Y, which

we wish to avoid. To solve this problem, we need to introduce a new concept, the

IP tunnel.

We can think of an IP tunnel as a virtual point-to-point link between a pair of

nodes that are actually separated by an arbitrary number of networks. The virtual link

is created within the router at the entrance to the tunnel by providing it with the IP

address of the router at the far end of the tunnel. Whenever the router at the entrance

of the tunnel wants to send a packet over this virtual link, it encapsulates the packet

inside an IP datagram. The destination address in the IP header is the address of the

4.1 Simple Internetworking (IP) 269

IP header,
Destination = 2.x

IP payload

IP header,
Destination = 10.0.0.1

IP header,
Destination = 2.x

IP payload

IP header,
Destination = 2.x

IP payload

10.0.0.1

R1 R2
InternetworkNetwork 1 Network 2

Figure 4.13 A tunnel through an internetwork.

NetworkNum NextHop

1 Interface 0

2 Virtual interface 0

Default Interface 1

Table 4.3 Forwarding table for router R1 in Figure 4.13.

router at the far end of the tunnel, while the source address is that of the encapsulating

router.

In the forwarding table of the router at the entrance to the tunnel, this virtual

link looks much like a normal link. Consider, for example, the network in Figure 4.13.

A tunnel has been configured from R1 to R2 and assigned a virtual interface number

of 0. The forwarding table in R1 might therefore look like Table 4.3.

R1 has two physical interfaces. Interface 0 connects to network 1; interface 1

connects to a large internetwork and is thus the default for all traffic that does not

match something more specific in the forwarding table. In addition, R1 has a virtual

interface, which is the interface to the tunnel. Suppose R1 receives a packet from

network 1 that contains an address in network 2. The forwarding table says this packet

should be sent out virtual interface 0. In order to send a packet out this interface, the

router takes the packet, adds an IP header addressed to R2, and then proceeds to

forward the packet as if it had just been received. R2’s address is 10.0.0.1; since the

network number of this address is 10, not 1 or 2, a packet destined for R2 will be

forwarded out the default interface into the internetwork.

270 4 Internetworking

Once the packet leaves R1, it looks to the rest of the world like a normal IP packet

destined to R2, and it is forwarded accordingly. All the routers in the internetwork

forward it using normal means, until it arrives at R2. When R2 receives the packet,

it finds that it carries its own address, so it removes the IP header and looks at the

payload of the packet. What it finds is an inner IP packet whose destination address is

in network 2. R2 now processes this packet like any other IP packet it receives. Since

R2 is directly connected to network 2, it forwards the packet on to that network.

Figure 4.13 shows the change in encapsulation of the packet as it moves across the

network.

While R2 is acting as the endpoint of the tunnel, there is nothing to prevent it

from performing the normal functions of a router. For example, it might receive some

packets that are not tunneled, but that are addressed to networks it knows how to

reach, and it would forward them in the normal way.

You might wonder why anyone would want to go to all the trouble of creating a

tunnel and changing the encapsulation of a packet as it goes across an internetwork.

One reason is security, which we will discuss in more detail in Chapter 8. Supplemented

with encryption, a tunnel can become a very private sort of link across a public net-

work. Another reason may be that R1 and R2 have some capabilities that are not

widely available in the intervening networks, such as multicast routing. By connecting

these routers with a tunnel, we can build a virtual network in which all the routers

with this capability appear to be directly connected. This in fact is how the MBone

(multicast backbone) is built, as we will see in Section 4.4. A third reason to build

tunnels is to carry packets from protocols other than IP across an IP network. As long

as the routers at either end of the tunnel know how to handle these other protocols,

the IP tunnel looks to them like a point-to-point link over which they can send non-IP

packets. Tunnels also provide a mechanism by which we can force a packet to be de-

livered to a particular place even if its original header—the one that gets encapsulated

inside the tunnel header—might suggest that it should go somewhere else. We will see

an application of this when we consider mobile hosts in Section 4.2.5. Thus, we see that

tunneling is a powerful and quite general technique for building virtual links across

internetworks.

Tunneling does have its downsides. One is that it increases the length of packets;

this might represent a significant waste of bandwidth for short packets. There may also

be performance implications for the routers at either end of the tunnel, since they need

to do more work than normal forwarding as they add and remove the tunnel header.

Finally, there is a management cost for the administrative entity that is responsible

for setting up the tunnels and making sure they are correctly handled by the routing

protocols.

4.2 Routing 271

4.2 Routing
In both this and the previous chapter we have assumed that the switches and routers

have enough knowledge of the network topology so they can choose the right port onto

which each packet should be output. In the case of virtual circuits, routing is an issue

only for the connection request packet; all subsequent packets follow the same path

as the request. In datagram networks, including IP networks, routing is an issue for

every packet. In either case, a switch or router needs to be able to look at the packet’s

destination address and then to determine which of the output ports is the best choice

to get the packet to that address. As we saw in Section 3.1.1, the switch makes this

decision by consulting a forwarding table. The fundamental problem of routing is,

How do switches and routers acquire the information in their forwarding tables?

◮ We restate an important distinction, which is often neglected, between forward-

ing and routing. Forwarding consists of taking a packet, looking at its destination

address, consulting a table, and sending the packet in a direction determined by that

table. We saw several examples of forwarding in the preceding section. Routing is the

process by which forwarding tables are built. We also note that forwarding is a rel-

atively simple and well-defined process performed locally at a node, whereas routing

depends on complex distributed algorithms that have continued to evolve throughout

the history of networking.

While the terms forwarding table and routing table are sometimes used inter-

changeably, we will make a distinction between them here. The forwarding table is

used when a packet is being forwarded and so must contain enough information to

accomplish the forwarding function. This means that a row in the forwarding table

contains the mapping from a network number to an outgoing interface and some MAC

information, such as the Ethernet address of the next hop. The routing table, on the

other hand, is the table that is built up by the routing algorithms as a precursor to

building the forwarding table. It generally contains mappings from network numbers

to next hops. It may also contain information about how this information was learned,

so that the router will be able to decide when it should discard some information.

Whether the routing table and forwarding table are actually separate data struc-

tures is something of an implementation choice, but there are numerous reasons to

keep them separate. For example, the forwarding table needs to be structured to opti-

mize the process of looking up a network number when forwarding a packet, while the

routing table needs to be optimized for the purpose of calculating changes in topology.

In some cases, the forwarding table may even be implemented in specialized hardware,

whereas this is rarely if ever done for the routing table. Table 4.4 provides an example

of a row from each sort of table. In this case, the routing table tells us that network

number 10 is to be reached by a next hop router with the IP address 171.69.245.10,

272 4 Internetworking

Network Number NextHop

10 171.69.245.10

(a)

Network Number Interface MAC Address

10 if0 8:0:2b:e4:b:1:2

(b)

Table 4.4 Example rows from (a) routing and (b) forwarding tables.

while the forwarding table contains the information about exactly how to forward

a packet to that next hop: Send it out interface number 0 with a MAC address of

8:0:2b:e4:b:1:2. Note that the last piece of information is provided by the Address

Resolution Protocol.

Before getting into the details of routing, we need to remind ourselves of the key

question we should be asking anytime we try to build a mechanism for the Internet:

“Does this solution scale?” The answer for the algorithms and protocols described

in this section is no. They are designed for networks of fairly modest size—fewer

than a hundred nodes, in practice. However, the solutions we describe do serve as

a building block for a hierarchical routing infrastructure that is used in the Internet

today. Specifically, the protocols described in this section are collectively known as

intradomain routing protocols, or interior gateway protocols (IGPs). To understand

these terms, we need to define a routing domain: A good working definition is an

internetwork in which all the routers are under the same adminstrative control (e.g.,

a single university campus or the network of a single Internet service provider). The

relevance of this definition will become apparent in the next section when we look at

interdomain routing protocols. For now, the important thing to keep in mind is that we

are considering the problem of routing in the context of small to midsized networks,

not for a network the size of the Internet.

4.2.1 Network as a Graph

Routing is, in essence, a problem of graph theory. Figure 4.14 shows a graph repre-

senting a network. The nodes of the graph, labeled A through F, may be either hosts,

switches, routers, or networks. For our initial discussion, we will focus on the case

4.2 Routing 273

4

3

6

2
1

9

1

1

D

A

F
E

B

C

Figure 4.14 Network represented as a graph.

where the nodes are routers. The edges of the graph correspond to the network links.

Each edge has an associated cost, which gives some indication of the desirability of

sending traffic over that link. A discussion of how edge costs are assigned is given in

Section 4.2.4.3

The basic problem of routing is to find the lowest-cost path between any two

nodes, where the cost of a path equals the sum of the costs of all the edges that make

up the path. For a simple network like the one in Figure 4.14, you could imagine just

calculating all the shortest paths and loading them into some nonvolatile storage on

each node. Such a static approach has several shortcomings:

■ It does not deal with node or link failures.

■ It does not consider the addition of new nodes or links.

■ It implies that edge costs cannot change, even though we might reasonably

wish to temporarily assign a high cost to a link that is heavily loaded.

For these reasons, routing is achieved in most practical networks by running

routing protocols among the nodes. These protocols provide a distributed, dynamic

way to solve the problem of finding the lowest-cost path in the presence of link and node

failures and changing edge costs. Note the word “distributed” in the last sentence: It is

difficult to make centralized solutions scalable, so all the widely used routing protocols

use distributed algorithms.

The distributed nature of routing algorithms is one of the main reasons why this

has been such a rich field of research and development—there are a lot of challenges in

making distributed algorithms work well. For example, distributed algorithms raise the

possibility that two routers will at one instant have different ideas about the shortest

3In the example networks (graphs) used throughout this chapter, we use undirected edges and assign each edge a
single cost. This is actually a slight simplification. It is more accurate to make the edges directed, which typically
means that there would be a pair of edges between each node—one flowing in each direction, and each with its
own edge cost.

274 4 Internetworking

D

G

A

F

E

B

C

Figure 4.15 Distance-vector routing: an example network.

path to some destination. In fact, each one may think that the other one is closer to

the destination, and decide to send packets to the other one. Clearly, such packets will

be stuck in a loop until the discrepancy between the two routers is resolved, and it

would be good to resolve it as soon as possible. This is just one example of the type

of problem routing protocols must address.

To begin our analysis, we assume that the edge costs in the network are known.

We will examine the two main classes of routing protocols: distance vector and link

state. In Section 4.2.4 we return to the problem of calculating edge costs in a meaningful

way.

4.2.2 Distance Vector (RIP)

The idea behind the distance-vector algorithm is suggested by its name:4 Each node

constructs a one-dimensional array (a vector) containing the “distances” (costs) to

all other nodes and distributes that vector to its immediate neighbors. The starting

assumption for distance-vector routing is that each node knows the cost of the link to

each of its directly connected neighbors. A link that is down is assigned an infinite cost.

To see how a distance-vector routing algorithm works, it is easiest to consider

an example like the one depicted in Figure 4.15. In this example, the cost of each link

is set to 1, so that a least-cost path is simply the one with the fewest hops. (Since all

edges have the same cost, we do not show the costs in the graph.) We can represent

each node’s knowledge about the distances to all other nodes as a table like the one

given in Table 4.5. Note that each node only knows the information in one row of the

table (the one that bears its name in the left column). The global view that is presented

here is not available at any single point in the network.

4The other common name for this class of algorithm is Bellman-Ford, after its inventors.

4.2 Routing 275

Information

Distance to Reach Node

Stored at Node A B C D E F G

A 0 1 1 ∞ 1 1 ∞

B 1 0 1 ∞ ∞ ∞ ∞

C 1 1 0 1 ∞ ∞ ∞

D ∞ ∞ 1 0 ∞ ∞ 1

E 1 ∞ ∞ ∞ 0 ∞ ∞

F 1 ∞ ∞ ∞ ∞ 0 1

G ∞ ∞ ∞ 1 ∞ 1 0

Table 4.5 Initial distances stored at each node (global view).

Destination Cost NextHop

B 1 B

C 1 C

D ∞ —

E 1 E

F 1 F

G ∞ —

Table 4.6 Initial routing table at node A.

We may consider each row in Table 4.5 as a list of distances from one node to

all other nodes, representing the current beliefs of that node. Initially, each node sets a

cost of 1 to its directly connected neighbors and ∞ to all other nodes. Thus, A initially

believes that it can reach B in one hop and that D is unreachable. The routing table

stored at A reflects this set of beliefs and includes the name of the next hop that A

would use to reach any reachable node. Initially, then, A’s routing table would look

like Table 4.6.

The next step in distance-vector routing is that every node sends a message to

its directly connected neighbors containing its personal list of distances. For example,

276 4 Internetworking

Destination Cost NextHop

B 1 B

C 1 C

D 2 C

E 1 E

F 1 F

G 2 F

Table 4.7 Final routing table at node A.

node F tells node A that it can reach node G at a cost of 1; A also knows it can reach

F at a cost of 1, so it adds these costs to get the cost of reaching G by means of F. This

total cost of 2 is less than the current cost of infinity, so A records that it can reach G

at a cost of 2 by going through F. Similarly, A learns from C that D can be reached

from C at a cost of 1; it adds this to the cost of reaching C (1) and decides that D can

be reached via C at a cost of 2, which is better than the old cost of infinity. At the same

time, A learns from C that B can be reached from C at a cost of 1, so it concludes that

the cost of reaching B via C is 2. Since this is worse than the current cost of reaching

B (1), this new information is ignored.

At this point, A can update its routing table with costs and next hops for all

nodes in the network. The result is shown in Table 4.7.

In the absence of any topology changes, it only takes a few exchanges of infor-

mation between neighbors before each node has a complete routing table. The pro-

cess of getting consistent routing information to all the nodes is called convergence.

Table 4.8 shows the final set of costs from each node to all other nodes when routing

has converged. We must stress that there is no one node in the network that has all

the information in this table—each node only knows about the contents of its own

routing table. The beauty of a distributed algorithm like this is that it enables all

nodes to achieve a consistent view of the network in the absence of any centralized

authority.

There are a few details to fill in before our discussion of distance-vector routing is

complete. First we note that there are two different circumstances under which a given

node decides to send a routing update to its neighbors. One of these circumstances is the

periodic update. In this case, each node automatically sends an update message every

4.2 Routing 277

Information

Distance to Reach Node

Stored at Node A B C D E F G

A 0 1 1 2 1 1 2

B 1 0 1 2 2 2 3

C 1 1 0 1 2 2 2

D 2 2 1 0 3 2 1

E 1 2 2 3 0 2 3

F 1 2 2 2 2 0 1

G 2 3 2 1 3 1 0

Table 4.8 Final distances stored at each node (global view).

so often, even if nothing has changed. This serves to let the other nodes know that this

node is still running. It also makes sure that they keep getting information that they may

need if their current routes become unviable. The frequency of these periodic updates

varies from protocol to protocol, but it is typically on the order of several seconds to

several minutes. The second mechanism, sometimes called a triggered update, happens

whenever a node receives an update from one of its neighbors that causes it to change

one of the routes in its routing table. That is, whenever a node’s routing table changes,

it sends an update to its neighbors, which may lead to a change in their tables, causing

them to send an update to their neighbors.

Now consider what happens when a link or node fails. The nodes that notice first

send new lists of distances to their neighbors, and normally the system settles down

fairly quickly to a new state. As to the question of how a node detects a failure, there

are a couple of different answers. In one approach, a node continually tests the link to

another node by sending a control packet and seeing if it receives an acknowledgment.

In another approach, a node determines that the link (or the node at the other end of

the link) is down if it does not receive the expected periodic routing update for the last

few update cycles.

To understand what happens when a node detects a link failure, consider what

happens when F detects that its link to G has failed. First, F sets its new distance to

G to infinity and passes that information along to A. Since A knows that its 2-hop

path to G is through F, A would also set its distance to G to infinity. However, with

278 4 Internetworking

the next update from C, A would learn that C has a 2-hop path to G. Thus A would

know that it could reach G in 3 hops through C, which is less than infinity, and so A

would update its table accordingly. When it advertises this to F, node F would learn

that it can reach G at a cost of 4 through A, which is less than infinity, and the system

would again become stable.

Unfortunately, slightly different circumstances can prevent the network from

stabilizing. Suppose, for example, that the link from A to E goes down. In the next

round of updates, A advertises a distance of infinity to E, but B and C advertise a

distance of 2 to E. Depending on the exact timing of events, the following might

happen: Node B, upon hearing that E can be reached in 2 hops from C, concludes that

it can reach E in 3 hops and advertises this to A; node A concludes that it can reach

E in 4 hops and advertises this to C; node C concludes that it can reach E in 5 hops;

and so on. This cycle stops only when the distances reach some number that is large

enough to be considered infinite. In the meantime, none of the nodes actually knows

that E is unreachable, and the routing tables for the network do not stabilize. This

situation is known as the count-to-infinity problem.

There are several partial solutions to this problem. The first one is to use some

relatively small number as an approximation of infinity. For example, we might decide

that the maximum number of hops to get across a certain network is never going to be

more than 16, and so we could pick 16 as the value that represents infinity. This at least

bounds the amount of time that it takes to count to infinity. Of course, it could also

present a problem if our network grew to a point where some nodes were separated

by more than 16 hops.

One technique to improve the time to stabilize routing is called split horizon.

The idea is that when a node sends a routing update to its neighbors, it does not send

those routes it learned from each neighbor back to that neighbor. For example, if B

has the route (E, 2, A) in its table, then it knows it must have learned this route from A,

and so whenever B sends a routing update to A, it does not include the route (E, 2) in

that update. In a stronger variation of split horizon, called split horizon with poison

reverse, B actually sends that route back to A, but it puts negative information in the

route to ensure that A will not eventually use B to get to E. For example, B sends

the route (E, ∞) to A. The problem with both of these techniques is that they only

work for routing loops that involve two nodes. For larger routing loops, more dras-

tic measures are called for. Continuing the above example, if B and C had waited

for a while after hearing of the link failure from A before advertising routes to

E, they would have found that neither of them really had a route to E. Unfortu-

nately, this approach delays the convergence of the protocol; speed of convergence

is one of the key advantages of its competitor, link-state routing, the subject of

Section 4.2.3.

4.2 Routing 279

Implementation

The code that implements this algorithm is very straightforward; we give only some of

the basics here. Structure Route defines each entry in the routing table, and constant

MAX TTL specifies how long an entry is kept in the table before it is discarded.

#define MAX_ROUTES 128 /* maximum size of routing table */

#define MAX_TTL 120 /* time (in seconds) until route expires */

typedef struct {
NodeAddr Destination; /* address of destination */
NodeAddr NextHop; /* address of next hop */
int Cost; /* distance metric */
u_short TTL; /* time to live */

} Route;

int numRoutes = 0;
Route routingTable[MAX_ROUTES];

The routine that updates the local node’s routing table based on a new route is

given by mergeRoute. Although not shown, a timer function periodically scans the list

of routes in the node’s routing table, decrements the TTL (time to live) field of each

route, and discards any routes that have a time to live of 0. Notice, however, that the

TTL field is reset to MAX TTL any time the route is reconfirmed by an update message

from a neighboring node.

void
mergeRoute (Route *new)
{

int i;

for (i = 0; i < numRoutes; ++i)
{

if (new->Destination == routingTable[i].Destination)
{
if (new->Cost + 1 < routingTable[i].Cost)
{

/* found a better route: */
break;

} else if (new->NextHop == routingTable[i].NextHop) {
/* metric for current next hop may have changed: */
break;

} else {
/* route is uninteresting---just ignore it */
return;

}

280 4 Internetworking

}
}
if (i == numRoutes)
{
/*this is a completely new route; is there room for it?*/
if (numRoutes < MAXROUTES)
{

++numRoutes;
} else {

/* can't fit this route in table so give up */
return;

}
}
routingTable[i] = *new;
/* reset TTL */
routingTable[i].TTL = MAX_TTL;
/* account for hop to get to next node */
++routingTable[i].Cost;

}

Finally, the procedure updateRoutingTable is the main routine that calls merge-

Route to incorporate all the routes contained in a routing update that is received from

a neighboring node.

void
updateRoutingTable (Route *newRoute, int numNewRoutes)
{

int i;

for (i=0; i < numNewRoutes; ++i)
{

mergeRoute(&newRoute[i]);
}

}

Routing Information Protocol (RIP)

One of the most widely used routing protocols in IP networks is the Routing Informa-

tion Protocol (RIP). Its widespread use is due in no small part to the fact that it was

distributed along with the popular Berkeley Software Distribution (BSD) version of

Unix, from which many commercial versions of Unix were derived. It is also extremely

simple. RIP is the canonical example of a routing protocol built on the distance-vector

algorithm just described.

Routing protocols in internetworks differ very slightly from the idealized graph

model described above. In an internetwork, the goal of the routers is to learn how to

4.2 Routing 281

A

C

1

2

3

B

D

4

5

6

Figure 4.16 Example network running RIP.

Address of net 2

Distance to net 2

Command Must be zero

Family of net 2 Address of net 2

Family of net 1 Address of net 1

Address of net 1

Distance to net 1

Version

0 8 16 31

Figure 4.17 RIP packet format.

forward packets to various networks. Thus, rather than advertising the cost of reaching

other routers, the routers advertise the cost of reaching networks. For example, in

Figure 4.16, router C would advertise to router A the fact that it can reach networks

2 and 3 (to which it is directly connected) at a cost of 0; networks 5 and 6 at cost 1;

and network 4 at cost 2.

We can see evidence of this in the RIP packet format in Figure 4.17. The majority

of the packet is taken up with 〈network-address, distance〉 pairs. However, the princi-

ples of the routing algorithm are just the same. For example, if router A learns from

router B that network X can be reached at a lower cost via B than via the existing next

282 4 Internetworking

hop in the routing table, A updates the cost and next hop information for the network

number accordingly.

RIP is in fact a fairly straightforward implementation of distance-vector routing.

Routers running RIP send their advertisements every 30 seconds; a router also sends

an update message whenever an update from another router causes it to change its

routing table. One point of interest is that it supports multiple address families, not just

IP. The network-address part of the advertisements is actually represented as a 〈family,

address〉 pair. RIP version 2 (RIPv2) also has some features related to scalability that

we will discuss in the next section.

As we will see below, it is possible to use a range of different metrics or costs

for the links in a routing protocol. RIP takes the simplest approach, with all link

costs being equal to 1, just as in our example above. Thus it always tries to find the

minimum hop route. Valid distances are 1 through 15, with 16 representing infinity.

This also limits RIP to running on fairly small networks—those with no paths longer

than 15 hops.

4.2.3 Link State (OSPF)

Link-state routing is the second major class of intradomain routing protocol. The

starting assumptions for link-state routing are rather similar to those for distance-

vector routing. Each node is assumed to be capable of finding out the state of the link

to its neighbors (up or down) and the cost of each link. Again, we want to provide each

node with enough information to enable it to find the least-cost path to any destination.

The basic idea behind link-state protocols is very simple: Every node knows how to

reach its directly connected neighbors, and if we make sure that the totality of this

knowledge is disseminated to every node, then every node will have enough knowledge

of the network to build a complete map of the network. This is clearly a sufficient

condition (although not a necessary one) for finding the shortest path to any point

in the network. Thus, link-state routing protocols rely on two mechanisms: reliable

dissemination of link-state information, and the calculation of routes from the sum of

all the accumulated link-state knowledge.

Reliable Flooding

Reliable flooding is the process of making sure that all the nodes participating in the

routing protocol get a copy of the link-state information from all the other nodes.

As the term “flooding” suggests, the basic idea is for a node to send its link-state

information out on all of its directly connected links, with each node that receives

this information forwarding it out on all of its links. This process continues until the

information has reached all the nodes in the network.

4.2 Routing 283

More precisely, each node creates an update packet, also called a link-state packet

(LSP), that contains the following information:

■ the ID of the node that created the LSP

■ a list of directly connected neighbors of that node, with the cost of the link to

each one

■ a sequence number

■ a time to live for this packet

The first two items are needed to enable route calculation; the last two are used to make

the process of flooding the packet to all nodes reliable. Reliability includes making sure

that you have the most recent copy of the information, since there may be multiple,

contradictory LSPs from one node traversing the network. Making the flooding reliable

has proven to be quite difficult. (For example, an early version of link-state routing

used in the ARPANET caused that network to fail in 1981.)

Flooding works in the following way. First, the transmission of LSPs between

adjacent routers is made reliable using acknowledgments and retransmissions just as

in the reliable link-layer protocol described in Section 2.5. However, there are several

more steps needed to reliably flood an LSP to all nodes in a network.

Consider a node X that receives a copy of an LSP that originated at some other

node Y. Note that Y may be any other router in the same routing domain as X. X

checks to see if it has already stored a copy of an LSP from Y. If not, it stores the LSP.

If it already has a copy, it compares the sequence numbers; if the new LSP has a larger

sequence number, it is assumed to be the more recent, and that LSP is stored, replacing

the old one. A smaller (or equal) sequence number would imply an LSP older (or not

newer) than the one stored, so it would be discarded and no further action would be

needed. If the received LSP was the newer one, X then sends a copy of that LSP to all

of its neighbors except the neighbor from which the LSP was just received. The fact

that the LSP is not sent back to the node from which it was received helps to bring

an end to the flooding of an LSP. Since X passes the LSP on to all its neighbors, who

then turn around and do the same thing, the most recent copy of the LSP eventually

reaches all nodes.

Figure 4.18 shows an LSP being flooded in a small network. Each node becomes

shaded as it stores the new LSP. In Figure 4.18(a) the LSP arrives at node X, which

sends it to neighbors A and C in Figure 4.18(b). A and C do not send it back to X, but

send it on to B. Since B receives two identical copies of the LSP, it will accept whichever

arrived first and ignore the second as a duplicate. It then passes the LSP on to D, who

has no neighbors to flood it to, and the process is complete.

284 4 Internetworking

(a)

X A

C B D

(b)

X A

C B D

(c)

X A

C B D

(d)

X A

C B D

Figure 4.18 Flooding of link-state packets. (a) LSP arrives at node X; (b) X floods LSP
to A and C; (c) A and C flood LSP to B (but not X); (d) flooding is complete.

Just as in RIP, each node generates LSPs under two circumstances. Either the

expiry of a periodic timer or a change in topology can cause a node to generate a new

LSP. However, the only topology-based reason for a node to generate an LSP is if one

of its directly connected links or immediate neighbors has gone down. The failure of a

link can be detected in some cases by the link-layer protocol. The demise of a neighbor

or loss of connectivity to that neighbor can be detected using periodic “hello” packets.

Each node sends these to its immediate neighbors at defined intervals. If a sufficiently

long time passes without receipt of a “hello” from a neighbor, the link to that neighbor

will be declared down, and a new LSP will be generated to reflect this fact.

One of the important design goals of a link-state protocol’s flooding mechanism

is that the newest information must be flooded to all nodes as quickly as possible, while

old information must be removed from the network and not allowed to circulate. In

addition, it is clearly desirable to minimize the total amount of routing traffic that is

sent around the network; after all, this is just “overhead” from the perspective of those

who actually use the network for their applications. The next few paragraphs describe

some of the ways that these goals are accomplished.

One easy way to reduce overhead is to avoid generating LSPs unless absolutely

necessary. This can be done by using very long timers—often on the order of hours—for

the periodic generation of LSPs. Given that the flooding protocol is truly reliable when

topology changes, it is safe to assume that messages saying “nothing has changed” do

not need to be sent very often.

To make sure that old information is replaced by newer information, LSPs carry

sequence numbers. Each time a node generates a new LSP, it increments the sequence

4.2 Routing 285

number by 1. Unlike most sequence numbers used in protocols, these sequence numbers

are not expected to wrap, so the field needs to be quite large (say, 64 bits). If a node

goes down and then comes back up, it starts with a sequence number of 0. If the

node was down for a long time, all the old LSPs for that node will have timed out

(as described below); otherwise, this node will eventually receive a copy of its own

LSP with a higher sequence number, which it can then increment and use as its own

sequence number. This will ensure that its new LSP replaces any of its old LSPs left

over from before the node went down.

LSPs also carry a time to live. This is used to ensure that old link-state information

is eventually removed from the network. A node always decrements the TTL of a newly

received LSP before flooding it to its neighbors. It also “ages” the LSP while it is stored

in the node. When the TTL reaches 0, the node refloods the LSP with a TTL of 0, which

is interpreted by all the nodes in the network as a signal to delete that LSP.

Route Calculation

Once a given node has a copy of the LSP from every other node, it is able to compute

a complete map for the topology of the network, and from this map it is able to decide

the best route to each destination. The question, then, is exactly how it calculates

routes from this information. The solution is based on a well-known algorithm from

graph theory—Dijkstra’s shortest-path algorithm.

We first define Dijkstra’s algorithm in graph-theoretic terms. Imagine that a node

takes all the LSPs it has received and constructs a graphical representation of the net-

work, in which N denotes the set of nodes in the graph, l(i, j) denotes the nonnegative

cost (weight) associated with the edge between nodes i, j ∈ N, and l(i, j) = ∞ if no

edge connects i and j . In the following description, we let s ∈ N denote this node, that

is, the node executing the algorithm to find the shortest path to all the other nodes

in N. Also, the algorithm maintains the following two variables: M denotes the set

of nodes incorporated so far by the algorithm, and C(n) denotes the cost of the path

from s to each node n. Given these definitions, the algorithm is defined as follows:

M = {s}
for each n in N − {s}

C(n) = l(s, n)

while (N �= M)

M = M ∪ {w} such that C(w) is the minimum for all w in (N − M)

for each n in (N − M)

C(n) = MIN(C(n), C(w) + l(w, n))

Basically, the algorithm works as follows. We start with M containing this node s and

then initialize the table of costs (the C(n)s) to other nodes using the known costs to

286 4 Internetworking

directly connected nodes. We then look for the node that is reachable at the lowest

cost (w) and add it to M. Finally, we update the table of costs by considering the cost

of reaching nodes through w. In the last line of the algorithm, we choose a new route

to node n that goes through node w if the total cost of going from the source to w

and then following the link from w to n is less than the old route we had to n. This

procedure is repeated until all nodes are incorporated in M.

In practice, each switch computes its routing table directly from the LSPs it has

collected using a realization of Dijkstra’s algorithm called the forward search algo-

rithm. Specifically, each switch maintains two lists, known as Tentative and Confirmed.

Each of these lists contains a set of entries of the form (Destination, Cost, NextHop).

The algorithm works as follows:

1 Initialize the Confirmed list with an entry for myself; this entry has a cost of 0.

2 For the node just added to the Confirmed list in the previous step, call it node

Next, select its LSP.

3 For each neighbor (Neighbor) of Next, calculate the cost (Cost) to reach this

Neighbor as the sum of the cost from myself to Next and from Next to Neighbor.

(a) If Neighbor is currently on neither the Confirmed nor the Tentative list, then

add (Neighbor, Cost, NextHop) to the Tentative list, where NextHop is the

direction I go to reach Next.

(b) If Neighbor is currently on the Tentative list, and the Cost is less than the cur-

rently listed cost for Neighbor, then replace the current entry with (Neighbor,

Cost, NextHop), where NextHop is the direction I go to reach Next.

4 If the Tentative list is empty, stop. Otherwise, pick the entry from the Tentative

list with the lowest cost, move it to the Confirmed list, and return to step 2.

This will become a lot easier to understand when we look at an example. Consider

the network depicted in Figure 4.19. Note that, unlike our previous example, this

D

A

B

C

5 3

2
11

10

Figure 4.19 Link-state routing: an example network.

4.2 Routing 287

Step Confirmed Tentative Comments

1 (D,0,-) Since D is the only new member of the

confirmed list, look at its LSP.

2 (D,0,-) (B,11,B)

(C,2,C)

D’s LSP says we can reach B through B

at cost 11, which is better than

anything else on either list, so put it

on Tentative list; same for C.

3 (D,0,-)

(C,2,C)

(B,11,B) Put lowest-cost member of Tentative

(C) onto Confirmed list. Next,

examine LSP of newly confirmed

member (C).

4 (D,0,-)

(C,2,C)

(B,5,C)

(A,12,C)

Cost to reach B through C is 5, so

replace (B,11,B). C’s LSP tells us

that we can reach A at cost 12.

5 (D,0,-)

(C,2,C)

(B,5,C)

(A,12,C) Move lowest-cost member of Tentative

(B) to Confirmed, then look at its LSP.

6 (D,0,-)

(C,2,C)

(B,5,C)

(A,10,C) Since we can reach A at cost 5 through

B, replace the Tentative entry.

7 (D,0,-)

(C,2,C)

(B,5,C)

(A,10,C)

Move lowest-cost member of

Tentative (A) to Confirmed, and we

are all done.

Table 4.9 Steps for building routing table for node D (Figure 4.19).

network has a range of different edge costs. Table 4.9 traces the steps for building the

routing table for node D. We denote the two outputs of D by using the names of the

nodes to which they connect, B and C. Note the way the algorithm seems to head off

on false leads (like the 11-unit cost path to B that was the first addition to the Tentative

list) but ends up with the least-cost paths to all nodes.

288 4 Internetworking

The link-state routing algorithm has many nice properties: It has been proven to

stabilize quickly, it does not generate much traffic, and it responds rapidly to topology

changes or node failures. On the downside, the amount of information stored at each

node (one LSP for every other node in the network) can be quite large. This is one

of the fundamental problems of routing and is an instance of the more general prob-

lem of scalability. Some solutions to both the specific problem (the amount of storage

potentially required at each node) and the general problem (scalability) will be dis-

cussed in the next section.

◮ Thus, the difference between the distance-vector and link-state algorithms can be

summarized as follows. In distance vector, each node talks only to its directly connected

neighbors, but it tells them everything it has learned (i.e., distance to all nodes). In link

state, each node talks to all other nodes, but it tells them only what it knows for sure

(i.e., only the state of its directly connected links).

The Open Shortest Path First Protocol (OSPF)

One of the most widely used link-state routing protocols is OSPF. The first word,

“Open,” refers to the fact that it is an open, nonproprietary standard, created under

the auspices of the IETF. The “SPF” part comes from an alternative name for link-

state routing. OSPF adds quite a number of features to the basic link-state algorithm

described above, including the following:

■ Authentication of routing messages: This is a nice feature, since it is all too

common for some misconfigured host to decide that it can reach every host

in the universe at a cost of 0. When the host advertises this fact, every router

in the surrounding neighborhood updates its forwarding tables to point to

that host, and said host receives a vast amount of data that, in reality, it has

no idea what to do with. It typically drops it all, bringing the network to a

halt. Such disasters can be averted in many cases by requiring routing updates

to be authenticated. Early versions of OSPF used a simple 8-byte password

for authentication. This is not a strong enough form of authentication to

prevent dedicated malicious users, but it alleviates many problems caused

by misconfiguration. (A similar form of authentication was added to RIP

in version 2.) Strong cryptographic authentication of the sort discussed in

Section 8.2.1 was later added.

■ Additional hierarchy: Hierarchy is one of the fundamental tools used to make

systems more scalable. OSPF introduces another layer of hierarchy into rout-

ing by allowing a domain to be partitioned into areas. This means that a

router within a domain does not necessarily need to know how to reach every

network within that domain—it may be sufficient for it to know only how to

4.2 Routing 289

Authentication

Version Type Message length

Checksum Authentication type

SourceAddr

AreaId

0 8 16 31

Figure 4.20 OSPF header format.

get to the right area. Thus, there is a reduction in the amount of information

that must be transmitted to and stored in each node. We examine areas in

detail in Section 4.3.4.

■ Load balancing: OSPF allows multiple routes to the same place to be assign-

ed the same cost and will cause traffic to be distributed evenly over those

routes.

There are several different types of OSPF messages, but all begin with the same

header, as shown in Figure 4.20. The Version field is currently set to 2, and the Type

field may take the values 1 through 5. The SourceAddr identifies the sender of the

message, and the AreaId is a 32-bit identifier of the area in which the node is located.

The entire packet, except the authentication data, is protected by a 16-bit checksum

using the same algorithm as the IP header (see Section 2.4). The Authentication type

is 0 if no authentication is used; otherwise it may be 1, implying a simple password is

used, or 2, which indicates that a cryptographic authentication checksum, of the sort

described in Section 8.2.1, is used. In the latter cases the Authentication field carries

the password or cryptographic checksum.

Of the five OSPF message types, type 1 is the “hello” message, which a router

sends to its peers to notify them that it is still alive and connected as described above.

The remaining types are used to request, send, and acknowledge the receipt of link-

state messages. The basic building block of link-state messages in OSPF is known as

the link-state advertisement (LSA). One message may contain many LSAs. We provide

a few details of the LSA here.

Like any internetwork routing protocol, OSPF must provide information about

how to reach networks. Thus, OSPF must provide a little more information than the

simple graph-based protocol described above. Specifically, a router running OSPF may

generate link-state packets that advertise one or more of the networks that are directly

290 4 Internetworking

LS Age Options Type=1

0 Flags 0 Number of links

Link type Num_TOS Metric

Link-state ID

Advertising router

LS sequence number

Link ID

Link data

Optional TOS information

More links

LS checksum Length

Figure 4.21 OSPF link-state advertisement.

connected to that router. In addition, a router that is connected to another router by

some link must advertise the cost of reaching that router over the link. These two types

of advertisements are necessary to enable all the routers in a domain to determine the

cost of reaching all networks in that domain and the appropriate next hop for each

network.

Figure 4.21 shows the packet format for a “type 1” link-state advertisement.

Type 1 LSAs advertise the cost of links between routers. Type 2 LSAs are used to

advertise networks to which the advertising router is connected, while other types are

used to support additional hierarchy as described in the next section. Many fields in

the LSA should be familiar from the preceding discussion. The LS Age is the equivalent

of a time to live, except that it counts up and the LSA expires when the age reaches a

defined maximum value. The Type field tells us that this is a type 1 LSA.

In a type 1 LSA, the Link-state ID and the Advertising router field are identical.

Each carries a 32-bit identifier for the router that created this LSA. While a number of

assignment strategies may be used to assign this ID, it is essential that it be unique in

the routing domain and that a given router consistently uses the same router ID. One

way to pick a router ID that meets these requirements would be to pick the lowest IP

address among all the IP addresses assigned to that router. (Recall that a router may

have a different IP address on each of its interfaces.)

The LS sequence number is used exactly as described above, to detect old or

duplicate LSAs. The LS checksum is similar to others we have seen in Section 2.4 and

in other protocols; it is of course used to verify that data has not been corrupted. It

covers all fields in the packet except LS Age, so that it is not necessary to recompute

a checksum every time LS Age is incremented. Length is the length in bytes of the

complete LSA.

4.2 Routing 291

Now we get to the actual link-state information. This is made a little complicated

by the presence of TOS (type of service) information. Ignoring that for a moment, each

link in the LSA is represented by a Link ID, some Link Data, and a metric. The first two of

these fields identify the link; a common way to do this would be to use the router ID of

the router at the far end of the link as the Link ID, and then use the Link Data to disam-

biguate among multiple parallel links if necessary. The metric is of course the cost of the

link. Type tells us something about the link, for example, if it is a point-to-point link.

The TOS information is present to allow OSPF to choose different routes for IP

packets based on the value in their TOS field. Instead of assigning a single metric to a

link, it is possible to assign different metrics depending on the TOS value of the data.

For example, if we had a link in our network that was very good for delay-sensitive

traffic, we could give it a low metric for the TOS value representing low delay and

a high metric for everything else. OSPF would then pick a different shortest path for

those packets that had their TOS field set to that value. It is worth noting that, at the

time of writing, this capability has not been widely deployed.5

4.2.4 Metrics

The preceding discussion assumes that link costs, or metrics, are known when we

execute the routing algorithm. In this section, we look at some ways to calculate link

costs that have proven effective in practice. One example that we have seen already,

which is quite reasonable and very simple, is to assign a cost of 1 to all links—the

least-cost route will then be the one with the fewest hops. Such an approach has

several drawbacks, however. First, it does not distinguish between links on a latency

basis. Thus, a satellite link with 250-ms latency looks just as attractive to the routing

protocol as a terrestrial link with 1-ms latency. Second, it does not distinguish between

routes on a capacity basis, making a 9.6-Kbps link look just as good as a 45-Mbps

link. Finally, it does not distinguish between links based on their current load, making

it impossible to route around overloaded links. It turns out that this last problem is

the hardest because you are trying to capture the complex and dynamic characteristics

of a link in a single scalar cost.

The ARPANET was the testing ground for a number of different approaches

to link-cost calculation. (It was also the place where the superior stability of link

state over distance-vector routing was demonstrated; the original mechanism used

distance vector while the later version used link state.) The following discussion traces

the evolution of the ARPANET routing metric and, in so doing, explores the subtle

aspects of the problem.

5Note also that the meaning of the TOS field has changed since the OSPF specification was written. This topic is
discussed in Section 6.5.3.

292 4 Internetworking

The original ARPANET routing metric measured the number of packets that

were queued waiting to be transmitted on each link, meaning that a link with 10

packets queued waiting to be transmitted was assigned a larger cost weight than a link

with 5 packets queued for transmission. Using queue length as a routing metric did

not work well, however, since queue length is an artificial measure of load—it moves

packets toward the shortest queue rather than toward the destination, a situation all

too familiar to those of us who hop from line to line at the grocery store. Stated more

precisely, the original ARPANET routing mechanism suffered from the fact that it did

not take either the bandwidth or the latency of the link into consideration.

A second version of the ARPANET routing algorithm, sometimes called the

“new routing mechanism,” took both link bandwidth and latency into consideration

and used delay, rather than just queue length, as a measure of load. This was done

as follows. First, each incoming packet was timestamped with its time of arrival at

the router (ArrivalTime); its departure time from the router (DepartTime) was also

recorded. Second, when the link-level ACK was received from the other side, the node

computed the delay for that packet as

Delay = (DepartTime − ArrivalTime) + TransmissionTime + Latency

where TransmissionTime and Latency were statically defined for the link and captured

the link’s bandwidth and latency, respectively. Notice that in this case, DepartTime –

ArrivalTime represents the amount of time the packet was delayed (queued) in the node

due to load. If the ACK did not arrive, but instead the packet timed out, then Depart-

Time was reset to the time the packet was retransmitted. In this case, DepartTime –

ArrivalTime captures the reliability of the link—the more frequent the retransmission

of packets, the less reliable the link, and the more we want to avoid it. Finally, the

weight assigned to each link was derived from the average delay experienced by the

packets recently sent over that link.

Although an improvement over the original mechanism, this approach also had

a lot of problems. Under light load, it worked reasonably well, since the two static

factors of delay dominated the cost. Under heavy load, however, a congested link

would start to advertise a very high cost. This caused all the traffic to move off that

link, leaving it idle, so then it would advertise a low cost, thereby attracting back all

the traffic, and so on. The effect of this instability was that, under heavy load, many

links would in fact spend a great deal of time being idle, which is the last thing you

want under heavy load.

Another problem was that the range of link values was much too large. For

example, a heavily loaded 9.6-Kbps link could look 127 times more costly than a lightly

loaded 56-Kbps link. This means that the routing algorithm would choose a path with

126 hops of lightly loaded 56-Kbps links in preference to a 1-hop 9.6-Kbps path.

4.2 Routing 293

While shedding some traffic from an overloaded line is a good idea, making it look so

unattractive that it loses all its traffic is excessive. Using 126 hops when 1 hop will do is

in general a bad use of network resources. Also, satellite links were unduly penalized,

so that an idle 56-Kbps satellite link looked considerably more costly than an idle

9.6-Kbps terrestrial link, even though the former would give better performance for

high-bandwidth applications.

A third approach, called the “revised ARPANET routing metric,” addressed

these problems. The major changes were to compress the dynamic range of the metric

considerably, to account for the link type, and to smooth the variation of the metric

with time.

The smoothing was achieved by several mechanisms. First, the delay measure-

ment was transformed to a link utilization, and this number was averaged with the

last reported utilization to suppress sudden changes. Second, there was a hard limit

on how much the metric could change from one measurement cycle to the next. By

smoothing the changes in the cost, the likelihood that all nodes would abandon a route

at once is greatly reduced.

The compression of the dynamic range was achieved by feeding the measured

utilization, the link type, and the link speed into a function that is shown graphically

in Figure 4.22. Observe the following:

225

N
ew

 m
et

ri
c

(r
o
u
ti

n
g

u
n
it

s)

140

90

75

60

30

25% 50% 75% 100%

Utilization

9.6-Kbps satellite link

9.6-Kbps terrestrial link

56-Kbps satellite link

56-Kbps terrestrial link

Figure 4.22 Revised ARPANET routing metric versus link utilization.

294 4 Internetworking

■ A highly loaded link never shows

a cost of more than three times its

cost when idle.

■ The most expensive link is only

seven times the cost of the least ex-

pensive.

■ A high-speed satellite link is more

attractive than a low-speed terres-

trial link.

■ Cost is a function of link uti-

lization only at moderate to high

loads.

All these factors mean that a link is much

less likely to be universally abandoned, since

a threefold increase in cost is likely to make

the link unattractive for some paths while

letting it remain the best choice for others.

The slopes, offsets, and breakpoints for

the curves in Figure 4.22 were arrived at

by a great deal of trial and error, and they

were carefully tuned to provide good per-

formance.

There is one final issue related to cal-

culating edge weights—the frequency with

which each node calculates the weights on

its links. There are two things to keep in

mind. First, none of the metrics are instan-

taneous. That is, whether a node is measur-

ing queue length, delay, or utilization, it is

actually computing an average over a pe-

riod of time. Second, just because a met-

ric changes does not mean that the node

sends out an update message. In practice,

updates are sent only when the change to an

edge weight is larger than some threshold.

Monitoring Routing

Behavior

Given the complexity of routing

packets through a network of the

scale of the Internet, we might won-

der how well the system works. We

know it works some of the time

because we are able to connect to

sites all over the world. We suspect

it doesn’t work all the time, though,

because sometimes we are unable

to connect to certain sites. The real

problem is determining what part

of the system is at fault when our

connections fail: Has some routing

machinery failed to work properly,

is the remote server too busy, or has

some link or machine simply gone

down?

This is really an issue of net-

work management, and while there

are tools that system administra-

tors use to keep tabs on their

own networks—for example, see

the Simple Network Management

Protocol (SNMP) described in Sec-

tion 9.2.3—it is a largely unre-

solved problem for the Internet as

a whole. In fact, the Internet has

grown so large and complex that,

even though it is constructed from a

collection of man-made, largely de-

terministic parts, we have come to

view it almost as a living organism

4.2 Routing 295

or natural phenomenon that is to

be studied. That is, we try to under-

stand the Internet’s dynamic behav-

ior by performing experiments on it

and proposing models that explain

our observations.

An excellent example of this

kind of study has been conducted

by Vern Paxson. Paxson used

the Unix traceroute tool to study

40,000 end-to-end routes between

37 Internet sites in 1995. He was

attempting to answer questions

about how routes fail, how stable

routes are over time, and whether

or not they are symmetric. Among

other things, Paxson found that the

likelihood of a user encountering a

serious end-to-end routing problem

was 1 in 30, and that such problems

usually lasted about 30 seconds. He

also found that two-thirds of the

Internet’s routes persisted for days

or weeks, and that about one-third

of the time the route used to get

from host A to host B included at

least one different routing domain

than the route used to get from

host B to host A. Paxson’s over-

all conclusion was that Internet

routing was becoming less and less

predictable over time.

4.2.5 Routing for Mobile

Hosts

Looking back over the preceding discussion

of how IP addressing and routing works,

you might notice that there is an implicit

assumption about the mobility of hosts, or

rather the lack of it. A host’s address con-

sists of a network number and a host part,

and the network number tells us which net-

work the host is attached to. IP routing al-

gorithms tell the routers how to get packets

to the correct network, thus enhancing the

scalability of the routing system by keeping

host-specific information out of the routers.

So what would happen if a host were dis-

connected from one network and connected

to another? If we didn’t change the IP

address of the host, then it would become

unreachable. Any packet destined for this

host would be sent to the network that has

the appropriate network number, but when

the router(s) on that network tried to deliver

the packet to the host, the host would not

be there to receive it.

The obvious solution to this problem

is to provide the host with a new address

when it attaches to a new network. Tech-

niques such as DHCP (described in Sec-

tion 4.1.6) can make this a relatively simple

process. In many situations this solution is

adequate, but in others it is not. For exam-

ple, suppose that a user of a PC equipped

with a wireless network interface is running

some application while she roams the coun-

tryside. The PC might detach itself from

one network and attach to another with

some frequency, but the user would want

to be oblivious to this. In particular, the

296 4 Internetworking

applications that were running when the PC was attached to network A should con-

tinue to run without interruption when it attaches to network B. If the PC simply

changes its IP address in the middle of running the application, the application cannot

simply keep working, because the remote end has no way of knowing that it must

now send the packets to a new IP address. Ideally, we want the movement of the PC to

be transparent to the remote application. The procedures that are designed to address

this problem are usually referred to as “Mobile IP” (which is also the name of the

IETF working group that defined them).

The Mobile IP working group made some important design decisions at the

outset. In particular, it was a requirement that the solution would work without any

changes to the software of nonmobile hosts or the majority of routers in the Internet.

This sort of approach is frequently adopted in the Internet. Any new technology that

requires a majority of routers or hosts to be modified before it can work is likely to

face an uphill battle for acceptance.

While the majority of routers remain unchanged, mobility support does require

some new functionality in at least one router, known as the home agent of the mo-

bile node. This router is located on the “home” network of the mobile host. The mobile

host is assumed to have a permanent IP address, called its home address, which has a

network number equal to that of the home network, and thus of the home agent. This is

the address that will be used by other hosts when they send packets to the mobile host;

since it does not change, it can be used by long-lived applications as the host roams.

In many cases, a second router with enhanced functionality, the foreign agent, is

also required. This router is located on a network to which the mobile node attaches

itself when it is away from its home network. We will consider first the operation of

Mobile IP when a foreign agent is used. An example network with both home and

foreign agents is shown in Figure 4.23.

Both home and foreign agents periodically announce their presence on the net-

works to which they are attached using agent advertisement messages. A mobile host

Internetwork

Foreign agent
(12.0.0.6)

Mobile host
(10.0.0.9)

Home agent
(10.0.0.3)

Home network
(network 10)

Sending host

Figure 4.23 Mobile host and mobility agents.

4.2 Routing 297

may also solicit an advertisement when it attaches to a new network. The advertise-

ment by the home agent enables a mobile host to learn the address of its home agent

before it leaves its home network. When the mobile host attaches to a foreign network,

it hears an advertisement from a foreign agent and registers with the agent, provid-

ing the address of its home agent. The foreign agent then contacts the home agent,

providing a care-of address. This is usually the IP address of the foreign agent.

At this point, we can see that any host that tries to send a packet to the mobile

host will send it with a destination address equal to the home address of that node.

Normal IP forwarding will cause that packet to arrive on the home network of the

mobile node, on which the home agent is sitting. Thus, we can divide the problem of

delivering the packet to the mobile node into three parts:

1 How does the home agent intercept a packet that is destined for the mobile node?

2 How does the home agent then deliver the packet to the foreign agent?

3 How does the foreign agent deliver the packet to the mobile node?

The first problem might look easy if you just look at Figure 4.23, in which the

home agent is clearly the only path between the sending host and the home network,

and thus must receive packets that are destined to the mobile node. But what if the

sending node were on network 10, or what if there were another router connected

to network 10 that tried to deliver the packet without its passing through the home

agent? To address this problem, the home agent actually impersonates the mobile

node, using a technique called “proxy ARP.” This works just like ARP as described

in Section 4.1.5, except that the home agent inserts the IP address of the mobile node,

rather than its own, in the ARP messages. It uses its own hardware address, so that

all the nodes on the same network learn to associate the hardware address of the

home agent with the IP address of the mobile node. One subtle aspect of this process

is the fact that ARP information may be cached in other nodes on the network. To

make sure that these caches are invalidated in a timely way, the home agent issues an

ARP message as soon as the mobile node registers with a foreign agent. Because the

ARP message is not a response to a normal ARP request, it is termed a “gratuitous

ARP.”

The second problem is the delivery of the intercepted packet to the foreign agent.

Here we use the tunneling technique described in Section 4.1.8. The home agent simply

“wraps” the packet inside an IP header that is destined for the foreign agent and

transmits it into the internetwork. All the intervening routers just see an IP packet

destined for the IP address of the foreign agent. Another way of looking at this is that

an IP tunnel is established between the home agent and the foreign agent, and the

home agent just drops packets destined for the mobile node into that tunnel.

298 4 Internetworking

When a packet finally arrives at the foreign agent, it strips the extra IP header

and finds inside an IP packet destined for the mobile node. Clearly, the foreign agent

cannot treat this like any old IP packet because this would cause it to send it back

to the home network. Instead, it has to recognize the address as that of a regis-

tered mobile node. It then delivers the packet to the hardware address of the mobile

node (e.g., its Ethernet address), which was learned as part of the registration process.

One observation that can be made about these procedures is that it is possible

for the foreign agent and the mobile node to be in the same box; that is, a mobile node

can perform the foreign agent function itself. To make this work, however, the mobile

node must be able to dynamically acquire an IP address that is located in the address

space of the foreign network. This address will then be used as the care-of address.

In our example, this would have to be an address with a network number of 12.

We have already seen one way in which a host can dynamically acquire a correct

IP address, using DHCP (Section 4.1.6). This approach has the desirable feature of

allowing mobile nodes to attach to networks that don’t have foreign agents; thus,

mobility can be achieved with only the addition of a home agent and some new software

on the mobile node (assuming DHCP is used on the foreign network).

What about traffic in the other direction (i.e., from mobile node to fixed node)?

This turns out to be much easier. The mobile node just puts the IP address of the fixed

node in the destination field of its IP packets, while putting its permanent address in

the source field, and the packets are forwarded to the fixed node using normal means.

Of course, if both nodes in a conversation are mobile, then the procedures described

above are used in each direction.

Route Optimization in Mobile IP

There is one significant drawback to the above approach, which may be familiar to

users of cellular telephones. The route from sending node to mobile node can be sig-

nificantly suboptimal. One of the most extreme examples is when a mobile node and

the sending node are on the same network, but the home network for the mobile node

is on the far side of the Internet. The sending node addresses all packets to the home

network; they traverse the Internet to reach the home agent, which then tunnels them

back across the Internet to reach the foreign agent. Clearly, it would be nice if the

sending node could find out that the mobile node is actually on the same network

and deliver the packet directly. In the more general case, the goal is to deliver packets

as directly as possible from sending node to mobile node without passing through a

home agent. This is sometimes referred to as the “triangle routing problem” since the

path from sender to mobile node via home agent takes two sides of a triangle, rather

than the third side that is the direct path.

The basic idea behind the solution to triangle routing is to let the sending node

know the care-of address of the mobile node. The sending node can then create its

4.3 Global Internet 299

own tunnel to the foreign agent. This is treated as an optimization of the process just

described. If the sender has been equipped with the necessary software to learn the

care-of address and create its own tunnel, then the route can be optimized; if not,

packets just follow the suboptimal route.

When a home agent sees a packet destined for one of the mobile nodes that it

supports, it can deduce that the sender is not using the optimal route. Therefore, it

sends a “binding update” message back to the source, in addition to forwarding the

data packet to the foreign agent. The source, if capable, uses this binding update to

create an entry in a “binding cache,” which consists of a list of mappings from mobile

node addresses to care-of addresses. The next time this source has a data packet to

send to that mobile node, it will find the binding in the cache and can tunnel the packet

directly to the foreign agent.

There is an obvious problem with this scheme, which is that the binding cache

may become out-of-date if the mobile host moves to a new network. If an out-of-date

cache entry is used, the foreign agent will receive tunneled packets for a mobile node

that is no longer registered on its network. In this case, it sends a “binding warning”

message back to the sender to tell it to stop using this cache entry. This scheme works

only in the case where the foreign agent is not the mobile node itself, however. For this

reason, cache entries need to be deleted after some period of time; the exact amount

is specified in the binding update message.

Mobile routing provides some interesting security challenges. For example, an

attacker wishing to intercept the packets destined to some other node in an inter-

network could contact the home agent for that node and announce itself as the new

foreign agent for the node. Thus it is clear that some authentication mechanisms are

required. We discuss such mechanisms in Chapter 8.

Finally, we note that there are many open issues in mobile networking. For

example, the security and performance aspects of mobile networks might require rout-

ing algorithms to take account of several factors when finding a route to a mobile host;

for example, it might be desirable to find a route that doesn’t pass through some un-

trusted network. There is also the problem of “ad hoc” mobile networks—enabling

a group of mobile nodes to form a network in the absence of any fixed nodes. These

continue to be areas of active research.

4.3 Global Internet

At this point, we have seen how to connect a heterogeneous collection of networks to

create an internetwork and how to use the simple hierarchy of the IP address to make

routing in an internet somewhat scalable. We say “somewhat” scalable because even

though each router does not need to know about all the hosts connected to the internet,

300 4 Internetworking

NSFNET backboneStanford

BARRNET
regional

Berkeley
PARC

NCAR

UA

UNM

Westnet
regional

UNL KU

ISU

MidNet
regional…

Figure 4.24 The tree structure of the Internet in 1990.

it does, in the model described so far, need to know about all the networks connected

to the internet. Today’s Internet has tens of thousands of networks connected to it.

Routing protocols such as those we have just discussed do not scale to those kinds of

numbers. This section looks at a variety of techniques that greatly improve scalability

and that have enabled the Internet to grow as far as it has.

Before getting to these techniques, we need to have a general picture in our

heads of what the global Internet looks like. It is not just a random interconnection of

Ethernets, but instead it takes on a shape that reflects the fact that it interconnects many

different organizations. Figure 4.24 gives a simple depiction of the state of the Internet

in 1990. Since that time, the Internet’s topology has grown much more complex than

this figure suggests—we present a more accurate picture of the current Internet in

Section 4.3.3 and Figure 4.29—but this picture will do for now.

One of the salient features of this topology is that it consists of “end user” sites

(e.g., Stanford University) that connect to “service provider” networks (e.g., BARR-

NET was a provider network that served sites in the San Francisco Bay Area). In 1990,

many providers served a limited geographic region and were thus known as regional

networks. The regional networks were, in turn, connected by a nationwide backbone.

In 1990, this backbone was funded by the National Science Foundation (NSF) and

was therefore called the NSFNET backbone. Although the detail is not shown in this

figure, the provider networks are typically built from a large number of point-to-point

links (e.g., DS3 or OC-3 links) that connect to routers; similarly, each end user site

is typically not a single network, but instead consists of multiple physical networks

connected by routers and bridges.

Notice in Figure 4.24 that each provider and end user are likely to be an ad-

ministratively independent entity. This has some significant consequences on routing.

For example, it is quite likely that different providers will have different ideas about

4.3 Global Internet 301

the best routing protocol to use within their network, and on how metrics should

be assigned to links in their network. Because of this independence, each provider’s

network is usually a single autonomous system (AS). We will define this term more

precisely in Section 4.3.3, but for now it is adequate to think of an AS as a network

that is administered independently of other ASs.

The fact that the Internet has a discernible structure can be used to our advantage

as we tackle the problem of scalability. In fact, we need to deal with two related scaling

issues. The first is the scalability of routing. We need to find ways to minimize the

number of network numbers that get carried around in routing protocols and stored

in the routing tables of routers. The second is address utilization—that is, making sure

that the IP address space does not get consumed too quickly.

Throughout this section, we will see the principle of hierarchy used again and

again to improve scalability. We begin with subnetting, which primarily deals with

address space utilization. Next we introduce classless routing or supernetting, which

tackles both address utilization and routing scalability. We then look at how hier-

archy can be used to improve the scalability of routing, both through interdomain

routing and within a single domain. Our final subsection looks at the emerging stan-

dards for IP version 6, the invention of which was largely the result of scalability

concerns.

4.3.1 Subnetting

The original intent of IP addresses was that the network part would uniquely identify

exactly one physical network. It turns out that this approach has a couple of draw-

backs. Imagine a large campus that has lots of internal networks and that decides to

connect to the Internet. For every network, no matter how small, the site needs at least

a class C network address. Even worse, for any network with more than 255 hosts,

they need a class B address. This may not seem like a big deal, and indeed it wasn’t

when the Internet was first envisioned, but there are only a finite number of network

numbers, and there are far fewer class B addresses than class Cs. Class B addresses

tend to be in particularly high demand because you never know if your network might

expand beyond 255 nodes, so it is easier to use a class B address from the start than

to have to renumber every host when you run out of room on a class C network.

The problem we observe here is address assignment inefficiency: A network with two

nodes uses an entire class C network address, thereby wasting 253 perfectly useful

addresses; a class B network with slightly more than 255 hosts wastes over 64,000

addresses.

Assigning one network number per physical network, therefore, uses up the

IP address space potentially much faster than we would like. While we would need

to connect over 4 billion hosts to use up all the valid addresses, we only need to

302 4 Internetworking

connect 214 (about 16,000) class B networks before that part of the address space runs

out. Therefore, we would like to find some way to use the network numbers more

efficiently.

Assigning many network numbers has another drawback that becomes apparent

when you think about routing. Recall that the amount of state that is stored in a node

participating in a routing protocol is proportional to the number of other nodes, and

that routing in an internet consists of building up forwarding tables that tell a router

how to reach different networks. Thus, the more network numbers there are in use,

the bigger the forwarding tables get. Big forwarding tables add cost to routers, and

they are potentially slower to search than smaller tables for a given technology, so they

degrade router performance. This provides another motivation for assigning network

numbers carefully.

Subnetting provides an elegantly simple way to reduce the total number of net-

work numbers that are assigned. The idea is to take a single IP network number

and allocate the IP addresses with that network number to several physical networks,

which are now referred to as subnets. Several things need to be done to make this

work. First, the subnets should be close to each other. This is because at a distant

point in the Internet, they will all look like a single network, having only one network

number between them. This means that a router will only be able to select one route

to reach any of the subnets, so they had better all be in the same general direction. A

perfect situation in which to use subnetting is a large campus or corporation that has

many physical networks. From outside the campus, all you need to know to reach any

subnet inside the campus is where the campus connects to the rest of the Internet. This

is often at a single point, so one entry in your forwarding table will suffice. Even if

there are multiple points at which the campus is connected to the rest of the Internet,

knowing how to get to one point in the campus network is still a good start.

The mechanism by which a single network number can be shared among multiple

networks involves configuring all the nodes on each subnet with a subnet mask. With

simple IP addresses, all hosts on the same network must have the same network number.

The subnet mask enables us to introduce a subnet number; all hosts on the same

physical network will have the same subnet number, which means that hosts may be

on different physical networks but share a single network number.

What the subnet mask effectively does is introduce another level of hierarchy into

the IP address. For example, suppose that we want to share a single class B address

among several physical networks. We could use a subnet mask of 255.255.255.0.

(Subnet masks are written down just like IP addresses; this mask is therefore all 1s in

the upper 24 bits and 0s in the lower 8 bits.) In effect, this means that the top 24 bits

(where the mask has 1s) are now defined to be the network number, and the lower

8 bits (where the mask has 0s) are the host number. Since the top 16 bits identify the

4.3 Global Internet 303

Network number Host number

Class B address

Subnet mask (255.255.255.0)

Subnetted address

111111111111111111111111 00000000

Network number Host IDSubnet ID

Figure 4.25 Subnet addressing.

Subnet mask: 255.255.255.128

Subnet number: 128.96.34.0

128.96.34.15
128.96.34.1

H1 R1

128.96.34.130 Subnet mask: 255.255.255.128

Subnet number: 128.96.34.128

128.96.34.129
128.96.34.139

R2
H2

128.96.33.1
128.96.33.14

Subnet mask: 255.255.255.0

Subnet number: 128.96.33.0

H3

Figure 4.26 An example of subnetting.

network in a class B address, we may now think of the address as having not two parts

but three: a network part, a subnet part, and a host part. That is, we have divided what

used to be the host part into a subnet part and a host part. This is shown in Figure 4.25.

What subnetting means to a host is that it is now configured with both an IP

address and a subnet mask for the subnet to which it is attached. For example, host

H1 in Figure 4.26 is configured with an address of 128.96.34.15 and a subnet mask

of 255.255.255.128. (All hosts on a given subnet are configured with the same mask;

304 4 Internetworking

i.e., there is exactly one subnet mask per subnet.) The bitwise AND of these two

numbers defines the subnet number of the host and of all other hosts on the same

subnet. In this case, 128.96.34.15 AND 255.255.255.128 equals 128.96.34.0, so this

is the subnet number for the topmost subnet in the figure.

When the host wants to send a packet to a certain IP address, the first thing it

does is to perform a bitwise AND between its own subnet mask and the destination

IP address. If the result equals the subnet number of the sending host, then it knows

that the destination host is on the same subnet and the packet can be delivered directly

over the subnet. If the results are not equal, the packet needs to be sent to a router

to be forwarded to another subnet. For example, if H1 is sending to H2, then H1

ANDs its subnet mask (255.255.255.128) with the address for H2 (128.96.34.139) to

obtain 128.96.34.128. This does not match the subnet number for H1 (128.96.34.0)

so H1 knows that H2 is on a different subnet. Since H1 cannot deliver the packet to

H2 directly over the subnet, it sends the packet to its default router R1.

Note that ARP is largely unaffected by the change in address structure. Once a

host or router figures out which node it needs to deliver a packet to on one of the

networks to which it is attached, it performs ARP to find the MAC address for that

node if necessary.

The job of a router also changes when we introduce subnetting. Recall that,

for simple IP, a router has a forwarding table that consists of entries of the form

〈NetworkNum, NextHop〉. To support subnetting, the table must now hold entries of

the form 〈SubnetNumber, SubnetMask, NextHop〉. To find the right entry in the table,

the router ANDs the packet’s destination address with the SubnetMask for each entry

in turn; if the result matches the SubnetNumber of the entry, then this is the right entry

to use, and it forwards the packet to the next hop router indicated. In the example

network of Figure 4.26, router R1 would have the entries shown in Table 4.10.

Continuing with the example of a datagram from H1 being sent to H2, R1

would AND H2’s address (128.96.34.139) with the subnet mask of the first entry

(255.255.255.128) and compare the result (128.96.34.128) with the network number

SubnetNumber SubnetMask NextHop

128.96.34.0 255.255.255.128 Interface 0

128.96.34.128 255.255.255.128 Interface 1

128.96.33.0 255.255.255.0 R2

Table 4.10 Example forwarding table with subnetting for Figure 4.26.

4.3 Global Internet 305

for that entry (128.96.34.0). Since this is not a match, it proceeds to the next entry.

This time a match does occur, so R1 delivers the datagram to H2 using interface 1,

which is the interface connected to the same network as H2.

We can now describe the datagram forwarding algorithm in the following way:

D = destination IP address

for each forwarding table entry 〈SubnetNumber, SubnetMask, NextHop〉
D1 = SubnetMask & D

if D1 = SubnetNumber

if NextHop is an interface

deliver datagram directly to destination

else

deliver datagram to NextHop (a router)

Although not shown in this example, a default router would usually be included in

the table and would be used if no explicit matches were found. We note in passing

that a naive implementation of this algorithm—one involving repeated ANDing of the

destination address with a subnet mask that may not be different every time, and a

linear table search—would be very inefficient.

A few fine points about subnetting need to be mentioned. We have already seen

that the subnet mask does not need to align with a byte boundary, with the example

mask of 255.255.255.128 (25 1s followed by 7 0s) used above. More confusingly, it

is not even necessary for all the 1s in a subnet mask to be contiguous. For example, it

would be quite possible to use a subnet mask of 255.255.1.0. All of the mechanisms

described above should continue to work, but now you can’t look at a contiguous part

of the IP address and say, “That is the subnet number.” This makes administration

more difficult. It may also fail to work with implementations that assume that no one

would use noncontiguous masks, and so it is not recommended in practice.

We can also put multiple subnets on a single physical network. The effect of this

would be to force hosts on the same network to talk to each other through a router,

which might be useful for administrative purposes; for example, to provide isolation

between different departments sharing a LAN.

A third point to which we have alluded is that different parts of the internet see the

world differently. From outside our hypothetical campus, routers see a single network.

In the example above, routers outside the campus see the collection of networks in

Figure 4.26 as just the network 128.96, and they keep one entry in their forwarding

tables to tell them how to reach it. Routers within the campus, however, need to be able

to route packets to the right subnet. Thus, not all parts of the internet see exactly the

same routing information. The next section takes a closer look at how the propagation

of routing information is done in the Internet.

306 4 Internetworking

◮ The bottom line is that subnetting helps solve our scalability problems in two

ways. First, it improves our address assignment efficiency by letting us not use up an

entire class C or class B address every time we add a new physical network. Second, it

helps us aggregate information. From a reasonable distance, a complex collection of

physical networks can be made to look like a single network, so that the amount of

information that routers need to store to deliver datagrams to those networks can be

reduced.

4.3.2 Classless Routing (CIDR)

Classless interdomain routing (CIDR, pronounced “cider”) is a technique that

addresses two scaling concerns in the Internet: the growth of backbone routing ta-

bles as more and more network numbers need to be stored in them, and the potential

for the 32-bit IP address space to be exhausted well before the four-billionth host is

attached to the Internet. We have already mentioned the problem that would cause

this address space exhaustion: address assignment inefficiency. The inefficiency arises

because the IP address structure, with class A, B, and C addresses, forces us to hand

out network address space in fixed-sized chunks of three very different sizes. A net-

work with two hosts needs a class C address, giving an address assignment efficiency

of 2/255 = 0.78%; a network with 256 hosts needs a class B address, for an effi-

ciency of only 256/65,535 = 0.39%. Even though subnetting can help us to assign

addresses carefully, it does not get around the fact that any autonomous system with

more than 255 hosts, or an expectation of eventually having that many, wants a class B

address.

As it turns out, exhaustion of the IP address space centers on exhaustion of the

class B network numbers. One way to deal with that would seem to be saying no to

any AS that requests a class B address unless they can show a need for something

close to 64K addresses, and instead giving them an appropriate number of class C

addresses to cover the expected number of hosts. Since we would now be handing out

address space in chunks of 256 addresses at a time, we could more accurately match

the amount of address space consumed to the size of the AS. For any AS with at least

256 hosts (which means the majority of ASs), we can guarantee an address utilization

of at least 50%, and typically much more.

This solution, however, raises a problem that is at least as serious: excessive

storage requirements at the routers. If a single AS has, say, 16 class C network numbers

assigned to it, that means every Internet backbone router needs 16 entries in its routing

tables for that AS. This is true even if the path to every one of those networks is the

same. If we had assigned a class B address to the AS, the same routing information

could be stored in one table entry. However, our address assignment efficiency would

then be only 16 × 255/65,536 = 6.2%.

4.3 Global Internet 307

CIDR, therefore, tries to balance the desire to minimize the number of routes that

a router needs to know against the need to hand out addresses efficiently. To do this,

CIDR helps us to aggregate routes. That is, it lets us use a single entry in a forwarding

table to tell us how to reach a lot of different networks. As you may have guessed

from the name, it does this by breaking the rigid boundaries between address classes.

To understand how this works, consider our hypothetical AS with 16 class C network

numbers. Instead of handing out 16 addresses at random, we can hand out a block of

contiguous class C addresses. Suppose we assign the class C network numbers from

192.4.16 through 192.4.31. Observe that the top 20 bits of all the addresses in this

range are the same (11000000 00000100 0001). Thus, what we have effectively created

is a 20-bit network number—something that is between a class B network number and

a class C number in terms of the number of hosts that it can support. In other words,

we get both the high address efficiency of handing out addresses in chunks smaller

than a class B network and a single network prefix that can be used in forwarding

tables. Observe that for this scheme to work, we need to hand out blocks of class C

addresses that share a common prefix, which means that each block must contain a

number of class C networks that is a power of two.

All we need now to make CIDR solve our problems is a routing protocol that

can deal with these “classless” addresses, which means that it must understand that

a network number may be of any length. Modern routing protocols (such as BGP-4,

described below) do exactly that. The network numbers that are carried in such a

routing protocol are represented simply by 〈length, value〉 pairs, where the length

gives the number of bits in the network prefix—20 in the above example. Note that

representing a network address in this way is similar to the 〈mask, value〉 approach

used in subnetting, as long as masks consist of contiguous bits starting from the most

significant bit. Also note that we used subnetting to share one address among multiple

physical networks, while CIDR aims to collapse the multiple addresses that would be

assigned to a single AS onto one address. The similarity between the two approaches

is reflected in the original name for CIDR—supernetting.

In fact, the ability to aggregate routes in the way that we have just shown is

only the first step. Imagine an Internet service provider network, whose primary job

is to provide Internet connectivity to a large number of corporations and campuses.

If we assign network numbers to the corporations in such a way that all the different

corporations connected to the provider network share a common address prefix, then

we can get even greater aggregation of routes. Consider the example in Figure 4.27.

The two corporations served by the provider network have been assigned adjacent 20-

bit network prefixes. Since both of the corporations are reachable through the same

provider network, it can advertise a single route to both of them by just advertising the

common 19-bit prefix they share. In general, it is possible to aggregate routes repeatedly

if addresses are assigned carefully. This means that we need to pay attention to which

308 4 Internetworking

Border gateway
(advertises path to
11000000000001)

Regional network

Corporation X
(11000000000001000001)

Corporation Y
(11000000000001000000)

Figure 4.27 Route aggregation with CIDR.

provider a corporation is attached to before assigning it an address if this scheme is to

work. One way to accomplish that is to assign a portion of address space to the provider

and then to let the network provider assign addresses from that space to its customers.

IP Forwarding Revisited

In all our discussion of IP forwarding so far, we have assumed that we could find the

network number in a packet and then look up that number in a forwarding table.

However, now that we have introduced CIDR, we need to reexamine this assumption.

CIDR means that prefixes may be of any length, from 2 to 32 bits. Furthermore, it is

sometimes possible to have prefixes in the forwarding table that “overlap,” in the sense

that some addresses may match more than one prefix. For example, we might find both

171.69 (a 16-bit prefix) and 171.69.10 (a 24-bit prefix) in the forwarding table of a

single router. In this case, a packet destined to, say, 171.69.10.5 clearly matches both

prefixes. The rule in this case is based on the principle of “longest match”; that is, the

packet matches the longest prefix, which would be 171.69.10 in this example. On the

other hand, a packet destined to 171.69.20.5 would match 171.69 and not 171.69.10,

and in the absence of any other matching entry in the routing table, 171.69 would be

the longest match.

The task of efficiently finding the longest match between an IP address and the

variable-length prefixes in a forwarding table has been a fruitful field of research

in recent years, and the “Further Reading” section of this chapter provides some

references. The most well-known algorithm uses an approach known as a PATRICIA

tree, which was actually developed well in advance of CIDR.

4.3.3 Interdomain Routing (BGP)

At the beginning of this section we introduced the notion that the Internet is organized

as autonomous systems, each of which is under the control of a single administrative

entity. A corporation’s complex internal network might be a single AS, as may the

4.3 Global Internet 309

R1

Autonomous system 1
R2

R3

Autonomous system 2
R4

R5 R6

Figure 4.28 A network with two autonomous systems.

network of a single Internet service provider. Figure 4.28 shows a simple network

with two autonomous systems.

The basic idea behind autonomous systems is to provide an additional way to

hierarchically aggregate routing information in a large internet, thus improving scal-

ability. We now divide the routing problem into two parts: routing within a single

autonomous system and routing between autonomous systems. Since another name

for autonomous systems in the Internet is routing domains, we refer to the two parts

of the routing problem as interdomain routing and intradomain routing. In addition

to improving scalability, the AS model decouples the intradomain routing that takes

place in one AS from that taking place in another. Thus, each AS can run whatever

intradomain routing protocols it chooses. It can even use static routes or multiple pro-

tocols if desired. The interdomain routing problem is then one of having different ASs

share reachability information with each other.

One feature of the autonomous system idea is that it enables some ASs to dra-

matically reduce the amount of routing information they need to care about by using

default routes. For example, if a corporate network is connected to the rest of the

310 4 Internetworking

Internet by a single router (this router is typically called a border router since it sits

at the boundary between the AS and the rest of the Internet), then it is pretty easy

for a host or router inside the autonomous system to figure out where it should send

packets that are headed for a destination outside of this AS—they first go to the AS’s

border router. This is the default route. Similarly, a regional Internet service provider

can keep track of how to reach the networks of all its directly connected customers and

can have a default route to some other provider (typically a backbone provider) for

everyone else. Of course, this passing of the buck has to stop at some point; eventually

the packet should reach a router connected to a backbone network that knows how

to reach everything. Managing the amount of routing information in the backbones is

an important issue that we discuss below.

There have been two major interdomain routing protocols in the recent history of

the Internet. The first was the Exterior Gateway Protocol (EGP). EGP had a number of

limitations, perhaps the most severe of which was that it constrained the topology of the

Internet rather significantly. EGP basically forced a treelike topology onto the Internet,

or to be more precise, it was designed when the Internet had a treelike topology, such

as that illustrated in Figure 4.24. EGP did not allow for the topology to become more

general. Note that in this simple treelike structure, there is a single backbone, and

autonomous systems are connected only as parents and children and not as peers.

The replacement for EGP is the Border Gateway Protocol (BGP), which is in its

fourth version at the time of this writing (BGP-4). BGP is also known for being rather

complex. This section presents the highlights of BGP-4.

As a starting position, BGP assumes that the Internet is an arbitrarily intercon-

nected set of ASs. This model is clearly general enough to accommodate non-tree-

structured internetworks, like the simplified picture of today’s multibackbone Internet

shown in Figure 4.29.6

Unlike the simple tree-structured Internet shown in Figure 4.24, today’s Internet

consists of an interconnection of multiple backbone networks (they are usually called

service provider networks, and they are operated by private companies rather than

the government), and sites are connected to each other in arbitrary ways. Some large

corporations connect directly to one or more of the backbones, while others connect

to smaller, nonbackbone service providers. Many service providers exist mainly to

provide service to “consumers” (i.e., individuals with PCs in their homes), and these

providers must also connect to the backbone providers. Often many providers arrange

to interconnect with each other at a single “peering point.” In short, it is hard to discern

much structure at all in today’s Internet.

6In an interesting stretch of metaphor, the Internet now has multiple backbones, having had only one for most of
its early life. The authors know of no other animal that has this characteristic.

4.3 Global Internet 311

Backbone service provider

Peering
point

Peering
point

Large corporation

Large corporation

Small
corporation

“Consumer” ISP

“Consumer” ISP

“Consumer” ISP

Figure 4.29 Today’s multibackbone Internet.

Given this rough sketch of the Internet, if we define local traffic as traffic that

originates at or terminates on nodes within an AS, and transit traffic as traffic that

passes through an AS, we can classify ASs into three types:

■ Stub AS: an AS that has only a single connection to one other AS; such an

AS will only carry local traffic. The small corporation in Figure 4.29 is an

example of a stub AS.

■ Multihomed AS: an AS that has connections to more than one other AS but

that refuses to carry transit traffic; for example, the large corporation at the

top of Figure 4.29.

■ Transit AS: an AS that has connections to more than one other AS and that is

designed to carry both transit and local traffic, such as the backbone providers

in Figure 4.29.

Whereas the discussion of routing in Section 4.2 focused on finding optimal paths

based on minimizing some sort of link metric, the problem of interdomain routing turns

out to be so difficult that the goals are more modest. First and foremost, the goal is

to find any path to the intended destination that is loop-free. That is, we are more

concerned with reachability than optimality. Finding a path that is anywhere close to

optimal is considered a great achievement. We will see why this is so as we look at the

details of BGP.

There are a few reasons why interdomain routing is hard. The first is simply

a matter of scale. An Internet backbone router must be able to forward any packet

destined anywhere in the Internet. That means having a routing table that will provide

a match for any valid IP address. While CIDR has helped to control the number of

312 4 Internetworking

distinct prefixes that are carried in the Internet’s backbone routing, there is inevitably

a lot of routing information to pass around—on the order of 140,000 prefixes at the

time of writing.

The second challenge in interdomain routing arises from the autonomous nature

of the domains. Note that each domain may run its own interior routing protocols and

use any scheme it chooses to assign metrics to paths. This means that it is impossible

to calculate meaningful path costs for a path that crosses multiple ASs. A cost of 1000

across one provider might imply a great path, but it might mean an unacceptably bad

one from another provider. As a result, interdomain routing advertises only “reacha-

bility.” The concept of reachability is basically a statement that “you can reach this

network through this AS.” This means that for interdomain routing to pick an optimal

path is essentially impossible.

The third challenge involves the issue of trust. Provider A might be unwilling to

believe certain advertisements from provider B for fear that provider B will advertise

erroneous routing information. For example, trusting provider B when he advertises

a great route to anywhere in the Internet can be a disastrous choice if provider B turns

out to have made a mistake configuring his routers or to have insufficient capacity to

carry the traffic.

Closely related to this issue is the need to support very flexible policies in inter-

domain routing. One common policy is the prevention of transit traffic. For example,

the multihomed corporation in Figure 4.29 may not wish to carry any traffic between

the two providers to whom it connects. As a more complex example, provider A might

wish to implement policies that say, “Use provider B only to reach these addresses,”

“Use the path that crosses the fewest number of ASs,” or “Use AS x in preference to

AS y.” The goal is to specify policies that lead to “good” paths, if not to optimal ones.

When configuring BGP, the administrator of each AS picks at least one node to

be a “BGP speaker,” which is essentially a spokesperson for the entire AS. That BGP

speaker establishes BGP sessions to other BGP speakers in other ASs. These sessions

are used to exchange reachability information among ASs.

In addition to the BGP speakers, the AS has one or more border “gateways,”

which need not be the same as the speakers. The border gateways are the routers

through which packets enter and leave the AS. In our simple example in Figure 4.28,

routers R2 and R4 would be border gateways. Note that we have avoided using the

word “gateway” until this point because it tends to be confusing. We can’t avoid it here,

given the name of the protocol we are describing. The important point to understand

here is that, in the context of interdomain routing, a border gateway is simply an IP

router that is charged with the task of forwarding packets between ASs.

BGP does not belong to either of the two main classes of routing protocols

(distance-vector and link-state protocols) described in Section 4.2. Unlike these

4.3 Global Internet 313

Regional provider A
(AS 2)

Regional provider B
(AS 3)

Customer P
(AS 4)

Customer Q
(AS 5)

Customer R
(AS 6)

Customer S
(AS 7)

128.96
192.4.153

192.4.32
192.4.3

192.12.69

192.4.54
192.4.23

Backbone network
(AS 1)

Figure 4.30 Example of a network running BGP.

protocols, BGP advertises complete paths as an enumerated list of ASs to reach a

particular network. This is necessary to enable the sorts of policy decisions described

above to be made in accordance with the wishes of a particular AS. It also enables

routing loops to be readily detected.

To see how this works, consider the example network in Figure 4.30. Assume

that the providers are transit networks, while the customer networks are stubs. A BGP

speaker for the AS of provider A (AS 2) would be able to advertise reachability in-

formation for each of the network numbers assigned to customers P and Q. Thus, it

would say, in effect, “The networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can

be reached directly from AS 2.” The backbone network, on receiving this advertise-

ment, can advertise, “The networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can

be reached along the path 〈AS 1, AS 2〉.” Similarly, it could advertise, “The networks

192.12.69, 192.4.54, and 192.4.23 can be reached along the path 〈AS 1, AS 3〉.”
An important job of BGP is to prevent the establishment of looping paths. For

example, consider three interconnected ASs, 1, 2, and 3. Suppose AS 1 learns that

it can reach network 10.0.1 through AS 2, so it advertises this fact to AS 3, who in

turn advertises it back to AS 2. AS 2 could now decide that AS 3 was the place to

send packets destined for 10.0.1; AS 3 sends them to AS 1; AS 1 sends them back to

AS 2; and they would loop forever. This is prevented by carrying the complete AS path

in the routing messages. In this case, the advertisement received by AS 2 from AS 3

would contain an AS path of 〈AS 3, AS 1, AS 2〉. AS 2 sees itself in this path, and thus

concludes that this is not a useful path for it to use.

It should be apparent that the AS numbers carried in BGP need to be unique.

For example, AS 2 can only recognize itself in the AS path in the above example if

314 4 Internetworking

no other AS identifies itself in the same way. AS numbers are 16-bit numbers assigned

by a central authority to assure uniqueness. While 16 bits only allows about 65,000

ASs, which might not seem like a lot, we note that stub ASs do not need a unique AS

number, and this covers the overwhelming majority of nonprovider networks.

We should note that a given AS will only advertise routes that it considers good

enough for itself. That is, if a BGP speaker has a choice of several different routes to a

destination, it will choose the best one according to its own local policies, and then that

will be the route it advertises. Furthermore, a BGP speaker is under no obligation to

advertise any route to a destination, even if it has one. This is how an AS can implement

a policy of not providing transit—by refusing to advertise routes to prefixes that are

not contained within that AS, even if it knows how to reach them.

In addition to advertising paths, BGP speakers need to be able to cancel previously

advertised paths if a critical link or node on a path goes down. This is done with a form

of negative advertisement known as a withdrawn route. Both positive and negative

reachability information are carried in a BGP update message, the format of which is

shown in Figure 4.31. (Note that the fields in this figure are multiples of 16 bits, unlike

other packet formats in this chapter.)

One point to note about BGP-4 is that it was designed to cope with the classless

addresses described in Section 4.3.2. This means that the “networks” that are adver-

tised in BGP are actually prefixes of any length. Thus, the updates contain both the

prefix itself and its length in bits. When writing these down, it is common to write

prefix/length. For example, a CIDR prefix that begins 192.4.16 and is 20 bits long

would be written as 192.4.16/20.

0 15

Unfeasible routes

length

Withdrawn routes

(variable)

Total path

attribute length

Path attributes

(variable)

Network layer

reachability info

(variable)

Figure 4.31 BGP-4 update packet format.

4.3 Global Internet 315

A final point to note is that BGP is defined to run on top of TCP, the reliable

transport protocol described in Section 5.2. Because BGP speakers can count on TCP

to be reliable, this means that any information that has been sent from one speaker to

another does not need to be sent again. Thus, as long as nothing has changed, a BGP

speaker can simply send an occasional “keepalive” message that says, in effect, “I’m

still here and nothing has changed.” If that router were to crash, it would stop sending

the keepalives, and the other routers that had learned routes from it would know that

those routes were no longer valid.

We will not delve further into the details of BGP-4, except to point out that all

the protocol does is specify how reachability information should be exchanged among

autonomous systems. BGP speakers obtain enough information by this exchange to

calculate loop-free routes to all reachable networks, but how they choose the “best”

routes is largely left to the policies of the AS.

◮ Let’s return to the real question: How does all this help us to build scalable

networks? First, the number of nodes participating in BGP is on the order of the

number of ASs, which is much smaller than the number of networks. Second, finding

a good interdomain route is only a matter of finding a path to the right border router,

of which there are only a few per AS. Thus, we have neatly subdivided the routing

problem into manageable parts, once again using a new level of hierarchy to increase

scalability. The complexity of interdomain routing is now on the order of the number

of ASs, and the complexity of intradomain routing is on the order of the number of

networks in a single AS.

Integrating Interdomain and Intradomain Routing

While the preceding discussion illustrates how a BGP speaker learns interdomain rout-

ing information, the question still remains as to how all the other routers in a domain

get this information. There are several ways this problem can be addressed.

We have already alluded to one very simple situation, which is also very common.

In the case of a stub AS that only connects to other ASs at a single point, the border

router is clearly the only choice for all routes that are outside the AS. Such a router

can “inject” a default route into the intradomain routing protocol. In effect, this is a

statement that any network that has not been explicitly advertised in the intradomain

protocol is reachable through the border router. Recall from the discussion of IP for-

warding in Section 4.1 that the default entry in the forwarding table comes after all

the more specific entries, and it matches anything that failed to match a specific entry.

The next step up in complexity is to have the border routers inject specific routes

they have learned from outside the AS. Consider, for example, the border router of a

provider AS that connects to a customer AS. That router could learn that the network

prefix 192.4.54/24 is located inside the customer AS, either through BGP or because

316 4 Internetworking

the information is configured into the border router. It could inject a route to that

prefix into the routing protocol running inside the provider AS. This would be an

advertisement of the sort “I have a link to 192.4.54/24 of cost X.” This would cause

other routers in the provider AS to learn that this border router is the place to send

packets destined for that prefix.

The final level of complexity comes in backbone networks, which learn so much

routing information from BGP that it becomes too costly to inject it into the intrado-

main protocol. For example, if a border router wants to inject 10,000 prefixes that

it learned about from another AS, it will have to send very big link-state packets to

the other routers in that AS, and their shortest-path calculations are going to become

very complex. For this reason, the routers in a backbone network use a variant of BGP

called interior BGP (IBGP) to effectively redistribute the information that is learned

by the BGP speakers at the edges of the AS to all the other routers in the AS. IBGP

enables any router in the AS to learn the best border router to use when sending a

packet to any address. At the same time, each router in the AS keeps track of how to

get to each border router using a conventional intradomain protocol with no injected

information. By combining these two sets of information, each router in the AS is able

to determine the appropriate next hop for all prefixes.

4.3.4 Routing Areas

As if we didn’t already have enough hierarchy, link-state intradomain routing protocols

provide a means to partition a routing domain into subdomains called areas. (The

terminology varies somewhat among protocols; we use the OSPF terminology here.)

By adding this extra level of hierarchy, we enable single domains to grow larger without

overburdening the intradomain routing protocols.

An area is a set of routers that are administratively configured to exchange link-

state information with each other. There is one special area—the backbone area, also

known as area 0. An example of a routing domain divided into areas is shown in

Figure 4.32. Routers R1, R2, and R3 are members of the backbone area. They are

also members of at least one nonbackbone area; R1 is actually a member of both area 1

and area 2. A router that is a member of both the backbone area and a nonbackbone

area is an area border router (ABR). Note that these are distinct from the routers

that are at the edge of an AS, which are referred to as AS border routers for clarity.

Routing within a single area is exactly as described in Section 4.2.3. All the

routers in the area send link-state advertisements to each other, and thus develop a

complete, consistent map of the area. However, the link-state advertisements of routers

that are not area border routers do not leave the area in which they originated. This has

the effect of making the flooding and route calculation processes considerably more

scalable. For example, router R4 in area 3 will never see a link-state advertisement

4.3 Global Internet 317

Area 1
Area 0

Area 3

Area 2

R9

R8

R7

R1

R5R6

R4

R3

R2

Figure 4.32 A domain divided into areas.

from router R8 in area 1. As a consequence, it will know nothing about the detailed

topology of areas other than its own.

How, then, does a router in one area determine the right next hop for a packet

destined to a network in another area? The answer to this becomes clear if we imagine

the path of a packet that has to travel from one nonbackbone area to another as being

split into three parts. First, it travels from its source network to the backbone area,

then it crosses the backbone, then it travels from backbone to destination network.

To make this work, the area border routers summarize routing information that they

have learned from one area and make it available in their advertisements to other

areas. For example, R1 receives link-state advertisements from all the routers in area 1

and can thus determine the cost of reaching any network in area 1. When R1 sends

link-state advertisements into area 0, it advertises the costs of reaching the networks

in area 1 much as if all those networks were directly connected to R1. This enables all

the area 0 routers to learn the cost to reach all networks in area 1. The area border

routers then summarize this information and advertise it into the nonbackbone areas.

Thus, all routers learn how to reach all networks in the domain.

Note that in the case of area 2, there are two ABRs, and that routers in area 2

will thus have to make a choice as to which one they use to reach the backbone. This

is easy enough, since both R1 and R2 will be advertising costs to various networks,

so that it will become clear which is the better choice as the routers in area 2 run their

shortest-path algorithm. For example, it is pretty clear that R1 is going to be a better

choice than R2 for destinations in area 1.

318 4 Internetworking

When dividing a domain into areas, the network administrator makes a trade-

off between scalability and optimality of routing. The use of areas forces all packets

traveling from one area to another to go via the backbone area, even if a shorter path

might have been available. For example, even if R4 and R5 were directly connected,

packets would not flow between them because they are in different nonbackbone areas.

It turns out that the need for scalability is often more important than the need to use

the absolute shortest path.

◮ This illustrates an important principle in network design. There is frequently

a trade-off between some sort of optimality and scalability. When hierarchy is in-

troduced, information is hidden from some nodes in the network, hindering their

ability to make perfectly optimal decisions. However, information hiding is essential

to scalability, since it saves all nodes from having global knowledge. It is invariably

true in large networks that scalability is a more pressing design goal than perfect

optimality.

Finally, we note that there is a trick by which network administrators can more

flexibly decide which routers go in area 0. This trick uses the idea of a “virtual link”

between routers. Such a virtual link is obtained by configuring a router that is not

directly connected to area 0 to exchange backbone routing information with a router

that is. For example, a virtual link could be configured from R8 to R1, thus making R8

part of the backbone. R8 would now participate in link-state advertisement flooding

with the other routers in area 0. The cost of the virtual link from R8 to R1 is determined

by the exchange of routing information that takes place in area 1. This technique can

help to improve the optimality of routing.

4.3.5 IP Version 6 (IPv6)

In many respects, the motivation for a new version of IP is the same as the motivation

for the techniques described in the last section: to deal with scaling problems caused

by the Internet’s massive growth. Subnetting and CIDR have helped to contain the rate

at which the Internet address space is being consumed (the address depletion problem)

and have also helped to control the growth of routing table information needed in

the Internet’s routers (the routing information problem). However, there will come a

point at which these techniques are no longer adequate. In particular, it is virtually

impossible to achieve 100% address utilization efficiency, so the address space will

be exhausted well before the four-billionth host is connected to the Internet. Even if

we were able to use all four billion addresses, it’s not too hard to imagine ways that

number could be exhausted, such as the assignment of IP addresses to set-top boxes for

cable TV or to electricity meters. All of these possibilities argue that a bigger address

space than that provided by 32 bits will eventually be needed.

4.3 Global Internet 319

Historical Perspective

The IETF began looking at the problem of expanding the IP address space in 1991,

and several alternatives were proposed. Since the IP address is carried in the header

of every IP packet, increasing the size of the address dictates a change in the packet

header. This means a new version of the Internet Protocol, and as a consequence, a

need for new software for every host and router in the Internet. This is clearly not a

trivial matter—it is a major change that needs to be thought about very carefully.

The effort to define a new version of IP was known as IP Next Generation, or

IPng. As the work progressed, an official IP version number was assigned, so IPng

is now known as IPv6. Note that the version of IP discussed so far in this chapter

is version 4 (IPv4). The apparent discontinuity in numbering is the result of version

number 5 being used for an experimental protocol some years ago.

The significance of the change to a new version of IP caused a snowball effect.

The general feeling among network designers was that if you are going to make a

change of this magnitude, you might as well fix as many other things in IP as possible

at the same time. Consequently, the IETF solicited white papers from anyone who

cared to write one, asking for input on the features that might be desired in a new

version of IP. In addition to the need to accommodate scalable routing and addressing,

some of the other wish list items for IPng were

■ support for real-time services

■ security support

■ autoconfiguration (i.e., the ability of hosts to automatically configure them-

selves with such information as their own IP address and domain name)

■ enhanced routing functionality, including support for mobile hosts

It is interesting to note that while many of these features were absent from IPv4 at the

time IPv6 was being designed, support for all of them has made its way into IPv4 in

recent years.

In addition to the wish list, one absolutely nonnegotiable feature for IPng was

that there must be a transition plan to move from the current version of IP (version 4)

to the new version. With the Internet being so large and having no centralized control,

it would be completely impossible to have a “flag day” on which everyone shut down

their hosts and routers and installed a new version of IP. Thus, there will probably be

a long transition period in which some hosts and routers will run IPv4 only, some will

run IPv4 and IPv6, and some will run IPv6 only.

The IETF appointed a committee called the IPng Directorate to collect all the

inputs on IPng requirements and to evaluate proposals for a protocol to become IPng.

Over the life of this committee there were a number of proposals, some of which

320 4 Internetworking

merged with other proposals, and eventually one was chosen by the Directorate to be

the basis for IPng. That proposal was called SIPP (Simple Internet Protocol Plus). SIPP

originally called for a doubling of the IP address size to 64 bits. When the Directorate

selected SIPP, they stipulated several changes, one of which was another doubling of

the address to 128 bits (16 bytes). It was around this time that the version number 6

was assigned. The rest of this section describes some of the main features of IPv6. At

the time of this writing, most of the key specifications for IPv6 are Proposed or Draft

Standards in the IETF.

Addresses and Routing

First and foremost, IPv6 provides a 128-bit address space, as opposed to the 32 bits of

version 4. Thus, while version 4 can potentially address four billion nodes if address

assignment efficiency reaches 100%, IPv6 can address 3.4×1038 nodes, again assuming

100% efficiency. As we have seen, though, 100% efficiency in address assignment is

not likely. Some analysis of other addressing schemes, such as those of the French

and U.S. telephone networks, as well as that of IPv4, have turned up some empirical

numbers for address assignment efficiency. Based on the most pessimistic estimates of

efficiency drawn from this study, the IPv6 address space is predicted to provide over

1500 addresses per square foot of the earth’s surface, which certainly seems like it

should serve us well even when toasters on Venus have IP addresses.

Address Space Allocation

IPv6 addresses do not have classes, but the address space is still subdivided in vari-

ous ways based on the leading bits. Rather than specifying different address classes,

the leading bits specify different uses of the IPv6 address. The current assignment of

prefixes is listed in Table 4.11.

This allocation of the address space turns out to be easier to explain than it

looks. First, the entire functionality of IPv4’s three main address classes (A, B, and C)

is contained inside the 001 prefix. Aggregatable Global Unicast Addresses, as we will

see shortly, are a lot like classless IPv4 addresses, only much longer. These are the main

ones of interest at this point, with one-eighth of the address space allocated to this

important form of address. Obviously, large chunks of address space have been left

unassigned to allow for future growth and new features. Two portions of the address

space (0000 001 and 0000 010) have been reserved for encoding of other (non-IP)

address schemes. NSAP addresses are used by the ISO protocols, and IPX addresses

are used by Novell’s network-layer protocol.

The idea behind “link local use” addresses is to enable a host to construct an

address that will work on the network to which it is connected without being concerned

about global uniqueness of the address. This may be useful for autoconfiguration, as

4.3 Global Internet 321

Prefix Use

0000 0000 Reserved

0000 0001 Unassigned

0000 001 Reserved for NSAP allocation

0000 010 Reserved for IPX allocation

0000 011 Unassigned

0000 1 Unassigned

0001 Unassigned

001 Aggregatable Global Unicast Addresses

010 Unassigned

011 Unassigned

100 Unassigned

101 Unassigned

110 Unassigned

1110 Unassigned

1111 0 Unassigned

1111 10 Unassigned

1111 110 Unassigned

1111 1110 0 Unassigned

1111 1110 10 Link local use addresses

1111 1110 11 Site local use addresses

1111 1111 Multicast addresses

Table 4.11 Address prefix assignments for IPv6.

322 4 Internetworking

we will see below. Similarly, the “site local

use” addresses are intended to allow valid

addresses to be constructed on a site (e.g., a

private corporate network) that is not con-

nected to the larger Internet; again, global

uniqueness need not be an issue.

Finally, the multicast address space is

for multicast, thereby serving the same role

as class D addresses in IPv4. Note that mul-

ticast addresses are easy to distinguish—

they start with a byte of all 1s. We will see

how these addresses are used in Section 4.4.

Within the reserved address space (ad-

dresses beginning with a byte of 0s) are some

important special types of addresses. A node

may be assigned an “IPv4-compatible IPv6

address” by zero-extending a 32-bit IPv4

address to 128 bits. A node that is only capa-

ble of understanding IPv4 can be assigned

an “IPv4-mapped IPv6 address” by prefix-

ing the 32-bit IPv4 address with 2 bytes of

all 1s and then zero-extending the result to

128 bits. These two special address types

have uses in the IPv4-to-IPv6 transition (see

the sidebar on this topic).

Address Notation

Just as with IPv4, there is some special not-

ation for writing down IPv6 addresses. The

standard representation is x:x:x:x:x:x:x:x,

where each “x” is a hexadecimal represen-

tation of a 16-bit piece of the address. An

example would be

47CD:1234:4422:ACO2:0022:1234:A456:0124

Any IPv6 address can be written using

this notation. Since there are a few spe-

cial types of IPv6 addresses, there are some

special notations that may be helpful in

Transition from IPv4

to IPv6

The most important idea behind

the transition from IPv4 to IPv6

is that the Internet is far too big

and decentralized to have a “flag

day”—one specified day on which

every host and router is upgraded

from IPv4 to IPv6. Thus, IPv6 needs

to be deployed incrementally in

such a way that hosts and routers

that only understand IPv4 can con-

tinue to function for as long as pos-

sible. Ideally, IPv4 nodes should be

able to talk to other IPv4 nodes

and some set of other IPv6-capable

nodes indefinitely. Also, IPv6 hosts

should be capable of talking to

other IPv6 nodes even when some

of the infrastructure between them

may only support IPv4. Two major

mechanisms have been defined

to help this transition: dual-stack

operation and tunneling.

The idea of dual stacks is fairly

straightforward: IPv6 nodes run

both IPv6 and IPv4 and use the

Version field to decide which stack

should process an arriving packet.

In this case, the IPv6 address could

be unrelated to the IPv4 address,

or it could be the “IPv4-mapped

IPv6 address” described earlier in

this section.

The basic tunneling technique,

in which an IP packet is sent as

4.3 Global Internet 323

the payload of another IP packet,

was described in Section 4.1. For

IPv6 transition, tunneling is used to

send an IPv6 packet over a piece

of the network that only under-

stands IPv4. This means that the

IPv6 packet is encapsulated within

an IPv4 header that has the address

of the tunnel endpoint in its header,

is transmitted across the IPv4-only

piece of network, and then is decap-

sulated at the endpoint. The end-

point could be either a router or

a host; in either case, it must be

IPv6-capable to be able to process

the IPv6 packet after decapsula-

tion. If the endpoint is a host with

an IPv4-mapped IPv6 address, then

tunneling can be done automati-

cally, by extracting the IPv4 address

from the IPv6 address and using

it to form the IPv4 header. Other-

wise, the tunnel must be configured

manually. In this case, the encap-

sulating node needs to know the

IPv4 address of the other end of

the tunnel, since it cannot be ex-

tracted from the IPv6 header. From

the perspective of IPv6, the other

end of the tunnel looks like a reg-

ular IPv6 node that is just one

hop away, even though there may

be many hops of IPv4 infrastruc-

ture between the tunnel endpoints.

certain circumstances. For example, an ad-

dress with a large number of contiguous 0s

can be written more compactly by omitting

all the 0 fields. Thus

47CD:0000:0000:0000:0000:0000:A456:0124

could be written

47CD::A456:0124

Clearly, this form of shorthand can only

be used for one set of contiguous 0s in an

address to avoid ambiguity.

Since there are two types of IPv6

addresses that contain an embedded IPv4

address, these have their own special no-

tation that makes extraction of the IPv4

address easier. For example, the “IPv4-

mapped IPv6 address” of a host whose IPv4

address was 128.96.33.81 could be written

as

::FFFF:128.96.33.81

That is, the last 32 bits are written in IPv4

notation, rather than as a pair of hexadec-

imal numbers separated by a colon. Note

that the double colon at the front indicates

the leading 0s.

Aggregatable Global Unicast

Addresses

By far the most important thing that IPv6

must provide when it is deployed is plain

old unicast addressing. It must do this in a

way that supports the rapid rate of addition

of new hosts to the Internet and that allows

routing to be done in a scalable way as the

number of physical networks in the Inter-

net grows. Thus, at the heart of IPv6 is the

324 4 Internetworking

unicast address allocation plan that determines how addresses beginning with the 001

prefix will be assigned to service providers, autonomous systems, networks, hosts, and

routers.

In fact, the address allocation plan that is proposed for IPv6 unicast addresses

is extremely similar to that being deployed with CIDR in IPv4. To understand how

it works and how it provides scalability, it is helpful to define some new terms. We

may think of a nontransit AS (i.e., a stub or multihomed AS) as a subscriber, and we

may think of a transit AS as a provider. Furthermore, we may subdivide providers into

direct and indirect. The former are directly connected to subscribers. The latter pri-

marily connect other providers, are not connected directly to subscribers, and are often

known as backbone networks.

With this set of definitions, we can see that the Internet is not just an arbitrarily

interconnected set of ASs; it has some intrinsic hierarchy. The difficulty is in making

use of this hierarchy without inventing mechanisms that fail when the hierarchy is not

strictly observed, as happened with EGP. For example, the distinction between direct

and indirect providers becomes blurred when a subscriber connects to a backbone or

when a direct provider starts connecting to many other providers.

As with CIDR, the goal of the IPv6 address allocation plan is to provide aggre-

gation of routing information to reduce the burden on intradomain routers. Again,

the key idea is to use an address prefix—a set of contiguous bits at the most significant

end of the address—to aggregate reachability information to a large number of net-

works and even to a large number of ASs. The main way to achieve this is to assign an

address prefix to a direct provider and then for that direct provider to assign longer

prefixes that begin with that prefix to its subscribers. This is exactly what we observed

in Figure 4.27. Thus, a provider can advertise a single prefix for all of its subscribers.

Of course, the drawback is that if a site decides to change providers, it will

need to obtain a new address prefix and renumber all the nodes in the site. This

could be a colossal undertaking, enough to dissuade most people from ever changing

providers. For this reason, there is ongoing research on other addressing schemes, such

as geographic addressing, in which a site’s address is a function of its location rather

than the provider to which it attaches. At present, however, provider-based addressing

is necessary to make routing work efficiently.

Note that while IPv6 address assignment is essentially equivalent to the way

address assignment has happened in IPv4 since the introduction of CIDR, IPv6 has

the significant advantage of not having a large installed base of assigned addresses to

fit into its plans.

One question is whether it makes sense for hierarchical aggregation to take place

at other levels in the hierarchy. For example, should all providers obtain their address

prefixes from within a prefix allocated to the backbone to which they connect? Given

that most providers connect to multiple backbones, this probably doesn’t make sense.

4.3 Global Internet 325

125–m–n–o–pponm3

SubscriberIDProviderIDRegistryID010 InterfaceIDSubnetID

Figure 4.33 An IPv6 provider-based unicast address.

Also, since the number of providers is much smaller than the number of sites, the

benefits of aggregating at this level are much less.

One place where aggregation may make sense is at the national or continental

level. Continental boundaries form natural divisions in the Internet topology, and

if all addresses in Europe, for example, had a common prefix, then a great deal of

aggregation could be done, so that most routers in other continents would only need

one routing table entry for all networks with the Europe prefix. Providers in Europe

would all select their prefixes such that they began with the European prefix. Using

this scheme, an IPv6 address might look like Figure 4.33. The RegistryID might be an

identifier assigned to a European address registry, with different IDs assigned to other

continents or countries. Note that prefixes would be of different lengths under this

scenario. For example, a provider with few customers could have a longer prefix (and

thus less total address space available) than one with many customers.

One tricky situation could occur when a subscriber is connected to more than

one provider. Which prefix should the subscriber use for his or her site? There is no

perfect solution to the problem. For example, suppose a subscriber is connected to two

providers X and Y. If the subscriber takes his prefix from X, then Y has to advertise a

prefix that has no relationship to its other subscribers and that as a consequence cannot

be aggregated. If the subscriber numbers part of his AS with the prefix of X and part

with the prefix of Y, he runs the risk of having half his site become unreachable if the

connection to one provider goes down. One solution that works fairly well if X and Y

have a lot of subscribers in common is for them to have three prefixes between them:

one for subscribers of X only, one for subscribers of Y only, and one for the sites that

are subscribers of both X and Y.

Packet Format

Despite the fact that IPv6 extends IPv4 in several ways, its header format is actually

simpler. This simplicity is due to a concerted effort to remove unnecessary functionality

from the protocol. Figure 4.34 shows the result. (For comparison with IPv4, see the

header format shown in Figure 4.3.)

As with many headers, this one starts with a Version field, which is set to 6 for

IPv6. The Version field is in the same place relative to the start of the header as IPv4’s

Version field so that header-processing software can immediately decide which header

326 4 Internetworking

Version TrafficClass FlowLabel

PayloadLen NextHeader HopLimit

SourceAddress

DestinationAddress

0 4 12 16 24 31

Next header/data

Figure 4.34 IPv6 packet header.

format to look for. The TrafficClass and FlowLabel fields both relate to quality of

service issues, as discussed in Section 6.5.

The PayloadLen field gives the length of the packet, excluding the IPv6 header,

measured in bytes. The NextHeader field cleverly replaces both the IP options and

the Protocol field of IPv4. If options are required, then they are carried in one or

more special headers following the IP header, and this is indicated by the value of the

NextHeader field. If there are no special headers, the NextHeader field is the demux

key identifying the higher-level protocol running over IP (e.g., TCP or UDP); that is, it

serves the same purpose as the IPv4 Protocol field. Also, fragmentation is now handled

as an optional header, which means that the fragmentation-related fields of IPv4 are

not included in the IPv6 header. The HopLimit field is simply the TTL of IPv4, renamed

to reflect the way it is actually used.

Finally, the bulk of the header is taken up with the source and destination ad-

dresses, each of which is 16 bytes (128 bits) long. Thus, the IPv6 header is always

40 bytes long. Considering that IPv6 addresses are four times longer than those of

IPv4, this compares quite well with the IPv4 header, which is 20 bytes long in the

absence of options.

4.3 Global Internet 327

The way that IPv6 handles options is quite an improvement over IPv4. In IPv4,

if any options were present, every router had to parse the entire options field to see if

any of the options were relevant. This is because the options were all buried at the end

of the IP header, as an unordered collection of 〈type, length, value〉 tuples. In contrast,

IPv6 treats options as extension headers that must, if present, appear in a specific

order. This means that each router can quickly determine if any of the options are

relevant to it; in most cases, they will not be. Usually, this can be determined by just

looking at the NextHeader field. The end result is that option processing is much more

efficient in IPv6, which is an important factor in router performance. In addition, the

new formatting of options as extension headers means that they can be of arbitrary

length, whereas in IPv4 they were limited to 44 bytes at most. We will see how some

of the options are used below.

Each option has its own type of extension header. The type of each extension

header is identified by the value of the NextHeader field in the header that precedes it,

and each extension header contains a NextHeader field to identify the header following

it. The last extension header will be followed by a transport-layer header (e.g., TCP),

and in this case the value of the NextHeader field is the same as the value of the

Protocol field in an IPv4 header. Thus, the NextHeader field does double duty; either

it may identify the type of extension header to follow, or, in the last extension header,

it serves as a demux key to identify the higher-layer protocol running over IPv6.

Consider the example of the fragmentation header, shown in Figure 4.35. This

header provides functionality similar to the fragmentation fields in the IPv4 header de-

scribed in Section 4.1.2, but it is only present if fragmentation is necessary. Assuming it

is the only extension header present, then the NextHeader field of the IPv6 header would

contain the value 44, which is the value assigned to indicate the fragmentation header.

The NextHeader field of the fragmentation header itself contains a value describing the

header that follows it. Again, assuming no other extension headers are present, then

the next header might be the TCP header, which results in NextHeader containing

the value 6, just as the Protocol field would in IPv4. If the fragmentation header were

followed by, say, an authentication header, then the fragmentation header’s NextHeader

field would contain the value 51.

NextHeader Reserved Offset RES M

Ident

0 8 16 29 31

Figure 4.35 IPv6 fragmentation extension header.

328 4 Internetworking

Autoconfiguration

While the Internet’s growth has been im-

pressive, one factor that has inhibited faster

acceptance of the technology is the fact that

getting connected to the Internet has typi-

cally required a fair amount of system ad-

ministration expertise. In particular, every

host that is connected to the Internet needs

to be configured with a certain minimum

amount of information, such as a valid IP

address, a subnet mask for the link to which

it attaches, and the address of a name server.

Thus, it has not been possible to unpack a

new computer and connect it to the Internet

without some preconfiguration. One goal of

IPv6, therefore, is to provide support for

autoconfiguration, sometimes referred to as

“plug-and-play” operation.

As we saw in Section 4.1.6, auto-

configuration is possible for IPv4, but

it depends on the existence of a server

that is configured to hand out addresses

and other configuration information to

DHCP clients. The longer address format

in IPv6 helps provide a useful, new form

of autoconfiguration called stateless auto-

configuration, which does not require a

server.

Recall that IPv6 unicast addresses are

hierarchical, and that the least significant

portion is the interface ID. Thus, we can

subdivide the autoconfiguration problem

into two parts:

1 Obtain an interface ID that is unique

on the link to which the host is at-

tached.

2 Obtain the correct address prefix for

this subnet.

Network Address

Translation

While IPv6 was motivated by a

concern that increased usage of IP

would lead to exhaustion of the

address space, another technology

has become popular as a way

to conserve IP address space. That

technology is network address

translation (NAT), and it is pos-

sible that its widespread use will

significantly delay the need to de-

ploy IPv6. NAT is often viewed as

“architecturally impure,” but it is

also a fact of networking life that

cannot be ignored.

The basic idea behind NAT

is that all the hosts that might

communicate with each other over

the Internet do not need to have

globally unique addresses. Instead,

a host could be assigned a “pri-

vate address” that is not necessar-

ily globally unique, but is unique

within some more limited scope; for

example, within the corporate net-

work where the host resides. The

class A network number 10 is often

used for this purpose, since that

network number was assigned to

the ARPANET and is no longer in

use as a globally unique address.

As long as the host communicates

only with other hosts in the cor-

porate network, a locally unique

address is sufficient. If it should

want to communicate with a host

4.3 Global Internet 329

outside the corporate network, it

does so via a “NAT box”—a de-

vice that is able to translate from

the private address used by the host

to some globally unique address

that is assigned to the NAT box.

Since it’s likely that a small sub-

set of the hosts in the corpora-

tion need the services of the NAT

box at any one time, the NAT box

might be able to get by with a small

pool of globally unique addresses,

much smaller than the number of

addresses that would be needed if

every host in the corporation had a

globally unique address.

So, we can imagine a NAT box

receiving IP packets from a host

inside the corporation and trans-

lating the IP source address from

some private address (say, 10.0.1.5)

to a globally unique address (say,

171.69.210.246). When packets

come back from the remote host

addressed to 171.69. 210.246, the

NAT box translates the destina-

tion address to 10.0.1.5 and for-

wards the packet on toward the

host.

The chief drawback of NAT

is that it breaks a key assump-

tion of the IP service model—that

all nodes have globally unique ad-

dresses. It turns out that lots of

applications and protocols rely on

The first part turns out to be rather

easy, since every host on a link must have a

unique link-level address. For example, all

hosts on an Ethernet have a unique 48-bit

Ethernet address. This can be turned into a

valid link local use address by adding the

appropriate prefix from Table 4.11 (1111

1110 10) followed by enough 0s to make

up 128 bits. For some devices—for exam-

ple, printers or hosts on a small router-

less network that do not connect to any

other networks—this address may be per-

fectly adequate. Those devices that need a

globally valid address depend on a router

on the same link to periodically advertise

the appropriate prefix for the link. Clearly,

this requires that the router be configured

with the correct address prefix, and that this

prefix be chosen in such a way that there is

enough space at the end (e.g., 48 bits) to

attach an appropriate link-level address.

The ability to embed link-level ad-

dresses as long as 48 bits into IPv6 addresses

was one of the reasons for choosing such a

large address size. Not only does 128 bits

allow the embedding, but it leaves plenty

of space for the multilevel hierarchy of

addressing that we discussed above.

Advanced Routing Capabilities

Another of IPv6’s extension headers is the

routing header. In the absence of this header,

routing for IPv6 differs very little from that

of IPv4 under CIDR. The routing header

contains a list of IPv6 addresses that rep-

resent nodes or topological areas that the

packet should visit en route to its des-

tination. A topological area may be, for

example, a backbone provider’s network.

330 4 Internetworking

Specifying that packets must visit this net-

work would be a way of implementing

provider selection on a packet-by-packet

basis. Thus, a host could say that it wants

some packets to go through a provider that

is cheap, others through a provider that

provides high reliability, and still others

through a provider that the host trusts to

provide security.

To provide the ability to specify topo-

logical entities rather than individual nodes,

IPv6 defines an anycast address. An anycast

address is assigned to a set of interfaces, and

packets sent to that address will go to the

“nearest” of those interfaces, with nearest

being determined by the routing protocols.

For example, all the routers of a backbone

provider could be assigned a single anycast

address, which would be used in the routing

header.

The anycast address and the routing

header are also expected to be used to pro-

vide enhanced routing support to mobile

hosts. The detailed mechanisms for provid-

ing this support are still being defined.

this assumption. In particular,

many protocols that run over

IP (e.g., application protocols)

carry IP addresses in their mes-

sages. These addresses also need

to be translated by a NAT box

if the higher-layer protocol is to

work properly, and thus NAT

boxes become much more com-

plex than simple IP header trans-

lators. They potentially need to un-

derstand an ever-growing number

of higher-layer protocols. This in

turn presents an obstacle to deploy-

ment of new applications. It is

probably safe to say that networks

would be better off without NAT,

but its disappearance seems un-

likely. Widespread deployment of

IPv6 would almost certainly help.

Other Features

As mentioned at the beginning of this section, the primary motivation behind the devel-

opment of IPv6 was to support the continued growth of the Internet. Once the IP header

had to be changed for the sake of the addresses, however, the door was open for a wide

variety of other changes, two of which we have just described—autoconfiguration and

source-directed routing. IPv6 includes several additional features, most of which are

covered elsewhere in this book—mobility is discussed in Section 4.2.5, network secu-

rity is the topic of Chapter 8, and a new service model proposed for the Internet is

described in Section 6.5. It is interesting to note that, in most of these areas, the IPv4

and IPv6 capabilities have become virtually indistinguishable, so that the main driver

for IPv6 remains the need for larger addresses.

4.4 Multicast 331

4.4 Multicast

As we saw in Chapter 2, multiaccess networks like Ethernet and token rings implement

multicast in hardware. This section describes how to extend multicast, in software,

across an internetwork of such networks. The approach described in this section is

based on an implementation of multicast used in the current Internet (IPv4). Multicast

will also be supported in the next generation of IP (IPv6), with the major differences

being restricted to the address format.

The motivation for developing multicast is that there are applications that want

to send a packet to more than one destination host. Instead of forcing the source host

to send a separate packet to each of the destination hosts, we want the source to be

able to send a single packet to a multicast address, and for the network—or internet,

in this case—to deliver a copy of that packet to each of a group of hosts. Hosts can

then choose to join or leave this group at will, without synchronizing or negotiating

with other members of the group. Also, a host may belong to more than one group at

a time.

Internet multicast can be implemented on top of a collection of networks that

support hardware multicast (or broadcast) by extending the routing and forwarding

functions implemented by the routers that connect these networks. This section de-

scribes three such extensions: The first is based on distance-vector routing as described

in Section 4.2.2; the second is based on link-state routing, described in Section 4.2.3;

the third can build on any underlying routing protocol and is thus called Protocol

Independent Multicast (PIM).

Before looking at any of the multicast routing protocols, however, we need to

look at the service model for IP multicast. We could imagine that a host wishing to

send a packet to some number of internet hosts could enumerate all their addresses,

but this would quickly become unscalable for large numbers of receivers—consider

using the Internet to distribute a pay-per-view movie, for example. For this reason, IP

multicast uses the idea of a multicast group that receivers may join. Each group has a

specially assigned address, and senders to the group use that address as the destination

address for their packets. In IPv4, these addresses are assigned in the class D address

space, and IPv6 also has a portion of its address space reserved for multicast group

addresses.

Hosts join multicast groups using a protocol called Internet Group Management

Protocol (IGMP). They use this to notify a router on their local network of their desire

to receive packets sent to a certain multicast group. The protocols described below

are concerned with how packets are distributed to the appropriate routers. Delivery of

packets from the “last hop” router to the host is handled by the underlying multicast

capability of the network, as described in Section 2.6.

332 4 Internetworking

One perplexing question is how senders and receivers learn about multicast

addresses. This is normally handled by out-of-band means, and there are some quite

sophisticated tools to enable group addresses to be advertised on the Internet.

4.4.1 Link-State Multicast

Adding multicast to a link-state routing algorithm is fairly straightforward, so we de-

scribe it first. Recall that in link-state routing, each router monitors the state of its

directly connected links and sends an update message to all of the other routers when-

ever the state changes. Since each router receives enough information to reconstruct

the entire topology of the network, it is able to use Dijkstra’s algorithm to compute

the shortest-path spanning tree rooted at itself and reaching all possible destinations.

The router uses this tree to determine the best next hop for each packet it forwards.

All we have to do to extend this algorithm to support multicast is to add the set of

groups that have members on a particular link (LAN) to the “state” for that link. The

only question is how each router determines which groups have members on which

links. As suggested in Section 3.2.3, the solution is to have each host periodically

announce to the LAN the groups to which it belongs. The router simply monitors

the LAN for such announcements. Should such announcements stop arriving after a

period of time, the router then assumes that the host has left the group.

Given full knowledge of which groups have members on which links, each router

is able to compute the shortest-path multicast tree from any source to any group,

again using Dijkstra’s algorithm. For example, given the internet illustrated in Figure

4.36, where the colored hosts belong to group G, the routers would compute the

shortest-path multicast trees given in Figure 4.37 for sources A, B, and C. The routers

would use these trees to decide how to forward packets addressed to multicast group

G. For example, router R3 would forward a packet going from host A to group

G to R6.

Keep in mind that each router must potentially keep a separate shortest-path

multicast tree from every source to every group. This is obviously very expensive,

so instead the router just computes and stores a cache of these trees—one for each

source/group pair that is currently active.

4.4.2 Distance-Vector Multicast

Adding multicast to the distance-vector algorithm is a bit trickier because the routers do

not know the entire topology of the internet. Instead, recall that each router maintains

a table of 〈 Destination, Cost, NextHop 〉 tuples, and exchanges a list of 〈 Destination,

Cost 〉 pairs with its directly connected neighbors. Extending this algorithm to support

multicast is a two-stage process. First, we need to design a broadcast mechanism that

allows a packet to be forwarded to all the networks on the internet. Second, we need

4.4 Multicast 333

R1
R2

R3 R4 R5

R6 R7

A

B

C

Figure 4.36 Example internet with members of group G in color.

to refine this mechanism so that it prunes back networks that do not have hosts that

belong to the multicast group.

Reverse-Path Broadcast (RPB)

Each router knows that the current shortest path to a given destination goes through

NextHop. Thus, whenever it receives a multicast packet from source S, the router

forwards the packet on all outgoing links (except the one on which the packet arrived)

if and only if the packet arrived over the link that is on the shortest path to S (i.e., the

packet came from the NextHop associated with S in the routing table). This strategy

effectively floods packets outward from S, but does not loop packets back toward S.

There are two major shortcomings to this approach. The first is that it truly

floods the network; it has no provision for avoiding LANs that have no members

in the multicast group. We address this problem in the next subsection. The second

limitation is that a given packet will be forwarded over a LAN by each of the routers

connected to that LAN. This is due to the forwarding strategy of flooding packets on

all links other than the one on which the packet arrived, without regard to whether or

not those links are part of the shortest-path tree rooted at the source.

The solution to this second limitation is to eliminate the duplicate broadcast

packets that are generated when more than one router is connected to a given LAN.

334 4 Internetworking

R7R6

R5R4

R2

R2

B

R6

R5R4

R1

R1

R1

A

C

R7

R6 R7

C

Source

Source

Source

R3

R5R4R3

R2

R3

C

B

A

A

B

Figure 4.37 Example shortest-path multicast trees.

4.4 Multicast 335

One way to do this is to designate one router as the “parent” router for each link,

relative to the source, where only the parent router is allowed to forward multicast

packets from that source over the LAN. The router that has the shortest path to source

S is selected as the parent; a tie between two routers would be broken according to

which router has the smallest address. A given router can learn if it is the parent for the

LAN (again relative to each possible source) based upon the distance-vector messages

it exchanges with its neighbors.

Notice that this refinement requires that each router keep, for each source,

a bit for each of its incident links indicating whether or not it is the parent for

that source/link pair. Keep in mind that in an internet setting, a “source” is a net-

work, not a host, since an internet router is only interested in forwarding packets be-

tween networks. The resulting mechanism is sometimes called reverse-path broadcast

(RPB).

Reverse-Path Multicast (RPM)

RPB implements shortest-path broadcast. We now want to prune the set of networks

that receives each packet addressed to group G to exclude those that have no hosts

that are members of G. This can be accomplished in two stages. First, we need to

recognize when a leaf network has no group members. Determining that a network

is a leaf is easy—if the parent router as described in RPB is the only router on the

network, then the network is a leaf. Determining if any group members reside on the

network is accomplished by having each host that is a member of group G periodically

announce this fact over the network, as described in our earlier description of link-state

multicast. The router then uses this information to decide whether or not to forward

a multicast packet addressed to G over this LAN.

The second stage is to propagate this “no members of G here” information up

the shortest-path tree. This is done by having the router augment the 〈Destination,

Cost〉 pairs it sends to its neighbors with the set of groups for which the leaf network

is interested in receiving multicast packets. This information can then be propagated

from router to router, so that for each of its links, a given router knows for what

groups it should forward multicast packets.

Note that including all of this information in the routing update is a fairly expen-

sive thing to do. In practice, therefore, this information is exchanged only when some

source starts sending packets to that group. In other words, the strategy is to use

RPB, which adds a small amount of overhead to the basic distance-vector algorithm,

until a particular multicast address becomes active. At that time, routers that are not

interested in receiving packets addressed to that group speak up, and that information

is propagated to the other routers.

336 4 Internetworking

4.4.3 Protocol Independent Multicast (PIM)

PIM was developed in response to the scaling problems of existing multicast routing

protocols. In particular, it was recognized that the existing protocols did not scale well

in environments where a relatively small proportion of routers want to receive traffic

for a certain group. For example, broadcasting traffic to all routers until they explicitly

ask to be removed from the distribution is not a good design choice if most routers

don’t want to receive the traffic in the first place. This situation is sufficiently common

that PIM divides the problem space into “sparse mode” and “dense mode.” Because

the existing protocols were so poorly suited to the sparse environment, PIM sparse

mode has received the most attention and is the focus of our discussion here.

In PIM sparse mode (PIM-SM), routers explicitly join and leave the multicast

group using PIM protocol messages known as Join and Prune messages. The question

that arises is where to send those messages. To address this, PIM assigns a rendezvous

point (RP) to each group. In general, a number of routers in a domain are configured

to be candidate RPs, and PIM defines a set of procedures by which all the routers in a

domain can agree on the router to use as the RP for a given group. These procedures

are rather complex, as they must deal with a wide variety of scenarios, such as the

failure of a candidate RP and the partitioning of a domain into two separate networks

due to a number of link or node failures. For the rest of this discussion, we assume

that all routers in a domain know the unicast IP address of the RP for a given group.

A multicast forwarding tree is built as a result of routers sending Join messages

to the RP. PIM-SM allows two types of trees to be constructed: a shared tree, which

may be used by all senders, and a source-specific tree, which may be used only by

a specific sending host. The normal mode of operation creates the shared tree first,

followed by one or more source-specific trees if there is enough traffic to warrant

it. Because building trees installs state in the routers along the tree, it is important

that the default is to have only one tree for a group, not one for every sender to a

group.

When a router sends a Join message toward the RP for a group G, it is sent using

normal IP unicast transmission. This is illustrated in Figure 4.38(a), in which router

R4 is sending a Join to the rendezvous point for some group. The initial Join message

is “wildcarded”; that is, it applies to all senders. A Join message clearly must pass

through some sequence of routers before reaching the RP (e.g., R2). Each router along

the path looks at the Join and creates a forwarding table entry for the shared tree,

called a (*, G) entry (* meaning “all senders”). To create the forwarding table entry,

it looks at the interface on which the Join arrived and marks that interface as one on

which it should forward data packets for this group. It then determines which interface

it will use to forward the Join toward the RP. This will be the only acceptable interface

4.4 Multicast 337

RP

R3 R2 R4

R1 R5

(c)

RP

R3 R2 R4

R1 R5

(d)

RP

R3 R2 R4

R1 R5

(a)

RP

R3 R2 R4

R1 R5

(b)

Join

Join

Join

Join
Join

Rendezvous pointRP =

Shared tree

Source-specific tree for source R1

Figure 4.38 PIM operation: (a) R4 sends Join to RP and joins shared tree. (b) R5 joins
shared tree. (c) RP builds source-specific tree to R1 by sending Join to R1. (d) R4 and
R5 build source-specific tree to R1 by sending Joins to R1.

for incoming packets sent to this group. It then forwards the Join toward the RP.

Eventually, the message arrives at the RP, completing the construction of the tree

branch. The shared tree thus constructed is shown as a colored line from the RP to R4

in Figure 4.38(a).

As more routers send Joins toward the RP, they cause new branches to be added

to the tree, as illustrated in Figure 4.38(b). Note that in this case, the Join only needs

to travel to R2, which can add the new branch to the tree simply by adding a new

outgoing interface to the forwarding table entry created for this group. R2 need not

forward the Join on to the RP. Note also that the end result of this process is to build

a tree whose root is the RP.

338 4 Internetworking

RP

R3 R2 R4

R1
R5

Host

RP G

RP G

G

G

G

G

Figure 4.39 Delivery of a packet along a shared tree. R1 tunnels the packet to the RP,
which forwards it along the shared tree to R4 and R5.

At this point, suppose a host wishes to send a message to the group. To do so,

it constructs a packet with the appropriate multicast group address as its destination

and sends it to a router on its local network known as the designated router (DR).

Suppose the DR is R1 in Figure 4.38. There is no state for this multicast group between

R1 and the RP at this point, so instead of simply forwarding the multicast packet, R1

“tunnels” it to the RP. That is, R1 encapsulates the multicast packet inside a unicast

IP packet that it sends to the unicast IP address of the RP. Just like a tunnel endpoint

of the sort described in Section 4.1.8, the RP receives the packet addressed to it, looks

at the payload of the unicast packet, and finds inside an IP packet addressed to the

multicast address of this group. The RP, of course, does know what to do with such a

packet—it sends it out onto the shared tree of which the RP is the root. In the example

of Figure 4.38, this means that the RP sends the packet on to R2, which is able to

forward it to R4 and R5. The complete delivery of a packet from R1 to R4 and R5 is

shown in Figure 4.39. We see the tunneled packet travel from R1 to the RP with an

extra IP header containing the unicast address of RP, and then the multicast packet

addressed to G making its way along the shared tree to R4 and R5.

At this point, we might be tempted to declare success, since all hosts can send to

all receivers this way. However, there is some bandwidth inefficiency and processing

cost in the encapsulation and decapsulation of packets on the way to the RP, so the

RP has the option of forcing knowledge about this group into the intervening routers

so that tunneling can be avoided. Its decision to exercise this option is based on the

4.4 Multicast 339

data rate of packets coming from a given source; only if this rate is high enough to

warrant the effort will the RP take action. If it does, it sends a Join message toward

the sending host (Figure 4.38(c)). As this Join travels toward the host, it causes the

routers along the path (R3) to learn about the group, so that it will be possible for

the DR to send the packet to the group as “native” (i.e., not tunneled) multicast

packets.

An important detail to note at this stage is that the Join message sent by the RP

to the sending host is specific to that sender, whereas the previous ones sent by R4 and

R5 applied to all senders. Thus the effect of the new Join is to create sender-specific

state in the routers between the identified source and the RP. This is referred to as

(S, G) state, since it applies to one sender to one group and contrasts with the (*, G)

state that was installed between the receivers and the RP that applies to all senders.

Thus, in Figure 4.38(c), we see a source-specific route from R1 to the RP (indicated

by the dashed line) and a tree that is valid for all senders from the RP to the receivers

(indicated by the colored line).

The next possible optimization is to replace the entire shared tree with a source-

specific tree. This is desirable because the path from sender to receiver via the RP

might be significantly longer than the shortest possible path. This again is likely to be

triggered by a high data rate being observed from some sender. In this case, the router

at the downstream end of the tree—say, R4 in our example—sends a source-specific

Join toward the source. As it follows the shortest path toward the source, the routers

along the way create (S, G) state for this tree, and the result is a tree that has its root

at the source, rather than the RP. Assuming both R4 and R5 made the switch to the

source-specific tree, we would end up with the tree shown in Figure 4.38(d). Note that

this tree no longer involves the RP at all. We have removed the shared tree from this

picture to simplify the diagram, but in reality all routers with receivers for a group

must stay on the shared tree in case new senders show up.

We can now see why PIM is “protocol independent.” All of its mechanisms

for building and maintaining trees depend on whatever unicast routing protocol is

used in the domain. The formation of trees is entirely determined by the paths that

Join messages follow, which is determined by the choice of shortest paths made by

unicast routing. Thus, to be precise, PIM is “unicast routing protocol independent,”

as compared to the other multicast routing protocols in this section, which are derived

from either link-state or distance-vector routing. Note that PIM is very much bound up

with the Internet Protocol—it is not protocol independent in terms of network-layer

protocols.

The design of PIM again illustrates the challenges in building scalable networks,

and how scalability is sometimes pitted against some sort of optimality. The shared

tree is certainly more scalable than a source-specific tree, in the sense that it reduces

340 4 Internetworking

the total state in routers to be on the order of the number of groups rather than the

number of senders times the number of groups. However, the source-specific tree is

likely to be necessary to achieve efficient routing.

4.5 Multiprotocol Label Switching (MPLS)

We conclude our discussion of IP by describing an idea that was originally viewed

as a way to improve the performance of the Internet. The idea, called Multiprotocol

Label Switching (MPLS), tries to combine some of the properties of virtual circuits

with the flexibility and robustness of datagrams. On the one hand, MPLS is very much

associated with the Internet Protocol’s datagram-based architecture—it relies on IP

addresses and IP routing protocols to do its job. On the other hand, MPLS-enabled

routers also forward packets by examining relatively short, fixed-length labels, and

these labels have local scope, just like in a virtual circuit network. It is perhaps this

marriage of two seemingly opposed technologies that has caused MPLS to have a

somewhat mixed reception in the Internet engineering community.

Before looking at how MPLS works, it is reasonable to ask, “What is it good

for?” Many claims have been made for MPLS, but there are three main things that it

is used for today:

■ To enable IP capabilities on devices that do not have the capability to forward

IP datagrams in the normal manner

■ To forward IP packets along “explicit routes”—precalculated routes that don’t

necessarily match those that normal IP routing protocols would select

■ To support certain types of virtual private network services

It is worth noting that one of the original goals—improving performance— is not on

the list. This has a lot to do with the advances that have been made in forwarding

algorithms for IP routers in recent years, and with the complex set of factors beyond

header processing that determine performance.

The best way to understand how MPLS works is to look at some examples

of its use. In the next three sections we will look at examples to illustrate the three

applications of MPLS mentioned above.

4.5.1 Destination-Based Forwarding

One of the earliest publications to introduce the idea of attaching labels to IP packets

was a paper by Chandranmenon and Varghese that described an idea called “threaded

indices.” A very similar idea is now implemented in MPLS-enabled routers. The fol-

lowing example shows how this idea works.

4.5 Multiprotocol Label Switching (MPLS) 341

10.1.1/24

10.3.3/24

0
0

1

10.1.1 0

10.3.3 0

…

Prefix Interface

10.1.1

10.3.3 0

…

Prefix Interface

1

R2R1

R4

R3

Figure 4.40 Routing tables in example network.

Consider the network in Figure 4.40. Each of the two routers on the far right

(R3 and R4) has one connected network, with prefixes 10.1.1/24 and 10.3.3/24. The

remaining routers (R1 and R2) have routing tables that indicate which outgoing inter-

face each router would use when forwarding packets to one of those two networks.

When MPLS is enabled on a router, the router allocates a label for each prefix

in its routing table and advertises both the label and the prefix that it represents

to its neighboring routers. This advertisement is carried in the “Label Distribution

Protocol.” This is illustrated in Figure 4.41. Router R2 has allocated the label value

15 for the prefix 10.1.1 and the label value 16 for the prefix 10.3.3. These labels can

be chosen at the convenience of the allocating router and can be thought of as indices

into the routing table. After allocating the labels, R2 advertises the label bindings to its

neighbors; in this case, we see R2 advertising a binding between the label 15 and the

prefix 10.1.1 to R1. The meaning of such an advertisement is that R2 has said, in effect,

“Please attach the label 15 to all packets sent to me that are destined to prefix 10.1.1.”

R1 stores the label in a table alongside the prefix that it represents as the “remote” or

“outgoing” label for any packets that it sends to that prefix.

In Figure 4.41(c), we see another label advertisement from router R3 to R2 for

the prefix 10.1.1, and R2 places the “remote” label that it learned from R3 in the

appropriate place in its table.

At this point, we can look at what happens when a packet is forwarded in this

network. Suppose a packet destined to the IP address 10.1.1.5 arrives from the left to

router R1. R1 in this case is referred to as a label edge router (LER); an LER performs

a complete IP lookup on arriving IP packets, and then applies labels to them as a result

of the lookup. In this case, R1 would see that 10.1.1.5 matches the prefix 10.1.1 in its

342 4 Internetworking

10.1.1/24

10.3.3/24

0
0

1

R2R1

R4

R3

10.1.1 0

10.3.3 0

…

Prefix Interface

15 10.1.1 1

16 10.3.3 0

…

Label Prefix Interface

15 10.1.1 1

16 10.3.3 0

…

Label Prefix Interface

Label = 15, Prefix = 10.1.1

10.1.1/24

10.3.3/24
00

1

10.1.1 0

10.3.3 0

…

Prefix Interface

R2R1

R4

R3

Remote
label

15

16

(a)

(b)

10.1.1/24

10.3.3/24

0
0

1

R2R1

R4

R3

15 10.1.1 1 24

16 10.3.3 0

…

Label Prefix Interface

(c)

10. 1.1 0

10. 3.3 0
…

Prefix Interface
Remote
label

15

16

Remote
label

Label = 24, Prefix = 10.1.1

Figure 4.41 (a) R2 allocates labels and advertises bindings to R1. (b) R1 stores the
received labels in a table. (c) R3 advertises another binding, and R2 stores the received
label in a table.

4.5 Multiprotocol Label Switching (MPLS) 343

forwarding table, and that this entry contains both an outgoing interface and a remote

label value. R1 therefore attaches the remote label 15 to the packet before sending it.

When the packet arrives at R2, R2 looks at the label in the packet. The forwarding

table at R2 indicates that packets arriving with a label value of 15 should be sent out

interface 1, and that they should carry the label value 24, as advertised by router R3.

R2 therefore rewrites, or swaps, the label and forwards it to R3.

What has been accomplished by all this application and swapping of labels?

Observe that when R2 forwarded the packet in this example, it never actually needed

to examine the IP address. Instead, R3 looked only at the incoming label. Thus, we have

replaced the normal IP destination address lookup with a label lookup. To understand

why this is significant, it helps to recall that although IP addresses are always the

same length, IP prefixes are of variable length, and the IP destination address lookup

algorithm needs to find the longest match—the longest prefix that matches the high-

order bits in the IP address of the packet being forwarded. By contrast, the label

forwarding mechanism just described is an exact match algorithm. It is possible to

implement a very simple exact match algorithm, for example, by using the label as

an index into an array, where each element in the array is one line in the forwarding

table.

Note that while the forwarding algorithm has been changed from longest match

to exact match, the routing algorithm can be any standard IP routing algorithm (e.g.,

OSPF). The path that a packet will follow in this environment is the exact same path

that it would have followed if MPLS were not involved—the path chosen by the IP

routing algorithms. All that has changed is the forwarding algorithm.

The major effect of changing the forwarding algorithm is that devices that nor-

mally don’t know how to forward IP packets can be used in an MPLS network. The

most notable early application of this result was to ATM switches, which can support

MPLS without any changes to their forwarding hardware. ATM switches support the

label swapping forwarding algorithm just described, and by providing these switches

with IP routing protocols and a method to distribute label bindings, they could be

turned into label switching routers (LSRs)—devices that run IP control protocols but

use the label switching forwarding algorithm. More recently, the same idea has been

applied to optical switches of the sort described in Section 3.1.2.

Before we consider the purported benefits of turning an ATM switch into an LSR,

we should tie up some loose ends. We have said that labels are “attached” to packets,

but where exactly are they attached? The answer depends on the type of link on which

packets are carried. Two common methods for carrying labels on packets are shown in

Figure 4.42. When IP packets are carried as complete frames, as they are on most link

types including Ethernet, token ring, and PPP, the label is inserted as a “shim” between

the layer 2 header and the IP (or other layer 3) header, as shown in Figure 4.42(b).

344 4 Internetworking

However, if an ATM switch is to function

as an MPLS LSR, then the label needs to

be in a place where the switch can use it,

and that means it needs to be in the ATM

cell header, exactly where we would nor-

mally find the VCI and VPI fields, as shown in

Figure 4.42(a).

Having now devised a scheme by

which an ATM switch can function as an

LSR, what have we gained? One thing to

note is that we could now build a net-

work that used a mixture of conventional

IP routers, label edge routers, and ATM

switches functioning as LSRs, and they

would all use the same routing protocols.

To understand the benefits of using the same

protocols, consider the alternative. In Figure

4.43(a) we see a set of routers intercon-

nected by virtual circuits over an ATM net-

work, a configuration called an “overlay”

network. At one point in time, networks of

this type were often built because commer-

cially available ATM switches supported

higher total throughput than routers. Today,

networks like this are less common because

routers have caught up with and even sur-

passed ATM switches. However, these net-

works still exist because of the significant

installed base of ATM switches in network

What Layer Is MPLS?

There have been many debates

about where MPLS belongs in the

layered protocol architectures pre-

sented in Section 1.3. Since the

MPLS header is normally found

between the layer 3 and the layer

2 headers in a packet, it is some-

times referred to as a layer 2.5 pro-

tocol. Some people argue that, since

IP packets are encapsulated in-

side MPLS headers, MPLS must be

“below” IP, making it a layer 2 pro-

tocol. Others argue that, since the

control protocols for MPLS are, in

large part, the same protocols as

IP—MPLS uses IP routing proto-

cols and IP addressing—then MPLS

must be at the same layer as IP (i.e.,

layer 3). As we noted in Section 1.3,

layered architectures are useful

tools but they may not always

exactly describe the real world,

and MPLS is a good example of

where strictly layerist views may be

difficult to reconcile with reality.

backbones, which in turn is partly a result of ATM’s ability to support a range of

capabilities such as circuit emulation and virtual circuit services.

In an overlay network, each router would potentially be connected to each of

the other routers by a virtual circuit, but in this case for clarity we have just shown the

circuits from R1 to all of its peer routers. R1 has five routing neighbors and needs to

exchange routing protocol messages with all of them—we say that R1 has five routing

adjacencies. By contrast, in Figure 4.43(b), the ATM switches have been replaced with

LSRs. There are no longer virtual circuits interconnecting the routers. Thus R1 has

only one adjacency, with LSR1. In large networks, running MPLS on the switches leads

to a significant reduction in the number of adjacencies that each router must maintain

4.5 Multiprotocol Label Switching (MPLS) 345

Label headerPPP header Layer 3 header

“Shim” header

(for PPP, Ethernet,

etc.)

ATM cell

header
HEC

Label

DATACLPPTIVCIGFC VPI(a)

(b)

Figure 4.42 (a) Label on an ATM-encapsulated packet. (b) Label on a frame-
encapsulated packet.

R3 R4

R6

R5

R1

R2

LSR1

LSR2

LSR3

R3 R4

R6

R2

R1

R5

(a)

(b)

Figure 4.43 (a) Routers connect to each other using an “overlay”of virtual circuits. (b)
Routers peer directly with LSRs.

346 4 Internetworking

and can greatly reduce the amount of work that the routers have to do to keep each

other informed of topology changes.

A second benefit of running the same routing protocols on edge routers and on

the LSRs is that the edge routers now have a full view of the topology of the network.

This means that if some link or node fails inside the network, the edge routers will

have a better chance of picking a good new path than if the ATM switches rerouted

the affected VCs without the knowledge of the edge routers.

Note that the step of “replacing” ATM switches with LSRs is actually achieved

by changing the protocols running on the switches, but typically no change to the

forwarding hardware is needed. That is, an ATM switch can often be converted to an

MPLS LSR by upgrading only its software. Furthermore, an MPLS LSR might continue

to support standard ATM capabilities at the same time as it runs the MPLS control

protocols.

More recently, the idea of running IP control protocols on devices that are unable

to forward IP packets natively has been extended to optical switches and TDM devices

such as SONET multiplexers. This is known as generalized MPLS (GMPLS). Part of

the motivation for GMPLS was to provide routers with topological knowledge of an

optical network, just as in the ATM case. Even more important was the fact that there

were no standard protocols for controlling optical devices, and so MPLS seemed like

a natural fit for that job.

4.5.2 Explicit Routing

In Section 3.1.3 we introduced the concept of source routing. IP has a source routing

option, but it is not widely used for several reasons, including the fact that only a

limited number of hops can be specified, and because it is usually processed outside

the “fast path” on most routers.

MPLS provides a convenient way to add capabilities similar to source routing

to IP networks, although the capability is more often called “explicit routing” rather

than “source routing.” One reason for the distinction is that it usually isn’t the real

source of the packet that picks the route. More often it is one of the routers inside a

service provider’s network. Figure 4.44 shows an example of how the explicit routing

capability of MPLS might be applied. This sort of network is often called a “fish”

network because of its shape (the routers R1 and R2 form the tail; R7 is at the head).

Suppose that the operator of the network in Figure 4.44 has determined that any

traffic flowing from R1 to R7 should follow the path R1-R3-R6-R7, and that any traffic

going from R2 to R7 should follow the path R2-R3-R4-R7. One reason for such a

choice would be to make good use of the capacity available along the two distinct paths

from R3 to R7. This cannot easily be accomplished with normal IP routing because

R3 doesn’t look at where traffic came from in making its forwarding decisions.

4.5 Multiprotocol Label Switching (MPLS) 347

R1

R3

R2

R6

R4 R5

R7

Figure 4.44 A network requiring explicit routing.

Because MPLS uses label swapping to forward packets, it is easy enough to

achieve the desired routing if the routers are MPLS-enabled. If R1 and R2 attach

distinct labels to packets before sending them to R3, then R3 can forward packets

from R1 and R2 along different paths. The question that then arises is, How do all

the routers in the network agree on what labels to use and how to forward packets

with particular labels? Clearly, we can’t use the same procedures as described in the

preceding section to distribute labels because those procedures establish labels that

cause packets to follow the normal paths picked by IP routing, which is exactly what

we are trying to avoid. Instead, a new mechanism is needed. It turns out that the

protocol used for this task is the Resource Reservation Protocol (RSVP). We’ll talk

more about this protocol in Section 6.5.2, but for now it suffices to say that it is possible

to send an RSVP message along an explicitly specified path (e.g., R1-R3-R6-R7) and

use it to set up label forwarding table entries all along that path. This is very similar

to the process of establishing a virtual circuit described in Section 3.1.2.

One of the applications of explicit routing is “traffic engineering,” which refers

to the task of ensuring that sufficient resources are available in a network to meet

the demands placed on it. Controlling exactly which paths the traffic flows on is an

important part of traffic engineering. Explicit routing can also help to make networks

more resilient in the face of failure, using a capability called fast reroute. For example,

it is possible to precalculate a path from router A to router B that explicitly avoids

a certain link L. In the event that link L fails, router A could send all traffic destined

to B down the precalculated path. The combination of precalculation of the “backup

path” and the explicit routing of packets along the path means that A doesn’t need

to wait for routing protocol packets to make their way across the network or for

routing algorithms to be executed by various other nodes in the network. In certain

circumstances, this can significantly reduce the time taken to reroute packets around

a point of failure.

348 4 Internetworking

One final point to note about explicit routing is that explicit routes need not

be calculated by a network operator as in the above example. There are a range of

algorithms that routers can use to calculate explicit routes automatically. The most

common of these is called constrained shortest path first (CSPF), which is like the

link-state algorithms described in Section 4.2.3, but which also takes “constraints”

into account. For example, if it was required to find a path from R1 to R7 that could

carry an offered load of 100 Mbps, we could say that the “constraint” is that each

link must have at least 100 Mbps of available capacity. CSPF addresses this sort of

problem. More details on CSPF, and the applications of explicit routing, are provided

in the “Further Reading” section at the end of the chapter.

4.5.3 Virtual Private Networks and Tunnels

We first talked about virtual private networks (VPNs) in Section 4.1.8, and we noted

that one way to build them was using tunnels. It turns out that MPLS can be thought

of as a way to build tunnels, and this makes it suitable for building VPNs of various

types.

The simplest form of MPLS VPN to understand is a “layer 2” VPN. In this type

of VPN, MPLS is used to tunnel layer 2 data (such as Ethernet frames or ATM cells)

across a network of MPLS-enabled routers. Recall from Section 4.1.8 that one reason

for tunnels is to provide some sort of network service (such as multicast) that is not

supported by some routers in the network. The same logic applies here: IP routers

are not ATM switches, so you cannot provide an ATM virtual circuit service across a

network of conventional routers. However, if you had a pair of routers interconnected

by a tunnel, they could send ATM cells across the tunnel and emulate an ATM circuit.

The term for this technique within the IETF is pseudowire emulation. Figure 4.45

illustrates the idea.

We have already seen how IP tunnels are built: The router at the entrance of the

tunnel wraps the data to be tunneled in an IP header (the “tunnel header”), which

R2

Tail

R3

Head

ATM cells arrive

Cells sent into

tunnel at head
Tunneled data

arrives at tail

ATM cells sent

Figure 4.45 An ATM circuit is emulated by a tunnel.

4.5 Multiprotocol Label Switching (MPLS) 349

represents the address of the router at the far end of the tunnel, and sends the data like

any other IP packet. The receiving router receives the packet with its own address in

the header, strips the tunnel header, and finds the data that was tunneled, which it then

processes. Exactly what it does with that data depends on what it is. For example, if it

were another IP packet, it would then be forwarded like a normal IP packet. However,

it need not be an IP packet, as long as the receiving router knows what to do with

non-IP packets. We’ll return to the issue of how to handle non-IP data in a moment.

An MPLS tunnel is not too different from an IP tunnel, except that the “tunnel

header” consists of an MPLS header rather than an IP header. Looking back to our

first example, in Figure 4.41, we saw that router R1 attached a label (15) to every

packet that it sent toward prefix 10.1.1. Such a packet would then follow the path

R1-R2-R3, with each router in the path examining only the MPLS label. Thus, we

observe that there was no requirement that R1 only send IP packets along this path—

any data could be wrapped up in the MPLS header, and it would follow the same path

because the intervening routers never look beyond the MPLS header. In this regard,

an MPLS header is just like an IP tunnel header.7 The only issue with sending non-IP

traffic along a tunnel, MPLS or otherwise, is this: What do we do with non-IP traffic

when it reaches the end of the tunnel? The general solution is to carry some sort of

demultiplexing identifier in the tunnel payload that tells the router at the end of the

tunnel what to do. It turns out that an MPLS label is a perfect fit for such an identifier.

An example will make this clear.

Let’s assume we want to tunnel ATM cells from one router to another across

a network of MPLS-enabled routers, as in Figure 4.45. Further, we assume that the

goal is to emulate an ATM virtual circuit; that is, cells arrive at the entrance, or head,

of the tunnel on a certain input port with a certain VCI and should leave the tail

end of the tunnel on a certain output port and potentially different VCI. This can be

accomplished by configuring the “head” and “tail” routers as follows:

■ The head router needs to be configured with the incoming port, the incoming

VCI, the “demultiplexing label” for this emulated circuit, and the address of

the tunnel end router.

■ The tail end router needs to be configured with the outgoing port, the outgoing

VCI, and the demultiplexing label.

Once the routers are provided with this information, we can see how an ATM cell

would be forwarded. Figure 4.46 illustrates the steps.

7Note, however, that an MPLS header is only 4 bytes long, compared to 20 for an IP header, which implies a
bandwidth savings when MPLS is used.

350 4 Internetworking

R2

Tail

R3

Head

1. ATM cells arrive
6. ATM cells sent

101
202

101DL

101DLTL

101DL

101DLTL

2. Demux label added

4. Packet is forwarded to tail3. Tunnel label added

5. Demux label examined

Figure 4.46 Forwarding ATM cells along a tunnel.

1 An ATM cell arrives on the designated input port with the appropriate VCI value

(101 in this example).

2 The head router attaches the demultiplexing label that identifies the emulated

circuit.

3 The head router then attaches a second label, which is the tunnel label that will

get the packet to the tail router. This label is learned by mechanisms just like

those described in Section 4.5.1.

4 Routers between the head and tail forward the packet using only the tunnel label.

5 The tail router removes the tunnel label, finds the demultiplexing label, and

recognizes the emulated circuit.

6 The tail router modifies the ATM VCI to the correct value (202 in this case) and

sends it out the correct port.

One item in this example that might be surprising is that the packet has two

labels attached to it. This is one of the interesting features of MPLS—labels may be

“stacked” on a packet to any depth. This provides some useful scaling capabilities. In

this example, it enables a single tunnel to carry a potentially large number of emulated

circuits.

The same techniques described here can be applied to emulate many other layer 2

services, including Frame Relay and Ethernet. It is worth noting that virtually identical

capabilities can be provided using IP tunnels; the main advantage of MPLS here is the

shorter tunnel header.

Before MPLS was used to tunnel layer 2 services, it was also being used to support

layer 3 VPNs. We won’t go into the details of layer 3 VPNs, which are quite complex—

4.5 Multiprotocol Label Switching (MPLS) 351

Provider

network

VPN A/Site 3
VPN A/Site 1

VPN A/Site 2

VPN B/Site 2

VPN B/Site 1

VPN B/Site 3

Figure 4.47 Example of a layer 3 VPN. Customers A and B each obtain a virtually
private IP service from a single provider.

see the “Further Reading” section for some good sources of more information—but

we will note that they represent one of the most popular uses of MPLS today. Layer 3

VPNs also use stacks of MPLS labels to tunnel packets across an IP network. However,

the packets that are tunneled are themselves IP packets—hence the name “layer 3

VPNs.” In a layer 3 VPN, a single service provider operates a network of MPLS-

enabled routers and provides a “virtually private” IP network service to any number

of distinct customers. That is, each customer of the provider has some number of

sites, and the service provider creates the illusion for each customer that there are no

other customers on the network. The customer sees an IP network interconnecting his

own sites, and no other sites. This means that each customer is isolated from all other

customers in terms of both routing and addressing. Customer A can’t send packets

directly to customer B, and vice versa.8 Customer A can even use IP addresses that

have also been used by customer B. The basic idea is illustrated in Figure 4.47. As in

8Customer A in fact usually can send data to customer B in some restricted way. Most likely, both customer A
and customer B have some connection to the global Internet, and thus it is probably possible for customer A to
send email messages, for example, to the mail server inside customer B’s network. The “privacy” offered by a
VPN prevents customer A from having unrestricted access to all the machines and subnets inside customer B’s
network.

352 4 Internetworking

layer 2 VPNs, MPLS is used to tunnel packets from one site to another. However, the

configuration of the tunnels is performed automatically by some fairly elaborate use

of BGP, which is beyond the scope of this book.

In summary, MPLS is a rather versatile tool that has been applied to a wide

range of different networking problems. It combines the label swapping forwarding

mechanism that is normally associated with virtual circuit networks with the routing

and control protocols of IP datagram networks to produce a class of network that is

somewhere between the two conventional extremes. This extends the capabilities of

IP networks to enable, among other things, more precise control of routing and the

support of a range of VPN services.

4.6 Summary

The main theme of this chapter was how to build big networks by interconnecting

smaller networks. We looked at bridging in the last chapter, but it is a technique

that is mostly used to interconnect a small to moderate number of similar networks.

What bridging does not do well is tackle the two closely related problems of building

very large networks: heterogeneity and scale. The Internet Protocol is the key tool for

dealing with these problems, and it provided most of the examples for this chapter.

IP tackles heterogeneity by defining a simple, common service model for an

internetwork, which is based on the best-effort delivery of IP datagrams. An important

part of the service model is the global addressing scheme, which enables any two nodes

in an internetwork to uniquely identify each other for the purposes of exchanging data.

The IP service model is simple enough to be supported by any known networking

technology, and the ARP mechanism is used to translate global IP addresses into local

link-layer addresses.

A crucial aspect of the operation of an internetwork is the determination of

efficient routes to any destination in the internet. Internet routing algorithms solve

this problem in a distributed fashion; this chapter introduced the two major classes of

algorithms—link-state and distance-vector—along with examples of their application

(RIP and OSPF). We also examined the extensions to IP routing that will support

mobile hosts.

We then saw a succession of scaling problems and the ways that IP deals with

them. The major scaling issues are the efficient use of address space and the growth

of routing tables as the Internet grows. The hierarchical IP address format, with its

network and host parts, gives us one level of hierarchy to manage scale. Subnetting

lets us make more efficient use of network numbers and helps consolidate routing

information; in effect, it adds one more level of hierarchy to the address. Classless

routing (CIDR) lets us introduce more levels of hierarchy and achieve further routing

Open Issue: Deployment of IPv6 353

aggregation. Autonomous systems allow us to partition the routing problem into two

parts, interdomain and intradomain routing, each of which is much smaller than the

total routing problem would be. These mechanisms have enabled today’s Internet to

sustain remarkable growth.

Eventually, all of these mechanisms will be unable to keep up with the Internet’s

growth, and a new address format will be needed. This will require a new IP datagram

format and a new version of the protocol. Originally known as IP Next Generation

(IPng), this new protocol is now known as IPv6, and it provides a 128-bit address with

CIDR-like addressing and routing. While many new capabilities have been claimed for

IPv6, its main advantage remains its ability to support an extremely large number of

addressable devices.

More than 10 years have elapsed

since the shortage of IPv4 address

space became serious enough to war-

rant proposals for a new version of

IP. The orginal IPv6 specification is

now more than 7 years old. IPv6-

capable host operating systems are

O P E N I S S U E

Deployment of IPv6

now widely available and the major router vendors offer varying degrees of support

for IPv6 in their products. Yet the deployment of IPv6 in the Internet has not, at the

time of writing, begun in any meaningful way. It is worth wondering when deployment

is likely to begin in earnest, and what will cause it.

One reason why IPv6 has not been needed sooner is because of the extensive use

of NAT (network address translation, described earlier in this chapter). As providers

viewed IPv4 addresses as a scarce resource, they handed out fewer of them to their

customers or charged for the number of addresses used; customers responded by hiding

many of their devices behind a NAT box and a single IPv4 address. For example, it

is likely that most home networks with more than one IP-capable device have some

sort of NAT in the network to conserve addresses. So one factor that might drive IPv6

deployment would be applications that don’t work well with NAT. While client/server

applications work reasonably well when the client’s address is “hidden” behind a NAT

box, peer-to-peer applications fare less well. Examples of applications that would work

better without NAT and would therefore benefit from more liberal address allocation

policies are multiplayer gaming and IP telephony.

Obtaining blocks of IPv4 addresses has been getting more difficult for years, and

this is particularly noticeable in countries outside the United States. As the difficulty

increases, the incentive for providers to start offering IPv6 addresses to their customers

354 4 Internetworking

also rises. At the same time, for existing providers, offering IPv6 is a substantial addi-

tional cost because they don’t get to stop supporting IPv4 when they start to offer IPv6.

This means, for example, that the size of a provider’s routing tables can only increase

initially because they need to carry all the existing IPv4 prefixes plus new IPv6 prefixes.

At the moment, IPv6 deployment is happening almost exclusively in research

networks. A few service providers are starting to offer it (often with some incentive

from national governments). It seems hard to imagine that the Internet can continue to

grow indefinitely without IPv6 seeing some more significant deployments, but it also

seems likely that the overwhelming majority of hosts and networks will be IPv4-only

for the foreseeable future.

F U R T H E R R E A D I N G

Not surprisingly, there have been countless papers written on various aspects of the

Internet. Of these, we recommend two as must reading: The paper by Cerf and Kahn

is the one that originally introduced the TCP/IP architecture and is worth reading just

for its historical perspective; the paper by Bradner and Mankin gives an informative

overview of how the rapidly growing Internet has stressed the scalability of the orig-

inal architecture, ultimately resulting in the next-generation IP. The paper by Paxson

describes a study of how routers behave in the Internet. It also happens to be a good

example of how researchers are now studying the dynamic behavior of the Internet.

The final paper discusses multicast, presenting the approach to multicast originally

used on the MBone.

■ Cerf, V., and R. Kahn. A protocol for packet network intercommunica-

tion. IEEE Transactions on Communications COM-22(5):637–648, May

1974.

■ Bradner, S., and A. Mankin. The recommendation for the next generation IP

protocol. Request for Comments 1752, January 1995.

■ Paxson, V. End-to-end routing behavior in the Internet. SIGCOMM ’96,

pages 25–38, August 1996.

■ Deering, S., and D. Cheriton. Multicast routing in datagram internetworks

and extended LANs. ACM Transactions on Computer Systems 8(2):85–110,

May 1990.

Beyond these papers, Perlman gives an excellent explanation of routing in an

internet, including coverage of both bridges and routers [Per00]. Also, the book by

Lynch and Rose gives general information on the scalability of the Internet [Cha93].

Exercises 355

Some interesting experimental studies of the behavior of Internet routing are presented

in Labovitz et al. [LAAJ00].

Many of the techniques and protocols developed to help the Internet scale are

described in RFCs: Subnetting is described in Mogul and Postel [MP85], CIDR is

described in Fuller et al. [FLYV93], RIP is defined in Hedrick [Hed88] and Malkin

[Mal93], OSPF is defined in Moy [Moy98], and BGP-4 is defined in Rekhter and Li

[RL95]. The OSPF specification, at over 200 pages, is one of the longer RFCs around,

but also contains an unusual wealth of detail about how to implement a protocol. A

collection of RFCs related to IPv6 can be found in Bradner and Mankin [BM95], and

the most recent IPv6 spec is by Deering and Hinden [DH98]. The reasons to avoid IP

fragmentation are examined in Kent and Mogul [KM87], and the path MTU discovery

technique is described in Mogul and Deering [MD90]. Protocol Independent Multicast

(PIM) is described in Deering et al. [DEF+96] and [EFH+98].

There has been a lot of work developing algorithms that can be used by routers to

do fast lookup of IP addresses. (Recall that the problem is that the router needs to match

the longest prefix in the forwarding table.) PATRICIA trees are one of the first algo-

rithms applied to this problem [Mor68]. More recent work is reported in [DBCP97],

[WVTP97], [LS98], and [SVSW98]. For an overview of how these algorithms can be

used to build a high-speed router, see Partridge et al. [Par98].

MPLS and the related protocols that fed its development are described in Chan-

dranmenon and Varghese [CV95], Rekhter et al. [RDR+97], and Davie and Rekhter

[DR00]. The latter reference describes many applications of MPLS such as traffic

engineering, fast recovery from network failures, and virtual private networks. [RR99]

provides the specification of MPLS/BGP VPNs, a form of layer 3 VPN that can be pro-

vided over MPLS networks.

Finally, we recommend the following live references:

■ http://www.ietf.org: the IETF home page, from which you can get RFCs, In-

ternet drafts, and working group charters

■ http://playground.sun.com/pub/ipng/html/ipng-main.html:current state of IPv6

E X E R C I S E S

1 What aspect of IP addresses makes it necessary to have one address per network

interface, rather than just one per host? In light of your answer, why does IP

tolerate point-to-point interfaces that have nonunique addresses or no addresses?

2 Why does the Offset field in the IP header measure the offset in 8-byte units? (Hint:

Recall that the Offset field is 13 bits long.)

356 4 Internetworking

3 Some signalling errors can cause entire ranges of bits in a packet to be overwritten

by all 0s or all 1s. Suppose all the bits in the packet including the Internet checksum

are overwritten. Could a packet with all 0s or all 1s be a legal IPv4 packet? Will

the Internet checksum catch that error? Why or why not?

4 Suppose a TCP message that contains 2048 bytes of data and 20 bytes of TCP

header is passed to IP for delivery across two networks of the Internet (i.e., from

the source host to a router to the destination host). The first network uses 14-byte

headers and has an MTU of 1024 bytes; the second uses 8-byte headers with an

MTU of 512 bytes. Each network’s MTU gives the size of the largest IP datagram

that can be carried in a link-layer frame. Give the sizes and offsets of the sequence

of fragments delivered to the network layer at the destination host. Assume all IP

headers are 20 bytes.

5 Path MTU is the smallest MTU of any link on the current path (route) between two

hosts. Assume we could discover the path MTU of the path used in the previous

exercise, and that we use this value as the MTU for all the path segments. Give

the sizes and offsets of the sequence of fragments delivered to the network layer

at the destination host.

6 Suppose an IP packet is fragmented into 10 fragments, each with a 1% (inde-

pendent) probability of loss. To a reasonable approximation, this means there

is a 10% chance of losing the whole packet due to loss of a fragment. What

is the probability of net loss of the whole packet if the packet is transmitted

twice,

(a) assuming all fragments received must have been part of the same transmission?

(b) assuming any given fragment may have been part of either transmission?

(c) Explain how use of the Ident field might be applicable here.

7 Suppose the fragments of Figure 4.5(b) all pass through another router onto a

link with an MTU of 380 bytes, not counting the link header. Show the fragments

produced. If the packet were originally fragmented for this MTU, how many

fragments would be produced?

8 What is the maximum bandwidth at which an IP host can send 576-byte packets

without having the Ident field wrap around within 60 seconds? Suppose IP’s max-

imum segment lifetime (MSL) is 60 seconds; that is, delayed packets can arrive

up to 60 seconds late but no later. What might happen if this bandwidth were

exceeded?

Exercises 357

9 ATM AAL3/4 uses fields Btag/Etag, BASize/Len, Type, SEQ, MID, Length, and

CRC-10 to implement fragmentation into cells. IPv4 uses Ident, Offset, and the M

bit in Flags, among others. What is the IP analog, if any, for each AAL3/4 field?

Does each IP field listed here have an AAL3/4 analog? How well do these fields

correspond?

10 Why do you think IPv4 has fragment reassembly done at the endpoint, rather than

at the next router? Why do you think IPv6 abandoned fragmentation entirely?

Hint: Think about the differences between IP-layer fragmentation and link-layer

fragmentation.

11 Having ARP table entries time out after 10–15 minutes is an attempt at a reason-

able compromise. Describe the problems that can occur if the timeout value is too

small or too large.

12 IP currently uses 32-bit addresses. If we could redesign IP to use the 6-byte MAC

address instead of the 32-bit address, would we be able to eliminate the need for

ARP? Explain why or why not.

13 Suppose hosts A and B have been assigned the same IP address on the same Eth-

ernet, on which ARP is used. B starts up after A. What will happen to A’s existing

connections? Explain how “self-ARP” (querying the network on startup for one’s

own IP address) might help with this problem.

14 Suppose an IP implementation adheres literally to the following algorithm on

receipt of a packet, P, destined for IP address D:

if (〈Ethernet address for D is in ARP cache〉)
〈send P〉

else

〈send out an ARP query for D〉
〈put P into a queue until the response comes back〉

(a) If the IP layer receives a burst of packets destined for D, how might this

algorithm waste resources unnecessarily?

(b) Sketch an improved version.

(c) Suppose we simply drop P, after sending out a query, when cache lookup

fails. How would this behave? (Some early ARP implementations allegedly did

this.)

358 4 Internetworking

2

3

6

2

8 1

D

A

F

E

B

C

Figure 4.48 Network for Exercises 15, 17, and 20.

A B E

D C F

2 1

2 3

5 2 3

Figure 4.49 Network for Exercise 16.

15 For the network given in Figure 4.48, give global distance-vector tables like those

of Tables 4.5 and 4.8 when

(a) each node knows only the distances to its immediate neighbors.

(b) each node has reported the information it had in the preceding step to its

immediate neighbors.

(c) step (b) happens a second time.

16 For the network given in Figure 4.49, give global distance-vector tables like those

of Tables 4.5 and 4.8 when

(a) each node knows only the distances to its immediate neighbors.

(b) each node has reported the information it had in the preceding step to its

immediate neighbors.

(c) step (b) happens a second time.

17 For the network given in Figure 4.48, show how the link-state algorithm builds

the routing table for node D.

Exercises 359

A F

Node Cost NextHop Node Cost NextHop

B 1 B A 3 E

C 2 B B 2 C

D 1 D C 1 C

E 2 B D 2 E

F 3 D E 1 E

Table 4.12 Forwarding tables for Exercise 18.

A F

Node Cost NextHop Node Cost NextHop

B 1 B A 2 C

C 1 C B 3 C

D 2 B C 1 C

E 3 C D 2 C

F 2 C E 1 E

Table 4.13 Forwarding tables for Exercise 19.

18 Suppose we have the forwarding tables shown in Table 4.12 for nodes A and F,

in a network where all links have cost 1. Give a diagram of the smallest network

consistent with these tables.

19 Suppose we have the forwarding tables shown in Table 4.13 for nodes A and F,

in a network where all links have cost 1. Give a diagram of the smallest network

consistent with these tables.

20 For the network in Figure 4.48, suppose the forwarding tables are all established

as in Exercise 15 and then the C–E link fails. Give

(a) the tables of A, B, D, and F after C and E have reported the news.

(b) the tables of A and D after their next mutual exchange.

(c) the table of C after A exchanges with it.

360 4 Internetworking

SubnetNumber SubnetMask NextHop

128.96.39.0 255.255.255.128 Interface 0

128.96.39.128 255.255.255.128 Interface 1

128.96.40.0 255.255.255.128 R2

192.4.153.0 255.255.255.192 R3

〈Default〉 R4

Table 4.14 Routing table for Exercise 21.

SubnetNumber SubnetMask NextHop

128.96.170.0 255.255.254.0 Interface 0

128.96.168.0 255.255.254.0 Interface 1

128.96.166.0 255.255.254.0 R2

128.96.164.0 255.255.252.0 R3

〈Default〉 R4

Table 4.15 Routing table for Exercise 22.

21 Suppose a router has built up the routing table shown in Table 4.14. The router

can deliver packets directly over interfaces 0 and 1, or it can forward packets to

routers R2, R3, or R4. Describe what the router does with a packet addressed to

each of the following destinations:

(a) 128.96.39.10

(b) 128.96.40.12

(c) 128.96.40.151

(d) 192.4.153.17

(e) 192.4.153.90

22 Suppose a router has built up the routing table shown in Table 4.15. The router

can deliver packets directly over interfaces 0 and 1, or it can forward packets to

routers R2, R3, or R4. Assume the router does the longest prefix match. Describe

Exercises 361

E A B

Figure 4.50 Simple network for Exercise 23.

what the router does with a packet addressed to each of the following destinations:

(a) 128.96.171.92

(b) 128.96.167.151

(c) 128.96.163.151

(d) 128.96.169.192

(e) 128.96.165.121

23 Consider the simple network in Figure 4.50, in which A and B exchange distance-

vector routing information. All links have cost 1. Suppose the A–E link fails.

(a) Give a sequence of routing table updates that leads to a routing loop between

A and B.

(b) Estimate the probability of the scenario in (a), assuming A and B send out

routing updates at random times, each at the same average rate.

(c) Estimate the probability of a loop forming if A broadcasts an updated report

within 1 second of discovering the A–E failure, and B broadcasts every 60

seconds uniformly.

24 Consider the situation involving the creation of a routing loop in the network

of Figure 4.15 when the A–E link goes down. List all sequences of table updates

among A, B, and C, pertaining to destination E, that lead to the loop. Assume that

table updates are done one at a time, that the split horizon technique is observed

by all participants, and that A sends its initial report of E’s unreachability to B

before C. You may ignore updates that don’t result in changes.

25 Suppose a set of routers all use the split horizon technique; we consider here under

what circumstances it makes a difference if they use poison reverse in addition.

(a) Show that poison reverse makes no difference in the evolution of the routing

loop in the two examples described in Section 4.2.2, given that the hosts

involved use split horizon.

(b) Suppose split horizon routers A and B somehow reach a state in which they

forward traffic for a given destination X toward each other. Describe how this

situation will evolve with and without the use of poison reverse.

362 4 Internetworking

E A B

D

E A Band

Figure 4.51 Networks for Exercise 26.

A

C

B F G

Figure 4.52 Network for Exercise 27.

(c) Give a sequence of events that leads A and B to a looped state as in (b), even

if poison reverse is used. Hint: Suppose B and A connect through a very slow

link. They each reach X through a third node, C, and simultaneously advertise

their routes to each other.

26 Hold-down is another distance-vector loop-avoidance technique, whereby hosts

ignore updates for a period of time until link failure news has had a chance to

propagate. Consider the networks in Figure 4.51, where all links have cost 1,

except E–D with cost 10. Suppose that the E–A link breaks and B reports its loop-

forming E route to A immediately afterward (this is the false route, via A). Specify

the details of a hold-down interpretation, and use this to describe the evolution

of the routing loop in both networks. To what extent can hold down prevent the

loop in the EAB network without delaying the discovery of the alternative route

in the EABD network?

27 Consider the network in Figure 4.52, using link-state routing. Suppose the B–F

link fails, and the following then occur in sequence:

(a) Node H is added to the right side with a connection to G.

(b) Node D is added to the left side with a connection to C.

(c) A new link D–A is added.

The failed B–F link is now restored. Describe what link-state packets will flood

back and forth. Assume that the initial sequence number at all nodes is 1, and

Exercises 363

A B C

D E
5

5 4

1222

Figure 4.53 Network for Exercise 28.

A D E

B C
6

5 3

1131

Figure 4.54 Network for Exercise 29.

A

B

C

Figure 4.55 Network for Exercise 30.

that no packets time out, and that both ends of a link use the same sequence

number in their LSP for that link, greater than any sequence number either used

before.

28 Give the steps as in Table 4.9 in the forward search algorithm as it builds the

routing database for node A in the network shown in Figure 4.53.

29 Give the steps as in Table 4.9 in the forward search algorithm as it builds the

routing database for node A in the network shown in Figure 4.54.

30 Suppose that nodes in the network shown in Figure 4.55 participate in link-state

routing, and C receives contradictory LSPs: One from A arrives claiming the A–B

link is down, but one from B arrives claiming the A–B link is up.

(a) How could this happen?

(b) What should C do? What can C expect?

Do not assume that LSPs contain any synchronized timestamp.

364 4 Internetworking

A

1 2

3
B

4
Provider Q

Provider P

Provider R

Figure 4.56 Network for Exercise 31.

31 Consider the network shown in Figure 4.56, in which horizontal lines represent

transit providers and numbered vertical lines are interprovider links.

(a) How many routes to P could provider Q’s BGP speakers receive?

(b) Suppose Q and P adopt the policy that outbound traffic is routed to the closest

link to the destination’s provider, thus minimizing their own cost. What paths

will traffic from host A to host B and from host B to host A take?

(c) What could Q do to have the B−→A traffic use the closer link 1?

(d) What could Q do to have the B−→A traffic pass through R?

32 Give an example of an arrangement of routers grouped into autonomous systems

so that the path with the fewest hops from a point A to another point B crosses

the same AS twice. Explain what BGP would do with this situation.

33 Let A be the number of autonomous systems on the Internet, and let D (for

diameter) be the maximum AS path length.

(a) Give a connectivity model for which D is of order log Aand another for which

D is of order
√

A.

(b) Assuming each AS number is 2 bytes and each network number is 4 bytes,

give an estimate for the amount of data a BGP speaker must receive to keep

track of the AS path to every network. Express your answer in terms of A, D,

and the number of networks N.

34 Suppose IP routers learned about IP networks and subnets the way Ethernet learn-

ing bridges learn about hosts: by noting the appearance of new ones and the in-

terface by which they arrive. Compare this with existing distance-vector router

learning

(a) for a leaf site with a single attachment to the Internet, and

(b) for internal use at an organization that did not connect to the Internet.

Exercises 365

Rest of Internet

A

C R1 RB R2 D

B

Figure 4.57 Site for Exercise 39.

Assume that routers only receive new-network notices from other routers, and that

the originating routers receive their IP network information via configuration.

35 IP hosts that are not designated routers are required to drop packets misaddressed

to them, even if they would otherwise be able to forward them correctly. In the

absence of this requirement, what would happen if a packet addressed to IP address

A were inadvertently broadcast at the link layer? What other justifications for this

requirement can you think of?

36 Read the man page or other documentation for the Unix/Windows utility netstat.

Use netstat to display the current IP routing table on your host. Explain the purpose

of each entry. What is the practical minimum number of entries?

37 Use the Unix utility traceroute (Windows tracert) to determine how many

hops it is from your host to other hosts in the Internet (e.g., cs.princeton.edu or

www.cisco.com). How many routers do you traverse just to get out of your local

site? Read the man page or other documentation for traceroute and explain how

it is implemented.

38 What will happen if traceroute is used to find the path to an unassigned address?

Does it matter if the network portion or only the host portion is unassigned?

39 A site is shown in Figure 4.57. R1 and R2 are routers; R2 connects to the outside

world. Individual LANs are Ethernets. RB is a bridge router; it routes traffic

addressed to it and acts as a bridge for other traffic. Subnetting is used inside the

site; ARP is used on each subnet. Unfortunately, host A has been misconfigured

and doesn’t use subnets. Which of B, C, D can A reach?

366 4 Internetworking

C

BA

Figure 4.58 Network for Exercise 41.

40 An organization has a class C network 200.1.1 and wants to form subnets for

four departments, with hosts as follows:

A 72 hosts

B 35 hosts

C 20 hosts

D 18 hosts

There are 145 hosts in all.

(a) Give a possible arrangement of subnet masks to make this possible.

(b) Suggest what the organization might do if department D grows to 34 hosts.

41 Suppose hosts A and B are on an Ethernet LAN with class C IP network address

200.0.0. It is desired to attach a host C to the network via a direct connection

to B (see Figure 4.58). Explain how to do this with subnets; give sample subnet

assignments. Assume that an additional network address is not available. What

does this do to the size of the Ethernet LAN?

42 An alternative method for connecting host C in Exercise 41 is to use proxy ARP

and routing: B agrees to route traffic to and from C and also answers ARP queries

for C received over the Ethernet.

(a) Give all packets sent, with physical addresses, as A uses ARP to locate and

then send one packet to C.

(b) Give B’s routing table. What peculiarity must it contain?

43 Propose a plausible addressing plan for IPv6 that runs out of bits. Specifically,

provide a diagram such as Figure 4.33, perhaps with additional ID fields, that

adds up to more than 128 bits, together with plausible justifications for the size

of each field. You may assume fields are divided on byte boundaries and that

Exercises 367

NetMaskLength NextHop

C4.50.0.0/12 A

C4.5E.10.0/20 B

C4.60.0.0/12 C

C4.68.0.0/14 D

80.0.0.0/1 E

40.0.0.0/2 F

00.0.0.0/2 G

Table 4.16 Routing table for Exercise 45.

the InterfaceID is 64 bits. Hint: Consider fields that would approach maximum

allocation only under unusual circumstances. Can you do this if the InterfaceID is

48 bits?

44 Suppose two subnets share the same physical LAN; hosts on each subnet will see

the other subnet’s broadcast packets.

(a) How will DHCP fare if two servers, one for each subnet, coexist on the shared

LAN? What problems might [do!] arise?

(b) Will ARP be affected by such sharing?

45 Table 4.16 is a routing table using CIDR. Address bytes are in hexadecimal.

The notation “/12” in C4.50.0.0/12 denotes a netmask with 12 leading 1 bits,

that is, FF.F0.0.0. Note that the last three entries cover every address and thus

serve in lieu of a default route. State to what next hop the following will be

delivered.

(a) C4.5E.13.87

(b) C4.5E.22.09

(c) C3.41.80.02

(d) 5E.43.91.12

(e) C4.6D.31.2E

(f) C4.6B.31.2E

368 4 Internetworking

NetMaskLength NextHop

C4.5E.2.0/23 A

C4.5E.4.0/22 B

C4.5E.C0.0/19 C

C4.5E.40.0/18 D

C4.4C.0.0/14 E

C0.0.0.0/2 F

80.0.0.0/1 G

Table 4.17 Routing table for Exercise 46.

46 Table 4.17 is a routing table using CIDR. Address bytes are in hexadecimal. The

notation “/12” in C4.50.0.0/12 denotes a netmask with 12 leading 1 bits, that is,

FF.F0.0.0. State to what next hop the following will be delivered:

(a) C4.4B.31.2E

(b) C4.5E.05.09

(c) C4.4D.31.2E

(d) C4.5E.03.87

(e) C4.5E.7F.12

(f) C4.5E.D1.02

47 Suppose P, Q, and R are network service providers, with respective CIDR

address allocations (using the notation of Exercise 45) C1.0.0.0/8, C2.0.0.0/8,

and C3.0.0.0/8. Each provider’s customers initially receive address allocations

that are a subset of the provider’s. P has the following customers:

PA, with allocation C1.A3.0.0/16, and

PB, with allocation C1.B0.0.0/12.

Q has the following customers:

QA, with allocation C2.0A.10.0/20, and

QB, with allocation C2.0B.0.0/16.

Assume there are no other providers or customers.

Exercises 369

(a) Give routing tables for P, Q, and R, assuming each provider connects to both

of the others.

(b) Now assume P is connected to Q and Q is connected to R, but P and R are

not directly connected. Give tables for P and R.

(c) Suppose customer PA acquires a direct link to Q, and QA acquires a direct

link to P, in addition to existing links. Give tables for P and Q, ignoring R.

48 In the previous problem, assume each provider connects to both others. Suppose

customer PA switches to provider Q and customer QB switches to provider R.

Use the CIDR longest match rule to give routing tables for all three providers that

allow PA and QB to switch without renumbering.

49 Suppose most of the Internet uses some form of geographical addressing, but that

a large international organization has a single IP network address and routes its

internal traffic over its own links.

(a) Explain the routing inefficiency for the organization’s inbound traffic inherent

in this situation.

(b) Explain how the organization might solve this problem for outbound traffic.

(c) For your method above to work for inbound traffic, what would have to

happen?

(d) Suppose the large organization now changes its addressing to separate geo-

graphical addresses for each office. What will its internal routing structure

have to look like if internal traffic is still to be routed internally?

50 The telephone system uses geographical addressing. Why do you think this wasn’t

adopted as a matter of course by the Internet?

51 Suppose a site A is multihomed, in that it has two Internet connections from two

different providers, P and Q. Provider-based addressing as in Exercise 47 is used,

and A takes its address assignment from P. Q has a CIDR longest match routing

entry for A.

(a) Describe what inbound traffic might flow on the A–Q connection. Consider

cases where Q does and does not advertise A to the world using BGP.

(b) What is the minimum advertising of its route to A that Q must do in order for

all inbound traffic to reach A via Q if the P–A link breaks?

(c) What problems must be overcome if A is to use both links for its outbound

traffic?

370 4 Internetworking

52 An ISP with a class B address is working with a new company to allocate it a

portion of address space based on CIDR. The new company needs IP addresses

for machines in three divisions of its corporate network: Engineering, Marketing,

and Sales. These divisions plan to grow as follows: Engineering has 5 machines

as of the start of year 1 and intends to add 1 machine every week; Marketing

will never need more than 16 machines; and Sales needs 1 machine for every

two clients. As of the start of year 1, the company has no clients, but the sales

model indicates that by the start of year 2, the company will have six clients

and each week thereafter gets one new client with probability 60%, loses one

client with probability 20%, or maintains the same number with probability

20%.

(a) What address range would be required to support the company’s growth plans

for at least seven years if marketing uses all 16 of its addresses and the sales

and engineering plans behave as expected?

(b) How long would this address assignment last? At the time when the company

runs out of address space, how would the addresses be assigned to the three

groups?

(c) If CIDR addressing were not available for the seven-year plan, what options

would the new company have in terms of getting address space?

53 Propose a lookup algorithm for a CIDR fowarding table that does not require a

linear search of the entire table to find the longest match.

54 Suppose a network N within a larger organization A acquires its own direct con-

nection to an Internet service provider, in addition to an existing connection via

A. Let R1 be the router connecting N to its own provider, and let R2 be the router

connecting N to the rest of A.

(a) Assuming N remains a subnet of A, how should R1 and R2 be configured?

What limitations would still exist with N’s use of its separate connection?

Would A be prevented from using N’s connection? Specify your configuration

in terms of what R1 and R2 should advertise, and with what paths. Assume

a BGP-like mechanism is available.

(b) Now suppose N gets its own network number; how does this change your

answer in (a)?

(c) Describe a router configuration that would allow A to use N’s link when its

own link is down.

Exercises 371

R1

R2

R3 R4 R5

R6 R7

D

E

Figure 4.59 Example internet for Exercise 55.

55 Consider the example internet shown in Figure 4.59, in which sources D and E

send packets to multicast group G, whose members are shaded in gray. Show the

shortest-path multicast trees for each source.

56 Consider the example internet shown in Figure 4.60 in which sources S1 and S2

send packets to multicast group G, whose members are shaded in gray. Show the

shortest-path multicast trees for each source.

57 Suppose host A is sending to a multicast group; the recipients are leaf nodes of

a tree rooted at A with depth N and with each nonleaf node having k children;

there are thus kN recipients.

(a) How many individual link transmissions are involved if A sends a multicast

message to all recipients?

372 4 Internetworking

R1

S1

S2

R2

R4 R5

R6

R7

R8

Figure 4.60 Example network for Exercise 56.

(b) How many individual link transmissions are involved if A sends unicast mes-

sages to each individual recipient?

(c) Suppose A sends to all recipients, but some messages are lost and retransmis-

sion is necessary. Unicast retransmissions to what fraction of the recipients is

equivalent, in terms of individual link transmissions, to a multicast retrans-

mission to all recipients?

58 Determine whether or not the following IPv6 address notations are correct.

(a) ::0F53:6382:AB00:67DB:BB27:7332

(b) 7803:42F2:::88EC:D4BA:B75D:11CD

(c) ::4BA8:95CC::DB97:4EAB

(d) 74DC::02BA

(e) ::00FF:128.112.92.116

Exercises 373

59 Determine if your site is connected to the MBone. If so, investigate and experiment

with any MBone tools, such as sdr, vat, and vic.

60 MPLS labels are usually 20 bits long. Explain why this provides enough labels

when MPLS is used for destination-based forwarding.

61 MPLS has sometimes been claimed to improve router performance. Explain why

this might be true, and suggest reasons why in practice this may not be the case.

62 Assume that it takes 32 bits to carry each MPLS label that is added to a packet

when the “shim” header of Figure 4.42(b) is used.

(a) How many additional bytes are needed to tunnel a packet using the MPLS

techniques described in Section 4.5.3?

(b) How many additional bytes are needed, at a minimum, to tunnel a packet

using an additional IP header as described in Section 4.1.8?

(c) Calculate the efficiency of bandwidth usage for each of the two tunneling

approaches when the average packet size is 300 bytes. Repeat for 64-byte

packets. Bandwidth efficiency is defined as (payload bytes carried) ÷ (total

bytes carried).

63 RFC 791 describes the Internet Protocol and includes two options for source

routing. Describe three disadvantages of using IP source route options compared

to using MPLS for explicit routing. (Hint: The IP header including options may

be at most 15 words long.)

End-to-End Protocols

Victory is the beautiful, bright coloured flower. Transport is the
stem without which it could never have blossomed.

—Winston Churchill

T
he previous three chapters have described various technologies that can be

used to connect together a collection of computers: direct links (including

LAN technologies like Ethernet and token ring), packet-switched networks

(including cell-based networks like ATM), and internetworks. The next problem is to

turn this host-to-host packet delivery service into a process-to-process communication

P R O B L E M

Getting Processes to

Communicate

channel. This is the role played by the

transport level of the network archi-

tecture, which, because it supports

communication between the end

application programs, is sometimes

called the end-to-end protocol.

Two forces shape the end-to-end

protocol. From above, the application-level processes that use its services have cer-

tain requirements. The following list itemizes some of the common properties that a

transport protocol can be expected to provide:

■ guarantees message delivery

■ delivers messages in the same order they are sent

■ delivers at most one copy of each message

■ supports arbitrarily large messages

■ supports synchronization between the sender and the receiver

■ allows the receiver to apply flow control to the sender

■ supports multiple application processes on each host

5
Note that this list does not include all the functionality

that application processes might want from the network.

For example, it does not include security, which is typically

provided by protocols that sit above the transport level.

From below, the underlying network upon which the

transport protocol operates has certain limitations in the

level of service it can provide. Some of the more typical

limitations of the network are that it may

■ drop messages

■ reorder messages

■ deliver duplicate copies of a given message

■ limit messages to some finite size

■ deliver messages after an arbitrarily long delay

Such a network is said to provide a best-effort level of

service, as exemplified by the Internet.

The challenge, therefore, is to develop algorithms

that turn the less-than-desirable properties of the underly-

ing network into the high level of service required by ap-

plication programs. Different transport protocols employ

different combinations of these algorithms. This chapter

looks at these algorithms in the context of three repre-

sentative services—a simple asynchronous demultiplexing

service, a reliable byte-stream service, and a request/reply

service.

In the case of the demultiplexing and byte-stream

services, we use the Internet’s UDP and TCP protocols,

respectively, to illustrate how these services are provided

in practice. In the third case, we first give a collection of

algorithms that implement the request/reply (plus other re-

lated) services and then show how these algorithms can be

combined to implement a Remote Procedure Call (RPC)

protocol. This discussion is capped off with a description

of two widely used RPC protocols—SunRPC and DCE-

RPC—in terms of these component algorithms. Finally,

the chapter concludes with a section that discusses the

performance of the different transport protocols.

376 5 End-to-End Protocols

5.1 Simple Demultiplexer (UDP)

The simplest possible transport protocol is one that extends the host-to-host delivery

service of the underlying network into a process-to-process communication service.

There are likely to be many processes running on any given host, so the protocol needs

to add a level of demultiplexing, thereby allowing multiple application processes on

each host to share the network. Aside from this requirement, the transport protocol

adds no other functionality to the best-effort service provided by the underlying net-

work. The Internet’s User Datagram Protocol (UDP) is an example of such a transport

protocol.

The only interesting issue in such a protocol is the form of the address used to

identify the target process. Although it is possible for processes to directly identify

each other with an OS-assigned process id (pid), such an approach is only practical

in a closed distributed system in which a single OS runs on all hosts and assigns each

process a unique id. A more common approach, and the one used by UDP, is for

processes to indirectly identify each other using an abstract locator, often called a port

or mailbox. The basic idea is for a source process to send a message to a port and for

the destination process to receive the message from a port.

The header for an end-to-end protocol that implements this demultiplexing func-

tion typically contains an identifier (port) for both the sender (source) and the receiver

(destination) of the message. For example, the UDP header is given in Figure 5.1. Notice

that the UDP port field is only 16 bits long. This means that there are up to 64K possi-

ble ports, clearly not enough to identify all the processes on all the hosts in the Internet.

Fortunately, ports are not interpreted across the entire Internet, but only on a single

host. That is, a process is really identified by a port on some particular host—a 〈port,

host〉 pair. In fact, this pair constitutes the demultiplexing key for the UDP protocol.

The next issue is how a process learns the port for the process to which it wants

to send a message. Typically, a client process initiates a message exchange with a server

SrcPort DstPort

ChecksumLength

Data

0 16 31

Figure 5.1 Format for UDP header.

5.1 Simple Demultiplexer (UDP) 377

process. Once a client has contacted a server, the server knows the client’s port (it was

contained in the message header) and can reply to it. The real problem, therefore, is how

the client learns the server’s port in the first place. A common approach is for the server

to accept messages at a well-known port. That is, each server receives its messages at

some fixed port that is widely published, much like the emergency telephone service

available at the well-known phone number 911. In the Internet, for example, the

Domain Name Server (DNS) receives messages at well-known port 53 on each host,

the mail service listens for messages at port 25, and the Unix talk program accepts

messages at well-known port 517, and so on. This mapping is published periodically

in an RFC and is available on most Unix systems in file /etc/services. Sometimes a

well-known port is just the starting point for communication: The client and server

use the well-known port to agree on some other port that they will use for subsequent

communication, leaving the well-known port free for other clients.

An alternative strategy is to generalize this idea, so that there is only a single

well-known port—the one at which the “Port Mapper” service accepts messages. A

client would send a message to the Port Mapper’s well-known port asking for the

port it should use to talk to the “whatever” service, and the Port Mapper returns

the appropriate port. This strategy makes it easy to change the port associated with

different services over time, and for each host to use a different port for the same

service.

As just mentioned, a port is purely an abstraction. Exactly how it is implemented

differs from system to system, or more precisely, from OS to OS. For example, the

socket API described in Chapter 1 is an implementation of ports. Typically, a port is

implemented by a message queue, as illustrated in Figure 5.2. When a message arrives,

the protocol (e.g., UDP) appends the message to the end of the queue. Should the

queue be full, the message is discarded. There is no flow-control mechanism that tells

the sender to slow down. When an application process wants to receive a message,

one is removed from the front of the queue. If the queue is empty, the process blocks

until a message becomes available.

Finally, although UDP does not implement flow control or reliable/ordered deliv-

ery, it does a little more work than to simply demultiplex messages to some application

process—it also ensures the correctness of the message by the use of a checksum. (The

UDP checksum is optional in the current Internet, but it will become mandatory with

IPv6.) UDP computes its checksum over the UDP header, the contents of the message

body, and something called the pseudoheader. The pseudoheader consists of three fields

from the IP header—protocol number, source IP address, and destination IP address—

plus the UDP length field. (Yes, the UDP length field is included twice in the checksum

calculation.) UDP uses the same checksum algorithm as IP, as defined in Section 2.4.2.

The motivation behind having the pseudoheader is to verify that this message has been

378 5 End-to-End Protocols

Application
process

Application
process

Application
process

UDP

Packets arrive

Ports

Queues

Packets
demultiplexed

Figure 5.2 UDP message queue.

delivered between the correct two endpoints. For example, if the destination IP address

was modified while the packet was in transit, causing the packet to be misdelivered,

this fact would be detected by the UDP checksum.

5.2 Reliable Byte Stream (TCP)
In contrast to a simple demultiplexing protocol like UDP, a more sophisticated trans-

port protocol is one that offers a reliable, connection-oriented, byte-stream service.

Such a service has proven useful to a wide assortment of applications because it frees

the application from having to worry about missing or reordered data. The Internet’s

Transmission Control Protocol (TCP) is probably the most widely used protocol of

this type; it is also the most carefully tuned. It is for these two reasons that this section

studies TCP in detail, although we identify and discuss alternative design choices at

the end of the section.

In terms of the properties of transport protocols given in the problem statement

at the start of this chapter, TCP guarantees the reliable, in-order delivery of a stream

of bytes. It is a full-duplex protocol, meaning that each TCP connection supports a

5.2 Reliable Byte Stream (TCP) 379

pair of byte streams, one flowing in each direction. It also includes a flow-control

mechanism for each of these byte streams that allows the receiver to limit how much

data the sender can transmit at a given time. Finally, like UDP, TCP supports a de-

multiplexing mechanism that allows multiple application programs on any given host

to simultaneously carry on a conversation with their peers. In addition to the above

features, TCP also implements a highly tuned congestion-control mechanism. The idea

of this mechanism is to throttle how fast TCP sends data, not for the sake of keeping

the sender from overrunning the receiver, but to keep the sender from overloading

the network. A description of TCP’s congestion-control mechanism is postponed until

Chapter 6, where we discuss it in the larger context of how network resources are

fairly allocated.

◮ Since many people confuse congestion control and flow control, we restate the

difference. Flow control involves preventing senders from overrunning the capacity of

receivers. Congestion control involves preventing too much data from being injected

into the network, thereby causing switches or links to become overloaded. Thus, flow

control is an end-to-end issue, while congestion control is concerned with how hosts

and networks interact.

5.2.1 End-to-End Issues

At the heart of TCP is the sliding window algorithm. Even though this is the same basic

algorithm we saw in Section 2.5.2, because TCP runs over the Internet rather than a

point-to-point link, there are many important differences. This subsection identifies

these differences and explains how they complicate TCP. The following subsections

then describe how TCP addresses these and other complications.

First, whereas the sliding window algorithm presented in Section 2.5.2 runs over a

single physical link that always connects the same two computers, TCP supports logical

connections between processes that are running on any two computers in the Internet.

This means that TCP needs an explicit connection establishment phase during which

the two sides of the connection agree to exchange data with each other. This difference

is analogous to having to dial up the other party, rather than having a dedicated phone

line. TCP also has an explicit connection teardown phase. One of the things that

happens during connection establishment is that the two parties establish some shared

state to enable the sliding window algorithm to begin. Connection teardown is needed

so each host knows it is OK to free this state.

Second, whereas a single physical link that always connects the same two com-

puters has a fixed RTT, TCP connections are likely to have widely different round-trip

times. For example, a TCP connection between a host in San Francisco and a host

in Boston, which are separated by several thousand kilometers, might have an RTT

380 5 End-to-End Protocols

of 100 ms, while a TCP connection between two hosts in the same room, only a few

meters apart, might have an RTT of only 1 ms. The same TCP protocol must be able

to support both of these connections. To make matters worse, the TCP connection

between hosts in San Francisco and Boston might have an RTT of 100 ms at 3 a.m.,

but an RTT of 500 ms at 3 p.m. Variations in the RTT are even possible during a

single TCP connection that lasts only a few minutes. What this means to the sliding

window algorithm is that the timeout mechanism that triggers retransmissions must be

adaptive. (Certainly, the timeout for a point-to-point link must be a settable parameter,

but it is not necessary to adapt this timer for a particular pair of nodes.)

A third difference is that packets may be reordered as they cross the Internet,

but this is not possible on a point-to-point link where the first packet put into one

end of the link must be the first to appear at the other end. Packets that are slightly

out of order do not cause a problem since the sliding window algorithm can reorder

packets correctly using the sequence number. The real issue is how far out-of-order

packets can get, or said another way, how late a packet can arrive at the destination.

In the worst case, a packet can be delayed in the Internet until IP’s time to live (TTL)

field expires, at which time the packet is discarded (and hence there is no danger of

it arriving late). Knowing that IP throws packets away after their TTL expires, TCP

assumes that each packet has a maximum lifetime. The exact lifetime, known as the

maximum segment lifetime (MSL), is an engineering choice. The current recommended

setting is 120 seconds. Keep in mind that IP does not directly enforce this 120-second

value; it is simply a conservative estimate that TCP makes of how long a packet might

live in the Internet. The implication is significant—TCP has to be prepared for very old

packets to suddenly show up at the receiver, potentially confusing the sliding window

algorithm.

Fourth, the computers connected to a point-to-point link are generally engineered

to support the link. For example, if a link’s delay × bandwidth product is computed

to be 8 KB—meaning that a window size is selected to allow up to 8 KB of data to be

unacknowledged at a given time—then it is likely that the computers at either end of

the link have the ability to buffer up to 8 KB of data. Designing the system otherwise

would be silly. On the other hand, almost any kind of computer can be connected to the

Internet, making the amount of resources dedicated to any one TCP connection highly

variable, especially considering that any one host can potentially support hundreds of

TCP connections at the same time. This means that TCP must include a mechanism

that each side uses to “learn” what resources (e.g., how much buffer space) the other

side is able to apply to the connection. This is the flow-control issue.

Fifth, because the transmitting side of a directly connected link cannot send any

faster than the bandwidth of the link allows, and only one host is pumping data into

the link, it is not possible to unknowingly congest the link. Said another way, the load

5.2 Reliable Byte Stream (TCP) 381

on the link is visible in the form of a queue of packets at the sender. In contrast, the

sending side of a TCP connection has no idea what links will be traversed to reach

the destination. For example, the sending machine might be directly connected to a

relatively fast Ethernet—and so, capable of sending data at a rate of 100 Mbps—but

somewhere out in the middle of the network, a 1.5-Mbps T1 link must be traversed.

And to make matters worse, data being generated by many different sources might be

trying to traverse this same slow link. This leads to the problem of network congestion.

Discussion of this topic is delayed until Chapter 6.

We conclude this discussion of end-to-end issues by comparing TCP’s approach to

providing a reliable/ordered delivery service with the approach used by X.25 networks.

In TCP, the underlying IP network is assumed to be unreliable and to deliver messages

out of order; TCP uses the sliding window algorithm on an end-to-end basis to provide

reliable/ordered delivery. In contrast, X.25 networks use the sliding window protocol

within the network, on a hop-by-hop basis. The assumption behind this approach is

that if messages are delivered reliably and in order between each pair of nodes along

the path between the source host and the destination host, then the end-to-end service

also guarantees reliable/ordered delivery.

The problem with this latter approach is that a sequence of hop-by-hop guaran-

tees does not necessarily add up to an end-to-end guarantee. First, if a heterogeneous

link (say, an Ethernet) is added to one end of the path, then there is no guarantee

that this hop will preserve the same service as the other hops. Second, just because

the sliding window protocol guarantees that messages are delivered correctly from

node A to node B, and then from node B to node C, it does not guarantee that node B

behaves perfectly. For example, network nodes have been known to introduce errors

into messages while transferring them from an input buffer to an output buffer. They

have also been known to accidentally reorder messages. As a consequence of these

small windows of vulnerability, it is still necessary to provide true end-to-end checks

to guarantee reliable/ordered service, even though the lower levels of the system also

implement that functionality.

◮ This discussion serves to illustrate one of the most important principles in system

design—the end-to-end argument. In a nutshell, the end-to-end argument says that a

function (in our example, providing reliable/ordered delivery) should not be provided

in the lower levels of the system unless it can be completely and correctly implemented

at that level. Therefore, this rule argues in favor of the TCP/IP approach. This rule is

not absolute, however. It does allow for functions to be incompletely provided at a

low level as a performance optimization. This is why it is perfectly consistent with the

end-to-end argument to perform error detection (e.g., CRC) on a hop-by-hop basis;

detecting and retransmitting a single corrupt packet across one hop is preferable to

having to retransmit an entire file end-to-end.

382 5 End-to-End Protocols

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …
Figure 5.3 How TCP manages a byte stream.

5.2.2 Segment Format

TCP is a byte-oriented protocol, which means that the sender writes bytes into a TCP

connection and the receiver reads bytes out of the TCP connection. Although “byte

stream” describes the service TCP offers to application processes, TCP does not, itself,

transmit individual bytes over the Internet. Instead, TCP on the source host buffers

enough bytes from the sending process to fill a reasonably sized packet and then sends

this packet to its peer on the destination host. TCP on the destination host then empties

the contents of the packet into a receive buffer, and the receiving process reads from

this buffer at its leisure. This situation is illustrated in Figure 5.3, which, for simplicity,

shows data flowing in only one direction. Remember that, in general, a single TCP

connection supports byte streams flowing in both directions.

The packets exchanged between TCP peers in Figure 5.3 are called segments,

since each one carries a segment of the byte stream. Each TCP segment contains the

header schematically depicted in Figure 5.4. The relevance of most of these fields will

become apparent throughout this section. For now, we simply introduce them.

The SrcPort and DstPort fields identify the source and destination ports, respec-

tively, just as in UDP. These two fields, plus the source and destination IP addresses,

combine to uniquely identify each TCP connection. That is, TCP’s demux key is given

by the 4-tuple

〈 SrcPort, SrcIPAddr, DstPort, DstIPAddr 〉

Note that because TCP connections come and go, it is possible for a connection be-

tween a particular pair of ports to be established, used to send and receive data, and

closed, and then at a later time for the same pair of ports to be involved in a second

5.2 Reliable Byte Stream (TCP) 383

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Figure 5.4 TCP header format.

Sender

Data (SequenceNum)

Acknowledgment +

AdvertisedWindow

Receiver

Figure 5.5 Simplified illustration (showing only one direction) of the TCP process,
with data flow in one direction and ACKs in the other.

connection. We sometimes refer to this situation as two different incarnations of the

same connection.

The Acknowledgment, SequenceNum, and AdvertisedWindow fields are all in-

volved in TCP’s sliding window algorithm. Because TCP is a byte-oriented protocol,

each byte of data has a sequence number; the SequenceNum field contains the sequence

number for the first byte of data carried in that segment. The Acknowledgment and

AdvertisedWindow fields carry information about the flow of data going in the other

direction. To simplify our discussion, we ignore the fact that data can flow in both

directions, and we concentrate on data that has a particular SequenceNum flowing

in one direction and Acknowledgment and AdvertisedWindow values flowing in the

opposite direction, as illustrated in Figure 5.5. The use of these three fields is described

more fully in Section 5.2.4.

The 6-bit Flags field is used to relay control information between TCP peers. The

possible flags include SYN, FIN, RESET, PUSH, URG, and ACK. The SYN and FIN flags

384 5 End-to-End Protocols

are used when establishing and terminating a TCP connection, respectively. Their use

is described in Section 5.2.3. The ACK flag is set any time the Acknowledgment field is

valid, implying that the receiver should pay attention to it. The URG flag signifies that

this segment contains urgent data. When this flag is set, the UrgPtr field indicates where

the nonurgent data contained in this segment begins. The urgent data is contained at

the front of the segment body, up to and including a value of UrgPtr bytes into the

segment. The PUSH flag signifies that the sender invoked the push operation, which

indicates to the receiving side of TCP that it should notify the receiving process of

this fact. We discuss these last two features more in Section 5.2.7. Finally, the RESET

flag signifies that the receiver has become confused—for example, because it received

a segment it did not expect to receive—and so wants to abort the connection.

Finally, the Checksum field is used in exactly the same way as for UDP—it is

computed over the TCP header, the TCP data, and the pseudoheader, which is made

up of the source address, destination address, and length fields from the IP header. The

checksum is required for TCP in both IPv4 and IPv6. Also, since the TCP header is of

variable length (options can be attached after the mandatory fields), a HdrLen field is

included that gives the length of the header in 32-bit words. This field is also known

as the Offset field, since it measures the offset from the start of the packet to the start

of the data.

5.2.3 Connection Establishment and Termination

A TCP connection begins with a client (caller) doing an active open to a server (callee).

Assuming that the server had earlier done a passive open, the two sides engage in

an exchange of messages to establish the connection. (Recall from Chapter 1 that a

party wanting to initiate a connection performs an active open, while a party will-

ing to accept a connection does a passive open.) Only after this connection estab-

lishment phase is over do the two sides begin sending data. Likewise, as soon as

a participant is done sending data, it closes one direction of the connection, which

causes TCP to initiate a round of connection termination messages. Notice that while

connection setup is an asymmetric activity (one side does a passive open and the

other side does an active open), connection teardown is symmetric (each side has to

close the connection independently).1 Therefore, it is possible for one side to have

done a close, meaning that it can no longer send data, but for the other side to

keep the other half of the bidirectional connection open and to continue sending

data.

1To be more precise, connection setup can be symmetric, with both sides trying to open the connection at the same
time, but the common case is for one side to do an active open and the other side to do a passive open.

5.2 Reliable Byte Stream (TCP) 385

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

Figure 5.6 Timeline for three-way handshake algorithm.

Three-Way Handshake

The algorithm used by TCP to establish and terminate a connection is called a three-

way handshake. We first describe the basic algorithm and then show how it is used by

TCP. The three-way handshake involves the exchange of three messages between the

client and the server, as illustrated by the timeline given in Figure 5.6.

The idea is that two parties want to agree on a set of parameters, which, in the

case of opening a TCP connection, are the starting sequence numbers the two sides plan

to use for their respective byte streams. In general, the parameters might be any facts

that each side wants the other to know about. First, the client (the active participant)

sends a segment to the server (the passive participant) stating the initial sequence

number it plans to use (Flags = SYN, SequenceNum = x). The server then responds

with a single segment that both acknowledges the client’s sequence number (Flags =
ACK, Ack = x + 1) and states its own beginning sequence number (Flags = SYN,

SequenceNum = y). That is, both the SYN and ACK bits are set in the Flags field of this

second message. Finally, the client responds with a third segment that acknowledges

the server’s sequence number (Flags = ACK, Ack = y + 1). The reason that each

side acknowledges a sequence number that is one larger than the one sent is that

the Acknowledgment field actually identifies the “next sequence number expected,”

thereby implicitly acknowledging all earlier sequence numbers. Although not shown

in this timeline, a timer is scheduled for each of the first two segments, and if the

expected response is not received, the segment is retransmitted.

You may be asking yourself why the client and server have to exchange starting

sequence numbers with each other at connection setup time. It would be simpler if

each side simply started at some “well-known” sequence number, such as 0. In fact,

386 5 End-to-End Protocols

the TCP specification requires that each side of a connection select an initial starting

sequence number at random. The reason for this is to protect against two incarnations

of the same connection reusing the same sequence numbers too soon, that is, while

there is still a chance that a segment from an earlier incarnation of a connection might

interfere with a later incarnation of the connection.

State Transition Diagram

TCP is complex enough that its specification includes a state transition diagram. A

copy of this diagram is given in Figure 5.7. This diagram shows only the states in-

volved in opening a connection (everything above ESTABLISHED) and in closing a

connection (everything below ESTABLISHED). Everything that goes on while a con-

nection is open—that is, the operation of the sliding window algorithm—is hidden in

the ESTABLISHED state.

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN
/ACK

Timeout after two

segment lifetimes
FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

Figure 5.7 TCP state transition diagram.

5.2 Reliable Byte Stream (TCP) 387

TCP’s state transition diagram is fairly easy to understand. Each circle denotes

a state that one end of a TCP connection can find itself in. All connections start in the

CLOSED state. As the connection progresses, the connection moves from state to state

according to the arcs. Each arc is labelled with a tag of the form event/action. Thus, if

a connection is in the LISTEN state and a SYN segment arrives (i.e., a segment with

the SYN flag set), the connection makes a transition to the SYN RCVD state and takes

the action of replying with an ACK + SYN segment.

Notice that two kinds of events trigger a state transition: (1) a segment arrives

from the peer (e.g., the event on the arc from LISTEN to SYN RCVD), or (2) the local

application process invokes an operation on TCP (e.g., the active open event on the arc

from CLOSE to SYN SENT). In other words, TCP’s state transition diagram effectively

defines the semantics of both its peer-to-peer interface and its service interface, as

defined in Section 1.3.1. The syntax of these two interfaces is given by the segment

format (as illustrated in Figure 5.4) and by some application programming interface

(an example of which is given in Section 1.4.1), respectively.

Now let’s trace the typical transitions taken through the diagram in Figure 5.7.

Keep in mind that at each end of the connection, TCP makes different transitions

from state to state. When opening a connection, the server first invokes a passive open

operation on TCP, which causes TCP to move to the LISTEN state. At some later time,

the client does an active open, which causes its end of the connection to send a SYN

segment to the server and to move to the SYN SENT state. When the SYN segment

arrives at the server, it moves to the SYN RCVD state and responds with a SYN+ACK

segment. The arrival of this segment causes the client to move to the ESTABLISHED

state and to send an ACK back to the server. When this ACK arrives, the server finally

moves to the ESTABLISHED state. In other words, we have just traced the three-way

handshake.

There are three things to notice about the connection establishment half of the

state transition diagram. First, if the client’s ACK to the server is lost, corresponding to

the third leg of the three-way handshake, then the connection still functions correctly.

This is because the client side is already in the ESTABLISHED state, so the local

application process can start sending data to the other end. Each of these data segments

will have the ACK flag set, and the correct value in the Acknowledgment field, so the

server will move to the ESTABLISHED state when the first data segment arrives.

This is actually an important point about TCP—every segment reports what sequence

number the sender is expecting to see next, even if this repeats the same sequence

number contained in one or more previous segments.

The second thing to notice about the state transition diagram is that there is a

funny transition out of the LISTEN state whenever the local process invokes a send

operation on TCP. That is, it is possible for a passive participant to identify both ends

388 5 End-to-End Protocols

of the connection (i.e., itself and the remote participant that it is willing to have connect

to it), and then to change its mind about waiting for the other side and instead actively

establish the connection. To the best of our knowledge, this is a feature of TCP that

no application process actually takes advantage of.

The final thing to notice about the diagram is the arcs that are not shown. Specif-

ically, most of the states that involve sending a segment to the other side also schedule

a timeout that eventually causes the segment to be resent if the expected response does

not happen. These retransmissions are not depicted in the state transition diagram. If

after several tries the expected response does not arrive, TCP gives up and returns to

the CLOSED state.

Turning our attention now to the process of terminating a connection, the im-

portant thing to keep in mind is that the application process on both sides of the

connection must independently close its half of the connection. If only one side closes

the connection, then this means it has no more data to send, but it is still available

to receive data from the other side. This complicates the state transition diagram be-

cause it must account for the possibility that the two sides invoke the close operator

at the same time, as well as the possibility that first one side invokes close and then,

at some later time, the other side invokes close. Thus, on any one side there are three

combinations of transitions that get a connection from the ESTABLISHED state to the

CLOSED state:

■ This side closes first:

ESTABLISHED → FIN WAIT 1 → FIN WAIT 2 → TIME WAIT →
CLOSED.

■ The other side closes first:

ESTABLISHED → CLOSE WAIT → LAST ACK → CLOSED.

■ Both sides close at the same time:

ESTABLISHED → FIN WAIT 1 → CLOSING → TIME WAIT →
CLOSED.

There is actually a fourth, although rare, sequence of transitions that leads to the

CLOSED state; it follows the arc from FIN WAIT 1 to TIME WAIT. We leave it as an

exercise for you to figure out what combination of circumstances leads to this fourth

possibility.

The main thing to recognize about connection teardown is that a connection in

the TIME WAIT state cannot move to the CLOSED state until it has waited for two

times the maximum amount of time an IP datagram might live in the Internet (i.e.,

120 seconds). The reason for this is that while the local side of the connection has

sent an ACK in response to the other side’s FIN segment, it does not know that the

ACK was successfully delivered. As a consequence, the other side might retransmit its

5.2 Reliable Byte Stream (TCP) 389

FIN segment, and this second FIN segment might be delayed in the network. If the

connection were allowed to move directly to the CLOSED state, then another pair of

application processes might come along and open the same connection (i.e., use the

same pair of port numbers), and the delayed FIN segment from the earlier incarnation

of the connection would immediately initiate the termination of the later incarnation

of that connection.

5.2.4 Sliding Window Revisited

We are now ready to discuss TCP’s variant of the sliding window algorithm, which

serves several purposes: (1) it guarantees the reliable delivery of data, (2) it ensures

that data is delivered in order, and (3) it enforces flow control between the sender

and the receiver. TCP’s use of the sliding window algorithm is the same as we saw in

Section 2.5.2 in the case of the first two of these three functions. Where TCP differs

from the earlier algorithm is that it folds the flow-control function in as well. In

particular, rather than having a fixed-size sliding window, the receiver advertises a

window size to the sender. This is done using the AdvertisedWindow field in the TCP

header. The sender is then limited to having no more than a value of AdvertisedWindow

bytes of unacknowledged data at any given time. The receiver selects a suitable value

for AdvertisedWindow based on the amount of memory allocated to the connection

for the purpose of buffering data. The idea is to keep the sender from overrunning the

receiver’s buffer. We discuss this at greater length below.

Reliable and Ordered Delivery

To see how the sending and receiving sides of TCP interact with each other to im-

plement reliable and ordered delivery, consider the situation illustrated in Figure 5.8.

TCP on the sending side maintains a send buffer. This buffer is used to store data

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

Figure 5.8 Relationship between TCP send buffer (a) and receive buffer (b).

390 5 End-to-End Protocols

that has been sent but not yet acknowledged, as well as data that has been written by

the sending application, but not transmitted. On the receiving side, TCP maintains a

receive buffer. This buffer holds data that arrives out of order, as well as data that is

in the correct order (i.e., there are no missing bytes earlier in the stream) but that the

application process has not yet had the chance to read.

To make the following discussion simpler to follow, we initially ignore the fact

that both the buffers and the sequence numbers are of some finite size and hence will

eventually wrap around. Also, we do not distinguish between a pointer into a buffer

where a particular byte of data is stored and the sequence number for that byte.

Looking first at the sending side, three pointers are maintained into the send buf-

fer, each with an obvious meaning: LastByteAcked, LastByteSent, and LastByteWritten.

Clearly,

LastByteAcked ≤ LastByteSent

since the receiver cannot have acknowledged a byte that has not yet been sent, and

LastByteSent ≤ LastByteWritten

since TCP cannot send a byte that the application process has not yet written. Also

note that none of the bytes to the left of LastByteAcked need to be saved in the buffer

because they have already been acknowledged, and none of the bytes to the right of

LastByteWritten need to be buffered because they have not yet been generated.

A similar set of pointers (sequence numbers) are maintained on the receiving side:

LastByteRead, NextByteExpected, and LastByteRcvd. The inequalities are a little less in-

tuitive, however, because of the problem of out-of-order delivery. The first relationship

LastByteRead < NextByteExpected

is true because a byte cannot be read by the application until it is received and all pre-

ceding bytes have also been received. NextByteExpected points to the byte immediately

after the latest byte to meet this criterion. Second,

NextByteExpected ≤ LastByteRcvd + 1

since, if data has arrived in order, NextByteExpected points to the byte after LastByte-

Rcvd, whereas if data has arrived out of order, NextByteExpected points to the start of

the first gap in the data, as in Figure 5.8. Note that bytes to the left of LastByteRead

need not be buffered because they have already been read by the local application

process, and bytes to the right of LastByteRcvd need not be buffered because they have

not yet arrived.

Flow Control

Most of the above discussion is similar to that found in Section 2.5.2; the only real

difference is that this time we elaborated on the fact that the sending and receiving ap-

plication processes are filling and emptying their local buffer, respectively. (The earlier

5.2 Reliable Byte Stream (TCP) 391

discussion glossed over the fact that data arriving from an upstream node was filling

the send buffer, and data being transmitted to a downstream node was emptying the

receive buffer.)

You should make sure you understand this much before proceeding because

now comes the point where the two algorithms differ more significantly. In what

follows, we reintroduce the fact that both buffers are of some finite size, denoted

MaxSendBuffer and MaxRcvBuffer, although we don’t worry about the details of how

they are implemented. In other words, we are only interested in the number of bytes

being buffered, not in where those bytes are actually stored.

Recall that in a sliding window protocol, the size of the window sets the amount

of data that can be sent without waiting for acknowledgment from the receiver. Thus,

the receiver throttles the sender by advertising a window that is no larger than the

amount of data that it can buffer. Observe that TCP on the receive side must keep

LastByteRcvd − LastByteRead ≤ MaxRcvBuffer

to avoid overflowing its buffer. It therefore advertises a window size of

AdvertisedWindow = MaxRcvBuffer − ((NextByteExpected − 1) − LastByteRead)

which represents the amount of free space remaining in its buffer. As data arrives,

the receiver acknowledges it as long as all the preceding bytes have also arrived. In

addition, LastByteRcvd moves to the right (is incremented), meaning that the advertised

window potentially shrinks. Whether or not it shrinks depends on how fast the local

application process is consuming data. If the local process is reading data just as fast as

it arrives (causing LastByteRead to be incremented at the same rate as LastByteRcvd),

then the advertised window stays open (i.e., AdvertisedWindow = MaxRcvBuffer).

If, however, the receiving process falls behind, perhaps because it performs a very

expensive operation on each byte of data that it reads, then the advertised window

grows smaller with every segment that arrives, until it eventually goes to 0.

TCP on the send side must then adhere to the advertised window it gets from

the receiver. This means that at any given time, it must ensure that

LastByteSent − LastByteAcked ≤ AdvertisedWindow

Said another way, the sender computes an effective window that limits how much data

it can send:

EffectiveWindow = AdvertisedWindow − (LastByteSent − LastByteAcked)

Clearly, EffectiveWindow must be greater than 0 before the source can send more data.

It is possible, therefore, that a segment arrives acknowledging x bytes, thereby allowing

the sender to increment LastByteAcked by x, but because the receiving process was not

reading any data, the advertised window is now x bytes smaller than the time before.

392 5 End-to-End Protocols

In such a situation, the sender would be able to free buffer space, but not to send any

more data.

All the while this is going on, the send side must also make sure that the local

application process does not overflow the send buffer, that is, that

LastByteWritten − LastByteAcked ≤ MaxSendBuffer

If the sending process tries to write y bytes to TCP, but

(LastByteWritten − LastByteAcked) + y > MaxSendBuffer

then TCP blocks the sending process and does not allow it to generate more data.

It is now possible to understand how a slow receiving process ultimately stops

a fast sending process. First, the receive buffer fills up, which means the advertised

window shrinks to 0. An advertised window of 0 means that the sending side cannot

transmit any data, even though data it has previously sent has been successfully ac-

knowledged. Finally, not being able to transmit any data means that the send buffer

fills up, which ultimately causes TCP to block the sending process. As soon as the

receiving process starts to read data again, the receive-side TCP is able to open its win-

dow back up, which allows the send-side TCP to transmit data out of its buffer. When

this data is eventually acknowledged, LastByteAcked is incremented, the buffer space

holding this acknowledged data becomes free, and the sending process is unblocked

and allowed to proceed.

There is only one remaining detail that must be resolved—how does the sending

side know that the advertised window is no longer 0? As mentioned above, TCP always

sends a segment in response to a received data segment, and this response contains the

latest values for the Acknowledge and AdvertisedWindow fields, even if these values

have not changed since the last time they were sent. The problem is this. Once the

receive side has advertised a window size of 0, the sender is not permitted to send

any more data, which means it has no way to discover that the advertised window

is no longer 0 at some time in the future. TCP on the receive side does not sponta-

neously send nondata segments; it only sends them in response to an arriving data

segment.

TCP deals with this situation as follows. Whenever the other side advertises a

window size of 0, the sending side persists in sending a segment with 1 byte of data

every so often. It knows that this data will probably not be accepted, but it tries

anyway, because each of these 1-byte segments triggers a response that contains the

current advertised window. Eventually, one of these 1-byte probes triggers a response

that reports a nonzero advertised window.

◮ Note that the reason the sending side periodically sends this probe segment is

that TCP is designed to make the receive side as simple as possible—it simply responds

5.2 Reliable Byte Stream (TCP) 393

to segments from the sender, and it never initiates any activity on its own. This is

an example of a well-recognized (although not universally applied) protocol design

rule, which, for lack of a better name, we call the smart sender/dumb receiver rule.

Recall that we saw another example of this rule when we discussed the use of NAKs

in Section 2.5.2.

Protecting against Wraparound

This subsection and the next consider the size of the SequenceNum and AdvertisedWin-

dow fields and the implications of their sizes on TCP’s correctness and performance.

TCP’s SequenceNum field is 32 bits long, and its AdvertisedWindow field is 16 bits

long, meaning that TCP has easily satisfied the requirement of the sliding window algo-

rithm that the sequence number space be twice as big as the window size: 232 ≫ 2×216.

However, this requirement is not the interesting thing about these two fields. Consider

each field in turn.

The relevance of the 32-bit sequence number space is that the sequence number

used on a given connection might wrap around—a byte with sequence number x could

be sent at one time, and then at a later time a second byte with the same sequence

number x might be sent. Once again, we assume that packets cannot survive in the

Internet for longer than the recommended MSL. Thus, we currently need to make

sure that the sequence number does not wrap around within a 120-second period of

time. Whether or not this happens depends on how fast data can be transmitted over

the Internet, that is, how fast the 32-bit sequence number space can be consumed.

(This discussion assumes that we are trying to consume the sequence number space as

fast as possible, but of course we will be if we are doing our job of keeping the pipe

full.) Table 5.1 shows how long it takes for the sequence number to wrap around on

networks with various bandwidths.

As you can see, the 32-bit sequence number space is adequate for today’s net-

works, but given that OC-48 links currently exist in the Internet backbone, it won’t

be long until individual TCP connections want to run at 622-Mbps speeds or higher.

Fortunately, the IETF has already worked out an extension to TCP that effectively

extends the sequence number space to protect against the sequence number wrapping

around. This and related extensions are described in Section 5.2.8.

Keeping the Pipe Full

The relevance of the 16-bit AdvertisedWindow field is that it must be big enough

to allow the sender to keep the pipe full. Clearly, the receiver is free not to open

the window as large as the AdvertisedWindow field allows; we are interested in the

situation in which the receiver has enough buffer space to handle as much data as the

largest possible AdvertisedWindow allows.

394 5 End-to-End Protocols

Bandwidth Time until Wraparound

T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

FDDI (100 Mbps) 6 minutes

STS-3 (155 Mbps) 4 minutes

STS-12 (622 Mbps) 55 seconds

STS-24 (1.2 Gbps) 28 seconds

Table 5.1 Time until 32-bit sequence number space wraps around.

Bandwidth Delay × Bandwidth Product

T1 (1.5 Mbps) 18 KB

Ethernet (10 Mbps) 122 KB

T3 (45 Mbps) 549 KB

FDDI (100 Mbps) 1.2 MB

STS-3 (155 Mbps) 1.8 MB

STS-12 (622 Mbps) 7.4 MB

STS-24 (1.2 Gbps) 14.8 MB

Table 5.2 Required window size for 100-ms RTT.

In this case, it is not just the network bandwidth but the delay × bandwidth

product that dictates how big the AdvertisedWindow field needs to be—the window

needs to be opened far enough to allow a full delay × bandwidth product’s worth of

data to be transmitted. Assuming an RTT of 100 ms (a typical number for a cross-

country connection in the U.S.), Table 5.2 gives the delay × bandwidth product for

several network technologies.

As you can see, TCP’s AdvertisedWindow field is in even worse shape than its

SequenceNum field—it is not big enough to handle even a T3 connection across the

continental United States, since a 16-bit field allows us to advertise a window of only

64 KB. The very same TCP extension mentioned above (see Section 5.2.8) provides a

mechanism for effectively increasing the size of the advertised window.

5.2 Reliable Byte Stream (TCP) 395

5.2.5 Triggering Transmission

We next consider a surprisingly subtle issue: how TCP decides to transmit a segment. As

described earlier, TCP supports a byte-stream abstraction, that is, application programs

write bytes into the stream, and it is up to TCP to decide that it has enough bytes to

send a segment. What factors govern this decision?

If we ignore the possibility of flow control—that is, we assume the window is

wide open, as would be the case when a connection first starts—then TCP has three

mechanisms to trigger the transmission of a segment. First, TCP maintains a variable,

typically called the maximum segment size (MSS), and it sends a segment as soon as it

has collected MSS bytes from the sending process. MSS is usually set to the size of the

largest segment TCP can send without causing the local IP to fragment. That is, MSS

is set to the MTU of the directly connected network, minus the size of the TCP and IP

headers. The second thing that triggers TCP to transmit a segment is that the sending

process has explicitly asked it to do so. Specifically, TCP supports a push operation,

and the sending process invokes this operation to effectively flush the buffer of unsent

bytes. The final trigger for transmitting a segment is that a timer fires; the resulting

segment contains as many bytes as are currently buffered for transmission. However,

as we will soon see, this “timer” isn’t exactly what you expect.

Silly Window Syndrome

Of course, we can’t just ignore flow control, which plays an obvious role in throttling

the sender. If the sender has MSS bytes of data to send and the window is open at least

that much, then the sender transmits a full segment. Suppose, however, that the sender

is accumulating bytes to send, but the window is currently closed. Now suppose an

ACK arrives that effectively opens the window enough for the sender to transmit, say,

MSS/2 bytes. Should the sender transmit a half-full segment or wait for the window

to open to a full MSS? The original specification was silent on this point, and early

implementations of TCP decided to go ahead and transmit a half-full segment. After

all, there is no telling how long it will be before the window opens further.

It turns out that the strategy of aggressively taking advantage of any available

window leads to a situation now known as the silly window syndrome. Figure 5.9

helps visualize what happens. If you think of a TCP stream as a conveyer belt with

“full” containers (data segments) going in one direction and empty containers (ACKs)

going in the reverse direction, then MSS-sized segments correspond to large containers

and 1-byte segments correspond to very small containers. If the sender aggressively fills

an empty container as soon as it arrives, then any small container introduced into the

system remains in the system indefinitely. That is, it is immediately filled and emptied

at each end, and never coalesced with adjacent containers to create larger containers.

396 5 End-to-End Protocols

Sender Receiver

Figure 5.9 Silly window syndrome.

This scenario was discovered when early implementations of TCP regularly found

themselves filling the network with tiny segments.

Note that the silly window syndrome is only a problem when either the sender

transmits a small segment or the receiver opens the window a small amount. If neither

of these happens, then the small container is never introduced into the stream. It’s

not possible to outlaw sending small segments; for example, the application might

do a push after sending a single byte. It is possible, however, to keep the receiver

from introducing a small container (i.e., a small open window). The rule is that after

advertizing a zero window, the receiver must wait for space equal to an MSS before it

advertises an open window.

Since we can’t eliminate the possibility of a small container being introduced into

the stream, we also need mechanisms to coalesce them. The receiver can do this by

delaying ACKs—sending one combined ACK rather than multiple smaller ones—but

this is only a partial solution because the receiver has no way of knowing how long it is

safe to delay waiting either for another segment to arrive or for the application to read

more data (thus opening the window). The ultimate solution falls to the sender, which

brings us back to our original issue: When does the TCP sender decide to transmit a

segment?

Nagle’s Algorithm

Returning to the TCP sender, if there is data to send but the window is open less than

MSS, then we may want to wait some amount of time before sending the available

data, but the question is, how long? If we wait too long, then we hurt interactive

applications like Telnet. If we don’t wait long enough, then we risk sending a bunch

of tiny packets and falling into the silly window syndrome. The answer is to introduce

a timer and to transmit when the timer expires.

While we could use a clock-based timer—for example, one that fires every 100

ms—Nagle introduced an elegant self-clocking solution. The idea is that as long as TCP

has any data in flight, the sender will eventually receive an ACK. This ACK can be

5.2 Reliable Byte Stream (TCP) 397

treated like a timer firing, triggering the transmission of more data. Nagle’s algorithm

provides a simple, unified rule for deciding when to transmit:

When the application produces data to send

if both the available data and the window ≥ MSS

send a full segment

else

if there is unACKed data in flight

buffer the new data until an ACK arrives

else

send all the new data now

In other words, it’s always OK to send a full segment if the window allows.

It’s also OK to immediately send a small amount of data if there are currently no

segments in transit, but if there is anything in flight, the sender must wait for an ACK

before transmiting the next segment. Thus, an interactive application like Telnet that

continually writes one byte at a time will send data at a rate of one segment per RTT.

Some segments will contain a single byte, while others will contain as many bytes as

the user was able to type in one round-trip time. Because some applications cannot

afford such a delay for each write they do to a TCP connection, the socket interface

allows applications to turn off Nagle’s algorithm by setting the TCP NODELAY option.

Setting this option means that data is transmitted as soon as possible.

5.2.6 Adaptive Retransmission

Because TCP guarantees the reliable delivery of data, it retransmits each segment if an

ACK is not received in a certain period of time. TCP sets this timeout as a function of

the RTT it expects between the two ends of the connection. Unfortunately, given the

range of possible RTTs between any pair of hosts in the Internet, as well as the varia-

tion in RTT between the same two hosts over time, choosing an appropriate timeout

value is not that easy. To address this problem, TCP uses an adaptive retransmission

mechanism. We now describe this mechanism and how it has evolved over time as the

Internet community has gained more experience using TCP.

Original Algorithm

We begin with a simple algorithm for computing a timeout value between a pair of

hosts. This is the algorithm that was originally described in the TCP specification—

and the following description presents it in those terms—but it could be used by any

end-to-end protocol.

The idea is to keep a running average of the RTT and then to compute the timeout

as a function of this RTT. Specifically, every time TCP sends a data segment, it records

398 5 End-to-End Protocols

the time. When an ACK for that segment arrives, TCP reads the time again and then

takes the difference between these two times as a SampleRTT. TCP then computes

an EstimatedRTT as a weighted average between the previous estimate and this new

sample. That is,

EstimatedRTT = α × EstimatedRTT + (1 − α) × SampleRTT

The parameter α is selected to smooth the EstimatedRTT. A small α tracks changes in

the RTT but is perhaps too heavily influenced by temporary fluctuations. On the other

hand, a large α is more stable but perhaps not quick enough to adapt to real changes.

The original TCP specification recommended a setting of α between 0.8 and 0.9. TCP

then uses EstimatedRTT to compute the timeout in a rather conservative way:

TimeOut = 2 × EstimatedRTT

Karn/Partridge Algorithm

After several years of use on the Internet, a rather obvious flaw was discovered in

this simple algorithm. The problem was that an ACK does not really acknowledge a

transmission; it actually acknowledges the receipt of data. In other words, whenever

a segment is retransmitted and then an ACK arrives at the sender, it is impossible to

determine if this ACK should be associated with the first or the second transmission

of the segment for the purpose of measuring the sample RTT. It is necessary to know

which transmission to associate it with so as to compute an accurate SampleRTT. As

illustrated in Figure 5.10, if you assume that the ACK is for the original transmission

but it was really for the second, then the SampleRTT is too large (a), while if you

assume that the ACK is for the second transmission but it was actually for the first,

then the SampleRTT is too small (b).

Sender Receiver

Original transmission

ACK

S
a
m

p
le

R
T

T

Retransmission

Sender Receiver

Original transmission

ACK

S
a
m

p
le

R
T

T

Retransmission

(a) (b)

Figure 5.10 Associating the ACK with (a) original transmission versus
(b) retransmission.

5.2 Reliable Byte Stream (TCP) 399

The solution is surprisingly simple. Whenever TCP retransmits a segment, it

stops taking samples of the RTT; it only measures SampleRTT for segments that have

been sent only once. This solution is known as the Karn/Partridge algorithm, after its

inventors. Their proposed fix also includes a second small change to TCP’s timeout

mechanism. Each time TCP retransmits, it sets the next timeout to be twice the last

timeout, rather than basing it on the last EstimatedRTT. That is, Karn and Partridge

proposed that TCP use exponential backoff, similar to what the Ethernet does. The

motivation for using exponential backoff is simple: Congestion is the most likely cause

of lost segments, meaning that the TCP source should not react too aggressively to a

timeout. In fact, the more times the connection times out, the more cautious the source

should become. We will see this idea again, embodied in a much more sophisticated

mechanism, in Chapter 6.

Jacobson/Karels Algorithm

The Karn/Partridge algorithm was introduced at a time when the Internet was suffering

from high levels of network congestion. Their approach was designed to fix some of

the causes of that congestion, and although it was an improvement, the congestion was

not eliminated. A couple of years later, two other researchers—Jacobson and Karels—

proposed a more drastic change to TCP to battle congestion. The bulk of that proposed

change is described in Chapter 6. Here, we focus on the aspect of that proposal that

is related to deciding when to time out and retransmit a segment.

As an aside, it should be clear how the timeout mechanism is related to

congestion—if you time out too soon, you may unnecessarily retransmit a segment,

which only adds to the load on the network. As we will see in Chapter 6, the other

reason for needing an accurate timeout value is that a timeout is taken to imply conges-

tion, which triggers a congestion-control mechanism. Finally, note that there is nothing

about the Jacobson/Karels timeout computation that is specific to TCP. It could be used

by any end-to-end protocol.

The main problem with the original computation is that it does not take the

variance of the sample RTTs into account. Intuitively, if the variation among samples

is small, then the EstimatedRTT can be better trusted and there is no reason for multi-

plying this estimate by 2 to compute the timeout. On the other hand, a large variance

in the samples suggests that the timeout value should not be too tightly coupled to the

EstimatedRTT.

In the new approach, the sender measures a new SampleRTT as before. It then

folds this new sample into the timeout calculation as follows:

Difference = SampleRTT − EstimatedRTT

EstimatedRTT = EstimatedRTT + (δ × Difference)

400 5 End-to-End Protocols

Deviation = Deviation + δ(|Difference| − Deviation)

where δ is a fraction between 0 and 1. That is, we calculate both the mean RTT and

the variation in that mean.

TCP then computes the timeout value as a function of both EstimatedRTT and

Deviation as follows:

TimeOut = μ × EstimatedRTT + φ × Deviation

where based on experience, μ is typically set to 1 and φ is set to 4. Thus, when

the variance is small, TimeOut is close to EstimatedRTT; a large variance causes the

Deviation term to dominate the calculation.

Implementation

There are two items of note regarding the implementation of timeouts in TCP. The

first is that it is possible to implement the calculation for EstimatedRTT and Deviation

without using floating-point arithmetic. Instead, the whole calculation is scaled by

2n, with δ selected to be 1/2n. This allows us to do integer arithmetic, implementing

multiplication and division using shifts, thereby achieving higher performance. The

resulting calculation is given by the following code fragment, where n = 3 (i.e., δ =
1/8). Note that EstimatedRTT and Deviation are stored in their scaled-up forms, while

the value of SampleRTT at the start of the code and of TimeOut at the end are real,

unscaled values. If you find the code hard to follow, you might want to try plugging

some real numbers into it and verifying that it gives the same results as the equations

above.

{
SampleRTT -= (EstimatedRTT >> 3);
EstimatedRTT += SampleRTT;
if (SampleRTT < 0)

SampleRTT = -SampleRTT;
SampleRTT -= (Deviation >> 3);
Deviation += SampleRTT;
TimeOut = (EstimatedRTT >> 3) + (Deviation >> 1);

}

The second point of note is that the Jacobson/Karels algorithm is only as good

as the clock used to read the current time. On a typical Unix implementation, the

clock granularity is as large as 500 ms, which is significantly larger than the average

cross-country RTT of somewhere between 100 and 200 ms. To make matters worse,

the Unix implementation of TCP only checks to see if a timeout should happen every

time this 500-ms clock ticks, and it only takes a sample of the round-trip time once per

5.2 Reliable Byte Stream (TCP) 401

RTT. The combination of these two factors quite often means that a timeout happens

1 second after the segment was transmitted. Once again, the extensions to TCP include

a mechanism that makes this RTT calculation a bit more precise.

5.2.7 Record Boundaries

Since TCP is a byte-stream protocol, the number of bytes written by the sender are

not necessarily the same as the number of bytes read by the receiver. For example,

the application might write 8 bytes, then 2 bytes, then 20 bytes to a TCP connection,

while on the receiving side, the application reads 5 bytes at a time inside a loop that

iterates 6 times. TCP does not interject record boundaries between the 8th and 9th

bytes, nor between the 10th and 11th bytes. This is in contrast to a message-oriented

protocol, such as UDP, in which the message that is sent is exactly the same length as

the message that is received.

Even though TCP is a byte-stream protocol, it has two different features that

can be used by the sender to insert record boundaries into this byte stream, thereby

informing the receiver how to break the stream of bytes into records. (Being able to

mark record boundaries is useful, for example, in many database applications.) Both

of these features were originally included in TCP for completely different reasons; they

have only come to be used for this purpose over time.

The first mechanism is the urgent data feature, as implemented by the URG flag

and the UrgPtr field in the TCP header. Originally, the urgent data mechanism was

designed to allow the sending application to send out-of-band data to its peer. By “out

of band” we mean data that is separate from the normal flow of data (e.g., a command

to interrupt an operation already under way). This out-of-band data was identified in

the segment using the UrgPtr field and was to be delivered to the receiving process as

soon as it arrived, even if that meant delivering it before data with an earlier sequence

number. Over time, however, this feature has not been used, so instead of signifying

“urgent” data, it has come to be used to signify “special” data, such as a record marker.

This use has developed because, as with the push operation, TCP on the receiving side

must inform the application that “urgent data” has arrived. That is, the urgent data

in itself is not important. It is the fact that the sending process can effectively send a

signal to the receiver that is important.

The second mechanism for inserting end-of-record markers into a byte is the push

operation. Originally, this mechanism was designed to allow the sending process to

tell TCP that it should send (flush) whatever bytes it had collected to its peer. The push

operation can be used to implement record boundaries because the specification says

that TCP must send whatever data it has buffered at the source when the application

says push, and optionally, TCP at the destination notifies the application whenever

an incoming segment has the PUSH flag set. If the receiving side supports this option

402 5 End-to-End Protocols

(the socket interface does not), then the push operation can be used to break the TCP

stream into records.

Of course, the application program is always free to insert record boundaries

without any assistance from TCP. For example, it can send a field that indicates the

length of a record that is to follow, or it can insert its own record boundary markers

into the data stream.

5.2.8 TCP Extensions

We have mentioned at three different points in this section that there are now extensions

to TCP that help to mitigate some problem that TCP is facing as the underlying

network gets faster. These extensions are designed to have as small an impact on TCP

as possible. In particular, they are realized as options that can be added to the TCP

header. (We glossed over this point earlier, but the reason that the TCP header has a

HdrLen field is that the header can be of variable length; the variable part of the TCP

header contains the options that have been added.) The significance of adding these

extensions as options rather than changing the core of the TCP header is that hosts

can still communicate using TCP even if they do not implement the options. Hosts that

do implement the optional extensions, however, can take advantage of them. The two

sides agree that they will use the options during TCP’s connection establishment phase.

The first extension helps to improve TCP’s timeout mechanism. Instead of mea-

suring the RTT using a coarse-grained event, TCP can read the actual system clock

when it is about to send a segment, and put this time—think of it as a 32-bit time-

stamp—in the segment’s header. The receiver then echoes this timestamp back to the

sender in its acknowledgment, and the sender subtracts this timestamp from the cur-

rent time to measure the RTT. In essence, the timestamp option provides a convenient

place for TCP to “store” the record of when a segment was transmitted; it stores

the time in the segment itself. Note that the endpoints in the connection do not need

synchronized clocks, since the timestamp is written and read at the same end of the

connection.

The second extension addresses the problem of TCP’s 32-bit SequenceNum field

wrapping around too soon on a high-speed network. Rather than define a new 64-bit

sequence number field, TCP uses the 32-bit timestamp just described to effectively

extend the sequence number space. In other words, TCP decides whether to accept or

reject a segment based on a 64-bit identifier that has the SequenceNum field in the

low-order 32 bits and the timestamp in the high-order 32 bits. Since the timestamp

is always increasing, it serves to distinguish between two different incarnations of the

same sequence number. Note that the timestamp is being used in this setting only to

protect against wraparound; it is not treated as part of the sequence number for the

purpose of ordering or acknowledging data.

5.2 Reliable Byte Stream (TCP) 403

The third extension allows TCP to advertise a larger window, thereby allow-

ing it to fill larger delay × bandwidth pipes that are made possible by high-speed

networks. This extension involves an option that defines a scaling factor for the ad-

vertised window. That is, rather than interpreting the number that appears in the

AdvertisedWindow field as indicating how many bytes the sender is allowed to have

unacknowledged, this option allows the two sides of TCP to agree that the Advertised-

Window field counts larger chunks (e.g., how many 16-byte units of data the sender can

have unacknowledged). In other words, the window scaling option specifies how many

bits each side should left-shift the AdvertisedWindow field before using its contents to

compute an effective window.

5.2.9 Alternative Design Choices

Although TCP has proven to be a robust protocol that satisfies the needs of a wide

range of applications, the design space for transport protocols is quite large. TCP is,

by no means, the only valid point in that design space. We conclude our discussion of

TCP by considering alternative design choices. While we offer an explanation for why

TCP’s designers made the choices they did, we leave it to you to decide if there might

be a place for alternative transport protocols.

First, we have suggested from the very first chapter of this book that there are at

least two interesting classes of transport protocols: stream-oriented protocols like TCP

and request/reply protocols like RPC. In other words, we have implicitly divided the

design space in half and placed TCP squarely in the stream-oriented half of the world.

We could further divide the stream-oriented protocols into two groups—reliable and

unreliable—with the former containing TCP and the latter being more suitable for

interactive video applications that would rather drop a frame than incur the delay

associated with a retransmission.

This exercise in building a transport protocol taxonomy is interesting and could

be continued in greater and greater detail, but the world isn’t as black and white as we

might like. Consider the suitability of TCP as a transport protocol for request/reply

applications, for example. TCP is a full-duplex protocol, so it would be easy to open

a TCP connection between the client and server, send the request message in one

direction, and send the reply message in the other direction. There are two com-

plications, however. The first is that TCP is a byte-oriented protocol rather than a

message-oriented protocol, and request/reply applications always deal with messages.

(We explore the issue of bytes versus messages in greater detail in a moment.) The

second complication is that in those situations where both the request message and

the reply message fit in a single network packet, a well-designed request/reply protocol

needs only two packets to implement the exchange, whereas TCP would need at least

nine: three to establish the connection, two for the message exchange, and four to tear

404 5 End-to-End Protocols

down the connection. Of course, if the request or reply messages are large enough to

require multiple network packets (e.g., it might take 100 packets to send a 100,000-

byte reply message), then the overhead of setting up and tearing down the connection

is inconsequential. In other words, it isn’t always the case that a particular protocol

cannot support a certain functionality; it’s sometimes the case that one design is more

efficient than another under particular circumstances.

Second, as just suggested, you might question why TCP chose to provide a reliable

byte-stream service rather than a reliable message-stream service; messages would be

the natural choice for a database application that wants to exchange records. There are

two answers to this question. The first is that a message-oriented protocol must, by def-

inition, establish an upper bound on message sizes. After all, an infinitely long message

is a byte stream. For any message size that a protocol selects, there will be applications

that want to send larger messages, rendering the transport protocol useless and forcing

the application to implement its own transportlike services. The second reason is that

while message-oriented protocols are definitely more appropriate for applications that

want to send records to each other, you can easily insert record boundaries into a byte

stream to implement this functionality, as described in Section 5.2.7.

Third, TCP chose to implement explicit setup/teardown phases, but this is not

required. In the case of connection setup, it would certainly be possible to send all

necessary connection parameters along with the first data message. TCP elected to

take a more conservative approach that gives the receiver the opportunity to reject the

connection before any data arrives. In the case of teardown, we could quietly close a

connection that has been inactive for a long period of time, but this would complicate

applications like Telnet that want to keep a connection alive for weeks at a time; such

applications would be forced to send out-of-band “keepalive” messages to keep the

connection state at the other end from disappearing.

Finally, TCP is a window-based protocol, but this is not the only possibility.

The alternative is a rate-based design, in which the receiver tells the sender the rate—

expressed in either bytes or packets per second—at which it is willing to accept incom-

ing data. For example, the receiver might inform the sender that it can accommodate

100 packets a second. There is an interesting duality between windows and rate, since

the number of packets (bytes) in the window, divided by the RTT, is exactly the rate.

For example, a window size of 10 packets and a 100-ms RTT implies that the sender is

allowed to transmit at a rate of 100 packets a second. It is by increasing or decreasing

the advertised window size that the receiver is effectively raising or lowering the rate

at which the sender can transmit. In TCP, this information is fed back to the sender

in the AdvertisedWindow field of the ACK for every segment. One of the key issues in

a rate-based protocol is how often the desired rate—which may change over time—is

relayed back to the source: Is it for every packet, once per RTT, or only when the

5.3 Remote Procedure Call 405

rate changes? While we have just now considered window versus rate in the context

of flow control, it is an even more hotly contested issue in the context of congestion

control, which we will discuss in Chapter 6.

5.3 Remote Procedure Call

As discussed in Chapter 1, a common pattern of communication used by application

programs is the request/reply paradigm, also called message transaction: A client sends

a request message to a server, the server responds with a reply message, and the client

blocks (suspends execution) waiting for this response. Figure 5.11 illustrates the basic

interaction between the client and server in such a message transaction.

A transport protocol that supports the request/reply paradigm is much more than

a UDP message going in one direction, followed by a UDP message going in the other

direction. It also involves overcoming all of the limitations of the underlying network

outlined in the problem statement at the beginning of this chapter. While TCP over-

comes these limitations by providing a reliable byte-stream service, it doesn’t match

the request/reply paradigm very well either since going to the trouble of establishing a

TCP connection just to exchange a pair of messages seems like overkill. This section de-

scribes a third transport protocol—which we call Remote Procedure Call (RPC)—that

more closely matches the needs of an application involved in a request/reply message

exchange.

RPC is actually more than just a protocol—it is a popular mechanism for struc-

turing distributed systems. RPC is popular because it is based on the semantics of a

local procedure call—the application program makes a call into a procedure without

regard for whether it is local or remote and blocks until the call returns. While this

may sound simple, there are two main problems that make RPC more complicated

than local procedure calls:

Client Server

Request

Reply

Computing

Blocked

Blocked

Blocked

Figure 5.11 Timeline for RPC.

406 5 End-to-End Protocols

■ The network between the calling process and the called process has much

more complex properties than the backplane of a computer. For example, it is

likely to limit message sizes and has a tendency to lose and reorder messages.

■ The computers on which the calling and called processes run may have sig-

nificantly different architectures and data representation formats.

Thus, a complete RPC mechanism actually involves two major components:

1 A protocol that manages the messages sent between the client and the server pro-

cesses and that deals with the potentially undesirable properties of the underlying

network

2 Programming language and compiler support to package the arguments into a

request message on the client machine and then to translate this message back

into the arguments on the server machine, and likewise with the return value

(this piece of the RPC mechanism is usually called a stub compiler)

Figure 5.12 schematically depicts what happens when a client invokes a remote

procedure. First, the client calls a local stub for the procedure, passing it the arguments

required by the procedure. This stub hides the fact that the procedure is remote by

Caller
(client)

Client
stub

RPC
protocol

Return
value

Arguments

ReplyRequest

Callee
(server)

Server
stub

RPC
protocol

Return
value

Arguments

ReplyRequest

Figure 5.12 Complete RPC mechanism.

5.3 Remote Procedure Call 407

translating the arguments into a request message and then invoking an RPC protocol

to send the request message to the server machine. At the server, the RPC protocol

delivers the request message to the server stub, which translates it into the arguments to

the procedure and then calls the local procedure. After the server procedure completes,

it returns the answer to the server stub, which packages this return value in a reply

message that it hands off to the RPC protocol for transmission back to the client. The

RPC protocol on the client passes this message up to the client stub, which translates

it into a return value that it returns to the client program.

This section considers just the protocol-related aspects of an RPC mechanism.

That is, it ignores the stubs and focuses instead on the RPC protocol that transmits

messages between client and server; the transformation of arguments into messages

and vice versa is covered in Chapter 7. Furthermore, since RPC is a generic term—

rather than a specific standard like TCP—we are going to take a different approach

than we did in the previous section. Instead of organizing the discussion around an

existing standard (i.e., TCP) and then pointing out alternative designs at the end, we

are going to walk you through the thought process involved in designing an RPC

protocol. That is, we will design our own RPC protocol from scratch—considering

the design options at every step of the way—and then come back and describe some

widely used RPC protocols by comparing and contrasting them to the protocol we

just designed.

Before jumping in, however, we note that an RPC protocol performs a rather

complicated set of functions, and so instead of treating RPC as a single, monolithic

protocol, we develop it as a “stack” of three smaller protocols: BLAST, CHAN, and

SELECT. Each of these smaller protocols, which we sometimes call a microprotocol,

contains a single algorithm that addresses one of the problems outlined at the start of

this chapter. As a brief overview:

■ BLAST: fragments and reassembles large messages

■ CHAN: synchronizes request and reply messages

■ SELECT: dispatches request messages to the correct process

These microprotocols are complete, self-contained protocols that can be used in dif-

ferent combinations to provide different end-to-end services. Section 5.3.4 shows how

they can be combined to implement RPC.

Just to be clear, BLAST, CHAN, and SELECT are not standard protocols in the

sense that TCP, UDP, and IP are. They are simply protocols of our own invention, but

ones that demonstrate the algorithms needed to implement RPC. Because this section

is not constrained by the artifacts of what has been designed in the past, it provides a

particularly good opportunity to examine the principles of protocol design.

408 5 End-to-End Protocols

5.3.1 Bulk Transfer (BLAST)

The first problem we are going to tackle is

how to turn an underlying network that de-

livers messages of some small size (say, 1 KB)

into a service that delivers messages of a

much larger size (say, 32 KB). While 32 KB

does not qualify as “arbitrarily large,” it is

large enough to be of practical use for many

applications, including most distributed file

systems. Ultimately, a stream-based pro-

tocol like TCP (see Section 5.2) will be

needed to support an arbitrarily large mes-

sage, since any message-oriented protocol

will necessarily have some upper limit to the

size of the message it can handle, and you

can always imagine needing to transmit a

message that is larger than this limit.

We have already examined the basic

technique that is used to transmit a large

message over a network that can accommo-

date only smaller messages—fragmentation

and reassembly. We now describe the

BLAST protocol, which uses this tech-

nique. One of the unique properties of

BLAST is how hard it tries to deliver all

the fragments of a message. Unlike the

AAL segmentation/reassembly mechanism

used with ATM (see Section 3.3) or the IP

fragmentation/reassembly mechanism (see

Section 4.1), BLAST attempts to recover

from dropped fragments by retransmitting

them. However, BLAST does not go so far

as to guarantee message delivery. The sig-

nificance of this design choice will become

clear later in this section.

What Layer Is RPC?

Once again, the “What layer is

this?” issue raises its ugly head.

To many people, especially those

who adhere to the Internet archi-

tecture, RPC is implemented on

top of a transport protocol (usu-

ally UDP) and so cannot itself (by

definition) be a transport protocol.

It is equally valid, however, to ar-

gue that the Internet should have

an RPC protocol, since it offers

a process-to-process service that is

fundamentally different from that

offered by TCP and UDP. The

usual response to such a sugges-

tion, however, is that the Internet

architecture does not prohibit net-

work designers from implementing

their own RPC protocol on top of

UDP. (In general, UDP is viewed

as the Internet architecture’s “es-

cape hatch,” since effectively it just

adds a layer of demultiplexing to

IP.) Whichever side of the issue of

whether the Internet should have

an official RPC protocol you sup-

port, the important point is that

the way you implement RPC in

the Internet architecture says noth-

ing about whether RPC should be

BLAST Algorithm

The basic idea of BLAST is for the sender to break a large message passed to it by

some high-level protocol into a set of smaller fragments, and then for it to transmit

5.3 Remote Procedure Call 409

considered a transport protocol or

not.

Interestingly, there are other

people who believe that RPC is

the most interesting protocol in the

world and that TCP/IP is just what

you do when you want to go “off

site.” This is the predominant view

of the operating systems commu-

nity, which has built countless OS

kernels for distributed systems that

contain exactly one protocol—you

guessed it, RPC—running on top of

a network device driver.

The water gets even mud-

dier when you implement RPC as

a combination of three different

microprotocols, as is the case in this

section. In such a situation, which

of the three is the “transport” pro-

tocol? Our answer to this ques-

tion is that any protocol that offers

process-to-process service, as op-

posed to node-to-node or host-to-

host service, qualifies as a transport

protocol. Thus, RPC is a transport

protocol and, in fact, can be im-

plemented from a combination of

microprotocols that are themselves

valid transport protocols.

these fragments back-to-back over the

network. Hence the name BLAST—the pro-

tocol does not wait for any of the frag-

ments to be acknowledged before send-

ing the next. The receiver then sends

a selective retransmission request (SRR)

back to the sender, indicating which frag-

ments arrived and which did not. (The

SRR message is sometimes called a par-

tial or selective acknowledgment.) Finally,

the sender retransmits the missing frag-

ments. In the case in which all the frag-

ments have arrived, the SRR serves to fully

acknowledge the message. Figure 5.13 gives

a representative timeline for the BLAST

protocol.

We now consider the send and re-

ceive sides of BLAST in more detail. On

the sending side, after fragmenting the mes-

sage and transmitting each of the fragments,

the sender sets a timer called DONE. When-

ever an SRR arrives, the sender retransmits

the requested fragments and resets timer

DONE. Should the SRR indicate that all

the fragments have arrived, the sender frees

its copy of the message and cancels timer

DONE. If timer DONE ever expires, the

sender frees its copy of the message; that

is, it gives up.

On the receiving side, whenever the

first fragment of a message arrives, the re-

ceiver initializes a data structure to hold the

individual fragments as they arrive and sets

a timer LAST FRAG. This timer counts the

time that has elapsed since the last fragment

arrived. Each time a fragment for that message arrives, the receiver adds it to this data

structure, and should all the fragments then be present, it reassembles them into a

complete message and passes this message up to the higher-level protocol. There are

four exceptional conditions, however, that the receiver watches for:

410 5 End-to-End Protocols

Sender Receiver

Fragment 1
Fragment 2

Fragment 3

Fragment 5

Fragment 4

Fragment 6

Fragment 3
Fragment 5

SRR

SRR

Figure 5.13 Representative timeline for BLAST.

■ If the last fragment arrives (the last fragment is specially marked) but

the message is not complete, then the receiver determines which fragments

are missing and sends an SRR to the sender. It also sets a timer called

RETRY.

■ If timer LAST FRAG expires, then the receiver determines which fragments

are missing and sends an SRR to the sender. It also sets timer RETRY.

■ If timer RETRY expires for the first or second time, then the receiver deter-

mines which fragments are still missing and retransmits an SRR message.

■ If timer RETRY expires for the third time, then the receiver frees the fragments

that have arrived and cancels timer LAST FRAG; that is, it gives up.

There are three aspects of BLAST worth noting. First, two different events trigger

the initial transmission of an SRR: the arrival of the last fragment and the firing of the

LAST FRAG timer. In the case of the former, because the network may reorder packets,

5.3 Remote Procedure Call 411

the arrival of the last fragment does not necessarily imply that an earlier fragment is

missing (it may just be late in arriving), but since this is the most likely explanation,

BLAST aggressively sends an SRR message. In the latter case, we deduce that the last

fragment was either lost or seriously delayed.

Second, the performance of BLAST does not critically depend on how carefully

the timers are set. Timer DONE is used only to decide that it is time to give up

and delete the message that is currently being worked on. This timer can be set to a

fairly large value since its only purpose is to reclaim storage. Timer RETRY is only

used to retransmit an SRR message. Any time the situation is so bad that a protocol

is reexecuting a failure recovery process, performance is the last thing on its mind.

Finally, timer LAST FRAG has the potential to influence performance—it sometimes

triggers the sending by the receiver of an SRR message—but this is an unlikely event:

It only happens when the last fragment of the message happens to get dropped in the

network.

Third, while BLAST is persistent in asking for and retransmitting missing frag-

ments, it does not guarantee that the complete message will be delivered. To understand

this, suppose that a message consists of only one or two fragments and that these frag-

ments are lost. The receiver will never send an SRR, and the sender’s DONE timer

will eventually expire, causing the sender to release the message. To guarantee deliv-

ery, BLAST would need for the sender to time out if it does not receive an SRR and

then retransmit the last set of fragments it had transmitted. While BLAST certainly

could have been designed to do this, we chose not to because the purpose of BLAST is

to deliver large messages, not to guarantee message delivery. Other protocols can be

configured on top of BLAST to guarantee message delivery. You might wonder why

we put any retransmission capability at all into BLAST if we need to put a guaran-

teed delivery mechanism above it anyway. The reason is that we’d prefer to retransmit

only those fragments that were lost rather than having to retransmit the entire larger

message whenever one fragment is lost. So we get the guarantees from the higher-level

protocol but some improved efficiency by retransmitting fragments in BLAST.

BLAST Message Format

The BLAST header has to convey several pieces of information. First, it must contain

some sort of message identifier so that all the fragments that belong to the same

message can be identified. Second, there must be a way to identify where in the original

message the individual fragments fit, and likewise, an SRR must be able to indicate

which fragments have arrived and which are missing. Third, there must be a way to

distinguish the last fragment, so that the receiver knows when it is time to check to

see if all the fragments have arrived. Finally, it must be possible to distinguish a data

412 5 End-to-End Protocols

Data

ProtNum

MID

Length

NumFrags Type

FragMask

0 16 31

Figure 5.14 Format for BLAST message header.

message from an SRR message. Some of these items are encoded in a header field in an

obvious way, but others can be done in a variety of different ways. Figure 5.14 gives

the header format used by BLAST. The following discussion explains the various fields

and considers alternative designs.

The MID field uniquely identifies this message. All fragments that belong to the

same message have the same value in their MID field. The only question is how many

bits are needed for this field. This is similar to the question of how many bits are needed

in the SequenceNum field for TCP. The central issue in deciding how many bits to use

in the MID field has to do with how long it will take before this field wraps around

and the protocol starts using message ids over again. If this happens too soon—that

is, the MID field is only a few bits long—then it is possible for the protocol to become

confused by a message that was delayed in the network, so that an old incarnation of

some message id is mistaken for a new incarnation of that same id. So, how many bits

are enough to ensure that the amount of time it takes for the MID field to wrap around

is longer than the amount of time a message can potentially be delayed in the network?

In the worst-case scenario, each BLAST message contains a single fragment that is

1 byte long, which means that BLAST might need to generate a new MID for every byte

it sends. On a 10-Mbps Ethernet, this would mean generating a new MID roughly once

every microsecond, while on a 1.2-Gbps STS-24 link, a new MID would be required

once every 7 nanoseconds. Of course, this is a ridiculously conservative calculation—

the overhead involved in preparing a message is going to be more than a microsecond.

Thus, suppose a new MID is potentially needed once every microsecond, and a mes-

sage may be delayed in the network for up to 60 seconds (our standard worst-case

5.3 Remote Procedure Call 413

assumption for the Internet); then we need to ensure that there are more than 60

million MID values. While a 26-bit field would be sufficient (226 = 67,108,864), it is

easier to deal with header fields that are even multiples of a byte, so we will settle on

a 32-bit MID field.

◮ This conservative (you could say paranoid) analysis of the MID field illustrates an

important point. When designing a transport protocol, it is tempting to take shortcuts,

since not all networks suffer from all the problems listed in the problem statement at

the beginning of this chapter. For example, messages do not get stuck in an Ethernet

for 60 seconds, and similarly, it is physically impossible to reorder messages on an

Ethernet segment. The problem with this way of thinking, however, is that if you want

the transport protocol to work over any kind of network, then you have to design for

the worst case. This is because the real danger is that as soon as you assume that an

Ethernet does not reorder packets, someone will come along and put a bridge or a

router in the middle of it.

Let’s move on to the other fields in the BLAST header. The Type field indicates

whether this is a DATA message or an SRR message. Notice that while we certainly don’t

need 16 bits to represent these two types, as a general rule we like to keep the header

fields aligned on 32-bit (word) boundaries, so as to improve processing efficiency.

The ProtNum field identifies the high-level protocol that is configured on top of BLAST;

incoming messages are demultiplexed to this protocol. The Length field indicates how

many bytes of data are in this fragment; it has nothing to do with the length of the

entire message. The NumFrags field indicates how many fragments are in this message.

This field is used to determine when the last fragment has been received. An alternative

is to include a flag that is only set for the last fragment.

Finally, the FragMask field is used to distinguish among fragments. It is a 32-bit

field that is used as a bit mask. For messages of Type = DATA, the ith bit is 1 (all

others are 0) to indicate that this message carries the ith fragment. For messages of

Type = SRR, the ith bit is set to 1 to indicate that the ith fragment has arrived, and it

is set to 0 to indicate that the ith fragment is missing. Note that there are several ways

to identify fragments. For example, the header could have contained a simple “frag-

ment ID” field, with this field set to i to denote the ith fragment. The tricky part with

this approach, as opposed to a bit-vector, is how the SRR specifies which fragments

have arrived and which have not. If it takes an n-bit number to identify each missing

fragment—as opposed to a single bit in a fixed-size bit-vector—then the SRR message

will be of variable length, depending on how many fragments are missing. Variable-

length headers are allowed, but they are a little trickier to process. On the other hand,

one limitation of the BLAST header given above is that the length of the bit-vector

limits each message to only 32 fragments. If the underlying network has an MTU of

1 KB, then this is sufficient to send up to 32-KB messages.

414 5 End-to-End Protocols

5.3.2 Request/Reply (CHAN)

The next microprotocol, CHAN, implements the request/reply algorithm that is at the

core of RPC. In terms of the common properties of transport protocols given in the

problem statement at the beginning of this chapter, CHAN guarantees message de-

livery, ensures that only one copy of each message is delivered, and allows the com-

municating processes to synchronize with each other. In the case of this last item,

the synchronization we are after mimics the behavior of a procedure call—the caller

(client) blocks while waiting for a reply from the callee (server).

At-Most-Once Semantics

The name CHAN comes from the fact that the protocol implements a logical request/

reply channel between a pair of participants. At any given time, there can be only one

message transaction active on a given channel. Like the concurrent logical channel

protocol described in Section 2.5.3, the application programs have to open multiple

channels if they want to have more than one request/reply transaction between them

at the same time.

The most important property of each channel is that it preserves a semantics

known as at-most-once. This means that for every request message that the client

sends, at most one copy of that message is delivered to the server. Stated in terms of

the RPC mechanism that CHAN is designed to support, for each time the client calls a

remote procedure, that procedure is invoked at most one time on the server machine.

We say “at-most-once” rather than “exactly once” because it is always possible that

either the network or the server machine has failed, making it impossible to deliver

even one copy of the request message.

As obvious as at-most-once sounds, not all RPC protocols support this behavior.

Some support a semantics that is facetiously called zero-or-more semantics, that is,

each invocation on a client results in the remote procedure being invoked zero or

more times. It is not hard to understand how this would cause problems for a remote

procedure that changed some local state variable (e.g., incremented a counter) or

that had some externally visible side effect (e.g., launched a missile) each time it was

invoked. On the other hand, if the remote procedure being invoked is idempotent—

multiple invocations have the same effect as just one—then the RPC mechanism need

not support at-most-once semantics; a simpler (possibly faster) implementation will

suffice.

CHAN Algorithm

The request/reply algorithm has several subtle aspects; hence, we develop it in stages.

The basic algorithm is straightforward, as illustrated by the timeline given in Figure

5.15. The client sends a request message and the server acknowledges it. Then, after

5.3 Remote Procedure Call 415

Client Server

Request

ACK

Reply

ACK

Figure 5.15 Simple timeline for CHAN.

Client Server

Request 1

Request 2

Reply 2

Reply 1

…

Figure 5.16 Timeline for CHAN when using implicit ACKs.

executing the procedure, the server sends a reply message and the client acknowledges

the reply.

Because the reply message often comes back with very little delay, and it is some-

times the case that the client turns around and makes a second request on the same

channel immediately after receiving the first reply, this basic scenario can be optimized

by using a technique called implicit acknowledgments. As illustrated in Figure 5.16,

the reply message serves to acknowledge the request message, and a subsequent request

acknowledges the preceding reply.

416 5 End-to-End Protocols

There are two factors that potentially complicate the rosy picture we have painted

so far. The first is that either a message carrying data (a request message or a reply

message) or the ACK sent to acknowledge that message may be lost in the network.

To account for this possibility, both client and server save a copy of each message

they send until an ACK for it has arrived. Each side also sets a RETRANSMIT

timer and resends the message should this timer expire. Both sides reset this timer

and try again some agreed-upon number of times before giving up and freeing the

message.

Recall from Section 2.5.1 that this acknowledgment/timeout strategy means that

it is possible for duplicate copies of a message to arrive—the original message arrives,

the ACK is lost, and then the retransmission arrives. Thus, the receiver must remember

what messages it has seen and discard any duplicates. This is done through the use of a

MID field in the header. Any message whose MID field does not match the next expected

MID is discarded instead of being passed up to the high-level protocol configured on

top of CHAN.

The second complication is that the server may take an arbitrarily long time

to produce the result, and worse yet, it may crash (either the process or the entire

machine) before generating the reply. Keep in mind that we are talking about the period

of time after the server has acknowledged the request but before it has sent the reply.

To help the client distinguish between a slow server and a dead server, CHAN’s client

side periodically sends an “Are you alive?” message to the server, and CHAN’s server

side responds with an ACK. Alternatively, the server could send “I am still alive”

messages to the client without the client having first solicited them, but we prefer the

client-initiated approach because it keeps the server as simple as possible (i.e., it has

one less timer to manage).

CHAN Message Format

The CHAN message format is given in Figure 5.17. As with BLAST, the Type field

specifies the type of the message; in this case, the possible types are REQ, REP, ACK,

and PROBE. (PROBE is the “Are you alive?” message discussed above.) Similarly, the

ProtNum field identifies the high-level protocol that depends on CHAN.

The CID field uniquely identifies the logical channel to which this message belongs.

This is a 16-bit field, meaning that CHAN supports up to 64K concurrent request/reply

transactions between any pair of hosts. Of course, a given host can be participating in

channels with many other hosts at the same time.

The MID field uniquely identifies each request/reply pair; the reply message has

the same MID as the request. Note that because CHAN permits only one message

transaction at a time on a given channel, you might think that a 1-bit MID field is

sufficient, just as for the stop-and-wait algorithm presented in Section 2.5.1. However,

5.3 Remote Procedure Call 417

Data

Type

MID

BID

Length

ProtNum

CID

0 16 31

Figure 5.17 Format for CHAN message header.

as with BLAST, we have to be concerned about messages that wander around the

network for an extended period of time and then suddenly appear at the destination,

confusing CHAN. Thus, using much the same reasoning as we used in Section 5.3.1,

CHAN uses a 32-bit MID field.

Finally, the BID field gives the boot id for the host. A machine’s boot id is a

number that is incremented each time the machine reboots; this number is read from

disk, incremented, and written back to disk during the machine’s startup procedure.

This number is then put in every message sent by that host. The role played by the

BID field is much the same as the role played by the large MID field—it protects against

old messages suddenly appearing at the destination—although in this case, the old

message is due not to an arbitrary delay in the network but rather to a machine that

has crashed and rebooted.

To understand the use of the boot id, consider the following pathological sit-

uation. A client machine sends a request message with MID = 0, then crashes and

reboots, and then sends an unrelated request message, also with MID = 0. The server

may not have been aware that the client crashed and rebooted, and upon seeing a re-

quest message with MID = 0, acknowledges it and discards it as a duplicate. To protect

against this possibility, each side of CHAN makes sure that the 〈BID, MID〉 pair, not

just the MID, matches what it is expecting. BID is also a 32-bit field, which means that

if we assume that it takes at least 10 minutes to reboot a machine, it will wrap around

once every 40 billion minutes (approximately 80,000 years). In effect, the BID and

MID combine to form a unique 64-bit id for each transaction; the low-order 32 bits

are incremented for each transaction but reset to 0 when the machine reboots, and the

high-order 32 bits are incremented each time the machine reboots.

418 5 End-to-End Protocols

Timeouts

CHAN involves three different timers: There is a RETRANSMIT timer on both the

client and server, and the client also manages a PROBE timer. The PROBE timer is

not critical to performance and thus can be set to a conservatively large value—on

the order of several seconds. The RETRANSMIT timer, however, does influence the

performance of CHAN. If it is set too large, then CHAN might wait an unnecessarily

long time before retransmitting a message that was lost by the network. This clearly

hurts performance. If the RETRANSMIT timer is set too small, however, then CHAN

may load the network with unnecessary traffic.

If CHAN is designed to run on a local area network only, or even over a campus-

size extended LAN, then RETRANSMIT can be set to a fixed value. Something on the

order of 20 milliseconds would be reasonable. This is because the RTT of a LAN is not

that variable. If CHAN is expected to run over the Internet, however, then selecting

a suitable value for RETRANSMIT is similar to the problem faced by TCP. Thus,

CHAN would calculate the RETRANSMIT timeout using a mechanism similar to the

one described in Section 5.2.6. The only difference is that CHAN has to take into

account the fact that the message it is sending ranges in size from 1 byte to 32 KB,

whereas TCP is always transmitting segments of approximately the same size.

Synchronous versus Asynchronous Protocols

One way to characterize a protocol is by whether it is synchronous or asynchronous.

These two terms have significantly different meanings, depending on where in the

protocol hierarchy you use them. At the transport layer, it is most accurate to think

of synchrony as a spectrum of possibilities rather than as two alternatives, where

the key attribute of any point along the spectrum is how much the sender knows,

after the operation to send a message returns. In other words, if we assume that

an application program invokes a send operation on a transport protocol, then the

question is, Exactly what does the application know about the success of the operation

when the send operation returns?

At the asynchronous end of the spectrum, the application knows absolutely noth-

ing when send returns. It not only doesn’t know if the message was received by its peer,

but it doesn’t even know for sure that the message has successfully left the local ma-

chine. At the synchronous end of the spectrum, the send operation typically returns a

reply message. That is, the application not only knows that the message it sent was re-

ceived by its peer, but it knows that the peer has returned an answer. Thus, synchronous

protocols implement the request/reply abstraction, while asynchronous protocols are

used if the sender wants to be able to transmit many messages without having to wait

for a response. Using this definition, CHAN is obviously a synchronous protocol.

5.3 Remote Procedure Call 419

Although we have not discussed them in this chapter, there are interesting points

between these two extremes. For example, the transport protocol might implement

send so that it blocks (does not return) until the message has been successfully received

at the remote machine, but returns before the sender’s peer on that machine has actually

processed and responded to it. This is sometimes called a reliable datagram protocol.

Implementation of CHAN

We conclude our discussion of CHAN by giving fragments of C code that implement its

client side. Reading code can be tedious, but if done judiciously, it can help to solidify

your understanding of how a system works. In the case of CHAN, it serves to illustrate

all the separate pieces that go into a protocol implementation—the function that sends

an outgoing message, the function that retransmits messages, and the function that

processes incoming messages—and how they interact with each other.

We begin with CHAN’s two key data structures: ChanHdr and ChanState. The

fields in ChanHdr have already been explained. The fields in ChanState will be explained

by the code that follows. Note that ChanState includes a hdr template field, which is

a copy of the CHAN header. Many of the fields in the CHAN header remain the same

for all messages sent out over this channel. These fields are filled in when the channel

is created (not shown); only the fields that change are modified before a given message

is transmitted.

typedef struct {
u_short Type; /* message type: REQ, REP, ACK, PROBE */
u_short CID; /* unique channel id */
int MID; /* unique message id */
int BID; /* unique boot id */
int Length; /* length of message */
int ProtNum; /* high-level protocol number */

} ChanHdr;

typedef struct {
u_char type; /* type of session: CLIENT or SERVER */
u_char status; /* status of session: BUSY or IDLE */
Event event; /* place to save timeout event */
int timeout; /* timeout value */
int retries; /* number of times retransmitted */
int ret_val; /* place to save return value */
Msg *request; /* place to save request message */
Msg *reply; /* place to save reply message */

Semaphore reply_sem; /* semaphore the client blocks on */
int mid; /* message id for this channel */
int bid; /* boot id for this channel */

420 5 End-to-End Protocols

ChanHdr hdr_template; /* header template for this channel*/

BlastState blast; /* pointer to BLAST protocol */
} ChanState;

We now turn our attention to the function that sends request messages. Since

CHAN exports a synchronous interface to higher-level protocols—the caller blocks un-

til a reply can be returned—the send operation we have been assuming since Chapter 1

is not going to work. Therefore, we introduce a new interface operation, which we

give the generic name call, that blocks until a reply message is available, and re-

turns that reply message to the caller. The first argument identifies the channel being

used; it effectively encapsulates all the information needed to send the message to

the correct destination. The second and third arguments correspond to the abstract

data type (ADT) for messages, and represent the request and reply messages, respec-

tively. We assume this ADT supports the obvious operations (e.g., msgSaveCopy and

msgLength).

int
callCHAN(ChanState *state, Msg *request, Msg *reply)
{
ChanHdr *hdr;
char hbuf[HLEN];

/* ensure only one transaction per channel */
if ((state->status != IDLE))

return FAILURE;
state->status = BUSY;

/* save a copy of request msg and pointer to reply msg*/
msgSaveCopy(&state->request, request);
state->reply = reply;

/* fill out header fields */
hdr = state->hdr_template;
hdr->Length = msgLength(request);
if (state->mid == MAX_MID)

state->mid = 0;
hdr->MID = ++state->mid;

/* attach header to msg and send it */
store_chan_hdr(hdr, hbuf);
msgAddHdr(request, hdr, HLEN);
sendBLAST(request);

/* schedule first timeout event */
state->retries = 1;
state->event = eventSchedule(retransmit, state, state->timeout);

5.3 Remote Procedure Call 421

/* block waiting for the reply msg */
semWait(&state->reply_sem);

/* clean up state and return */
flush_msg(state->request);
state->status = IDLE;
return state->ret_val;

}

The first thing to notice is that the ChanState passed as an argument to callCHAN

includes a field named status that indicates whether or not this channel is being used.

If the channel is currently in use, then callCHAN returns failure. An alternative design

would be to block the calling thread until the channel becomes idle. We have elected

to push responsibility for blocking threads that want to use busy channels onto the

higher-level protocol, in our case, SELECT.

The next thing to notice about call is that after filling out the message header

and transmitting the request message via BLAST, the calling process is blocked on a

semaphore (reply sem). When the reply message eventually arrives, it is processed by

CHAN’s deliverCHAN routine (see below), which copies the reply message into state

variable reply and signals this blocked process. The process then returns. Should the

reply message not arrive, then timeout routine retransmit is called (see below). This

event is scheduled in the body of callCHAN.

The next routine, retransmit, is called whenever the retransmit timer fires. It is

scheduled for the first time in callCHAN, but each time it is called, it reschedules itself.

Once the request message has been retransmitted four times, CHAN gives up: It sets the

return value to FAILURE and wakes up the blocked client process. Finally, each time re-

transmit executes and sends another copy of the request message, it needs to resave the

message in state variable request. This is because we assume that each time a protocol

sends a message to the lower-level protocol, it loses its reference to the message.

static void
retransmit(Event ev, int *arg)
{

ChanState *state = (ChanState *)arg;
Msg tmp;

/* unblock the client process if we have retried 4 times */
if (++state->retries > 4)
{

state->ret_val = FAILURE;
semSignal(state->rep_sem);
return;

}
/* retransmit request message */

422 5 End-to-End Protocols

msgSaveCopy(&tmp, &state->request);
sendBLAST(&tmp);

/* reschedule event with exponential backoff */
state->timeout = 2*state->timeout;

state->event = eventSchedule(retransmit, state, state->timeout);
}

Finally, we consider CHAN’s deliver routine. The first thing we observe is that

CHAN is an asymmetric protocol: The code that implements CHAN on the client

machine is completely distinct from the code that implements CHAN on the server

machine. This fact is stored in the CHAN state variable (type). Thus, the first thing

CHAN’s deliver routine does is check to see whether it is running on a server (i.e., it

expects REQ messages) or on a client (i.e., it expects REP messages), and then it calls the

appropriate client- or server-specific routine. In this case, we show the client-specific

routine, deliverClient.

static int
deliverClient(ChanState *state, Msg *msg)
{

ChanHdr hdr;
char *hbuf;

/* strip header and verify correctness */
hbuf = msgStripHdr(msg, HLEN);
load_chan_hdr(&hdr, hbuf);
if (!clnt_msg_ok(state, &hdr))

return FAILURE;

/* cancel retransmit timeout event */
eventCancel(state->event);

/* if this is an ACK, then schedule PROBE timer and exit*/
if (hdr.Type == ACK)
{

state->event = eventSchedule(probe, s, PROBE);
return SUCCESS;

}

/* msg is a REP; save it and signal blocked client */
msgSaveCopy(state->reply, msg);
state->ret_val = SUCCESS;
semSignal(&state->reply_sem);

return SUCCESS;
}

5.3 Remote Procedure Call 423

Routine deliverClient first checks to see if it has received the expected message,

for example, that it has the right MID, the right BID, and that the message is of type

REP or ACK. This check is made in subroutine clnt msg ok (not shown). If it is a valid

acknowledgment message, then deliverClient cancels the RETRANSMIT timer and

schedules the PROBE timer. The PROBE timer is not shown, but would be similar to

the RETRANSMIT timer given above. If the message is a valid reply, then deliverClient

cancels the RETRANSMIT timer, saves a copy of the reply message in state variable

reply, and wakes up the blocked client process. It is this client process that actually

returns the reply message to the high-level protocol; the process that called deliverClient

simply returns back down the protocol stack.

5.3.3 Dispatcher (SELECT)

The final microprotocol, called SELECT, dispatches request messages to the appro-

priate procedure. It is the RPC protocol stack’s version of a demultiplexing protocol

like UDP; the main difference is that it is a synchronous protocol rather than an asyn-

chronous protocol. What this means is that on the client side, SELECT is given a proce-

dure number that the client wants to invoke, it puts this number in its header, and then

it invokes the call operation on a lower-level request/reply protocol like CHAN. When

this invocation returns, SELECT merely lets the return pass through to the client; it

has no real demultiplexing work to do. On the server side, SELECT uses the procedure

number it finds in its header to select the right local procedure to invoke. When this pro-

cedure returns, SELECT simply returns to the low-level protocol that just invoked it.

It may seem that SELECT is so simple that it is not worthy of being treated as a

separate protocol. After all, CHAN already has its own demultiplexing field that could

be used to dispatch incoming request messages to the appropriate procedure. There

are two reasons why we elected to separate SELECT into a self-contained protocol.

The first is that doing so makes it possible to change the address space with

which procedures are identified simply by configuring a different version of SELECT

into the protocol graph. In some settings, it is sufficient to define a flat address space for

procedures—for example, a 16-bit selector field allows you to identify 64K different

procedures. In other settings, however, a flat address space is hard to manage—who

decides which procedure gets which procedure number? In this case, it might be better

to have a hierarchical address space, that is, a two-part procedure number. First,

each program could be given a program number, where a program corresponds to

something like a “file server” or a “name server.” Next, each program could be given

the responsibility to assign unique procedure numbers to its own procedures. For

example, within the file server program, read might be procedure 1, write might be

procedure 2, seek might be procedure 3, and so on, whereas within the name server

program, insert might be procedure 1 and lookup might be procedure 2.

424 5 End-to-End Protocols

The second reason we implement SELECT as its own protocol is that it provides

a good place to manage concurrency. Recall that CHAN supports at-most-once chan-

nels. Suppose we want to allow applications running on this host to make multiple

outstanding calls to the same remote procedure. Since CHAN allows only one out-

standing call at a time, the only way to do this is to open multiple channels to the same

server. Each time a calling process invokes SELECT, it sends the process out on an

idle channel. If all the channels are currently active, then SELECT blocks the calling

process until a channel becomes idle.

5.3.4 Putting It All Together (SunRPC, DCE)

We are now ready to construct an RPC stack from the microprotocols described in the

three previous subsections. This section also explains two widely used RPC protocols—

SunRPC and DCE-RPC—in terms of our three microprotocols.

A Simple RPC Stack

Figure 5.18 depicts a simple protocol stack that implements RPC. At the bottom are the

protocols that implement the underlying network. Although this stack could contain

protocols corresponding to any of the networking technologies discussed in the three

previous chapters, we use IP running on top of an Ethernet for illustrative purposes.
On top of IP is BLAST, which turns the small message size of the underlying

network into a communication service that supports messages of up to 32 KB in

length. Notice that it is not strictly true that the underlying network provides for

only small messages; IP can handle messages of up to 64 KB. However, because IP

BLAST

ETH

IP

SELECT

CHAN

Figure 5.18 A simple RPC stack.

5.3 Remote Procedure Call 425

has to fragment such large messages before sending them out over the Ethernet, and

BLAST’s fragmentation/reassembly algorithm is superior to IP’s (because it is able to

selectively retransmit missing fragments), we prefer to treat IP as though it supports ex-

actly the same MTU as the underlying physical network. This puts the fragmentation/

reassembly burden on BLAST, unless IP has to perform fragmentation out in the middle

of the network somewhere.

Next, CHAN implements the request/reply algorithm. Recall that we chose not

to implement reliable delivery in BLAST, but instead postponed solving this issue until

a higher-level protocol. In this case, CHAN’s timeout and acknowledgment mecha-

nism makes sure messages are reliably delivered. Other protocols might use different

techniques to guarantee delivery or, for that matter, might choose not to implement

reliable delivery at all. This is an example of the end-to-end argument at work—do

not do at low levels of the system (e.g., BLAST) what has to be done at higher levels

(e.g., CHAN) anyway.

Finally, SELECT defines an address space for identifying remote procedures. As

suggested in Section 5.3.3, different versions of SELECT, each defining a different

method for identifying procedures, could be configured on top of CHAN. In fact, it

would even be possible to write a version of SELECT that mimics some existing RPC

package’s address space for procedures (such as SunRPC’s), and then to use CHAN

and BLAST underneath this new SELECT to implement the rest of the RPC stack.

This new stack would not interoperate with the original protocol, but it would allow

you to slide a new RPC system underneath an existing collection of remote procedures

without having to change the interface. SELECT also manages concurrency.

SunRPC

SELECT, CHAN, and BLAST, although complete and correctly functioning protocols,

have been neither standardized nor widely adopted. We now turn our discussion to a

widely used RPC protocol—SunRPC. Ironically, SunRPC has also not been approved

by any standardization body, but it has become a de facto standard, thanks to its wide

distribution with Sun workstations and to the central role it plays in Sun’s popular

Network File System (NFS). At the time of this writing, the IETF is considering officially

adopting SunRPC as a standard Internet protocol.

Fundamentally, any RPC protocol must worry about three issues: fragment-

ing large messages, synchronizing request and reply messages, and dispatching re-

quest messages to the appropriate procedure. SunRPC is no exception. Unlike the

SELECT/CHAN/BLAST stack, however, SunRPC addresses these three functions in

a different order and uses slightly different algorithms. The basic SunRPC protocol

graph is given in Figure 5.19.

426 5 End-to-End Protocols

IP

ETH

SunRPC

UDP

Figure 5.19 Protocol graph for SunRPC.

First, SunRPC implements the core request/reply algorithm; it is CHAN’s coun-

terpart. SunRPC differs from CHAN, however, in that it does not technically guarantee

at-most-once semantics; there are obscure circumstances under which a duplicate

copy of a request message is delivered to the server (see below). Second, the role of

SELECT is split between UDP and SunRPC—UDP dispatches to the correct program,

and SunRPC dispatches to the correct procedure within the program. (We discuss how

procedures are identified in more detail below.) Finally, the ability to send request and

reply messages that are larger than the network MTU, corresponding to the func-

tionality implemented in BLAST, is handled by IP. Keep in mind, however, that IP is

not as persistent as BLAST is in implementing fragmentation; BLAST uses selective

retransmission, whereas IP does not.

As just mentioned, SunRPC uses two-tier addresses to identify remote proce-

dures: a 32-bit program number and a 32-bit procedure number. (There is also a

32-bit version number, but we ignore that in the following discussion.) For example,

the NFS server has been assigned program number x00100003, and within this pro-

gram, getattr is procedure 1, setattr is procedure 2, read is procedure 6, write is

procedure 8, and so on. Each program is reachable by sending a message to some

UDP port. When a request message arrives at this port, SunRPC picks it up and calls

the appropriate procedure.

To determine which port corresponds to a particular SunRPC program number,

there is a separate SunRPC program, called the Port Mapper, that maps program num-

bers to port numbers. The Port Mapper itself also has a program number (x00100000)

that must be translated into some UDP port. Fortunately, the Port Mapper is always

present at a well-known UDP port (111). The Port Mapper program supports several

procedures, one of which (procedure number 3) is the one that performs the program-

to-port number mapping.

5.3 Remote Procedure Call 427

Thus, to send a request message to NFS’s read procedure, a client first sends a

request message to the Port Mapper at well-known UDP port 111, asking that pro-

cedure 3 be invoked to map program number x00100003 to the UDP port where the

NFS program currently resides. (In practice, NFS is such an important program that

it is given its own well-known UDP port, so the Port Mapper need not be involved in

finding it.) The client then sends a SunRPC request message with procedure number

6 to this UDP port, and the SunRPC module listening at that port calls the NFS read

procedure. The client also caches the program-to-port number mapping so that it need

not go back to the Port Mapper each time it wants to talk to the NFS program.

The actual SunRPC header is defined by a complex nesting of data structures.

Figure 5.20 gives the essential details for the case in which the call completes with-

out any problems. XID is a unique transaction id, much like CHAN’s MID field. The

reason that SunRPC cannot guarantee at-most-once semantics is that on the server

side, SunRPC does not remember that it has already seen a particular XID once it has

successfully completed the transaction. This is only a problem if the client retransmits

a request message as a result of a timeout and that request message is in transit at

exactly the same time as the reply to the original request is on its way from the server

back to the client. When the retransmitted request arrives at the server, it looks like a

new transaction, since the server thinks it has already completed the transaction with

Data

Data

MsgType = CALL

XID

RPCVersion = 2(a)

Program

Version

Procedure

Credentials (variable)

Verifier (variable)

MsgType = REPLY

XID

Status = ACCEPTED(b)

0 31 0 31

Figure 5.20 SunRPC header formats: (a) request; (b) reply.

428 5 End-to-End Protocols

this XID. Clearly, if the reply arrives at the client before the timeout, then the request

will not be retransmitted. Likewise, if the retransmitted request arrives at the server

before the reply has been generated, then the server will recognize that transaction XID

is already in progress, and it will discard the duplicate request message. So it is really

quite unlikely that this erroneous behavior will occur. Note that the server’s short-term

memory about XIDs also means that it cannot protect itself against messages that have

been delayed for a long time in the network. This has not been a serious problem with

SunRPC, however, because it was originally designed for use on a LAN.

Returning to the SunRPC header format, the request message contains variable-

length Credentials and Verifier fields, both of which are used by the client to authenticate

itself to the server, that is, to give evidence that the client has the right to invoke the

server. How a client authenticates itself to a server is a general issue that must be

addressed by any protocol that wants to provide a reasonable level of security. This

topic is discussed in more detail in Chapter 8.

DCE

The Distributed Computing Environment (DCE) defines another widely used RPC

protocol, which we call DCE-RPC. DCE is a set of standards and software for build-

ing distributed systems. It was defined by the Open Software Foundation (OSF),

a consortium of computer companies that originally included IBM, Digital, and

Hewlett-Packard; today OSF goes by the name Open Group. DCE-RPC is the RPC

protocol at the core of the DCE system. It can be used with the Network Data

Representation (NDR) stub compiler described in Chapter 7, but it also serves as

the underlying RPC protocol for the Common Object Request Broker Architecture

(CORBA), which is an industrywide standard for building distributed, object-oriented

systems.

DCE-RPC is designed to run on top of UDP. It is similar to SunRPC in that it

defines a two-level addressing scheme: UDP demultiplexes to the correct server, DCE-

RPC dispatches to a particular procedure exported by that server, and clients consult an

“endpoint mapping service” (similar to SunRPC’s Port Mapper) to learn how to reach

a particular server. Unlike SunRPC, however, DCE-RPC implements at-most-once call

semantics. It does this in a single protocol that essentially combines the algorithms in

BLAST and CHAN. We focus our discussion on this aspect of DCE-RPC. (In truth,

DCE-RPC supports multiple call semantics, including an idempotent semantics similar

to SunRPC’s, but at-most-once is the default behavior.)

Figure 5.21 gives a timeline for the typical exchange of messages, where each

message is labelled by its DCE-RPC type. The pattern is similar to CHAN’s: The client

sends a Request message, the server eventually replies with a Response message, and

5.3 Remote Procedure Call 429

Client Server

Request

Ack

Response

Ping

Working

Ping

Working

Figure 5.21 Typical DCE-RPC message exchange.

the client acknowledges (Ack) the response. Instead of the server acknowledging the

request messages, however, the client periodically sends a Ping message to the server,

which responds with a Working message to indicate that the remote procedure is still

in progress. Although not shown in the figure, other message types are also supported.

For example, the client can send a Quit message to the server, asking it to abort an earlier

call that is still in progress; the server responds with a Quack (quit acknowledgment)

message. Also, the server can respond to a Request message with a Reject message

(indicating that a call has been rejected), and it can respond to a Ping message with a

Nocall message (indicating that the server has never heard of the caller).

In addition to the message type, request and reply messages include four key

fields that are used to implement both the fragmentation/reassembly aspects of BLAST

and the message transaction aspects of CHAN. These include ServerBoot, ActivityId,

SequenceNum, and FragmentNum.

The ServerBoot field serves the same purpose as CHAN’s BID (boot id) field: The

server records its boot time in a global variable each time it starts up, and it includes this

430 5 End-to-End Protocols

variable in each call it services. The ActivityId field is similar to CHAN’s CID (channel id)

field: It identifies a logical connection between the client and server on which a sequence

of calls can be made. The SequenceNum field then distinguishes between calls made

as part of the same activity; it serves the same purpose as CHAN’s MID (message id)

and SunRPC’s xid (transaction id) fields. Like CHAN (and unlike SunRPC), DCE-RPC

keeps track of the last sequence number used as part of a particular activity, so as to

ensure at-most-once semantics.

Because both request and response messages may be larger than the underlying

network packet size, they may be fragmented into multiple packets. The FragmentNum

field uniquely identifies each fragment that makes up a given request or reply message.

Unlike BLAST, which uses a bit-vector to identify fragments, each DCE-RPC fragment

is assigned a unique fragment number (e.g., 0, 1, 2, 3, and so on). Both the client and

server implement a selective acknowledgment mechanism, which works as follows.

(We describe the mechanism in terms of a client sending a fragmented request message

to the server; the same mechanism applies when a server sends a fragment response to

the client.)

First, each fragment that makes up the request message contains both a unique

FragmentNum and a flag indicating whether this packet is a fragment of a call (frag) or

the last fragment of a call (last frag); request messages that fit in a single packet carry a

no frag flag. The server knows it has received the complete request message when it has

the last frag packet and there are no gaps in the fragment numbers. Second, in response

to each arriving fragment, the server sends a Fack (fragment acknowledgment) message

to the client. This acknowledgment identifies the highest fragment number that the

server has successfully received. In other words, the acknowledgment is cumulative,

much like in TCP. In addition, however, the server selectively acknowledges any higher

fragment numbers it has received out of order. It does so with a bit-vector that identifies

these out-of-order fragments relative to the highest in-order fragment it has received.

Finally, the client responds by retransmitting the missing fragments.

Figure 5.22 illustrates how this all works. Suppose the server has successfully

received fragments up through number 20, plus fragments 23, 25, and 26. The server

responds with a Fack that identifies fragment 20 as the highest in-order fragment,

plus a bit-vector (SelAck) with the third (23 = 20 + 3), fifth (25 = 20 + 5), and

sixth (26 = 20 + 6) bits turned on. So as to support an (almost) arbitrarily long

bit-vector, the size of the vector (measured in 32-bit words) is given in the SelAckLen

field.

Given DCE-RPC’s support for very large messages—the FragmentNum field

is 16 bits long, meaning it can support 64K fragments—it is not appropriate for

the protocol to blast all the fragments that make up a message as fast as it can,

5.4 Performance 431

Client Server

Fack

19

20

21

22

23

24

25

26

21

22

24

Type = Fack

FragmentNum = 20

WindowSize = 10

SelAckLen = 1

SelAck[1] = 0x36 110100

6 + 20

5 + 20

3 + 20

F
ra

g
m

e
n

tN
u

m

…

…
…

…

Figure 5.22 Fragmentation with selective acknowledgments.

as BLAST does, since doing so might overrun the receiver. Instead, DCE-RPC im-

plements a flow-control algorithm that is very similar to TCP’s. Specifically, each

Fack message not only acknowledges received fragments, but also informs the sender

of how many fragments it may now send. This is the purpose of the WindowSize

field in Figure 5.22, which serves exactly the same purpose as TCP’s Advertised-

Window field except it counts fragments rather than bytes. DCE-RPC also imple-

ments a congestion-control mechanism that is similar to TCP’s, which we will see in

Chapter 6.

5.4 Performance

Recall that Chapter 1 introduced the two quantitative metrics by which network

performance is evaluated: latency and throughput. As mentioned in that discussion,

these metrics are influenced not only by the underlying hardware (e.g., propagation

delay and link bandwidth) but also by software overheads. Now that we have a

complete software-based protocol graph available to us that includes alternative

transport protocols, we can discuss how to meaningfully measure its performance.

432 5 End-to-End Protocols

Linux
kernel

Linux
kernel

100 Mbps

User process User process

Figure 5.23 Measured system: Two Pentium workstations running Linux connected by
a 100-Mbps Ethernet.

The importance of such measurements is that they represent the performance seen by

application programs.

We begin, as any report of experimental results should, by describing our ex-

perimental method. This includes the apparatus used in the experiments. We ran our

experiments on a pair of 733-MHz Pentium workstations connected by an isolated

100-Mbps Ethernet. The Ethernet spanned a single machine room so propagation is

not an issue, making this a measure of processor/software overheads. Each worksta-

tion was running the Linux operating system (2.4 kernel). A test program running on

top of the socket interface ping-pongs (reflects) messages between the two machines.

Figure 5.23 illustrates one round-trip between the two test programs.

Each experiment involved running three identical instances of the same test. Each

test, in turn, involved sending a message of some specified size back and forth between

the two machines 10,000 times. The system’s clock was read at the beginning and

end of each test, and the difference between these two times was divided by 10,000

to determine the time taken for each round-trip. The average of these three times

(the three runs of the test) is reported for each experiment below. Each experiment

involved a different-sized message. The latency numbers were for message sizes of

1 byte, 100 bytes, 200 bytes, . . . , 1000 bytes. The throughput results were for message

sizes of 1 KB, 2 KB, 4 KB, 8 KB, . . . , 32 KB.

Table 5.3 gives the results of the latency test. As you would expect, latency

increases with message size. Although there are sometimes special cases where you

might be interested in the latency of, say, a 200-byte message, typically the most

5.4 Performance 433

Message Size (Bytes) UDP TCP

1 58 66

100 76 84

200 93 104

300 111 124

400 132 136

500 150 159

600 167 176

700 184 194

800 203 210

900 223 228

1000 239 249

Table 5.3 Measured round-trip latencies (µs) for various message sizes and protocols.

important latency number is the 1-byte case. This is because the 1-byte case represents

the overhead involved in processing each message that does not depend on the amount

of data contained in the message. It is typically the lower bound on latency, representing

factors like the speed-of-light delay and the time taken to process headers. Note that

there is a small difference between the latency experienced by the two different protocol

stacks, with UDP round-trip times a bit less than for TCP. This is to be expected since

TCP provides more functionality.

The results of the throughput test are given in Figure 5.24. Here, we show only

the results for UDP. The key thing to notice in this graph is that throughput improves

as the messages get larger. This makes sense—each message involves a certain amount

of overhead, so a larger message means that this overhead is amortized over more

bytes. The throughput curve flattens off above 16 KB, at which point the per-message

overhead becomes insignificant when compared to the large number of bytes that the

protocol stack has to process.

A second thing to notice is that the throughput curve tops out before reaching

100 Mbps. Although it can’t be deduced from these measurements, it turns out that

the factor preventing our system from running at the full Ethernet speed is a limitation

of the network adaptor rather than the software.

434 5 End-to-End Protocols

1 2 4 8 16 32 64

Message size (KB)

M
ea

su
re

d
 t

h
ro

u
gh

p
u
t

(M
b
p
s)

100

70

75

80

85

90

95

Figure 5.24 Measured throughput using UDP, for various message sizes.

5.5 Summary

This chapter has described three very different end-to-end protocols. The first protocol

we considered is a simple demultiplexer, as typified by UDP. All such a protocol does

is dispatch messages to the appropriate application process based on a port number.

It does not enhance the best-effort service model of the underlying network in any

way, or said another way, it offers an unreliable, connectionless datagram service to

application programs.

The second type is a reliable byte-stream protocol, and the specific example of

this type that we looked at is TCP. The challenges faced with such a protocol are to

recover from messages that may be lost by the network, to deliver messages in the same

order in which they are sent, and to allow the receiver to do flow control on the sender.

TCP uses the basic sliding window algorithm, enhanced with an advertised window, to

implement this functionality. The other item of note for this protocol is the importance

of an accurate timeout/retransmission mechanism. Interestingly, even though TCP is

a single protocol, we saw that it employs at least five different algorithms—sliding

Open Issue: Application-Specific Protocols 435

window, Nagle, three-way handshake, Karn/Partridge, and Jacobson/Karels—all of

which can be of value to any end-to-end protocol.

The third transport protocol we looked at is a request/reply protocol that forms

the basis for RPC. In this case, a combination of three different algorithms are em-

ployed to implement the request/reply service: a selective retransmission algorithm that

is used to fragment and reassemble large messages, a synchronous channel algorithm

that pairs the request message with the reply message, and a dispatch algorithm that

causes the correct remote procedure to be invoked.

What should be clear after reading

this chapter is that transport proto-

col design is a tricky business. As we

have seen, getting a transport pro-

tocol right in the first place is hard

enough, but changing circumstances

make matters more complicated. The

O P E N I S S U E

Application-Specific Protocols

challenge is finding ways to adapt to these changes.

Our experience with using the protocol can change. As we saw with TCP’s time-

out mechanism, experience led to a series of refinements in how TCP decides to retrans-

mit a segment. None of these changes affected the format of the TCP header, however,

and so they could be incorporated into TCP one implementation at a time. That is,

there was no need for everyone to upgrade their version of TCP on the same day.

The characteristics of the underlying network can also change. For many years,

TCP’s 32-bit sequence number and 16-bit advertised window were more than ade-

quate. Recently, however, higher-bandwidth networks have meant that the sequence

number is not large enough to protect against wraparound, and the advertised window

is too small to allow the sender to fill the network pipe. While an obvious solution

would have been to redefine the TCP header to include a 64-bit sequence number field

and a 32-bit advertised window field, this would have introduced the very serious prob-

lem of how several million Internet hosts would make the transition from the current

header to this new header. While such transitions have been performed on production

networks, including the telephone network, they are no trivial matter. It was decided,

therefore, to implement the necessary extensions as options and to allow hosts to nego-

tiate with each other as to whether or not they will use the options for each connection.

This approach will not work indefinitely, however, since the TCP header has room

for only 44 bytes of options. (This is because the HdrLen field is 4 bits long, meaning that

the total TCP header length cannot exceed 16×32 bit words, or 64 bytes.) Of course,

a TCP option that extends the space available for options is always a possibility, but

you have to wonder how far it is worth going for the sake of backward compatibility.

436 5 End-to-End Protocols

Perhaps the hardest changes to accommodate are the adaptations to the level of

service required by application programs. It is inevitable that some applications will

have a good reason for wanting a slight variation from the standard services. For ex-

ample, some applications want RPC most of the time, but occasionally want to be

able to send a stream of request messages without waiting for any of the replies. While

this is no longer technically the semantics of RPC, a common scenario is to modify

an existing RPC protocol to allow this flexibility. As another example, because video

is a stream-oriented application, it is tempting to use TCP as the transport protocol.

Unfortunately, TCP guarantees reliability, which is not important to the video applica-

tion. In fact, a video application would rather drop a frame (segment) than wait for it

to be retransmitted. Rather than invent a new transport protocol from scratch, how-

ever, some designers have proposed that TCP should support an option that effectively

turns off its reliability feature. It seems that such a protocol could hardly be called TCP

anymore, but we are talking about the pragmatics of getting an application to run.

How to develop transport protocols that can evolve to satisfy diverse applica-

tions, many of which have not yet been imagined, is a hard problem. It is possible

that the ultimate answer to this problem is the one-function-per-protocol style exem-

plified by the microprotocols we used to implement RPC, or some similar mechanism

by which the application programmer is allowed to program, configure, or otherwise

customize the transport protocol.

F U R T H E R R E A D I N G

There is no doubt that TCP is a complex protocol and that in fact it has subtleties not

illuminated in this chapter. Therefore, the recommended reading list for this chapter

includes the original TCP specification. Our motivation for including this specification

is not so much to fill in the missing details as to expose you to what an honest-to-

goodness protocol specification looks like. The other two papers in the recommended

reading list focus on RPC. The paper by Birrell and Nelson is the seminal paper on

the topic, while the article by O’Malley and Peterson describes the one-function-per-

protocol design philosophy in more detail.

■ USC-ISI. Transmission Control Protocol. Request for Comments 793, Septem-

ber 1981.

■ Birrell, A., and B. Nelson. Implementing remote procedure calls. ACM Trans-

actions on Computer Systems 2(1):39–59, February 1984.

■ O’Malley, S., and L. Peterson. A dynamic network architecture. ACM Trans-

actions on Computer Systems 10(2):110–143, May 1992.

Exercises 437

Beyond the protocol specification, the most complete description of TCP, includ-

ing its implementation in Unix, can be found in [Ste94b] and [SW95]. Also, the third

volume of Comer and Stevens’s TCP/IP series of books describes how to write

client/server applications on top of TCP and UDP, using the Posix socket interface

[CS00], the Windows socket interface [CS97], and the System V Unix TLI interface

[CS94].

Several papers evaluate the performance of different transport protocols at a very

detailed level. For example, the article by Clark et al. [CJRS89] measures the processing

overheads of TCP, a paper by Mosberger et al. [MPBO96] explores the limitations of

protocol processing overheads, and Thekkath and Levy [TL93] and Schroeder and

Burrows [SB89] examine RPC’s performance in great detail.

The original TCP timeout calculation was described in the TCP specification (see

above), while the Karn/Partridge algorithm was described in [KP91] and the Jacobson/

Karels algorithm was proposed in [Jac88]. The TCP extensions are defined by Jacobson

et al. [JBB92], while O’Malley and Peterson [OP91] argue that extending TCP in this

way is not the right approach to solving the problem.

Finally, there are several distributed operating systems that have defined their

own RPC protocol. Notable examples include the V system, described by Cheriton and

Zwaenepoel [CZ85]; Sprite, described by Ousterhout et al. [OCD+88]; and Amoeba,

described by Mullender [Mul90]. The latest version of SunRPC, as defined by Srini-

vasan [Sri95a], is a proposed standard for the Internet.

E X E R C I S E S

1 If a UDP datagram is sent from host A, port P to host B, port Q, but at host B there

is no process listening to port Q, then B is to send back an ICMP Port Unreachable

message to A. Like all ICMP messages, this is addressed to A as a whole, not to

port P on A.

(a) Give an example of when an application might want to receive such ICMP

messages.

(b) Find out what an application has to do, on the operating system of your choice,

to receive such messages.

(c) Why might it not be a good idea to send such messages directly back to the

originating port P on A?

2 Consider a simple UDP-based protocol for requesting files (based somewhat

loosely on the Trivial File Transport Protocol, TFTP). The client sends an

438 5 End-to-End Protocols

initial file request, and the server answers (if the file can be sent) with the first

data packet. Client and server then continue with a stop-and-wait transmission

mechanism.

(a) Describe a scenario by which a client might request one file but get another;

you may allow the client application to exit abruptly and be restarted with

the same port.

(b) Propose a change in the protocol that will make this situation much less

likely.

3 Design a simple UDP-based protocol for retrieving files from a server. No authen-

tication is to be provided. Stop-and-wait transmission of the data may be used.

Your protocol should address the following issues:

(a) Duplication of the first packet should not duplicate the “connection.”

(b) Loss of the final ACK should not necessarily leave the server in doubt as to

whether the transfer succeeded.

(c) A late-arriving packet from a past connection shouldn’t be interpretable as

part of a current connection.

4 This chapter explains three sequences of state transitions during TCP connec-

tion teardown. There is a fourth possible sequence, which traverses an additional

arc (not shown in Figure 5.7) from FIN WAIT 1 to TIME WAIT and labelled

FIN + ACK/ACK. Explain the circumstances that result in this fourth teardown

sequence.

5 When closing a TCP connection, why is the two-segment-lifetime timeout not

necessary on the transition from LAST ACK to CLOSED?

6 A sender on a TCP connection that receives a 0 advertised window periodically

probes the receiver to discover when the window becomes nonzero. Why would the

receiver need an extra timer if it were responsible for reporting that its advertised

window had become nonzero (i.e., if the sender did not probe)?

7 Read the man page (or Windows equivalent) for the Unix/Windows utility netstat.

Use netstat to see the state of the local TCP connections. Find out how long closing

connections spend in TIME WAIT.

8 The sequence number field in the TCP header is 32 bits long, which is big enough

to cover over 4 billion bytes of data. Even if this many bytes were never transferred

Exercises 439

over a single connection, why might the sequence number still wrap around from

232 − 1 to 0?

9 You are hired to design a reliable byte-stream protocol that uses a sliding window

(like TCP). This protocol will run over a 100-Mbps network. The RTT of the

network is 100 ms, and the maximum segment lifetime is 60 seconds.

(a) How many bits would you include in the AdvertisedWindow and Sequence-

Num fields of your protocol header?

(b) How would you determine the numbers given above, and which values might

be less certain?

10 You are hired to design a reliable byte-stream protocol that uses a sliding window

(like TCP). This protocol will run over a 1-Gbps network. The RTT of the network

is 140 ms, and the maximum segment lifetime is 60 seconds. How many bits would

you include in the AdvertisedWindow and SequenceNum fields of your protocol

header?

11 Suppose a host wants to establish the reliability of a link by sending packets and

measuring the percentage that are received; routers, for example, do this. Explain

the difficulty of doing this over a TCP connection.

12 Suppose TCP operates over a 1-Gbps link.

(a) Assuming TCP could utilize the full bandwidth continuously, how long would

it take the sequence numbers to wrap around completely?

(b) Suppose an added 32-bit timestamp field increments 1000 times during the

wraparound time you found above. How long would it take for the timestamp

to wrap around?

13 Suppose TCP operates over a 40-Gbps STS-768 link.

(a) Assuming TCP could utilize the full bandwidth continuously, how long would

it take the sequence numbers to wrap around completely?

(b) Suppose an added 32-bit timestamp field increments 1000 times during the

wraparound time you found above. How long would it take for the timestamp

to wrap around?

14 If host A receives two SYN packets from the same port from remote host B, the

second may be either a retransmission of the original or else, if B has crashed and

rebooted, an entirely new connection request.

440 5 End-to-End Protocols

(a) Describe the difference as seen by host A between these two cases.

(b) Give an algorithmic description of what the TCP layer needs to do upon

receiving a SYN packet. Consider the duplicate/new cases above, and the pos-

sibility that nothing is listening to the destination port.

15 Suppose x and y are two TCP sequence numbers. Write a function to determine

whether x comes before y (in the notation of Request for Comments 793, “x =<

y”) or after y; your solution should work even when sequence numbers wrap

around.

16 Suppose an idle TCP connection exists between sockets A and B. A third party

has eavesdropped and knows the current sequence number at both ends.

(a) Suppose the third party sends A a forged packet ostensibly from B and with

100 bytes of new data. What happens? Hint: Look up in Request for Com-

ments 793 what TCP does when it receives an ACK that is not an “accept-

able ACK.”

(b) Suppose the third party sends each end such a forged 100-byte data packet

ostensibly from the other end. What happens now? What would happen if A

later sent 200 bytes of data to B?

17 Suppose party A connects to the Internet via a dial-up IP server (e.g., using SLIP

or PPP), has several open Telnet connections (using TCP), and is cut off. Party B

then dials in and is assigned the same IP address that A had. Assuming B was

able to guess to what host(s) A had been connected, describe a sequence of probes

that could enable B to obtain sufficient state information to continue with A’s

connections.

18 Diagnostic programs are commonly available that record the first 100 bytes, say,

of every TCP connection to a certain 〈host, port〉. Outline what must be done

with each received TCP packet, P, in order to determine if it contains data that

belongs to the first 100 bytes of a connection to host HOST, port PORT. Assume

the IP header is P.IPHEAD, the TCP header is P.TCPHEAD, and header fields are

as named in Figures 4.3 and 5.4. Hint: To get initial sequence numbers (ISNs)

you will have to examine every packet with the SYN bit set. Ignore the fact that

sequence numbers will eventually be reused.

19 If a packet arrives at host A with B’s source address, it could just as easily have

been forged by any third host C. If, however, A accepts a TCP connection from B,

then during the three-way handshake A sent ISNA to B’s address and received an

Exercises 441

acknowledgment of it. If C is not located so as to be able to eavesdrop on ISNA,

then it might seem that C could not have forged B’s response.

However, the algorithm for choosing ISNA does give other unrelated hosts a

fair chance of guessing it. Specifically, A selects ISNA based on a clock value at the

time of connection. Request for Comments 793 specifies that this clock value be

incremented every 4 μs; common Berkeley implementations once simplified this

to incrementing by 250,000 (or 256,000) once per second.

(a) Given this simplified increment-once-per-second implementation, explain how

an arbitrary host C could masquerade as B in at least the opening of a TCP

connection. You may assume that B does not respond to SYN + ACK packets

A is tricked into sending to it.

(b) Assuming real RTTs can be estimated to within 40 ms, about how many tries

would you expect it to take to implement the strategy of part (a) with the

unsimplified “increment every 4 μs” TCP implementation?

20 The Nagle algorithm, built into most TCP implementations, requires the sender to

hold a partial segment’s worth of data (even if PUSHed) until either a full segment

accumulates or the most recent outstanding ACK arrives.

(a) Suppose the letters abcdefghi are sent, one per second, over a TCP connection

with an RTT of 4.1 seconds. Draw a timeline indicating when each packet is

sent and what it contains.

(b) If the above were typed over a full-duplex Telnet connection, what would the

user see?

(c) Suppose that mouse position changes are being sent over the connection. As-

suming that multiple position changes are sent each RTT, how would a user

perceive the mouse motion with and without the Nagle algorithm?

21 Suppose a client C repeatedly connects via TCP to a given port on a server S, and

that each time it is C that initiates the close.

(a) How many TCP connections a second can C make here before it ties up all

its available ports in TIME WAIT state? Assume client ephemeral ports are in

the range 1024–5119, and that TIME WAIT lasts 60 seconds.

(b) Berkeley-derived TCP implementations typically allow a socket in TIME

WAIT state to be reopened before TIME WAIT expires, if the highest se-

quence number used by the old incarnation of the connection is less than the

ISN used by the new incarnation. This solves the problem of old data accepted

as new; however, TIME WAIT also serves the purpose of handling late final

442 5 End-to-End Protocols

FINs. What would such an implementation have to do to address this and still

achieve strict compliance with the TCP requirement that a FIN sent anytime

before or during a connection’s TIME WAIT receive the same response?

22 Explain why TIME WAIT is a somewhat more serious problem if the server ini-

tiates the close than if the client does. Describe a situation in which this might

reasonably happen.

23 What is the justification for the exponential increase in timeout value proposed by

Karn and Partridge? Why, specifically, might a linear (or slower) increase be less

desirable?

24 The Jacobson/Karels algorithm sets TimeOut to be 4 mean deviations above the

mean. Assume that individual packet round-trip times follow a statistical normal

distribution, for which 4 mean deviations are π standard deviations. Using statis-

tical tables, for example, what is the probability that a packet will take more than

TimeOut time to arrive?

25 Suppose a TCP connection, with window size 1, loses every other packet. Those

that do arrive have RTT = 1 second. What happens? What happens to TimeOut?

Do this for two cases:

(a) After a packet is eventually received, we pick up where we left off, resuming

with EstimatedRTT initialized to its pretimeout value and TimeOut double that.

(b) After a packet is eventually received, we resume with TimeOut initialized to

the last exponentially backed-off value used for the timeout interval.

In the following four exercises, the calculations involved are straightforward

with a spreadsheet.

26 Suppose, in TCP’s adaptive retransmission mechanism, that EstimatedRTT is 4.0

at some point and subsequent measured RTTs all are 1.0. How long does it take

before the TimeOut value, as calculated by the Jacobson/Karels algorithm, falls

below 4.0? Assume a plausible initial value of Deviation; how sensitive is your

answer to this choice? Use δ = 1/8.

27 Suppose, in TCP’s adaptive retransmission mechanism, that EstimatedRTT is 90

at some point and subsequent measured RTTs all are 200. How long does it take

before the TimeOut value, as calculated by the Jacobson/Karels algorithm, falls

below 300? Assume initial Deviation value of 25; use δ = 1/8.

Exercises 443

28 Suppose TCP’s measured RTT is 1.0 except that every Nth RTT is 4.0. What

is the largest N, approximately, that doesn’t result in timeouts in the steady

state (i.e., for which the Jacobson/Karels TimeOut remains greater than 4.0)? Use

δ = 1/8.

29 Suppose that TCP is measuring RTTs of 1.0 second, with a mean deviation of

0.1 second. Suddenly the RTT jumps to 5.0 seconds, with no deviation. Compare

the behaviors of the original and Jacobson/Karels algorithms for computing Time-

Out. Specifically, how many timeouts are encountered with each algorithm? What

is the largest TimeOut calculated? Use δ = 1/8.

30 Suppose that, when a TCP segment is sent more than once, we take SampleRTT to

be the time between the original transmission and the ACK, as in Figure 5.10(a).

Show that if a connection with a 1-packet window loses every other packet (i.e.,

each packet is transmitted twice), then EstimatedRTT increases to infinity. As-

sume TimeOut = EstimatedRTT; both algorithms presented in the text always set

TimeOut even larger. Hint: EstimatedRTT = EstimatedRTT + β × (SampleRTT −
EstimatedRTT).

31 Suppose that, when a TCP segment is sent more than once, we take SampleRTT

to be the time between the most recent transmission and the ACK, as in

Figure 5.10(b). Assume, for definiteness, that TimeOut = 2 × EstimatedRTT.

Sketch a scenario in which no packets are lost but EstimatedRTT converges to

a third of the true RTT, and give a diagram illustrating the final steady state.

Hint: Begin with a sudden jump in the true RTT to just over the established

TimeOut.

32 Consult Request for Comments 793 to find out how TCP is supposed to respond

if a FIN or an RST arrives with a sequence number other than NextByteExpected.

Consider both when the sequence number is within the receive window and when

it is not.

33 One of the purposes of TIME WAIT is to handle the case of a data packet from a

first incarnation of a connection arriving very late and being accepted as data for

the second incarnation.

(a) Explain why, for this to happen (in the absence of TIME WAIT), the hosts

involved would have to exchange several packets in sequence after the delayed

packet was sent but before it was delivered.

(b) Propose a network scenario that might account for such a late delivery.

444 5 End-to-End Protocols

34 Propose an extension to TCP by which one end of a connection can hand off

its end to a third host; that is, if A were connected to B, and A handed off its

connection to C, then afterwards C would be connected to B and A would not.

Specify the new states and transitions needed in the TCP state transition diagram,

and any new packet types involved. You may assume all parties will understand

this new option. What state should A go into immediately after the handoff?

35 TCP’s simultaneous open feature is seldom used.

(a) Propose a change to TCP in which this is disallowed. Indicate what changes

would be made in the state diagram (and if necessary in the undiagrammed

event responses).

(b) Could TCP reasonably disallow simultaneous close?

(c) Propose a change to TCP in which simultaneous SYNs exchanged by two

hosts lead to two separate connections. Indicate what state diagram changes

this entails, and also what header changes become necessary. Note that this

now means that more than one connection can exist over a given pair of

〈host, port〉s. (You might also look up the first “Discussion” item on page 87

of Request for Comments 1122.)

36 TCP is a very symmetric protocol, but the client/server model is not. Consider

an asymmetric TCP-like protocol in which only the server side is assigned a port

number visible to the application layers. Client-side sockets would simply be ab-

stractions that can be connected to server ports.

(a) Propose header data and connection semantics to support this. What will you

use to replace the client port number?

(b) What form does TIME WAIT now take? How would this be seen through the

programming interface? Assume that a client socket could now be reconnected

arbitrarily many times to a given server port, resources permitting.

(c) Look up the rsh/rlogin protocol. How would the above break this?

37 The following exercise is concerned with the TCP state FIN WAIT 2(see

Figure 5.7).

(a) Describe how a client might leave a suitable server in state FIN WAIT 2 indefi-

nitely. What feature of the server’s protocol is necessary here for this scenario?

(b) Try this with some appropriate existing server. Either write a stub client, or

use an existing Telnet client capable of connecting to an arbitrary port. Use

the netstat utility to verify that the server is in FIN WAIT 2 state.

Exercises 445

38 Request for Comments 1122 states (of TCP):

A host MAY implement a “half-duplex” TCP close sequence, so that an appli-
cation that has called CLOSE cannot continue to read data from the connection.
If such a host issues a CLOSE call while received data is still pending in TCP, or
if new data is received after CLOSE is called, its TCP SHOULD send an RST to
show that data was lost.

Sketch a scenario involving the above in which data sent by (not to!) the closing

host is lost. You may assume that the remote host, upon receiving an RST, discards

all received data still unread in buffers.

39 When TCP sends a 〈SYN, SequenceNum = x〉 or 〈FIN, SequenceNum = x〉, the

consequent ACK has Acknowledgment = x + 1; that is, SYNs and FINs each take

up one unit in sequence number space. Is this necessary? If so, give an example

of an ambiguity that would arise if the corresponding Acknowledgment were x

instead of x + 1; if not, explain why.

40 Find out the generic format for TCP header options from Request for Comments

793.

(a) Outline a strategy that would expand the space available for options beyond

the current limit of 44 bytes.

(b) Suggest an extension to TCP allowing the sender of an option a way of speci-

fying what the receiver should do if the option is not understood. List several

such receiver actions that might be useful, and try to give an example appli-

cation of each.

41 The TCP header does not have a BID field, like CHAN does. How does TCP

protect itself against the crash-and-reboot scenario that motivates CHAN’s BID?

Why doesn’t CHAN use this same strategy?

42 Suppose we were to implement remote file system mounting using an unreliable

RPC protocol that offers zero-or-more semantics. If a message reply is received,

this improves to at-least-once semantics. We define read() to return the specified

Nth block, rather than the next block in sequence; this way reading once is the

same as reading twice and at-least-once semantics is thus the same as exactly

once.

(a) For what other file system operations is there no difference between at-least-

once and exactly once semantics? Consider open, create, write, seek, opendir,

readdir, mkdir, delete (aka unlink), and rmdir.

446 5 End-to-End Protocols

(b) For the remaining operations, which can have their semantics altered to achieve

equivalence of at-least-once and exactly once? What file system operations are

irreconcilable with at-least-once semantics?

(c) Suppose the semantics of the rmdir system call are now that the given directory

is removed if it exists, and nothing is done otherwise. How could you write a

program to delete directories that distinguishes between these two cases?

43 The RPC-based “NFS” remote file system is sometimes considered to have slower

than expected write performance. In NFS, a server’s RPC reply to a client write

request means that the data is physically written to the server’s disk, not just placed

in a queue.

(a) Explain the bottleneck we might expect, even with infinite bandwidth, if the

client sends all its write requests through a single logical CHAN channel, and

explain why using a pool of channels could help. Hint: You will need to know

a little about disk controllers.

(b) Suppose the server’s reply means only that the data has been placed in the

disk queue. Explain how this could lead to data loss that wouldn’t occur with

a local disk. Note that a system crash immediately after data was enqueued

doesn’t count because that would cause data loss on a local disk as well.

(c) An alternative would be for the server to respond immediately to acknowledge

the write request, and to send its own separate CHAN request later to confirm

the physical write. Propose different CHAN RPC semantics to achieve the

same effect, but with a single logical request/reply.

44 Both the BLAST and CHAN protocols have a MID field.

(a) Under what circumstances can these be equal, for several packets in a row?

(b) In the text, these fields were sequentially incremented. Can either of these fields

be a random number?

45 Suppose BLAST is used over a link with a 10% per-packet loss rate; losses are in-

dependent events. Fragments that do arrive are not reordered, however. Messages

consist of six fragments.

(a) What is the probability, roughly, that LAST FRAG expires? Assume this hap-

pens only when the last fragment is lost.

(b) What is the probability that the last fragment arrives but something else didn’t,

eliciting an SRR?

(c) What is the probability that no fragment arrives?

Exercises 447

46 Consider a client and server using an RPC mechanism that includes CHAN.

(a) Give a scenario involving server reboot in which an RPC request is sent

twice by the client and is executed twice by the server, with only a single

ACK.

(b) How might the client become aware this had happened? Would the client be

sure it had happened?

47 Suppose an RPC request is of the form “Increment the value of field X of disk

block N by 10%.” Specify a mechanism to be used by the executing server to

guarantee that an arriving request is executed exactly once, even if the server

crashes while in the middle of the operation. Assume that individual disk block

writes are either complete or else the block is unchanged. You may also assume

that some designated “undo log” blocks are available. Your mechanism should

include how the RPC server is to behave at restart.

48 Consider a SunRPC client sending a request to a server.

(a) Under what circumstances can the client be sure its request has executed ex-

actly once?

(b) Suppose we wished to add at-most-once semantics to SunRPC. What changes

would have to be made? Explain why adding one or more fields to the existing

headers would not be sufficient.

49 Suppose TCP were to be used as the underlying transport in an RPC protocol; one

TCP connection is to carry a stream of requests and replies. What are the analogs,

if any, to CHAN’s fields CID, MID, and BID, and Type values REQ, REP, ACK, and

PROBE? Which of these would the overlying RPC protocol have to provide? Would

some analog of implicit acknowledgments exist?

50 Suppose BLAST runs over a 10-Mbps Ethernet, sending 32K messages.

(a) If the Ethernet packets can hold 1500 bytes of data, and optionless IP headers

are used as well as BLAST headers, how many Ethernet packets are required

per message?

(b) Calculate the delay due to sending a 32K message over Ethernet

(i) directly

(ii) broken into pieces as in (a), with one bridge

Ignore propagation delays, headers, collisions, and interpacket gaps.

448 5 End-to-End Protocols

51 Write a test program that uses the socket interface to send messages between a pair

of Unix workstations connected by some LAN (e.g., Ethernet, ATM, or FDDI).

Use this test program to perform the following experiments.

(a) Measure the round-trip latency of TCP and UDP for different message sizes

(e.g., 1 byte, 100 bytes, 200 bytes, . . . , 1000 bytes).

(b) Measure the throughput of TCP and UDP for 1-KB, 2-KB, 3-KB, . . . , 32-KB

messages. Plot the measured throughput as a function of message size.

(c) Measure the throughput of TCP by sending 1 MB of data from one host to

another. Do this in a loop that sends a message of some size, for example,

1024 iterations of a loop that sends 1-KB messages. Repeat the experiment

with different message sizes and plot the results.

This Page Intentionally Left Blank

Congestion Control

and Resource

Allocation

The hand that hath made you fair hath made you good.

—William Shakespeare

B
y now we have seen enough layers of the network protocol hierarchy to un-

derstand how data can be transferred among processes across heterogeneous

networks. We now turn to a problem that spans the entire protocol stack—

how to effectively and fairly allocate resources among a collection of competing users.

The resources being shared include the bandwidth of the links and the buffers on the

routers or switches where packets are queued awaiting transmission. Packets contend

at a router for the use of a link, with each contending packet placed in a queue waiting

its turn to be transmitted over the link. When too many packets are contending for

the same link, the queue overflows and packets have to be dropped. When such drops

become common events, the network is said to be congested. Most networks provide

a congestion-control mechanism to deal with just such a situation.

P R O B L E M

Allocating Resources

Congestion control and resource al-

location are two sides of the same

coin. On the one hand, if the net-

work takes an active role in allocat-

ing resources—for example, schedul-

ing which virtual circuit gets to use

a given physical link during a certain

period of time—then congestion may

be avoided, thereby making congestion control unnecessary. Allocating network re-

sources with any precision is difficult, however, because the resources in question are

distributed throughout the network; multiple links connecting a series of routers need

6
to be scheduled. On the other hand, you can always let

packet sources send as much data as they want, and then

recover from congestion should it occur. This is the easier

approach, but it can be disruptive because many packets

may be discarded by the network before congestion can

be controlled. Furthermore, it is precisely at those times

when the network is congested—that is, resources have

become scarce relative to demand—that the need for re-

source allocation among competing users is most keenly

felt. There are also solutions in the middle, whereby in-

exact allocation decisions are made, but congestion can

still occur and hence some mechanism is still needed to

recover from it. Whether you call such a mixed solution

congestion control or resource allocation does not really

matter. In some sense, it is both.

Congestion control and resource allocation involve

both hosts and network elements such as routers. In net-

work elements, various queuing disciplines can be used

to control the order in which packets get transmitted and

which packets get dropped. The queuing discipline can

also segregate traffic, that is, to keep one user’s packets

from unduly affecting another user’s packets. At the end

hosts, the congestion-control mechanism paces how fast

sources are allowed to send packets. This is done in an

effort to keep congestion from occurring in the first place,

and should it occur, to help eliminate the congestion.

This chapter starts with an overview of congestion

control and resource allocation. We then discuss differ-

ent queuing disciplines that can be implemented on the

routers inside the network, followed by a description of

the congestion-control algorithm provided by TCP on the

hosts. The fourth section explores various techniques in-

volving both routers and hosts that aim to avoid conges-

tion before it becomes a problem. Finally, we examine the

broad area of “quality of service.” We consider the needs

of applications to receive different levels of resource allo-

cation in the network, and describe a number of ways in

which they can request these resources and the network

can meet the requests.

452 6 Congestion Control and Resource Allocation

6.1 Issues in Resource Allocation

Resource allocation and congestion control are complex issues and have been the

subject of much study ever since the first network was designed. They are still active

areas of research. One factor that makes these issues complex is that they are not

isolated to one single level of a protocol hierarchy. Resource allocation is partially

implemented in the routers or switches inside the network and partially in the transport

protocol running on the end hosts. End systems use signalling protocols to convey

their resource requirements to network nodes, which respond with information about

resource availability. One of the main goals of this chapter is to define a framework

in which these mechanisms can be understood, as well as to give the relevant details

about a representative sample of mechanisms.

We should clarify our terminology before going any further. By “resource allo-

cation,” we mean the process by which network elements try to meet the competing

demands that applications have for network resources—primarily link bandwidth and

buffer space in routers or switches. Of course, it will often not be possible to meet all

the demands, meaning that some users or applications may receive fewer network re-

sources than they want. Part of the resource allocation problem is deciding when to

say no, and to whom.

We use the term “congestion control” to describe the efforts made by network

nodes to prevent or respond to overload conditions. Since congestion is generally bad

for everyone, the first order of business is making congestion subside, or preventing

it in the first place. This might be achieved simply by persuading a few hosts to stop

sending, thus improving the situation for everyone else. However, it is more common

for congestion-control mechanisms to have some notion of fairness—that is, they try

to share the pain among all users, rather than causing great pain to a few. Thus we see

that many congestion-control mechanisms will have a notion of resource allocation

built into them.

It is also important to understand the difference between flow control and con-

gestion control. Flow control, as we have seen in Section 2.5, involves keeping a fast

sender from overrunning a slow receiver. Congestion control, by contrast, is intended

to keep a set of senders from sending too much data into the network because of lack

of resources at some point. These two concepts are often confused; as we will see, they

also share some mechanisms.

6.1.1 Network Model

We begin by defining three salient features of the network architecture. For the most

part, this is a summary of material presented in the previous chapters that is relevant

to the problem of resource allocation.

6.1 Issues in Resource Allocation 453

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Figure 6.1 Congestion in a packet-switched network.

Packet-Switched Network

We consider resource allocation in a packet-switched network (or internet) consisting

of multiple links and switches (or routers). Since most of the mechanisms described

in this chapter were designed for use on the Internet, and therefore were originally

defined in terms of routers rather than switches, we use the term “router” throughout

our discussion. The problem is essentially the same, whether on a network or an

internetwork.

In such an environment, a given source may have more than enough capacity

on the immediate outgoing link to send a packet, but somewhere in the middle of

a network, its packets encounter a link that is being used by many different traffic

sources. Figure 6.1 illustrates this situation—two high-speed links are feeding a low-

speed link. This is in contrast to shared-access networks like Ethernet and token rings,

where the source can directly observe the traffic on the network and decide accordingly

whether or not to send a packet. We have already seen the algorithms used to allocate

bandwidth on shared-access networks (Chapter 2). These access control algorithms

are, in some sense, analogous to congestion-control algorithms in a switched network.

◮ Note that congestion control is not the same as routing. While it is true that a

congested link could be assigned a large edge weight by the route propagation protocol,

and as a consequence, routers would route around it, “routing around” a congested

link does not solve the congestion problem. To see this, we need look no further

than the simple network depicted in Figure 6.1, where all traffic has to flow through

the same router to reach the destination. Although this is an extreme example, it is

common to have a certain router that it is not possible to route around.1 This router

1It is also worth noting that the complexity of routing in the Internet is such that simply obtaining a reasonably
direct, loop-free route is about the best you can hope for. Routing around congestion would be considered icing
on the cake.

454 6 Congestion Control and Resource Allocation

can become congested, and there is nothing the routing mechanism can do about it.

This congested router is sometimes called the bottleneck router.

Connectionless Flows

For much of our discussion, we assume that the network is essentially connectionless,

with any connection-oriented service implemented in the transport protocol that is

running on the end hosts. (We explain the qualification “essentially” in a moment.)

This is precisely the model of the Internet, where IP provides a connectionless data-

gram delivery service and TCP implements an end-to-end connection abstraction. Note

that this assumption excludes early networks like X.25, in which a virtual circuit ab-

straction is maintained across a set of routers (see Section 3.1.2). In such networks,

a connection setup message traverses the network when a circuit is established. This

setup message reserves a set of buffers for the connection at each router, thereby pro-

viding a form of congestion control—a connection is established only if enough buffers

can be allocated to it at each router. The major shortcoming of this approach is that

it leads to an underutilization of resources—buffers reserved for a particular circuit

are not available for use by other traffic even if they were not currently being used by

that circuit. The focus of this chapter is on resource allocation approaches that apply

in an internetwork, and thus we focus mainly on connectionless networks. The one

exception to this is our discussion of ATM quality of service in Section 6.5.4, which

provides an interesting contrast to the Internet model.

We need to qualify the term “connectionless” because our classification of net-

works as being either connectionless or connection oriented is a bit too restrictive; there

is a gray area in between. In particular, the implication of a connectionless network

in which all datagrams are completely independent is too strong. The datagrams are

certainly switched independently, but it is usually the case that a stream of datagrams

between a particular pair of hosts flows through a particular set of routers. This idea

of a flow—a sequence of packets sent between a source/destination pair and following

the same route through the network—is an important abstraction in the context of

resource allocation; it is one that we will use in this chapter.

One of the powers of the flow abstraction is that flows can be defined at dif-

ferent granularities. For example, a flow can be host-to-host (i.e., have the same

source/destination host addresses) or process-to-process (i.e., have the same source/

destination host/port pairs). In the latter case, a flow is essentially the same as a chan-

nel, as we have been using that term throughout this book. The reason we introduce a

new term is that a flow is visible to the routers inside the network, whereas a channel is

an end-to-end abstraction. Figure 6.2 illustrates several flows passing through a series

of routers.

6.1 Issues in Resource Allocation 455

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Figure 6.2 Multiple flows passing through a set of routers.

Because multiple related packets flow through each router, it sometimes makes

sense to maintain some state information for each flow, information that can be used

to make resource allocation decisions about the packets that belong to the flow. This

state is sometimes called soft state; the main difference between soft state and “hard”

state is that soft state need not always be explicitly created and removed by signalling.

Soft state represents a middle ground between a purely connectionless network that

maintains no state at the routers and a purely connection-oriented network that main-

tains hard state at the routers. In general, the correct operation of the network does

not depend on soft state being present (each packet is still routed correctly without

regard to this state), but when a packet happens to belong to a flow for which the

router is currently maintaining soft state, then the router is better able to handle the

packet.

Note that a flow can be either implicitly defined or explicitly established. In

the former case, each router watches for packets that happen to be traveling between

the same source/destination pair—the router does this by inspecting the addresses

in the header—and treats these packets as belonging to the same flow for the purpose

of congestion control. In the latter case, the source sends a flow setup message across

the network, declaring that a flow of packets is about to start. While explicit flows are

arguably no different than a connection across a connection-oriented network, we call

attention to this case because even when explicitly established, a flow does not imply

any end-to-end semantics, and in particular, it does not imply the reliable and ordered

delivery of a virtual circuit. It simply exists for the purpose of resource allocation. We

will see examples of both implicit and explicit flows in this chapter.

456 6 Congestion Control and Resource Allocation

Service Model

In the early part of this chapter, we will focus on mechanisms that assume the best-

effort service model of the Internet. With best-effort service, each packet is treated in

exactly the same way, with end hosts given no opportunity to ask the network that

one of their flows be given certain guarantees. Defining a service model that supports

some kind of guarantee—for example, guaranteeing the bandwidth needed for a video

stream—is the subject of Section 6.5. Such a service model is said to provide multiple

qualities of service (QoS). As we will see, there is actually a spectrum of possibilities,

ranging from a purely best-effort service model to one in which individual flows receive

quantitative guarantees of QoS. One of the greatest challenges is to define a service

model that meets the needs of a wide range of applications and even allows for the

applications that will be invented in the future.

6.1.2 Taxonomy

There are countless ways in which resource allocation mechanisms differ, making a

thorough taxonomy a difficult proposition. For now, we describe three dimensions

along which resource allocation mechanisms can be characterized; more subtle dis-

tinctions will be called out during the course of this chapter.

Router-Centric versus Host-Centric

Resource allocation mechanisms can be classified into two broad groups: those that

address the problem from inside the network (i.e., at the routers or switches) and

those that address it from the edges of the network (i.e., in the hosts, perhaps inside

the transport protocol). Since it is the case that both the routers inside the network

and the hosts at the edges of the network participate in resource allocation, the real

issue is where the majority of the burden falls.

In a router-centric design, each router takes responsibility for deciding when

packets are forwarded and selecting which packets are dropped, as well as for inform-

ing the hosts that are generating the network traffic how many packets they are allowed

to send. In a host-centric design, the end hosts observe the network conditions (e.g.,

how many packets they are successfully getting through the network) and adjust their

behavior accordingly. Note that these two groups are not mutually exclusive. For ex-

ample, a network that places the primary burden for managing congestion on routers

still expects the end hosts to adhere to any advisory messages the routers send, while the

routers in networks that use end-to-end congestion control still have some policy, no

matter how simple, for deciding which packets to drop when their queues do overflow.

Reservation Based versus Feedback Based

A second way that resource allocation mechanisms are sometimes classified is accord-

ing to whether they use reservations or feedback. In a reservation-based system, the

6.1 Issues in Resource Allocation 457

end host asks the network for a certain amount of capacity at the time a flow is es-

tablished. Each router then allocates enough resources (buffers and/or percentage of

the link’s bandwidth) to satisfy this request. If the request cannot be satisfied at some

router, because doing so would overcommit its resources, then the router rejects the

flow. This is analogous to getting a busy signal when trying to make a phone call. In a

feedback-based approach, the end hosts begin sending data without first reserving any

capacity and then adjust their sending rate according to the feedback they receive. This

feedback can be either explicit (i.e., a congested router sends a “please slow down”

message to the host) or implicit (i.e., the end host adjusts its sending rate according to

the externally observable behavior of the network, such as packet losses).

Note that a reservation-based system always implies a router-centric resource

allocation mechanism. This is because each router is responsible for keeping track

of how much of its capacity is currently reserved and for making sure each host lives

within the reservation it made. If a host sends data faster than it claimed it would when

it made the reservation, then that host’s packets are good candidates for discarding,

should the router become congested. On the other hand, a feedback-based system can

imply either a router- or host-centric mechanism. Typically, if the feedback is explicit,

then the router is involved, to at least some degree, in the resource allocation scheme. If

the feedback is implicit, then almost all of the burden falls to the end host; the routers

silently drop packets when they become congested.

Window Based versus Rate Based

A third way to characterize resource allocation mechanisms is according to whether

they are window based or rate based. This is one of the areas, noted above, where

similar mechanisms and terminology are used for both flow control and congestion

control. Both flow-control and resource allocation mechanisms need a way to express,

to the sender, how much data it is allowed to transmit. There are two general ways

of doing this: with a window or with a rate. We have already seen window-based

transport protocols, such as TCP, in which the receiver advertises a window to the

sender. This window corresponds to how much buffer space the receiver has, and

it limits how much data the sender can transmit; that is, it supports flow control.

A similar mechanism—window advertisement—can be used within the network to

reserve buffer space, that is, to support resource allocation. This is essentially what is

done in X.25.

It is also possible to control a sender’s behavior using a rate, that is, how many

bits per second the receiver or network is able to absorb. Although we have not yet

studied any rate-based transport protocols in this book (we will in Chapter 9), we

can imagine such a protocol used to support video: The receiver says it can process

video frames at a rate of 1 Mbps, and the sender adheres to this rate. As we will

see later in this chapter, rate-based characterization of flows is a logical choice in a

458 6 Congestion Control and Resource Allocation

reservation-based system that supports different qualities of service—the sender makes

a reservation for so many bits per second, and each router along the path determines

if it can support that rate, given the other flows it has made commitments to.

Summary of Resource Allocation Taxonomy

Classifying resource allocation approaches at two different points along each of three

dimensions, as we have just done, would seem to suggest up to eight unique strate-

gies. While eight different approaches are certainly possible, we note that in practice

two general strategies seem to be most prevalent; these two strategies are tied to the

underlying service model of the network.

On the one hand, a best-effort service model usually implies that feedback is

being used, since such a model does not allow users to reserve network capacity. This,

in turn, means that most of the responsibility for congestion control falls to the end

hosts, perhaps with some assistance from the routers. In practice, such networks use

window-based information. This is the general strategy adopted in the Internet and

the focus of Sections 6.3 and 6.4.

On the other hand, a QoS-based service model probably implies some form of

reservation.2 Support for these reservations is likely to require significant router in-

volvement, for example, to queue packets differently depending on the level of reserved

resources they require. Moreover, it is natural to express such reservations in terms of

rate, since windows are only indirectly related to how much bandwidth a user needs

from the network. We discuss this topic in Section 6.5.

6.1.3 Evaluation Criteria

The final issue is one of knowing whether a resource allocation mechanism is good

or not. Recall that in the problem statement at the start of this chapter we posed the

question of how a network effectively and fairly allocates its resources. This suggests

at least two broad measures by which a resource allocation scheme can be evaluated.

We consider each in turn.

Effective Resource Allocation

A good starting point for evaluating the effectiveness of a resource allocation scheme

is to consider the two principal metrics of networking: throughput and delay. Clearly,

we want as much throughput and as little delay as possible. Although on the surface

it might appear as though increasing throughput also means reducing delay, this is not

the case. One sure way for a resource allocation algorithm to increase throughput is

to allow as many packets into the network as possible, so as to drive the utilization of

2As we will see in Section 6.5, resource reservations might be made by network managers rather than by hosts.

6.1 Issues in Resource Allocation 459

Optimal
load

Load

T
h
ro

u
gh

p
u
t/

d
el

ay

Figure 6.3 Ratio of throughput to delay as a function of load.

all the links up to 100%. We would do this to avoid the possibility of a link becoming

idle because an idle link necessarily hurts throughput. The problem with this strategy

is that increasing the number of packets in the network also increases the length of the

queues at each router. Longer queues, in turn, mean packets are delayed longer in the

network.

To describe this relationship, some network designers have proposed using the

ratio of throughput to delay as a metric for evaluating the effectiveness of a resource

allocation scheme. This ratio is sometimes referred to as the power of the network:3

Power = Throughput/Delay

Note that it is not obvious that power is the right metric for judging resource allo-

cation effectiveness. For one thing, the theory behind power is based on an M/M/1

queuing network4 that assumes infinite queues; real networks have finite buffers and

sometimes have to drop packets. For another, power is typically defined relative to

a single connection (flow); it is not clear how it extends to multiple, competing con-

nections. Despite these rather severe limitations, however, no alternatives have gained

wide acceptance, and so power continues to be used.

The objective is to maximize this ratio, which is a function of how much load you

place on the network. The load, in turn, is set by the resource allocation mechanism.

Figure 6.3 gives a representative power curve, where, ideally, the resource alloca-

tion mechanism would operate at the peak of this curve. To the left of the peak, the

3The actual definition is Power = Throughputα/Delay, where 0 < α < 1; α = 1 results in power being maximized
at the knee of the delay curve. Throughput is measured in units of data (e.g., bits) per second; delay in seconds.
4Since this is not a queuing theory book, we provide only this brief description of an M/M/1 queue. The 1 means it
has a single server, and the Ms mean that the distribution of both packet arrival and service times is “Markovian,”
that is, exponential.

460 6 Congestion Control and Resource Allocation

mechanism is being too conservative; that is, it is not allowing enough packets to be

sent to keep the links busy. To the right of the peak, so many packets are being allowed

into the network that increases in delay due to queuing are starting to dominate any

small gains in throughput.

Interestingly, this power curve looks very much like the system throughput curve

in a multiprogrammed computer system. System throughput improves as more jobs are

admitted into the system, until it reaches a point when there are so many jobs running

that the system begins to thrash (spends all of its time swapping memory pages) and

the throughput begins to drop.

As we will see in later sections of this chapter, many congestion-control schemes

are able to control load in only very crude ways. That is, it is simply not possible

to turn the “knob” a little and allow only a small number of additional packets into

the network. As a consequence, network designers need to be concerned about what

happens even when the system is operating under extremely heavy load—that is, at

the rightmost end of the curve in Figure 6.3. Ideally, we would like to avoid the

situation in which the system throughput goes to zero because the system is thrashing.

In networking terminology, we want a system that is stable—where packets continue

to get through the network even when the network is operating under heavy load. If

a mechanism is not stable, the network may experience congestion collapse.

Fair Resource Allocation

The effective utilization of network resources is not the only criterion for judging a

resource allocation scheme. We must also consider the issue of fairness. However,

we quickly get into murky waters when we try to define what exactly constitutes

fair resource allocation. For example, a reservation-based resource allocation scheme

provides an explicit way to create controlled unfairness. With such a scheme, we might

use reservations to enable a video stream to receive 1 Mbps across some link while a

file transfer receives only 10 Kbps over the same link.

In the absence of explicit information to the contrary, when several flows share a

particular link, we would like for each flow to receive an equal share of the bandwidth.

This definition presumes that a fair share of bandwidth means an equal share of

bandwidth. But even in the absence of reservations, equal shares may not equate to

fair shares. Should we also consider the length of the paths being compared? For

example, as illustrated in Figure 6.4, what is fair when one four-hop flow is competing

with three one-hop flows?

Assuming that fair implies equal and that all paths are of equal length, Raj

Jain has proposed a metric that can be used to quantify the fairness of a congestion-

control mechanism. Jain’s fairness index is defined as follows. Given a set of flow

throughputs (x1, x2, . . . , xn) (measured in consistent units such as bits/second), the

6.2 Queuing Disciplines 461

Figure 6.4 One four-hop flow competing with three one-hop flows.

following function assigns a fairness index to the flows:

f (x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x2
i

The fairness index always results in a number between 0 and 1, with 1 representing

greatest fairness. To understand the intuition behind this metric, consider the case

where all n flows receive a throughput of 1 unit of data per second. We can see that

the fairness index in this case is

n2

n × n
= 1

Now suppose one flow receives a throughput of 1 + 	. Now the fairness index is

((n − 1) + 1 +)2

n(n − 1 + (1 +)2)

=
n2 + 2n	 + 	2

n2 + 2n	 + n	2

Note that the denominator exceeds the numerator by (n − 1)	2. Thus whether the

odd flow out was getting more or less than all the other flows (positive or negative

), the fairness index has now dropped below one. Another simple case to consider is

where only k of the n flows receive equal throughput, and the remaining n − k users

receive zero throughput, in which case the fairness index drops to k/n.

6.2 Queuing Disciplines
Regardless of how simple or how sophisticated the rest of the resource allocation

mechanism is, each router must implement some queuing discipline that governs how

packets are buffered while waiting to be transmitted. The queuing algorithm can be

thought of as allocating both bandwidth (which packets get transmitted) and buffer

space (which packets get discarded). It also directly affects the latency experienced

by a packet, by determining how long a packet waits to be transmitted. This section

introduces two common queuing algorithms—first-in-first-out (FIFO) and fair queuing

(FQ)—and identifies several variations that have been proposed.

462 6 Congestion Control and Resource Allocation

Arriving
packet

Next free
buffer

Free buffers Queued packets

Next to
transmit

(a)

Arriving
packet

Next to
transmit

(b) Drop

Figure 6.5 (a) FIFO queuing; (b) tail drop at a FIFO queue.

6.2.1 FIFO

The idea of FIFO queuing, also called first-come-first-served (FCFS) queuing, is simple:

The first packet that arrives at a router is the first packet to be transmitted. This is

illustrated in Figure 6.5(a), which shows a FIFO with “slots” to hold up to eight

packets. Given that the amount of buffer space at each router is finite, if a packet

arrives and the queue (buffer space) is full, then the router discards that packet, as

shown in Figure 6.5(b). This is done without regard to which flow the packet belongs

to or how important the packet is. This is sometimes called tail drop, since packets

that arrive at the tail end of the FIFO are dropped.

Note that tail drop and FIFO are two separable ideas. FIFO is a scheduling

discipline—it determines the order in which packets are transmitted. Tail drop is a

drop policy—it determines which packets get dropped. Because FIFO and tail drop

are the simplest instances of scheduling discipline and drop policy, respectively, they are

sometimes viewed as a bundle—the vanilla queuing implementation. Unfortunately,

the bundle is often referred to simply as “FIFO queuing,” when it should more precisely

be called “FIFO with tail drop.” Section 6.4 provides an example of another drop

policy, which uses a more complex algorithm than “Is there a free buffer?” to decide

6.2 Queuing Disciplines 463

when to drop packets. Such a drop policy may be used with FIFO, or with more

complex scheduling disciplines.

FIFO with tail drop, as the simplest of all queuing algorithms, is the most widely

used in Internet routers at the time of writing. This simple approach to queuing pushes

all responsibility for congestion control and resource allocation out to the edges of the

network. Thus, the prevalent form of congestion control in the Internet currently as-

sumes no help from the routers: TCP takes responsibility for detecting and responding

to congestion. We will see how this works in Section 6.3.

A simple variation on basic FIFO queuing is priority queuing. The idea is to mark

each packet with a priority; the mark could be carried, for example, in the IP Type of

Service (TOS) field. The routers then implement multiple FIFO queues, one for each

priority class. The router always transmits packets out of the highest-priority queue

if that queue is nonempty before moving on to the next priority queue. Within each

priority, packets are still managed in a FIFO manner. This idea is a small departure

from the best-effort delivery model, but it does not go so far as to make guarantees to

any particular priority class. It just allows high-priority packets to cut to the front of

the line.

The problem with priority queuing, of course, is that the high-priority queue can

starve out all the other queues. That is, as long as there is at least one high-priority

packet in the high-priority queue, lower-priority queues do not get served. For this to

be viable, there need to be hard limits on how much high-priority traffic is inserted in

the queue. It should be immediately clear that we can’t allow users to set their own

packets to high priority in an uncontrolled way; we must either prevent them from

doing this altogether or provide some form of “pushback” on users. One obvious

way to do this is to use economics—the network could charge more to deliver high-

priority packets than low-priority packets. However, there are significant challenges

to implementing such a scheme in a decentralized environment such as the Internet.

One situation in which priority queuing is used in the Internet is to protect the

most important packets—typically the routing updates that are necessary to stabilize

the routing tables after a topology change. Often there is a special queue for such

packets, which can be identified by the TOS field in the IP header. This is in fact a

simple case of the idea of “Differentiated Services,” the subject of Section 6.5.3.

6.2.2 Fair Queuing

The main problem with FIFO queuing is that it does not discriminate between dif-

ferent traffic sources, or in the language introduced in the previous section, it does

not separate packets according to the flow to which they belong. This is a problem at

two different levels. At one level, it is not clear that any congestion-control algorithm

464 6 Congestion Control and Resource Allocation

implemented entirely at the source will be able to adequately control congestion with

so little help from the routers. We will suspend judgment on this point until the next

section when we discuss TCP congestion control. At another level, because the entire

congestion-control mechanism is implemented at the sources and FIFO queuing does

not provide a means to police how well the sources adhere to this mechanism, it is

possible for an ill-behaved source (flow) to capture an arbitrarily large fraction of the

network capacity. Considering the Internet again, it is certainly possible for a given

application not to use TCP, and as a consequence, to bypass its end-to-end congestion-

control mechanism. (Applications such as Internet telephony do this today.) Such an

application is able to flood the Internet’s routers with its own packets, thereby causing

other applications’ packets to be discarded.

Fair queuing (FQ) is an algorithm that has been proposed to address this problem.

The idea of FQ is to maintain a separate queue for each flow currently being handled by

the router. The router then services these queues in a round-robin manner, as illustrated

in Figure 6.6. When a flow sends packets too quickly, then its queue fills up. When a

queue reaches a particular length, additional packets belonging to that flow’s queue

are discarded. In this way, a given source cannot arbitrarily increase its share of the

network’s capacity at the expense of other flows.

Note that FQ does not involve the router telling the traffic sources anything

about the state of the router or in any way limiting how quickly a given source sends

packets. In other words, FQ is still designed to be used in conjunction with an end-

to-end congestion-control mechanism. It simply segregates traffic so that ill-behaved

traffic sources do not interfere with those that are faithfully implementing the end-to-

end algorithm. FQ also enforces fairness among a collection of flows managed by a

well-behaved congestion-control algorithm.

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin
service

Figure 6.6 Fair queuing at a router.

6.2 Queuing Disciplines 465

As simple as the basic idea is, there are still a modest number of details that you

have to get right. The main complication is that the packets being processed at a router

are not necessarily the same length. To truly allocate the bandwidth of the outgoing link

in a fair manner, it is necessary to take packet length into consideration. For example,

if a router is managing two flows, one with 1000-byte packets and the other with

500-byte packets (perhaps because of fragmentation upstream from this router), then

a simple round-robin servicing of packets from each flow’s queue will give the first flow

two-thirds of the link’s bandwidth and the second flow only one-third of its bandwidth.

What we really want is bit-by-bit round-robin; that is, the router transmits a bit

from flow 1, then a bit from flow 2, and so on. Clearly, it is not feasible to interleave

the bits from different packets. The FQ mechanism therefore simulates this behavior

by first determining when a given packet would finish being transmitted if it were being

sent using bit-by-bit round robin, and then using this finishing time to sequence the

packets for transmission.

To understand the algorithm for approximating bit-by-bit round robin, consider

the behavior of a single flow and imagine a clock that ticks once each time one bit

is transmitted from all of the active flows. (A flow is active when it has data in the

queue.) For this flow, let Pi denote the length of packet i , let Si denote the time when

the router starts to transmit packet i , and let Fi denote the time when the router finishes

transmitting packet i . If Pi is expressed in terms of how many clock ticks it takes to

transmit packet i (keeping in mind that time advances 1 tick each time this flow gets

1 bit’s worth of service), then it is easy to see that Fi = Si + Pi .

When do we start transmitting packet i? The answer to this question depends on

whether packet i arrived before or after the router finished transmitting packet i − 1

from this flow. If it was before, then logically the first bit of packet i is transmitted

immediately after the last bit of packet i − 1. On the other hand, it is possible that the

router finished transmitting packet i − 1 long before i arrived, meaning that there was

a period of time during which the queue for this flow was empty, so the round-robin

mechanism could not transmit any packets from this flow. If we let Ai denote the time

that packet i arrives at the router, then Si = max(Fi−1, Ai). Thus, we can compute

Fi = max(Fi−1, Ai) + Pi

Now we move on to the situation in which there is more than one flow, and we

find that there is a catch to determining Ai . We can’t just read the wall clock when the

packet arrives. As noted above, we want time to advance by one tick each time all the

active flows get one bit of service under bit-by-bit round robin, so we need a clock that

advances more slowly when there are more flows. Specifically, the clock must advance

by one tick when n bits are transmitted if there are n active flows. This clock will be

used to calculate Ai .

466 6 Congestion Control and Resource Allocation

Flow 1 Flow 2

(a) (b)

Output Output

F = 8 F = 10

F = 5

F = 10

F = 2

Flow 1
(arriving)

Flow 2
(transmitting)

Figure 6.7 Example of fair queuing in action: (a) shorter packets are sent first; (b) send-
ing of longer packet, already in progress, is completed first.

Now, for every flow, we calculate Fi for each packet that arrives using the above

formula. We then treat all the Fi as timestamps, and the next packet to transmit is

always the packet that has the lowest timestamp—the packet that, based on the above

reasoning, should finish transmission before all others.

Note that this means that a packet can arrive on a flow, and because it is shorter

than a packet from some other flow that is already in the queue waiting to be trans-

mitted, it can be inserted into the queue in front of that longer packet. However, this

does not mean that a newly arriving packet can preempt a packet that is currently

being transmitted. It is this lack of preemption that keeps the implementation of FQ

just described from exactly simulating the bit-by-bit round-robin scheme that we are

attempting to approximate.

To better see how this implementation of fair queuing works, consider the exam-

ple given in Figure 6.7. Part (a) shows the queues for two flows; the algorithm selects

both packets from flow 1 to be transmitted before the packet in the flow 2 queue.

In (b), the router has already begun to send a packet from flow 2 when the packet

from flow 1 arrives. Though the packet arriving on flow 1 would have finished before

flow 2 if we had been using perfect bit-by-bit fair queuing, the implementation does

not preempt the flow 2 packet.

There are two things to notice about fair queuing. First, the link is never left

idle as long as there is at least one packet in the queue. Any queuing scheme with this

characteristic is said to be work-conserving. One effect of being work-conserving is

that if I am sharing a link with a lot of flows that are not sending any data, I can use

the full link capacity for my flow. As soon as the other flows start sending, however,

they will start to use their share and the capacity available to my flow will drop.

The second thing to notice is that if the link is fully loaded and there are n flows

sending data, I cannot use more than 1/nth of the link bandwidth. If I try to send more

than that, my packets will be assigned increasingly large timestamps, causing them to

sit in the queue longer awaiting transmission. Eventually, the queue will overflow—

although whether it is my packets or someone else’s that are dropped is a decision that

6.2 Queuing Disciplines 467

is not determined by the fact that we are using fair queuing. This is determined by the

drop policy; FQ is a scheduling algorithm, which, like FIFO, may be combined with

various drop policies.

Because FQ is work-conserving, any bandwidth that is not used by one flow is

automatically available to other flows. For example, if we have four flows passing

through a router, and all of them are sending packets, then each one will receive one-

quarter of the bandwidth. But if one of them is idle long enough that all its packets

drain out of the router’s queue, then the available bandwidth will be shared among

the remaining three flows, which will each now receive one-third of the bandwidth.

Thus we can think of FQ as providing a guaranteed minimum share of bandwidth to

each flow, with the possibility that it can get more than its guarantee if other flows are

not using their shares.

It is possible to implement a variation of FQ, called weighted fair queuing (WFQ),

that allows a weight to be assigned to each flow (queue). This weight logically specifies

how many bits to transmit each time the router services that queue, which effectively

controls the percentage of the link’s bandwidth that flow will get. Simple FQ gives

each queue a weight of 1, which means that logically only 1 bit is transmitted from

each queue each time around. This results in each flow getting 1/nth of the bandwidth

when there are n flows. With WFQ, however, one queue might have a weight of 2, a

second queue might have a weight of 1, and a third queue might have a weight of 3.

Assuming that each queue always contains a packet waiting to be transmitted, the first

flow will get one-third of the available bandwidth, the second will get one-sixth of the

available bandwidth, and the third will get one-half of the available bandwidth.

While we have described WFQ in terms of flows, note that it could be imple-

mented on “classes” of traffic, where classes are defined in some other way than the

simple flows introduced at the start of this chapter. For example, we could use the

Type of Service (TOS) bits in the IP header to identify classes, and allocate a queue and

a weight to each class. This is exactly what is proposed as part of the Differentiated

Services architecture described in Section 6.5.3.

Note that a router performing WFQ must learn what weights to assign to each

queue from somewhere, either by manual configuration or by some sort of signalling

from the sources. In the latter case, we are moving toward a reservation-based model.

Just assigning a weight to a queue provides a rather weak form of reservation because

these weights are only indirectly related to the bandwidth the flow receives. (The

bandwidth available to a flow also depends, for example, on how many other flows

are sharing the link.) We will see in Section 6.5.2 how WFQ can be used as a component

of a reservation-based resource allocation mechanism.

◮ Finally, we observe that this whole discussion of queue management illustrates

an important system design principle known as separating policy and mechanism. The

idea is to view each mechanism as a black box that provides a multifaceted service

468 6 Congestion Control and Resource Allocation

that can be controlled by a set of knobs. A policy specifies a particular setting of those

knobs, but does not know (or care) about how the black box is implemented. In this

case, the mechanism in question is the queuing discipline, and the policy is a particular

setting of which flow gets what level of service (e.g., priority or weight). We discuss

some policies that can be used with the WFQ mechanism in Section 6.5.

6.3 TCP Congestion Control

This section describes the predominant example of end-to-end congestion control in

use today, that implemented by TCP. The essential strategy of TCP is to send packets

into the network without a reservation and then to react to observable events that

occur. TCP assumes only FIFO queuing in the network’s routers, but also works with

fair queuing.

TCP congestion control was introduced into the Internet in the late 1980s by Van

Jacobson, roughly eight years after the TCP/IP protocol stack had become operational.

Immediately preceding this time, the Internet was suffering from congestion collapse—

hosts would send their packets into the Internet as fast as the advertised window would

allow, congestion would occur at some router (causing packets to be dropped), and the

hosts would time out and retransmit their packets, resulting in even more congestion.

Broadly speaking, the idea of TCP congestion control is for each source to de-

termine how much capacity is available in the network, so that it knows how many

packets it can safely have in transit. Once a given source has this many packets in

transit, it uses the arrival of an ACK as a signal that one of its packets has left the

network, and that it is therefore safe to insert a new packet into the network without

adding to the level of congestion. By using ACKs to pace the transmission of packets,

TCP is said to be self-clocking. Of course, determining the available capacity in the

first place is no easy task. To make matters worse, because other connections come

and go, the available bandwidth changes over time, meaning that any given source

must be able to adjust the number of packets it has in transit. This section describes

the algorithms used by TCP to address these and other problems.

Note that although we describe these mechanisms one at a time, thereby giving

the impression that we are talking about three independent mechanisms, it is only

when they are taken as a whole that we have TCP congestion control.

6.3.1 Additive Increase/Multiplicative Decrease

TCP maintains a new state variable for each connection, called CongestionWindow,

which is used by the source to limit how much data it is allowed to have in transit

at a given time. The congestion window is congestion control’s counterpart to flow

control’s advertised window. TCP is modified such that the maximum number of bytes

6.3 TCP Congestion Control 469

of unacknowledged data allowed is now the minimum of the congestion window

and the advertised window. Thus, using the variables defined in Section 5.2.4, TCP’s

effective window is revised as follows:

MaxWindow = MIN(CongestionWindow, AdvertisedWindow)

EffectiveWindow = MaxWindow − (LastByteSent − LastByteAcked).

That is, MaxWindow replaces AdvertisedWindow in the calculation of EffectiveWin-

dow. Thus, a TCP source is allowed to send no faster than the slowest component—the

network or the destination host—can accommodate.

The problem, of course, is how TCP comes to learn an appropriate value for

CongestionWindow. Unlike the AdvertisedWindow, which is sent by the receiving side

of the connection, there is no one to send a suitable CongestionWindow to the sending

side of TCP. The answer is that the TCP source sets the CongestionWindow based on

the level of congestion it perceives to exist in the network. This involves decreasing the

congestion window when the level of congestion goes up and increasing the congestion

window when the level of congestion goes down. Taken together, the mechanism is

commonly called additive increase/multiplicative decrease (AIMD); the reason for this

mouthful of a name will become apparent below.

The key question, then, is how does the source determine that the network is

congested and that it should decrease the congestion window? The answer is based on

the observation that the main reason packets are not delivered, and a timeout results,

is that a packet was dropped due to congestion. It is rare that a packet is dropped

because of an error during transmission. Therefore, TCP interprets timeouts as a sign

of congestion and reduces the rate at which it is transmitting. Specifically, each time a

timeout occurs, the source sets CongestionWindow to half of its previous value. This

halving of the CongestionWindow for each timeout corresponds to the “multiplicative

decrease” part of AIMD.

Although CongestionWindow is defined in terms of bytes, it is easiest to un-

derstand multiplicative decrease if we think in terms of whole packets. For example,

suppose the CongestionWindow is currently set to 16 packets. If a loss is detected,

CongestionWindow is set to 8. (Normally, a loss is detected when a timeout occurs, but

as we see below, TCP has another mechanism to detect dropped packets.) Additional

losses cause CongestionWindow to be reduced to 4, then 2, and finally to 1 packet.

CongestionWindow is not allowed to fall below the size of a single packet, or in TCP

terminology, the maximum segment size (MSS).

A congestion-control strategy that only decreases the window size is obviously

too conservative. We also need to be able to increase the congestion window to take

advantage of newly available capacity in the network. This is the “additive increase”

470 6 Congestion Control and Resource Allocation

Source Destination

…

Figure 6.8 Packets in transit during additive increase, with one packet being added
each RTT.

part of AIMD, and it works as follows. Every time the source successfully sends a Con-

gestionWindow’s worth of packets—that is, each packet sent out during the last RTT

has been ACKed—it adds the equivalent of one packet to CongestionWindow. This lin-

ear increase is illustrated in Figure 6.8. Note that in practice, TCP does not wait for an

entire window’s worth of ACKs to add one packet’s worth to the congestion window,

but instead increments CongestionWindow by a little for each ACK that arrives. Specif-

ically, the congestion window is incremented as follows each time an ACK arrives:

Increment = MSS × (MSS/CongestionWindow)

CongestionWindow + = Increment

That is, rather than incrementing CongestionWindow by an entire MSS bytes each

RTT, we increment it by a fraction of MSS every time an ACK is received.

Assuming that each ACK acknowledges the receipt of MSS bytes, then that fraction

is MSS/ CongestionWindow.

6.3 TCP Congestion Control 471

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

10.0

Figure 6.9 Typical TCP sawtooth pattern.

This pattern of continually increasing and decreasing the congestion window

continues throughout the lifetime of the connection. In fact, if you plot the current

value of CongestionWindow as a function of time, you get a sawtooth pattern, as

illustrated in Figure 6.9. The important concept to understand about AIMD is that the

source is willing to reduce its congestion window at a much faster rate than it is willing

to increase its congestion window. This is in contrast to an additive increase/additive

decrease strategy in which the window would be increased by one packet when an ACK

arrives and decreased by one when a timeout occurs. It has been shown that AIMD is a

necessary condition for a congestion-control mechanism to be stable (see the “Further

Reading” section at the end of the chapter). One intuitive reason to decrease the

window aggressively and increase it conservatively is that the consequences of having

too large a window are much worse than those of it being too small. For example,

when the window is too large, packets that are dropped will be retransmitted, making

congestion even worse; thus, it is important to get out of this state quickly.

Finally, since a timeout is an indication of congestion that triggers multiplicative

decrease, TCP needs the most accurate timeout mechanism it can afford. We already

covered TCP’s timeout mechanism in Section 5.2.6, so we do not repeat it here. The

two main things to remember about that mechanism are that (1) timeouts are set

as a function of both the average RTT and the standard deviation in that average,

and (2) due to the cost of measuring each transmission with an accurate clock, TCP

only samples the round-trip time once per RTT (rather than once per packet) using a

coarse-grained (500-ms) clock.

6.3.2 Slow Start

The additive increase mechanism just described is the right approach to use when

the source is operating close to the available capacity of the network, but it takes

too long to ramp up a connection when it is starting from scratch. TCP therefore

472 6 Congestion Control and Resource Allocation

Source Destination
…

Figure 6.10 Packets in transit during slow start.

provides a second mechanism, ironically called slow start, that is used to increase

the congestion window rapidly from a cold start. Slow start effectively increases the

congestion window exponentially, rather than linearly.

Specifically, the source starts out by setting CongestionWindow to one packet.

When the ACK for this packet arrives, TCP adds 1 to CongestionWindow and then

sends two packets. Upon receiving the corresponding two ACKs, TCP increments

CongestionWindow by 2—one for each ACK—and next sends four packets. The end

result is that TCP effectively doubles the number of packets it has in transit every RTT.

Figure 6.10 shows the growth in the number of packets in transit during slow start.

Compare this to the linear growth of additive increase illustrated in Figure 6.8.

Why any exponential mechanism would be called “slow” is puzzling at first,

but it can be explained if put in the proper historical context. We need to compare

slow start not against the linear mechanism of the previous subsection, but against the

original behavior of TCP. Consider what happens when a connection is established

and the source first starts to send packets, that is, when it currently has no packets in

6.3 TCP Congestion Control 473

transit. If the source sends as many packets as the advertised window allows—which

is exactly what TCP did before slow start was developed—then even if there is a fairly

large amount of bandwidth available in the network, the routers may not be able to

consume this burst of packets. It all depends on how much buffer space is available at

the routers. Slow start was therefore designed to space packets out so that this burst

does not occur. In other words, even though its exponential growth is faster than linear

growth, slow start is much “slower” than sending an entire advertised window’s worth

of data all at once.

There are actually two different situations in which slow start runs. The first is

at the very beginning of a connection, at which time the source has no idea how many

packets it is going to be able to have in transit at a given time. (Keep in mind that

TCP runs over everything from 9600-bps links to 2.4-Gbps links, so there is no way

for the source to know the network’s capacity.) In this situation, slow start continues

to double CongestionWindow each RTT until there is a loss, at which time a timeout

causes multiplicative decrease to divide CongestionWindow by 2.

The second situation in which slow start is used is a bit more subtle; it occurs

when the connection goes dead while waiting for a timeout to occur. Recall how TCP’s

sliding window algorithm works—when a packet is lost, the source eventually reaches

a point where it has sent as much data as the advertised window allows, and so it

blocks while waiting for an ACK that will not arrive. Eventually, a timeout happens,

but by this time there are no packets in transit, meaning that the source will receive

no ACKs to “clock” the transmission of new packets. The source will instead receive

a single cumulative ACK that reopens the entire advertised window, but as explained

above, the source then uses slow start to restart the flow of data rather than dumping

a whole window’s worth of data on the network all at once.

Although the source is using slow start again, it now knows more information

than it did at the beginning of a connection. Specifically, the source has a current

(and useful) value of CongestionWindow; this is the value of CongestionWindow that

existed prior to the last packet loss, divided by 2 as a result of the loss. We can think

of this as the “target” congestion window. Slow start is used to rapidly increase the

sending rate up to this value, and then additive increase is used beyond this point.

Notice that we have a small bookkeeping problem to take care of, in that we want

to remember the “target” congestion window resulting from multiplicative decrease

as well as the “actual” congestion window being used by slow start. To address this

problem, TCP introduces a temporary variable to store the target window, typically

called CongestionThreshold, that is set equal to the CongestionWindow value that

results from multiplicative decrease. The variable CongestionWindow is then reset to

one packet, and it is incremented by one packet for every ACK that is received until it

reaches CongestionThreshold, at which point it is incremented by one packet per RTT.

474 6 Congestion Control and Resource Allocation

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

Figure 6.11 Behavior of TCP congestion control. Colored line = value of Congestion-
Window over time; solid bullets at top of graph = timeouts; hash marks at top of graph =
time when each packet is transmitted; vertical bars = time when a packet that was
eventually retransmitted was first transmitted.

In other words, TCP increases the congestion window as defined by the following

code fragment:

{
u_int cw = state->CongestionWindow;
u_int incr = state->maxseg;

if (cw > state->CongestionThreshold)
incr = incr * incr / cw;

state->CongestionWindow = MIN(cw + incr, TCP_MAXWIN);
}

where state represents the state of a particular TCP connection and TCP MAXWIN

defines an upper bound on how large the congestion window is allowed to grow.

Figure 6.11 traces how TCP’s CongestionWindow increases and decreases over

time and serves to illustrate the interplay of slow start and additive increase/

multiplicative decrease. This trace was taken from an actual TCP connection and

shows the current value of CongestionWindow—the colored line—over time.

There are several things to notice about this trace. The first is the rapid increase

in the congestion window at the beginning of the connection. This corresponds to the

initial slow start phase. The slow start phase continues until several packets are lost at

about 0.4 seconds into the connection, at which time CongestionWindow flattens out

at about 34 KB. (Why so many packets are lost during slow start is discussed below.)

The reason the congestion window flattens is that there are no ACKs arriving, due to

the fact that several packets were lost. In fact, no new packets are sent during this time,

as denoted by the lack of hash marks at the top of the graph. A timeout eventually

happens at approximately 2 seconds, at which time the congestion window is divided

6.3 TCP Congestion Control 475

by 2 (i.e., cut from approximately 34 KB to around 17 KB) and CongestionThreshold

is set to this value. Slow start then causes CongestionWindow to be reset to one packet

and to start ramping up from there.

There is not enough detail in the trace to see exactly what happens when a

couple of packets are lost just after 2 seconds, so we jump ahead to the linear increase

in the congestion window that occurs between 2 and 4 seconds. This corresponds to

additive increase. At about 4 seconds, CongestionWindow flattens out, again due to a

lost packet. Now, at about 5.5 seconds:

1 A timeout happens, causing the congestion window to be divided by 2, dropping

it from approximately 22 KB to 11 KB, and CongestionThreshold is set to this

amount.

2 CongestionWindow is reset to one packet, as the sender enters slow start.

3 Slow start causes CongestionWindow to grow exponentially until it reaches

CongestionThreshold.

4 CongestionWindow then grows linearly.

The same pattern is repeated at around 8 seconds when another timeout occurs.

We now return to the question of why so many packets are lost during the initial

slow start period. At this point, TCP is attempting to learn how much bandwidth is

available on the network. This is a very difficult task. If the source is not aggressive at

this stage—for example, if it only increases the congestion window linearly—then it

takes a long time for it to discover how much bandwidth is available. This can have a

dramatic impact on the throughput achieved for this connection. On the other hand,

if the source is aggressive at this stage, as TCP is during exponential growth, then

the source runs the risk of having half a window’s worth of packets dropped by the

network.

To see what can happen during exponential growth, consider the situation in

which the source was just able to successfully send 16 packets through the network,

causing it to double its congestion window to 32. Suppose, however, that the network

happens to have just enough capacity to support 16 packets from this source. The

likely result is that 16 of the 32 packets sent under the new congestion window will

be dropped by the network; actually, this is the worst-case outcome, since some of the

packets will be buffered in some router. This problem will become increasingly severe as

the delay×bandwidth product of networks increases. For example, a delay×bandwidth

product of 500 KB means that each connection has the potential to lose up to 500 KB

of data at the beginning of each connection. Of course, this assumes that both the

source and the destination implement the “big windows” extension.

476 6 Congestion Control and Resource Allocation

Some network designers have proposed alternatives to slow start, whereby the

source tries to estimate the available bandwidth by more clever means of sending out

groups of packets and seeing how many make it through. A technique called packet-

pair is representative of this general strategy. In simple terms, the idea is to send a pair of

packets with no spacing between them. Then, the source sees how far apart the ACKs

for those two packets are. The gap between the ACKs is taken as a measure of how

much congestion there is in the network, and therefore of how much increase in the

congestion window is possible. The jury is still out on the effectiveness of approaches

such as this, although the results seem promising.

6.3.3 Fast Retransmit and Fast Recovery

The mechanisms described so far were part of the original proposal to add congestion

control to TCP. It was soon discovered, however, that the coarse-grained implementa-

tion of TCP timeouts led to long periods of time during which the connection went dead

while waiting for a timer to expire. Because of this, a new mechanism called fast re-

transmit was added to TCP. Fast retransmit is a heuristic that sometimes triggers the re-

transmission of a dropped packet sooner than the regular timeout mechanism. The fast

retransmit mechanism does not replace regular timeouts; it just enhances that facility.

The idea of fast retransmit is straightforward. Every time a data packet arrives at

the receiving side, the receiver responds with an acknowledgment, even if this sequence

number has already been acknowledged. Thus, when a packet arrives out of order—

that is, TCP cannot yet acknowledge the data the packet contains because earlier data

has not yet arrived—TCP resends the same acknowledgment it sent the last time. This

second transmission of the same acknowledgment is called a duplicate ACK. When

the sending side sees a duplicate ACK, it knows that the other side must have received

a packet out of order, which suggests that an earlier packet might have been lost.

Since it is also possible that the earlier packet has only been delayed rather than lost,

the sender waits until it sees some number of duplicate ACKs and then retransmits

the missing packet. In practice, TCP waits until it has seen three duplicate ACKs before

retransmitting the packet.

Figure 6.12 illustrates how duplicate ACKs lead to a fast retransmit. In this

example, the destination receives packets 1 and 2, but packet 3 is lost in the network.

Thus, the destination will send a duplicate ACK for packet 2 when packet 4 arrives,

again when packet 5 arrives, and so on. (To simplify this example, we think in terms

of packets 1, 2, 3, and so on, rather than worrying about the sequence numbers for

each byte.) When the sender sees the third duplicate ACK for packet 2—the one sent

because the receiver had gotten packet 6—it retransmits packet 3. Note that when

the retransmitted copy of packet 3 arrives at the destination, the receiver then sends a

cumulative ACK for everything up to and including packet 6 back to the source.

6.3 TCP Congestion Control 477

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Figure 6.12 Fast retransmit based on duplicate ACKs.

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

Time (seconds)

70

30
40
50

10

Figure 6.13 Trace of TCP with fast retransmit. Colored line = CongestionWindow; solid
bullet = timeout; hash marks = time when each packet is transmitted; vertical bars =
time when a packet that was eventually retransmitted was first transmitted.

Figure 6.13 illustrates the behavior of a version of TCP with the fast retransmit

mechanism. It is interesting to compare this trace with that given in Figure 6.11, where

fast retransmit was not implemented—the long periods during which the congestion

window stays flat and no packets are sent have been eliminated. In general, this tech-

nique is able to eliminate about half of the coarse-grained timeouts on a typical TCP

connection, resulting in roughly a 20% improvement in the throughput over what

478 6 Congestion Control and Resource Allocation

could otherwise have been achieved. Notice, however, that the fast retransmit strategy

does not eliminate all coarse-grained timeouts. This is because for a small window

size, there will not be enough packets in transit to cause enough duplicate ACKs to be

delivered. Given enough lost packets—for example, as happens during the initial slow

start phase—the sliding window algorithm eventually blocks the sender until a timeout

occurs. Given the current 64-KB maximum advertised window size, TCP’s fast retrans-

mit mechanism is able to detect up to three dropped packets per window in practice.

Finally, there is one last improvement we can make. When the fast retransmit

mechanism signals congestion, rather than drop the congestion window all the way

back to one packet and run slow start, it is possible to use the ACKs that are still in the

pipe to clock the sending of packets. This mechanism, which is called fast recovery,

effectively removes the slow start phase that happens between when fast retransmit

detects a lost packet and additive increase begins. For example, fast recovery avoids

the slow start period between 3.8 and 4 seconds in Figure 6.13 and instead simply cuts

the congestion window in half (from 22 KB to 11 KB) and resumes additive increase.

In other words, slow start is only used at the beginning of a connection and whenever a

coarse-grained timeout occurs. At all other times, the congestion window is following

a pure additive increase/multiplicative decrease pattern.

6.4 Congestion-Avoidance Mechanisms

It is important to understand that TCP’s strategy is to control congestion once it

happens, as opposed to trying to avoid congestion in the first place. In fact, TCP

repeatedly increases the load it imposes on the network in an effort to find the point

at which congestion occurs, and then it backs off from this point. Said another way,

TCP needs to create losses to find the available bandwidth of the connection. An

appealing alternative, but one that has not yet been widely adopted, is to predict when

congestion is about to happen and then to reduce the rate at which hosts send data just

before packets start being discarded. We call such a strategy congestion avoidance, to

distinguish it from congestion control.

This section describes three different congestion-avoidance mechanisms. The first

two take a similar approach: They put a small amount of additional functionality into

the router to assist the end node in the anticipation of congestion. The third mechanism

is very different from the first two: It attempts to avoid congestion purely from the

end nodes.

6.4.1 DECbit

The first mechanism was developed for use on the Digital Network Architecture

(DNA), a connectionless network with a connection-oriented transport protocol. This

mechanism could, therefore, also be applied to TCP and IP. As noted above, the idea

6.4 Congestion-Avoidance Mechanisms 479

Queue length

Current
time

Time
Current

cycle
Previous

cycle
Averaging
interval

Figure 6.14 Computing average queue length at a router.

here is to more evenly split the responsibility for congestion control between the routers

and the end nodes. Each router monitors the load it is experiencing and explicitly noti-

fies the end nodes when congestion is about to occur. This notification is implemented

by setting a binary congestion bit in the packets that flow through the router; hence

the name DECbit. The destination host then copies this congestion bit into the ACK

it sends back to the source. Finally, the source adjusts its sending rate so as to avoid

congestion. The following discussion describes the algorithm in more detail, starting

with what happens in the router.

A single congestion bit is added to the packet header. A router sets this bit in a

packet if its average queue length is greater than or equal to 1 at the time the packet

arrives. This average queue length is measured over a time interval that spans the last

busy+idle cycle, plus the current busy cycle. (The router is busy when it is transmitting

and idle when it is not.) Figure 6.14 shows the queue length at a router as a function of

time. Essentially, the router calculates the area under the curve and divides this value

by the time interval to compute the average queue length. Using a queue length of 1 as

the trigger for setting the congestion bit is a trade-off between significant queuing (and

hence higher throughput) and increased idle time (and hence lower delay). In other

words, a queue length of 1 seems to optimize the power function.

Now turning our attention to the host half of the mechanism, the source records

how many of its packets resulted in some router setting the congestion bit. In particu-

lar, the source maintains a congestion window, just as in TCP, and watches to see what

fraction of the last window’s worth of packets resulted in the bit being set. If less than

50% of the packets had the bit set, then the source increases its congestion window by

one packet. If 50% or more of the last window’s worth of packets had the congestion bit

set, then the source decreases its congestion window to 0.875 times the previous value.

480 6 Congestion Control and Resource Allocation

The value 50% was chosen as the threshold based on analysis that showed it to corre-

spond to the peak of the power curve. The “increase by 1, decrease by 0.875” rule was

selected because additive increase/multiplicative decrease makes the mechanism stable.

6.4.2 Random Early Detection (RED)

A second mechanism, called random early detection (RED), is similar to the DECbit

scheme in that each router is programmed to monitor its own queue length, and when

it detects that congestion is imminent, to notify the source to adjust its congestion

window. RED, invented by Sally Floyd and

Van Jacobson in the early 1990s, differs

from the DECbit scheme in two major ways.

The first is that rather than explicitly

sending a congestion notification message

to the source, RED is most commonly im-

plemented such that it implicitly notifies the

source of congestion by dropping one of its

packets. The source is, therefore, effectively

notified by the subsequent timeout or du-

plicate ACK. In case you haven’t already

guessed, RED is designed to be used in con-

junction with TCP, which currently detects

congestion by means of timeouts (or some

other means of detecting packet loss such as

duplicate ACKs). As the “early” part of the

RED acronym suggests, the gateway drops

the packet earlier than it would have to, so

as to notify the source that it should de-

crease its congestion window sooner than

it would normally have. In other words, the

router drops a few packets before it has ex-

hausted its buffer space completely, so as

to cause the source to slow down, with the

hope that this will mean it does not have to

drop lots of packets later on. Note that RED

could easily be adapted to work with an

explicit feedback scheme simply by mark-

ing a packet instead of dropping it, as dis-

cussed in the sidebar on explict congestion

notification.

Explict Congestion

Notification (ECN)

While current deployments of RED

almost always signal congestion

by dropping packets, there has re-

cently been much attention given to

whether or not explicit notification

is a better strategy. This has led to

an effort to standardize ECN for

the Internet.

The basic argument is that

while dropping a packet certainly

acts as a signal of congestion and

is probably the right thing to do

for long-lived bulk transfers, doing

so hurts applications that are sen-

sitive to the delay or loss of one

or more packets. Interactive traf-

fic such as Telnet and Web brows-

ing are prime examples. Learning

of congestion through explicit no-

tification is more appropriate for

such applications.

Technically, ECN requires 2

bits; the proposed standard uses

bits 6 and 7 in the IP TOS field. One

is set by the source to indicate that

it is ECN capable, that is, able to

6.4 Congestion-Avoidance Mechanisms 481

The second difference between RED and DECbit is in the details of how RED

decides when to drop a packet and what packet it decides to drop. To understand the

basic idea, consider a simple FIFO queue. Rather than wait for the queue to become

completely full and then be forced to drop each arriving packet (the tail drop policy of

Section 6.2.1), we could decide to drop each arriving packet with some drop probability

whenever the queue length exceeds some drop level. This idea is called early random

drop. The RED algorithm defines the details of how to monitor the queue length and

when to drop a packet.

react to a congestion notification.

The other is set by routers along

the end-to-end path when conges-

tion is encountered. The latter bit

is also echoed back to the source

by the destination host. TCP run-

ning on the source responds to the

ECN bit set in exactly the same way

it responds to a dropped packet.

As with any good idea, this re-

cent focus on ECN has caused peo-

ple to stop and think about other

ways in which networks can bene-

fit from an ECN-style exchange of

information between hosts at the

edge of the networks and routers

in the middle of the network, pig-

gybacked on data packets. The gen-

eral strategy is sometimes called ac-

tive queue management, and recent

research seems to indicate that it is

particularly valuable to TCP flows

that have large delay × bandwidth

products. The interested reader can

pursue the relevant references given

at the end of the chapter.

In the following paragraphs, we de-

scribe the RED algorithm as originally pro-

posed by Floyd and Jacobson. We note that

several modifications have since been pro-

posed both by the inventors and by other

researchers; some of these are discussed in

the “Further Reading” section. However,

the key ideas are the same as those presented

below, and most current implementations

are close to the algorithm that follows.

First, RED computes an average queue

length using a weighted running average

similar to the one used in the original TCP

timeout computation. That is, AvgLen is

computed as

AvgLen = (1 − Weight) × AvgLen

+ Weight × SampleLen

where 0 < Weight < 1 and SampleLen is the

length of the queue when a sample measure-

ment is made. In most software implemen-

tations, the queue length is measured every

time a new packet arrives at the gateway.

In hardware, it might be calculated at some

fixed sampling interval.

The reason for using an average queue

length rather than an instantaneous one is

that it more accurately captures the notion

of congestion. Because of the bursty nature

of Internet traffic, queues can become full

very quickly and then become empty again.

482 6 Congestion Control and Resource Allocation

Queue length

Instantaneous

Average

Time

Figure 6.15 Weighted running average queue length.

If a queue is spending most of its time empty, then it’s probably not appropriate to

conclude that the router is congested and to tell the hosts to slow down. Thus, the

weighted running average calculation tries to detect long-lived congestion, as indicated

in the right-hand portion of Figure 6.15, by filtering out short-term changes in the

queue length. You can think of the running average as a low-pass filter, where Weight

determines the time constant of the filter. The question of how we pick this time

constant is discussed below.

Second, RED has two queue length thresholds that trigger certain activity:

MinThreshold and MaxThreshold. When a packet arrives at the gateway, RED com-

pares the current AvgLen with these two thresholds, according to the following rules:

if AvgLen ≤ MinThreshold

−→ queue the packet

if MinThreshold < AvgLen < MaxThreshold

−→ calculate probability P

−→ drop the arriving packet with probability P

if MaxThreshold ≤ AvgLen

−→ drop the arriving packet

That is, if the average queue length is smaller than the lower threshold, no action is

taken, and if the average queue length is larger than the upper threshold, then the

packet is always dropped. If the average queue length is between the two thresholds,

then the newly arriving packet is dropped with some probability P. This situation is

depicted in Figure 6.16. The approximate relationship between P and AvgLen is shown

6.4 Congestion-Avoidance Mechanisms 483

MaxThreshold MinThreshold

AvgLen

Figure 6.16 RED thresholds on a FIFO queue.

P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

Figure 6.17 Drop probability function for RED.

in Figure 6.17. Note that the probability of drop increases slowly when AvgLen is

between the two thresholds, reaching MaxP at the upper threshold, at which point it

jumps to unity. The rationale behind this is that if AvgLen reaches the upper threshold,

then the gentle approach (dropping a few packets) is not working and drastic measures

are called for, that is, dropping all arriving packets. Some research has suggested that

a more smooth transition from random dropping to complete dropping, rather than

the discontinous approach shown here, may be appropriate.

Although Figure 6.17 shows the probability of drop as a function only of AvgLen,

the situation is actually a little more complicated. In fact, P is a function of both AvgLen

and how long it has been since the last packet was dropped. Specifically, it is computed

as follows:

TempP = MaxP × (AvgLen − MinThreshold)/(MaxThreshold − MinThreshold)

P = TempP/(1 − count × TempP)

484 6 Congestion Control and Resource Allocation

TempP is the variable that is plotted on the y-axis in Figure 6.17. count keeps

track of how many newly arriving packets have been queued (not dropped) while

AvgLen has been between the two thresholds. P increases slowly as count increases,

thereby making a drop increasingly likely as the time since the last drop increases.

This makes closely spaced drops relatively less likely than widely spaced drops. This

extra step in calculating P was introduced by the inventors of RED when they observed

that, without it, the packet drops were not well distributed in time, but instead tended

to occur in clusters. Because packet arrivals from a certain connection are likely to

arrive in bursts, this clustering of drops is likely to cause multiple drops in a single

connection. This is not desirable, since only one drop per round-trip time is enough

to cause a connection to reduce its window size, whereas multiple drops might send it

back into slow start.

As an example, suppose that we set MaxP to 0.02 and count is initialized to 0. If

the average queue length were halfway between the two thresholds, then TempP, and

the initial value of P, would be half of MaxP, or 0.01. An arriving packet, of course,

has a 99 in 100 chance of getting into the queue at this point. With each successive

packet that is not dropped, P slowly increases, and by the time 50 packets have arrived

without a drop, P would have doubled to 0.02. In the unlikely event that 99 packets

arrived without loss, P reaches 1, guaranteeing that the next packet is dropped. The

important thing about this part of the algorithm is that it ensures a roughly even

distribution of drops over time.

Hopefully, if RED drops a small percentage of packets when AvgLen exceeds

MinThreshold, the effect will be to cause a few TCP connections to reduce their window

sizes, which in turn will reduce the rate at which packets arrive at the router. All going

well, AvgLen will then decrease and congestion is avoided. The queue length can be

kept short, while throughput remains high since few packets are dropped.

Note that, because RED is operating on a queue length averaged over time, it

is possible for the instantaneous queue length to be much longer than AvgLen. In this

case, if a packet arrives and there is nowhere to put it, then it will have to be dropped.

When this happens, RED is operating in tail drop mode. One of the goals of RED is

to prevent tail drop behavior if possible.

The random nature of RED confers an interesting property on the algorithm.

Because RED drops packets randomly, the probability that RED decides to drop a

particular flow’s packet(s) is roughly proportional to the share of the bandwidth that

flow is currently getting at that router. This is because a flow that is sending a relatively

large number of packets is providing more candidates for random dropping. Thus,

there is some sense of fair resource allocation built into RED, although it is by no

means precise.

◮ Note that a fair amount of analysis has gone into setting the various RED

parameters—for example, MaxThreshold, MinThreshold, MaxP, and Weight—all in the

6.4 Congestion-Avoidance Mechanisms 485

name of optimizing the power function (throughput-to-delay ratio). The performance

of these parameters has also been confirmed through simulation, and the algorithm has

been shown not to be overly sensitive to them. It is important to keep in mind, however,

that all of this analysis and simulation hinges on a particular characterization of the

network workload. The real contribution of RED is a mechanism by which the router

can more accurately manage its queue length. Defining precisely what constitutes an

optimal queue length depends on the traffic mix and is still a subject of research, with

real information now being gathered from operational deployment of RED in the

Internet.

Consider the setting of the two thresholds, MinThreshold and MaxThreshold.

If the traffic is fairly bursty, then MinThreshold should be sufficiently large to allow

the link utilization to be maintained at an acceptably high level. Also, the difference

between the two thresholds should be larger than the typical increase in the calculated

average queue length in one RTT. Setting MaxThreshold to twice MinThreshold seems

to be a reasonable rule of thumb given the traffic mix on today’s Internet. In addition,

since we expect the average queue length to hover between the two thresholds during

periods of high load, there should be enough free buffer space above MaxThreshold

to absorb the natural bursts that occur in Internet traffic without forcing the router to

enter tail drop mode.

We noted above that Weight determines the time constant for the running average

low-pass filter, and this gives us a clue as to how we might pick a suitable value for it.

Recall that RED is trying to send signals to TCP flows by dropping packets during times

of congestion. Suppose that a router drops a packet from some TCP connection and

then immediately forwards some more packets from the same connection. When those

packets arrive at the receiver, it starts sending duplicate ACKs to the sender. When the

sender sees enough duplicate ACKs, it will reduce its window size. So from the time

the router drops a packet until the time when the same router starts to see some relief

from the affected connection in terms of a reduced window size, at least one round-

trip time must elapse for that connection. There is probably not much point in having

the router respond to congestion on time scales much less than the round-trip time of

the connections passing through it. As noted previously, 100 ms is not a bad estimate

of average round-trip times in the Internet. Thus, Weight should be chosen such that

changes in queue length over time scales much less than 100 ms are filtered out.

Since RED works by sending signals to TCP flows to tell them to slow down, you

might wonder what would happen if those signals are ignored. This is often called the

unresponsive flow problem, and it has been a matter of some concern for several years.

Unresponsive flows use more than their “fair share” of network resources and could

cause congestive collapse if there were enough of them, just as in the days before TCP

congestion control. Some of the techniques described in Section 6.5 can help with this

problem by isolating certain classes of traffic from others. There is also the possibility

486 6 Congestion Control and Resource Allocation

that a variant of RED could drop more heavily from flows that are unresponsive to

the initial hints that it sends; this continues to be an area of active research.

We conclude our discussion of RED by considering the more general question of

when it is a good idea to drop packets before you are forced to by a full buffer queue.

Consider an ATM network, for example. If you are sending AAL5 packets through

a congested ATM switch, and the switch is forced to drop one of the cells from that

packet, then the other cells will be useless to the end host; it will have to request that

the entire AAL5 packet be retransmitted. Dropping these other cells, even though the

switch has enough buffer space to hold them, makes a lot of sense. This technique has

in fact been proposed and is called partial packet discard (PPD). A switch can be made

even more aggressive by combining the idea

of RED with the idea of PPD. That is, when

an ATM switch is nearing congestion and

the first cell of a new AAL5 packet ar-

rives, the switch drops that cell and all the

other cells that belong to that AAL5 packet.

This enables the whole packet, not just the

last part of it, to be dropped and is called

early packet discard (EPD). While EPD is

often confused with RED, it is important

to note that EPD is specific to ATM, and

that the decision to drop is usually made us-

ing a less sophisticated algorithm than RED,

responding to instantaneous buffer occu-

pancy rather than long-lived congestion.

6.4.3 Source-Based

Congestion Avoidance

Unlike the two previous congestion-

avoidance schemes, which depended on new

mechanisms in the routers, we now de-

scribe a strategy for detecting the incipient

stages of congestion—before losses occur—

from the end hosts. We first give a brief

overview of a collection of related mech-

anisms that use different information to

detect the early stages of congestion, and

then we describe a specific mechanism in

some detail.

Tahoe, Reno, and Vegas

The name “TCP Vegas” is a take-

off on earlier implementations of

TCP that were distributed in re-

leases of 4.3 BSD Unix. These re-

leases were known as Tahoe and

Reno (which, like Las Vegas, are

places in Nevada), and the ver-

sions of TCP became known by

the names of the BSD release. TCP

Tahoe, which is also known as BSD

Network Release 1.0 (BNR1), cor-

responds to the original implemen-

tation of Jacobson’s congestion-

control mechanism and includes

all of the mechanisms described in

Section 6.3 except fast recovery.

TCP Reno, which is also known as

BSD Network Release 2.0 (BNR2),

adds the fast recovery mecha-

nism, along with an optimiza-

tion known as header prediction—

optimizing for the common case

that segments arrive in order.

TCP Reno also supports delayed

ACKs—acknowledging every other

6.4 Congestion-Avoidance Mechanisms 487

The general idea of these techniques is to watch for some sign from the network

that some router’s queue is building up and that congestion will happen soon if nothing

is done about it. For example, the source might notice that as packet queues build up

in the network’s routers, there is a measurable increase in the RTT for each successive

packet it sends. One particular algorithm exploits this observation as follows: The

congestion window normally increases as in TCP, but every two round-trip delays the

algorithm checks to see if the current RTT is greater than the average of the minimum

and maximum RTTs seen so far. If it is, then the algorithm decreases the congestion

window by one-eighth.

A second algorithm does something similar. The decision as to whether or not to

segment rather than every

segment—although this is a selec-

table option that is sometimes

turned off. A more recent version

of TCP distributed in 4.4 BSD Unix

adds the “big windows” extensions

described in Section 5.2.

One point you should take

away from this discussion of TCP’s

lineage is that TCP has been

a rather fluid protocol over the

last several years, especially in its

congestion-control mechanism. In

fact, you would not even find uni-

versal agreement about which tech-

nique was introduced in which

release, due to the availability of

intermediate versions of the code

and the fact that patch has been lay-

ered on top of patch.

All that can be said with any

certainty is that any two implemen-

tations of TCP that follow the orig-

inal specification, while they should

interoperate, will not necessar-

ily perform well. Recognizing the

change the current window size is based on

changes to both the RTT and the window

size. The window is adjusted once every two

round-trip delays based on the product

(CurrentWindow − OldWindow)

× (CurrentRTT − OldRTT)

If the result is positive, the source decreases

the window size by one-eighth; if the result

is negative or zero, the source increases the

window by one maximum packet size. Note

that the window changes during every ad-

justment; that is, it oscillates around its op-

timal point.

Another change seen as the network

approaches congestion is the flattening of

the sending rate. A third scheme takes ad-

vantage of this fact. Every RTT, it in-

creases the window size by one packet

and compares the throughput achieved to

the throughput when the window was one

packet smaller. If the difference is less than

one-half the throughput achieved when only

one packet was in transit—as was the case at

the beginning of the connection—the algo-

rithm decreases the window by one packet.

This scheme calculates the throughput by

dividing the number of bytes outstanding in

the network by the RTT.

488 6 Congestion Control and Resource Allocation

A fourth mechanism, the one we are going to describe in more detail, is similar to

this last algorithm in that it looks at changes in the throughput rate, or more specifically,

changes in the sending rate. However, it differs from the third algorithm in the way it

calculates throughput, and instead of looking for a change in the slope of the through-

put, it compares the measured throughput rate with an expected throughput rate. The

algorithm, which is called TCP Vegas, is

not widely deployed in the Internet, but the

strategy it takes continues to be studied.

(See the “Further Reading” section for ad-

ditional information.)

The intuition behind the Vegas algo-

rithm can be seen in the trace of standard

TCP given in Figure 6.18. (See the side-

bar for an explanation of the name TCP

Vegas.) The top graph shown in Figure 6.18

traces the connection’s congestion window;

performance implications of hav-

ing TCP Tahoe interoperate with

TCP Reno is a tricky business. In

other words, you could argue that

TCP is no longer defined by a spec-

ification, but rather by an imple-

mentation. The only question is,

which implementation?

it shows the same information as the traces given earlier in this section. The middle and

bottom graphs depict new information: The middle graph shows the average sending

rate as measured at the source, and the bottom graph shows the average queue length

as measured at the bottleneck router. All three graphs are synchronized in time. In the

period between 4.5 and 6.0 seconds (shaded region), the congestion window increases

(top graph). We expect the observed throughput to also increase, but instead it stays flat

(middle graph). This is because the throughput cannot increase beyond the available

bandwidth. Beyond this point, any increase in the window size only results in packets

taking up buffer space at the bottleneck router (bottom graph).

A useful metaphor that describes the phenomenon illustrated in Figure 6.18 is

driving on ice. The speedometer (congestion window) may say that you are going 30

miles an hour, but by looking out the car window and seeing people pass you on foot

(measured sending rate), you know that you are going no more than 5 miles an hour.

The extra energy is being absorbed by the car’s tires (router buffers).

TCP Vegas uses this idea to measure and control the amount of extra data this

connection has in transit, where by “extra data” we mean data that the source would

not have transmitted had it been trying to match exactly the available bandwidth of

the network. The goal of TCP Vegas is to maintain the “right” amount of extra data

in the network. Obviously, if a source is sending too much extra data, it will cause

long delays and possibly lead to congestion. Less obviously, if a connection is sending

too little extra data, it cannot respond rapidly enough to transient increases in the

available network bandwidth. TCP Vegas’s congestion-avoidance actions are based

on changes in the estimated amount of extra data in the network, not only on dropped

packets. We now describe the algorithm in detail.

6.4 Congestion-Avoidance Mechanisms 489

60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0

K
B

Time (seconds)

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

900

300

100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

Se
n
d
in

g
K

B
p
s

1100

500

700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0

Q
u
eu

e
si

ze
 i
n
 r

o
u
te

r

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Figure 6.18 Congestion window versus observed throughput rate (the three graphs are
synchronized). Top, congestion window; middle, observed throughput; bottom, buffer
space taken up at the router. Colored line = CongestionWindow; solid bullet = timeout;
hash marks = time when each packet is transmitted; vertical bars = time when a packet
that was eventually retransmitted was first transmitted.

First, define a given flow’s BaseRTT to be the RTT of a packet when the flow is

not congested. In practice, TCP Vegas sets BaseRTT to the minimum of all measured

round-trip times; it is commonly the RTT of the first packet sent by the connection,

before the router queues increase due to traffic generated by this flow. If we assume

that we are not overflowing the connection, then the expected throughput is given by

ExpectedRate = CongestionWindow/BaseRTT

where CongestionWindow is the TCP congestion window, which we assume (for the

purpose of this discussion) to be equal to the number of bytes in transit.

Second, TCP Vegas calculates the current sending rate, ActualRate. This is done

by recording the sending time for a distinguished packet, recording how many bytes

490 6 Congestion Control and Resource Allocation

are transmitted between the time that packet is sent and when its acknowledgment is

received, computing the sample RTT for the distinguished packet when its acknowl-

edgment arrives, and dividing the number of bytes transmitted by the sample RTT.

This calculation is done once per round-trip time.

Third, TCP Vegas compares ActualRate to ExpectedRate and adjusts the window

accordingly. We let Diff = ExpectedRate−ActualRate. Note that Diff is positive or 0 by

definition, since ActualRate > ExpectedRate implies that we need to change BaseRTT to

the latest sampled RTT. We also define two thresholds, α < β, roughly corresponding

to having too little and too much extra data in the network, respectively. When Diff < α,

TCP Vegas increases the congestion window linearly during the next RTT, and when

Diff > β, TCP Vegas decreases the congestion window linearly during the next RTT.

TCP Vegas leaves the congestion window unchanged when α < Diff < β.

Intuitively, we can see that the farther away the actual throughput gets from

the expected throughput, the more congestion there is in the network, which implies

that the sending rate should be reduced. The β threshold triggers this decrease. On the

other hand, when the actual throughput rate gets too close to the expected throughput,

the connection is in danger of not utilizing the available bandwidth. The α threshold

triggers this increase. The overall goal is to keep between α and β extra bytes in the

network.

Figure 6.19 traces the TCP Vegas congestion-avoidance algorithm. The top graph

traces the congestion window, showing the same information as the other traces given

throughout this chapter. The bottom graph traces the expected and actual throughput

rates that govern how the congestion window is set. It is this bottom graph that best

illustrates how the algorithm works. The colored line tracks the ExpectedRate, while

the black line tracks the ActualRate. The wide shaded strip gives the region between

the α and β thresholds; the top of the shaded strip is α KBps away from ExpectedRate,

and the bottom of the shaded strip is β KBps away from ExpectedRate. The goal

is to keep the ActualRate between these two thresholds, that is, within the shaded

region. Whenever ActualRate falls below the shaded region (i.e., gets too far from

ExpectedRate), TCP Vegas decreases the congestion window because it fears that too

many packets are being buffered in the network. Likewise, whenever ActualRate goes

above the shaded region (i.e., gets too close to the ExpectedRate), TCP Vegas increases

the congestion window because it fears that it is underutilizing the network.

Because the algorithm, as just presented, compares the difference between the

actual and expected throughput rates to the α and β thresholds, these two thresholds

are defined in terms of KBps. However, it is perhaps more accurate to think in terms

of how many extra buffers the connection is occupying in the network. For example,

on a connection with a BaseRTT of 100 ms and a packet size of 1 KB, if α = 30 KBps

and β = 60 KBps, then we can think of α as specifying that the connection needs

6.4 Congestion-Avoidance Mechanisms 491

70
60
50
40
30
20
10

K
B

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

 K
B

p
s

240

200

160

120

80

40

Time (seconds)

Figure 6.19 Trace of TCP Vegas congestion-avoidance mechanism. Top, congestion
window; bottom, expected (colored line) and actual (black line) throughput. The shaded
area is the region between the α and β thresholds.

Evaluating a New

Congestion-Control

Mechanism

Suppose you develop a new

congestion-control mechanism and

want to evaluate its performance.

For example, you might want to

compare it to the current mech-

anism running on the Internet.

How do you go about measuring

and evaluating your mechanism?

Although at one time the Internet’s

primary purpose in life was to sup-

port networking research, today

it is a large production network

to be occupying at least three extra buffers

in the network and β as specifying that the

connection should occupy no more than six

extra buffers in the network. In practice, a

setting of α to one buffer and β to three

buffers works well.

Finally, you will notice that TCP Ve-

gas decreases the congestion window lin-

early, seemingly in conflict with the rule that

multiplicative decrease is needed to ensure

stability. The explanation is that TCP Ve-

gas does use multiplicative decrease when a

timeout occurs; the linear decrease just de-

scribed is an early decrease in the conges-

tion window that, hopefully, happens before

congestion occurs and packets start being

dropped.

492 6 Congestion Control and Resource Allocation

6.5 Quality of Service
For many years, packet-switched networks

have offered the promise of supporting mul-

timedia applications, that is, those that com-

bine audio, video, and data. After all, once

digitized, audio and video information be-

comes like any other form of data—a stream

of bits to be transmitted. One obstacle to

the fulfillment of this promise has been the

need for higher-bandwidth links. Recently,

however, improvements in coding have re-

duced the bandwidth needs of audio and

video applications, while at the same time

link speeds have increased.

There is more to transmitting audio

and video over a network than just provid-

ing sufficient bandwidth, however. Partic-

ipants in a telephone conversation, for ex-

ample, expect to be able to converse in such

a way that one person can respond to some-

thing said by the other and be heard almost

immediately. Thus, the timeliness of delivery

can be very important. We refer to appli-

cations that are sensitive to the timeliness

of data as real-time applications. Voice and

and therefore completely inappro-

priate for running a controlled ex-

periment.

If your approach is purely end

to end—that is, if it assumes only

FIFO routers within the Internet—

then it is possible to run your

congestion-control mechanism on

a small set of hosts and to measure

the throughput your connections

are able to achieve. We need to add

a word of caution here, however.

It is surprisingly easy to invent a

congestion-control mechanism that

achieves five times the throughput

of TCP across the Internet. You

simply blast packets into the Inter-

net at a high rate, thereby causing

congestion. All the other hosts

running TCP detect this congestion

and reduce the rate at which they

are sending packets. Your mech-

anism then happily consumes all

video applications tend to be the canonical examples, but there are others such as

industrial control—you would like a command sent to a robot arm to reach it before

the arm crashes into something. Even file transfer applications can have timeliness

constraints, such as a requirement that a database update complete overnight before

the business that needs the data resumes on the next day.

The distinguishing characteristic of real-time applications is that they need some

sort of assurance from the network that data is likely to arrive on time (for some

definition of “on time”). Whereas a non-real-time application can use an end-to-end

retransmission strategy to make sure that data arrives correctly, such a strategy can-

not provide timeliness: Retransmission only adds to total latency if data arrives late.

Timely arrival must be provided by the network itself (the routers), not just at the

network edges (the hosts). We therefore conclude that the best-effort model, in which

the network tries to deliver your data but makes no promises and leaves the cleanup

operation to the edges, is not sufficient for real-time applications. What we need is a

6.5 Quality of Service 493

the bandwidth. This strategy is fast

but hardly fair.

Experimenting directly on the

Internet, even when done care-

fully, will not work when your

congestion-control mechanism in-

volves changes to the routers. It

is simply not practical to change

the software running on thousands

of routers for the sake of evaluat-

ing a new congestion-control algo-

rithm. In this case, network design-

ers are forced to test their systems

on simulated networks or private

testbed networks. For example, the

TCP traces presented in this chap-

ter were generated by an implemen-

tation of TCP that was running on

a network simulator. The challenge

in either a simulation or a testbed

is coming up with a topology and a

traffic workload that are represen-

tative of the real Internet.

new service model, in which applications

that need higher assurances can ask the net-

work for them. The network may then re-

spond by providing an assurance that it will

do better or perhaps by saying that it can-

not promise anything better at the moment.

Note that such a service model is a super-

set of the current model: Applications that

are happy with best-effort service should be

able to use the new service model; their re-

quirements are just less stringent. This im-

plies that the network will treat some pack-

ets differently from others—something that

is not done in the best-effort model. A net-

work that can provide these different levels

of service is often said to support quality of

service (QoS).

6.5.1 Application

Requirements

Before looking at the various protocols and

mechanisms that may be used to provide

quality of service to applications, we should

try to understand what the needs of those

applications are. To begin, we can divide

applications into two types: real-time and non-real-time. The latter are sometimes

called “traditional data” applications, since they have traditionally been the major

applications found on data networks. They include most popular applications like

Telnet, FTP, email, Web browsing, and so on. All of these applications can work

without guarantees of timely delivery of data. Another term for this non-real-time class

of applications is elastic, since they are able to stretch gracefully in the face of increased

delay. Note that these applications can benefit from shorter-length delays, but they do

not become unusable as delays increase. Also note that their delay requirements vary

from the interactive applications like Telnet to more asynchronous ones like email,

with interactive bulk transfers like FTP in the middle.

Real-Time Audio Example

As a concrete example of a real-time application, consider an audio application similar

to the one illustrated in Figure 6.20. Data is generated by collecting samples from a

494 6 Congestion Control and Resource Allocation

Microphone

Speaker

Sampler,
A D

converter
Buffer,
D A

Figure 6.20 An audio application.

microphone and digitizing them using an analog-to-digital (A→D) converter. The

digital samples are placed in packets, which are transmitted across the network and

received at the other end. At the receiving host, the data must be played back at some

appropriate rate. For example, if the voice samples were collected at a rate of one

per 125 μs, they should be played back at the same rate. Thus, we can think of each

sample as having a particular playback time: the point in time at which it is needed

in the receiving host. In the voice example, each sample has a playback time that is

125 μs later than the preceding sample. If data arrives after its appropriate playback

time, either because it was delayed in the network or because it was dropped and

subsequently retransmitted, it is essentially useless. It is the complete worthlessness of

late data that characterizes real-time applications. In elastic applications, it might be

nice if data turns up on time, but we can still use it when it does not.

One way to make our voice application work would be to make sure that all

samples take exactly the same amount of time to traverse the network. Then, since

samples are injected at a rate of one per 125 μs, they will appear at the receiver at

the same rate, ready to be played back. However, it is generally difficult to guarantee

that all data traversing a packet-switched network will experience exactly the same

delay. Packets encounter queues in switches or routers and the lengths of these queues

vary with time, meaning that the delays tend to vary with time and, as a consequence,

are potentially different for each packet in the audio stream. The way to deal with

this at the receiver end is to buffer up some amount of data in reserve, thereby always

providing a store of packets waiting to be played back at the right time. If a packet

is delayed a short time, it goes in the buffer until its playback time arrives. If it gets

delayed a long time, then it will not need to be stored for very long in the receiver’s

buffer before being played back. Thus, we have effectively added a constant offset to

the playback time of all packets as a form of insurance. We call this offset the playback

point. The only time we run into trouble is if packets get delayed in the network for

such a long time that they arrive after their playback time, causing the playback buffer

to be drained.

The operation of a playback buffer is illustrated in Figure 6.21. The left-hand

diagonal line shows packets being generated at a steady rate. The wavy line shows when

6.5 Quality of Service 495

Se
q
u
en

ce
 n

u
m

b
er

Packet
generation

Network
delay

Buffer

Playback

Time

Packet
arrival

Figure 6.21 A playback buffer.

the packets arrive, some variable amount of time after they were sent, depending on

what they encountered in the network. The right-hand diagonal line shows the packets

being played back at a steady rate, after sitting in the playback buffer for some period

of time. As long as the playback line is far enough to the right in time, the variation in

network delay is never noticed by the application. However, if we move the playback

line a little to the left, then some packets will begin to arrive too late to be useful.

For our audio application, there are limits to how far we can delay playing back

data. It is hard to carry on a conversation if the time between when you speak and

when your listener hears you is more than 300 ms. Thus, what we want from the

network in this case is a guarantee that all our data will arrive within 300 ms. If data

arrives early, we buffer it until its correct playback time. If it arrives late, we have no

use for it and must discard it.

To get a better appreciation of how variable network delay can be, Figure 6.22

shows the one-way delay measured over a certain path across the Internet over the

course of one particular day. While the exact numbers would vary depending on the

path and the date, the key factor here is the variability of the delay, which is consistently

found on almost any path at any time. As denoted by the cumulative percentages given

across the top of the graph, 97% of the packets in this case had a latency of 100 ms

or less. This means that if our example audio application were to set the playback

point at 100 ms, then on average, 3 out of every 100 packets would arrive too late

to be of any use. One important thing to notice about this graph is that the tail of

the curve—how far it extends to the right—is very long. We would have to set the

playback point at over 200 ms to ensure that all packets arrived in time.

496 6 Congestion Control and Resource Allocation

1

2

3

P
ac

k
et

s
(%

)

90% 97% 98% 99%

150 20010050

Delay (milliseconds)

Figure 6.22 Example distribution of delays for an Internet connection.

Taxonomy of Real-Time Applications

Now that we have a concrete idea of how real-time applications work, we can look at

some different classes of applications, which serve to motivate our service model. The

following taxonomy owes much to the work of Clark, Braden, Shenker, and Zhang,

whose papers on this subject can be found in the “Further Reading” section for this

chapter. The taxonomy of applications is summarized in Figure 6.23.

The first characteristic by which we can categorize applications is their tolerance

of loss of data, where “loss” might occur because a packet arrived too late to be played

back as well as arising from the usual causes in the network. On the one hand, one lost

audio sample can be interpolated from the surrounding samples with relatively little

effect on the perceived audio quality. It is only as more and more samples are lost that

quality declines to the point that the speech becomes incomprehensible. On the other

hand, a robot control program is likely to be an example of a real-time application

that cannot tolerate loss—losing the packet that contains the command instructing

the robot arm to stop is unacceptable. Thus, we can categorize real-time applications

as tolerant or intolerant depending on whether they can tolerate occasional loss. (As

an aside, note that many real-time applications are more tolerant of occasional loss

than non-real-time applications. For example, compare our audio application to FTP,

where the uncorrected loss of one bit might render a file completely useless.)

A second way to characterize real-time applications is by their adaptability. For

example, an audio application might be able to adapt to the amount of delay that

6.5 Quality of Service 497

Applications

Elastic

Intolerant

Real time

Tolerant

Nonadaptive Adaptive

Delay adaptiveRate adaptive

Figure 6.23 Taxonomy of applications.

packets experience as they traverse the network. If we notice that packets are almost

always arriving within 300 ms of being sent, then we can set our playback point

accordingly, buffering any packets that arrive in less than 300 ms. Suppose that we

subsequently observe that all packets are arriving within 100 ms of being sent. If we

moved up our playback point to 100 ms, then the users of the application would

probably perceive an improvement. The process of shifting the playback point would

actually require us to play out samples at an increased rate for some period of time.

With a voice application, this can be done in a way that is barely perceptible, simply

by shortening the silences between words. Thus, playback point adjustment is fairly

easy in this case, and it has been effectively implemented for several voice applications

such as the audio teleconferencing program known as vat. Note that playback point

adjustment can happen in either direction, but that doing so actually involves distorting

the played-back signal during the period of adjustment, and that the effects of this

distortion will very much depend on how the end user uses the data.

Observe that if we set our playback point on the assumption that all packets will

arrive within 100 ms and then find that some packets are arriving slightly late, we will

498 6 Congestion Control and Resource Allocation

have to drop them, whereas we would not have had to drop them if we had left the

playback point at 300 ms. Thus, we should advance the playback point only when

it provides a perceptible advantage and only when we have some evidence that the

number of late packets will be acceptably small. We may do this because of observed

recent history or because of some assurance from the network.

We call applications that can adjust their playback point delay-adaptive appli-

cations. Another class of adaptive applications are rate adaptive. For example, many

video coding algorithms can trade off bit rate versus quality. Thus, if we find that

the network can support a certain bandwidth, we can set our coding parameters ac-

cordingly. If more bandwidth becomes available later, we can change parameters to

increase the quality.

Approaches to QoS Support

Considering this rich space of application requirements, what we need is a richer

service model that meets the needs of any application. This leads us to a service model

with not just one class (best effort), but with several classes, each available to meet the

needs of some set of applications. Toward this end, we are now ready to look at some

of the approaches that have been developed to provide a range of qualities of service.

These can be divided into two broad categories:

■ fine-grained approaches, which provide QoS to individual applications or

flows

■ coarse-grained approaches, which provide QoS to large classes of data or

aggregated traffic

In the first category we find “Integrated Services,” a QoS architecture developed

in the IETF and often associated with RSVP (Resource Reservation Protocol). In the

second category lies “Differentiated Services,” which is undergoing standardization in

the IETF at the time of writing. We discuss these in turn in the next two subsections.

ATM is well known for providing a rich set of QoS capabilities and is normally

considered in the fine-grained category, since resources are associated with individual

virtual circuits. However, a popular use of ATM is to interconnect routers, and routers

may choose to send highly aggregated traffic down a single VC, so it is possible to

use ATM for coarse-grained QoS as well. We discuss the details of ATM QoS in

Section 6.5.4.

Finally, adding QoS support to the network isn’t necessarily the entire story about

supporting real-time applications. We conclude our discussion by revisiting what the

end host might do to better support real-time streams, independent of how widely

deployed QoS mechanisms like Integrated or Differentiated Services become.

6.5 Quality of Service 499

6.5.2 Integrated Services (RSVP)

The term “Integrated Services” (often called IntServ for short) refers to a body of

work that was produced by the IETF around 1995–97. The IntServ working group

developed specifications of a number of service classes designed to meet the needs of

some of the application types described above. It also defined how RSVP could be used

to make reservations using these service classes. The following paragraphs provide an

overview of these specifications and the mechanisms that are used to implement them.

Service Classes

One of the service classes is designed for intolerant applications. These applications

require that a packet never arrive late. The network should guarantee that the maxi-

mum delay that any packet will experience has some specified value; the application

can then set its playback point so that no packet will ever arrive after its playback

time. We assume that early arrival of packets can always be handled by buffering. This

service is referred to as the guaranteed service.

In addition to the guaranteed service, the IETF considered several other services,

but eventually settled on one to meet the needs of tolerant, adaptive applications. The

service is known as controlled load and was motivated by the observation that existing

applications of this type run quite well on networks that are not heavily loaded. The

audio application vat, for example, adjusts its playback point as network delay varies,

and produces reasonable audio quality as long as loss rates remain on the order of

10% or less.

The aim of the controlled load service is to emulate a lightly loaded network for

those applications that request the service, even though the network as a whole may in

fact be heavily loaded. The trick to this is to use a queuing mechanism such as WFQ (see

Section 6.2) to isolate the controlled load traffic from the other traffic and some form

of admission control to limit the total amount of controlled load traffic on a link such

that the load is kept reasonably low. We discuss admission control in more detail below.

Clearly, these two service classes are a subset of all the classes that might be

provided. It remains to be seen as Integrated Services are deployed whether these two

are adequate to meet the needs of all the application types described above.

Overview of Mechanisms

Now that we have augmented our best-effort service model with some new service

classes, the next question is how we implement a network that provides these services

to applications. This section outlines the key mechanisms. Keep in mind while reading

this section that the mechanisms being described are still being hammered out by the In-

ternet design community. The main thing to take away from the discussion is a general

understanding of the pieces involved in supporting the service model outlined above.

500 6 Congestion Control and Resource Allocation

First, whereas with a best-effort service we can just tell the network where we

want our packets to go and leave it at that, a real-time service involves telling the

network something more about the type of service we require. We may give it quali-

tative information such as “use a controlled load service” or quantitative information

such as “I need a maximum delay of 100 ms.” In addition to describing what we

want, we need to tell the network something about what we are going to inject into it,

since a low-bandwidth application is going to require fewer network resources than

a high-bandwidth application. The set of information that we provide to the network

is referred to as a flowspec. This name comes from the idea that a set of packets asso-

ciated with a single application and that share common requirements is called a flow,

consistent with our use of the term “flow” in Section 6.1.

Second, when we ask the network to provide us with a particular service, the

network needs to decide if it can in fact provide that service. For example, if 10 users

ask for a service in which each will consistently use 2 Mbps of link capacity, and they

all share a link with 10-Mbps capacity, the network will have to say no to some of

them. The process of deciding when to say no is called admission control.

Third, we need a mechanism by which the users of the network and the compo-

nents of the network itself exchange information such as requests for service, flowspecs,

and admission control decisions. This is called signalling in the ATM world, but since

this word has several meanings, we refer to this process as resource reservation, and

it is achieved using a Resource Reservation Protocol.

Finally, when flows and their requirements have been described, and admission

control decisions have been made, the network switches and routers need to meet the

requirements of the flows. A key part of meeting these requirements is managing the

way packets are queued and scheduled for transmission in the switches and routers.

This last mechanism is packet scheduling.

Flowspecs

There are two separable parts to the flowspec: the part that describes the flow’s traffic

characteristics (called the TSpec) and the part that describes the service requested

from the network (the RSpec). The RSpec is very service specific and relatively easy

to describe. For example, with a controlled load service, the RSpec is trivial: The

application just requests controlled load service with no additional parameters. With a

guaranteed service, you could specify a delay target or bound. (In the IETF’s guaranteed

service specification, you specify not a delay but another quantity from which delay

can be calculated.)

The TSpec is a little more complicated. As our example above showed, we need

to give the network enough information about the bandwidth used by the flow to allow

intelligent admission control decisions to be made. For most applications, however,

the bandwidth is not a single number; it is something that varies constantly. A video

6.5 Quality of Service 501

application, for example, will generally generate more bits per second when the scene

is changing rapidly than when it is still. Just knowing the long-term average bandwidth

is not enough, as the following example illustrates. Suppose that we have 10 flows that

arrive at a switch on separate input ports and that all leave on the same 10-Mbps link.

Assume that over some suitably long interval each flow can be expected to send no

more than 1 Mbps. You might think that this presents no problem. However, if these

are variable bit rate applications, such as compressed video, then they will occasionally

send more than their average rates. If enough sources send at above their average rates,

then the total rate at which data arrives at the switch will be greater than 10 Mbps.

This excess data will be queued before it can be sent on the link. The longer this

condition persists, the longer the queue will get. Packets might have to be dropped,

and even if it doesn’t come to that, data sitting in the queue is being delayed. If packets

are delayed long enough, the service that was requested will not be provided.

Exactly how we manage our queues to control delay and avoid dropping packets

is something we discuss below. However, note here that we need to know something

about how the bandwidth of our sources varies with time. One way to describe the

bandwidth characteristics of sources is called a token bucket filter. Such a filter is

described by two parameters: a token rate r and a bucket depth B. It works as follows.

To be able to send a byte, I must have a token. To send a packet of length n, I need

n tokens. I start with no tokens and I accumulate them at a rate of r per second. I

can accumulate no more than B tokens. What this means is that I can send a burst

of as many as B bytes into the network as fast as I want, but over a sufficiently long

interval, I can’t send more than r bytes per second. It turns out that this information

is very helpful to the admission control algorithm when it tries to figure out whether

it can accommodate a new request for service.

Figure 6.24 illustrates how a token bucket can be used to characterize a flow’s

bandwidth requirements. For simplicity, assume that each flow can send data as indi-

vidual bytes, rather than as packets. Flow A generates data at a steady rate of 1 MBps,

so it can be described by a token bucket filter with a rate r = 1 MBps and a bucket

depth of 1 byte. This means that it receives tokens at a rate of 1 MBps but that it can-

not store more than 1 token—it spends them immediately. Flow B also sends at a rate

that averages out to 1 MBps over the long term, but does so by sending at 0.5 MBps

for 2 seconds and then at 2 MBps for 1 second. Since the token bucket rate r is, in a

sense, a long-term average rate, flow B can be described by a token bucket with a rate

of 1 MBps. Unlike flow A, however, flow B needs a bucket depth B of at least 1 MB,

so that it can store up tokens while it sends at less than 1 MBps to be used when it

sends at 2 MBps. For the first 2 seconds in this example, it receives tokens at a rate

of 1 MBps but spends them at only 0.5 MBps, so it can save up 2 × 0.5 = 1 MB of

tokens, which it then spends in the third second (along with the new tokens that con-

tinue to accrue in that second) to send data at 2 MBps. At the end of the third second,

502 6 Congestion Control and Resource Allocation

1 2 3 4

1

2

3

Flow B

Flow A

Time (seconds)

B
an

d
w

id
th

 (
M

B
p
s)

Figure 6.24 Two flows with equal average rates but different token bucket
descriptions.

having spent the excess tokens, it starts to save them up again by sending at 0.5 MBps

again.

It is interesting to note that a single flow can be described by many different token

buckets. As a trivial example, flow A could be described by the same token bucket

as flow B, with a rate of 1 MBps and a bucket depth of 1 MB. The fact that it never

actually needs to accumulate tokens does not make that an inaccurate description, but

it does mean that we have failed to convey some useful information to the network—

the fact that flow A is actually very consistent in its bandwidth needs. In general, it

is good to be as explicit about the bandwidth needs of an application as possible, to

avoid overallocation of resources in the network.

Admission Control

The idea behind admission control is simple: When some new flow wants to receive

a particular level of service, admission control looks at the TSpec and RSpec of the

flow and tries to decide if the desired service can be provided to that amount of traffic,

given the currently available resources, without causing any previously admitted flow

to receive worse service than it had requested. If it can provide the service, the flow is

admitted; if not, then it is denied. The hard part is figuring out when to say yes and

when to say no.

Admission control is very dependent on the type of requested service and on

the queuing discipline employed in the routers; we discuss the latter topic later in

this section. For a guaranteed service, you need to have a good algorithm to make

a definitive yes/no decision. The decision is fairly straightforward if weighted fair

queuing, as discussed in Section 6.2, is used at each router. For a controlled load

6.5 Quality of Service 503

service, the decision may be based on heuristics, such as “The last time I allowed a

flow with this TSpec into this class, the delays for the class exceeded the acceptable

bound, so I’d better say no” or “My current delays are so far inside the bounds that I

should be able to admit another flow without difficulty.”

Admission control should not be confused with policing. The former is a per-

flow decision to admit a new flow or not. The latter is a function applied on a per-

packet basis to make sure that a flow conforms to the TSpec that was used to make

the reservation. If a flow does not conform to its TSpec—for example, because it is

sending twice as many bytes per second as it said it would—then it is likely to interfere

with the service provided to other flows, and some corrective action must be taken.

There are several options, the obvious one being to drop offending packets. However,

another option would be to check if the packets really are interfering with the service

of other flows. If they are not interfering, the packets could be sent on after being

marked with a tag that says, in effect, “This is a nonconforming packet. Drop it first

if you need to drop any packets.”

Admission control is closely related to the important issue of policy. For example,

a network administrator might wish to allow reservations made by his company’s CEO

to be admitted while rejecting reservations made by more lowly employees. Of course,

the CEO’s reservation request might still fail if the requested resources aren’t available,

so we see that issues of policy and resource availability may both be addressed when

admission control decisions are made. The application of policy to networking is an

area receiving much attention at the time of writing.

Reservation Protocol

While connection-oriented networks have always needed some sort of setup protocol to

establish the necessary virtual circuit state in the switches, connectionless networks like

the Internet have had no such protocols. As this section has indicated, however, we need

to provide a lot more information to our network when we want a real-time service

from it. While there have been a number of setup protocols proposed for the Internet,

the one on which most current attention is focused is called Resource Reservation

Protocol (RSVP). It is particularly interesting because it differs so substantially from

conventional signalling protocols for connection-oriented networks.

One of the key assumptions underlying RSVP is that it should not detract from

the robustness that we find in today’s connectionless networks. Because connectionless

networks rely on little or no state being stored in the network itself, it is possible

for routers to crash and reboot and for links to go up and down while end-to-end

connectivity is still maintained. RSVP tries to maintain this robustness by using the

idea of soft state in the routers. Soft state—in contrast to the hard state found in

connection-oriented networks—does not need to be explicitly deleted when it is no

504 6 Congestion Control and Resource Allocation

longer needed. Instead, it times out after some fairly short period (say, a minute) if it

is not periodically refreshed. We will see later how this helps robustness.

Another important characteristic of RSVP is that it aims to support multicast

flows just as effectively as unicast flows. This is not surprising, since the multicast

applications found on the MBone, such as vat and vic, are obvious early candidates

to benefit from real-time services. One of the insights of RSVP’s designers is that most

multicast applications have many more receivers than senders, as typified by the large

audience and one speaker for a lecture carried on the MBone. Also, receivers may have

different requirements. For example, one receiver might want to receive data from only

one sender, while others might wish to receive data from all senders. Rather than having

the senders keep track of a potentially large number of receivers, it makes more sense

to let the receivers keep track of their own needs. This suggests the receiver-oriented

approach adopted by RSVP. In contrast, connection-oriented networks usually leave

resource reservation to the sender, just as it is normally the originator of a phone call

who causes resources to be allocated in the phone network.

The soft state and receiver-oriented nature of RSVP give it a number of nice

properties. One nice property is that it is very straightforward to increase or decrease

the level of resource allocation provided to a receiver. Since each receiver periodically

sends refresh messages to keep the soft state in place, it is easy to send a new reservation

that asks for a new level of resources. In the event of a host crash, resources allocated

by that host to a flow will naturally time out and be released. To see what happens

in the event of a router or link failure, we need to look a little more closely at the

mechanics of making a reservation.

Initially, consider the case of one sender and one receiver trying to get a reserva-

tion for traffic flowing between them. There are two things that need to happen before

a receiver can make the reservation. First, the receiver needs to know what traffic

the sender is likely to send so that it can make an appropriate reservation. That is, it

needs to know the sender’s TSpec. Second, it needs to know what path the packets

will follow from sender to receiver, so that it can establish a resource reservation at

each router on the path. Both of these requirements can be met by sending a message

from the sender to the receiver that contains the TSpec. Obviously, this gets the TSpec

to the receiver. The other thing that happens is that each router looks at this message

(called a PATH message) as it goes past, and it figures out the reverse path that will be

used to send reservations from the receiver back to the sender in an effort to get the

reservation to each router on the path. Building the multicast tree in the first place is

done by mechanisms such as those described in Section 4.4.

Having received a PATH message, the receiver sends a reservation back “up” the

multicast tree in a RESV message. This message contains the sender’s TSpec and an

RSpec describing the requirements of this receiver. Each router on the path looks at

the reservation request and tries to allocate the necessary resources to satisfy it. If the

6.5 Quality of Service 505

reservation can be made, the RESV request is passed on to the next router. If not, an

error message is returned to the receiver who made the request. If all goes well, the

correct reservation is installed at every router between the sender and the receiver. As

long as the receiver wants to retain the reservation, it sends the same RESV message

about once every 30 seconds.

Now we can see what happens when a router or link fails. Routing protocols will

adapt to the failure and create a new path from sender to receiver. PATH messages are

sent about every 30 seconds, and may be sent sooner if a router detects a change in its

forwarding table, so the first one after the new route stabilizes will reach the receiver

over the new path. The receiver’s next RESV message will follow the new path and

(hopefully) establish a new reservation on the new path. Meanwhile, the routers that

are no longer on the path will stop getting RESV messages, and these reservations will

time out and be released. Thus RSVP deals quite well with changes in topology, as

long as routing changes are not excessively frequent.

The next thing we need to consider is how to cope with multicast, where there

may be multiple senders to a group and multiple receivers. This situation is illustrated

in Figure 6.25. First, let’s deal with multiple receivers for a single sender. As a RESV

Sender 1

Sender 2

PATH

PATH

RESV
(merged)

RESV

RESV

Receiver B

Receiver A

R

R

R

R

R

Figure 6.25 Making reservations on a multicast tree.

506 6 Congestion Control and Resource Allocation

message travels up the multicast tree, it is likely to hit a piece of the tree where some

other receiver’s reservation has already been established. It may be the case that the

resources reserved upstream of this point are adequate to serve both receivers. For

example, if receiver A has already made a reservation that provides for a guaranteed

delay of less than 100 ms, and the new request from receiver B is for a delay of less than

200 ms, then no new reservation is required.

On the other hand, if the new request were

for a delay of less than 50 ms, then the router

would first need to see if it could accept the

request, and if so, it would send the request

on upstream. The next time receiver A asked

for a minimum of a 100-ms delay, the router

would not need to pass this request on. In

general, reservations can be merged in this

way to meet the needs of all receivers down-

stream of the merge point.

If there are also multiple senders in

the tree, receivers need to collect the TSpecs

from all senders and make a reservation that

is large enough to accommodate the traf-

fic from all senders. However, this may not

mean that the TSpecs need to be added up.

For example, in an audioconference with

10 speakers, there is not much point in al-

locating enough resources to carry 10 audio

streams, since the result of 10 people speak-

ing at once would be incomprehensible.

Thus, we could imagine a reservation that is

large enough to accommodate two speakers

and no more. Calculating the correct overall

TSpec from all the sender TSpecs is clearly

application specific. Also, we may only be

interested in hearing from a subset of all

possible speakers; RSVP has different reser-

vation “styles” to deal with such options as

“Reserve resources for all speakers,” “Re-

serve resources for any n speakers,” and

“Reserve resources for speakers A and B

only.”

Integrated Services and

Subnet Technologies

One of the challenges to extend-

ing the best-effort service model of

IP arises from the fact that IP is

intended to run over any possible

subnet technology. The best-effort

model of IP was adopted precisely

because it is the lowest common de-

nominator offered by all subnets.

Since IntServ moves beyond this

model, there is some work to do

to determine how the new service

model can be operated over widely

varying subnet technologies. To ad-

dress this challenge, the IETF cre-

ated a working group called Inte-

grated Services over Specific Link

Layers (ISSLL).

The easiest possible link layer

to support is the point-to-point

link, since a link of this type has

completely predictable and fixed

QoS characteristics. Two of the

more challenging (and important)

subnet technologies are Ethernet

and ATM. In the case of ATM, the

ISSLL group has specified how the

various parameters that are used

in flowspecs for IntServ can be

mapped into ATM-specific QoS pa-

rameters on ATM virtual circuits.

6.5 Quality of Service 507

Packet Classifying and Scheduling

Once we have described our traffic and our desired network service and have installed

a suitable reservation at all the routers on the path, the only thing that remains is for

the routers to actually deliver the requested service to the data packets. There are two

things that need to be done:

Because of the many similarities

between ATM QoS and IntServ (as

discussed in Section 6.5.4), such

mappings are not too difficult,

although there are many details to

attend to.

The case of Ethernet is made

difficult by the fact that access to

the link bandwidth is arbitrated in a

completely decentralized way. This

means, for example, that no one

router can determine if it is safe

to admit a new reserved flow onto

an Ethernet segment because some

other router may have just done the

same thing for a flow that needs the

entire link bandwidth. To address

this issue, ISSLL defines a central-

ized entity responsible for arbitrat-

ing among the many devices that

may request reservations. This en-

tity is called the subnet bandwidth

manager (SBM). Part of the SBM

specification covers the process of

automatically electing one device

to be the designated SBM (DSBM)

for an Ethernet, since many nodes

might be capable of playing the role

but it is important to have only one

manager in charge at a given time.

■ Associate each packet with the

appropriate reservation so that it

can be handled correctly, a process

known as classifying packets.

■ Manage the packets in the queues

so that they receive the service

that has been requested, a process

known as packet scheduling.

The first part is done by examining up

to five fields in the packet: the source ad-

dress, destination address, protocol number,

source port, and destination port. (In IPv6,

it is possible that the FlowLabel field in the

header could be used to enable the lookup

to be done based on a single, shorter key.)

Based on this information, the packet can be

placed in the appropriate class. For exam-

ple, it may be classified into the controlled

load classes, or it may be part of a guar-

anteed flow that needs to be handled sepa-

rately from all other guaranteed flows. In

short, there is a mapping from the flow-

specific information in the packet header

to a single class identifier that determines

how the packet is handled in the queue. For

guaranteed flows, this might be a one-to-one

mapping, while for other services, it might

be many to one. The details of classification

are closely related to the details of queue

management.

It should be clear that something as

simple as a FIFO queue in a router will be in-

adequate to provide many different services

508 6 Congestion Control and Resource Allocation

and to provide different levels of delay

within each service. Several more sophisti-

cated queue management disciplines were

discussed in Section 6.2, and some combi-

nation of these is likely to be used in a router.

The details of packet scheduling ide-

ally should not be specified in the service

model. Instead, this is an area where im-

plementers can try to do creative things to

realize the service model efficiently. In the

case of guaranteed service, it has been es-

tablished that a weighted fair queuing dis-

cipline, in which each flow gets its own in-

dividual queue with a certain share of the

link, will provide a guaranteed end-to-end

delay bound that can readily be calculated.

For controlled load, simpler schemes may

be used. One possibility includes treating

Note that there is a limit to how

completely the SBM can manage

bandwidth on an Ethernet because

there is always the risk that nodes

that are just sending packets best

effort (and thus have no need to

talk to the SBM) might consume

enough bandwidth that the re-

served flows do not receive the

QoS they were promised by

the SBM. This problem may be

partially mitigated by monitoring

the current best-effort usage of the

Ethernet and making reasonable

predictions about how much that

usage changes over time.

all the controlled load traffic as a single, aggregated flow (as far as the scheduling

mechanism is concerned), with the weight for that flow being set based on the total

amount of traffic admitted in the controlled load class. The problem is made harder

when you consider that in a single router, many different services are likely to be pro-

vided concurrently, and that each of these services may require a different scheduling

algorithm. Thus, some overall queue management algorithm is needed to manage the

resources between the different services.

Scalability Issues

While the Integrated Services architecture and RSVP represented a significant enhance-

ment of the best-effort service model of IP, many Internet service providers felt that

it was not the right model for them to deploy. The reason for this reticence relates to

one of the fundamental design goals of IP: scalability. In the best-effort service model,

routers in the Internet store little or no state about the individual flows passing through

them. Thus, as the Internet grows, the only thing routers have to do to keep up with

that growth is to move more bits per second and to deal with larger routing tables. But

RSVP raises the possibility that every flow passing through a router might have a cor-

responding reservation. To understand the severity of this problem, suppose that every

flow on an OC-48 (2.5-Gbps) link represents a 64-Kbps audio stream. The number of

such flows is

2.5 × 109/64 × 103 = 39,000

6.5 Quality of Service 509

Each of those reservations needs some amount of state that needs to be stored

in memory and refreshed periodically. The router needs to classify, police, and queue

each of those flows. Admission control decisions need to be made every time such a

flow requests a reservation. And some mechanisms are needed to “push back” on users

so that they don’t make arbitrarily large reservations for long periods of time.5

These scalability concerns have, at the time of writing, prevented the widespread

deployment of IntServ. Because of these concerns, other approaches that do not require

so much “per-flow” state have been developed. The next section discusses a number

of such approaches.

6.5.3 Differentiated Services (EF, AF)

Whereas the Integrated Services architecture allocates resources to individual flows,

the Differentiated Services model (often called DiffServ for short) allocates resources

to a small number of classes of traffic. In fact, some proposed approaches to DiffServ

simply divide traffic into two classes. This is an eminently sensible approach to take:

If you consider the difficulty that network operators experience just trying to keep a

best-effort internet running smoothly, it makes sense to add to the service model in

small increments.

Suppose that we have decided to enhance the best-effort service model by adding

just one new class, which we’ll call “premium.” Clearly, we will need some way to

figure out which packets are premium and which are regular old best effort. Rather

than using a protocol like RSVP to tell all the routers that some flow is sending premium

packets, it would be much easier if the packets could just identify themselves to the

router when they arrive. This could obviously be done by using a bit in the packet

header—if that bit is a 1, the packet is a premium packet; if it’s a 0, the packet is best

effort. With this in mind, there are two questions we need to address:

■ Who sets the premium bit, and under what circumstances?

■ What does a router do differently when it sees a packet with the bit set?

There are many possible answers to the first question, but a common approach is

to set the bit at an administrative boundary. For example, the router at the edge of an

Internet service provider’s network might set the bit for packets arriving on an interface

that connects to a particular company’s network. The Internet service provider might

do this because that company has paid for a higher level of service than best effort.

It is also possible that not all packets would be marked as premium; for example, the

5Charging per reservation would be one way to push back, consistent with the telephony model of billing
for each phone call. This is not the only way to push back, and per-call billing is believed to be one of the
major costs of operating the phone network.

510 6 Congestion Control and Resource Allocation

router might be configured to mark packets as premium up to some maximum rate,

and to leave all excess packets as best effort.

Assuming that packets have been marked in some way, what do the routers that

encounter marked packets do with them? Here again there are many answers. In fact,

the Differentiated Services working group of the IETF is standardizing a set of router

behaviors to be applied to marked packets. These are called “per-hop behaviors”

(PHBs), a term that indicates that they define the behavior of individual routers rather

than end-to-end services. Because there is more than one new behavior, there is also

a need for more than 1 bit in the packet header to tell the routers which behavior to

apply. The IETF has decided to take the old TOS byte from the IP header, which has not

been widely used, and redefine it. Six bits of this byte have been allocated for DiffServ

code points (DSCP), where each DSCP is a 6-bit value that identifies a particular PHB

to be applied to a packet.

One of the simplest PHBs to explain is known as “expedited forwarding” (EF).

Packets marked for EF treatment should be forwarded by the router with minimal

delay and loss. The only way that a router can guarantee this to all EF packets is if

the arrival rate of EF packets at the router is strictly limited to be less than the rate

at which the router can forward EF packets. For example, a router with a 100-Mbps

interface needs to be sure that the arrival rate of EF packets destined for that interface

never exceeds 100 Mbps. It might also want to be sure that the rate will be somewhat

below 100 Mbps, so that it occasionally has time to send other packets such as routing

updates.

The rate limiting of EF packets is achieved by configuring the routers at the edge

of an administrative domain to allow a certain maximum rate of EF packet arrivals

into the domain. A simple, albeit conservative, approach would be to ensure that the

sum of the rates of all EF packets entering the domain is less than the bandwidth of

the slowest link in the domain. This would ensure that, even in the worst case where

all EF packets converge on the slowest link, it is not overloaded and can provide the

correct behavior.

There are several possible implementation strategies for the EF behavior. One

is to give EF packets strict priority over all other packets. Another is to perform

weighted fair queuing between EF packets and other packets, with the weight of EF set

sufficiently high that all EF packets can be delivered quickly. This has an advantage over

strict priority: The non-EF packets can be assured of getting some access to the link,

even if the amount of EF traffic is excessive. This might mean that the EF packets fail

to get exactly the specified behavior, but it could also prevent essential routing traffic

from being locked out of the network in the event of an excessive load of EF traffic.

Another PHB is known as “assured forwarding” (AF). This behavior has its

roots in an approach known as “RED with In and Out” (RIO) or “Weighted RED,”

both of which are enhancements to the basic RED algorithm of Section 6.4.2.

6.5 Quality of Service 511

P(drop)

1.0

MaxP

Minin MaxinMaxoutMinout

AvgLen

Figure 6.26 RED with “in” and “out” drop probabilities.

Figure 6.26 shows how RIO works; like Figure 6.17, we see drop probability on

the y-axis increasing as average queue length increases along the x-axis. But now, for

our two classes of traffic, we have two separate drop probability curves. RIO calls

the two classes “in” and “out” for reasons that will become clear shortly. Because the

“out” curve has a lower MinThreshold than the “in” curve, it is clear that, under low

levels of congestion, only packets marked “out” will be discarded by the RED algo-

rithm. If the congestion becomes more serious, a higher percentage of “out” packets

are dropped, and then if the average queue length exceeds Minin, RED starts to drop

“in” packets as well.

The reason for calling the two classes of packets “in” and “out” stems from the

way the packets are marked. We already noted that packet marking can be performed

by a router at the edge of an administrative domain. We can think of this router as

being at the boundary between a network service provider and some customer of that

network. The customer might be any other network, for example, the network of a

corporation or of another network service provider. The customer and the network

service provider agree on some sort of profile for the assured service (and perhaps

the customer pays the network service provider for this profile). The profile might be

something like “Customer X is allowed to send up to y Mbps of assured traffic,” or

it could be significantly more complex. Whatever the profile is, the edge router can

clearly mark the packets that arrive from this customer as being either in or out of

profile. In the example just mentioned, as long as the customer sends less than y Mbps,

all his packets will be marked “in,” but once he exceeds that rate, the excess packets

will be marked “out.”

The combination of a “profile meter” at the edge and RIO in all the routers

of the service provider’s network should provide the customer with a high assurance

512 6 Congestion Control and Resource Allocation

(but not a guarantee) that packets within his profile can be delivered. In particular, if

the majority of packets, including those sent by customers who have not paid extra

to establish a profile, are “out” packets, then it should usually be the case that the

RIO mechanism will act to keep congestion low enough that “in” packets are rarely

dropped. Clearly, there must be enough bandwidth in the network so that the “in”

packets alone are rarely able to congest a link to the point where RIO starts dropping

“in” packets.

Just like RED, the effectiveness of a mechanism like RIO depends to some extent

on correct parameter choices, and there are considerably more parameters to set for

RIO. Exactly how well the scheme works in production networks is a matter of debate

at the time of writing.

One interesting property of RIO is that it does not change the order of “in” and

“out” packets. For example, if a TCP connection is sending packets through a profile

meter, and some packets are being marked “in” while others are marked “out,” those

packets will receive different drop probabilities in the router queues, but they will be

delivered to the receiver in the same order in which they were sent. This is important

for most TCP implementations, which perform much better when packets arrive in

order, even if they are designed to cope with misordering. Note also that mechanisms

such as fast retransmit can be falsely triggered when misordering happens.

The idea of RIO can be generalized to provide more than two drop probability

curves, and this is the idea behind the approach known as weighted RED (WRED). In

this case, the value of the DSCP field is used to pick one of several drop probability

curves, so that several different classes of service can be provided.

A third way to provide Differentiated Services is to use the DSCP value to de-

termine which queue to put a packet into in a weighted fair queuing scheduler as

described in Section 6.2.2. As a very simple case, we might use one code point to indi-

cate the “best-effort” queue and a second code point to select the “premium” queue.

We then need to choose a weight for the premium queue that makes the premium

packets get better service than the best-effort packets. This depends on the offered

load of premium packets. For example, if we give the premium queue a weight of 1

and the best-effort queue a weight of 4, that ensures that the bandwidth available to

premium packets is

Bpremium = Wpremium/(Wpremium + Wbest effort)

= 1/(1 + 4)

= 0.2

That is, we have effectively reserved 20% of the link for premium packets, so if the

offered load of premium traffic is only 10% of the link on average, then the premium

6.5 Quality of Service 513

traffic will behave as if it is running on a very underloaded network and the service will

be very good. In particular, the delay experienced by the premium class can be kept low,

since WFQ will try to transmit premium packets as soon as they arrive in this scenario.

On the other hand, if the premium traffic load were 30%, it would behave like a highly

loaded network, and delay could be very high for the “premium” packets—even worse

than the so-called best-effort packets. Thus, knowledge of the offered load and careful

setting of weights is important for this type of service. However, note that the safe

approach is to be very conservative in setting the weight for the premium queue. If

this weight is made very high relative to the expected load, it provides a margin of

error and yet does not prevent the best-effort traffic from using any bandwidth that

has been reserved for premium but is not used by premium packets.

Just as in WRED, we can generalize this WFQ-based approach to allow more

than two classes represented by different code points. Furthermore, we can combine the

idea of a queue selector with a drop preference. For example, with 12 code points we

can have four queues with different weights, each of which has three drop preferences.

This is exactly what the IETF has done in the definition of “assured service.”

6.5.4 ATM Quality of Service

In many respects, the QoS capabilities that are provided in ATM networks are similar

to those provided in an IP network using Integrated Services. However, the ATM

standards bodies came up with a total of five service classes compared to the IETF’s

three.6 The five ATM service classes are

■ constant bit rate (CBR)

■ variable bit rate—real-time (VBR-rt)

■ variable bit rate—non-real-time (VBR-nrt)

■ available bit rate (ABR)

■ unspecified bit rate (UBR)

Mostly the ATM and IP service classes are quite similar, but one of them, ABR, has

no real counterpart in IP. We explain this class in detail below. The remaining classes

can be fairly easily understood in terms of what we have already seen.

Note that in ATM, quality of service is defined at the time a virtual circuit is set

up. This is done by including information in the signalling messages that are sent at

VC setup time.

6We count best effort as a service class along with controlled load and guaranteed service.

514 6 Congestion Control and Resource Allocation

VBR-rt is very much like the guaran-

teed service class in IP Integrated Services.

The exact parameters that are used to set up

a VBR-rt VC are slightly different than those

used to make a guaranteed service reserva-

tion, but the basic idea is the same. The traf-

fic generated by the source is characterized

by a token bucket, and the maximum to-

tal delay required through the network is

specified.

CBR is not too different than VBR-rt,

except that sources of CBR traffic are ex-

pected to send at a constant rate. Note that

this is really a special case of VBR, where

the source’s peak rate and average rate of

transmission are equal. The main reason for

making this a separate class in ATM is that

this special case is viewed as very impor-

tant to telephone companies, since the ma-

jority of the services they offer today—voice

calls and leased lines, for example—provide

a pipe of fixed bandwidth to the end user.

CBR also turned out to be a relatively easy

service to specify and implement, so that

many early ATM switches could support

CBR but not VBR. The early availability of

CBR in ATM products certainly helped the

acceptance of ATM in the marketplace, es-

pecially since these products appeared be-

fore IP routers with any QoS features to

speak of were available.

VBR-nrt bears some similarity to IP’s

controlled load service. Again, the source

traffic is specified by a token bucket, but

there is not the same hard delay guaran-

tee of VBR-rt or IP’s guaranteed service.

RSVP and ATM

Now that we’ve seen some high-

lights of RSVP and ATM QoS, it is

interesting to compare the two ap-

proaches. Note that, at a high level,

the goals of a connection-oriented

signalling protocol and RSVP are

the same: to install some state infor-

mation in the network nodes that

forward packets so that packets get

handled correctly. However, there

are not many similarities beyond

that high-level goal.

Table 6.1 compares RSVP with

the ATM Forum’s current sig-

nalling protocol, which is de-

rived from the ITU-T protocol

Q.2931. (Recall from Section 3.3

that Q.2931 defines how a virtual

circuit is routed across the network,

as well as how resources are re-

served for that circuit.) The dif-

ferences stem largely from the fact

that RSVP starts with a connection-

less model and tries to add func-

tionality without going all the way

to traditional connections, whereas

ATM starts out from a connection-

oriented model. RSVP’s goal of

handling multicast efficiently is also

apparent in the receiver-driven ap-

proach, which aims to provide scal-

ability for multicast groups with

large numbers of receivers.

UBR is ATM’s best-effort service. There is one small difference between UBR

and the standard best-effort model provided in IP. Because ATM always requires a

signalling phase before data is sent, it is possible to convey information about the source

6.5 Quality of Service 515

RSVP ATM

Receiver generates reservation Sender generates connection request

Soft state (refresh/timeout) Hard state (explicit delete)

Separate from route establishment Concurrent with route establishment

QoS can change dynamically QoS is static for life of connection

(although somewhat variable in ABR)

Receiver heterogeneity Uniform QoS to all receivers

Table 6.1 Comparison of RSVP and ATM signalling.

at VC setup time. UBR allows the source to specify a maximum rate at which it will

send, which may be less than the line rate. Switches may make use of this information

to decide whether admitting the new VC would adversely affect previously established

VCs, and thus may reject the VC setup or try to negotiate a lower peak rate with this

source.

Finally, we come to ABR, which is more than just a service class; it also defines

a set of congestion-control mechanisms. Having been designed by a standards body,

it is rather complex, so this section covers only a few of the high points.

An ATM virtual circuit clearly has two ends, which we can call the source and

the destination. VCs are usually bidirectional, so a node that is the source in one

direction is generally the destination in the other. The ABR mechanisms operate over

a virtual circuit by exchanging special ATM cells called resource management (RM)

cells between the source and destination of the VC. The goal of sending the RM cells is

to get information about the state of congestion in the network back to the source so

that it can send traffic at an appropriate rate. In this respect, RM cells are an explicit

congestion feedback mechanism. This is similar to the DECbit, but contrasts with

TCP’s use of implicit feedback, which depends on packet losses to detect congestion.

Initially, the source sends the cell to the destination and includes in it the rate at

which it would like to send data cells. Switches along the path look at the requested

rate and decide if sufficient resources are available to handle that rate, based on the

amount of traffic being carried on other circuits. If enough resources are available,

the RM cell is passed on unmodified; otherwise, the requested rate is decreased before

the cell is passed along. At the destination, the RM cell is turned around and sent

back to the source, which thereby learns what rate it can send at.

The intention of ABR is to allow a source to increase or decrease its allotted

rate as conditions dictate. As a consequence, RM cells are sent periodically and may

516 6 Congestion Control and Resource Allocation

S3S2S1H1 H2RM cells

Source Virtual
destination

RM cells

Virtual
source

Destination

Figure 6.27 ABR VC with segmented control loops using virtual source and virtual
destination.

contain either higher or lower requested rates. Also, the rate at which a source is

allowed to send decays with time if not used. This is intended to discourage a source

from requesting capacity “just in case.”

While we assumed so far that the source and destination of the RM cells are the

endpoints of the VC, this need not be the case. ABR extends the notion of source and

destination, introducing the concepts of virtual source (VS) and virtual destination

(VD). They are “virtual” in the sense that they are not the true endpoints of the VC.

This enables the control loop around which RM cells flow to be made shorter than

the VC itself. By making the control loops shorter, the response time of the system

can be reduced. Furthermore, it may reduce the buffer requirements of the switches by

reducing the time between when they sense congestion and when the (virtual) source

slows down. A virtual circuit that has been segmented in the middle with a virtual

source and virtual destination is shown in Figure 6.27. The real source sends RM cells

to the switch providing VS/VD capability, and that switch, acting as VD, turns around

the RM cells. It will include in these cells the rate at which it is willing to accept traffic

on this VC. In its capacity as VS, it also originates RM cells toward the real destination,

which will in turn be sent back to the VS telling it at what rate it can send traffic on

this VC.

There is a great deal of flexibility in how a switch actually implements ABR.

In general, proprietary algorithms are used to set the rates in RM cells as they pass

through the switches, based on a wide variety of information such as the current buffer

occupancy and the measured arrival rates on all VCs, as well as the allotted rates on

those VCs (which may not be the same as the measured rates). These algorithms, as is

normal for congestion-control algorithms, seek to maximize throughput and will keep

delay and loss low.

One uncertain aspect of ABR is how it interacts with TCP’s congestion-avoidance

mechanisms. These mechanisms are finely tuned based on experience, and they work

on the premise that there is nothing fancy going on in the network—if you send too

fast, packets get dropped. With ABR, you can imagine that the VS might have to drop

packets while it waits for an RM cell to return, even though there is in fact no real

6.5 Quality of Service 517

congestion in the network. At the time of writing, most of the experience with ABR

has been in simulation and laboratory conditions, and real-world experience has been

limited.

6.5.5 Equation-Based Congestion Control

We conclude our discussion of QoS by returning full circle to TCP congestion control,

but this time in the context of real-time applications. Recall that TCP adjusts the

sender’s congestion window (and hence, the rate at which it can transmit) in response

to ACK and timeout events. One of the strengths of this approach is that it does not

require cooperation from the networks’s routers; it is a purely host-based strategy.

Such a strategy complements the QoS mechanisms we’ve been considering because (1)

applications can use host-based solutions today, before QoS mechanisms are widely

deployed, and (2) even with DiffServ fully deployed, it is still possible for a router

queue to be oversubscribed, and we would like real-time applications to react in a

reasonable way should this happen.

While we would like to take advantage of TCP’s congestion-control algorithm,

TCP itself is not appropriate for real-time applications. One reason is that TCP is a

reliable protocol, and real-time applications often cannot afford the delays introduced

by retransmission. However, what if we were to decouple TCP from its congestion-

control mechanism, that is, add TCP-like congestion control to an unreliable protocol

like UDP? We could call the result UDP+CC for “UDP plus congestion control.” Could

real-time applications make use of UDP+CC?

On the one hand, this is an appealing idea because it would cause real-time

streams to compete fairly with TCP streams. The alternative (which happens today)

is that video applications use UDP without any form of congestion control and, as a

consequence, steal bandwidth away from TCP flows that back off in the presence of

congestion. On the other hand, the sawtooth behavior of TCP’s congestion-control

algorithm (see Figure 6.9) is not appropriate for real-time applications: It means that

the rate at which the application transmits is constantly going up and down. In contrast,

real-time applications work best when they are able to sustain a smooth transmission

rate over a relatively long period of time.

Is it possible to achieve the best of both worlds: compatibility with TCP con-

gestion control for the sake of fairness, while sustaining a smooth transmission rate

for the sake of the application? Recent work suggests that the answer is yes. Specif-

ically, several so-called TCP-friendly congestion-control algorithms have been pro-

posed. These algorithms have two main goals. One is to slowly adapt the congestion

window. This is done by adapting over relatively longer time periods (e.g., an RTT)

rather than on a per-packet basis. This smooths out the transmission rate. The second

is to be TCP-friendly in the sense of being fair to competing TCP flows. This property is

518 6 Congestion Control and Resource Allocation

often enforced by ensuring that the flow’s behavior adheres to an equation that models

TCP’s behavior. Hence, this approach is sometimes called equation-based congestion

control.

For our purposes, the exact form of the equation is less interesting than its general

form:

Rate =
(

1

RTT × √
ρ

)

which says that to be TCP-friendly, the transmission rate must be inversely propor-

tional to the round-trip time (RTT) and the square root of the loss rate (ρ). The inter-

ested reader is referred to the “Further Reading” section at the end of this chapter for

details about the full model. In other words, to build a congestion-control mechanism

out of this relationship, the receiver must periodically report the loss rate it is expe-

riencing back to the sender (e.g., it might report that it failed to received 10% of the

last 100 packets), and the sender then adjusts its sending rate up or down, such that

this relationship continues to hold. Of course, it is still up to the application to adapt

to these changes in the available rate, but as we will see in the next chapter, many

real-time applications are quite adaptable.

6.6 Summary

As we have just seen, the issue of resource allocation is not only central to computer

networking, it is also a very hard problem. This chapter has examined two aspects of

resource allocation. The first, congestion control, is concerned with preventing overall

degradation of service when the demand for resources by hosts exceeds the supply

available in the network. The second aspect is the provision of different qualities of

service to applications that need more assurances than those provided by the best-effort

model.

Most congestion-control mechanisms are targeted at the best-effort service model

of today’s Internet, where the primary responsibility for congestion control falls on

the end nodes of the network. Typically, the source uses feedback—either implic-

itly learned from the network or explicitly sent by a router—to adjust the load it

places on the network; this is precisely what TCP’s congestion-control mechanism

does.

Independent of exactly what the end nodes are doing, the routers implement a

queuing discipline that governs which packets get transmitted and which packets get

dropped. Sometimes this queuing algorithm is sophisticated enough to segregate traffic

(e.g., WFQ), and in other cases, the router attempts to monitor its queue length and

then signals the source host when congestion is about to occur (e.g., RED gateways

and DECbit).

Open Issue: Inside versus Outside the Network 519

Emerging quality of service approaches aim to do substantially more than just

control congestion. Their goal is to enable applications with widely varying require-

ments for delay, loss, and throughput to have those requirements met through new

mechanisms inside the network. The Integrated Services approach allows individual

application flows to specify their needs to the routers using an explicit signalling mech-

anism (RSVP), while Differentiated Services assigns packets into a small number of

classes that receive differentiated treatment in the routers. While the signalling used

by ATM is very different from RSVP, there is considerable similarity between ATM’s

service classes and those of Integrated Services.

Perhaps the larger question we should

be asking is, How much can we ex-

pect from the network and how much

responsibility will ultimately fall to

the end hosts? Reservation-based

strategies certainly have the advan-

tage of providing for more varied

O P E N I S S U E

Inside versus Outside the
Network

qualities of service than today’s feedback-based schemes; being able to support differ-

ent qualities of service is a strong reason to put more functionality into the network’s

routers. Does this mean that the days of TCP-like end-to-end congestion control are

numbered? This seems highly unlikely. TCP and the applications that use it are well

entrenched, and in many cases have no need of much more help from the network.

Furthermore, it is most unlikely that all the routers in a worldwide, heterogeneous

network like the Internet will implement precisely the same resource reservation al-

gorithm. Ultimately, it seems that the endpoints are going to have to look out for

themselves, at least to some extent. After all, we should not forget the sound design

principle underlying the Internet—do the simplest possible thing in the routers and

put all the smarts at the edges where you can control it. How this all plays out in the

next few years will be very interesting indeed.

In some sense, the Differentiated Services approach represents the middle ground

between absolutely minimal intelligence in the network and the rather significant

amount of intelligence (and stored state information) that is required in an Integrated

Services network. Certainly, most Internet service providers have balked at allow-

ing their customers to make RSVP reservations inside the providers’ networks. One

important question is whether the Differentiated Services approach will meet the re-

quirements of more stringent applications. For example, if a service provider is trying

to offer a large-scale telephony service over an IP network, will Differentiated Services

techniques be adequate to deliver the quality of service that traditional telephone users

520 6 Congestion Control and Resource Allocation

expect? It seems likely that yet more QoS options, with varying amounts of intelligence

in the network, will need to be explored.

F U R T H E R R E A D I N G

The recommended reading list for this chapter is long, reflecting the breadth of inter-

esting work being done in congestion control and resource allocation. It includes the

original papers introducing the various mechanisms discussed in this chapter. In addi-

tion to a more detailed description of these mechanisms, including thorough analysis

of their effectiveness and fairness, these papers are must reading because of the insights

they give into the interplay of the various issues related to congestion control. More-

over, the first paper gives a nice overview of some of the early work on this topic, while

the last is considered one of the seminal papers in the development of QoS capabilities

in the Internet.

■ Gerla, M., and L. Kleinrock. Flow control: A comparative survey. IEEE Trans-

actions on Communications COM-28(4):553–573, April 1980.

■ Demers, A., S. Keshav, and S. Shenker. Analysis and simulation of a fair queu-

ing algorithm. Proceedings of the SIGCOMM ’89 Symposium, pages 1–12,

September 1989.

■ Jacobson, V. Congestion avoidance and control. Proceedings of the SIG-

COMM ’88 Symposium, pages 314–329, August 1988.

■ Ramakrishnan, K., and R. Jain. A binary feedback scheme for congestion

avoidance in computer networks with a connectionless network layer. ACM

Transactions on Computer Systems 8(2):158–181, May 1990.

■ Floyd, S., and V. Jacobson. Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking 1(4):397–413, August

1993.

■ Clark, D., S. Shenker, and L. Zhang. Supporting real-time applications in an

integrated services packet network: Architecture and mechanism. Proceedings

of the SIGCOMM ’92 Symposium, pages 14–26, August 1992.

Beyond these recommended papers, there is a wealth of other valuable mate-

rial on resource allocation. For starters, two early papers by Kleinrock [Kle79] and

Jaffe [Jaf81] set the foundation for using power as a measure of congestion-control

effectiveness. Also, Jain [Jai91] gives a thorough discussion of various issues related

to performance evaluation, including a description of Jain’s fairness index.

Exercises 521

More details about TCP Vegas can be found in Brakmo and Peterson [BP95], with

follow-up work presented in Low et al. [LPW02]. Similar congestion-avoidance tech-

niques introduced in Section 6.4 can be found in Wang and Crowcroft [WC92, WC91]

and Jain [Jai89], with the first paper giving an especially nice overview of congestion

avoidance based on a common understanding of how the network changes as it ap-

proaches congestion. Some proposed modifications to the RED algorithm include “Fair

RED” (FRED) described by Lin and Morris [LM97] and a self-configuring variant of

RED presented by Feng et al. [FKSS99]. The packet-pair technique briefly discussed

in Section 6.3.2 is more carefully described in Keshav [Kes91], and the partial packet

discard technique suggested in Section 6.4.2 is described by Romanow and Floyd

[RF94].

The proposed ECN standard is spelled out by Ramakrishnan, Floyd, and Black

in [RFB01]. Efforts to generalize this idea in the form of active queue management are

put forth by Stoica et al. [SSZ98], Low et al. [LPW+02], and Katabi et al. [KHR02].

More recent work on packet scheduling has extended the original fair queuing

paper cited above. Excellent examples include articles by Stoica and Zhang [S297],

Bennett and Zhang [B296], and Goyal, Vin, and Chen [GVC96].

Many additional articles have been published on the Integrated Services archi-

tecture, including an overview by Braden et al. [BCS94] and a description of RSVP

by Zhang et al. [ZDE+93]. The first paper to address the topic of Differentiated Ser-

vices is that of Clark [Cla97], which introduces the RIO mechanism as well as the

overall architecture of Differentiated Services. A follow-on paper by Clark and Fang

[CF98] presents some simulation results. [BBC+98] defines the Differentiated Services

architecture, while [DCB+02] defines the EF per-hop behavior.

Finally, several TCP-friendly congestion-control algorithms have recently been

proposed and tailored for use by real-time applications. These include algorithms by

Floyd et al. [FHPW00], Sisalem and Schulzrinne [SS98], Rhee et al. [ROY00], and

Rejaie et al. [RHE99]. These algorithms build on the earlier equation-based model of

TCP throughput by Padhye et al. [PFTK98].

E X E R C I S E S

1 It is possible to define flows on either a host-to-host basis or a process-to-process

basis.

(a) Discuss the implications of each approach to application programs.

(b) IPv6 includes a FlowLabel field, for supplying hints to routers about individual

flows. The originating host is to put here a pseudorandom hash of all the other

522 6 Congestion Control and Resource Allocation

fields serving to identify the flow; the router can thus use any subset of these

bits as a hash value for fast lookup of the flow. What exactly should the

FlowLabel be based on, for each of these two approaches?

2 TCP uses a host-centric, feedback based, windows based resource allocation

model. How might TCP have been designed to use instead the following

models?

(a) Host-centric, feedback based, and rate based

(b) Router-centric and feedback based

3 Sketch curves for throughput, delay, and power, each as a function of load, for

the following networks. Throughput is to be measured as a percentage of the

maximum. Load is to be measured (somewhat unnaturally) as the number of

stations (N) ready to send at any one time; note this implies there is always (unless

N = 0, which you may ignore) a station ready to send. Assume each station has

only one packet to send at a time.

(a) Ethernet. Assume, as in Exercise 52 of Chapter 2, that the average packet size

is 5 slot times, and that when N stations are trying to transmit, the average

delay until one station succeeds is N/2 slot times.

(b) Token ring, with TRT = 0.

4 Suppose two hosts A and B are connected via a router R. The A–R link has infinite

bandwidth; the R–B link can send one packet per second. R’s queue is infinite. Load

is to be measured as the number of packets per second sent from A to B. Sketch

the throughput-versus-load and delay-versus-load graphs, or if a graph cannot be

drawn, explain why. Would another way to measure load be more appropriate?

5 Is it possible for TCP Reno to reach a state with the congestion window size much

larger than (e.g., twice as large as) RTT × bandwidth? Is it likely?

6 Consider the arrangement of hosts H and routers R and R1 in Figure 6.28. All

links are full-duplex, and all routers are faster than their links. Show that R1

cannot become congested, and for any other router R we can find a traffic pattern

that congests that router alone.

7 Suppose a congestion-control scheme results in a collection of competing flows that

achieve the following throughput rates: 100 KBps, 60 KBps, 110 KBps, 95 KBps,

and 150 KBps.

Exercises 523

Link bandwidth 4 MBps

Link bandwidth 2 MBps

Link bandwidth 1 MBps

R1

R R R

R R

R

H H H H H H H H

Figure 6.28 Diagram for Exercise 6.

(a) Calculate the fairness index for this scheme.

(b) Now add a flow with a throughput rate of 1000 KBps to the above, and

recalculate the fairness index.

8 In fair queuing, the value Fi was interpreted as a timestamp: the time when the ith

packet would finish transmitting. Give an interpretation of Fi for weighted fair

queuing, and also give a formula for it in terms of Fi−1, arrival time Ai , packet

size Pi , and weight w assigned to the flow.

9 Give an example of how nonpreemption in the implementation of fair queuing

leads to a different packet transmission order from bit-by-bit round-robin service.

10 Suppose a router has three input flows and one output. It receives the packets

listed in Table 6.2 all at about the same time, in the order listed, during a period in

which the output port is busy but all queues are otherwise empty. Give the order

in which the packets are transmitted, assuming

(a) fair queuing

(b) weighted fair queuing, with flow 2 having weight 2, and the other two with

weight 1

11 Suppose a router has three input flows and one output. It receives the packets

listed in Table 6.3 all at about the same time, in the order listed, during a period in

which the output port is busy but all queues are otherwise empty. Give the order

in which the packets are transmitted, assuming

524 6 Congestion Control and Resource Allocation

Packet Size Flow

1 100 1

2 100 1

3 100 1

4 100 1

5 190 2

6 200 2

7 110 3

8 50 3

Table 6.2 Packets for Exercise 10.

Packet Size Flow

1 200 1

2 200 1

3 160 2

4 120 2

5 160 2

6 210 3

7 150 3

8 90 3

Table 6.3 Packets for Exercise 11.

(a) fair queuing

(b) weighted fair queuing with flow 2 having twice as much share as flow 1, and

flow 3 having 1.5 times as much share as flow 1. Note that ties are to be

resolved in order flow 1, flow 2, flow 3.

12 Suppose a router’s drop policy is to drop the highest-cost packet whenever queues

are full, where it defines the “cost” of a packet to be the product of its size by the

Exercises 525

time remaining that it will spend in the queue. (Note that in calculating cost it is

equivalent to use the sum of the sizes of the earlier packets in lieu of remaining

time.)

(a) What advantages and disadvantages might such a policy offer, compared to

tail drop?

(b) Give an example of a sequence of queued packets for which dropping the

highest-cost packet differs from dropping the largest packet.

(c) Give an example where two packets exchange their relative cost ranks as time

progresses.

13 Two users, one using Telnet and one sending files with FTP, both send their traffic

out via router R. The outbound link from R is slow enough that both users keep

packets in R’s queue at all times. Discuss the relative performance seen by the

Telnet user if R’s queuing policy for these two flows is

(a) round-robin service

(b) fair queuing

(c) modified fair queuing, where we count the cost only of data bytes, and not IP

or TCP headers

Consider outbound traffic only. Assume Telnet packets have 1 byte of data, FTP

packets have 512 bytes of data, and all packets have 40 bytes of headers.

14 Consider a router that is managing three flows, on which packets of constant size

arrive at the following wall clock times:

flow A: 1, 2, 4, 6, 7, 9, 10

flow B: 2, 6, 8, 11, 12, 15

flow C: 1, 2, 3, 5, 6, 7, 8

All three flows share the same outbound link, on which the router can trans-

mit one packet per time unit. Assume that there is an infinite amount of buffer

space.

(a) Suppose the router implements fair queuing. For each packet, give the wall

clock time when it is transmitted by the router. Arrival time ties are to be

resolved in order A, B, C. Note that wall clock time T = 2 is FQ-clock time

Ai = 1.5.

(b) Suppose the router implements weighted fair queuing, where flows A and B

are given an equal share of the capacity, and flow C is given twice the capacity

of flow A. For each packet, give the wall clock time when it is transmitted.

526 6 Congestion Control and Resource Allocation

15 Consider a router that is managing three flows, on which packets of constant size

arrive at the following wall clock times:

flow A: 1, 3, 5, 6, 8, 9, 11

flow B: 1, 4, 7, 8, 9, 13, 15

flow C: 1, 2, 4, 6, 7, 12

All three flows share the same outbound link, on which the router can transmit

one packet per time unit. Assume that there is an infinite amount of buffer space.

(a) Suppose the router implements fair queuing. For each packet, give the wall

clock time when it is transmitted by the router. Arrival time ties are to be

resolved in order A, B, C. Note that wall clock time T = 2 is FQ-clock time

Ai = 1.333.

(b) Suppose the router implements weighted fair queuing, where flows A and C

are given an equal share of the capacity, and flow B is given twice the capacity

of flow A. For each packet, give the wall clock time when it is transmitted.

16 Assume that TCP implements an extension that allows window sizes much larger

than 64 KB. Suppose that you are using this extended TCP over a 1-Gbps link

with a latency of 100 ms to transfer a 10-MB file, and the TCP receive window is

1 MB. If TCP sends 1-KB packets (assuming no congestion and no lost packets):

(a) How many RTTs does it take until slow start opens the send window to 1 MB?

(b) How many RTTs does it take to send the file?

(c) If the time to send the file is given by the number of required RTTs multiplied

by the link latency, what is the effective throughput for the transfer? What

percentage of the link bandwidth is utilized?

17 Consider a simple congestion-control algorithm that uses linear increase and mul-

tiplicative decrease but not slow start, that works in units of packets rather than

bytes, and that starts each connection with a congestion window equal to one

packet. Give a detailed sketch of this algorithm. Assume the delay is latency only,

and that when a group of packets is sent, only a single ACK is returned. Plot the

congestion window as a function of round-trip times for the situation in which the

following packets are lost: 9, 25, 30, 38, and 50. For simplicity, assume a perfect

timeout mechanism that detects a lost packet exactly 1 RTT after it is transmitted.

18 For the situation given in the previous problem, compute the effective throughput

achieved by this connection. Assume that each packet holds 1 KB of data and that

the RTT = 100 ms.

Exercises 527

19 During linear increase, TCP computes an increment to the congestion window as

Increment = MSS × (MSS/CongestionWindow)

Explain why computing this increment each time an ACK arrives may not result

in the correct increment. Give a more precise definition for this increment. (Hint:

A given ACK can acknowledge more or less than one MSS’s worth of data.)

20 Under what circumstances may coarse-grained timeouts still occur in TCP even

when the fast retransmit mechanism is being used?

21 Suppose we were to add host-based congestion control to BLAST/CHAN RPC.

What form might this take? Would it be better to add it to BLAST, to CHAN, or

to both jointly?

22 Suppose that between A and B there is a router R. The A–R bandwidth is infinite

(that is, packets are not delayed), but the R–B link introduces a bandwidth delay

of 1 packet per second (that is, 2 packets take 2 seconds, etc.). Acknowledgments

from B to R, though, are sent instantaneously. A sends data to B over a TCP

connection, using slow start but with an arbitrarily large window size. R has a

queue size of 1, in addition to the packet it is sending. At each second, the sender

first processes any arriving ACKs and then responds to any timeouts.

(a) Assuming a fixed TimeOut period of 2 seconds, what is sent and received for

T = 0, 1, . . . , 6 seconds? Is the link ever idle due to timeouts?

(b) What changes if TimeOut is 3 seconds instead?

23 Suppose A, R, and B are as in the previous exercise, except that R’s queue now

has a size of three packets, in addition to the one being transmitted. A starts a

connection using slow start, with an infinite receive window. Fast retransmit is

done on the second duplicate ACK (that is, the third ACK of the same packet);

the TimeOut interval is infinite. Ignore fast recovery; when a packet is lost, let the

window size be 1. Give a table showing, for the first 15 seconds, what A receives,

what A sends, what R sends, R’s queue, and what R drops.

24 Suppose the R–B link in the previous exercise changes from a bandwidth delay to

a propagation delay, so that two packets now take 1 second to send. List what

is sent and received during the first 8 seconds. Assume a static timeout value of

2 seconds, that slow start is used on a timeout, and that ACKs sent at about the

same time are consolidated. Note that R’s queue size is now irrelevant (why?).

528 6 Congestion Control and Resource Allocation

25 Suppose host A reaches host B via routers R1 and R2: A–R1–R2–B. Fast retransmit

is not used, and A calculates TimeOut as 2×EstimatedRTT. Assume that the A–R1

and R2–B links have infinite bandwidth; the R1−→R2 link, however, introduces

a 1-second-per-packet bandwidth delay for data packets (though not ACKs). De-

scribe a scenario in which the R1–R2 link is not 100% utilized, even though A

always has data ready to send. Hint: Suppose A’s CongestionWindow increases

from N to N + 1, where N is R1’s queue size.

26 You are an Internet service provider; your client hosts connect directly to your

routers. You know some hosts are using experimental TCPs and suspect some

may be using a “greedy” TCP with no congestion control. What measurements

might you make at your router to establish that a client was not using slow start at

all? If a client used slow start on startup but not after a timeout, could you detect

that?

27 Defeating TCP congestion-control mechanisms usually requires the explicit coop-

eration of the sender. However, consider the receiving end of a large data transfer

using a TCP modified to ACK packets that have not yet arrived. It may do this

either because not all of the data is necessary or because data that is lost can

be recovered in a separate transfer later. What effect does this receiver behavior

have on the congestion-control properties of the session? Can you devise a way

to modify TCP to avoid the possibility of senders being taken advantage of in this

manner?

28 Consider the TCP trace in Figure 6.29. Identify time intervals representing slow

start on startup, slow start after timeout, and linear-increase congestion avoidance.

Explain what is going on from T = 0.5 to T = 1.9. The TCP version that generated

this trace includes a feature absent from the TCP that generated Figure 6.11. What

is this feature? This trace and the one in Figure 6.13 both lack a feature. What is it?

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

Time (seconds)

70

30
40
50

10

Figure 6.29 TCP trace for Exercise 28.

Exercises 529

29 Suppose you are downloading a large file over a 3-KBps phone link. Your software

displays an average-bytes-per-second counter. How will TCP congestion control

and occasional packet losses cause this counter to fluctuate? Assume that only a

third, say, of the total RTT is spent on the phone link.

30 Suppose TCP is used over a lossy link that loses on average one segment in four. As-

sume the bandwidth×delay window size is considerably larger than four segments.

(a) What happens when we start a connection? Do we ever get to the linear-

increase phase of congestion avoidance?

(b) Without using an explicit feedback mechanism from the routers, would TCP

have any way to distinguish such link losses from congestion losses, at least

over the short term?

(c) Suppose TCP senders did reliably get explicit congestion indications from

routers. Assuming links as above were common, would it be feasible to sup-

port window sizes much larger than four segments? What would TCP have

to do?

31 Suppose two TCP connections share a path through a router R. The router’s queue

size is six segments; each connection has a stable congestion window of three seg-

ments. No congestion control is used by these connections. A third TCP connection

now is attempted, also through R. The third connection does not use congestion

control either. Describe a scenario in which, for at least a while, the third connec-

tion gets none of the available bandwidth, and the first two connections proceed

with 50% each. Does it matter if the third connection uses slow start? How does

full congestion avoidance on the part of the first two connections help solve this?

32 Suppose a TCP connection has a window size of eight segments, an RTT of 800 ms,

the sender sends segments at a regular rate of one every 100 ms, and the receiver

sends ACKs back at the same rate without delay. A segment is lost, and the loss is

detected by the fast retransmit algorithm on the receipt of the third duplicate ACK.

At the point when the ACK of the retransmitted segment finally arrives, how much

total time has the sender lost (compared to lossless transmission) if

(a) the sender waits for the ACK from the retransmitted lost packet before sliding

the window forward again?

(b) the sender uses the continued arrival of each duplicate ACK as an indication

it may slide the window forward one segment?

33 The text states that additive increase is a necessary condition for a congestion-

control mechanism to be stable. Outline a specific instability that might arise if

530 6 Congestion Control and Resource Allocation

all increases were exponential; that is, if TCP continued to use “slow” start after

CongestionWindow increased beyond CongestionThreshold.

34 Discuss the relative advantages and disadvantages of marking a packet (as in the

DECbit mechanism) versus dropping a packet (as in RED gateways).

35 Consider a RED gateway with MaxP = 0.02, and with an average queue length

halfway between the two thresholds.

(a) Find the drop probability Pcount for count = 1 and count = 50.

(b) Calculate the probability that none of the first 50 packets are dropped. Note

that this is (1 − P1) × · · · × (1 − P50).

36 Consider a RED gateway with MaxP = p, and with an average queue length

halfway between the two thresholds.

(a) Calculate the probability that none of the first n packets are dropped.

(b) Find p such that the probability that none of the first n packets are dropped

is α.

37 Explain the intuition behind setting MaxThreshold = 2 × MinThreshold in RED

gateways.

38 In RED gateways, explain why MaxThreshold is actually less than the actual size

of the available buffer pool.

39 Explain the fundamental conflict between tolerating burstiness and controlling

network congestion.

40 Why do you think that the drop probability P of a RED gateway does not simply

increase linearly from P = 0 at MinThresh to P = 1 at MaxThresh?

41 In TCP Vegas, the calculation of ActualRate is done by dividing the amount of

data transmitted in one RTT interval by the length of the RTT.

(a) Show that for any TCP, if the window size remains constant, then the amount

of data transmitted in one RTT interval is constant once a full window is sent.

Assume that the sender transmits each segment instantly upon receiving an

ACK, packets are not lost and are delivered in order, segments are all the same

size, and the first link along the path is not the slowest.

(b) Give a timeline sketch showing that the amount of data per RTT above can

be less than CongestionWindow.

Exercises 531

42 Suppose a TCP Vegas connection measures the RTT of its first packet and sets

BaseRTT to that, but then a network link failure occurs and all subsequent traffic

is routed via an alternative path with twice the RTT. How will TCP Vegas re-

spond? What will happen to the value of CongestionWindow? Assume no actual

timeouts occur, and that β is much smaller than the initial ExpectedRate.

43 Consider the following two causes of a 1-second network delay (assume ACKs

return instantaneously):

■ One intermediate router with a 1-second outbound per-packet bandwidth

delay and no competing traffic

■ One intermediate router with a 100-ms outbound per-packet bandwidth

delay and with a steadily replenished (from another source) 10 packets in

the queue

(a) How might a transport protocol in general distinguish between these two

cases?

(b) Suppose TCP Vegas sends over the above connections, with an initial Conges-

tionWindow of 3 packets. What will happen to CongestionWindow in each

case? Assume BaseRTT = 1 second and β is 1 packet per second.

44 Give an argument why the congestion-control problem is better managed at the

internet level than the ATM level, at least when only part of the internet is ATM.

In an exclusively IP-over-ATM network, is congestion better managed at the cell

level or at the TCP level? Why?

45 Sketch how an ATM switch would implement partial packet discard and early

packet discard. Is either mechanism appreciably simpler?

46 Consider the taxonomy of Figure 6.23.

(a) Give an example of a real-time application that is intolerant/rate adaptive.

(b) Explain why you might expect a loss-tolerant application to be at least some-

what rate adaptive.

(c) Part (b) notwithstanding, give an example of an application that might be

considered tolerant/nonadaptive. Hint: Tolerating even small losses qualifies

an application as loss tolerant; you will need to interpret rate adaptive as the

ability to adjust to substantial bandwidth changes.

47 The transmission schedule (Table 6.4) for a given flow lists for each second the

number of packets sent between that time and the following second. The flow

532 6 Congestion Control and Resource Allocation

Time (seconds) Packets Sent

0 5

1 5

2 1

3 0

4 6

5 1

Table 6.4 Transmission schedule for Exercise 47.

Time (seconds) Packets Sent

0 5

1 5

2 1

3 0

4 6

5 1

Table 6.5 Transmission schedule for Exercise 48.

must stay within the bounds of a token bucket filter. What bucket depth does the

flow need for the following token rates? Assume the bucket is initially full.

(a) 2 packets per second

(b) 4 packets per second

48 The transmission schedule (Table 6.5) for a given flow lists for each second the

number of packets sent between that time and the following second. The flow must

stay within the bounds of a token bucket filter. Find the necessary bucket depth

D as a function of token rate r . Note that r takes only positive integer values.

Assume the bucket is initially full.

49 Suppose a router has accepted flows with the TSpecs shown in Table 6.6, described

in terms of token bucket filters with token rate r packets per second and bucket

Exercises 533

r B

1 10

2 4

4 1

Table 6.6 TSpecs for Exercise 49.

depth B packets. All flows are in the same direction, and the router can forward

one packet every 0.1 second.

(a) What is the maximum delay a packet might face?

(b) What is the minimum number of packets from the third flow that the router

would send over 2.0 seconds, assuming the flow sent packets at its maximum

rate uniformly?

50 Suppose an RSVP router suddenly loses its reservation state, but otherwise remains

running.

(a) What will happen to the existing reserved flows if the router handles reserved

and nonreserved flows via a single FIFO queue?

(b) What might happen to the existing reserved flows if the router used weighted

fair queuing to segregate reserved and nonreserved traffic?

(c) Eventually, the receivers on these flows will request that their reservations be

renewed. Give a scenario in which these requests are denied.

51 Consider the ATM ABR virtual circuit in Figure 6.27, segmented into two control

loops at switch S2.

(a) Suppose resource manager cell RM1 departs from S2 to H1 reporting a high

available rate, but right afterward an RM cell arrives at S2 from H2 reporting

a low available rate for the second half of the circuit. What problem might S2

now face?

(b) When S2 receives RM1 from H1, it might simply hold it while it sends its

own RM2 to H2 and back. When RM2 returns, S2 would now send back

RM1, reducing its rate specification if necessary. Why might such a strategy

be undesirable? Hint: Recall the purpose of segmentation into smaller control

loops.

End-to-End Data

It is a capital mistake to theorize before one has data.

—Sir Arthur Conan Doyle

F
rom the network’s perspective, application programs send messages to each

other. Each of these messages is just an uninterpreted string of bytes. From

the application’s perspective, however, these messages contain various kinds of

data—arrays of integers, video frames, lines of text, digital images, and so on. In other

words, these bytes have meaning. We now consider the problem of how to best encode

P R O B L E M

What Do We Do with the Data?

the different kinds of data that appli-

cation programs want to exchange

into byte strings. In many respects,

this is similar to the problem of

encoding byte strings into electro-

magnetic signals that we saw in

Section 2.2.

Thinking back to our discussion of encoding in Chapter 2, there were essentially

two concerns. The first was that the receiver be able to extract the same message

from the signal as the transmitter sent; this was the framing problem. The second was

making the encoding as efficient as possible. Both of these concerns are present when

encoding application data into network messages.

In the case of the sender and receiver seeing the same data, the issue is one

of the two sides agreeing to a message format, often called the presentation format.

If the sender wants to send the receiver an array of integers, for example, then the

two sides have to agree what each integer looks like (how big it is and whether

the most significant bit comes first or last) and how many elements are in the array.

Section 7.1 describes various encodings of traditional computer data, such as integers,

floating-point numbers, character strings, arrays, and structures. Well-established for-

mats also exist for multimedia data: Video, for example, is typically transmitted in

Moving Picture Experts Group (MPEG) format, and still images are usually trans-

mitted in Joint Photographic Experts Group (JPEG) format or Graphical Interchange

Format (GIF). Because these formats are primarily noteworthy for the compression

7
algorithms they use, we consider them in that context in

Section 7.2.

The second main concern of this chapter, the effi-

ciency of the encoding, has a rich history, dating back

to Shannon’s pioneer work on information theory in the

1940s. In effect, there are two opposing forces at work

here. In one direction, you would like as much redun-

dancy in the data as possible so that the receiver is able

to extract the right data even if errors are introduced into

the message. The error detection and correcting codes we

saw in Section 2.4 add redundant information to messages

for exactly this purpose. In the other direction, we would

like to remove as much redundancy from the data as pos-

sible so that we may encode it in as few bits as possible.

This is the goal of data compression, which we discuss in

Section 7.2.

Compression is important to the designers of net-

works for a wealth of reasons, not just because we rarely

find ourselves with an abundance of bandwidth every-

where in the network. For example, the way we design

a compression algorithm affects our sensitivity to lost or

delayed data, and thus may influence the design of re-

source allocation mechanisms and end-to-end protocols.

Conversely, if the underlying network is unable to guar-

antee a fixed amount of bandwidth for the duration of a

videoconference, we may choose to design compression al-

gorithms that can adapt to changing network conditions.

An important aspect of both presentation format-

ting and data compression is that they require the sending

and receiving hosts to process every byte of data in the

message. It is for this reason that presentation formatting

and compression are sometimes called data manipulation

functions. This is in contrast to most of the protocols

we have seen up to this point, which process a message

without ever looking at its contents. Because of this need

to read, compute on, and write every byte of data in a

message, data manipulations affect end-to-end through-

put over the network. In fact, these manipulations can be

the limiting factor.

536 7 End-to-End Data

Application
data

Presentation
encoding

Application
data

Presentation
decoding

Message Message Message…

Figure 7.1 Presentation formatting involves encoding and decoding application data.

7.1 Presentation Formatting

One of the most common transformations of network data is from the representation

used by the application program into a form that is suitable for transmission over a

network and vice versa. This transformation is typically called presentation formatting.

As illustrated in Figure 7.1, the sending program translates the data it wants to transmit

from the representation it uses internally into a message that can be transmitted over the

network; that is, the data is encoded in a message. On the receiving side, the application

translates this arriving message into a representation that it can then process; that

is, the message is decoded. Encoding is sometimes called argument marshalling, and

decoding is sometimes called unmarshalling. This terminology comes from the RPC

world, where the client thinks it is invoking a procedure with a set of arguments,

but these arguments are then “brought together and ordered in an appropriate and

effective way”1 to form a network message.

You might ask what makes this problem challenging enough to warrant a name

like marshalling. One reason is that computers represent data in different ways. For

example, some computers represent floating-point numbers in IEEE standard 754 for-

mat, while other machines still use their own nonstandard format. Even for something

as simple as integers, different architectures use different sizes (e.g., 16-bit, 32-bit, 64-

bit). To make matters worse, on some machines integers are represented in big-endian

form (the most significant bit of a word is in the byte with the lowest address), while

on other machines integers are represented in little-endian form (the most significant

bit is in the byte with the highest address). The Motorola 680x0 is an example of a

big-endian architecture, and the Intel 80x86 is an example of a little-endian archi-

tecture. For example, the big-endian and little-endian representations of the integer

34,677,374 are given in Figure 7.2.

1This is a definition of marshalling taken from Webster’s New Collegiate Dictionary.

7.1 Presentation Formatting 537

(126)(34)(17)(2)

00000010Big-endian

Little-endian

(2)(17)(34)(126)

Low
address

High
address

0 0111111 00 001 0 01

00 001 001 00 001 0 01

00 001 001 000 000 01

0 0111111

Figure 7.2 Big-endian and little-endian byte order for the integer 34,677,374.

Another reason that marshalling is difficult is that application programs are

written in different languages, and even when you are using a single language, there

may be more than one compiler. For example, compilers have a fair amount of latitude

in how they lay out structures (records) in memory, such as how much padding they put

between the fields that make up the structure. Thus, you could not simply transmit

a structure from one machine to another, even if both machines were of the same

architecture and the program was written in the same language, because the compiler

on the destination machine might align the fields in the structure differently.

7.1.1 Taxonomy

Although anyone who has worked on argument marshalling would tell you that no

rocket science is involved—it is a small matter of bit twiddling—there are a surprising

number of design choices that you must address. We begin by giving a simple taxon-

omy for argument marshalling systems. The following is by no means the only viable

taxonomy, but it is sufficient to cover most of the interesting alternatives.

Data Types

The first question is what data types the system is going to support. In general, we can

classify the types supported by an argument marshalling mechanism at three levels.

Each level complicates the task faced by the marshalling system.

At the lowest level, a marshalling system operates on some set of base types.

Typically, the base types include integers, floating-point numbers, and characters. The

system might also support ordinal types and booleans. As described above, the impli-

cation of the set of base types is that the encoding process must be able to convert each

base type from one representation to another, for example, convert an integer from

big-endian to little-endian.

538 7 End-to-End Data

At the next level are flat types—structures and arrays. While flat types might

at first not appear to complicate argument marshalling, the reality is that they do.

The problem is that the compilers used to compile application programs sometimes

insert padding between the fields that make up the structure so as to align these fields

on word boundaries. The marshalling system typically packs structures so that they

contain no padding.

At the highest level, the marshalling system might have to deal with complex

types—those types that are built using pointers. That is, the data structure that one

program wants to send to another might not be contained in a single structure, but

might instead involve pointers from one structure to another. A tree is a good ex-

ample of a complex type that involves pointers. Clearly, the data encoder must pre-

pare the data structure for transmission over the network because pointers are imple-

mented by memory addresses, and just because a structure lives at a certain memory

address on one machine does not mean it will live at the same address on another

machine. In other words, the marshalling system must serialize (flatten) complex data

structures.

◮ In summary, depending on how complicated the type system is, the task of argu-

ment marshalling usually involves converting the base types, packing the structures,

and linearizing the complex data structures, all to form a contiguous message that can

be transmitted over the network. Figure 7.3 illustrates this task.

Conversion Strategy

Once the type system is established, the next issue is what conversion strategy the

argument marshaller will use. There are two general options: canonical intermediate

form and receiver-makes-right. We consider each, in turn.

Argument marshaller

Application data structure

Figure 7.3 Argument marshalling: converting, packing, and linearizing.

7.1 Presentation Formatting 539

The idea of canonical intermediate form is to settle on an external representation

for each type; the sending host translates from its internal representation to this exter-

nal representation before sending data, and the receiver translates from this external

representation into its local representation when receiving data. To illustrate the idea,

consider integer data; other types are treated in a similar manner. You might declare

that the big-endian format will be used as the external representation for integers.

The sending host must translate each integer it sends into big-endian form, and the

receiving host must translate big-endian integers into whatever representation it uses.

(This is what is done in the Internet for protocol headers.) Of course, a given host

might already use big-endian form, in which case no conversion is necessary.

The alternative, which is sometimes called receiver-makes-right, has the sender

transmit data in its own internal format; the sender does not convert the base types,

but usually has to pack and flatten more complex data structures. The receiver is then

responsible for translating the data from the sender’s format into its own local format.

The problem with this strategy is that every host must be prepared to convert data from

all other machine architectures. In networking, this is known as an N-by-N solution:

Each of Nmachine architectures must be able to handle all Narchitectures. In contrast,

in a system that uses a canonical intermediate form, each host needs to know only

how to convert between its own representation and a single other representation—the

external one.

Using a common external format is clearly the correct thing to do, right? This

has certainly been the conventional wisdom in the networking community for the past

25 years. The answer is not cut-and-dried, however. It turns out that there are not that

many different representations for the various base classes, or said another way, N is

not that large. In addition, the most common case is for two machines of the same

type to be communicating with each other. In this situation, it seems silly to translate

data from that architecture’s representation into some foreign external representation,

only to have to translate the data back into the same architecture’s representation on

the receiver.

A third option, although we know of no existing system that exploits it, is to use

receiver-makes-right if the sender knows that the destination has the same architec-

ture; the sender would use some canonical intermediate form if the two machines use

different architectures. How would a sender learn the receiver’s architecture? It could

learn this information either from a name server or by first using a simple test case to

see if the appropriate result occurs.

Tags

The third issue in argument marshalling is how the receiver knows what kind of data

is contained in the message it receives. There are two common approaches: tagged and

untagged data. The tagged approach is more intuitive, so we describe it first.

540 7 End-to-End Data

type =

INT
len = 4 value = 417892

Figure 7.4 A 32-bit integer encoded in a tagged message.

A tag is any additional information included in a message—beyond the concrete

representation of the base types—that helps the receiver decode the message. There are

several possible tags that might be included in a message. For example, each data item

might be augmented with a type tag. A type tag indicates that the value that follows is

an integer, a floating-point number, or whatever. Another example is a length tag. Such

a tag is used to indicate the number of elements in an array or the size of an integer.

A third example is an architecture tag, which might be used in conjunction with the

receiver-makes-right strategy to specify the architecture on which the data contained

in the message was generated. Figure 7.4 depicts how a simple 32-bit integer might be

encoded in a tagged message.

The alternative, of course, is not to use tags. How does the receiver know how to

decode the data in this case? It knows because it was programmed to know. In other

words, if you call a remote procedure that takes two integers and a floating-point

number as arguments, then there is no reason for the remote procedure to inspect tags

to know what it has just received. It simply assumes that the message contains two

integers and a float, and decodes it accordingly. Note that while this works for most

cases, the one place it breaks down is when sending variable-length arrays. In such a

case, a length tag is commonly used to indicate how long the array is.

It is also worth noting that the untagged approach means that the presentation

formatting is truly end-to-end. It is not possible for some intermediate agent to interpret

the message unless the data is tagged. Why would an intermediate agent need to

interpret a message, you might ask? Stranger things have happened, mostly resulting

from ad hoc solutions to unexpected problems that the system was not engineered to

handle. Poor network design is beyond the scope of this book.

Stubs

A stub is the piece of code that implements argument marshalling. Stubs are typically

used to support RPC. On the client side, the stub marshalls the procedure arguments

into a message that can be transmitted by means of the RPC protocol. On the server

side, the stub converts the message back into a set of variables that can be used as

arguments to call the remote procedure. Stubs can be either interpreted or compiled.

7.1 Presentation Formatting 541

Call P

Client
stub

RPC

Arguments

Marshalled
arguments

Interface
descriptor for
procedure P

Stub
compiler

Message

Specification

P

Server
stub

RPC

Arguments

Marshalled
arguments

Code Code

Figure 7.5 Stub compiler takes interface description as input and outputs client and
server stubs.

In a compilation-based approach, each procedure has a “customized” client and

server stub. While it is possible to write stubs by hand, they are typically generated by

a stub compiler, based on a description of the procedure’s interface. This situation is

illustrated in Figure 7.5. Since the stub is compiled, it is usually very efficient. In an

interpretation-based approach, the system provides “generic” client and server stubs

that have their parameters set by a description of the procedure’s interface. Because

it is easy to change this description, interpreted stubs have the advantage of being

flexible. Compiled stubs are more common in practice.

7.1.2 Examples (XDR, ASN.1, NDR)

We now briefly describe three popular network data representations in terms of this

taxonomy. We use the integer base type to illustrate how each system works.

XDR

External Data Representation (XDR) is the network format used with SunRPC. In the

taxonomy just introduced, XDR

542 7 End-to-End Data

■ supports the entire C type system with the exception of function pointers

■ defines a canonical intermediate form

■ does not use tags (except to indicate array lengths)

■ uses compiled stubs

An XDR integer is a 32-bit data item that encodes a C integer. It is represented in

twos complement notation, with the most significant byte of the C integer in the first

byte of the XDR integer, and the least significant byte of the C integer in the fourth byte

of the XDR integer. That is, XDR uses big-endian format for integers. XDR supports

both signed and unsigned integers, just as C does.

XDR represents variable-length arrays by first specifying an unsigned integer

(4 bytes) that gives the number of elements in the array, followed by that many elements

of the appropriate type. XDR encodes the components of a structure in the order of

their declaration in the structure. For both arrays and structures, the size of each

element/component is represented in a multiple of 4 bytes. Smaller data types are

padded out to 4 bytes with 0s. The exception to this “pad to 4 bytes” rule is made for

characters, which are encoded one per byte.

The following code fragment gives an example C structure (item) and the XDR

routine that encodes/decodes this structure (xdr item). Figure 7.6 schematically

depicts XDR’s on-the-wire representation of this structure when the field name is

seven characters long and the array list has three values in it.

In this example, xdr array, xdr int, and xdr string are three primitive functions

provided by XDR to encode and decode arrays, integers, and character strings, respec-

tively. Argument xdrs is a “context” variable that XDR uses to keep track of where it is

in the message being processed; it includes a flag that indicates whether this routine is

being used to encode or decode the message. In other words, routines like xdr item are

used on both the client and the server. Note that the application programmer can either

write the routine xdr item by hand or use a stub compiler called rpcgen (not shown)

Count Name

J O3 7 H N S O N

List

3 4 9 7 2 658 321

Figure 7.6 Example encoding of a structure in XDR.

7.1 Presentation Formatting 543

to generate this encoding/decoding routine. In the latter case, rpcgen takes the remote

procedure that defines the data structure item as input, and outputs the corresponding

stub.

#define MAXNAME 256;
#define MAXLIST 100;

struct item {
int count;
char name[MAXNAME];
int list[MAXLIST];

};

bool_t
xdr_item(XDR *xdrs, struct item *ptr)
{

return(xdr_int(xdrs, &ptr->count) &&
xdr_string(xdrs, &ptr->name, MAXNAME) &&
xdr_array(xdrs, &ptr->list, &ptr->count, MAXLIST,

sizeof(int), xdr_int));
}

Exactly how XDR performs depends, of course, on the complexity of the data.

In a simple case of an array of integers, where each integer has to be converted from

one byte order to another, an average of three instructions are required for each byte,

meaning that converting the whole array is a memory-bound operation. On a typical

machine today, this means an upper limit on the order of 100 MBps (800 Mbps). More

complex conversions that require more instructions per byte will obviously run slower.

ASN.1

Abstract Syntax Notation One (ASN.1) is an ISO standard that defines, among other

things, a representation for data sent over a network. The representation-specific part

of ASN.1 is called the Basic Encoding Rules (BER). ASN.1 supports the C type system

without function pointers, defines a canonical intermediate form, and uses type tags.

Its stubs can be either interpreted or compiled. One of the claims to fame of ASN.1

BER is that it is used by the Internet standard Simple Network Management Protocol

(SNMP).

ASN.1 represents each data item with a triple of the form

〈 tag, length, value 〉

The tag is typically an 8-bit field, although ASN.1 allows for the definition of multibyte

tags. The length field specifies how many bytes make up the value; we discuss length

544 7 End-to-End Data

value

type typelength valuelength type valuelength

Figure 7.7 Compound types created by means of nesting in ASN.1 BER.

INT 4 4-byte integer

Figure 7.8 ASN.1 BER representation for a 4-byte integer.

more below. Compound data types, such as structures, can be constructed by nesting

primitive types, as illustrated in Figure 7.7.

If the value is 127 or fewer bytes long, then the length is specified in a single byte.

Thus, for example, a 32-bit integer is encoded as a 1-byte type, a 1-byte length, and

the 4 bytes that encode the integer, as illustrated in Figure 7.8. The value itself, in the

case of an integer, is represented in twos complement notation and big-endian form,

just as in XDR. Keep in mind that even though the value of the integer is represented

in exactly the same way in both XDR and ASN.1, the XDR representation has neither

the type nor the length tags associated with that integer. These two tags both take up

space in the message and, more importantly, require processing during marshalling

and unmarshalling. This is one reason that ASN.1 is not as efficient as XDR. Another

is that the very fact that each data value is preceded by a length field means that the

data value is unlikely to fall on a natural byte boundary (e.g., an integer beginning on

a word boundary). This complicates the encoding/decoding process.

If the value is 128 or more bytes long, then multiple bytes are used to specify

its length. At this point you may be asking why a byte can specify a length of up to

127 bytes rather than 256. The reason is that 1 bit of the length field is used to denote

how long the length field is. A 0 in the eighth bit indicates a 1-byte length field. To

specify a longer length, the eighth bit is set to 1, and the other 7 bits indicate how

many additional bytes make up the length. Figure 7.9 illustrates a simple 1-byte length

and a multibyte length.

NDR

Network Data Representation (NDR) is the data-encoding standard used in the Dis-

tributed Computing Environment (DCE). Unlike XDR and ASN.1, NDR uses receiver-

makes-right. It does this by inserting an architecture tag at the front of each message;

7.1 Presentation Formatting 545

length0

k1 k containing length

(a)

(b)

Figure 7.9 ASN.1 BER representation for length: (a) 1 byte; (b) multibyte.

IntegrRep

0 4 8 16 24 31

FloatRepCharRep Extension 1 Extension 2

Figure 7.10 NDR’s architecture tag.

individual data items are untagged. NDR uses a compiler to generate stubs. This com-

piler takes a description of a program written in the Interface Definition Language

(IDL) and generates the necessary stubs. IDL looks pretty much like C, and so essen-

tially supports the C type system.

Figure 7.10 illustrates the 4-byte architecture definition tag that is included at

the front of each NDR-encoded message. The first byte contains two 4-bit fields. The

first field, IntegrRep, defines the format for all integers contained in the message. A

0 in this field indicates big-endian integers, and a 1 indicates little-endian integers.

The CharRep field indicates what character format is used: 0 means ASCII (American

Standard Code for Information Interchange) and 1 means EBCDIC (an older, IBM-

defined alternative to ASCII). Next, the FloatRep byte defines which floating-point

representation is being used: 0 means IEEE 754, 1 means VAX, 2 means Cray, and

3 means IBM. The final 2 bytes are reserved for future use. Note that in simple cases,

such as arrays of integers, NDR does the same amount of work as XDR, and so it is

able to achieve the same performance.

7.1.3 Markup Languages (XML)

Although we have been discussing the presentation formatting problem from the per-

spective of RPC—that is, how do you encode primitive data types and compound data

structures so they can be sent from a client program to a server program—the same

basic problem occurs in other settings. For example, how does a Web server describe

a Web page so that any number of different browsers know what to display on the

screen? In this specific case, the answer is the HyperText Markup Language (HTML),

546 7 End-to-End Data

which indicates that certain character strings should be displayed in bold or italics,

what font type and size should be used, and where images should be positioned. In

general, many of the applications described in Chapter 9 have a corresponding data

representation standard.

In the case of Web servers/browsers, viewing HTML as a presentation formatting

standard is a bit of a stretch, as it has more in common with text formatting languages

than it does with ASN.1 or XDR. However, there is a generalization of HTML that

can legitimately be viewed as a data representation standard: the Extensible Markup

Language (XML). Unlike HTML, which describes how to display data, XML simply

describes data, independent of whether it is displayed, processed, or sent to another

entity on the Internet.

XML is text based, and looks very much like HTML. For example, the following

is an XML description of an employee record; it’s called an XML document and might

be stored in a file named employee.xml. The first line specifies the version of XML

being used, and the remaining lines specify the four fields that make up the employee

record, the last of which (hiredate) contains three subfields. In other words, XML

allows users to specify a nested structure of tag/value pairs. This is similar to XDR,

ASN.1, and NDR’s ability to represent compound types, but in a format that can be

both processed by programs and read by humans.

<?xml version="1.0"?>
<employee>

<name>John Doe</name>
<title>Head Bottle Washer</title>
<id>123456789</id>
<hiredate>

<day>5</day>
<month>June</month>
<year>1986</year>

</hiredate>
</employee>

What’s missing in this example is instructions on how to interpret the document.

For example, is year “1986” a string or an integer, and if it’s an integer, what repre-

sentation is used? The first part of the answer is that everything in XML is text based,

so for one party to interpret an XML structure passed to it from another party, it

only has to parse the text. In other words, ASCII serves as the common intermediate

representation in XML. Once the second party has parsed the XML, however, it still

needs to learn what operations it is allowed to perform on the individual data fields.

For example, is it allowed to subtract one year from another? How about ids? (How

one party might display such a record is another question we might ask, which is why

it is correct to view XML as a generalization of HTML.)

7.1 Presentation Formatting 547

To address this issue, XML allows users to define a schema, which is a database

term for a specification of how to interpret a collection of data. The following is a

schema for the above example. Note that the schema is itself a valid XML document

that might be saved in a file named employee.xsd.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.cs.princeton.edu/XMLSchema"
targetNamespace="http://www.cs.princeton.edu"
xmlns="http://www.cs.princeton.edu"
elementFormDefault="qualified">

<xs:element name="employee">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="title" type="xs:string"/>
<xs:element name="id" type="xs:string"/>
<xs:element name="hiredate">
<xs:complexType>
<xs:sequence>
<xs:element name="day" type="xs:integer"/>
<xs:element name="month" type="xs:string"/>
<xs:element name="year" type="xs:integer"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

The lines at the top of the document record information about the context in which the

schema is defined. It’s not important to understand the details for our discussion. There

is an obvious relationship between the rest of the lines and document employee.xml

defined above. For example,

<xs:element name="title" type="xs:string"/>

says that the value in the title field is a string. XML supports several built-in types,

including the following:

xs:string
xs:decimal
xs:integer
xs:boolean
xs:date
xs:time

548 7 End-to-End Data

Importantly, it is possible for an XML document to reference the schema that

defines how it should be interpreted. This could be done by replacing the second line

of our example employee.xml document with the following:

<employee xmlns="http://www.cs.princeton.edu/XMLSchema"

xmlns:xsi="http://www.cs.princeton.edu/XMLSchema-instance"

xsi:schemaLocation="http://www.cs.princeton.edu/schema/

employee.xsd">

Again, the details are unimportant; the relevant information is that the schema for this

document is available in file employee.xsd, which can be found on the Internet at

http://www.cs.princeton.edu/schema/employee.xsd

Not surprisingly, XML supports a far richer set of capabilities than this trivial

example illustrates, but in the end, the idea behind XML is very simple: It defines a

syntax for describing data that applications might share on the Internet.

7.2 Data Compression

Sometimes application programs need to send more data in a timely fashion than the

bandwidth of the network supports. For example, a video application might have a

10-Mbps video stream that it wants to transmit, but it has only a 1-Mbps network

available to it. As anyone who has used the Internet knows, it is rare that you can move

data between two points in the Internet at anything close to 1 Mbps. Furthermore,

the resource allocation model of the Internet at the time of writing depends heavily

on the fact that individual applications do not use much more than their “fair share”

of the bandwidth on a congested link. For all these reasons, it is often important to

first compress the data at the sender, then transmit it over the network, and finally to

decompress it at the receiver.

In many ways, compression is inseparable from data encoding. That is, in think-

ing about how to encode a piece of data in a set of bits, we might just as well think

about how to encode the data in the smallest set of bits possible. For example, if you

have a block of data that is made up of the 26 symbols A through Z, and if all of these

symbols have an equal chance of occurring in the data block you are encoding, then

encoding each symbol in 5 bits is the best you can do (since 25 = 32 is the lowest power

of 2 above 26). If, however, the symbol R occurs 50% of the time, then it would be a

good idea to use fewer bits to encode the R than any of the other symbols. In general,

if you know the relative probability that each symbol will occur in the data, then you

can assign a different number of bits to each possible symbol in a way that minimizes

the number of bits it takes to encode a given block of data. This is the essential idea

of Huffman codes, one of the important early developments in data compression.

7.2 Data Compression 549

There are two classes of compression algorithms. The first, called lossless com-

pression, ensures that the data recovered from the compression/decompression process

is exactly the same as the original data. A lossless compression algorithm is used to

compress file data, such as executable code, text files, and numeric data, because pro-

grams that process such file data cannot tolerate mistakes in the data. In contrast, lossy

compression does not promise that the data received is exactly the same as the data

sent. This is because a lossy algorithm removes information that it cannot later restore.

Hopefully, however, the lost information will not be missed by the receiver. Lossy algo-

rithms are used to compress still images, video, and audio. This makes sense because

such data often contains more information than the human eye or ear can perceive,

and for that matter, may already contain errors and imperfections that the human

brain is able to compensate for. Also, lossy algorithms typically achieve much better

compression ratios than do their lossless counterparts; they can be as much as an order

of magnitude better.

It might seem that compressing your data before sending it would always be

a good idea, since the network would be able to deliver compressed data in less

time than uncompressed data. This is not necessarily the case, however. Compression/

decompression algorithms often involve time-consuming computations. The question

you have to ask is whether or not the time it takes to compress/decompress the data

is worthwhile given such factors as the host’s processor speed and the network band-

width. Specifically, if Bc is the average bandwidth at which data can be pushed through

the compressor and decompressor (in series), Bn is the network bandwidth (including

network processing costs) for uncompressed data and r is the average compression

ratio, and if we assume that all the data is compressed before any of it is transmitted,

then the time taken to send x bytes of uncompressed data is

x/Bn

whereas the time to compress it and send the compressed data is

x/Bc + x/(r Bn)

Thus, compression is beneficial if

x/Bc + x/(r Bn) < x/Bn

which is equivalent to

Bc > r/(r − 1) × Bn

For example, for a compression ratio of 2, Bc would have to be greater than 2 × Bn

for compression to make sense.

550 7 End-to-End Data

For many compression algorithms, we may not need to compress the whole data

set before beginning transmission (videoconferencing would be impossible if we did),

but rather we need to collect some amount of data (perhaps a few frames of video)

first. The amount of data needed to “fill the pipe” in this case would be used as the

value of x in the above equation.

Of course, when talking about lossy compression algorithms, processing re-

sources are not the only factor. Depending on the exact application, users are willing

to make very different trade-offs between bandwidth (or delay) and extent of infor-

mation loss due to compression. For example, a radiologist reading a mammogram is

unlikely to tolerate any significant loss of image quality and might well tolerate a delay

of several hours in retrieving an image over a network. By contrast, it has become quite

clear that many people will tolerate questionable audio quality in exchange for free

global telephone calls (not to mention the ability to talk on the phone while driving).

7.2.1 Lossless Compression Algorithms

We begin by introducing three lossless compression algorithms. We do not describe

these algorithms in much detail—we just give the essential idea—since it is the lossy

algorithms used to compress image and video data that are of the greatest utility in

today’s network environment. We do comment, though, on how well these lossless

algorithms work on digital imagery. Some of the ideas exploited by these lossless

techniques show up again in later sections when we consider the lossy algorithms that

are used to compress images.

Run Length Encoding

Run length encoding (RLE) is a compression technique with a brute-force simplicity.

The idea is to replace consecutive occurrences of a given symbol with only one copy of

the symbol, plus a count of how many times that symbol occurs—hence the name “run

length.” For example, the string AAABBCDDDD would be encoded as 3A2B1C4D.

RLE can be used to compress digital imagery by comparing adjacent pixel values

and then encoding only the changes. For images that have large homogeneous regions,

this technique is quite effective. For example, it is not uncommon that RLE can achieve

compression ratios on the order of 8-to-1 for scanned text images. RLE works well on

such files because they often contain a large amount of white space that can be removed.

In fact, RLE is the key compression algorithm used to transmit faxes. However, for

images with even a small degree of local variation, it is not uncommon for compression

to actually increase the image byte size, since it takes 2 bytes to represent a single symbol

when that symbol is not repeated.

7.2 Data Compression 551

Differential Pulse Code Modulation

Another simple lossless compression algorithm is Differential Pulse Code Modulation

(DPCM). The idea here is to first output a reference symbol and then, for each symbol

in the data, to output the difference between that symbol and the reference symbol. For

example, using symbol A as the reference symbol, the string AAABBCDDDD would

be encoded as A0001123333 since A is the same as the reference symbol, B has a

difference of 1 from the reference symbol, and so on. Note that this simple example

does not illustrate the real benefit of DPCM, which is that when the differences are

small, they can be encoded with fewer bits than the symbol itself. In this example,

the range of differences 0–3 can be represented with 2 bits each, rather than the 7 or

8 bits required by the full character. As soon as the difference becomes too large, a

new reference symbol is selected.

DPCM works better than RLE for most digital imagery, since it takes advantage

of the fact that adjacent pixels are usually similar. Due to this correlation, the dynamic

range of the differences between the adjacent pixel values can be significantly less than

the dynamic range of the original image, and this range can therefore be represented

using fewer bits. Using DPCM, we have measured compression ratios of 1.5-to-1 on

digital images.

A slightly different approach, called delta encoding, simply encodes a symbol

as the difference from the previous one. Thus, for example, AAABBCDDDD would

be represented as A001011000. Note that delta encoding is likely to work well for

encoding images where adjacent pixels are similar. It is also possible to perform RLE

after delta encoding, since we might find long strings of 0s if there are many similar

symbols next to each other.

Dictionary-Based Methods

The final lossless compression method we consider is the dictionary-based approach,

of which the Lempel-Ziv (LZ) compression algorithm is the best known. The Unix

compress command uses a variation of the LZ algorithm.

The idea of a dictionary-based compression algorithm is to build a dictionary

(table) of variable-length strings (think of them as common phrases) that you expect

to find in the data, and then to replace each of these strings when it appears in the

data with the corresponding index to the dictionary. For example, instead of working

with individual characters in text data, you could treat each word as a string and

output the index in the dictionary for that word. To further elaborate on this example,

the word “compression” has the index 4978 in one particular dictionary; it is the

4978th word in /usr/share/dict/words. To compress a body of text, each time the string

“compression” appears, it would be replaced by 4978. Since this particular dictionary

552 7 End-to-End Data

has just over 25,000 words in it, it would take 15 bits to encode the index, meaning

that the string “compression” could be represented in 15 bits rather than the 77 bits

required by 7-bit ASCII. This is a compression ratio of 5-to-1!

Of course, this leaves the question of where the dictionary comes from. One

option is to define a static dictionary, preferably one that is tailored for the data being

compressed. A more general solution, and the one used by LZ compression, is to

adaptively define the dictionary based on the contents of the data being compressed.

In this case, however, the dictionary constructed during compression has to be sent

along with the data so that the decompression half of the algorithm can do its job.

Exactly how you build an adaptive dictionary has been a subject of extensive research;

we discuss important papers on the subject at the end of this chapter.

A variation of the LZ algorithm is used to compress digital images in the Graph-

ical Interchange Format (GIF). Before doing that, GIF first reduces 24-bit color images

to 8-bit color images. This is done by identifying the colors used in the picture, of which

there will typically be considerably fewer than 224, and then picking the 256 colors

that most closely approximate the colors used in the picture. These colors are stored

in a table, which can be indexed with an 8-bit number, and the value for each pixel is

replaced by the appropriate index. Note that this is an example of lossy compression

for any picture with more than 256 colors. GIF then runs an LZ variant over the

result, treating common sequences of pixels as the strings that make up the dictionary.

Using this approach, GIF is sometimes able to achieve compression ratios on the order

of 10-to-1, but only when the image consists of a relatively small number of discrete

colors. Images of natural scenes, which often include a more continuous spectrum of

colors, cannot be compressed at this ratio using GIF. As another data point, we were

able to get a 2-to-1 compression ratio when we applied the LZ-based Unix compress

command to the source code for the protocols described in this book.

7.2.2 Image Compression (JPEG)

Given the increase in the use of digital imagery in the past few years—this use was

spawned by the invention of graphical displays, not high-speed networks—the need

for compression algorithms designed for digital imagery data has grown more and

more critical. In response to this need, the ISO has defined a digital image format

known as JPEG, named after the Joint Photographic Experts Group that designed it.

(The “Joint” in JPEG stands for a joint ISO/ITU effort.) This section describes the

compression algorithm at the heart of JPEG. The next section then describes a related

format—MPEG—that is used for video data.

Before describing JPEG compression, one point that needs to be made is that

JPEG, GIF, and MPEG are more than just compression algorithms. They also define

the format for image or video data, much the same way that XDR, NDR, and ASN.1

7.2 Data Compression 553

Source
image

JPEG compression

DCT Quantization Encoding
Compressed

image

Figure 7.11 Block diagram of JPEG compression.

define the format for numeric and string data. However, this section concentrates on

the compression aspects of these standards.

JPEG compression takes place in three phases, as illustrated in Figure 7.11. On

the compression side, the image is fed through these three phases one 8 × 8 block at a

time. The first phase applies the discrete cosine transform (DCT) to the block. If you

think of the image as a signal in the spatial domain, then DCT transforms this signal

into an equivalent signal in the spatial frequency domain. This is a lossless operation

but a necessary precursor to the next, lossy step. After the DCT, the second phase

applies a quantization to the resulting signal and, in so doing, loses the least significant

information contained in that signal. The third phase encodes the final result, but in

so doing, adds an element of lossless compression to the lossy compression achieved

by the first two phases. Decompression follows these same three phases, but in reverse

order.

The following discussion describes each phase in more detail. It is simplified by

considering only grayscale images; color images are discussed at the end of this section.

In the case of grayscale images, each pixel in the image is given by an 8-bit value that

indicates the brightness of the pixel, where 0 equals white and 255 equals black.

DCT Phase

DCT is a transformation closely related to the fast Fourier transform (FFT). It takes

an 8 × 8 matrix of pixel values as input and outputs an 8 × 8 matrix of frequency

coefficients. You can think of the input matrix as a 64-point signal that is defined in two

spatial dimensions (x and y); DCT breaks this signal into 64 spatial frequencies. To get

an intuitive feel for spatial frequency, imagine yourself moving across a picture in, say,

the x direction. You would see the value of each pixel varying as some function of x.

If this value changes slowly with increasing x, then it has a low spatial frequency, and

if it changes rapidly, it has a high spatial frequency. So the low frequencies correspond

to the gross features of the picture, while the high frequencies correspond to fine

detail. The idea behind the DCT is to separate the gross features, which are essential

to viewing the image, from the fine detail, which is less essential and, in some cases,

might be barely perceived by the eye.

554 7 End-to-End Data

DCT, along with its inverse, which is performed during decompression, is defined

by the following formulas:

DCT(i, j) =
1

√
2N

C(i)C(j)
N−1
∑

x=0

N−1
∑

y=0

pixel(x, y) cos

[

(2x + 1)iπ

2N

]

cos

[

(2y + 1) jπ

2N

]

pixel(x, y) =
1

√
2N

N−1
∑

i=0

N−1
∑

j=0

C(i)C(j)DCT(i, j) cos

[

(2x + 1)iπ

2N

]

cos

[

(2y + 1) jπ

2N

]

C(x) =
{

1√
2

if x = 0

1 if x > 0

where pixel(x, y) is the grayscale value of the pixel at position (x, y) in the 8×8 block

being compressed; N = 8 in this case.

The first frequency coefficient, at location (0,0) in the output matrix, is called

the DC coefficient. Intuitively, we can see that the DC coefficient is a measure of the

average value of the 64 input pixels. The other 63 elements of the output matrix

are called the AC coefficients. They add the higher-spatial-frequency information to

this average value. Thus, as you go from the first frequency coefficient toward the

64th frequency coefficient, you are moving from low-frequency information to high-

frequency information, from the broad strokes of the image to finer and finer detail.

These higher-frequency coefficients are increasingly unimportant to the perceived qual-

ity of the image. It is the second phase of JPEG that decides which portion of which

coefficients to throw away.

Quantization Phase

The second phase of JPEG is where the compression becomes lossy. DCT does not

itself lose information; it just transforms the image into a form that makes it easier to

know what information to remove. (Although not lossy, per se, there is of course some

loss of precision during the DCT phase because of the use of fixed-point arithmetic.)

Quantization is easy to understand—it’s simply a matter of dropping the insignificant

bits of the frequency coefficients.

To see how the quantization phase works, imagine that you want to compress

some whole numbers less than 100, for example, 45, 98, 23, 66, and 7. If you decided

that knowing these numbers truncated to the nearest multiple of 10 is sufficient for

your purposes, then you could divide each number by the quantum 10 using integer

arithmetic, yielding 4, 9, 2, 6, and 0. These numbers can each be encoded in 4 bits

rather than the 7 bits needed to encode the original numbers.

Rather than using the same quantum for all 64 coefficients, JPEG uses a quanti-

zation table that gives the quantum to use for each of the coefficients, as specified in

the formula given below. You can think of this table (Quantum) as a parameter that

7.2 Data Compression 555

Quantum =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Table 7.1 Example JPEG quantization table.

can be set to control how much information is lost and, correspondingly, how much

compression is achieved. In practice, the JPEG standard specifies a set of quantization

tables that have proven effective in compressing digital images; an example quanti-

zation table is given in Table 7.1. In tables like this one, the low coefficients have a

quantum close to 1 (meaning that little low-frequency information is lost) and the

high coefficients have larger values (meaning that more high-frequency information is

lost). Notice that as a result of such quantization tables, many of the high-frequency

coefficients end up being set to 0 after quantization, making them ripe for further

compression in the third phase.

The basic quantization equation is

QuantizedValue(i, j) = IntegerRound(DCT(i, j)/Quantum(i, j))

where

IntegerRound(x) =

{

⌊x + 0.5⌋ if x ≥ 0

⌊x − 0.5⌋ if x < 0

Decompression is then simply defined as

DCT(i, j) = QuantizedValue(i, j) × Quantum(i, j)

For example, if the DC coefficient (i.e., DCT(0,0)) for a particular block was

equal to 25, then the quantization of this value using Table 7.1 would result in

⌊25/3 + 0.5⌋ = 8

During decompression, this coefficient would then be restored as

8 × 3 = 24

556 7 End-to-End Data

Figure 7.12 Zigzag traversal of quantized frequency coefficients.

Encoding Phase

The final phase of JPEG encodes the quantized frequency coefficients in a compact

form. This results in additional compression, but this compression is lossless. Starting

with the DC coefficient in position (0,0), the coefficients are processed in the zigzag

sequence shown in Figure 7.12. Along this zigzag, a form of run length encoding is

used—RLE is applied to only the 0 coefficients, which is significant because many of

the later coefficients are 0. The individual coefficient values are then encoded using

a Huffman code. (The JPEG standard allows the implementer to use an arithmetic

coding instead of the Huffman code.)

In addition, because the DC coefficient contains a large percentage of the infor-

mation about the 8 × 8 block from the source image, and images typically change

slowly from block to block, each DC coefficient is encoded as the difference from the

previous DC coefficient. This is the delta encoding approach described in Section 7.2.1.

Color Images

The preceding discussion assumed that each pixel was given by a single grayscale

value. In the case of a color image, there are many different representations for each

pixel to choose from. One representation, called RGB, represents each pixel with

three color components: red, green, and blue. RGB is the representation of color

typically supported by graphical input and output devices. Another representation,

called YUV, also has three components: one luminance (Y) and two chrominance

(U and V). Just like RGB, YUV is a three-dimensional coordinate system. However,

compared to RGB, its coordinates are rotated to better match the human visual system.

This is advantageous because the human visual system is not uniformly sensitive to

colors. For example, we can distinguish the luminance (brightness) of a pixel much

better than its hue (color).

7.2 Data Compression 557

Exactly why the three components in each of the two representations can be com-

bined to produce acceptable color is an interesting question. The simple answer is that

two-coordinate color systems have been defined, but they have proven inadequate for

faithfully reproducing colors as perceived by humans. What is important to our discus-

sion is that each pixel in a color image is given by three separate values. To compress

such an image, each of these three components is processed independently in exactly

the same way as the single grayscale value was processed. In other words, you can

think of a color image as three separate images, where these separate images are over-

laid on top of each other when displayed. Note that, in general, JPEG is not limited to

three-component images; it is possible to compress a multispectral image using JPEG.

JPEG includes a number of variations that control how much compression you

achieve versus the fidelity of the image. This can be done, for example, by using

different quantization tables. These variations, plus the fact that different images have

different characteristics, make it impossible to say with any precision the compression

ratios that can be achieved with JPEG. The widely accepted generalization, however,

is that JPEG is able to compress 24-bit color images by a ratio of roughly 30-to-1:

The image can first be compressed by a factor of 3 by reducing the 24 bits of color to

8 bits of color (as described for GIF) and then by another factor of 10 by using the

algorithm described in this section.

7.2.3 Video Compression (MPEG)

We now turn our attention to the MPEG format, named after the Moving Picture

Experts Group that defined it. To a first approximation, a moving picture (i.e., video)

is simply a succession of still images—also called frames or pictures—displayed at

some video rate. Each of these frames can be compressed using the same DCT-based

technique used in JPEG. Stopping at this point would be a mistake, however, because

it fails to remove the interframe redundancy present in a video sequence. For example,

two successive frames of video will contain almost identical information if there is not

much motion in the scene, so it would be unnecessary to send the same information

twice. Even when there is motion, there may be plenty of redundancy since a moving

object may not change from one frame to the next; in some cases, only its position

changes. MPEG takes this interframe redundancy into consideration. MPEG also de-

fines a mechanism for encoding an audio signal with the video, but we consider only

the video aspect of MPEG in this section.

Frame Types

MPEG takes a sequence of video frames as input and compresses them into three types

of frames, called I frames (intrapicture), P frames (predicted picture), and B frames

(bidirectional predicted picture). Each frame of input is compressed into one of these

558 7 End-to-End Data

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

I frame B frame B frame P frame B frame B frame I frame

MPEG
compression

Forward
prediction

Bidirectional
prediction

Compressed
stream

Input
stream

Figure 7.13 Sequence of I, P, and B frames generated by MPEG.

three frame types. I frames can be thought of as reference frames; they are self-

contained, depending on neither earlier frames nor later frames. To a first approx-

imation, an I frame is simply the JPEG compressed version of the corresponding frame

in the video source. P and B frames are not self-contained; they specify relative differ-

ences from some reference frame. More specifically, a P frame specifies the differences

from the previous I frame, while a B frame gives an interpolation between the previous

and subsequent I or P frames.

Figure 7.13 illustrates a sequence of seven video frames that, after being com-

pressed by MPEG, result in a sequence of I, P, and B frames. The two I frames stand

alone; each can be decompressed at the receiver independently of any other frames.

The P frame depends on the preceding I frame; it can be decompressed at the receiver

only if the preceding I frame also arrives. Each of the B frames depends on both the

preceding I or P frame and the subsequent I or P frame. Both of these reference frames

must arrive at the receiver before MPEG can decompress the B frame to reproduce the

original video frame.

Note that because each B frame depends on a later frame in the sequence, the

compressed frames are not transmitted in sequential order. Instead, the sequence I B

B P B B I shown in Figure 7.13 is transmitted as I P B B I B B. Also, MPEG does not

define the ratio of I frames to P and B frames; this ratio may vary depending on the

required compression and picture quality. For example, it is permissible to transmit

only I frames. This would be similar to using JPEG to compress the video.

In contrast to the preceding discussion of JPEG, the following focuses on the

decoding of an MPEG stream. It is a little easier to describe, and it is the operation

7.2 Data Compression 559

16 × 16 macroblock
with Y component

8 × 8 macroblock
with U component

8 × 8 macroblock
with V component

16 × 16
pixel region

Color frame

Figure 7.14 Each frame as a collection of macroblocks.

that is more often implemented in networking systems today, since MPEG coding is so

expensive that it is normally done offline (i.e., not in real time). For example, in a video-

on-demand system, the video would be encoded and stored on disk ahead of time.

When a viewer wanted to watch the video, the MPEG stream would then be transmitted

to the viewer’s machine, which would decode and display the stream in real time.

Let’s look more closely at the three frame types. As mentioned above, I frames

are approximately equal to the JPEG compressed version of the source frame. The

main difference is that MPEG works in units of 16 × 16 macroblocks. For a color

video represented in YUV, the U and V components in each macroblock are “down

sampled” into an 8 × 8 block. That is, each 2 × 2 subblock in the macroblock is given

by one U value and one V value—the average of the four pixel values. The subblock

still has four Y values. This can be done because the U and V components can be

transmitted less accurately without visibly disturbing the image, since humans are less

sensitive to color than they are to brightness. The relationship between a frame and

the corresponding macroblocks is given in Figure 7.14.

The P and B frames are also processed in units of macroblocks. Intuitively, we

can see that the information they carry for each macroblock captures the motion in the

video; that is, it shows in what direction and how far the macroblock moved relative

to the reference frame(s). The following describes how a B frame is used to reconstruct

a frame during decompression; P frames are handled in a similar manner, except that

they depend on only one reference frame instead of two.

Before getting to the details of how a B frame is decompressed, we first note

that each macroblock in a B frame is not necessarily defined relative to both an earlier

and a later frame, as suggested above, but may instead simply be specified relative

560 7 End-to-End Data

to just one or the other. In fact, a given macroblock in a B frame can use the same

intracoding as is used in an I frame. This flexibility exists because if the motion picture

is changing too rapidly, then it sometimes makes sense to give the intrapicture encoding

rather than a forward- or backward-predicted encoding. Thus, each macroblock in a

B frame includes a type field that indicates which encoding is used for that macroblock.

In the following discussion, however, we consider only the general case in which the

macroblock uses bidirectional predictive encoding.

In such a case, each macroblock in a B frame is represented with a 4-tuple: (1) a

coordinate for the macroblock in the frame, (2) a motion vector relative to the previous

reference frame, (3) a motion vector relative to the subsequent reference frame, and

(4) a delta (δ) for each pixel in the macroblock (i.e., how much each pixel has changed

relative to the two reference pixels). For each pixel in the macroblock, the first task

is to find the corresponding reference pixel in the past and future reference frames.

This is done using the two motion vectors associated with the macroblock. Then, the

delta for the pixel is added to the average of these two reference pixels. Stated more

precisely, if we let Fp and F f denote the past and future reference frames, respectively,

and the past/future motion vectors are given by (xp, yp) and (x f , y f), then the pixel at

coordinate (x, y) in the current frame (denoted Fc) is computed as

Fc(x, y) = (Fp(x + xp, y + yp) + F f (x + x f , y + y f))/2 + δ(x, y)

where δ is the delta for the pixel as specified in the B frame. These deltas are encoded

in the same way as pixels in I frames. That is, they are run through DCT and then

quantized. Since the deltas are typically small, most of the DCT coefficients are 0 after

quantization; hence they can be effectively compressed.

It should be fairly clear from the preceding discussion how encoding would be

performed, with one exception. When generating a B or P frame during compression,

MPEG must decide where to place the macroblocks. Recall that each macroblock in

a P frame, for example, is defined relative to a macroblock in an I frame, but that

the macroblock in the P frame need not be in the same part of the frame as the

corresponding macroblock in the I frame—the difference in position is given by the

motion vector. You would like to pick a motion vector that makes the macroblock

in the P frame as similar as possible to the corresponding macroblock in the I frame,

so that the deltas for that macroblock can be as small as possible. This means that

you need to figure out where objects in the picture moved from one frame to the

next. This is the problem of motion estimation, and several techniques (heuristics) for

solving this problem are known. (We discuss papers that consider this problem in the

“Further Reading” section at the end of this chapter.) The difficulty of this problem

is one of the reasons that MPEG encoding takes longer than decoding on equivalent

hardware. MPEG does not specify any particular technique; it only defines the format

7.2 Data Compression 561

for encoding this information in B and P frames and the algorithm for reconstructing

the pixel during decompression, as given above.

Effectiveness and Performance

MPEG typically achieves a compression ratio of 90-to-1, although ratios as high as

150-to-1 are not unheard of. In terms of the individual frame types, we can expect a

compression ratio of approximately 30-to-1 for the I frames (this is consistent with the

ratios achieved using JPEG when 24-bit color is first reduced to 8-bit color), while P

and B frame compression ratios are typically three to five times smaller than the rates

for the I frame. Without first reducing the 24 bits of color to 8 bits, the achievable

compression with MPEG is typically between 30-to-1 and 50-to-1.

MPEG involves an expensive computation. On the compression side, it is typi-

cally done offline, which is not a problem for preparing movies for a video-on-demand

service. Video can be compressed in real time using hardware today, but software im-

plementations are quickly closing the gap. On the decompression side, low-cost MPEG

video boards are available, but they do little more than YUV color lookup, which for-

tunately is the most expensive step. Most of the actual MPEG decoding is done in

software. In the last few years processors have become fast enough to keep pace with

30-frames-per-second video rates when decoding MPEG streams purely in software.

For example, even a modest 600-MHz processor can decompress MPEG fast enough

to keep up with a 640 × 480 video stream running at 30 frames per second.

Other Video Encoding Standards

We conclude by noting that MPEG is not the only standard available for encoding

video. For example, the ITU-T has also defined the “H series” for encoding real-

time multimedia data. Generally, the H series includes standards for video, audio,

control, and multiplexing (e.g., mixing audio, video, and data onto a single bit stream).

Within the series, H.261 and H.263 are the first- and second-generation video encoding

standards. Unlike MPEG, which is targeted at bit rates on the order of 1.5 Mbps,

H.261 and H.263 are targeted at ISDN speeds. That is, they support video over links

with bandwidth available in 64-Kbps increments. In principle, both H.261 and H.263

look a lot like MPEG: They use DCT, quantization, and interframe compression. The

differences between H.261/H.263 and MPEG are in the details.

There are also new versions of MPEG coming down the pike, most noticeably

MPEG-4. The best way to think of MPEG-4 is that it generalizes MPEG to include both

natural and synthetic (computer-generated) video. It does this by treating each scene

(frame) as a collection of video objects, rather than working purely with rectangular

macroblocks. MPEG-4 also has the goal of supporting lower bit rates (e.g., suitable for

562 7 End-to-End Data

wireless handheld devices), unlike MPEG-2 (see below), which is targeting high-end

video (e.g., suitable for HDTV). At the current time, however, the most important

aspect of MPEG-4 is that it is backward compatible with MPEG-2, meaning that most

MPEG-4 videos available today still exploit the motion estimation and DCB-based

compression just described.

Finally, not too far afield from video compression are standards for encod-

ing animations, such as the type that pop up every time you click on a Web page.

The most popular example seems to be Macromedia’s FLASH format. You can think

of FLASH as defining a protocol for specifying a set of polygons and lines (the build-

ing blocks of computer-generated video), along with a sequence of vectors that dictate

how these objects move through the scene over time. In this sense, FLASH isn’t really

a compression algorithm so much as it is an encoding standard.

7.2.4 Transmitting MPEG over a Network

As suggested earlier in this chapter, MPEG not only defines how video is compressed,

but it also specifies the format of an MPEG-compressed video. Similarly, JPEG and

GIF define a format for still images. Focusing on MPEG, the first thing to keep in

mind is that it defines the format of a video stream; it does not specify how this

stream is broken into network packets. Thus, MPEG can be used for videos stored

on disk, as well as videos transmitted over a stream-oriented network connection,

like that provided by TCP. More on how you might packetize an MPEG stream in a

moment.

The MPEG format is one of the most complicated of any protocols discussed

in this book. This complication comes from a desire to give the encoding algorithm

every possible degree of freedom in how it encodes a given video stream. It also comes

from the evolution of the standard over time (i.e., MPEG-1 and MPEG-2). What

we describe below is called the main profile of an MPEG-2 video stream. You can

think of an MPEG profile as being analogous to a “version,” except the profile is not

explicitly specified in an MPEG header; the receiver has to deduce the profile from the

combination of header fields it sees.

A main profile MPEG-2 stream has a nested structure, as illustrated in

Figure 7.15. (Keep in mind that this figure hides a lot of messy details.) At the out-

ermost level, the video contains a sequence of groups of pictures (GOP) separated

by a SeqHdr. The sequence is terminated by a SeqEndCode (0xb7). The SeqHdr that

precedes every GOP specifies—among other things—the size of each picture (frame)

in the GOP (measured in both pixels and macroblocks), the interpicture period (mea-

sured in μs), and two quantization matrices for the macroblocks within this GOP:

one for intracoded macroblocks (I blocks) and one for intercoded macroblocks (B and

P blocks). Since this information is given for each GOP—rather than once for the entire

7.2 Data Compression 563

SeqHdr Group of pictures SeqHdr Group of pictures SeqEndCode

GOPHdr PicturePicture Picture

SlicePictureHdr Slice Slice

Macroblock MacroblockSliceHdr Macroblock

MBHdr Block(0) Block(1) Block(2) Block(3) Block(4) Block(5)

…

…

…

…

Figure 7.15 Format of an MPEG-compressed video stream.

video stream, as you might expect—it is possible to change the quantization table and

frame rate at GOP boundaries throughout the video. This makes it possible to adapt

the video stream over time, as we discuss below.

Each GOP is given by a GOPHdr, followed by the set of pictures that make

up the GOP. The GOPHdr specifies the number of pictures in the GOP, as well as

synchronization information for the GOP (i.e., when the GOP should play, relative

to the beginning of the video). Each picture, in turn, is given by a PictureHdr and a

set of slices that make up the picture. (A slice is a region of the picture, for example,

one horizontal line.) The PictureHdr identifies the type of the picture (I, B, or P), as

well as defines a picture-specific quantization table. The SliceHdr gives the vertical

position of the slice, plus another opportunity to change the quantization table—this

time by a constant scaling factor rather than by giving a whole new table. Next, the

SliceHdr is followed by a sequence of macroblocks. Finally, each macroblock includes

a header that specifies the block address within the picture, along with data for the six

blocks within the macroblock: one for the U component, one for the V component,

564 7 End-to-End Data

and four for the Y component. (Recall that

the Y component is 16×16, while the U and

V components are 8 × 8.)

It should be clear that one of the pow-

ers of the MPEG format is that it gives the

encoder an opportunity to change the en-

coding over time. It can change the frame

rate, the resolution, the mix of frame types

that define a GOP, the quantization table,

and the encoding used for individual mac-

roblocks. As a consequence, it is possible to

adapt the rate at which a video is transmit-

ted over a network by trading picture qual-

ity for network bandwidth. Exactly how a

network protocol might exploit this adapt-

ability is currently a subject of intense re-

search (see sidebar).

Another interesting aspect of sending

an MPEG stream over the network is ex-

actly how the stream is broken into packets.

If sent over a TCP connection, packetiza-

tion is not an issue; TCP decides when it has

enough bytes to send the next IP datagram.

When using video interactively, however, it

is rare to transmit it over TCP, since TCP’s

retransmission of lost segments could intro-

duce unacceptable latency. If we are trans-

mitting video using UDP, say, then it makes

sense to break the stream at carefully se-

lected points, for example, at macroblock

boundaries. This is because we would like

to confine the effects of a lost packet to a sin-

gle macroblock, rather than damaging sev-

eral macroblocks with a single loss. This is

an example of Application Level Framing,

which is discussed more fully in Section 9.3,

where we consider video applications.

Packetizing the stream is only the

first problem in sending MPEG-compressed

Adaptive Video Coding

We have already noted that video

coding using MPEG allows a trade-

off between the bandwidth con-

sumed and the quality of the

image. Conversely, it should be ap-

parent that the output bandwidth

of a video compression algorithm

operating at a certain quality level

will not, in general, be constant,

but will vary over time depending

on the amount of detail and move-

ment in the video stream. These

facts raise some interesting ques-

tions about how to design a system

to transport compressed video over

a packet network.

Suppose we have a video

CODEC that outputs a compressed

video stream at an average rate of

R bps but occasionally bursts up to

3R bps. We could potentially trans-

mit the video stream over a fixed

bandwidth pipe (e.g., a leased line

or CBR circuit) of capacity R, pro-

vided we passed the video stream

through a “smoothing buffer” that

smoothes out the instantaneous

peaks in transmission rate. Now, it

could happen at some point that the

smoothing buffer would fill up be-

yond an acceptable level, perhaps

due to a long action sequence in

a movie causing a long period of

high output from the codec. At

this point, we could increase the

7.2 Data Compression 565

amount of compression for a while,

thus reducing the data rate (and

picture quality), and allowing the

smoothing buffer to drain. When

it gets close to empty, we could in-

crease the coding quality again.

We could do pretty much the

same thing over a packet-switched

network, but without a smoothing

buffer. Let’s assume that we have

some way to measure the amount

of free capacity and level of con-

gestion along a path, for exam-

ple, by using an equation-based

congestion-control algorithm like

the ones described in Section 6.5.5.

As the available bandwidth fluctu-

ates, we can feed that information

back to the codec so that it ad-

justs its coding parameters to back

off during congestion and to send

more aggressively (with a higher

picture quality) when the network

is idle. This is analogous to the be-

havior of TCP, except in the video

case we are actually modifying the

total amount of data sent rather

than how long we take to send

a fixed amount of data, since we

don’t want to introduce delay into

a video application.

An interesting problem arises if

we are multicasting a video stream

to many receivers. How do we

choose the correct rate for each

receiver, since they may be ex-

periencing wildly different levels

video over a network. The next complica-

tion is dealing with packet loss. On the one

hand, if a B frame is dropped by the net-

work, then it is possible to simply replay the

previous frame without seriously compro-

mising the video; 1 frame out of 30 is no big

deal. On the other hand, a lost I frame has

serious consequences—none of the subse-

quent B and P frames can be processed with-

out it. Thus, losing an I frame would result

in losing multiple frames of the video. While

you could retransmit the missing I frame,

the resulting delay would probably not be

acceptable in a real-time videoconference.

One solution to this problem would be to

use the Differentiated Services techniques

described in Section 6.5.3 to mark the pack-

ets containing I frames with a lower drop

probability than other packets.

One final observation is that how you

choose to encode video depends on more

than just the available network bandwidth.

It also depends on the application’s latency

constraints. Once again, an interactive ap-

plication like videoconferencing needs small

latencies. The critical factor is the combina-

tion of I, P, and B frames in the GOP. Con-

sider the following GOP:

I B B B B P B B B B I

The problem this GOP causes a videoconfer-

encing application is that the sender has to

delay the transmission of the four B frames

until the P or I that follows them is available.

This is because each B frame depends on the

subsequent P or I frame. If the video is play-

ing at 15 frames per second (i.e., one frame

every 67 ms), this means the first B frame

is delayed 4 × 67 ms, which is more than

a quarter of a second. This delay is in

566 7 End-to-End Data

addition to any propagation delay imposed

by the network. A quarter of a second is

far greater than the 100-ms threshold that

humans are able to perceive. It is for this

reason that many videoconference applica-

tions encode video using JPEG, which is of-

ten called motion-JPEG. (Motion-JPEG also

addresses the problem of dropping a ref-

erence frame since all frames are able to

stand alone.) Notice, however, that an in-

terframe encoding that depends upon only

prior frames rather than later frames is not

a problem. Thus, a GOP of

I P P P P I

would work just fine for interactive video-

conferencing.

7.2.5 Audio Compression

(MP3)

MPEG not only defines how video is com-

pressed, but it also defines a standard for

compressing audio. This standard can be

used to compress the audio portion of a

movie (in which case the MPEG standard

defines how the compressed audio is inter-

leaved with the compressed video in a single

MPEG stream), or it can be used to com-

press stand-alone audio (for example, an au-

dio CD).

To understand audio compression, we

need to begin with the data. CD-quality au-

dio, which is the de facto digital represen-

tation for high-quality audio, is sampled at

of congestion? A cunning solu-

tion to this problem is to split

the transmitted video into “lay-

ers.” The first layer would have

the basic level of detail needed

to see some sort of useful pic-

ture, while each subsequent layer

would add more detail, consist-

ing of higher-frequency informa-

tion. Each layer can then be sent to

a different multicast group address,

and each receiver can decide how

many layers to join. If receiver A

is experiencing heavy congestion,

he might join only the multicast

group carrying the base layer, while

receiver B could join all the lay-

ers. Receiver A might periodically

try to join the next layer of detail

to see if more bandwidth has be-

come available. This approach is

known as receiver-driven layered

multicast (RLM). An interesting re-

search problem is how to create the

right set of incentives to cause a re-

ceiver to join the appropriate num-

ber of groups rather than just join-

ing all of them, since joining too

many groups would cause unnec-

essary network congestion.

a rate of 44.1 KHz (i.e., a sample is collected approximately once every 23 μs). Each

sample is 16 bits, which means that a stereo (2-channel) audio stream results in a bit

rate of

2 × 44.1 × 1000 × 16 = 1.41 Mbps

7.2 Data Compression 567

Coding Bit Rates Compression Factor

Layer I 384 Kbps 4

Layer II 192 Kbps 8

Layer III 128 Kbps 12

Table 7.2 MP3 compression rates.

By comparison, telephone-quality voice is sampled at a rate of 8 KHz, with 8-bit

samples, resulting in a bit rate of 64 Kbps, which is not coincidentally the speed of an

ISDN link.

Clearly, some amount of compression is going to be required to transmit CD-

quality audio over, say, the 128-Kbps capacity of an ISDN data/voice line pair. To make

matters worse, synchronization and error correction overhead require that 49 bits be

used to encode each 16-bit sample, resulting in an actual bit rate of

49/16 × 1.41 Mbps = 4.32 Mbps

MPEG addresses this need by defining three levels of compression, as enumerated in

Table 7.2. Of these, Layer III, which is more widely known as MP3, is the most

commonly used.

To achieve these compression ratios, MP3 uses techniques that are similar to

those used by MPEG to compress video. First, it splits the audio stream into some

number of frequency subbands, loosely analogous to the way MPEG processes the Y,

U, and V components of a video stream separately. Second, each subband is broken

into a sequence of blocks, which are similar to MPEG’s macroblocks except they can

vary in length from 64 to 1024 samples. (The encoding algorithm can vary the block

size depending on certain distortion effects that are beyond our discussion.) Finally,

each block is transformed using a modified DCT algorithm, quantized, and Huffman

encoded, just as for MPEG video.

The trick to MP3 is how many subbands it elects to use and how many bits it

allocates to each subband, keeping in mind that it is trying to produce the highest-

quality audio possible for the target bit rate. Exactly how this allocation is made is

governed by psychoacoustic models that are beyond the scope of this book, but to

illustrate the idea, consider that it makes sense to allocate more bits to low-frequency

subbands when compressing a male voice and more bits to high-frequency subbands

when compressing a female voice. Operationally, MP3 dynamically changes the quan-

tization tables used for each subband to achieve the desired effect.

568 7 End-to-End Data

Once compressed, the subbands are packaged into fixed-size frames, and a header

is attached. This header includes synchronization information, as well as the bit al-

location information needed by the decoder to determine how many bits are used to

encode each subband. As mentioned above, these audio frames can then be interleaved

with video frames to form a complete MPEG stream. One interesting side note is that

while it might work to drop B frames in the network should congestion occur, expe-

rience teaches us that it is not a good idea to drop audio frames since users are better

able to tolerate bad video than bad audio.

7.3 Summary

This chapter has described how application data is encoded in network packets. Unlike

the protocols described earlier in this book, which you can think of as processing

messages, these transformations process data.

The first issue is presentation formatting, where the problem is formatting the

different types of data that application programs compute on: integers, floating-point

numbers, character strings, arrays, and structures. This involves both translating be-

tween machine and network byte order and linearizing compound data structures.

We outlined the design space for presentation formatting and discussed three specific

mechanisms that fall on different points in this design space: XDR, ASN.1, and NDR.

The second issue is compression, which is concerned with reducing the band-

width required to transmit different types of data. Compression algorithms can be

either lossless or lossy, with lossy algorithms being most appropriate for image and

video data. JPEG, MPEG, and MP3 are examples of lossy compression protocols for

still images, video, and audio data, respectively.

O P E N I S S U E

Computer Networks Meet

Consumer Electronics

We’ve been discussing MPEG as

though it were designed to compress

video data so it can be transmitted

over packet-switched networks. Of

course this is not the case. MPEG is

a general video format that is just as

applicable to a movie stored on DVD

or a digital HDTV signal transmitted by NBC. What this all points to is a convergence

of computers, networks, and consumer electronics.

In the not-too-distant future, we can expect to find a media gateway (MG) in

the home. It might sit on top of the television, replacing today’s set-top cable box. The

MG will be connected to an Internet service provider (ISP) possibly over the CATV

cable coming into the home. The MG will also support a number of ports that allow

Further Reading 569

you to plug in different consumer electronic devices, such as a digital camcorder, a

DVD player, a video game, and so on. As of today, it looks like Firewire, a 400-Mbps

serial link developed by Apple, will serve as the common connection for these devices.

Various wireless technologies are another possibility.

What will the MG be asked to do? For one thing, it will route multimedia streams

between different devices, much like today’s IP router forwards data packets between

ports. For example, it might be possible to forward a movie of the kids captured with

the digital camcorder out the ISP link and across the country to anxiously awaiting

grandparents. A second thing it might have to do is translate between the TCP/IP

spoken on the Internet and whatever format is supported on the devices. Of course,

it’s possible that camcorders will one day be full-fledged Internet nodes (i.e., have their

own IP addresses), but media gateways will push the need to connect everything to the

Internet indefinitely into the future.

The prospect of widespread availability of “Internet appliances” raises several

interesting questions. One is the issue of address usage. IP version 6 was created with

the goal of expanding the IP address space so much that assigning IP addresses to any

conceivable object (toasters, water meters, etc.) would not cause address exhaustion.

However, ISPs today are reluctant to deploy IPv6, and instead are handing out IPv4

addresses to their customers extremely cautiously. This has the potential to cause

significant problems in the future.

Another issue is the ease of configuration of IP devices. While many of today’s

Internet users are comfortable setting the IP address, mask, and default gateway on

their PC, it’s unlikely that the average purchaser of a camcorder wants to learn how

to configure anything more complex than the “record” button. “Plug-and-play” con-

figuration of IP devices remains an important goal.

F U R T H E R R E A D I N G

Our recommended reading list for this chapter includes two papers that give an

overview of the JPEG and MPEG standards, respectively. Their main value is in ex-

plaining the various factors that shaped the standards. We also recommend the paper

on receiver-driven layered multicast as an excellent example of a systems approach to

design, embracing the issues of multicast, congestion control, and video coding.

■ Wallace, G. K. The JPEG still picture compression standard. Communications

of the ACM 34(1):30–44, April 1991.

■ Le Gall, D. MPEG: A video compression standard for multimedia applica-

tions. Communications of the ACM 34(1):46–58, April 1991.

570 7 End-to-End Data

■ McCanne, S., V. Jacobson, and M. Vetterli. Receiver-driven layered multicast.

Proceedings of the SIGCOMM ’96 Symposium, pages 117–130, September

1996.

Unfortunately, there is no single paper that gives a comprehensive treatment of

presentation formatting. Aside from the XDR, ASN.1 BER, and NDR specifications

(see Srinivasan [Sri95b], the CCITT recommendations [CCITT92a, CCITT92b], and

the Open Software Foundation [OSF94]), three other papers cover topics related to

presentation formatting: those by O’Malley et al. [OPM94], Lin [Lin93], and Chen

et al. [CLNZ89]. All three discuss performance-related issues.

On the topic of compression, a good place to start is with Huffman encoding,

which was originally defined in [Huf52]. The original LZ algorithm is presented in Ziv

and Lempel [ZL77], and an improved version of that algorithm by the same authors

can be found in [ZL78]. Both of these papers are of a theoretical nature. The work that

brought the LZ approach into widespread practice can be found in Welch [Wel84].

For a more complete overview of the topic of compression, Nelson’s article [Nel92] is

recommended. You can also learn about compression in any of several recent books

on multimedia. We recommend Witten et al. [WMB99], which has an extremely high

science-to-hype ratio, and Buford [Buf94], which is a collection of contributed chapters

that span the range of multimedia topics. For a comprehensive description of the MPEG

standard, see Mitchell et al. [MPFL96]. For a description of MP3, see Noll [Nol97].

Finally, we recommend the following live reference:

■ http://bmrc.berkeley.edu/projects/mpeg/index.html: a collection of MPEG-

related programs, some of which are used in the following exercises

E X E R C I S E S

1 Consider the following C code:

#define MAXSTR 100

struct date {
char month[MAXSTR];
int day;
int year;

};

struct employee {
char name[MAXSTR];
int ssn;
struct date *hireday;

Exercises 571

int salary_history[5];
int num_raises;

};

static struct date date0 = {"MAY", 5, 1996};
static struct date date1 = {"JANUARY", 7, 2002};

static struct employee employee0 = {"RICHARD", 4376, &date0, {14000,

35000, 47000, 0, 0}, 2};

static struct employee employee1 = {"MARY", 4377, &date1, {90000,
150000, 0, 0, 0}, 1};

where num raises + 1 corresponds to the number of valid entries in array salary

history. Show the on-the-wire representation of employee0 that is generated by

XDR.

2 Show the on-the-wire representation of employee1 from the previous problem

that is generated by XDR.

3 For the data structures given in Exercise 1, give the XDR routine that encodes/

decodes these structures. If you have XDR available to you, run this routine and

measure how long it takes to encode and decode an example instance of structure

employee.

4 Using library functions like htonl and Unix’s bcopy or Windows’ CopyMemory,

implement a routine that generates the same on-the-wire representation of the

structures given in Exercise 1 as XDR does. If possible, compare the performance

of your “by-hand” encoder/decoder with the corresponding XDR routines.

5 Use XDR and htonl to encode a 1000-element array of integers. Measure and

compare the performance of each. How do these compare to a simple loop that

reads and writes a 1000-element array of integers? Perform the experiment on a

computer for which the native byte order is the same as the network byte order,

as well as on a computer for which the native byte order and the network byte

order are different.

6 Write your own implementation of htonl. Using both your own htonl and (if

little-endian hardware is available) the standard library version, run appropriate

experiments to determine how much longer it takes to byte-swap integers versus

merely copying them.

572 7 End-to-End Data

7 Give the ASN.1 encoding for the following three integers. Note that ASN.1 inte-

gers, like those in XDR, are 32 bits in length.

(a) 101

(b) 10,120

(c) 16,909,060

8 Give the ASN.1 encoding for the following three integers. Note that ASN.1 inte-

gers, like those in XDR, are 32 bits in length.

(a) 15

(b) 29,496,729

(c) 58,993,458

9 Give the big-endian and little-endian representation for the integers from

Exercise 7.

10 Give the big-endian and little-endian representation for the integers from

Exercise 8.

11 XDR is used to encode/decode the header for the SunRPC protocol illustrated

by Figure 5.20. The XDR version is determined by the RPCVersion field. What

potential difficulty does this present? Would it be possible for a new version of

XDR to switch to little-endian integer format?

12 The presentation formatting process is sometimes regarded as an autonomous

protocol layer, separate from the application. If this is so, why might including

data compression in the presentation layer be a bad idea?

13 Suppose you have a machine with a 36-bit word size. Strings are represented as

five packed 7-bit characters per word. What presentation issues on this machine

have to be addressed for it to exchange integer and string data with the rest of the

world?

14 Using the programming language of your choice that supports user-defined au-

tomatic type conversions, define a type netint and supply conversions that en-

able assignments and equality comparisons between ints and netints. Can a gen-

eralization of this approach solve the problem of network argument

marshalling?

Exercises 573

15 Different architectures have different conventions on bit order as well as byte

order—whether the least significant bit of a byte, for example, is bit 0 or bit 7.

[Pos81] defines (in its Appendix B) the standard network bit order. Why is bit

order then not relevant to presentation formatting?

16 Let p ≤ 1 be the fraction of machines in a network that are big-endian; the remain-

ing 1 − p fraction are little-endian. Suppose we choose two machines at random

and send an int from one to the other. Give the average number of byte-order con-

versions needed for both big-endian network byte order and receiver-makes-right,

for p = 0.1, p = 0.5, and p = 0.9. Hint: The probability that both endpoints are

big-endian is p2; the probability that the two endpoints use different byte orders

is 2p(1 − p).

17 Experiment with a compression utility (e.g., compress, gzip, or pkzip). What com-

pression ratios are you able to achieve? See if you can generate data files for which

you can achieve 5:1 or 10:1 compression ratios.

18 Suppose a file contains the letters a, b, c, and d. Nominally, we require 2 bits per

letter to store such a file.

(a) Assume the letter a occurs 50% of the time, b occurs 30% of the time, and

c and d each occur 10% of the time. Give an encoding of each letter as a bit

string that provides optimal compression. Hint: Use a single bit for a.

(b) What is the percentage of compression you achieve above? (This is the aver-

age of the compression percentages achieved for each letter, weighted by the

letter’s frequency.)

(c) Repeat this, assuming a and b each occur 40% of the time, c occurs 15% of

the time, and d occurs 5% of the time.

19 Suppose we have a compression function c, which takes a bit string s to a com-

pressed string c(s).

(a) Show that for any integer N there must be a string s of length N for which

length(c(s)) ≥ N; that is, no effective compression is done.

(b) Compress some already compressed files (try compressing with the same utility

several times in sequence). What happens to the file size?

(c) Given a compression function c as in (a), give a function c′ such that for all bit

strings s, length(c′(s)) ≤ min(length(c(s)), length(s)) + 1; that is, in the worst

case, compression with c′ expands the size by only 1 bit.

574 7 End-to-End Data

20 Give an algorithm for run length encoding that requires only a single byte to

represent nonrepeated symbols.

21 Write a program to construct a dictionary of all “words,” defined to be runs of

consecutive nonwhitespace, in a given text file. We might then compress the file

(ignoring the loss of whitespace information) by representing each word as an in-

dex in the dictionary. Retrieve the file rfc791.txt containing [Pos81], and run your

program on it. Give the size of the compressed file assuming first that each word

is encoded with 12 bits (this should be sufficient), and then that the 128 most

common words are encoded with 8 bits and the rest with 13 bits. Assume that the

dictionary itself can be stored by using, for each word, length(word) + 1 bytes.

22 The one-dimensional discrete cosine transform is similar to the two-dimensional

transform, except that we drop the second variable (j or y) and the second cosine

factor. We also drop, from the inverse DCT only, the leading 1/
√

2N coefficient.

Implement this and its inverse for N = 8 (a spreadsheet will do, although a lan-

guage supporting matrices might be better) and answer the following:

(a) If the input data is 〈1, 2, 3, 5, 5, 3, 2, 1〉, which DCT coefficients are near 0?

(b) If the data is 〈1, 2, 3, 4, 5, 6, 7, 8〉, how many DCT coefficients must we keep

so that after the inverse DCT the values are all within 1% of their original

values? 10%? Assume dropped DCT coefficients are replaced with 0s.

(c) Let si , for 1 ≤ i ≤ 8, be the input sequence consisting of a 1 in position i and

0 in position j , j �= i . Suppose we apply the DCT to si , zero the last three

coefficients, and then apply the inverse DCT. Which i , 1 ≤ i ≤ 8, results in

the smallest error in the ith place in the result? The largest error?

23 Compare the size of an all-white image in JPEG format with a “typical” pho-

tographic image of the same dimensions. At what stage or stages of the JPEG

compression process does the white image become smaller than the photographic

image?

For the next three exercises, the utilities cjpeg and djpeg may be useful and can be

obtained from ftp.uu.net/graphics/jpeg. Other JPEG conversion utilities can also be

used. For manual creation and examination of graphics files, the pgm portable gray-

scale format is recommended; see the Unix pgm(5)/ppm(5) man pages.

24 Create a grayscale image consisting of an 8 × 8 grid with a vertical black line in

the first column. Compress into JPEG format and decompress. How far off are

the resultant bytes at the default quality setting? How would you describe the

Exercises 575

inaccuracies introduced, visually? What quality setting is sufficient to recover the

file exactly?

25 Create an 8 × 8 grayscale image consisting of a 64-character ASCII text string.

Use lowercase letters only, with no whitespace or punctuation. Compress into

JPEG format and decompress. How recognizable is the result, as text? Why might

adding whitespace make things worse? With the quality setting at 100, would this

be a plausible way of compressing text?

26 Write a program that implements forward and backward DCT, using floating-

point arithmetic. Run the program on a sample grayscale image. Since DCT is

lossless, the image output by the program should match the input. Now modify

your program so that it zeroes some of the higher-frequency components and see

how the output image is affected. How is this different from what JPEG does?

27 Express DCT(0,0) in terms of the average of the pixel(x, y)s.

28 Think about what functions might reasonably be expected from a video standard:

fast-forward, editing capabilities, random access, and so on. (See the paper by

Le Gall, “MPEG: A video compression standard for multimedia applications,”

given in this chapter’s “Further Reading” section, for further ideas.) Explain

MPEG’s design in terms of these features.

29 Suppose you want to implement fast-forward and reverse for MPEG streams. What

problems do you run into if you limit your mechanism to displaying I frames

only? If you don’t, then to display a given frame in the fast-forward sequence,

what is the largest number of frames in the original sequence you may have to

decode?

30 Use mpeg play to play an MPEG-encoded video. Experiment with options, par-

ticularly -nob and -nop, which are used to omit the B and P frames, respectively,

from the stream. What are the visible effects of omitting these frames?

31 The mpeg stat program can be used to display statistics for video streams. Use it

to determine, for several streams:

(a) number and sequence of I, B, and P frames

(b) average compression rate for the entire video

(c) average compression rate for each type of frame

576 7 End-to-End Data

32 Suppose we have a video of two white points moving toward each other at a uni-

form rate against a black background. We encode it via MPEG. In one I frame the

two points are 100 pixels apart; in the next I frame they have merged. The final

point of merger happens to lie at the center of a 16 × 16 macroblock.

(a) Describe how you might optimally encode the Y component of the intervening

B (or P) frames.

(b) Now suppose the points are in color, and that the color changes slowly as the

points move. Describe what the encoding of the U and V values might look

like.

This Page Intentionally Left Blank

Network Security

It is true greatness to have in one the frailty of a man and the
security of a god.

—Seneca

C
omputer networks are typically a shared resource used by many applications

for many different purposes. Sometimes the data transmitted between appli-

cation processes is confidential, and the applications would prefer that others

not be able to read it. For example, when purchasing a product over the World

Wide Web, users sometimes transmit their credit card numbers over the network.

P R O B L E M

Securing the Data

This is a dangerous thing to do since

it is easy for someone to eavesdrop

on the network and read all the pack-

ets that fly by. Therefore, users some-

times want to encrypt the messages

they send, with the goal of keeping

anyone who is eavesdropping on the

channel from being able to read the

contents of the message.
The idea of encryption is simple enough: The sender applies an encryption func-

tion to the original plaintext message, the resulting ciphertext message is sent over the

network, and the receiver applies a reverse function (called decryption) to recover the

original plaintext. The encryption/decryption process generally depends on a secret key

shared between the sender and the receiver. When a suitable combination of a key and

an encryption algorithm is used, it is sufficiently difficult for an eavesdropper to break

the ciphertext, and the sender and receiver can rest assured that their communication

is secure.

This familiar use of cryptography is designed to ensure privacy—preventing the

unauthorized release of information. Privacy, however, is not the only service that

cryptography provides. It can also be used to support other equally important services,

8
including authentication (verifying the identity of the re-

mote participant) and integrity (making sure that the mes-

sage has not been altered).

This chapter first introduces the basic idea of cryp-

tography, including a description of the three most

common cryptographic algorithms: the Data Encryption

Standard (DES); Rivest, Shamir, and Adleman (RSA); and

Message Digest 5 (MD5). It then shows how these algo-

rithms can be used to provide authentication and integrity

services. It also discusses the problem of how users get the

keys they need in the first place—this is the key distri-

bution problem. The chapter concludes by describing a

collection of secure systems and protocols that are being

built for and deployed on the Internet.

One thing to keep in mind while reading this chapter

is that the various algorithms and protocols for privacy,

authentication, and integrity are being described in isola-

tion. In practice, constructing a secure system requires an

intricate combination of just the right set of protocols and

algorithms. This is a challenging task because each pro-

tocol is vulnerable to a different set of attacks. To make

matters worse, determining when a security protocol is

“good enough” is as much art and politics as science. A

thorough analysis of these different attacks, and how you

might build a complete system that minimizes the risk of

compromise, is beyond the scope of this book.

580 8 Network Security

Plaintext

Encrypt with
secret key

Ciphertext

Plaintext

Decrypt with
secret key

Figure 8.1 Secret key encryption.

Plaintext

Encrypt with
public key

Ciphertext

Plaintext

Decrypt with
private key

Figure 8.2 Public key encryption.

8.1 Cryptographic Algorithms

Broadly speaking, there are three types of cryptographic algorithms: secret key algo-

rithms, public key algorithms, and hashing algorithms. Secret key algorithms are sym-

metric in the sense that both participants1 in the communication share a single key.

Figure 8.1 illustrates the use of secret key encryption to transmit data over an other-

wise insecure channel. DES (Data Encryption Standard) is the best-known example of a

secret key encryption function, while IDEA (International Data Encryption Algorithm)

is another.

In contrast to a pair of participants sharing a single secret key, public key cryp-

tography involves each participant having a private key that is shared with no one else

and a public key that is published so everyone knows it. To send a secure message to

this participant, you encrypt the message using the widely known public key. The par-

ticipant then decrypts the message using his or her private key. This scenario is depicted

in Figure 8.2. RSA—named after its inventors, Rivest, Shamir, and Adleman—is the

best-known public key encryption algorithm.

The third type of cryptography algorithm is called a hash or message digest

function. Unlike the preceding two types of algorithms, cryptographic hash functions

typically don’t involve the use of keys.2 Instead, the idea is to map a potentially large

1We use the term participant for the parties involved in a secure communication since that is the term we have
been using throughout the book to identify the two endpoints of a channel. In the security world, they are typically
called principals.
2Although hashing algorithms do not take a key as an argument—that is, they are not parameterized by a key—the
message they compute over often contains a key, resulting in confusing terms like “keyed MD5.”

8.1 Cryptographic Algorithms 581

message into a small fixed-length number, analogous to the way a regular hash function

maps values from a large space into values from a small space.

The best way to think of a cryptographic hash function is that it computes a cryp-

tographic checksum over a message. That is, just as a regular checksum protects the

receiver from accidental changes to the message, a cryptographic checksum protects

the receiver from malicious changes to the message. This is because all cryptographic

hash algorithms are carefully selected to be one-way functions—given a cryptographic

checksum for a message, it is virtually impossible to figure out what message produced

that checksum. Said another way, it is not computationally feasible to find two mes-

sages that hash to the same cryptographic checksum. The relevance of this property is

that if you are given a checksum for a message (along with the message), and you are

able to compute exactly the same checksum for that message, then it is highly likely

that this message produced the checksum you were given.

The most widely used cryptographic checksum algorithm is Message Digest

version 5 (MD5). An important property of MD5, in addition to those properties

outlined in the previous paragraph, is that it is much more efficient to compute than

either DES or RSA. We will see the relevance of this fact later in this section.

◮ To reemphasize, cryptography algorithms like DES, RSA, and MD5 are just

building blocks from which a secure system can be constructed. Figure 8.3 gives a

simple taxonomy that illustrates this point. In looking at these services and building

blocks, we should consider the following question: How did the participants get the

various keys in the first place? This is the key distribution problem, one of the central

problems in security, as we will see in the following sections.

Before showing how cryptographic algorithms are used to build secure systems,

we first describe how the three best-known algorithms—DES, RSA, and MD5—work.

We will also give some insight into why they work, but there is only so much we can do

on this front since the design principles that underlie DES are not public knowledge.

In the case of RSA, a deep explanation for why it works would require a background

Security

Cryptography
algorithms

Public
key

(e.g., RSA)

Secret
key

(e.g., DES)

Message
digest

(e.g., MD5)

Security
services

AuthenticationPrivacy Message
integrity

Figure 8.3 Taxonomy of network security.

582 8 Network Security

in number theory that is beyond the scope of this book, but we can provide some

intuition into the underlying principles. Before looking at details of the algorithms,

however, let’s step back and ask what we want from a cryptographic algorithm.

8.1.1 Requirements

The basic requirement for an encryption algorithm is that it be able to turn plaintext

into ciphertext in such a way that only the intended recipient—the holder of the

decryption key—can recover the plaintext. What this means is that the encryption

method should be safe from attacks by people who do not hold the key. As a starting

point, we should assume that the encryption algorithm itself is known and that only

the key is kept secret. The reason for this assumption is that if you depend on the

algorithm being kept secret, then you have to throw it out when you believe it is

no longer secret. This means potentially frequent changes of the algorithm, which is

problematic since it takes a lot of work to develop a new algorithm. Also, one of the

best ways to know that an algorithm is effective is to use it for a long time—if no one

breaks it, it’s probably secure. (Fortunately, there are plenty of people who will try to

break algorithms and who will let it be widely known when they have succeeded, so

no news is generally good news.) Thus, there is considerable risk in deploying a new

algorithm. Therefore, our first requirement is that secrecy of the key, and not of the

algorithm itself, is the only thing that is needed to ensure the privacy of the data.

It is important to realize that when someone receives a piece of ciphertext, they

may have more information at their disposal than just the ciphertext itself. For exam-

ple, they may know that the plaintext was written in English, which means that the

letter e occurs more often in the plaintext than any other letter; the frequency of many

other letters and common letter combinations can also be predicted. This information

can greatly simplify the task of finding the key. Similarly, they may know something

about the likely contents of the message; for example, the word “login” is likely to

occur at the start of a remote login session. This may enable a “known plaintext”

attack, which has a much higher chance of success than a “ciphertext only” attack.

Even better is a “chosen plaintext” attack, which may be enabled by feeding some

information to the sender that you know the sender is likely to transmit—such things

have happened in wartime, for example.

The best cryptographic algorithms, therefore, can prevent the attacker from

deducing the key even when the individual knows both the plaintext and the ciphertext.

One approach, the one taken in DES, is to make the algorithm so complicated that

virtually none of the structure of the plaintext remains in the ciphertext. This leaves

the attacker with no choice but to search the space of possible keys exhaustively. This

can be made infeasible by choosing a suitably large key space and by making the

operation of checking a key reasonably costly. As we will see, DES is now becoming

8.1 Cryptographic Algorithms 583

only marginally secure on that basis. Some other cryptographic algorithms derive their

strength from mathematics. RSA, for example, can be broken only if the attacker is

able to find the factors of a number that is the product of two large primes—a problem

that is known (or at least widely believed) to be very costly.

The requirements for a message digest algorithm are slightly different. These

algorithms are required to be one-way functions, meaning that, given an output of

the function, it is computationally infeasible to find an input that would produce this

output. Because these algorithms produce an output that is generally shorter than the

input message, there will be many different input messages that produce the same

output. However, it should be computationally infeasible to find two such messages.

These properties are required so that, if you were given a message m and the message

digest MD(m), you would not be able to find a new message m1 �= m that produced

the same message digest. Thus it is not possible to modify the message m and still have

the message digest function produce the same output on the modified message.

For a message digest function to meet these requirements, its outputs must be

fairly randomly distributed. For example, if a digest is 128 bits long, then there are

2128 possible outputs. This would mean that, if the outputs are randomly distributed,

you would typically need to compute the digests of about 264 messages before you

found two that were the same. (This fact is a version of the “birthday problem”—see

the exercises for more details.) But if the outputs are not randomly distributed—that

is, some outputs are much more likely than others—then you could find two messages

with the same output much more easily than this, which would defeat the security of

the algorithm.

The other requirement for message digests is that they be reasonably computa-

tionally efficient. If a message digest function reduces the throughput of an application

by orders of magnitude, it’s unlikely that many users will consider that the benefits of

integrity and authentication it provides are worth the cost.

8.1.2 Secret Key Encryption (DES)

DES encrypts a 64-bit block of plaintext using a 64-bit key. The key actually contains

only 56 usable bits—the last bit of each of the 8 bytes in the key is a parity bit for that

byte. Also, messages larger than 64 bits can be encrypted using DES, as described below.

DES has three distinct phases:

1 The 64 bits in the block are permuted (shuffled).

2 Sixteen rounds of an identical operation are applied to the resulting data and the

key.

3 The inverse of the original permutation is applied to the result.

This high-level outline of DES is depicted in Figure 8.4.

584 8 Network Security

Initial permutation

Round 1

Round 2

Round 16

56-bit
key

Final permutation

…

Figure 8.4 High-level outline of DES.

Input Position 1 2 3 4 5 . . . 60 61 62 63 64

Output Position 40 8 48 16 56 . . . 9 49 17 57 25

Table 8.1 Initial (and final) DES permutation.

Table 8.1 represents part of the initial permutation. The final permutation is the

inverse (e.g., bit 40 would be permuted to bit position 1). It is generally agreed that

these two permutations add nothing to the security of DES. Some security experts

speculate that they were included to make the computation take longer, but it is just as

likely that they are an artifact of the initial hardware implementation, involving some

restriction of pin layout, for example.

During each round, the 64-bit block is broken into two 32-bit halves, and a

different 48 bits are selected from the 56-bit key. If we denote the left and right halves

of the block at round i as Li and Ri , respectively, and the 48-bit key at round i as Ki ,

8.1 Cryptographic Algorithms 585

+

F

Li – 1 Ri – 1

Ri

Ki

Li

Figure 8.5 Manipulation at each round of DES.

Input Position 1 2 3 4 5 . . . 59 60 61 62 63

Output Position 8 16 24 56 52 . . . 17 25 45 37 29

Table 8.2 DES key permutation.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Rotation Amount 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table 8.3 DES key rotation amount per round.

then these three pieces are combined during round i according to the following rule:

Li = Ri−1

Ri = Li−1 ⊕ F (Ri−1, Ki)

where F is a combiner function described below and ⊕ is the exclusive-OR (XOR)

operator. Figure 8.5 illustrates the basic operation of each round. Note that L0 and R0

correspond to the left and right halves of the 64-bit block that results from the initial

permutation, and that L16 and R16 are combined back together to form the 64-bit

block to which the final inverse permutation is applied.

We now need to define function F and show how each Ki is derived from the

56-bit key. We start with the key. Initially, the 56-bit key is permuted according to

Table 8.2. Note that every eighth bit is ignored (i.e., bit 64 is missing from the table),

reducing the key from 64 bits to 56 bits. Then for each round, the current 56 bits are

divided into two 28-bit halves and each half is independently rotated left either one or

two bit positions, depending on the round. The extent of the rotation in bits for each

round is given in Table 8.3. The 56 bits that result from this shift are used both as

586 8 Network Security

Input Position 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17

Output Position 5 24 7 16 6 10 20 18 12 3 15 23 1 9 19 2

Input Position 19 20 21 23 24 26 27 28 29 30 31 32 33 34 36 37

Output Position 14 22 11 13 4 17 21 8 47 31 27 48 35 41 46 28

Input Position 39 40 41 42 44 45 46 47 48 49 50 51 52 53 55 56

Output Position 39 32 25 44 37 34 43 29 36 38 45 33 26 42 30 40

Table 8.4 DES compression permutation.

input for the next round (i.e., the preceding shift is repeated) and to select the 48 bits

that make up the key for the current round. Table 8.4 shows how 48 of the 56 bits are

selected; note that they are simultaneously selected and permuted. For example, the

bit in position 9 is not selected because it is not in the table.

Function F combines the resulting 48-bit key for round i (Ki) with the right half

of the data block after round i −1 (Ri−1), as follows. To simplify our notation, we refer

to Ki and Ri−1 as K and R, respectively. First, function F expands R from 32 bits into

48 bits so that it can be combined with the 48-bit K. It does this by breaking R into

eight 4-bit chunks and expanding each chunk into 6 bits by stealing the rightmost and

leftmost bit from the left and right adjacent 4-bit chunks, respectively. This expansion

is illustrated in Figure 8.6, where R is treated as circular in the sense that the first and

last chunks get their extra bit from each other.

Next, the 48-bit K is divided into eight 6-bit chunks, and each chunk is XORed

with the corresponding chunk that resulted from the previous expansion of R. Finally,

each resulting 6-bit value is fed through something called a substitution box (S box),

which reduces each 6-bit chunk back into 4 bits. There are actually eight different S

boxes, one for each of the 6-bit chunks. You can think of an S box as just performing

a many-to-one mapping from 6-bit numbers to 4-bit numbers. Table 8.5 gives part of

the S box function for the first chunk. We are now done with round i .

Notice that the preceding description does not distinguish between encryption

and decryption. One of the nice features of DES is that both sides of the algorithm

work exactly the same. The only difference is that the keys are applied in the reverse

order, that is, K16, K15, . . . , K1.

Also keep in mind that the preceding discussion is limited to a single 64-bit

data block. To encrypt a longer message using DES, a technique known as cipher

8.1 Cryptographic Algorithms 587

4-bit chunk

Expanded to 6 bits by stealing
a bit from left and right chunks

…

… …

…

Figure 8.6 Expansion phase of DES.

Input 000000 000001 000010 000011 000100 000101 . . .

Output 1110 0100 1101 0001 0010 1111 . . .

Input . . . 111010 111011 111100 111101 111110 111111

Output . . . 0011 1110 1010 0000 0110 1101

Table 8.5 Example DES S box (bits 1–6).

block chaining (CBC) is typically used. The idea of CBC is simple: The ciphertext for

block i is XORed with the plaintext for block i +1 before running it through DES. An

initialization vector (IV) is used in lieu of the nonexistent ciphertext for block 0. This

vector IV, which is a random number generated by the sender, is sent along with the

message so that the first block of plaintext can be retrieved. CBC on the encryption

side is shown in Figure 8.7 for a 256-bit (four-block) message. Decryption works in

the expected way since XOR is its own inverse, with the process starting with the last

block and moving toward the front of the message.

We conclude by noting that there is no published mathematical proof that DES

is secure. What security it achieves it does through the application of two techniques:

confusion and diffusion. (Having just plowed through the algorithm, you should now

have a deep appreciation for these two techniques.) What we can say is that the only

known way to break DES is to exhaustively search all possible 256 keys, although

on average you would expect to have to search only half of the key space, or 255 =
3.6×1016 keys. On a modern workstation, it is possible to do one encryption in 1.5 μs,

588 8 Network Security

Block1

IV

DES

Cipher1

Block2

DES

Block3

DES

Block4

DES

+

Cipher2 Cipher3 Cipher4

+++

Figure 8.7 Cipher block chaining (CBC) for large messages.

meaning that it would take 5.0 × 10116μs to break a key (approximately 1500 years).

While that may seem like a long time, keep in mind that searching a key space is a

highly parallel task, meaning that if you could throw 3000 PCs at the job, it would

take only six months to break a key.

This amount of time is considered borderline-secure in many circles, especially

considering that processor speeds are doubling every 18 months. For this reason, many

applications now use triple-DES (3DES), that is, encrypt the data three times. This can

be done with three separate keys, or with two keys: The first is used, then the second,

and finally the first key is used again.

8.1.3 Public Key Encryption (RSA)

RSA is a much different algorithm, not only because it involves different keys for

encryption (public key) and decryption (private key), but also because it is grounded

in number theory. In fact, the essential aspect of RSA comes down to how these

two keys are selected. The act of encrypting or decrypting a message is expressed as

a simple function, although this function requires enormous computational power.

In particular, RSA commonly uses a key length of 1024 bits, making it much more

expensive to compute than DES; we discuss this more below.

The first task is to generate a public and private key. To do this, choose two

large prime numbers p and q, and multiply them together to get n. Both p and q

should be roughly 256 bits long. Next, choose the encryption key e, such that e and

(p − 1) × (q − 1) are relatively prime. (Two numbers are relatively prime if they have

no common factor greater than 1.) Finally, compute the decryption key d such that

d = e−1 mod ((p − 1) × (q − 1))

The public key is constructed from the pair 〈e, n〉 and the private key is given by the

pair 〈d, n〉. The original prime numbers p and q are no longer needed. They can be

discarded, but they must not be disclosed.

8.1 Cryptographic Algorithms 589

Given these two keys, encryption is defined by the following formula:

c = me mod n

and decryption is defined by

m = cd mod n

where m is the plaintext message and c is the resulting ciphertext. Note that m must

be less than n, which means that it can be no more than the 1024 bits long. A larger

message is simply treated as the concatenation of multiple 1024-bit blocks.

To see how this works, consider the following example using very small values

of p and q. Suppose we pick p = 7 and q = 11. That means

n = 7 × 11 = 77

and

(p − 1) × (q − 1) = 60

so we need to pick a value of e that is relatively prime to 60. We choose e = 7; 7 and

60 have no common factor except 1. Now we need to calculate d such that

d = 7−1 mod ((7 − 1) × (11 − 1))

which is to say

7 × d = 1 mod 60

It turns out that d = 43, since

7 × 43 = 301

= 1 mod 60

So now we have the public key 〈e, n〉 = 〈7, 77〉 and the private key 〈d, n〉 = 〈43, 77〉.
Note that in this example it would be pretty easy to figure out p and q once you knew

n, and thus figure out e from d, but if n was the product of two numbers each of which

was about 256 bits long, it would be computationally infeasible to find p and q. It

should be clear why p and q must not be disclosed—once they are known, it is easy

to determine the private key from the public key.

Now consider a simple encryption operation. Suppose we want to encrypt a

message containing the value 9. Following the encryption algorithm above:

c = me mod n

= 97 mod 77

= 37

So 37 is the ciphertext that we would send. (You can verify this calculation pretty

easily with a calculator.)

590 8 Network Security

On receipt of the message, the cipher-

text would be decrypted as follows:

m = cd mod n

= 3743 mod 77

= 9

Thus, as required, the original mes-

sage is recovered. (Verifying the above cal-

culation on a calculator is a little harder;

you need to perform the exponentiation in

stages and find the remainder modulo 77

after each stage to avoid dealing with inte-

gers that are too big for the calculator.)

Notice that when two participants

want to encrypt data they are sending to

each other using a public key algorithm like

RSA, a public/private key pair is required.

It doesn’t work to encrypt with your private

key and let the other side decrypt with the

public key because everyone has access to

the public key and so could decrypt the mes-

sage. In other words, participant Aencrypts

data it sends to participant B using B’s pub-

lic key and B uses its private key to decrypt

this data, while B encrypts data it sends to

A using A’s public key and A decrypts this

message using its private key. Observe that

A cannot decrypt a message that it has sent

to B; only B has the requisite private key.

RSA security comes from the premise

that factoring large numbers is a compu-

tationally expensive proposition. In partic-

ular, if you could factor n, you could re-

cover p and q, which would compromise d.

The speed at which large numbers can be

factored is a function of both the available

processor speed and the factoring algorithm

being used. It is estimated that 512-bit num-

bers will be factorable in the next few years,

Breaking RSA

In 1977, a challenge was issued to

break a 129-digit (430-bit) message

that was encrypted using RSA. It

was believed that the code was im-

pregnable, requiring 40 quadrillion

years of computation using the cur-

rently known algorithms for factor-

ing large numbers. In April 1994, a

mere 17 years later, four scientists

reported that they had broken the

code. The hidden message was

THE MAGIC WORDS ARE

SQUEAMISH OSSIFRAGE

The task was accomplished

using a factoring method that

requires approximately 5000 MIP-

years. This was done over an eight-

month period of time by dividing

the problem into smaller pieces and

shipping these pieces, using email,

to computers all over the world.

Keep in mind that it doesn’t

always take 5000 MIP-years to

break a key, especially when the

key is poorly chosen. For example,

a security hole was exposed in a

WWW browser that used RSA to

encrypt credit card numbers that

were being sent over the Internet.

The problem was that the system

used a highly predictable method

(a combination of process ID plus

time of day) to generate a random

number that was, in turn, used to

generate a private and public key.

Such keys are easily broken.

8.1 Cryptographic Algorithms 591

Transform

Initial “digest”
(constant)

Message (padded)

Transform

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Figure 8.8 Overview of message digest operation.

which is why people are now using 1024- and even 2048-bit keys. Keep in mind that

while we are concentrating on the security of data as it moves through the network—

that is, the data is sometimes vulnerable for only a short period of time—in general,

security people have to consider the vulnerability of data that needs to be stored in

archives for tens of years.

8.1.4 Message Digest Algorithms (MD5)

There are a number of popular message digest algorithms known as MDn for various

values of n. MD5 is the most widely used at the time of writing. The secure hash

algorithm (SHA) is another well-known message digest function. All these functions

do much the same thing, which is to compute a fixed-length cryptographic checksum

from an arbitrarily long input message.

Mathematically, message digest algorithms tend to have more in common with

DES than with RSA. That is, they don’t have a formal mathematical foundation, but

rely on the complexity of the algorithm to produce a random output such that the

requirements outlined above are met. We provide just a brief outline of the MD5 algo-

rithm here. The algorithm itself seems to be a random collection of transformations,

so it is not surprising that it produces suitably random outputs.3

The basic operation of MD4, MD5, and SHA is depicted in Figure 8.8. These

algorithms operate on a message 512 bits at a time, so the first step is to pad the

message to a multiple of 512 bits. This is done by following the message with between

3This is not to imply that any collection of random transformations will be adequate. It is necessary to verify that
an algorithm of this type truly does produce random outputs.

592 8 Network Security

1 and 512 padding bits, the first of which is a 1, the rest of which are 0s, and then

following that with a 64-bit integer that is the original message length in bits. Note

that this allows messages of arbitrary length up to 264 bits.

The digest calculation begins with the digest value initialized to a constant; this

value is combined with the first 512 bits of the message to produce a new value for the

digest, using a complex transformation described below; the new value is combined

with the next 512 bits of the message using the same transformation, and so on, until

the final value of the digest is produced.

The main ingredient of the MD5 algorithm is thus the transformation that takes

as its input the current value of the 128-bit digest, plus 512 bits of message, and

outputs a new 128-bit digest. MD5, like other modern digest algorithms (and unlike

some earlier ones like MD2), operates on 32-bit quantities, since these are efficiently

handled in modern processors. So we can think of the current digest value as four

32-bit words (d0, d1, d2, d3) and the piece of message currently being digested as sixteen

32-bit words (m0 through m15).

The basic transformation performed by MD5 can be divided into four passes.

In the first pass, a new value of the digest is produced from the old value and the 16

message words using 16 steps, the first 6 of which are shown below:

d0 = (d0 + F (d1, d2, d3) + m0 + T1) ←֓ 7

d3 = (d3 + F (d0, d1, d2) + m1 + T2) ←֓ 12

d2 = (d2 + F (d3, d0, d1) + m2 + T3) ←֓ 17

d1 = (d1 + F (d2, d3, d0) + m3 + T4) ←֓ 22

d0 = (d0 + F (d1, d2, d3) + m4 + T5) ←֓ 7

d1 = (d3 + F (d0, d1, d2) + m5 + T6) ←֓ 12

This process continues until all 16 words have been digested. Each step causes

one of the digest words to be rewritten, with the new value depending on its old

value, the current value of the other three digest words, and one word of the message

being digested. The function F (a, b, c) is a combination of bitwise operations (OR,

AND, NOT) on its arguments. The Ti s are constants. The ←֓ n operator rotates the

operand left by n bits.

The second pass looks pretty much the same as the first pass (especially if your

eyes are glazing over). The differences are the following:

■ F is replaced by a slightly different function G.

■ The constants T1 through T16 are replaced by another set (T17 through T32).

8.1 Cryptographic Algorithms 593

■ The amount of the left rotation is {5, 9, 14, 20, 5, 9, . . .} at each step.

■ Instead of taking the bytes of the message in order m0 through m15, the message

byte that is used at stage i is m(5i+1)mod16.

In the third pass:

■ G is replaced by yet another function H, which is just the XOR of its argu-

ments.

■ Another set of constants (T33 through T48) are used.

■ The amount of the left rotation is {4, 11, 16, 23, 4, 11, . . .} at each step.

■ The message byte that is used at stage i is m(3i+5)mod16.

The attentive reader could probably propose a fourth pass that would be as

secure as the one that is actually used; for the sake of completeness, the fourth pass

has the following properties:

■ H is replaced by the function I, which is a combination of bitwise XOR, OR,

and NOT on its arguments.

■ Another set of constants (T49 through T64) are used.

■ The amount of the left rotation is {6, 10, 16, 21, 6, 10, . . .} at each step.

■ The message byte that is used at stage i is m(7i)mod16.

After all this work, the original values of (d0, d1, d2, d3) have been thoroughly

mangled in a way that, while completely dependent on the message bytes, provides

no algorithmic way to find out what those message bytes were. The mangled digest is

now added to the digest value that existed prior to the current stage, and that becomes

the new digest value. The algorithm now proceeds to digest the next 16 bytes of the

message until there is no more to be digested; the output of the last stage is the message

digest.

While not quite as computationally efficient as some earlier digests, MD5 is still

fairly good on this count. Note that all the operations—bitwise OR, AND, NOT,

XOR, addition, and rotation—are easily implemented in modern processors.

8.1.5 Implementation and Performance

DES and MD5 are several orders of magnitude faster than RSA when implemented

in software. On a state-of-the-art processor, for example, DES processes data at a

rate of roughly 100 Mbps and MD5 at approximately 600 Mbps, while RSA runs at

only 100 Kbps. In practice, people don’t think about RSA performance in terms of

594 8 Network Security

throughput rates because it doesn’t make sense to run RSA on a data message. Instead,

we typically talk about RSA in terms of the number of values per second it can sign and

verify, respectively. On today’s processors, RSA can sign approximately 100 1024-bit

values per second and verify approximately 2000 1024-bit values per second.

When implemented in hardware, that is, by custom VLSI chips, it has been

reported that DES and MD5 can achieve rates measured in gigabits per second, whereas

RSA rates are still measured in kilobits per second. This is why DES and MD5 are

the more likely of the three algorithms to be implemented in hardware on a given

computer—even when implemented in hardware, RSA is still too slow to be of any

practical use in encrypting data messages. Instead, RSA is typically used to encrypt

very small amounts of data, such as a secret key. Security protocols then use these

RSA-protected secrets in conjunction with DES and MD5, possibly implemented in

hardware, to provide message privacy and integrity. We will see exactly how this is

accomplished in the following sections.

8.2 Security Mechanisms

Cryptographic algorithms are just one piece of the picture when it comes to providing

security in a network. The next thing we need is a set of mechanisms and protocols

for solving various problems. In this section we examine mechanisms that are used to

authenticate participants, techniques for assuring the integrity of messages, and some

approaches to solving the problem of distributing public keys.

8.2.1 Authentication Protocols

Before two participants are likely to establish a secure channel between themselves—

that is, use an algorithm such as DES to encrypt messages they exchange—they will

generally wish to establish that the other participant is who he or she claims to be.

This is the problem of authentication. If you think about authentication in the context

of a client/server relationship, say, a remote file system, then it is understandable that

the server would want to establish the identity of the client: If the client is going to be

allowed to modify or delete John’s file, then the server is obligated to make sure that the

client is, in fact, John. It is also the case, however, that the client often wants to verify

the identity of the server. After all, you would not want to start writing sensitive data to

what you thought was a file server, only to later discover that it was an imposter process.

This section describes three common protocols for implementing authentication.

The first two use secret key cryptography (e.g., DES), while the third uses public key

cryptography (e.g., RSA). Note that it is often during the process of authentication that

the two participants establish the session key that is going to be used to ensure privacy

during subsequent communication. The following includes a discussion of how this

process gets bootstrapped.

8.2 Security Mechanisms 595

Simple Three-Way Handshake

A simple authentication protocol is possible when the two participants who want

to authenticate each other—think of them as a client and a server—already share a

secret key. This situation is analogous to a user (the client) having an account on a

computer system (the server), where both client and server know the password for the

account.

The client and server authenticate each other using a simple three-way handshake

protocol similar to the one described in Section 5.2.3. In the following, we use E(m,k)

to denote the encryption of message m with key k and D(m,k) to denote the decryption

of message m with key k.

As illustrated in Figure 8.9, the client first selects a random number x and encrypts

it using its secret key, which we denote as CHK (client handshake key). The client then

sends E(x, CHK), along with an identifier (ClientId), for itself to the server. The server

uses the key it thinks corresponds to client ClientId (call it SHK for server handshake

key) to decrypt the random number. The server adds 1 to the number it recovers and

sends the result back to the client. It also sends back a random number y that has been

encrypted with SHK. Next, the client decrypts the first half of this message and if the

result is 1 more than the random number x that it sent to the server, it knows that

the server possesses its secret key. At this point, the client has authenticated the server.

The client also decrypts the random number the server sent it (this should yield y),

encrypts this number plus 1, and sends the result to the server. If the server is able to

recover y + 1, then it knows the client is legitimate.

After the third message, each side has authenticated itself to the other. The fourth

message in Figure 8.9 corresponds to the server sending the client a session key (SK),

Client Server

ClientId, E(x, CHK)

E(y + 1, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

Figure 8.9 Three-way handshake protocol for authentication.

596 8 Network Security

encrypted using SHK (which is equal to CHK). Typically, the client and server then

use SK to encrypt any future data they send to each other. The advantage of using

a session key is that it means that the permanent secret key is only used for a small

number of messages, making it harder for an attacker to gather data that might be

used to determine the key.

This only begs the question of where the client and server handshake keys came

from in the first place. One possibility is that they correspond to a password that

a user entered; the ClientId could be the login identifier in this situation. Because a

user-selected password might not make a suitable secret key, a transformation is often

performed to turn it into a legitimate 56-bit DES key, for example.

Trusted Third Party

A more likely scenario is that the two participants know nothing about each other, but

both trust a third party. This third party is sometimes called an authentication server,

and it uses a protocol to help the two participants authenticate each other. There are

actually many different variations of this protocol. The one we describe is the one used

in Kerberos, a TCP/IP-based security system developed at MIT.

In the following, we denote the two participants who want to authenticate each

other as Aand B, and we call the trusted authentication server S. The Kerberos protocol

assumes that A and B each share a secret key with S; we denote these two keys as KA

and KB, respectively. As before, E(m,k) denotes message m encrypted with key k.

As illustrated in Figure 8.10, participant A first sends a message to server S that

identifies both itself and B. The server then generates a timestamp T, a lifetime L,

AS B

E((T, L, K, B), K
A),

E((A, T), K),

E((T, L, K, A), K
B)

A, B

E(T + 1, K)

 E((T, L, K, A), K
B)

Figure 8.10 Third-party authentication in Kerberos.

8.2 Security Mechanisms 597

and a new session key K. Timestamp T is going to serve much the same purpose as

the random number in the simple three-way handshake protocol given above, plus

it is used in conjunction with L to limit the amount of time that session key K is

valid. Participants A and B will have to go back to server S to get a new session

key when this time expires. The idea here is to limit the vulnerability of any one

session key.

Server S then replies to A with a two-part message. The first part encrypts the

three values T, L, and K, along with the identifier for participant B, using the key

that the server shares with A. The second part encrypts the three values T, L, and K,

along with participant A’s identifier, but this time using the key that the server shares

with B. Clearly, when A receives this message, it will be able to decrypt the first

part but not the second part. A simply passes this second part on to B, along with

the encryption of A and T using the new session key K. (A was able to recover T

and K by decrypting the first part of the message it got from S.) Finally, B decrypts

the part of the message from A that was originally encrypted by S, and in so do-

ing, recovers T, K, and A. It uses K to decrypt the half of the message encrypted

Diffie-Hellman Key

Exchange

Our presentation draws a distinc-

tion between cryptography algo-

rithms (e.g., RSA) and security

protocols that use cryptography al-

gorithms to provide authentication

and integrity services (e.g., Digi-

tal Signature using RSA). In real-

ity, this distinction is not always

so crisp, as there exist security

protocols that are interleaved with

cryptography algorithms. Diffie-

Hellman key exchange, which al-

lows two users to exchange a se-

cret key over an insecure channel

in a way that is reminiscent of how

by A and, upon seeing that A and T are

consistent in the two halves of the message,

replies with a message that encrypts T + 1

using the new session key K.

A and B can now communicate with

each other using the shared secret session

key K to ensure privacy.

Public Key Authentication

Our final authentication protocol uses pub-

lic key cryptography (e.g., RSA). The pub-

lic key protocol is a useful one because the

two sides need not share a secret key; they

only need to know the other side’s public

key. As shown in Figure 8.11, participant A

encrypts a random number x using partici-

pant B’s public key, and B proves it knows

the corresponding private key by decrypt-

ing the message and sending x back to A. A

could authenticate itself to B in exactly the

same way.

598 8 Network Security

A B

E(x, PublicB)

x

Figure 8.11 Public key authentication.

8.2.2 Message Integrity

Protocols

Sometimes two communicating participants

do not care whether an eavesdropper is able

to read the messages they are sending to

each other, but they are worried about the

possibility of an imposter sending messages

that claim to be from one of them. That is,

the participants want to ensure the integrity

of their messages.

One way to ensure the integrity of a

message is to encrypt it using DES with

cipher block chaining, and then to use the

CBC residue (the last block output by the

CBC process) as a message integrity code

(MIC). (For the CBC example given in

Figure 8.7, cipher4 is the CBC residue.) The

plaintext message plus the MIC would be

transmitted to the receiver, with the MIC

acting as a sort of checksum—if the receiver

could not reproduce the attached MIC us-

ing the secret key it shares with the sender,

then either the message was not sent by the

sender, or it was modified since it was trans-

mitted. Note that you would not want to

the RSA algorithm constructs pub-

lic and private keys, is a widely

used example. Diffie-Hellman is a

powerful mechanism because it al-

lows two parties to establish a se-

cret key (that can subsequently be

used by a symmetric encryption al-

gorithm like DES) without relying

on a trusted third party.

The protocol has two param-

eters, p and g, both of which are

public and may be used by all the

users in a system. Parameter p is

a prime number and parameter g

(usually called a generator) is an in-

teger less than p, with the property

that for every number n between 1

and p − 1, there is a power k of g

such that

n = gk mod p

Suppose Alice and Bob want to

agree on a shared secret key. First,

8.2 Security Mechanisms 599

use DES with CBC to both encrypt the message for privacy and generate the MIC for

integrity, because you would simply end up transmitting the CBC-encrypted message

with the last block repeated. Thus, anyone who wanted to tamper with the CBC-

encrypted message could take the value of the final block they wanted to send, and

send it twice.

This section looks at three alternatives for ensuring message integrity. The first

uses RSA to produce a digital signature. RSA used on its own tends to be slow, but

it can be used in combination with MD5 to yield a much more efficient technique.

The second and third approaches use MD5 (possibly in conjunction with RSA) to

guarantee message integrity.

Alice generates a random private

value a and Bob generates a ran-

dom private value b. Both a and b

are drawn from the set of integers

{1, . . . , p−2}. Alice and Bob derive

their corresponding public values

as follows. Alice’s public value is

ga = mod p

and Bob’s public value is

gb = mod p

They then exchange their public

values. Finally, Alice computes

gab = (gb)a mod p

and Bob computes

gba = (ga)b mod p

Since

gab = gba = k

Alice and Bob now have a shared

secret key k.

Digital Signature Using RSA

A digital signature is a special case of a mes-

sage integrity code, where the code can have

been generated only by one participant. The

easiest digital signature algorithm to under-

stand is an RSA signature, which works in

the obvious way—since a given participant

is the only one that knows its own private

key, the participant uses this key to produce

the signature. Any other participant can ver-

ify this signature using the corresponding

public key. In other words, to sign a mes-

sage, you encrypt it using your private key,

and to verify a signature, you decrypt it us-

ing the public key of the purported sender.

Clearly, this means that producing an RSA

signature is as slow as RSA, which we have

already seen is two or three orders of magni-

tude slower than DES. Observe that the use

of keys is exactly reversed relative to their

use for privacy: The sender encrypts with

the sender’s private key rather than with the

receiver’s public key, and the receiver de-

crypts with the sender’s public key rather

than with the receiver’s private key.

600 8 Network Security

Note that the National Institute for Standards and Technology (NIST) has pro-

posed a digital signature standard known as DSS that is similar to the approach just

described, except that it uses an alternative algorithm, called El Gamel, instead of RSA.

Keyed MD5

Recall that MD5 produces a cryptographic checksum for a message. This checksum

does not depend on a secret key, so it does not prevent an imposter from creating

a message that claims to be from someone else and computing an MD5 checksum

for that message. However, there are two ways to use MD5 to implement message

integrity. Both approaches overcome the performance problems inherent in using RSA

alone.

The first method, which is commonly referred to as keyed MD5, works as follows.

Suppose that we can arrange for the sender and receiver of a message to share a secret

key k. This might be done by preconfiguration of the key, or by some more dynamic

mechanism such as Kerberos. The sender then runs MD5 over the concatenation of

the message (denoted m) and this key. In practice, the key k is attached to the end of

the message for the purpose of running MD5; k is then removed from the message

once MD5 is finished. The sender now transmits

m + MD5(m + k)

where MD5(s) represents applying the MD5 algorithm to string s, and a + b denotes

the concatenation of strings a and b.

The receiver of the message applies MD5 to the concatenation message body and

the secret key k. If the result matches the checksum sent with the message, then the

message must have been sent by the participant who holds that key.

Keyed MD5 itself does not depend on public key cryptography, but it can be

combined with it to simplify the problem of getting the same value of the secret key k

to the sender and receiver. The sender picks k at random, encrypts it using RSA and

the receiver’s public key, and then encrypts the result with its own private key. The

result can now be sent to the receiver along with the original message and the MD5

checksum. The following summarizes the complete message transmitted by the sender:

m + MD5(m + k) + E(E((k, rcv public), snd private)

The receiver recovers the random key using the purported sender’s public RSA

key and its own private key, and proceeds to run MD5 on the concatenation of the

received message and k. As before, if the result matches the checksum sent with the

message, then the message must have been sent by the participant who generated the

random key. While this approach solves the problem of getting the secret key from

8.2 Security Mechanisms 601

sender to receiver, it still leaves the problem of getting the sender’s public key reliably

to the receiver; this problem is discussed in Section 8.2.3.

MD5 with RSA Signature

The second method for using MD5 for message integrity works in combination with

RSA as follows. The sender runs MD5 over the original message it wants to protect,

producing an MD5 checksum. It then signs this checksum with its own private RSA

key. That is, the sender does not sign the entire message, it just signs the checksum. The

original message, the MD5 checksum, and the RSA signature for the checksum are then

transmitted. Using the same notation as above, this means that the sender transmits

m + E(MD5(m), private)

The receiver verifies the message by

■ running the MD5 algorithm on the received message

■ decrypting the signed checksum with the sender’s public key

■ comparing the two checksums

If they match, this means that the message was not modified since the time the sender

computed the MD5 checksum and signed it.

8.2.3 Public Key Distribution (X.509)

Public key cryptography is an extremely powerful technology, but it depends on the

distribution of public keys. The problem of getting keys to people who need them in

such a way that they can be sure that the key is legitimate (i.e., that it belongs to the

entity that it purports to belong to) turns out to be a challenging problem. This section

examines the problem and some of the general solutions to it. Some specific systems

that have attempted to solve the problem are described in Section 8.3.

Suppose participant A wants to convey his public key to participant B. He can’t

just use email or a bulletin board to send it, because without A’s public key, B has

no way to authenticate the key as having really come from A. Some third party could

send a public key to B and claim that the message came from A. If A and B are

individuals who know each other, then they can get together in the same room and

A can give his public key to B directly, perhaps on a business card. However, there

are clear shortcomings to this approach, such as the inability to receive a key from

someone unless you can be in the same room with them.

The basic solution to the problem relies on the use of digital certificates. The

following sections explain what certificates are and some issues that arise in using

them to achieve widespread key distribution.

602 8 Network Security

Certificates

In Section 8.2.2 we introduced the notion of a digital signature, by which the owner of

a certain key can cryptographically sign a piece of data. A digital signature proves that

the data was generated by the owner of a certain key and that it has not been modified

since it was signed. A certificate is just a special type of digitally signed document.

The document says, in effect, “I certify that the public key in this document belongs

to the entity named in this document, signed X.” X in this case could be anyone with

a public key. It is commonly the case that X would be a certification authority (CA),4

that is, an administrative entity that is in the business of issuing certificates. It should

be clear that this certificate is only useful to a participant who already holds the public

key for X because that key is needed to verify the signature. Thus, certificates do not in

themselves solve the key distribution problem, but they give us a way to make inroads

on it. Clearly, once you have a public key for one entity X, you can start to accumulate

more public keys from other participants if those participants can get certificates issued

by X.

The idea of certificates allows the building of “chains of trust.” If X certifies that

a certain public key belongs to Y, and then Y goes on to certify that another public

key belongs to Z, then there exists a chain of certificates from X to Z, even though X

and Z may have never met. If Z wants to provide his public key to A, he can provide

the complete chain of certificates—the certificate for Y’s public key issued by X, and

the certificate for Z’s key issued by Y. If A has the public key for X, he can use the

chain to verify that the public key of Z is legitimate.

With this idea of building chains of trust, public key distribution becomes some-

what more tractable. A popular way to build such chains is to arrange them in a

tree-structured hierarchy, as shown in Figure 8.12. If everyone has the public key of

the root CA, then any participant can provide a chain of certificates to another partic-

ipant and know that it will be sufficient to build a chain of trust for that participant.

There are still significant issues with building chains of trust. First of all, even if

you are certain that you have the public key of the root CA, you need to be sure that

every CA from the root on down is doing its job properly. If some CA is willing to

issue certificates to individuals without verifying their identity, then what looks like a

valid chain of certificates becomes meaningless. A different approach to this problem,

in which chains of trust form arbitrary meshes rather than a rigid tree, is discussed in

Section 8.3.1.

One question to ask about certificates is, What is being certified? Since a certificate

creates a binding between an identity and a public key, we should look more closely

at what we mean by “identity.” For example, a certificate that says, “This public

4CAs are also known as certificate authorities.

8.2 Security Mechanisms 603

User User User

User User User User User

CA CA

CA

CA CA CA

PCA1 PCA2

IPRA

PCA3

CA

CA

 IPRA = Internet Policy
 Registration Authority (root)
 PCAn = policy certification authority
 CA = certification authority

Figure 8.12 Tree-structured certification authority hierarchy.

key belongs to John Smith” may not be terribly useful if you can’t tell which of the

thousands of John Smiths is being identified. Thus certificates must use a well-defined

name space for the identities being certified. For example, certificates are often issued

for email addresses; a certificate might say, in effect, “This public key belongs to

jsmith@acme.com 〈John Q. Smith〉.”
Certificates can, of course, be issued for many entities other than individuals.

It is particularly useful to be able to issue a certificate for a domain in the Domain

Name System. For example, a certificate for the domain acme.com would be useful to

enable customers visiting the acme.com Web site to be sure they had come to the real

Web site and not an imposter before sending in their credit card information.

One of the major standards for certificates is known as X.509. This standard

leaves a lot of details open, but specifies a basic structure for certificates. Components

of a certificate clearly must include

■ the name of the entity being certified

■ the public key of the entity

■ the name of the certificate authority

■ a digital signature

X.509 certificates may use a number of different digital signature algorithms, so

the certificate must specify which algorithm it uses. Another possible component is an

expiration time for the certificate. We will see a particular use of this feature below.

604 8 Network Security

An important point to understand about certificates is that possession of a certifi-

cate says nothing about your identity. Certificates can be freely copied and distributed,

and indeed must be to be useful. To prove that you are the entity named in the cer-

tificate, you need to do something that shows you have the private key corresponding

to the public key contained in the certificate. This, of course, is the authentication

problem described in Section 8.2.1.

Certificate Revocation

One issue that arises with certificates is how to revoke, or undo, a certificate. Why is

this important? Suppose that you suspect that someone has discovered your private

key. There may be any number of certificates in the universe that assert that you

are the owner of the public key corresponding to that private key. The person who

discovered your private key thus has everything he needs to impersonate you: valid

certificates and your private key. To solve this problem, it would be nice to be able to

revoke the certificates that bind your old, compromised key to your identity, so that

the impersonator will no longer be able to persuade other people that he is you.

The basic solution to the problem is simple enough. A certification authority can

issue a certificate revocation list (CRL), which is a digitally signed list of certificates

that have been revoked. The CRL is periodically updated and made publicly available.

Because it is digitally signed, it can just be posted on a bulletin board. Now, when

participant A receives a certificate for B that he wants to verify, A will first consult

the latest CRL issued by the CA. As long as the certificate has not been revoked, it is

valid. Note that if all certificates have unlimited life spans, the CRL would always be

getting longer, since you could never take a certificate off the CRL for fear that some

copy of the revoked certificate might be used. However, by attaching an expiration

date to a certificate when it is issued, we can limit the length of time that a revoked

certificate needs to stay on a CRL. As soon as its original expiration date is passed, it

can be removed from the CRL.

8.3 Example Systems

At this point, we have seen many of the components that are required to build a

secure system. These components include cryptographic algorithms, authentication

protocols, and key distribution mechanisms. In this section we examine some complete

systems that use these components.

These systems can be roughly categorized by the protocol layer at which they

operate. The IPSEC (IP Security) protocols, as their name implies, operate at the IP

(network) layer. Systems that operate at the application layer include Pretty Good

Privacy (PGP), which provides secure electronic mail, and Secure Shell (SSH), a secure

8.3 Example Systems 605

remote login facility. In between these are a number of protocols that operate at the

transport layer, notably the IETF’s Transport Layer Security (TLS) standard and the

older protocol from which it derives, SSL (Secure Socket Layer). The following sections

describe the salient features of each of these approaches.

8.3.1 Pretty Good Privacy (PGP)

Pretty Good Privacy (PGP) is a popular approach to providing encryption and authen-

tication capabilities for electronic mail. The most interesting aspect of PGP is how it

handles certificates. Recall that the basic problem of distribution of public keys is the

establishment of a chain of trust. PGP acknowledges that each user has his own set

of criteria by which he wants to trust keys certified by someone else and provides the

tools needed to manage the level of trust he puts in these certificates.

To better appreciate the problem, suppose A, a person you know well, gives you

his public key in person. In this case, you are quite confident that it really is his public

key. But if A gives you a certificate for B, signed by A, you might have to wonder

whether A is the type of person that would falsely sign a certificate in exchange for

money, or whether he was a bit sloppy in checking that it really was B and not someone

else who asked him to sign the certificate. You might trust A to sign certificates for

some people (e.g., his co-workers) but not others (e.g., politicians). Matters clearly get

worse as the chain of “trust” (or mistrust) gets longer.

Rather than force a rigid hierarchy of certification, as was done in an earlier

secure email system called Privacy Enhanced Mail (PEM), PGP allows certification

relationships to form an arbitrary mesh. Furthermore, it allows each user to decide

for themselves how much trust they wish to place in a given certificate. For example,

suppose you have a certificate for B provided by A; you can assign a moderate level

of trust to that certificate. However, if you have additional certificates for B that were

provided by C and D, each of whom are also moderately trustworthy, that might

considerably increase your level of confidence that the public key you have for B

is valid. In short, PGP recognizes that the problem of establishing trust is quite a

personal matter and gives users the raw material to make their own decisions, rather

than assuming that they are all willing to trust in a single hierarchical structure of CAs.

To quote Phil Zimmerman, the developer of PGP, “PGP is for people who prefer to

pack their own parachutes.”

PGP has become quite popular in the networking community, and PGP key-

signing parties are a regular feature of IETF meetings. At these gatherings, an individual

can

■ collect public keys from others whose identity he knows

■ provide his public key to others

606 8 Network Security

■ get his public key signed by others, thus collecting certificates that will be

persuasive to an increasingly large set of people

■ sign the public key of other individuals, thus helping them build up their set

of certificates that they can use to distribute their public keys

■ collect certificates from other individuals whom he trusts enough to sign keys

Thus over time a user will collect a set of certificates with varying degrees of trust.

PGP stores these in a file called a key ring.

Now suppose user A wants to send a message to user B and prove to B that

it truly came from A. PGP follows the sequence of steps shown in Figure 8.13.

First, A creates a cryptographic checksum over the message body (e.g., using MD5)

and then encrypts the checksum using A’s private key. (PGP allows a variety of dif-

ferent cryptographic algorithms to be used and specifies which one is used in the

message.)

On receipt of the message, B uses PGP’s key management software to search

his key ring for A’s public key. If it is not found, B is of course unable to verify the

authenticity of the message. If the key is found, the checksum of the received message

is calculated, the received encrypted checksum is decrypted using A’s public key, and

the two checksums are compared. If they agree, B knows that A sent the message and

that it was not modified after A signed it. In addition to providing the result of the

signature verification, PGP tells B the level of trust that he had previously assigned to

this public key, based on the number of certificates he has for Aand the trustworthiness

of the individuals who signed the certificates.

Sender identity and message
integrity confirmed
if checksums match

Calculate MD5 checksum on
received message and compare

against received value

Decrypt signed checksum
with sender’s public key

Calculate MD5 checksum
over message contents

Sign checksum using RSA
with sender’s private key

Transmitted message

Figure 8.13 PGP message integrity and authentication.

8.3 Example Systems 607

Decrypt message using
DES with secret key k

Decrypt E(k) using RSA with
my private key k

Convert ASCII message

Encrypt k using RSA with
recipient’s public key

Encode message + E(k)
in ASCII for transmission

Encrypt message using
DES with secret key k

Create a random secret key k Original message

Transmitted message

Figure 8.14 PGP message encryption.

Encryption of a message is equally straightforward and is summarized in

Figure 8.14. A randomly picks a per-message key that is used to encrypt the message

using a symmetric algorithm such as DES. The per-message key is encrypted using

the public key of the recipient. PGP obtains this key from A’s key ring and notifies

A of the level of trust he has assigned to this key. The message is encoded to prevent

damage by mail gateways and sent to B. On receipt, B uses his private key to decrypt

the per-message key, and then uses the appropriate algorithm to decrypt the message.

PGP allows a wide variety of different cryptographic algorithms to be used for the

various functions. The actual algorithms used in a message are specified in header fields.

The idea of making a security system protocol-independent is a very good one, because

you never know when your favorite cryptographic algorithm might be proved to be

insufficiently strong for your purposes. It would be nice if you could quickly change to a

new algorithm without having to change the protocol specification or implementation.

In addition to putting this information in a mail message, PGP allows a user to list

his preferred algorithms in the file that contains his public key. Thus, anyone who has

his public key will know which algorithms can be safely used when sending to that

person.

8.3.2 Secure Shell (SSH)

The Secure Shell (SSH) provides a remote login service and is intended to replace the

less secure Telnet and rlogin programs used in the early days of the Internet. (SSH can

also be used to remotely execute commands and transfer files, like the Unix rsh and

rcp commands, respectively, but we will focus on how SSH supports remote login.)

608 8 Network Security

SSH is most often used to provide strong client/server authentication—where the SSH

client runs on the user’s desktop machine and the SSH server runs on some remote

machine that the user wants to log into—but it also supports message integrity and

confidentiality. Telnet and rlogin provide none of these capabilities.

To better appreciate the importance of SSH on today’s Internet, consider that

a few short years ago telecommuters used dial-up modems to connect their home

computers to work (or school). This meant that when they logged in, their passwords

were sent in the clear over a phone line and the LAN at work. Sending your password

in the clear over a LAN isn’t a great idea, but at least it’s not as risky as sending it

across the Internet. Today, however, telecommuters often subscribe to ISPs that offer

high-speed cable modem or DSL service, and they go through these ISPs to reach work.

This means that when they login, both their passwords and all the data they send or

receive potentially passes through countless untrusted networks. SSH provides a way

to encrypt the data sent over these connections and to improve the strength of the

authentication mechanism they use to login.

The latest version of SSH, version 2, consists of three protocols:

■ SSH-TRANS: a transport layer protocol

■ SSH-AUTH: an authentication protocol

■ SSH-CONN: a connection protocol

We focus on the first two, which are involved in remote login. We briefly discuss the

purpose of SSH-CONN at the end of the section.

SSH-TRANS provides an encrypted channel between the client and server ma-

chines. It runs on top of a TCP connection. Any time a user uses SSH to log onto a

remote machine, the first step is to set up an SSH-TRANS channel between those two

machines. The two machines establish this secure channel by first having the client

authenticate the server using RSA. Once authenticated, the client and server establish

a session key that they will use to encrypt any data sent over the channel. This high-

level description skims over several details, including the fact that the SSH-TRANS

protocol includes a negotiation of the encryption algorithm the two sides are going to

use. For example, 3DES is commonly selected. Also, SSH-TRANS includes a message

integrity check of all data exchanged over the channel.

The one issue we can’t skim over is how the client came to possess the server’s

public key that it needs to authenticate the server. Strange as it may sound, the server

tells the client its public key at connection time. The first time a client connects to a

particular server, SSH warns the user that it has never talked to this machine before

and asks if the user wants to continue. Although it is a risky thing to do, because SSH

is effectively not able to authenticate the server, users often say “yes” to this question.

8.3 Example Systems 609

SSH then remembers the server’s public key, and the next time the user connects to

that same machine, it compares this saved key with the one the server responds with.

If they are the same, SSH authenticates the server. If they are different, however, SSH

again warns the user that something is amiss, and the user is then given an opportunity

to abort the connection. Alternatively, the prudent user can learn the server’s public

key through some out-of-band mechanism, save it on the client machine, and thus

never take the “first time” risk.

Once the SSH-TRANS channel exists, the next step is for the user to actually

log onto the machine, or more specifically, authenticate him- or herself to the server.

SSH allows three different mechanisms for doing this. First, since the two machines

are communicating over a secure channel, it is OK for the user to simply send his or

her password to the server. This is not a safe thing to do when using Telnet since the

password would be sent in the clear, but in the case of SSH, the password is encrypted

in the SSH-TRANS channel. The second mechanism uses public key encryption. This

requires that the user has already placed his or her public key on the server. The third

mechanism, called host-based authentication, basically says that any user claiming to

be so-and-so from a certain set of trusted hosts is automatically believed to be that same

user on the server. Host-based authentication requires that the client host authenticate

itself to the server when they first connect; standard SSH-TRANS only authenticates

the server by default.

The main thing you should take away from this discussion is that SSH is a fairly

straightforward application of the protocols and algorithms we have seen throughout

this chapter. However, what sometimes makes SSH a challenge to understand is all the

keys a user has to create and manage, where the exact interface is operating system

dependent. For example, the OpenSSH package that runs on most Unix machines

supports an ssh-keygen command that can be used to create public/private key pairs.

These keys are then stored in various files in directory .ssh in the user’s home directory.

For example, file /.ssh/known hosts records the keys for all the hosts the user has

logged into, file /.ssh/authorized keys contains the public keys needed to authenticate

the user when he or she logs into this machine (i.e., they are used on the server side),

and file /.ssh/identity contains the private keys needed to authenticate the user on

remote machines (i.e., they are used on the client side).

Finally, SSH has proven so useful as a system for securing remote login that it

has been extended to also support other insecure TCP-based applications, such as X

Windows and IMAP mail readers. The idea is to run these applications over a secure

“SHH tunnel.” This capability is called port forwarding, and it uses the SSH-CONN

protocol. The idea is illustrated in Figure 8.15, where we see a client on host A indi-

rectly communicating with a server on host B by forwarding its traffic through an SSH

connection. The mechanism is called port forwarding because when messages arrive

610 8 Network Security

Application
client

Application
server

SSH SSH
Forwarded connection

Direct connection

Host A Host B

Figure 8.15 Using SSH port forwarding to secure other TCP-based applications.

at the well-known SSH port on the server, SSH first decrypts the contents, and then

“forwards” the data to the actual port at which the server is listening.

8.3.3 Transport Layer Security (TLS, SSL, HTTPS)

To understand the design goals and requirements for the Transport Layer Security

(TLS) standard that is being developed in the IETF, it is helpful to consider one of

the main problems that it was intended to solve. As the World Wide Web became

popular and commercial enterprises began to take an interest in it, it became clear that

some level of security would be necessary for transactions on the Web. The canonical

example of this is making purchases by credit card. There are several issues of concern

when sending your credit card information to a computer on the Web. First, you might

worry that the information would be intercepted in transit and subsequently used to

make unauthorized purchases. You might also worry about the details of a transaction

being modified, for example, to change the purchase amount. And you would certainly

like to know that the computer to which you are sending your credit card information

is in fact one belonging to the vendor in question and not some other party. Thus, we

immediately see a need for privacy, integrity, and authentication in Web transactions.

The first widely used solution to this problem was known as the Secure Socket Layer

(SSL), which formed the basis for the IETF’s TLS standard.

The designers of SSL and TLS recognized that these problems were not specific to

Web transactions (i.e., those using HTTP) and instead built a general-purpose proto-

col that sits between the application protocol (e.g., HTTP) and the transport protocol

(e.g., TCP). The reason for calling this “transport layer security” is that, from the

8.3 Example Systems 611

Application (e.g., HTTP)

Secure transport layer

TCP

IP

Subnet

Figure 8.16 Secure transport layer inserted between application and TCP layers.

application’s perspective, this protocol layer looks just like a normal transport proto-

col, except for the fact that it is secure. That is, the sender can open connections and

deliver bytes for transmission, and the secure transport layer will get them to the re-

ceiver with the necessary privacy, integrity, and authentication. By running the secure

transport layer on top of TCP, all of the normal features of TCP (reliability, flow con-

trol, congestion control, etc.) are also provided to the application. This arrangement

of protocol layers is depicted in Figure 8.16.

When HTTP is used in this way, it is known as HTTPS (Secure HTTP). In fact,

HTTP itself is unchanged. It simply delivers data to and accepts data from the TLS layer

rather than TCP. For convenience, a default TCP port has been assigned to “HTTPS”

(443). That is, if you try to connect to a server on TCP port 443, it’s likely that you will

find yourself talking to the TLS protocol, which will pass my data through to HTTP

provided all goes well with authentication and decryption.

One of the interesting differences between a Transport Layer Security protocol

and one designed for email is that there is the possibility for real-time negotiation. As

noted above, there are many different cryptographic algorithms that you might want

to use for various operations, and you can’t safely assume that the party with whom

you want to communicate implements all of them. Thus you might need to negotiate

until you find something that you can both agree on. You might even want to change

algorithms in the middle of a connection if, for example, you had some very important

data that warranted more computationally expensive encryption. For this reason, TLS

is broken into two parts:

■ a handshake protocol, used to negotiate parameters of the communication

■ a “record” protocol, used for actual data transfer

The handshake protocol can be thought of as the means to get enough shared

state to both ends of a connection to enable secure communication to proceed. The

components of this shared state are the set of agreed-upon cryptographic algorithms

612 8 Network Security

Client Server

Hello

[Certificate] Keys

[Cert. Verify] Finished

Data

Hello [Certific
ate, Keys,

Cert. Request] HelloDone

Finished

Figure 8.17 Handshake protocol to establish TLS session.

and parameters for these algorithms such as session keys, initialization vectors, and

so on. This shared state is represented by a session ID that is stored by both client

and server for purposes discussed below. Interestingly, the handshake protocol may

also negotiate the use of a compression algorithm, not because this offers any security

benefits, but because it’s easy to do when you’re negotiating all this other stuff and

you’ve already decided to do some expensive per-byte operations on the data. The set

of messages used in the handshake is shown in Figure 8.17. Some messages are sent in

certain situations only; these are shown in brackets. Note that the handshake takes at

least two RTTs and up to a dozen messages.

The handshake protocol is also responsible for exchange of certificates among

the participants, if required. For example, in making a credit card purchase, the client

needs to know that it’s talking to the real server, but the client need not necessarily

be authenticated. In this case, the server would provide the client with a certificate,

or a chain of certificates if necessary, as part of the initial handshake, thus furnishing

the client with a reliable copy of its public key. The server is then able to authenticate

subsequent messages by signing them with its private key. The client is now able to

encrypt messages with the public key of the server, and one of the first things it will

do with this key is encrypt and send a “pre-master secret” to the server. Subsequent

secrets, such as session keys, initialization vectors, and so on, are derived from this

pre-master secret.

8.3 Example Systems 613

The record protocol defines a set of formats and procedures by which messages

handed down from the application layer are

■ fragmented or coalesced into blocks of a convenient size for the following

steps

■ optionally compressed

■ integrity protected using a hash such as MD5

■ encrypted

■ passed to the lower layer (e.g., TCP) for transmission

The ability to negotiate cryptographic algorithms, while useful, does open this ap-

proach up to a certain form of attack that is in the general category of “man-in-the-

middle” attacks. This class of attack involves an intermediary who modifies messages

in transit between the two legitimate participants. Because the initial negotiation of

algorithms must take place without cryptographic protection, an intermediary could

change the choice of algorithms to something that is weaker than the participants are

in fact capable of supporting (and that the man-in-the-middle might be capable of

breaking). A poorly designed application might just accept whatever algorithm the

TLS protocol picks rather than verifying that it is in fact sufficiently strong for its

needs. A well-designed application would abort the transaction, effectively turning

this into a denial-of-service attack, which a man-in-the-middle can do in any case by

simply discarding packets in transit.

Another interesting feature of the TLS protocol, which is quite a useful feature

for Web transactions, is the ability to “resume” a session. To understand the moti-

vation for this, it is helpful to understand how HTTP version 1 makes use of TCP

connections. (The details of HTTP are presented in Section 9.2.2.) Each HTTP op-

eration, such as getting a page of text or an image from a server, requires a new

TCP connection to be opened. Retrieving a single page with a number of embedded

graphical objects might take many TCP connections. Recall from Section 5.2 that

opening a TCP connection requires a three-way handshake before data transmission

can start. Once the TCP connection is ready to accept data, the client would then

need to start the TLS handshake protocol, taking at least another two RTTs (and

consuming some amount of processing resources and network bandwidth) before ac-

tual application data could be sent. The resumption capability of TLS alleviates this

problem.

Session resumption is an optimization of the handshake that can be used in those

cases where the client and the server have already established some shared state in the

past. The client simply includes the session ID from a previously established session in

614 8 Network Security

its initial handshake message. If the server finds that it still has state for that session,

and the resumption option was negotiated when that session was originally created,

then the server can reply to the client with an indication of success, and data trans-

mission can begin using the algorithms and parameters previously negotiated. If the

session ID does not match any session state cached at the server, or if resumption was

not allowed for the session, then the server will fall back to the normal handshake

process.

Unlike PGP, TLS does not specify any particular key infrastructure. In practice,

TLS has been very successful in enabling Web commerce through the use of a single

certification authority. The CA’s public key is included with the most popular Web

browsers, and companies who want to accept credit card payment on their Web sites

obtain certificates from that CA. This makes server authentication rather straightfor-

ward and enables the server to make its public key reliably known to any client that

trusts the CA. As noted above, the server’s public key is all that the client needs to

establish any secrets necessary for encryption of data to or from the server.

8.3.4 IP Security (IPSEC)

Easily the most ambitious of all the efforts to integrate security into the Internet hap-

pens at the lowest level—IP. IPSEC, as the architecture is called, is really a framework

(as opposed to a single protocol or system) for providing all the security services dis-

cussed throughout this chapter. As an architecture, IPSEC provides three degrees of

freedom. First, it is highly modular, allowing users (or more likely, system admin-

istrators) to select from a variety of encryption algorithms and specialized security

protocols. Second, IPSEC allows users to select from a large menu of security services,

including access control, integrity, authentication, protection against replay, and con-

fidentiality (privacy). Third, IPSEC allows users to control the granularity with which

the security services are applied. For example, IPSEC can be used to protect both

“narrow” streams (e.g., packets belonging to a particular TCP connection being sent

between a pair of hosts) or “wide” streams (e.g., all packets flowing between a pair of

gateways).

When viewed from a high level, IPSEC consists of two pieces. The first piece

is a pair of protocols that implement the available security services. They are the

Authentication Header (AH), which provides access control, connectionless message

integrity, authentication, and antireplay protection, and the Encapsulating Security

Payload (ESP), which supports these same services, plus confidentiality. These two

protocols can be used by themselves or together to provide exactly the mix of services

that the user wants. The second piece is support for key management, which fits

under an umbrella protocol known as ISAKMP: Internet Security Association and

Key Management Protocol.

8.3 Example Systems 615

The abstraction that binds these two pieces together is the security association

(SA). An SA is a simplex (one-way) “connection” that is protected by one or more

of the available security services. Security associations may be established between a

pair of hosts, between a host and a security gateway (a router that supports IPSEC),

or between a pair of security gateways. For example, an SA might be established to

ensure the integrity of every packet sent from one security gateway to another; these

packets are in effect tunneled between the security gateways. (Recall our discussion

of tunneling in Section 4.1.8.) Securing a bidirectional communication between a pair

of hosts—corresponding to a TCP connection, for example—requires two security

associations, one in each direction.

From the local host’s perspective, a given SA contains all the information required

to execute the security services of AH and ESP. When created, an SA is assigned a

security parameters index (SPI) by the receiving machine. A combination of this SPI

and the destination IP addresses uniquely identifies a security association. Both AH

and ESP put the SPI in their header. The receiving host then uses this information to

determine which SA an incoming packet belongs to, and hence, what algorithms to

apply to the packet.

ISAKMP’s role is to define procedures and packet formats to establish, negotiate,

modify, and delete security associations. It defines packet formats for exchanging key

generation and authentication data. These formats aren’t terribly interesting because

they provide a framework only—the exact form of the keys and authentication data

depends on the key generation technique, the encryption algorithm, and the authenti-

cation mechanism that is used. Moreover, ISAKMP does not specify a particular key

exchange protocol, although it does suggest the Internet Key Exchange (IKE) as one

possibility.

Authentication Header (AH)

The Authentication Header provides connectionless integrity and data origin authen-

tication for IP datagrams. It also optionally provides protection against replays. The

AH header is shown in Figure 8.18. It either follows the IPv4 header or is an IPv6

extension header, depending on which version of IP it is used with.

The NextHdr field identifies the type of the next payload after the Authentication

Header. The PayloadLength field specifies the length of the AH in 32-bit words (4-byte

units) minus 2.5 The Reserved field is reserved for future use; it is set to 0 for now.

The SPI field is an arbitrary 32-bit value that, in combination with the destination IP

address, uniquely identifies the security association for this datagram.

5All IPv6 extension headers encode the “Hdr Ext Len” field by first subtracting 1 (64-bit word) from the header
length (measured in 64-bit words). AH is an IPv6 extension header, but since its length is measured in 32-bit words,
the payload length is calculated by subtracting 2 (32-bit words).

616 8 Network Security

NextHdr PayloadLength Reserved

SPI

SeqNum

AuthenticationData

Figure 8.18 IPSEC’s Authentication Header.

The SeqNum field contains a monotonically increasing counter, or sequence num-

ber. This field is used to protect against replay, but it is present even if the receiver does

not elect to enable the antireplay service for a specific SA. The sender’s counter and the

receiver’s counter are initialized to 0 when an SA is established. If antireplay is enabled,

which is the default, the transmitted sequence number must never be allowed to cycle.

Thus, the sender’s counter and the receiver’s counter must be reset by establishing a

new SA—and thus a new key—prior to transmitting the 232nd packet on an SA.

Finally, AuthenticationData is a variable-length field that contains the message

integrity code for this packet. The field must be an integral multiple of 32 bits in

length. AH does not prescribe a specific message digest algorithm. DES and MD5,

among others, can be used. The only requirement is that the algorithm must specify

the length of the MIC and the comparison rules and processing steps for validation.

Encapsulating Security Payload (ESP)

The Encapsulating Security Payload header is designed to provide a mix of security

services in IPv4 and IPv6. ESP may be applied alone, or in combination with the AH.

The ESP header is inserted after the IP header and before the upper-layer protocol

header (when used between a pair of hosts), or before an encapsulated IP header when

used to tunnel between a pair of security gateways.

ESP provides confidentiality, data origin authentication, connectionless integrity,

and an antireplay service. The set of services provided depends on options selected

at the time the SA is established. Confidentiality may be selected independent of all

other services, but it is expected that confidentiality is supported in conjunction with

integrity/authentication, either in ESP or separately in AH. Data origin authentication

and connectionless integrity are joint services and are offered as an option in con-

junction with (optional) confidentiality. The antireplay service may be selected only if

data origin authentication is selected, and its election is solely at the discretion of the

receiver. Note that although both confidentiality and authentication are optional, at

least one of them must be selected.

8.4 Firewalls 617

NextHdrPadLength

SPI

SeqNum

PayloadData

Padding (0–255 bytes)

AuthenticationData

Figure 8.19 IPSEC’s ESP header.

Like AH, the ESP header either follows the IPv4 header or is an IPv6 extension

header. Its format is shown in Figure 8.19. The SPI field has the same function as in

the AH: It helps the receiving host identify the security association to which the packet

belongs. Similarly, the SeqNum field protects against replay attacks. The packet’s

PayloadData contains the data described by the NextHdr field. If confidentiality is

selected, then the data is encrypted by whatever encryption algorithm was associated

with the SA. Padding is sometimes necessary, for example, because the encryption

algorithm requires the plaintext to be a multiple of some number of bytes, or to ensure

that the resulting ciphertext terminates on a 4-byte boundary. The PadLength field

records how much padding was added to the data. Finally, the AuthenticationData

carries the MIC, just as in AH. This field is present because ESP is general enough to

support message integrity and authentication, in addition to privacy.

One of the most popular ways to use the ESP is to build an “IPSEC tunnel”

between two routers. For example, a corporation wanting to link two sites using the

Internet could configure a tunnel from a router at one site to a router at the other site,

just as we discussed in Section 4.1.8. This tunnel may also be configured to use the

ESP with confidentiality and authentication, thus preventing unauthorized access to

the data that traverses this virtual link and ensuring that no spurious data is received

at the far end of the tunnel.

8.4 Firewalls
We conclude our discussion of network security by discussing a mechanism that most

security purists consider to be an abomination: firewalls. A firewall is a specially pro-

grammed router that sits between a site and the rest of the network, as illustrated

618 8 Network Security

Rest of the Internet Local site

Firewall

Figure 8.20 A firewall filters packets flowing between a site and the rest of the
Internet.

in Figure 8.20. It is a router in the sense that it is connected to two or more physical

networks and it forwards packets from one network to another, but it also filters the

packets that flow through it. For example, it might throw away (rather than forward)

all incoming packets addressed to a particular IP address or to a certain TCP port

number. This is useful if you do not want external users to access a particular host or

service within your site. The firewall might also filter packets based on the source’s IP

address. This is useful if you want to protect hosts within the site from an unwanted

flood of packets from an external host. Such a flood of packets is sometimes called a

denial-of-service attack.

If all the security mechanisms described throughout this chapter were in wide

use, there would be no need for firewalls. When you tried to establish a connection

to a node using, say, IPSEC, you would have to authenticate yourself as a valid peer.

This being the case, why are firewalls so common? There are two reasons. The first is

that the security mechanisms described in this chapter are not widely deployed. Getting

security algorithms and protocols right is a very difficult task, and so firewalls have been

devised as a stopgap measure while we wait for IPSEC. Even in the long term, unless

every single system runs IPSEC or some similar end-to-end security mechanism, it seems

likely that we will continue to depend on firewalls. The second reason is more funda-

mental. A firewall allows the system administrator to implement a security policy in one

centralized place. End-to-end security mechanisms, in contrast, require the policy to be

distributed, with a potentially different security configuration running on each node.

That said, firewalls are conceptually very simple devices that can be classified in

one of two broad categories: filter-based and proxy-based. We now briefly describe

each. To simplify our discussion, we limit ourselves to Internet firewalls.

8.4.1 Filter-Based Firewalls

Filter-based firewalls are the simplest and most widely deployed type of firewall. They

are configured with a table of addresses that characterize the packets they will, and

will not, forward. By addresses, we mean more than just the destination’s IP address,

8.4 Firewalls 619

although this is one possibility. Generally, each entry in the table is a 4-tuple: It gives

the IP address and TCP (or UDP) port number for both the source and destination.

For example, a firewall might be configured to filter (not forward) all packets

that match the following description:

〈 192.12.13.14, 1234, 128.7.6.5, 80 〉

This pattern says to filter all packets from port 1234 on host 192.12.13.14 addressed

to port 80 on host 128.7.6.5. (Port 80 is the well-known TCP port for HTTP.) Of

course it’s often not practical to name every source host whose packets you want to

filter, so the patterns can include wildcards. For example,

〈 *, *, 128.7.6.5, 80 〉

says to filter all packets addressed to port 80 on 128.7.6.5, regardless of what source

host or port sent the packet. Notice that address patterns like these require the firewall

to make forwarding/filtering decisions based on level 4 port numbers, in addition to

level 3 host addresses. It is for this reason that filter-based firewalls are sometimes

called level 4 switches.

There are two important variations to the simple idea presented so far. First, there

is the issue of whether the firewall forwards everything unless specifically instructed

to filter certain kinds of packets (this is the assumption in the preceding example),

or if the firewall filters everything unless explicitly instructed to forward it. This is a

fundamental question in the design of any secure system: Do you explicitly identify

what is allowed or what is disallowed? For example, instead of blocking access to port

80 on host 128.7.6.5, the firewall might be instructed to only allow access to port 25

(the SMTP mail port) on a particular mail server, for example,

〈 *, *, 128.19.20.21, 25 〉

but to block all other traffic.

The second issue is whether the filters must be specified when the system is

booted, or if new filters can be installed as the firewall is running. The examples given

so far can all be known in advance. The reason you might need the latter is that you

are running a “drop by default” firewall and don’t know what port a particular valid

connection is going to use until the last moment. This happens with FTP, for example,

which establishes a new TCP connection for each file it transfers. The two ports used

at either end of such a connection are not known until the transfer is going to take

place, so the set of allowed patterns must be dynamically, and temporarily, extended to

include these ports. A firewall that supports this capability is said to provide dynamic

port selection.

620 8 Network Security

Company net Web
server

Random
external
user

Remote
company
user

Internet

Firewall

Figure 8.21 Firewall protecting a company Web server from some external accesses.

8.4.2 Proxy-Based Firewalls

A proxy is a general networking technique that shows up in a number of situations,

including firewalls. Generally speaking, a proxy is a process that sits between a client

process and a server process. To the client, the proxy appears to be the server; in

a sense, the proxy is standing in for the server. To the server, the proxy appears to

be the client. Because a proxy imitates both the client and the server, it necessarily

has application knowledge built into it. One thing a proxy might do is implement a

cache. This allows the proxy to respond to a client request without having to pass the

request along to the server. It passes the request on to the server only if it doesn’t have

the requested item in its cache. Proxies also provide an opportunity to implement a

security policy. It is this security role that we now consider.

To understand how a proxy-based firewall works—and why you would want

one—consider a corporate Web server, where the company wants to make some of the

server’s pages accessible to all external users (i.e., it won’t work to simply program

the firewall to block all external access to HTTP’s well-known port 80), but it wants

to restrict certain of the pages to corporate users at one or more remote sites. This

situation is illustrated in Figure 8.21. There is no way to express this policy as a filter

since it depends on the URL contained in each HTTP request.6

The solution is to put an HTTP proxy on the firewall. Remote users establish an

HTTP/TCP connection to the proxy, which looks at the URL contained in the request

message. If the requested page is allowed for the source host, the proxy establishes

a second HTTP/TCP connection to the server and forwards the request on to the

server. The proxy then forwards the response in the reverse direction between the two

6If you are unfamiliar with how the Web works, you might want to first read Section 9.2.2.

8.4 Firewalls 621

Firewall

External
client

External HTTP/TCP connection

Proxy

Internal HTTP/TCP connection

Local
server

Figure 8.22 HTTP proxy mediating access to a corporate Web server.

S
P

R

Figure 8.23 Simple internet, with source S sending message to receiver R through
proxy P.

TCP connections. This situation is depicted in Figure 8.22. If the request is not allowed,

the proxy does not create this second connection, but instead returns an error to the

source. In a sense, the firewall dynamically decides what packets to forward and what

packets to drop, with the policy embodied in the application-specific proxy.

There are several things to notice about this example. First, the proxy has to

understand the HTTP protocol in order to respond to the client. Second, once an

HTTP proxy is in place for security reasons, it might be extended to decide which of

many local Web servers to forward a given request to, perhaps in an effort to balance

the load among the servers. It might also cache hot Web pages, as suggested above.

Third, proxies can be defined for applications other than HTTP; for example, FTP

and Telnet proxies are quite common.

Finally, proxy-based firewalls can be characterized as being either transparent or

classical. A transparent proxy, as the name implies, is not explicitly visible to either

the sender or the receiver; it just happens to intercept messages that flow through it.

In contrast, the source purposely addresses messages to a classical proxy, which then

forwards the message to the ultimate destination. Consider the simple network shown

in Figure 8.23, in which source S sends a message to receiver R through proxy P. If P is

transparent, then S addresses the message to R, and the message just happens to pass

through P en route to R. P either forwards the message to R, or not. With a classical

firewall, S does not know about R, but instead addresses the message to P. In other

words, P acts as an addressable front door to the site. When the message arrives at P,

it selects a node “behind it” to which it forwards the message.

622 8 Network Security

8.4.3 Limitations

We conclude this discussion by observing that while a traditional firewall protects

internal users from external users, it does nothing to protect or isolate internal users

from each other. While social and legal pressures may keep users from violating local

security policies, these pressures are ineffective against mobile code imported by these

users into the local site. Specifically, traditional firewalls cannot keep mobile code out of

the local network—for example, programs might arrive in otherwise innocent-looking

email messages—and once running locally, such programs have virtually unlimited

access to all local hosts.

Mobile code is not the only concern. For example, large companies often want

to isolate portions of the company’s computing infrastructure. This might happen if

the company has an external partner working on one project—thus having access to

some subset of machines—but it wants to keep the partner from having access to the

entire infrastructure. As another example, mobile computers make it easy for users to

anonymously attach their machines to the network at arbitrary points.

Another vulnerability of firewalls is gaining attention as wireless communication

becomes more ubiquitous. Consider a telecommuter who connects to a corporate site

through a firewall. The firewall has to be programmed to allow the user’s computer to

send packets to the site, since the user is legitimate. Now suppose that the telecommuter

has a wireless network that connects multiple machines in his or her house. There is

nothing to prevent a neighbor, or a competitor parked across the street, from becoming

part of this “home network,” and hence gaining access to the corporate network

through the firewall.

In general, it is impossible for existing firewalls to know who is accessing the net-

work and, therefore, who has the ability to connect to other machines on the network.

What is needed is the ability to move access protection inward from the periphery

of the network and closer to the hosts that initiate the access. Ultimately, security

mechanisms like IPSEC are probably required to support such a level of security.

8.5 Summary

Encryption algorithms are the backbone of network security. Public key algorithms

like RSA are often used by authentication protocols to establish the identity of two

communicating processes. Once authenticated, the two participants can establish a

shared key that is used by a secret key algorithm like DES to encrypt any messages

they exchange, thereby ensuring the privacy of their communication. Alternatively, a

message digest algorithm like MD5 can be used to protect the integrity of messages.

The whole system is held together by a key distribution mechanism that is used to

obtain the public key needed by RSA in the first place.

Open Issue: Denial-of-Service Attacks 623

Several recent systems use these algorithms and protocols to offer security services

on the Internet. At the application level, PGP can be used to protect email messages

and SSH can be used to securely connect to a remote machine. At the transport level,

TLS can be used to protect commercial transactions on the World Wide Web. At the

network level, the IPSEC architecture can be used to secure communication among any

set of hosts or gateways on the Internet. At the same time these systems are becoming

more widely available, system administrators continue to use firewalls to protect their

site from external threats.

Systems like IPSEC and TLS have the

potential to give the Internet the level

of security required by many emerg-

ing business and government appli-

cations. The key to the success of

these systems rests with the success of

the key distribution process. Without

O P E N I S S U E

Denial-of-Service Attacks

trusted access to public keys, the entire scheme breaks down.

Key distribution is only one of the security-related challenges facing computer

networks, though. An equally daunting problem is finding ways to protect computers

connected to wide area networks from denial-of-service (DoS) attacks. Unlike a privacy

attack, where an adversary is trying to gain access to information it is not allowed to

see, a denial-of-service attack involves an adversary trying to keep you from accessing

information or resources you have every right to access.

One well-known denial-of-service attack is called a SYN attack, named after

the TCP’s connection setup packet. In a SYN attack, a remote attacker floods your

machine with SYN packets, causing it to spend all its cycles setting up bogus TCP

connections. The key to this attack is that, unlike simply flooding a machine with

bogus data packets, each SYN packet requires nontrivial processing to determine that

it’s OK to just throw the packet away. Firewalls offer some level of protection, in

that they can be programmed to drop all packets from a known attacking host, but

it’s easy for the attacker to simply put a different source IP address in each SYN

packet.

Another well-known DoS attack is to send a stream of “Christmas tree packets”

to a router—packets with all the “lights” turned on (e.g., all known IP options enabled).

The router spends so much time processing these options that it fails to process BGP

updates.

A less well-known example illustrates how subtle a denial-of-service attack can

be. An attacker flooded an ISP’s router with IP packets carrying a serial sequence of

624 8 Network Security

IP addresses. The sequence blew the router’s first-level route cache, which ultimately

caused the router’s processor to spend all its time building new forwarding tables.

This happened at the expense of the router responding to its neighbors’ routing probes,

which caused the neighbors to believe the router was down.

Protecting against denial-of-service attacks involves three steps. The first is to

account for all resources consumed by every user (or flow). The second is to detect

when the resources consumed by a given user exceed those allowed by some system

policy. Once an attack is detected, the final step is to reclaim the consumed resources

using as few additional resources as possible; otherwise, removal of an offending

user becomes a denial-of-service attack in its own right. Unfortunately, few of today’s

systems—including both hosts and routers—accurately account for all resources used

in the system, let alone define a policy as to what constitutes a denial-of-service attack.

In general, however, it is difficult to detect when a resource usage policy has been

violated because the attacker doesn’t necessarily send a large stream of attack packets

from the same source. Instead, the attacker may bombard you with innocent-looking

packet streams from many sources. This is commonly known as a distributed denial-

of-service (DDoS) attack and involves the attacker first compromising a large set of

machines (so-called zombies) and then turning all of these zombies against you at

the same time. For example, highly visible sites like CNN, Yahoo, eBay, and Amazon

were brought down by a DDoS attack in Feburary 2000. In the end, DDoS attacks are

problematic because it is almost impossible to distinguish between a legitimate heavy

load from many sources (i.e., a flash crowd) and a DDoS attack.

F U R T H E R R E A D I N G

The first two security-related papers, taken together, give a good overview of the

topic. The article by Lampson et al. contains a formal treatment of security, while the

Satyanarayanan paper gives a nice description of how a secure system is designed in

practice. The third paper gives an overview of the IPSEC security architecture and is

the right place to start to fully understand the state of security in the Internet today.

■ Lampson, B., et al. Authentication in distributed systems: Theory and practice.

ACM Transactions on Computer Systems 10(4):265–310, November 1992.

■ Satyanarayanan, M. Integrating security in a large distributed system. ACM

Transactions on Computer Systems 7(3):247–280, August 1989.

■ Kent, S., and R. Atkinson. Security architecture for the Internet Protocol.

Request for Comments 2401, November 1998.

Exercises 625

There are several good books covering the full gamut of network security. We

recommend Schneier [Sch95] and Kaufman et al. [KPS02]. The former gives a com-

prehensive treatment of the topic, including sample code, while the latter gives a very

readable overview of the subject. The full IPSEC architecture is defined in a series of

RFCs: [KA98a, MG98a, MG98b, MD98, KA98b, Pip98, MSST98, HC98]. A book

by Barrett and Silverman [BS01] gives a thorough description of SSH.

A discussion of the problem of recognizing and defending against denial-of-

service attacks can be found in Moore et. al. [MVS01], Spatscheck and Peterson [SP99],

and Qiexh et al. [QPP02]. Recent techniques used to identify the source of attacks can

be found in papers by Bellovin [Bel00], Savage et al. [SWKA00], and Snoeren et al.

[SPS+01]. The increasing threat of DDoS attacks is discussed by Garber [Gar00] and

Harrison [Har00], and an early approach to defending against such attacks is reported

in a paper by Park and Lee [PL01].

Finally, we recommend the following live reference:

■ ftp://cert.org/pub: a collection of security-related notices posted by the Com-

puter Emergency Response Team (CERT)

E X E R C I S E S

1 Find an encryption utility (e.g., the Unix des command or pgp) on your system.

Read its documentation and experiment with it. Measure how fast it is able to

encrypt and decrypt data. Are these two rates the same? Try to compare these

timing results using different key sizes; for example, compare single-DES with

triple-DES.

2 Section 8.1.2 gives the DES encryption transformation from 〈Li−1, Ri−1〉 at round

i − 1 to 〈Li , Ri 〉 at round i . Give the reverse, that is, express 〈Li−1, Ri−1〉 in terms

of 〈Li , Ri 〉.

3 Suppose that at round i in DES, Li−1 is all 0s, Ri−1 is (in hex) deadbeef, and Ki

is a5bd96 860841. Give Ri , assuming that we use a simplified S box that reduces

each 6-bit chunk to 4 bits by dropping the first and last bits.

4 Perform round i + 1 of DES encryption, using the result of the previous exercise

to fill in Li and Ri , and let Ki+1 be 5af310 7a3fff. Give Ri+1, assuming that we use

a simplified S box that reduces each 6-bit chunk to 4 bits by dropping the first and

last bits.

626 8 Network Security

5 Again suppose DES used the simplified S box of the previous two exercises, and

also assume we perform only a single round of encryption.

(a) Suppose an attacker has both the plaintext 〈L0, R0〉 and the ciphertext 〈L1, R1〉.
How much does this tell the attacker about the key K1? How about K? (This is

not intended to suggest a weakness in the real DES, but rather as a justification

for the S box DES actually uses.)

(b) Being able to recover the key given a plaintext and ciphertext would be bad

enough for any encryption mechanism; explain why it would be particularly

fatal for public key cryptosystems.

6 Suppose you are doing RSA encryption with p = 101, q = 113, and e = 3.

(a) Find the decryption exponent d. (Hint: Although there are methodical ways

to do this, trial and error is efficient for e = 3.)

(b) Encrypt the message m = 9876. Note that evaluating m3 with 32-bit arithmetic

results in overflow.

7 Suppose you are doing RSA encryption with p = 13, q = 7, and e = 5.

(a) Find the decryption exponent d. (Hint: Use the Euclidean dividing algorithm.)

(b) Encrypt the message m = 7.

(c) Decrypt the cypher c = 2.

8 Prove that the RSA decryption algorithm recovers the original message; that is,

med ≡ m mod pq. Hint: You may assume that, because p and q are relatively

prime, it suffices to prove the congruence mod p and mod q.

9 If n is a prime number and b < n, then bn−1 ≡ 1 mod n. There are a few composite

n (e.g., 561) for which this congruence also holds for all b < n, but by adding a

little extra bookkeeping to the calculation we get Miller’s test, which if n is prime

succeeds for all b < n and if n is composite always fails for (here we need the extra

bookkeeping) at least three-quarters of all b < n. If we try the test with a large

number of b < n chosen at random, and it does not fail for any of them, then n is

“probably” prime.

(a) Show that calculating bn−1 mod n can be done with O(log n) multiplications.

Hint: b13 = b8b4b.

(b) Show, using this method, that n = 50,621 is composite. Use b = 2. You will

not need the “extra bookkeeping”; just show bn−1 �≡ 1 mod n.

Exercises 627

(c) Show 2280 ≡ 1 mod 561 (and hence automatically 2560 ≡ (2280)2 ≡ 1), but

that 2140 �≡ ±1 mod 561. This last fact makes the full Miller’s test fail, showing

561(=3×11×17) is composite, even though the simpler bn−1 ≡ 1 mod n test

succeeds.

10 In the three-way authentication handshake of Figure 8.9, why is the server unsure

of the client’s identity until it receives the third message? To what attack might

a server be exposed if it trusted the client’s identity before the third message was

received?

11 Suppose the values x and y used in the three-way handshake of Figure 8.9 were

clock driven rather than random; for example, x and y were incremented once per

second or per connection.

(a) Show that the technique used in the IP spoofing attack outlined in Exercise 19

of Chapter 5 fails.

(b) Suppose in addition an attacker could eavesdrop on the connection and know

past transmissions from the client. Would this help the attacker?

(c) Suppose that furthermore the attacker could reset the clock on the server host,

perhaps using the Network Time Protocol. Show how an attacker could now

authenticate itself to the server without knowing CHK (although it could not

decrypt SK).

12 Figure 8.7 shows CBC encryption. Give the corresponding diagram for decryption.

13 Figure 8.11 shows one-way authentication using RSA. Show how RSA can be

used for two-way authentication.

14 Learn about a key escrow encryption scheme (for example, Clipper). What are the

pros and cons of key escrow?

15 One mechanism for resisting “replay” attacks in password authentication is to use

one-time passwords: A list of passwords is prepared, and once password[N] has

been accepted, the server decrements N and prompts for password[N − 1] next

time. At N = 0 a new list is needed. Outline a mechanism by which the user and

server need only remember one master password mp and have available locally a

way to compute password[N] = f (mp, N). Hint: Let g be an appropriate one-way

function (e.g., MD5) and let password[N] = gN(mp) = g, applied N times to mp.

Explain why knowing password[N] doesn’t help reveal password[N − 1].

628 8 Network Security

16 Suppose a user employs one-time passwords as above (or, for that matter, reusable

passwords), but that the password is transmitted “sufficiently slowly.”

(a) Show that an eavesdropper can gain access to the remote server with a rela-

tively modest number of guesses. Hint: The eavesdropper starts guessing after

the original user has typed all but one character of the password.

(b) To what other attacks might a user of one-time passwords be subject?

17 The Diffie-Hellman key exchange protocol is vulnerable to a “man-in-the-middle”

attack. Explain how an adversary sitting between two participants can trick them

into thinking they have established a shared secret between themselves, when in

fact they have each established a secret with the adversary. Outline how Diffie-

Hellman can be extended to protect against this possibility.

18 Suppose that RSA is used to send a message m to three recipients, who have rel-

atively prime encryption moduli n1, n2, and n3. All three recipients use the same

encryption exponent e = 3, a once-popular choice as it makes encryption very

fast. Show that someone who intercepts all three encrypted messages c1 = m3

mod n1, c2 = m3 mod n2, and c3 = m3 mod n1 can efficiently decipher m. Hint:

The Chinese remainder theorem implies that you can efficiently find a c such that

c = c1 mod n1, c = c2 mod n2, and c = c3 mod n3. Assume this, and show that it

implies c = m3 mod n1n2n3. Then note m3 < n1n2n3.

19 Suppose we have a very short secret s (e.g., a single bit or even a Social Security

number), and we wish to send someone else a message m now that will not reveal s

but that can be used later to verify that we did know s. Explain why m = MD5(s)

or m = E(s) with RSA encryption would not be secure choices, and suggest a

better choice.

20 Suppose two people want to play poker over the network. To “deal” the cards

they need a mechanism for fairly choosing a random number x between them;

each party stands to lose if the other party can unfairly influence the choice of x.

Describe such a mechanism. Hint: You may assume that if either of two bit strings

x1 and x2 are random, then the exclusive-OR x = x1 ⊕ x2 is random.

21 Estimate the probabilities of finding two messages with the same MD5 checksum,

given total numbers of messages of 263, 264, and 265. Hint: This is the birthday

problem again, as in Exercise 49 of Chapter 2, and again the probability that the

k+ 1th message has a different checksum from each of the preceding k is 1−k/2128.

Exercises 629

However, the approximation in the hint there for simplifying the product fails

rather badly now. So, instead, take the log of each side and use the approximation

log(1 − k/2128) ≈ −k/2128.

22 Suppose we wanted to encrypt a Telnet session with, say, DES. Telnet sends lots of

1-byte messages, while DES encrypts in blocks of 8 bytes at a time. Explain how

DES might be used securely in this setting.

23 Consider the following simple UDP protocol (based loosely on TFTP, Request for

Comments 1350) for downloading files:

■ Client sends a file request.

■ Server replies with first data packet.

■ Client sends ACK, and the two proceed using stop-and-wait.

Suppose client and server possess keys KC and KS, respectively, and that these

keys are known to each other.

(a) Extend the file downloading protocol, using these keys and MD5, to provide

sender authentication and message integrity. Your protocol should also be

resistant to replay attacks.

(b) How does the extra information in your revised protocol protect against

arrival of late packets from prior connection incarnations, and sequence num-

ber wraparound?

24 Using the browser of your choice, find out what certification authorities for HTTPS

your browser is configured by default to trust. Do you trust these agencies? Find

out what happens when you disable trust of some or all of these certification

authorities.

25 Suppose you want your filter-based firewall to block all incoming Telnet connec-

tions, but to allow outbound Telnet connections. One approach would be to block

all inbound packets to the designated Telnet port (23).

(a) We might want to block inbound packets to other ports as well, but what

inbound TCP connections must be permitted in order not to interfere with

outbound Telnet?

(b) Now suppose your firewall is allowed to use the TCP header Flags bits in

addition to the port numbers. Explain how you can achieve the desired Telnet

effect here while at the same time allowing no inbound TCP connections.

630 8 Network Security

Outside world

R1 R2

net 1 net 2

Figure 8.24 Diagram for Exercise 27.

26 Suppose a firewall is configured to allow outbound TCP connections but inbound

connections only to specified ports. The FTP protocol now presents a problem:

When an inside client contacts an outside server, the outbound TCP control con-

nection can be opened normally but the TCP data connection traditionally is

inbound.

(a) Look up the FTP protocol in, for example, Request for Comments 959. Find

out how the PORT command works. Discuss how the client might be written

so as to limit the number of ports to which the firewall must grant inbound

access. Can the number of such ports be limited to one?

(b) Find out how the FTP PASV command can be used to solve this firewall

problem.

27 Suppose filtering routers are arranged as in Figure 8.24; the primary firewall is

R1. Explain how to configure R1 and R2 so that outsiders can Telnet to net 2 but

not to hosts on net 1. To avoid “leapfrogging” break-ins to net 1, also disallow

Telnet connections from net 2 to net 1.

28 Why might an Internet service provider want to block certain outbound traffic?

29 Compare a filtering firewall to a proxy firewall in terms of protection against

spoofing attacks, as in Exercise 19 of Chapter 5. Assume a configuration as in

Figure 8.21, where the internal host under attack trusts the remote company

user.

30 It is said that IPSEC may not work with Network Address Translation (NAT)

(RFC 1631). However, whether IPSEC will work with NAT depends on which

mode of IPSEC and NAT we use. Suppose we use true NAT, where only IP ad-

dresses are translated (without port translation). Will IPSEC and NAT work in

each of the following cases? Explain why or why not.

Exercises 631

(a) IPSEC uses AH transport mode.

(b) IPSEC uses AH tunnel mode.

(c) IPSEC uses ESP transport mode.

(d) IPSEC uses ESP tunnel mode.

(e) What if we use PAT (Port Address Translation), also known as Network

Address/Port Translation (NAPT) in NAT, where in addition to IP addresses,

port numbers will be translated to share one IP address from outside the

private networ?

Applications

Now this is not the end. It is not even the beginning of the end. But
it is, perhaps, the end of the beginning.

—Winston Churchill

W
e started this book by talking about application programs—everything from

Web browsers to videoconferencing tools—that people want to run over

computer networks. In the intervening chapters, we have developed, one

layer at a time, the networking infrastructure needed to make such applications pos-

sible. We have now come full circle, back to network applications. These applications

P R O B L E M

Applications Need Their Own

Protocols

are part network protocol (in the

sense that they exchange messages

with their peers on other machines)

and part traditional application pro-

gram (in the sense that they inter-

act with the windowing system, the

file system, and ultimately, the user).

This chapter explores some of the

most popular network applications available today, with a focus on their protocols.

What you will quickly recognize is that a protocol is a protocol, no matter what

layer it runs at. Said another way, the best way to prepare yourself to write network

applications is to first understand how to design good network protocols.

The first example we look at—a distributed name service—also happens to be

the first application implemented on a network. Although it technically qualifies as a

network application—it is, in effect, a distributed database built on top of the underly-

ing transport protocols—it is not an application that users normally invoke explicitly.

Nevertheless, it is an application that all other applications depend upon. This is be-

cause the name server is used to translate host names into host addresses; the existence

of such an application allows the users of other applications to refer to remote hosts

by name rather than by address. In other words, a name server is usually used by other

applications, rather than by humans.

9
We then turn our attention to describing a variety of

familiar, and not so familiar, network applications. These

range from exchanging email and surfing the Web, to man-

aging a set of network elements, to multimedia applica-

tions like vic and vat, to emerging peer-to-peer and content

distribution networks. This list is by no means exhaus-

tive, but it does serve to illustrate the trick in designing

application-level protocols, which is to augment the un-

derlying transport services of TCP and UDP so as to pro-

vide the precise communication service required by the

application.

634 9 Applications

9.1 Name Service (DNS)

Up to this point, we have been using addresses to identify hosts. While perfectly suited

for processing by routers, addresses are not exactly user friendly. It is for this reason

that a unique name is also typically assigned to each host in a network. This section

describes how a naming service can be developed to map user-friendly names into

router-friendly addresses. Such a service is often the first application program imple-

mented in a network since it frees other applications to identify hosts by name rather

than by address. Name services are sometimes called middleware because they fill a

gap between applications and the underlying network.

Host names differ from host addresses in two important ways. First, they are

usually of variable length and mnemonic, thereby making them easier for humans to

remember. (In contrast, fixed-length numeric addresses are easier for routers to pro-

cess.) Second, names typically contain no information that helps the network locate

(route packets toward) the host. Addresses, in contrast, sometimes have routing infor-

mation embedded in them; flat addresses (those not divisible into component parts)

are the exception.

Before getting into the details of how hosts are named in a network, we first in-

troduce some basic terminology. First, a name space defines the set of possible names.

A name space can be either flat (names are not divisible into components) or hierarchi-

cal (Unix file names are the obvious example). Second, the naming system maintains

a collection of bindings of names to values. The value can be anything we want the

naming system to return when presented with a name; in many cases it is an address.

Finally, a resolution mechanism is a procedure that, when invoked with a name, returns

the corresponding value. A name server is a specific implementation of a resolution

mechanism that is available on a network and that can be queried by sending it a

message.

Because of its large size, the Internet has a particularly well-developed naming

system in place—the domain name system (DNS). We therefore use DNS as a frame-

work for discussing the problem of naming hosts. Note that the Internet did not always

use DNS. Early in its history, when there were only a few hundred hosts on the In-

ternet, a central authority called the Network Information Center (NIC) maintained

a flat table of name-to-address bindings; this table was called hosts.txt. Whenever a

site wanted to add a new host to the Internet, the site administrator sent email to the

NIC giving the new host’s name/address pair. This information was manually entered

into the table, the modified table was mailed out to the various sites every few days,

and the system administrator at each site installed the table on every host at the site.

Name resolution was then simply implemented by a procedure that looked up a host’s

name in the local copy of the table and returned the corresponding address.

9.1 Name Service (DNS) 635

Name
server

Mail
program

User

TCP

IP

2
cs.princeton.edu

192.12.69.5
3

user @ cs.princeton.edu

1

192.12.69.5 4

192.12.69.5 5

Figure 9.1 Names translated into addresses, where the numbers 1–5 show the se-
quence of steps in the process.

It should come as no surprise that the hosts.txt approach to naming did not work

well as the number of hosts in the Internet started to grow. Therefore, in the mid-1980s,

the domain naming system was put into place. DNS employs a hierarchical name space

rather than a flat name space, and the “table” of bindings that implements this name

space is partitioned into disjoint pieces and distributed throughout the Internet. These

subtables are made available in name servers that can be queried over the network.

What happens in the Internet is that a user presents a host name to an application

program (possibly embedded in a compound name such as an email address or URL),

and this program engages the naming system to translate this name into a host address.

The application then opens a connection to this host by presenting some transport

protocol (e.g., TCP) with the host’s IP address. This situation is illustrated (in the case

of sending email) in Figure 9.1.

9.1.1 Domain Hierarchy

DNS implements a hierarchical name space for Internet objects. Unlike Unix file names,

which are processed from left to right with the naming components separated with

slashes, DNS names are processed from right to left and use periods as the separator.

(Although they are “processed” from right to left, humans still “read” domain names

from left to right.) An example domain name for a host is cicada.cs.princeton.edu. No-

tice that we said domain names are used to name Internet “objects.” What we mean by

this is that DNS is not strictly used to map host names into host addresses. It is more ac-

curate to say that DNS maps domain names into values. For the time being, we assume

that these values are IP addresses; we will come back to this issue later in this section.

636 9 Applications

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

Figure 9.2 Example of a domain hierarchy.

Like the Unix file hierarchy, the DNS hierarchy can be visualized as a tree, where

each node in the tree corresponds to a domain and the leaves in the tree correspond to

the hosts being named. Figure 9.2 gives an example of a domain hierarchy. Note that

we should not assign any semantics to the term “domain” other than that it is simply

a context in which additional names can be defined.

There was actually a substantial amount of discussion that took place when

the domain name hierarchy was first being developed as to what conventions would

govern the names that were to be handed out near the top of the hierarchy. Without

going into that discussion in any detail, notice that the hierarchy is not very wide at the

first level. There are domains for each country, plus the “big six” domains: edu, com,

gov, mil, org, and net. These six domains are all based in the United States; the only

domain names that don’t explicitly specify a country are those in the United States.

Aside from this U.S. bias, you might notice a military bias in the hierarchy. This is easy

to explain, since the development of DNS was originally funded by ARPA, the major

research arm of the U.S. Department of Defense.

9.1.2 Name Servers

The complete domain name hierarchy exists only in the abstract. We now turn our

attention to the question of how this hierarchy is actually implemented. The first step

is to partition the hierarchy into subtrees called zones. For example, Figure 9.3 shows

how the hierarchy given in Figure 9.2 might be divided into zones. Each zone can be

thought of as corresponding to some administrative authority that is responsible for

that portion of the hierarchy. For example, the top level of the hierarchy forms a zone

that is managed by the NIC. Below this is a zone that corresponds to Princeton Univer-

sity. Within this zone, some departments do not want the responsibility of managing

the hierarchy (and so they remain in the university-level zone), while others, like the

Department of Computer Science, manage their own department-level zone.

9.1 Name Service (DNS) 637

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

Figure 9.3 Domain hierarchy partitioned into zones.

Princeton
name server

Cisco
name server

CS
name server

EE
name server

…

…

Root
name server

Figure 9.4 Hierarchy of name servers.

The relevance of a zone is that it corresponds to the fundamental unit of imple-

mentation in DNS—the name server. Specifically, the information contained in each

zone is implemented in two or more name servers. Each name server, in turn, is a

program that can be accessed over the Internet. Clients send queries to name servers,

and name servers respond with the requested information. Sometimes the response

contains the final answer that the client wants, and sometimes the response contains

a pointer to another server that the client should query next. Thus, from an imple-

mentation perspective, it is more accurate to think of DNS as being represented by

a hierarchy of name servers rather than by a hierarchy of domains, as illustrated in

Figure 9.4.

Note that each zone is implemented in two or more name servers for the sake of

redundancy; that is, the information is still available even if one name server fails. On

the flip side, a given name server is free to implement more than one zone.

638 9 Applications

Each name server implements the zone information as a collection of resource

records. In essence, a resource record is a name-to-value binding, or more specifically,

a 5-tuple that contains the following fields:

〈 Name, Value, Type, Class, TTL 〉

The Name and Value fields are exactly what you would expect, while the Type

field specifies how the Value should be interpreted. For example, Type = A indicates

that the Value is an IP address. Thus, A records implement the name-to-address map-

ping we have been assuming. Other record types include

■ NS: The Value field gives the domain name for a host that is running a name

server that knows how to resolve names within the specified domain.

■ CNAME: The Value field gives the canonical name for a particular host; it is

used to define aliases.

■ MX: The Value field gives the domain name for a host that is running a mail

server that accepts messages for the specified domain.

The Class field was included to allow entities other than the NIC to define useful

record types. To date, the only widely used Class is the one used by the Internet; it is

denoted IN. Finally, the TTL field shows how long this resource record is valid. It is

used by servers that cache resource records from other servers; when the TTL expires,

the server must evict the record from its cache.

To better understand how resource records represent the information in the

domain hierarchy, consider the following examples drawn from the domain hierar-

chy given in Figure 9.2. To simplify the examples, we ignore the TTL field and we

give the relevant information for only one of the name servers that implement each

zone.

First, the root name server contains an NS record for each second-level server.

It also has an A record that translates this name into the corresponding IP address.

Taken together, these two records effectively implement a pointer from the root name

server to each of the second-level servers.

〈 princeton.edu, cit.princeton.edu, NS, IN〉

〈 cit.princeton.edu, 128.196.128.233, A, IN〉

〈 cisco.com, ns.cisco.com, NS, IN〉

〈 ns.cisco.com, 128.96.32.20, A, IN〉
...

9.1 Name Service (DNS) 639

Next, the domain princeton.edu has a name server available on host cit.princeton

.edu that contains the following records. Note that some of these records give the final

answer (e.g., the address for host saturn.physics.princeton.edu), while others point to

third-level name servers.

〈 cs.princeton.edu, gnat.cs.princeton.edu, NS, IN 〉

〈 gnat.cs.princeton.edu, 192.12.69.5, A, IN 〉

〈 ee.princeton.edu, helios.ee.princeton.edu, NS, IN 〉

〈 helios.ee.princeton.edu, 128.196.28.166, A, IN 〉

〈 jupiter.physics.princeton.edu, 128.196.4.1, A, IN 〉

〈 saturn.physics.princeton.edu, 128.196.4.2, A, IN 〉

〈 mars.physics.princeton.edu, 128.196.4.3, A, IN 〉

〈 venus.physics.princeton.edu, 128.196.4.4, A, IN 〉
...

Finally, a third-level name server, such as the one managed by domain cs.princeton

.edu, contains A records for all of its hosts. It might also define a set of aliases (CNAME

records) for each of those hosts. Aliases are sometimes just convenient (e.g., shorter)

names for machines, but they can also be used to provide a level of indirection. For

example, www.cs.princeton.edu is an alias for the host named cicada.cs.princeton.edu.

This allows the site’s Web server to move to another machine without affecting remote

users; they simply continue to use the alias without regard for what machine currently

runs the domain’s Web server. The mail exchange (MX) records serve the same purpose

for the email application—they allow an administrator to change which host receives

mail on behalf of the domain without having to change everyone’s email address.

〈 cs.princeton.edu, gnat.cs.princeton.edu, MX, IN 〉

〈 cicada.cs.princeton.edu, 192.12.69.60, A, IN 〉

〈 cic.cs.princeton.edu, cicada.cs.princeton.edu, CNAME, IN 〉

〈 gnat.cs.princeton.edu, 192.12.69.5, A, IN 〉

〈 gna.cs.princeton.edu, gnat.cs.princeton.edu, CNAME, IN 〉

〈 www.cs.princeton.edu, 192.12.69.35, A, IN 〉

〈 cicada.cs.princeton.edu, roach.cs.princeton.edu, CNAME, IN 〉
...

640 9 Applications

Note that although resource records can be defined for virtually any type of

object, DNS is typically used to name hosts (including servers) and sites. It is not used

to name individual people or other objects like files or directories; other naming sys-

tems are typically used to identify such objects. For example, X.500 is an ISO naming

system designed to make it easier to identify people. It allows you to name a person by

giving a set of attributes: name, title, phone number, postal address, and so on. X.500

proved too cumbersome—and in some sense, was usurped by powerful search engines

now available on the Web—but it did eventually evolve into LDAP (Lightweight Di-

rectory Access Protocol). LDAP is a subset of X.500 originally designed as a PC front

end to X.500. Today it is gaining in popular-

ity, mostly at the enterprise level, as a system

for learning information about users.

9.1.3 Name Resolution

Given a hierarchy of name servers, we now

consider the issue of how a client engages

these servers to resolve a domain name.

To illustrate the basic idea, suppose the

client wants to resolve the name cicada.cs.

princeton.edu relative to the set of servers

given in the previous subsection. The client

first sends a query containing this name

to the root server. The root server, unable

to match the entire name, returns the best

match it has—the NS record for princeton.

edu. The server also returns all records that

are related to this record, in this case, the

A record for cit.princeton.edu. The client,

having not received the answer it was

after, next sends the same query to the name

server at IP host 128.196.128.233. This server

also cannot match the whole name, and so

returns the NS and corresponding A records

for the cs.princeton.edu domain. Finally, the

client sends the same query as before to

the server at IP host 192.12.69.5, and this

time gets back the A record for cicada.cs.

princeton.edu.

Naming Conventions

Our description of DNS focuses on

the underlying mechanisms, that is,

how the hierarchy is partitioned

over multiple servers and how the

resolution process works. There is

an equally interesting, but much

less technical, issue of the conven-

tions that are used to decide the

names to use in the mechanism. For

example, it is by convention that

all U.S. universities are under the

edu domain, while English univer-

sities are under the ac (academic)

subdomain of the uk (United King-

dom) domain. In fact, the very exis-

tence of the uk domain, rather than

a gb (Great Britain) domain, was a

source of great controversy in the

early days of DNS, since the latter

does not include Northern Ireland.

The thing to understand about

conventions is that they are some-

times defined without anyone mak-

ing an explicit decision. For exam-

ple, by convention a site hides the

exact host that serves as its mail

exchange behind the MX record.

9.1 Name Service (DNS) 641

This example still leaves a couple of questions about the resolution process unan-

swered. The first question is, How did the client locate the root server in the first place,

or said another way, How do you resolve the name of the server that knows how to

resolve names? This is a fundamental problem in any naming system, and the answer is

that the system has to be bootstrapped in some way. In this case, the name-to-address

mapping for one or more root servers is well known, that is, published through some

means outside the naming system itself.

In practice, however, not all clients know about the root servers. Instead, the

client program running on each Internet host is initialized with the address of a local

An alternative would have been

to adopt the convention of send-

ing mail to user@mail.cs.princeton.

edu, much as we expect to find a

site’s public FTP directory at ftp.cs.

princeton.edu and its WWW server

at www.cs.princeton.edu.

Conventions also exist at the

local level, where an organization

names its machines according to

some consistent set of rules. Given

that the host names venus, saturn,

and mars are among the most pop-

ular in the Internet, it’s not too hard

to figure out one common nam-

ing convention. Some host nam-

ing conventions are more imagi-

native, however. For example, one

site named its machines up, down,

crashed, rebooting, and so on, re-

sulting in confusing statements like

“rebooting has crashed” and “up

is down.” Of course, there are

also less imaginative names, such as

those who name their machines af-

ter the integers.

name server. For example, all the hosts

in the Department of Computer Science

at Princeton know about the server on

gnat.cs.princeton.edu. This local name

server, in turn, has resource records for one

or more of the root servers, for example:

〈 ‘root’, venera.isi.edu, NS, IN 〉

〈 venera.isi.edu, 128.9.0.32, A, IN 〉

Thus, resolving a name actually involves a

client querying the local server, which in

turn acts as a client that queries the re-

mote servers on the original client’s behalf.

This results in the client/server interactions

illustrated in Figure 9.5. One advantage of

this model is that all the hosts in the In-

ternet do not have to be kept up-to-date

on where the current root servers are lo-

cated; only the servers have to know about

the root. A second advantage is that the

local server gets to see the answers that

come back from queries that are posted by

all the local clients. The local server caches

these responses and is sometimes able to re-

solve future queries without having to go

out over the network. The TTL field in the

resource records returned by remote servers

indicates how long each record can be safely

cached.

642 9 Applications

Root
name
server

Princeton
name
server

CS
name
server

Local
name
server

1
cicada.cs.princeton.edu

192.12.69.60
8

cic
ada.cs

.prin
cet

on.ed
u

prin
cet

on.ed
u, 1

28.196.128.233

cicada.cs.princeton.edu

cicada.cs.princeton.edu,

192.12.69.60

cicada.cs.princeton.edu

cs.princeton.edu, 192.12.69.5

2

3

4

5

6

7

Client

Figure 9.5 Name resolution in practice, where the numbers 1–8 show the sequence of
steps in the process.

The second question is how the system works when a user submits a partial name

(e.g., cicada) rather than a complete domain name (e.g., cicada.cs.princeton.edu). The

answer is that the client program is configured with the local domain in which the host

resides (e.g., cs.princeton.edu) and it appends this string to any simple names before

sending out a query.

◮ Just to make sure we are clear, we have now seen three different levels of

identifiers—domain names, IP addresses, and physical network addresses—and the

mapping of identifiers at one level into identifiers at another level happens at different

points in the network architecture. First, users specify domain names when interacting

with the application. Second, the application engages DNS to translate this name into

an IP address; it is the IP address that is placed in each datagram, not the domain

name. (As an aside, this translation process involves IP datagrams being sent over the

Internet, but these datagrams are addressed to a host that runs a name server, not to

the ultimate destination.) Third, IP does forwarding at each router, which often means

that it maps one IP address into another; that is, it maps the ultimate destination’s

address into the address for the next hop router. Finally, IP engages ARP to translate

9.2 Traditional Applications 643

the next hop IP address into the physical address for that machine; the next hop might

be the ultimate destination or it might be an intermediate router. Frames sent over the

physical network have these physical addresses in their headers.

9.2 Traditional Applications

The domain name system may be an essential Internet application, but it’s one that

users only indirectly interact with. We now turn our attention to those applications

that are directly invoked by users, focusing on two of the most popular—the World

Wide Web and email. We also look at network management, which although not so

familiar to the average user, is the application of choice for system administrators. Like

DNS, all three applications employ the request/reply paradigm—users send requests

to servers, which then respond accordingly. We refer to these as “traditional” applica-

tions because they typify the sort of applications that have existed since the early days

of computer networks. By contrast, the next two sections look at a class of applica-

tions that have become feasible only relatively recently: streaming applications (e.g.,

multimedia applications like video and audio) and various overlay-based applications.

Before taking a close look at each of these applications, there are three general

points that we need to make. The first is that it is important to distinguish between

application programs and application protocols. For example, the HyperText Trans-

port Protocol (HTTP) is an application protocol that is used to retrieve Web pages

from remote servers. There can be many different application programs—that is, Web

clients like Internet Explorer, Mosaic, and Netscape—that provide users with a differ-

ent look and feel, but all of them use the same HTTP protocol to communicate with

Web servers over the Internet. This section focuses on three application protocols:

■ SMTP: Simple Mail Transfer Protocol is used to exchange electronic mail.

■ HTTP: HyperText Transport Protocol is used to communicate between Web

browsers and Web servers.

■ SNMP: Simple Network Management Protocol is used to query (and some-

times modify) the state of remote network nodes.

The second point is that since all of the application protocols described in this

section follow the same request/reply communication pattern, we would expect that

they are all built on top of an RPC transport protocol. This is not the case, however, as

they are all implemented on top of either TCP or UDP. In effect, each protocol reinvents

a simple RPC-like mechanism on top of one of the existing transport protocols. We say

“simple” because each protocol is not designed to support arbitrary remote procedure

calls, but is instead designed to send and respond to a specific set of request messages.

644 9 Applications

In fact, it is no coincidence that two of the protocols have the word “Simple” in their

name.

All three protocols have a companion protocol that specifies the format of the

data that can be exchanged. This is one reason these protocols are relatively simple:

Much of the complexity is managed in this companion document. For example, SMTP

is a protocol for exchanging electronic mail messages, but RFC 822 (this specification

has no other name) and MIME (Multipurpose Internet Mail Extensions) define the

format of email messages. Similarly, HTTP is a protocol for fetching Web pages, but

HTML (HyperText Markup Language) is a companion specification that defines the

form of those pages. Finally, SNMP is a protocol for querying a network node, but

MIB (management information base) defines the variables that can be queried.

9.2.1 Electronic Mail (SMTP, MIME, IMAP)

Email is one of the oldest network applications. After all, what could be more natural

than wanting to send a message to the user at the other end of a cross-country link

you just managed to get running? In fact, the pioneers of the ARPANET had not really

envisioned email as a key application when the network was created—remote access to

computing resources was the main design goal—but it turned out to be a surprisingly

successful application. Out of this work evolved the Internet’s email system, which is

now used by millions of people every day.

As with all the applications described in this section, the place to start in un-

derstanding how email works is (1) to distinguish the user interface (i.e., your mail

reader) from the underlying message transfer protocol (in this case, SMTP), and (2) to

distinguish between this transfer protocol and a companion protocol (RFC 822 and

MIME) that defines the format of the messages being exchanged. We start by looking

at the message format.

Message Format

RFC 822 defines messages to have two parts: a header and a body. Both parts are

represented in ASCII text. Originally, the body was assumed to be simple text. This is

still the case, although RFC 822 has been augmented by MIME to allow the message

body to carry all sorts of data. This data is still represented as ASCII text, but because

it may be an encoded version of, say, a JPEG image, it’s not necessarily readable by

human users. More on MIME in a moment.

The message header is a series of <CRLF>-terminated lines. (<CRLF> stands for

carriage-return + line-feed, which are a pair of ASCII control characters often used to

indicate the end of a line of text.) The header is separated from the message body by

a blank line. Each header line contains a type and value separated by a colon. Many

of these header lines are familiar to users since they are asked to fill them out when

9.2 Traditional Applications 645

they compose an email message. For example, the To: header identifies the message

recipient, and the Subject: header says something about the purpose of the message.

Other headers are filled in by the underlying mail delivery system. Examples include

Date: (when the message was transmitted), From: (what user sent the message), and

Received: (each mail server that handled this message). There are, of course, many

other header lines; the interested reader is referred to RFC 822.

RFC 822 was extended in 1993 (and updated again in 1996) to allow email

messages to carry many different types of data: audio, video, images, Word documents,

and so on. MIME consists of three basic pieces. The first piece is a collection of header

lines that augment the original set defined by RFC 822. These header lines describe, in

various ways, the data being carried in the message body. They include MIME-Version:

(the version of MIME being used), Content-Description: (a human-readable description

of what’s in the message, analogous to the Subject: line), Content-Type: (the type of

data contained in the message), and Content-Transfer-Encoding: (how the data in the

message body is encoded).

The second piece is definitions for a set of content types (and subtypes). For exam-

ple, MIME defines two different still image types, denoted image/gif and image/jpeg,

each with the obvious meaning. As another example, text/plain refers to simple text

you might find in a vanilla 822-style message, while text/richtext denotes a message

that contains “marked up” text (e.g., text using special fonts, italics, etc.). As a third

example, MIME defines an application type, where the subtypes correspond to the

output of different application programs (e.g., application/postscript and application/

msword).

MIME also defines a multipart type that says how a message carrying more than

one data type is structured. This is like a programming language that defines both

base types (e.g., integers and floats) and compound types (e.g., structures and arrays).

One possible multipart subtype is mixed, which says that the message contains a set of

independent data pieces in a specified order. Each piece then has its own header line

that describes the type of that piece.

The third piece is a way to encode the various data types so they can be shipped

in an ASCII email message. The problem is that for some data types (a JPEG image,

for example), any given 8-bit byte in the image might contain one of 256 different

values. Only a subset of these values are valid ASCII characters. It is important that

email messages contain only ASCII, because they might pass through a number of

intermediate systems (gateways, as described below) that assume all email is ASCII

and would corrupt the message if it contained non-ASCII characters. To address this

issue, MIME uses a straightforward encoding of binary data into the ASCII character

set. The encoding is called base64. The idea is to map every three bytes of the original

binary data into four ASCII characters. This is done by grouping the binary data

646 9 Applications

into 24-bit units, and breaking each such unit into four 6-bit pieces. Each 6-bit piece

maps onto one of 64 valid ASCII characters; for example, 0 maps onto A, 1 maps

onto B, and so on. If you look at a message that has been encoded using the base64

encoding scheme, you’ll notice only the 52 upper- and lowercase letters, the 10 digits

0 through 9, and the special characters + and /. These are the first 64 values in the

ASCII character set.

As one aside, so as to make reading mail as painless as possible for those of us

that insist on using text-only mail readers, a MIME message that consists of regular

text only can be encoded using 7-bit ASCII. There’s also a readable encoding for mostly

ASCII data.

Putting this all together, a message that contains some plain text, a JPEG image,

and a PostScript file would look something like this:

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="-------417CA6E2DE4ABCAFBC5"
From: Alice Smith <Alice@cisco.com>
To: Bob@cs.Princeton.edu
Subject: promised material
Date: Mon, 07 Sep 1998 19:45:19 -0400

---------417CA6E2DE4ABCAFBC5
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Bob,

Here's the jpeg image and draft report I promised.

--Alice

---------417CA6E2DE4ABCAFBC5
Content-Type: image/jpeg
Content-Transfer-Encoding: base64

. . . unreadable encoding of a jpeg figure

---------417CA6E2DE4ABCAFBC5
Content-Type: application/postscript; name="draft.ps"
Content-Transfer-Encoding: 7bit

. . . readable encoding of a PostScript document

In this example, the Content-Type line in the message header says that this message con-

tains various pieces, each denoted by a character string that does not appear in the data

itself. Each piece then has its own Content-Type and Content-Transfer-Encoding lines.

9.2 Traditional Applications 647

Message Transfer

Next, we look at SMTP—the protocol used to transfer messages from one host to

another. To place SMTP in the right context, we need to identify the key players. First,

users interact with a mail reader when they compose, file, search, and read their email.

There are countless mail readers available, just like there are many Web browsers to

choose from. In fact, most Web browsers now include a mail reader. Second, there is a

mail daemon (or process) running on each host. You can think of this process as playing

the role of a post office: Mail readers give the daemon messages they want to send to

other users, the daemon uses SMTP running over TCP to transmit the message to a

daemon running on another machine, and the daemon puts incoming messages into the

user’s mailbox (where that user’s mail reader can later find it). Since SMTP is a protocol

that anyone could implement, in theory there could be many different implementations

of the mail daemon. It turns out, though, that the mail daemon running on most hosts

is derived from the sendmail program originally implemented on Berkeley Unix.

While it is certainly possible that the sendmail program on a sender’s machine

establishes an SMTP/TCP connection to the sendmail program on the recipient’s ma-

chine, in many cases the mail traverses one or more mail gateways on its route from the

sender’s host to the receiver’s host. Like the end hosts, these gateways also run a send-

mail process. It’s not an accident that these intermediate nodes are called “gateways”

since their job is to store and forward email messages, much like an “IP gateway”

(which we have referred to as a router) stores and forwards IP datagrams. The only

difference is that a mail gateway typically buffers messages on disk and is willing to try

retransmitting them to the next machine for several days, while an IP router buffers

datagrams in memory and is only willing to retry transmitting them for a fraction of

a second. Figure 9.6 illustrates a two-hop path from the sender to the receiver.

Mail
reader

Mail
daemon

SMTP/TCP

Mail gateway

Mail
daemon

SMTP/TCP

Mail
reader

Mail
daemon

Figure 9.6 Sequence of mail gateways store and forward email messages.

648 9 Applications

Why, you might ask, are mail gateways necessary? Why can’t the sender’s host

send the message to the receiver’s host? One reason is that the recipient does not want

to include the specific host on which he or she reads email in his or her address. For

example, mail delivered to Bob@cs.princeton.edu is first sent to a mail gateway in the

CS Department at Princeton (that is, to the host named cs.princeton.edu), and then

forwarded—involving a second SMTP/TCP connection—to the specific machine on

which Bob happens to be reading his email today. The forwarding gateway maintains

a database that maps users into the machine on which they currently want to receive

their mail; the sender need not be aware of this specific name. (The list of Received:

header lines in the message will help you trace the mail gateways that a given message

traversed.) Another reason is that the recipient’s machine may not always be up, in

which case the mail gateway holds the message until it can be delivered.

Independent of how many mail gateways are in the path, an independent SMTP

connection is used between each host to move the message closer to the recipient.

Each SMTP session involves a dialog between the two mail daemons, with one acting

as the client and the other acting as the server. Multiple messages might be transferred

between the two hosts during a single session. Since RFC 822 defines messages using

ASCII as the base representation, it should come as no surprise to learn that SMTP is

also ASCII based. This means it is possible for a human at a keyboard to pretend to

be an SMTP client program.

SMTP is best understood by a simple example. The following is an exchange

between sending host cs.princeton.edu and receiving host cisco.com. In this case, user

Bob at Princeton is trying to send mail to users Alice and Tom at Cisco. The lines sent

by cs.princeton.edu are shown in black and the lines sent by cisco.com are shown in

green. Extra blank lines have been added to make the dialog more readable.

HELO cs.princeton.edu
250 Hello daemon@mail.cs.princeton.edu [128.12.169.24]

MAIL FROM:<Bob@cs.princeton.edu>
250 OK

RCPT TO:<Alice@cisco.com>
250 OK

RCPT TO:<Tom@cisco.com>
550 No such user here

DATA
354 Start mail input; end with <CRLF>.<CRLF>
Blah blah blah...
...etc. etc. etc.

9.2 Traditional Applications 649

<CRLF>.<CRLF>
250 OK

QUIT
221 Closing connection

As you can see, SMTP involves a sequence of exchanges between the client and

the server. In each exchange, the client posts a command (e.g., HELO, MAIL, RCPT,

DATA, QUIT) and the server responds with a code (e.g., 250, 550, 354, 221). The server

also returns a human-readable explanation for the code (e.g., No such user here). In

this particular example, the client first identifies itself to the server with the HELO

command. It gives its domain name as an argument. The server verifies that this

name corresponds to the IP address being used by the TCP connection; you’ll no-

tice the server states this IP address back to the client. The client then asks the server

if it is willing to accept mail for two different users; the server responds by saying

“yes” to one and “no” to the other. Then the client sends the message, which is ter-

minated by a line with a single period (“.”) on it. Finally, the client terminates the

connection.

There are, of course, many other commands and return codes. For example, the

server can respond to a client’s RCPT command with a 251 code, which indicates that

the user does not have a mailbox on this host, but that the server promises to forward

the message onto another mail daemon. In other words, the host is functioning as a

mail gateway. As another example, the client can issue a VRFY operation to verify a

user’s email address, but without actually sending a message to the user.

The only other point of interest is the arguments to the MAIL and RCPT op-

erations; for example, FROM:<Bob@cs.princeton.edu> and TO:<Alice@cisco.com>,

respectively. These look a lot like 822 header fields, and in some sense, they are. What

actually happens is that the mail daemon parses the message to extract the information

it needs to run SMTP. The information it extracts is said to form an envelope for the

message. The SMTP client uses this envelope to parameterize its exchange with the

SMTP server. One historical note: The reason sendmail became so popular is that no

one wanted to reimplement this message parsing function. While today’s email ad-

dresses look pretty tame (e.g., Bob@cs.princeton.edu), this was not always the case.

In the days before everyone was connected to the Internet, it was not uncommon to

see email addresses of the form user%host@site!neighbor.

Mail Reader

The final step is for the user to actually retrieve his or her messages from the mailbox,

read them, reply to them, and possibly save a copy for future reference. The user

performs all these actions by interacting with a mail reader. In many cases, this reader is

650 9 Applications

just a program running on the same machine as the user’s mailbox resides, in which case

it simply reads and writes the file that implements the mailbox. In other cases, the user

accesses his or her mailbox from a remote machine using yet another protocol, such as

the Post Office Protocol (POP) or the Internet Message Access Protocol (IMAP). It is

beyond the scope of this book to discuss the user interface aspects of the mail reader,

but it is definitely within our scope to talk about the access protocol. We consider

IMAP, in particular.

IMAP is similar to SMTP in many ways. It is a client/server protocol running

over TCP, where the client (running on the user’s desktop machine) issues commands

in the form of <CRLF>-terminated ASCII text lines and the mail server (running on

the machine that maintains the user’s mailbox) responds in kind. The exchange begins

with the client authenticating him- or herself, and identifying the mailbox he or she

wants to access. This can be represented by the simple state transition diagram shown

in Figure 9.7. In this diagram, LOGIN, AUTHENTICATE, SELECT, EXAMINE, CLOSE,

and LOGOUT are example commands that the client can issue, while OK is one possi-

ble server response. Other common commands include FETCH, STORE, DELETE, and

EXPUNGE, with the obvious meanings. Additional server responses include NO (client

does not have permission to perform that operation) and BAD (command is ill formed).

When the user asks to FETCH a message, the server returns it in MIME format

and the mail reader decodes it. In addition to the message itself, IMAP also defines a

set of message attributes that are exchanged as part of other commands, independent

of transferring the message itself. Message attributes include information like the size

of the message, but more interestingly, various flags associated with the message (e.g.,

Seen, Answered, Deleted, and Recent). These flags are used to keep the client and

server synchronized; that is, when the user deletes a message in the mail reader, the

client needs to report this fact to the mail server. Later, should the user decide to

expunge all deleted messages, the client issues an EXPUNGE command to the server,

which knows to actually remove all earlier deleted messages from the mailbox.

Finally, note that when the user replies to a message, or sends a new message,

the mail reader does not forward the message from the client’s desktop machine to

the mail server using IMAP, but it instead uses SMTP. This means that the user’s mail

server is effectively the first mail gateway traversed along the path from the desktop

to the recipient’s mailbox.

9.2.2 World Wide Web (HTTP)

The World Wide Web has been so successful and has made the Internet accessible to

so many people that sometimes it seems to be synonymous with the Internet. One

helpful way to think of the Web is as a set of cooperating clients and servers, all of

whom speak the same language: HTTP. Most people are exposed to the Web through

9.2 Traditional Applications 651

Connection established

Server greeting

(1)

(4)

(7) (5)

(7)

(6)

(7)

(2) (3)

Logout

Selected

Authenticated

Not authenticated

Both sides close the connection

(1) connection without preauthentication (OK greeting)
(2) preauthenticated connection (PREAUTH greeting)
(3) rejected connection (BYE greeting)
(4) successful LOGIN or AUTHENTICATE command
(5) successful SELECT or EXAMINE command
(6) CLOSE command, or failed SELECT or EXAMINE
 command
(7) LOGOUT command, server shutdown, or connection
 closed

Figure 9.7 IMAP state transition diagram.

a graphical client program, or Web browser, like Netscape or Explorer. Figure 9.8

shows the Netscape browser in use, displaying a page of information from a project

called PlanetLab.

Any Web browser has a function that allows the user to “open a URL.” URLs

(uniform resource locators) provide information about the location of objects on the

652 9 Applications

Figure 9.8 The Netscape Web browser.

Web; they look like the following:

http://www.cs.princeton.edu/index.html

If you opened that particular URL, your Web browser would open a TCP connection

to the Web server at a machine called www.cs.princeton.edu and immediately retrieve

9.2 Traditional Applications 653

and display the file called index.html. Most files on the Web contain images and text,

and some have audio and video clips. They also include URLs that point to other files,

and your Web browser will have some way in which you can recognize URLs and ask

the browser to open them. These embedded URLs are called hypertext links. When

you ask your Web browser to open one of these embedded URLs (e.g., by pointing and

clicking on it with a mouse), it will open a new connection and retrieve and display a

new file. This is called “following a link.” It thus becomes very easy to hop from one

machine to another around the network, following links to all sorts of information.

When you select to view a page, your browser (the client) fetches the page from

the server using HTTP running over TCP. Like SMTP, HTTP is a text-oriented protocol.

At its core, each HTTP message has the general form

START_LINE <CRLF>
MESSAGE_HEADER <CRLF>
<CRLF>
MESSAGE_BODY <CRLF>

where as before, <CRLF> stands for carriage-return-line-feed. The first line

(START LINE) indicates whether this is a request message or a response message. In

effect, it identifies the “remote procedure” to be executed (in the case of a request

message) or the “status” of the request (in the case of a response message). The next

set of lines specifies a collection of options and parameters that qualify the request or

response. There are zero or more of these MESSAGE HEADER lines—the set is termi-

nated by a blank line—each of which looks like a header line in an email message.

HTTP defines many possible header types, some of which pertain to request messages,

some to response messages, and some to the data carried in the message body. Instead

of giving the full set of possible header types, though, we just give a handful of rep-

resentative examples. Finally, after the blank line comes the contents of the requested

message (MESSAGE BODY); this part of the message is typically empty for request

messages.

Request Messages

The first line of an HTTP request message specifies three things: the operation to

be performed, the Web page the operation should be performed on, and the version

of HTTP being used. Although HTTP defines a wide assortment of possible request

operations—including “write” operations that allow a Web page to be posted on a

server—the two most common operations are GET (fetch the specified Web page) and

HEAD (fetch status information about the specified Web page). The former is obviously

used when your browser wants to retrieve and display a Web page. The latter is

used to test the validity of a hypertext link or to see if a particular page has been

654 9 Applications

Operation Description

OPTIONS request information about available options

GET retrieve document identified in URL

HEAD retrieve metainformation about document identified in URL

POST give information (e.g., annotation) to server

PUT store document under specified URL

DELETE delete specified URL

TRACE loopback request message

CONNECT for use by proxies

Table 9.1 HTTP request operations.

modified since the browser last fetched it. The full set of operations is summarized in

Table 9.1.

For example, the START LINE

GET http://www.cs.princeton.edu/index.html HTTP/1.1

says that the client wants the server on host www.cs.princeton.edu to return the page

named index.html. This particular example uses an absolute URL. It is also possible

to use a relative identifier and specify the host name in one of the MESSAGE HEADER

lines; for example,

GET index.html HTTP/1.1
Host: www.cs.princeton.edu

Here, Host is one of the possible MESSAGE HEADER fields. One of the more interesting

of these is If-Modified-Since, which gives the client a way to conditionally request a

Web page—the server returns the page only if it has been modified since the time

specified in that header line.

Response Messages

Like request messages, response messages begin with a single START LINE. In this case,

the line specifies the version of HTTP being used, a three-digit code indicating whether

or not the request was successful, and a text string giving the reason for the response.

For example, the START LINE

HTTP/1.1 202 Accepted

9.2 Traditional Applications 655

Code Type Example Reasons

1xx Informational request received, continuing process

2xx Success action successfully received, understood, and accepted

3xx Redirection further action must be taken to complete the request

4xx Client Error request contains bad syntax or cannot be fulfilled

5xx Server Error server failed to fulfill an apparently valid request

Table 9.2 Five types of HTTP result codes.

indicates that the server was able to satisfy the request, while

HTTP/1.1 404 Not Found

indicates that it was not able to satisfy the request because the page was not found.

There are five general types of response codes, with the first digit of the code indicating

its type. Table 9.2 summarizes the five types of codes.

Also similar to request messages, response messages can contain one or more

MESSAGE HEADER lines. These lines relay additional information back to the client.

For example, the Location header line specifies that the requested URL is available at

another location. Thus, if the Princeton CS Department Web page had moved from

http://www.cs.princeton.edu/index.html to http://www.princeton.edu/cs/index.html, for

example, then the server at the original address might respond with

HTTP/1.1 301 Moved Permanently
Location: http://www.princeton.edu/cs/index.html

In the common case, the response message will also carry the requested page. This

page is an HTML document, but since it may carry nontextual data (e.g., a GIF image),

it is encoded using MIME (see Section 9.2.1). Certain of the MESSAGE HEADER lines

give attributes of the page contents, including Content-Length (number of bytes in

the contents), Expires (time at which the contents are considered stale), and Last-

Modified (time at which the contents were last modified at the server).

TCP Connections

The original version of HTTP (1.0) established a separate TCP connection for each data

item retrieved from the server. It’s not too hard to see how this was a very inefficient

mechanism: Connection setup and teardown messages had to be exchanged between

656 9 Applications

the client and server even if all the client wanted to do was verify that it had the most

recent copy of a page. Thus, retrieving a page that included some text and a dozen icons

or other small graphics would result in 13 separate TCP connections being established

and closed.

The most important improvement in the latest version of HTTP (1.1) is to allow

persistent connections—the client and server can exchange multiple request/response

messages over the same TCP connection. Persistent connections have two advantages.

First, they obviously eliminate the connection setup overhead, thereby reducing the

load on the server, the load on the network caused by the additional TCP packets,

and the delay perceived by the user. Second, because a client can send multiple request

messages down a single TCP connection, TCP’s congestion window mechanism is able

to operate more efficiently. This is because it’s not necessary to go through the slow

start phase for each page.

Persistent connections do not come without a price, however. The problem is

that neither the client nor server necessarily knows how long to keep a particular TCP

connection open. This is especially critical on the server, which might be asked to keep

connections open on behalf of thousands of clients. The solution is that the server

must time out and close a connection if it has received no requests on the connection

for a period of time. Also, both the client and server must watch to see if the other

side has elected to close the connection, and they must use that information as a signal

that they should close their side of the connection as well. (Recall that both sides must

close a TCP connection before it is fully terminated.)

Caching

One of the most active areas of research (and entrepreneurship) in the Internet today

is how to effectively cache Web pages. Caching has many benefits. From the client’s

perspective, a page that can be retrieved from a nearby cache can be displayed much

more quickly than if it has to be fetched from across the world. From the server’s

perspective, having a cache intercept and satisfy a request reduces the load on the

server.

Caching can be implemented in many different places. For example, a user’s

browser can cache recently accessed pages, and simply display the cached copy if

the user visits the same page again. As another example, a site can support a single

sitewide cache. This allows users to take advantage of pages previously downloaded

by other users. Closer to the middle of the Internet, ISPs can cache pages. Note that

in the second case, the users within the site most likely know what machine is caching

pages on behalf of the site, and they configure their browsers to connect directly to the

caching host. This node is sometimes called a proxy. In contrast, the sites that connect

to the ISP are probably not aware that the ISP is caching pages. It simply happens to be

9.2 Traditional Applications 657

the case that HTTP requests coming out of the various sites pass through a common

ISP router. This router can peek inside the request message and look at the URL for the

requested page. If it has the page in its cache, it returns it. If not, it forwards the request

to the server and watches for the response to fly by in the other direction. When it

does, the router saves a copy in the hope that it can use it to satisfy a future request.

No matter where pages are cached, the ability to cache Web pages is important

enough that HTTP has been designed to make the job easier. The trick is that the

cache needs to make sure it is not responding with an out-of-date version of the page.

For example, the server assigns an expiration date (the Expires header field) to each

page it sends back to the client (or to a cache between the server and client). The

cache remembers this date and knows that it need not reverify the page each time it is

requested until after that expiration date has passed. After that time (or if that header

field is not set) the cache can use the HEAD or conditional GET operation (GET with

If-Modified-Since header line) to verify that it has the most recent copy of the page.

More generally, there is a set of “cache directives” that must be obeyed by all caching

mechanisms along the request/response chain. These directives specify whether or not

a document can be cached, how long it can be cached, how fresh a document must be,

and so on.

9.2.3 Network Management (SNMP)

A network is a complex system, both in terms of the number of nodes that are involved

and in terms of the suite of protocols that can be running on any one node. Even

if you restrict yourself to worrying about the nodes within a single administrative

domain, such as a campus, there might be dozens of routers and hundreds—or even

thousands—of hosts to keep track of. If you think about all the state that is maintained

and manipulated on any one of those nodes—for example, address translation tables,

routing tables, TCP connection state, and so on—then it is easy to become depressed

about the prospect of having to manage all of this information.

It is easy to imagine wanting to know about the state of various protocols on

different nodes. For example, you might want to monitor the number of IP datagram

reassemblies that have been aborted, so as to determine if the timeout that garbage

collects partially assembled datagrams needs to be adjusted. As another example, you

might want to keep track of the load on various nodes (i.e., the number of packets

sent or received) so as to determine if new routers or links need to be added to the

network. Of course, you also have to be on the watch for evidence of faulty hardware

and misbehaving software.

What we have just described is the problem of network management, an issue

that pervades the entire network architecture. Since the nodes we want to keep track

of are distributed, our only real option is to use the network to manage the network.

658 9 Applications

This means we need a protocol that allows us to read, and possibly write, various pieces

of state information on different network nodes. The most widely used protocol for

this purpose is the Simple Network Management Protocol (SNMP).

SNMP is essentially a specialized request/reply protocol that supports two kinds

of request messages: GET and SET. The former is used to retrieve a piece of state

from some node, and the latter is used to store a new piece of state in some node.

(SNMP also supports a third operation—GET-NEXT—which we explain below.) The

following discussion focuses on the GET operation, since it is the one most frequently

used.

SNMP is used in the obvious way. A system administrator interacts with a client

program that displays information about the network. This client program usually has

a graphical interface. You can think of this interface as playing the same role as a Web

browser. Whenever the administrator selects a certain piece of information that he or

she wants to see, the client program uses SNMP to request that information from the

node in question. (SNMP runs on top of UDP.) An SNMP server running on that node

receives the request, locates the appropriate piece of information, and returns it to the

client program, which then displays it to the user.

There is only one complication to this otherwise simple scenario: Exactly how

does the client indicate which piece of information it wants to retrieve, and likewise,

how does the server know which variable in memory to read to satisfy the request? The

answer is that SNMP depends on a companion specification called the management

information base (MIB). The MIB defines the specific pieces of information—the MIB

variables—that you can retrieve from a network node.

The current version of MIB, called MIB-II, organizes variables into 10 different

groups. You will recognize that most of the groups correspond to one of the protocols

described in this book, and nearly all of the variables defined for each group should

look familiar. For example:

■ System: general parameters of the system (node) as a whole, including where

the node is located, how long it has been up, and the system’s name.

■ Interfaces: information about all the network interfaces (adaptors) attached

to this node, such as the physical address of each interface, how many packets

have been sent and received on each interface.

■ Address translation: information about the Address Resolution Protocol

(ARP), and in particular, the contents of its address translation table.

■ IP: variables related to IP, including its routing table, how many datagrams it

has successfully forwarded, and statistics about datagram reassembly. Includes

counts of how many times IP drops a datagram for one reason or another.

9.2 Traditional Applications 659

■ TCP: information about TCP connections, such as the number of passive and

active opens, the number of resets, the number of timeouts, default timeout

settings, and so on. Per-connection information persists only as long as the

connection exists.

■ UDP: information about UDP traffic, including the total number of UDP data-

grams that have been sent and received.

There are also groups for ICMP, EGP, and SNMP itself. The 10th group is used by

different media.

Returning to the issue of the client stating exactly what information it wants

to retrieve from a node, having a list of MIB variables is only half the battle. Two

problems remain. First, we need a precise syntax for the client to use to state which of

the MIB variables it wants to fetch. Second, we need a precise representation for the

values returned by the server. Both problems are addressed using ASN.1.

Consider the second problem first. As we already saw in Chapter 7, ASN.1 BER

defines a representation for different data types, such as integers. The MIB defines the

type of each variable, and then it uses ASN.1 BER to encode the value contained in this

variable as it is transmitted over the network. As far as the first problem is concerned,

ASN.1 also defines an object identification scheme; this identification system is not

described in Chapter 7. The MIB uses this identification system to assign a globally

unique identifier to each MIB variable. These identifiers are given in a “dot” notation,

not unlike domain names. For example, 1.3.6.1.2.1.4.3 is the unique ASN.1 identifier

for the IP-related MIB variable ipInReceives; this variable counts the number of IP

datagrams that have been received by this node. In this example, the 1.3.6.1.2.1 prefix

identifies the MIB database (remember, ASN.1 object Ids are for all possible objects in

the world), the 4 corresponds to the IP group, and the final 3 denotes the third variable

in this group.

Thus, network management works as follows. The SNMP client puts the ASN.1

identifier for the MIB variable it wants to get into the request message, and it sends

this message to the server. The server then maps this identifier into a local variable

(i.e., into a memory location where the value for this variable is stored), retrieves the

current value held in this variable, and uses ASN.1 BER to encode the value it sends

back to the client.

There is one final detail. Many of the MIB variables are either tables or structures.

Such compound variables explain the reason for the SNMP GET-NEXT operation. This

operation, when applied to a particular variable Id, returns the value of that variable

plus the Id of the next variable, for example, the next item in the table or the next field

in the structure. This aids the client in “walking through” the elements of a table or

structure.

660 9 Applications

9.3 Multimedia Applications

Just like the traditional applications of the previous section, multimedia applications

such as audio- and videoconferencing applications need application-layer protocols.

Much of the initial experience in designing protocols for multimedia applications came

from the “MBone tools”—applications such as vat and vic that were developed for

use on the MBone, using IP multicast to enable multiparty conferencing. Initially,

each application implemented its own protocol (or protocols), but it became apparent

that many multimedia applications have common requirements. This ultimately led

to the development of a number of general-purpose protocols for use by multimedia

applications.

We have already seen one protocol that is of general use to multimedia applica-

tions in the form of RSVP (see Section 6.5.2.) That protocol can be used to request the

allocation of resources in the network so that the desired quality of service (QoS) can

be provided to an application. In addition to a QoS signalling protocol, many mul-

timedia applications also need some sort of transport protocol, with rather different

characteristics than TCP and with more functionality than UDP. The protocol that has

been developed to meet those needs is called the Real-time Transport Protocol (RTP),

described below.

A third class of protocol that many multimedia applications need is a session

control protocol. For example, suppose that we wanted to be able to make IP-based

telephone calls across the Internet. We would need some mechanism to notify the

intended recipient of such a call that we wanted to talk to her, for example, by sending

a message to some multimedia device that would cause it to make a ringing sound. We

would also like to be able to support features like call forwarding, three-way calling,

and so on. SIP (Session Initiation Protocol) and H.323 are examples of protocols that

address the issues of session control; we discuss them in Section 9.3.2.

9.3.1 Real-time Transport Protocol (RTP)

You might wonder why a protocol whose name identifies it as a “transport proto-

col” appears in a chapter on application-layer issues. The reason for this is that RTP

contains a considerable amount of functionality that is specific to multimedia appli-

cations. Furthermore, it typically runs on top of one of the transport-layer protocols

described in Chapter 5—UDP—which provides some of the application-independent

functions you usually associate with a transport protocol. RTP is nevertheless called a

transport protocol because it provides common end-to-end functions to a number of

applications. (Most application-layer protocols, like HTTP and SMTP, for example,

are specific to a single application.) A point to note here is the difficulty of fitting

real-world protocols into a strict layerist model.

9.3 Multimedia Applications 661

Figure 9.9 User interface of a vat audioconference.

Before we look at RTP in detail, it will help to consider some of the appli-

cations that might use it. Multimedia applications are sometimes divided into two

classes—conferencing applications and streaming applications. A popular example of

the former class is vat, the audioconferencing tool that is often used over networks

supporting IP multicast. The control panel for a typical vat conference is shown in

Figure 9.9. Another conferencing application is vic, the videoconferencing tool dis-

cussed in Chapter 1 and illustrated in Figure 1.1.

Streaming applications typically deliver audio or video streams from a server to

a client, and are typified by such commercial products as Real Audio. Because of the

lack of human interaction, such applications place somewhat different requirements

on the underlying protocols. It should by now be apparent that designers of a transport

662 9 Applications

Application

RTP

UDP

IP

Subnet

Figure 9.10 Protocol stack for multimedia applications using RTP.

protocol for multimedia applications face a real challenge in defining the requirements

broadly enough to meet the needs of very different applications. They must also pay

attention to the interactions among different applications, for example, the synchro-

nization of audio and video streams. We will see how these concerns affected the design

of RTP below.

Much of RTP actually derives from the application protocol that was originally

embedded in vat. Newer versions of vat (and many other applications) run over RTP.

RTP can run over many lower-layer protocols, but commonly runs over UDP. That

leads to the protocol stack shown in Figure 9.10.

Requirements

The most basic requirement for a general-purpose multimedia protocol is that it al-

low similar applications to interoperate with each other. For example, it should be

possible for two independently implemented audioconferencing applications to talk

to each other. This immediately suggests that the applications had better use the same

method of encoding and compressing voice; otherwise, the data sent by one party

will be incomprehensible to the receiving party. Since there are quite a few different

coding schemes for voice, each with its own trade-offs between quality, bandwidth

requirements, and computational cost, it would probably be a bad idea to decree that

only one such scheme can be used. Instead, our protocol should provide a way that a

sender can tell a receiver which coding scheme it wants to use, and possibly negotiate

until a scheme that is available to both parties is identified.

Just as with audio, there are many different video coding schemes. Thus, we see

that the first common function that RTP can provide is the ability to communicate that

choice of coding scheme. Note that this also serves to identify the type of application

(e.g., audio or video); once we know what coding algorithm is being used, we know

what type of data is being encoded as well.

Another important requirement for RTP is to enable the recipient of a data stream

to determine the timing relationship among the received data. Recall from Section 6.5

9.3 Multimedia Applications 663

that real-time applications need to place received data into a playback buffer to smooth

out the jitter that may have been introduced into the data stream during transmission

across the network. Thus, some sort of timestamping of the data will be necessary to

enable the receiver to play it back at the appropriate time.

Related to the timing of a single media stream is the issue of synchronization of

multiple media in a conference. The obvious example of this would be to synchronize

an audio and video stream that are originating from the same sender. As we will see

below, this is a slightly more complex problem than playback time determination for

a single stream.

Another important function to be provided is an indication of packet loss. Note

that an application with tight latency bounds generally cannot use a reliable transport

like TCP because retransmission of data to correct for loss would probably cause the

packet to arrive too late to be useful. Thus, the application must be able to deal with

missing packets, and the first step in dealing with them is noticing that they are in fact

missing. As an example, a video application using MPEG encoding will need to take

different actions when a packet is lost, depending on whether the packet came from

an I frame, a B frame, or a P frame.

Since multimedia applications generally do not run over TCP, they also miss out

on the congestion-avoidance features of TCP (as described in Section 6.3). Yet many

multimedia applications are capable of responding to congestion, for example, by

changing the parameters of the coding algorithm to reduce the bandwidth consumed.

Clearly, to make this work, the receiver needs to notify the sender that losses are

occurring so that the sender can adjust its coding parameters.

Another common function across multimedia applications is the concept of frame

boundary indication. A frame in this context is application specific. For example, it

may be helpful to notify a video application that a certain set of packets corresponds

to a single frame. In an audio application it is helpful to mark the beginning of a “talk-

spurt,” which is a collection of sounds or words followed by silence. The receiver can

then identify the silences between talkspurts and use them as opportunities to move

the playback point. This follows the observation that slight shortening or lengthen-

ing of the spaces between words are not perceptible to users, whereas shortening or

lengthening the words themselves is both perceptible and annoying.

A final function that we might want to put into the protocol is some way of

identifying senders that is more user friendly than an IP address. Tools such as vat and

vic can display strings such as Joe User (user@domain.com) on their control panels,

and thus the application protocol should support the association of such a string with

a data stream.

In addition to the functionality that is required from our protocol, we note

an additional requirement: It should make reasonably efficient use of bandwidth.

664 9 Applications

Put another way, we don’t want to introduce a lot of extra bits that need to be sent with

every packet in the form of a long header. The reason for this is that audio packets,

which are one of the most common types of multimedia data, tend to be small, so as to

reduce the time it takes to fill them with samples. Long audio packets would mean high

latency due to packetization, which has a negative effect on the perceived quality of

conversations. (Recall that this was one of the factors in choosing the length of ATM

cells.) Since the data packets themselves are short, a large header would mean that a

relatively large amount of link bandwidth would be used by headers, thus reducing

the available capacity for “useful” data. We will see several aspects of the design of

RTP that have been influenced by the necessity of keeping the header short.

RTP Details

Now that we have seen the rather long list of requirements for our application-layer

protocol for multimedia, we turn to the details of the protocol that has been specified

to meet those requirements. This protocol, RTP, was developed in the IETF and is in

widespread use. The RTP standard actually defines a pair of protocols, RTP and the

Real-time Transport Control Protocol (RTCP). The former is used for the exchange

of multimedia data, while the latter is used to periodically send control information

associated with a certain data flow. When running over UDP, the RTP data stream and

the associated RTCP control stream use consecutive transport-layer ports. The RTP

data uses an even port number and the RTCP control information uses the next higher

(odd) port number.

Because RTP is designed to support a wide variety of applications, it provides a

flexible mechanism by which new applications can be developed without repeatedly

revising the RTP protocol itself. For each class of application (e.g., audio), RTP defines

a profile and one or more formats. The profile provides a range of information that

ensures a common understanding of the fields in the RTP header for that application

class, as will be apparent when we examine the header in detail. The format speci-

fication explains how the data that follows the RTP header is to be interpreted. For

example, the RTP header might just be followed by a sequence of bytes, each of which

represents a single audio sample taken at a defined interval after the previous one. Al-

ternatively, the format of the data might be much more complex; an MPEG-encoded

video stream, for example, would need to have a good deal of structure to represent

all the different types of information.

◮ The design of RTP embodies an architectural principle known as Application

Level Framing (ALF). This principle was put forward by Clark and Tennenhouse in

1990 as a new way to design protocols for emerging multimedia applications. They

recognized that these new applications were unlikely to be well served by existing

protocols such as TCP, and that furthermore they might not be well served by any

9.3 Multimedia Applications 665

PTMCCXPV = 2 Sequence number

Timestamp

Synchronization source (SSRC) identifier

Contributing source (CSRC) identifiers

Extension header

RTP payload

…

Figure 9.11 RTP header format.

sort of “one-size-fits-all” protocol. At the heart of this principle is the belief that an

application understands its own needs best. For example, an MPEG video application

knows how best to recover from lost frames, and how to react differently if an I frame

or a B frame is lost. The same application also understands best how to segment the

data for transmission—for example, it’s better to send the data from different frames

in different datagrams, so that a lost packet only corrupts a single frame, not two. It

is for this reason that RTP leaves so many of the protocol details to the profile and

format documents that are specific to an application.

Header Format

Figure 9.11 shows the header format used by RTP. The first 12 bytes are always present,

whereas the contributing source identifiers are only used in certain circumstances. After

this header there may be optional header extensions, as described below. Finally, the

header is followed by the RTP payload, the format of which is determined by the

application. The intention of this header is that it contain only the fields that are likely

to be used by many different applications, since anything that is very specific to a single

application would be more efficiently carried in the RTP payload for that application

only.

The first two bits are a version identifier, which contains the value 2 in the RTP

version deployed at the time of writing. You might think that the designers of the

protocol were rather bold to think that 2 bits would be enough to contain all future

versions of RTP, but recall that bits are at a premium in the RTP header. Furthermore,

the use of profiles for different applications makes it less likely that many revisions to

the base RTP protocol would be needed. In any case, if it turns out that another version

of RTP is needed beyond version 2, it would be possible to consider a change to the

header format so that more than one future version would be possible. For example,

666 9 Applications

Pad count bytes

UDP header RTP header RTP payload Padding Pad count

Length as carried in UDP header

Figure 9.12 Padding of an RTP packet.

a new RTP header with the value 3 in the version field could have a “subversion” field

somewhere else in the header.

The next bit is the “padding” (P) bit, which is set in circumstances in which

the RTP payload has been padded for some reason. RTP data might be padded to

fill up a block of a certain size as required by an encryption algorithm, for example.

In such a case, the complete length of the RTP header, data, and padding would be

conveyed by the lower-layer protocol header (e.g., the UDP header), and the last byte

of the padding would contain a count of how many bytes should be ignored. This is

illustrated in Figure 9.12. Note that this approach to padding removes any need for a

length field in the RTP header (thus serving the goal of keeping the header short); in

the common case of no padding, the length is deduced from the lower-layer protocol.

The extension (X) bit is used to indicate the presence of an extension header,

which would be defined for a specific application and follow the main header. Such

headers are rarely used, since it is generally possible to define a payload-specific header

as part of the payload format definition for a particular application.

The X bit is followed by a 4-bit field that counts the number of “contributing

sources,” if any are included in the header. Contributing sources are discussed below.

We noted above the frequent need for some sort of frame indication; this is

provided by the marker bit, which could be set at the beginning of a talkspurt, for

example. The 7-bit payload type field follows; it indicates what type of multime-

dia data is carried in this packet. One possible use of this field would be to enable

an application to switch from one coding scheme to another based on information

about resource availability in the network or feedback on application quality. The

exact usage of the marker bit and the payload type is determined by the application

profile.

Note that the payload type is generally not used as a demultiplexing key to direct

data to different applications (or to different streams within a single application, for

example, the audio and video stream for a videoconference). This is because such

demultiplexing is typically provided at a lower layer (e.g., by UDP, as described in

Section 5.1). Thus, two media streams using RTP would typically use different UDP

port numbers.

9.3 Multimedia Applications 667

The sequence number is used to enable the receiver of an RTP stream to detect

missing and misordered packets. The sender simply increments the value by one for

each transmitted packet. Note that RTP does not do anything when it detects a lost

packet, in contrast to TCP, which both corrects for the loss (by retransmission) and

interprets the loss as a congestion indication (which may cause it to reduce its window

size). Rather, it is left to the application to decide what to do when a packet is lost

because this decision is likely to be highly application dependent. For example, a video

application might decide that the best thing to do when a packet is lost is to replay the

last frame that was correctly received. Some applications might also decide to modify

their coding algorithms to reduce bandwidth needs in response to loss, but this is not

a function of RTP. It would not be sensible for RTP to decide that the sending rate

should be reduced, as this might make the application useless.

The function of the timestamp field is to enable the receiver to play back samples

at the appropriate intervals and to enable different media streams to be synchronized.

Because different applications may require different granularities of timing, RTP itself

does not specify the units in which time is measured. Instead, the timestamp is just a

counter of “ticks,” where the time between ticks is dependent on the encoding in use.

For example, an audio application that samples data once every 125 μs could use that

value as its clock resolution. The clock granularity is one of the details that is specified

in the RTP profile or payload format for an application.

The timestamp value in the packet is a number representing the time at which

the first sample in the packet was generated. The timestamp is not a reflection of the

time of day; only the differences between timestamps are relevant. For example, if the

sampling interval is 125 μs and the first sample in packet n + 1 was generated 10 ms

after the first sample in packet n, then the number of sampling instants between these

two samples is

TimeBetweenPackets ÷ TimePerSample = (10 × 10−3) ÷ (125 × 10−6)

= 80

Assuming the clock granularity is the same as the sampling interval, then the timestamp

in packet n + 1 would be greater than that in packet n by 80. Note that fewer than 80

samples might have been sent due to compression techniques such as silence detection,

and yet the timestamp allows the receiver to play back the samples with the correct

temporal relationship.

The synchronization source (SSRC) is a 32-bit number that uniquely identifies a

single source of an RTP stream. In a given multimedia conference, each sender picks a

random SSRC and is expected to resolve conflicts in the unlikely event that two sources

pick the same value. By making the source identifier something other than the network

668 9 Applications

or transport address of the source, RTP ensures independence from the lower-layer

protocol. It also enables a single node with multiple sources (e.g., several cameras) to

distinguish those sources. When a single node generates different media streams (e.g.,

audio and video), it is not required to use the same SSRC in each stream, as there are

mechanisms in RTCP (described below) to allow intermedia synchronization.

The contributing source (CSRC) is used only when a number of RTP streams pass

through a “mixer.” A mixer can be used to reduce the bandwidth requirements for a

conference by receiving data from many sources and sending it as a single stream. For

example, the audio streams from several concurrent speakers could be decoded and

recoded as a single audio stream. In this case, the mixer lists itself as the synchronization

source but also lists the contributing sources—the SSRC values of the speakers who

contributed to the packet in question.

Control Protocol

RTCP provides a control stream that is associated with a data stream for a multimedia

application. This control stream provides three main functions:

1 Feedback on the performance of the application and the network

2 A way to correlate and synchronize different media streams that have come from

the same sender

3 A way to convey the identity of a sender for display on a user interface (e.g., the

vat interface shown in Figure 9.9)

The first function may be useful for rate-adaptive applications, which may use

performance data to decide to use a more aggressive compression scheme to reduce

congestion, or to send a higher-quality stream when there is little congestion. It can

also be useful in diagnosing network problems.

You might think that the second function is already provided by the synchro-

nization source Id of RTP, but in fact it is not. As already noted, multiple cameras from

a single node might have different SSRC values. Furthermore, there is no requirement

that an audio and video stream from the same node use the same SSRC. Because col-

lisions of SSRC values may occur, it may be necessary to change the SSRC value of

a stream. To deal with this problem, RTCP uses the concept of a “canonical name”

(CNAME) that is assigned to a sender, which is then associated with the various SSRC

values that might be used by that sender using RTCP mechanisms.

Simply correlating two streams is only part of the problem of intermedia synchro-

nization. Because different streams may have completely different clocks (with different

granularities and even different amounts of inaccuracy, or drift), there needs to be a

way to accurately synchronize streams with each other. RTCP addresses this problem.

9.3 Multimedia Applications 669

RTCP defines a number of different packet types, including

■ sender reports, which enable active senders to a session to report transmission

and reception statistics

■ receiver reports, which receivers who are not senders use to report reception

statistics

■ source descriptions, which carry CNAMEs and other sender description in-

formation

■ application-specific control packets

These different RTCP packet types are sent over the lower-layer protocol, which,

as we have noted, is typically UDP. Several RTCP packets can be packed into a single

PDU of the lower-level protocol. It is required that at least two RTCP packets are

sent in every lower-level PDU: One of these is a report packet; the other is a source

description packet. Other packets may be included up to the size limits imposed by

the lower-layer protocols.

Before looking closely at the contents of an RTCP packet, we note that there is

a potential problem with every member of a multicast group sending periodic control

traffic. Unless we take some steps to limit it, this control traffic has the potential to be

a significant consumer of bandwidth. For example, in an audioconference, no more

than two or three senders are likely to send audio data at any instant, since there is no

point in everyone talking at once. But there is no such social limit on everyone sending

control traffic, and this could be a severe problem in a conference with thousands

of participants. To deal with this problem, RTCP has a set of mechanisms by which

the participants scale back their reporting frequency as the number of participants

increases. These rules are somewhat complex, but the basic goal is this: Limit the total

amount of RTCP traffic to a small percentage (typically 5%) of the RTP data traffic.

To accomplish this goal, the participants should know how much data bandwidth

is likely to be in use (e.g., the amount to send three audio streams) and the number

of participants. They learn the former from means outside RTP (known as session

management, discussed at the end of this section), and they learn the latter from the

RTCP reports of other participants. Because RTCP reports might be sent at a very

low rate, it might only be possible to get an approximate count of the current number

of recipients, but that is typically sufficient. Also, it is recommended to allocate more

RTCP bandwidth to active senders, on the assumption that most participants would

like to see reports from them, for example, to find out who is speaking.

Once a participant has determined how much bandwidth it can consume with

RTCP traffic, it sets about sending periodic reports at the appropriate rate.

670 9 Applications

Sender reports and receiver reports differ only in that the former include some ex-

tra information about the sender. Both types of reports contain information about the

data that was received from all sources in the most recent reporting period.

The extra information in a sender report consists of

■ a timestamp containing the actual time of day when this report was generated

■ the RTP timestamp corresponding to the time when the report was generated

■ cumulative counts of the packets and bytes sent by this sender since it began

transmission

Note that the first two quantities can be used to enable synchronization of dif-

ferent media streams from the same source, even if those streams use different clock

granularities in their RTP data streams, since it gives the key to convert time of day to

the RTP timestamps.

Both sender and receiver reports contain one block of data per source that has

been heard from since the last report. Each block contains the following statistics for

the source in question:

■ Its SSRC

■ The fraction of data packets from this source that were lost since the last report

was sent (calculated by comparing the number of packets received with the

number of packets expected; this last value can be determined from the RTP

sequence numbers)

■ Total number of packets lost from this source since the first time it was heard

from

■ Highest sequence number received from this source (extended to 32 bits to

account for wrapping of the sequence number)

■ Estimated interarrival jitter for the source (calculated by comparing the inter-

arrival spacing of received packets with the expected spacing at transmission

time)

■ Last actual timestamp received via RTCP for this source

■ Delay since last sender report received via RTCP for this source

As you might imagine, the recipients of this information can learn all sorts of things

about the state of the session. In particular, they can see if other recipients are getting

much better quality from some sender than they are, which might be an indication

that a resource reservation needs to be made, or that there is a problem in the network

9.3 Multimedia Applications 671

that needs to be attended to. In addition, if a sender notices that many receivers are

experiencing high loss of its packets, it might decide that it should reduce its sending

rate or use a coding scheme that is more resilient to loss.

The final aspect of RTCP that we will consider is the source description packet.

Such a packet contains, at a minimum, the SSRC of the sender and the sender’s

CNAME. The canonical name is derived in such a way that all applications that gener-

ate media streams that might need to be synchronized (e.g., separately generated audio

and video streams from the same user) will choose the same CNAME even though

they might choose different SSRC values. This enables a receiver to identify the media

stream that came from the same sender. The most common format of the CNAME

is user@host, where host is the fully qualified domain name of the sending machine.

Thus, an application launched by the user whose user name is jdoe running on the

machine cicada.cs.princeton.edu would use the string jdoe@cicada.cs.princeton.edu as

its CNAME. The large and variable number of bytes used in this representation would

make it a bad choice for the format of an SSRC, since the SSRC is sent with every

data packet and must be processed in real time. Allowing CNAMEs to be bound to

SSRC values in periodic RTCP messages enables a compact and efficient format for

the SSRC.

Other items may be included in the source description packet, such as the real

name and email address of the user. These are used in user interface displays and to

contact participants, but are less essential to the operation of RTP than the CNAME.

9.3.2 Session Control and Call Control (SDP, SIP, H.323)

To understand some of the issues of session control, consider the following problem.

Suppose you want to hold a videoconference at a certain time and make it available to

a wide number of participants. Perhaps you have decided to encode the video stream

using the MPEG-2 standard, to use the multicast IP address 224.1.1.1 for transmission

of the data, and to send it using RTP over UDP port number 4000. How would you

make all that information available to the intended participants? One way would be

to put all that information in an email and send it out, but ideally there should be a

standard format and protocol for disseminating this sort of information. The IETF has

a working group (the Multiparty Multimedia Session Control group) that has defined

protocols for just this purpose. The protocols that have been defined include

■ SDP (Session Description Protocol)

■ SAP (Session Announcement Protocol)

■ SIP (Session Initiation Protocol)

■ SCCP (Simple Conference Control Protocol)

672 9 Applications

You might think that this is a lot of protocols for a seemingly simple task, but

there are many aspects of the problem and several different situations in which it must

be addressed. For example, there is a difference between announcing the fact that a

certain conference session is going to be made available on the MBone (which would

be done using SDP and SAP) and trying to make an internet phone call to a certain

user at a particular time (which could be done using SDP and SIP). In the former case,

you could consider your job done once you have sent all the session information in

a standard format to a well-known multicast address. In the latter, you would need

to locate one or more users, get a message to them announcing your desire to talk

(analogous to ringing their phone), and perhaps negotiate a suitable audio encoding

among all parties. We will look first at SDP, which is common to many applications,

then at SIP, which is becoming widely used for a number of interactive applications

such as internet telephony.

Session Description Protocol (SDP)

SDP is a rather general protocol that can be used in a variety of situations. It conveys

the following information:

■ The name and purpose of the session

■ Start and end times for the session

■ The media types (e.g., audio, video) that comprise the session

■ Detailed information needed to receive the session (e.g., the multicast address

to which data will be sent, the transport protocol to be used, the port numbers,

the encoding schemes)

SDP provides this information formatted in ASCII using a sequence of lines of

text, each of the form “<type>=<value>”. An example of an SDP message will

illustrate the main points.

v=0
o=larry 2890844526 2890842807 IN IP4 10.0.1.5
s=Networking 101
i=A class on computer networking
u=http://www.cs.princeton.edu/
e=larry@cs.princeton.edu
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
m=audio 49170 RTP/AVP 0
m=video 51372 RTP/AVP 31
m=application 32416 udp wb

9.3 Multimedia Applications 673

Note that SDP, like HTML, is fairly easy for a human to read, but has strict

formatting rules that make it possible for machines to interpret the data unambigu-

ously. For example, the SDP specification defines all the possible information “types”

that are allowed to appear, the order in which they must appear, and the format and

reserved words for every type that is defined.

The first thing to notice is that each information “type” is identified by a single

character. For example, the line v=0 tells us that “version” has the value zero; that is,

this message is formatted according to version zero of SDP. The next line provides the

“origin” of the session, which contains enough information to uniquely identify the

session. larry is a username of the session creator, and 10.0.1.5 is the IP address of his

computer. The number following larry is a session identifier that is chosen to be unique

to that machine. This is followed by a “version” number for the SDP announcement;

if the session information was updated by a later message, the version number would

be increased.

The next three lines (s, i, and u) provide the session name, a session description,

and a session uniform resource identifier (URI)—all provide information that would

be helpful to a user in deciding whether to participate in this session. Such information

could be displayed in the user interface of a “session directory” tool that shows cur-

rent and upcoming events that have been advertised using SDP. The next line (e = . . .)

contains an email address of a person to contact regarding the session. Figure 9.13

shows a screen shot of a session directory tool called sdr along with the descriptions

of several sessions that had been announced at the time the picture was taken.

Next we get to the technical details that would enable an application program to

participate in the session. The line beginning c = . . . provides the IP multicast address to

which data for this session will be sent; a user would need to join this multicast group

to receive the session. Next we see the start and end times for the session (encoded as

integers according to the Network Time Protocol). Finally, we get to the information

about the media for this session. This session has three media types available—audio,

video, and a shared whiteboard application known as wb. For each media type there

is one line of information formatted as follows:

m=<media> <port> <transport> <format>

The media types are self-explanatory, and the port numbers in each case are

UDP ports. When we look at the “transport” field, we can see that the wb application

runs directly over UDP, while the audio and video are tranported using “RTP/AVP.”

This means that they run over RTP and use the application profile (as defined in

Section 9.3.1) known as AVP. That application profile defines a number of different

encoding schemes for audio and video; we can see in this case that the audio is us-

ing encoding 0 (which is an encoding using an 8-KHz sampling rate and 8 bits per

674 9 Applications

Figure 9.13 A session directory tool displays information extracted from SDP mes-
sages.

sample) and the video is using encoding 31, which represents the H.261 encoding

scheme. These “magic numbers” for the encoding schemes are defined in the RFC that

defines the AVP profile; it is also possible to describe nonstandard coding schemes in

SDP.

Finally, we see a description of the wb media type. All the encoding information

for this data is specific to the wb application, and so it is sufficient just to provide the

name of the application in the “format” field. This is analogous to putting applica-

tion/wb in a MIME message.

Now that we know how to describe sessions, we can look at how they can be

initiated. One way in which SDP is used is to announce multimedia conferences, by

sending SDP messages to a well-known multicast address. The session directory tool

shown in Figure 9.13 would function by joining that multicast group and displaying

information that it gleans from received SDP messages.

SDP also plays an important role in conjunction with the Session Initiation

Protocol (SIP). With the increased importance of “voice over IP” (VOIP, i.e., the

support of telephony-like applications over IP networks), SIP has attracted a great

deal of attention and now has its own working group at the IETF. While SIP can

be used for many things other than IP telephony, that is certainly one of its driving

applications.

9.3 Multimedia Applications 675

SIP

SIP is an application-layer protocol that bears a certain resemblance to HTTP, being

based on a similar request/response model. However, it is designed with rather different

sorts of applications in mind, and thus provides quite different capabilities than HTTP.

The capabilities provided by SIP can be grouped into five categories:

■ User location: determining the correct device with which to communicate to

reach a particular user

■ User availability: determining if the user is willing or able to take part in a

particular communication session

■ User capabilities: determining such items as the choice of media and coding

scheme to use

■ Session setup: establishing session parameters such as port numbers to be used

by the communicating parties

■ Session management: a range of functions including transferring sessions (e.g.,

to implement “call forwarding”) and modifying session parameters

Most of these functions are easy enough to understand, but the issue of location

bears some further discussion. One important difference between SIP and, say, HTTP,

is that SIP is primarily used for human-to-human communication. Thus, it is important

to be able to locate individual users, not just machines. And unlike email, it’s not good

enough to just locate a server that the user will be checking on at some later date and

dump the message there—we need to know where the user is right now if we want

to be able to communicate with him in real time. This is further complicated by the

fact that a user might choose to communicate using a range of different devices, for

example, using his desktop PC when he’s in the office and using a handheld device when

traveling. Multiple devices might be active at the same time and might have widely

different capabilities (e.g., an alphanumeric pager and a PC-based video “phone”).

Ideally, it should be possible for other users to be able to locate and communicate with

the appropriate device at any time. Furthermore, the user must be able to have control

over when, where, and from whom he receives calls.

To enable a user to exercise the appropriate level of control over his calls, SIP

introduces the notion of a proxy. A SIP proxy can be thought of as a point of contact

for a user to which initial requests for communication with him are sent. Proxies also

perform functions on behalf of callers. We can see how proxies work best through an

example.

Consider the two users in Figure 9.14. The first thing to notice is that each user

has a name in the format user@domain, very much like an email address. When user

676 9 Applications

cisco.com

proxy

larry@princeton.edu
bruce@cisco.com

bsd-pc.cisco.com
llp-ph.cs.princeton.edu

princeton.edu

proxy

Figure 9.14 Establishing communication through SIP proxies.

Bruce wants to initiate a session with Larry, he sends his initial SIP message to the local

proxy for his domain, cisco.com. Among other things, this initial message contains a

SIP URI—this is a form of uniform resource identifier that looks like this:

SIP:larry@princeton.edu

We saw an example of a different type of URI in Section 9.2.2. URLs (uniform

resource locators) such as http://www.cs.princeton.edu are a particular type of URI

that contains complete location information for a resource (e.g., a Web page). A SIP

URI provides complete identification of a user, but does not provide his location, since

that may change over time. We will see shortly how the location of a user can be

determined.

Upon receiving the initial message from Bruce, the cisco.com proxy looks at the

SIP URI and deduces that this message should be sent to the princeton.edu proxy. For

now, we assume that the princeton.edu proxy has access to some database that enables

it to obtain a mapping from the name larry@princeton.edu to the IP address of one

or more devices at which Larry currently wishes to receive messages. The proxy can

therefore forward the message on to Larry’s chosen device(s). Sending the message to

more than one device is called forking and may be done either in parallel or in series

(e.g., send it to his cell phone if he doesn’t answer the phone at his desk).

The initial message from Bruce to Larry is likely to be a SIP invite message, which

looks something like the following:

INVITE sip:larry@princeton.edu SIP/2.0
Via: SIP/2.0/UDP bsd-pc.cisco.com;branch=z9hG4bK433yte4
To: Larry <sip:larry@princeton.edu>

9.3 Multimedia Applications 677

From: Bruce <sip:bruce@cisco.com>;tag=55123
Call-ID: xy745jj210re3@bsd-pc.cisco.com
CSeq: 271828 INVITE
Contact: <sip:bruce@bsd-pc.cisco.com>
Content-Type: application/sdp
Content-Length: 142

The first line identifies the type of function to be performed (invite); the resource

on which to perform it, that is, the called party (sip:larry@princeton.edu); and the

protocol version (2.0). The subsequent header lines probably look somewhat familiar

because of their resemblance to the header lines in an email message. SIP defines a large

number of header fields, only some of which we describe here. Note that the Via: header

in this example identifies the device from which this message originated. The Content-

Type: and Content-Length: headers describe the contents of the message following the

header, just as in a MIME-encoded email message. In this case, the content is an SDP

(Session Description Protocol) message. That message would describe such things as

the type of media (audio, video, etc.) that Bruce would like to exchange with Larry and

other properties of the session such as CODEC types that he supports. Note that the

Content-Type: field in SIP provides the capability to use any protocol for this purpose,

although SDP is the most common.

Returning to the example, when the invite message arrives at the cisco.com proxy,

the proxy not only forwards the message on toward princeton.edu, it also responds to

the sender of the invite. Just as in HTTP, all responses have a response code, and the

organization of codes is similar to that for HTTP, as shown in Table 9.2. In Figure 9.15

we can see a sequence of SIP messages and responses.

The first response message in this figure is the provisional response 100 trying,

which indicates that the message was received without error by the caller’s proxy.

Once the invite is delivered to Larry’s phone, it alerts Larry and responds with a

180 ringing message. The arrival of this message at Bruce’s computer is a sign that it

can generate a “ring tone.” Assuming Larry is willing and able to communicate with

Bruce, he could pick up his phone, causing the message 200 OK to be sent. Bruce’s

computer responds with an ACK, and at this point media (e.g., an RTP-encapsulated

audio stream) can begin to flow between the two parties. Note that at this point

the parties know each other’s addresses, so the ACK can be sent directly, bypassing

the proxies. At this point the proxies are no longer involved in the call. Note that

the media will therefore typically take a different path through the network than the

original signalling messages. Furthermore, even if one or both of the proxies were to

crash at this point, the call could continue normally. Finally, when one party wishes to

end the session, it sends a BYE message, which elicits a 200 OK response under normal

circumstances.

678 9 Applications

cisco.com

proxy

princeton.edu

proxybsd-pc.cisco.com llp-ph.cs.princeton.edu

invite

invite

invite

100 trying

100 trying

180 ringing

180 ringing

180 ringing

200 OK

200 OK

200 OK

ACK

200 OK

BYE

Media

Figure 9.15 Message flow for a basic SIP session.

There are a few details that we have glossed over. One is the negotiation of session

characteristics. Perhaps Bruce would have liked to communicate using both audio and

video, but Larry’s phone only supports audio. Thus Larry’s phone would send an SDP

message in its 200 OK describing the properties of the session that will be acceptable

to Larry and the device, considering the options that were proposed in Bruce’s invite.

In this way, mutually acceptable session parameters are agreed upon before the media

flow starts.

The other big issue we have glossed over is that of locating the correct device for

Larry. First, Bruce’s computer had to send its invite to the cisco.com proxy. This could

have been a configured piece of information in the computer, or it could have been

learned by DHCP. Then the cisco.com proxy had to find the princeton.edu proxy. This

could be done using a special sort of DNS lookup that would return the IP address of

the SIP proxy for the princeton.edu domain. Finally, the princeton.edu proxy had to

find a device on which Larry could be contacted. Typically, a proxy server has access

to a location database that can be populated in several ways. Manual configuration is

one option, but a more flexible option is to use the registration capabilities of SIP.

A user can register with a location service by sending a SIP register message to

the registrar for his domain. This message creates a binding between an address of

9.3 Multimedia Applications 679

record and a contact address. An address of record is likely to be a SIP URI that is

the “well-known” address for the user (e.g., sip:larry@princeton.edu), and the contact

address will be the address at which the user can currently be found (e.g., sip:larry@llp-

ph.cs.princeton.edu). This is exactly the binding that was needed by the princeton.edu

proxy in our example.

Note that a user may register at several locations and that multiple users may

register at a single device. For example, you can imagine a group of people walking

into a conference room that is equipped with an IP phone and all of them registering

on it so that they can receive calls on that phone.

SIP is a very rich and flexible protocol that can support a wide range of complex

calling scenarios as well as applications that have little or nothing to do with telephony.

For example, SIP supports operations that enable a call to be routed to a “music-on-

hold” server or a voice mail server. It is also easy to see how it could be used for

applications like instant messaging; the SIMPLE working group at the IETF is defining

standards in that area at the time of writing.

H.323

The ITU has also been very active in the call control area, which is not surprising given

its relevance to telephony, the traditional realm of that body. Fortunately, there has

been considerable coordination between the IETF and the ITU in this instance, so that

the various protocols are somewhat interoperable. The major ITU recommendation

for multimedia communication over packet networks is known as H.323, which ties

together many other recommendations, including H.225 for call control. The full set of

recommendations covered by H.323 runs to many hundreds of pages, and the protocol

is known for its complexity, so it is only possible to give a brief overview of it here.

H.323 is popular as a protocol for internet telephony, and we consider that

application here. A device that originates or terminates calls is known as an H.323

terminal; this might be a workstation running an internet telephony application, or

it might be a specially designed “appliance”—a telephonelike device with networking

software and an Ethernet port, for example. H.323 terminals can talk to each other

directly, but the calls are frequently mediated by a device known as a gatekeeper.

Gatekeepers perform a number of functions such as translating among the various

address formats used for phone calls, and controlling how many calls can be placed

at a given time to limit the bandwidth used by the H.323 applications. H.323 also

includes the concept of a gateway, which connects the H.323 network to other types

of networks. The most common use of a gateway is to connect an H.323 network

to the public-switched telephone network (PSTN) as illustrated in Figure 9.16. This

enables a user running an H.323 application on a computer to talk to a person using a

conventional phone on the public telephone network. One useful function performed

by the gatekeeper is to help a terminal find a gateway, perhaps choosing among several

680 9 Applications

H.323
terminal

H.323
gatekeeper

H.323
terminal

H.323
gateway

Conventional telephone
network

Figure 9.16 Devices in an H.323 network.

options to find one that is relatively close to the ultimate destination of the call. This

is clearly useful in a world where conventional phones greatly outnumber PC-based

phones. When an H.323 terminal makes a call to an endpoint that is a conventional

phone, the gateway becomes the effective endpoint for the H.323 call and is responsible

for performing the appropriate translation of both signalling information and the

media stream that need to be carried over the telephone network.

An important part of H.323 is the H.245 protocol, which is used to negotiate the

properties of the call, somewhat analogously to the use of SDP described above. An

H.245 message might list a number of different audio CODEC standards that it can

support, and the far endpoint of the call would reply with a list of its own supported

CODECs, and the two ends could pick a coding standard that they can both live with.

H.245 can also be used to signal the UDP port numbers that will be used by RTP and

RTCP for the media stream (or streams—a call might include both audio and video,

for example) in this call. Once this is accomplished, the call can proceed, with RTP

being used to transport the media streams and RTCP carrying the relevant control

information.

9.4 Overlay Networks

From its inception, the Internet has adopted a clean model, in which the routers inside

the network are responsible for forwarding packets from source to destination, and

application programs run on the hosts connected to the edges of the network. The

client/server paradigm illustrated by the applications discussed in the first two sections

of this chapter certainly adheres to this model.

In the last few years, however, the distinction between packet forwarding and

application processing has become less clear. New applications are being distributed

across the Internet, and in many cases, these applications make their own forwarding

decisions. These new hybrid applications can sometimes be implemented by extending

9.4 Overlay Networks 681

Figure 9.17 Overlay network layered on top of a physical network.

traditional routers and switches to support a modest amount of application-specific

processing. For example, so-called level 7 switches sit in front of server clusters and

forward HTTP requests to a specific server based on the requested URL. However,

overlay networks are quickly emerging as the mechanism of choice for introducing

new functionality into the Internet.

You can think of an overlay as a logical network implemented on top of a physical

network. By this definition, the Internet itself is an overlay network, which is, in fact,

a true statement. Figure 9.17 depicts an overlay implemented on top of an underlying

network. Each node in the overlay also exists in the underlying network; it processes

and forwards packets in an application-specific way. The links that connect the overlay

nodes are implemented as tunnels through the underlying network. Multiple overlay

networks can exist on top of the same underlying network—each implementing their

own application-specific behavior—and overlays can be nested, one on top of another.

For example, all of the example overlay networks discussed in this section treat today’s

Internet as the underlying network.

We have already seen examples of tunneling, for example, to implement virtual

private networks (VPNs). As a brief refresher, the nodes on either end of a tunnel

treat the multihop path between them as a single logical link, where the nodes that are

“tunneled through” forward packets based on the outer header, never aware that the

end nodes have attached an inner header. For example, Figure 9.18 shows three overlay

nodes (A, B, and C) connected by a pair of tunnels. In this example, overlay node B

might make a forwarding decision for packets from A to C based on the inner header

682 9 Applications

A B C

IHdr ...

IHdrOHdr ... IHdrOHdr ...

IHdr ... IHdr ...

Figure 9.18 Overlay nodes tunnel through physical nodes.

(IHdr), and then attach an outer header

(OHdr) that identifies C as the destination

in the underlying network. Nodes A, B,

and C are able to interpret both the inner

and outer headers, whereas the intermediate

routers understand only the outer header.

Similarly, A, B, and C have addresses in both

the overlay network and the underlying net-

work, but they are not necessarily the same;

for example, their underlying address might

be a 32-bit IP address, while their overlay

address might be an experimental 128-bit

address. In fact, the overlay need not use

conventional addresses at all, but may route

based on URLs, domain names, an XML

query, or even the content of the packet.

9.4.1 Routing Overlays

The simplest kind of overlay is one that ex-

ists purely to support an alternative rout-

ing strategy; no additional application-level

processing is performed at the overlay

nodes. You can view a virtual private net-

work (see Section 4.1.8) as an example

of a routing overlay, but one that doesn’t

so much define an alternative strategy or

Overlays and the Ossifica-

tion of the Internet

Given its popularity and wide-

spread use, it is easy to forget that at

one time the Internet was a labora-

tory for researchers to experiment

with packet-switched networking.

The more the Internet has become

a commercial success, however, the

less useful it is as a platform for

playing with new ideas. Today,

commercial interests shape the In-

ternet’s continued development.

In fact, a recent report from the

National Research Council points

to the ossification of the Inter-

net, both intellectually (pressure

for compatibility with current stan-

dards stifles innovation) and in

terms of the infrastructure itself (it

is nearly impossible for researchers

to affect the core infrastructure).

The report goes on to observe that

at the same time, a whole new

set of challenges is emerging that

9.4 Overlay Networks 683

algorithm as it defines alternative routing table entries to be processed by the standard

IP forwarding algorithm. In this particular case, the overlay is said to use “IP tunnels,”

and the ability to utilize these VPNs is supported in most commercial routers.

Suppose, however, you wanted to use a routing algorithm that commercial router

vendors were not willing to include in their products. How would you go about doing

it? You could simply run your algorithm on a collection of end hosts and tunnel through

the Internet routers. These hosts would behave like routers in the overlay network: As

hosts they are likely connected to the Internet by only one physical link, but as a node

in the overlay they would be connected to multiple neighbors via tunnels.

Since overlays, almost by definition, are a way to introduce new technologies

independent of the standardization process, there are no standard overlays we can

point to as examples. Instead, we illustrate the general idea of routing overlays by

may require a fresh approach. The

dilemma, according to the report,

is that

. . .successful and widely adopted
technologies are subject to ossi-
fication, which makes it hard to
introduce new capabilities or, if
the current technology has run its
course, to replace it with some-
thing better. Existing industry
players are not generally moti-
vated to develop or deploy dis-
ruptive technologies. . .

Finding the right way to in-

troduce disruptive technologies is

an interesting issue. Such inno-

vations are likely to do some

things very well, but overall they

lag present technology in other

important areas. For example, to

introduce a new routing strat-

egy into the Internet, you would

have to build a router that not

only supports this new strategy,

but also competes with established

vendors in terms of performance,

describing several experimental systems re-

cently proposed by network researchers.

Experimental Versions of IP

Overlays are ideal for deploying experimen-

tal versions of IP that you hope will even-

tually take over the world. For example, IP

multicast is an extension to IP that inter-

prets class D addresses (those with the pre-

fix 1110) as multicast addresses. IP multicast

is used in conjunction with one of the mul-

ticast routing protocols, such as DVMRP,

described in Section 4.4.

The MBone (multicast backbone) is an

overlay network that implements IP mul-

ticast. One of the most popular applica-

tions run on top of the MBone is vic, a

tool that supports multiparty videoconfer-

encing. vic is used to broadcast both sem-

inars and meetings across the Internet. For

example, IETF meetings—which are a week

long and attract thousands of participants—

are generally broadcast over the MBone.

Like VPNs, the MBone uses both

IP tunnels and IP addresses, but un-

like VPNs, the MBone implements a dif-

ferent forwarding algorithm—it forwards

684 9 Applications

packets to all downstream neighbors in the

shortest-path multicast tree. As an over-

lay, multicast-aware routers tunnel through

legacy routers, with the hope that one day

there will be no more legacy routers.

The 6-Bone is a similar overlay that

is used to incrementally deploy IPv6. Like

the MBone, the 6-Bone uses tunnels to for-

ward packets through IPv4 routers. Un-

like the MBone, however, 6-Bone nodes do

not simply provide a new interpretation of

IPv4’s 32-bit addresses. Instead, they for-

ward packets based on IPv6’s 128-bit ad-

dress space. Moreover, since IPv6 supports

multicast, so does the 6-Bone.

End System Multicast

Although the MBone remains a popular

overlay, IP multicast has failed to take

over the world, and in response, multicast-

based applications like videoconferencing

have recently turned to an alternative strat-

egy, called end system multicast. The idea

of end system multicast is to accept that

IP multicast will never become ubiquitous,

and to instead let the end hosts that are

reliability, management toolset,

and so on. This is an extremely tall

order. What the innovator needs

is a way to allow users to take

advantage of the new idea without

having to write the hundreds of

thousands of lines of code needed

to support just the base system.

Overlay networks provide ex-

actly this opportunity. Overlay no-

des can be programmed to support

the new capability or feature, and

then depend on conventional nodes

to provide the underlying connec-

tivity. Over time, if the idea de-

ployed in the overlay proves useful,

there may be economic motivation

to migrate the functionality into the

base system, that is, add it to the

feature set of commercial routers.

On the other hand, the functional-

ity may be complex enough that an

overlay layer may be exactly where

it belongs.

participating in a particular multicast-based application implement their own multicast

trees. (As an aside, there is a school of thought that says IP multicast never took off

because it simply doesn’t belong at the network layer, since it must support high-

layer functionality such as error, flow, and congestion control, as well as membership

management.)

Before describing how end system multicast works, it is important to first under-

stand that, unlike VPNs and the MBone, end system multicast assumes that only Inter-

net hosts (as opposed to Internet routers) participate in the overlay. Moreover, these

hosts typically exchange messages with each other through UDP tunnels rather than

IP tunnels, making it easy to implement as regular application programs. This makes

it possible to view the underlying network as a fully connected graph, since every

host in the Internet is able to send a message to every other host. Abstractly, then,

end system multicast solves the following problem: Starting with a fully connected

9.4 Overlay Networks 685

A

B

C

D

R1 R2

R1 R2

R1 R2

R1 R2

A

B

C

D

A

B

C

D

A

B

C

D

50

5

5

5

5

(a)

(b)

(c)

(d)

Figure 9.19 Alternative multicast trees mapped onto a physical topology: (a) physical
topology; (b) naive unicast transmission; (c) multicast tree constructed at the network
level (by routers); (d) multicast tree constructed at the application level (by end hosts).

graph representing the Internet, the goal is to find the embedded multicast tree that

spans all the group members.

Since we take the underlying Internet to be fully connected, a naive solution

would be to have each source directly connected to each member of the group. In

other words, end system multicast could be implemented by having each node send

unicast messages to every group member. To see the problem in doing this, especially

compared to implementing IP multicast in routers, consider the example topology in

Figure 9.19. Figure 9.19(a) depicts an example physical topology, where R1 and R2 are

routers connected by a low-bandwidth transcontinental link; A, B, C, and D are end

hosts; and link delays are given as edge weights. Assuming A wants to send a multicast

686 9 Applications

A

B

C

D

A

B

C

D

Figure 9.20 Multicast tree embedded in an overlay mesh.

message to the other three hosts, Figure 9.19(b) shows how naive unicast transmission

would work. This is clearly undesirable because the same message must traverse the

link A–R1 three times, and two copies of the message traverse R1–R2. Figure 9.19(c)

depicts the IP multicast tree constructed by DVMRP. Clearly, this approach eliminates

the redundant messages. Without support from the routers, however, the best you can

hope for with end system multicast is a tree similar to the one shown in Figure 9.19(d).

End system multicast defines an architecture for constructing this tree.

The general approach is to support multiple levels of overlay networks, each

of which extracts a subgraph from the overlay below it, until we have selected the

subgraph that the application expects. For end system multicast in particular, this

happens in two stages: First we construct a simple mesh overlay on top of the fully

connected Internet, and then we select a multicast tree within this mesh. The idea is

illustrated in Figure 9.20, again assuming the four end hosts A, B, C, and D. The

first step is the critical one: Once we have selected a suitable mesh overlay, we simply

run a standard multicast routing algorithm (e.g., DVMRP) on top of it to build the

multicast tree. We also have the luxury of ignoring the scalability issue that Internet-

wide multicast faces since the intermediate mesh can be selected to include only those

nodes that want to participate in a particular multicast group.

The key to constructing the intermediate mesh overlay is to select a topology

that roughly corresponds to the physical topology of the underlying Internet, but we

9.4 Overlay Networks 687

have to do this without anyone telling us what the underlying Internet actually looks

like since we are running only on end hosts and not routers. The general strategy is

for the end hosts to measure the round-trip latency to other nodes and to decide to

add links to the mesh only when they like what they see. This works as follows.

First, assuming a mesh already exists, each node exchanges the list of all other

nodes it believes is part of the mesh with its directly connected neighbors. When a node

receives such a membership list from a neighbor, it incorporates that information into

its membership list and forwards the resulting list to its neighbors. This information

eventually propagates through the mesh, much as in a distance vector routing protocol.

When a host wants to join the multicast overlay, it must know the IP address of

at least one other node already in the overlay. It then sends a “join mesh” message

to this node. This connects the new node to the mesh by an edge to the known node.

In general, the new node might send a join message to multiple current nodes, thereby

joining the mesh by multiple links. Once a node is connected to the mesh by a set of

links, it periodically sends “keepalive” messages to its neighbors, letting it know that

it still wants to be part of the group.

When a node leaves the group, it sends a “leave mesh” message to its directly

connected neighbors, and this information is propagated to the other nodes in the mesh

via the membership list described above. Alternatively, a node can fail, or just silently

decide to quit the group, in which case its neighbors detect that it is no longer sending

“keepalive” messages. Some node departures have little effect on the mesh, but should

a node detect that the mesh has become partitioned due to a departing node, it creates

a new edge to a node in the other partition by sending it a “join mesh” message. Note

that multiple neighbors can simultaneously decide that a partition has occurred in the

mesh, leading to multiple cross-partition edges being added to the mesh.

As described so far, we will end up with a mesh that is a subgraph of the original

fully connected Internet, but it may have suboptimal performance because (1) initial

neighbor selection adds random links to the topology, (2) partition repair might add

edges that are essential at the moment but not useful in the long run, (3) group mem-

bership may change due to dynamic joins and departures, and (4) underlying network

conditions may change. What needs to happen is that the system must evaluate the

value of each edge, resulting in new edges being added to the mesh and existing edges

being removed over time.

To add new edges, each node i periodically probes some random member j that

it is not currently connected to in the mesh, measures the round-trip latency of edge

(i, j), and then evaluates the utility of adding this edge. If the utility is above a certain

threshold, link (i, j) is added to the mesh. Evaluating the utility of adding edge (i, j)

might look something like this:

688 9 Applications

EvaluateUtility(j)
utility = 0

for each member m not equal to i
CL = current latency to node m along route through mesh

NL = new latency to node m along mesh if edge (i, j) is added

if (NL < CL) then

utility += (CL − NL)/CL

return utility

Deciding to remove an edge is similar, except each node i computes the cost of

each link to current neighbor j as follows:

EvaluateCost(j)
Costi j = number of members for which i uses j as next hop

Cost j i = number of members for which j uses i as next hop

return max(Costi j , Cost j i)

It then picks the neighbor with the lowest cost and drops it if the cost falls below a

certain threshold.

Finally, since the mesh is maintained using what is essentially a distance-vector

protocol, it is trivial to run DVMRP to find an appropriate multicast tree in the mesh.

Note that although it is not possible to prove that the protocol just described results

in the optimum mesh network, thereby allowing DVMRP to select the best possible

multicast tree, both simulation and extensive practical experience suggest that it does

a good job.

Resilient Overlay Networks

Another routing overlay gaining in popularity is one that finds alternative routes for

traditional unicast applications. Such overlays exploit the observation that the triangle

inequality does not hold in the Internet. Figure 9.21 illustrates what we mean by this.

It is not uncommon to find three sites in the Internet—call them A, B, and C—such

that the latency between A and B is greater than the sum of the latencies from A to C

and from C to B. That is, sometimes you would be better off indirectly sending your

packets via some intermediate node than sending them directly to the destination.

How can this be? Well, BGP never promised that it would find the shortest

route between any two sites; it only tries to find some route. To make matters worse,

there are countless opportunities for human-directed policies to override BGP’s normal

operation. This often happens, for example, at peering points between major backbone

ISPs. In short, that the triangle inequality does not hold in the Internet should not come

as a surprise.

How do we exploit this observation? The first step is to realize that there is a

fundamental trade-off between the scalability and optimality of a routing algorithm.

9.4 Overlay Networks 689

10

125

70

Figure 9.21 The triangle inequality does not necessarily hold in networks.

On the one hand, BGP scales to very large networks, but often does not select the best

possible route and is slow to adapt to network outages. On the other hand, if you

were only worried about finding the best route among a handful of sites, you could

do a much better job of monitoring the quality of every path you might use, thereby

allowing you to select the best possible route at any moment in time.

An experimental overlay, called RON (for resilient overlay network), does exactly

this. RON scales to only a few dozen nodes because it uses an N×N strategy of

closely monitoring (via active probes) three aspects of path quality—latency, available

bandwidth, and loss probability—between every pair of sites. It is then able to both

select the optimal route between any pair of nodes and rapidly change routes should

network conditions change. Experience shows that RON is able to deliver modest

performance improvements to applications, but more importantly, it recovers from

network failures much more quickly. For example, during one 64-hour period in 2001,

an instance of RON running on 12 nodes detected 32 outages lasting over 30 minutes,

and it was able to recover from all of them in less than 20 seconds on average. This

experiment also suggested that forwarding data through just one intermediate node is

usually sufficient to recover from Internet failures.

Since RON does not scale, it is not possible to use RON to help random host A

communicate with random host B; A and B have to know ahead of time that they are

690 9 Applications

likely to communicate, and then join the same RON. However, RON seems like a good

idea in certain settings, such as when connecting a few dozen corporate sites spread

across the Internet, or allowing you and 50 of your friends to establish your own

private overlay for the sake of running some application. The real question, though,

is, What happens when everyone starts to run their own RON? Does the overhead of

millions of RONs aggressively probing paths swamp the network, and does anyone see

improved behavior when many RONs compete for the same paths? These questions

are still unanswered.

◮ All of these overlays illustrate a concept that is central to computer networks in

general: virtualization. That is, it is possible to build a virtual network from abstract

(logical) resources on top of a physical network constructed from physical resources.

Moreover, it is possible to stack these virtualized networks on top of each other, and

for multiple virtual networks to coexist at the same level. Each virtual network, in

turn, provides new capabilities that are of value to some set of users, applications, or

higher-level networks.

9.4.2 Peer-to-Peer Networks

Recent music-sharing applications like Napster and KaZaA have introduced the term

“peer-to-peer” into the popular vernacular. But what exactly does it mean for a system

to be “peer-to-peer”? Certainly, in the context of sharing MP3 files it means not hav-

ing to download music from a central site, but instead being able to access music files

directly from whoever in the Internet happens to have a copy stored on their computer.

More generally then, we could say that a peer-to-peer network allows a community

of users to pool their resources (content, storage, network bandwidth, disk bandwidth,

CPU), thereby providing access to larger archival stores, larger video-audioconferences,

more complex searches and computations, and so on, than any one user could afford

individually.

Quite often, attributes like decentralized and self-organizing are mentioned when

discussing peer-to-peer networks, meaning that individual nodes organize themselves

into a network without any centralized coordination. If you think about it, terms like

these could be used to describe the Internet itself. Ironically, however, Napster is not

a true peer-to-peer system by this definition since it depends on a central registry of

known files, and users have to search this directory to find what machine offers a

particular file. It is only the last step—actually downloading the file—that takes place

between machines that belong to two users, but this is little more than a traditional

client/server transaction. The only difference is that the server is owned by someone

just like you rather than a large corporation.

So we are back to the original question: What’s interesting about peer-to-peer

networks? One answer is that both the process of locating an object of interest and

9.4 Overlay Networks 691

Figure 9.22 Example topology of a Gnutella peer-to-peer network.

the process of downloading that object onto your local machine happen without your

having to contact a centralized authority, and at the same time, the system is able to

scale to millions of nodes. A peer-to-peer system that can accomplish these two tasks in

a decentralized manner turns out to be an overlay network, where the nodes are those

hosts that are willing to share objects of interest (e.g., music and other assorted files),

and the links (tunnels) connecting these nodes represent the sequence of machines that

you have to visit to track down the object you want. This description will become

more clear after we look at two examples.

Gnutella

Gnutella is an early peer-to-peer network that attempted to distinguish between ex-

changing music (which likely violates somebody’s copyright) and the general sharing of

files (which must be good since we’ve been taught to share since the age of two). What’s

interesting about Gnutella is that it was one of the first such systems not to depend

on a centralized registry of objects. Instead, Gnutella participants arrange themselves

into an overlay network similar to the one shown in Figure 9.22. That is, each node

that runs the Gnutella software (i.e., implements the Gnutella protocol) knows about

some set of other machines that also run the Gnutella software. The relationship “A

and B know each other” corresponds to the edges in this graph. (We’ll talk about how

this graph is formed in a moment.)

Whenever the user on a given node wants to find an object, Gnutella sends

a QUERY message for the object—for example, specifying the file’s name—to its

neighbors in the graph. If one of the neighbors has the object, it responds to the

node that sent it the query with a QUERY RESPONSE message, specifying where the

object can be downloaded (e.g., an IP address and TCP port number). That node can

subsequently use GET or PUT messages to access the object. If the node cannot resolve

692 9 Applications

the query, it forwards the QUERY message to each of its neighbors (except the one

that sent it the query), and the process repeats. In other words, Gnutella floods the

overlay to locate the desired object. Gnutella sets a TTL on each query so this flood

does not continue indefinitely.

In addition to the TTL and query string, each QUERY message contains a unique

query identifier (QID), but it does not contain the identity of the original message

source. Instead, each node maintains a record of the QUERY messages it has seen

recently: both the QID and the neighbor that sent it the QUERY. It uses this history

in two ways. First, if it ever receives a QUERY with a QID that matches one it has

seen recently, the node does not forward the QUERY message. This serves to cut off

forwarding loops more quickly than the TTL might have done. Second, whenever the

node receives a QUERY RESPONSE from a downstream neighbor, it knows to forward

the response to the upstream neighbor that originally sent it the QUERY message. In

this way, the response works its way back to the original node without any of the inter-

mediate nodes knowing who wanted to locate this particular object in the first place.

Returning to the question of how the graph evolves, a node certainly has to

know about at least one other node when it joins a Gnutella overlay. The new node is

attached to the overlay by at least this one link. After that, a given node learns about

other nodes as the result of QUERY RESPONSE messages, both for objects it requested

and for responses that just happen to pass through it. A node is free to decide which

of the nodes it discovers in this way that it wants to keep as a neighbor. The Gnutella

protocol provides PING and PONG messages by which a node probes whether or not

a given neighbor still exists and by which that neighbor responds, respectively.

It should be clear that Gnutella is not a particularly clever protocol, and subse-

quent systems have tried to improve upon it. One dimension along which improve-

ments are possible is in how queries are propogated. Flooding has the nice property

that it is guaranteed to find the desired object in the fewest possible hops, but it does

not scale well. It is possible to forward queries randomly, or according to the proba-

bility of success based on past results. A second dimension is to proactively replicate

the objects, since the more copies of a given object there are, the easier it should be to

find a copy. Alternatively, you could develop a completely different strategy, which is

the topic we consider next.

Structured Overlays

At the same time file sharing systems have been fighting to fill the void left by Nap-

ster, the research community has been exploring an alternative design for peer-to-peer

networks. We refer to these networks as structured, to contrast them with the essen-

tially random (unstructured) way in which a Gnutella network evolves. Unstructured

overlays like Gnutella employ trivial overlay construction and maintenance algorithms,

9.4 Overlay Networks 693

but the best they can offer is unreliable, random search. In contrast, structured overlays

are designed to conform to a particular graph structure that allows reliable and efficient

(probabilistically bounded delay) object location, in return for additional complexity

during overlay construction and maintenance.

If you think about what we are trying to do at a high level, there are two questions

to consider: (1) How do we map objects onto nodes, and (2) how do we route requests

to the node that is responsible for a given object? We start with the first question, which

has a simple statement: How do we map an object with name x into the address of

some node n that is able to serve that object? While traditional peer-to-peer networks

have no control over which node hosts object x, if we could control how objects get

distributed over the network, we might be able to do a better job of finding those

objects at a later time.

A well-known technique for mapping names into addresses is to use a hash table,

so that

hash(x) −→ n

implies object x is first placed on node n, and at a later time, a client trying to locate

x would only have to perform the hash of x to determine that it is on node n. A

hash-based approach has the nice property that it tends to spread the objects evenly

across the set of nodes, but straightforward hashing algorithms suffer from a fatal flaw:

How many possible values of n should we allow? (In hashing terminology, how many

buckets should there be?) Naively, we could decide that there are, say, 101 possible

hash values, and we use a modulo hash function; that is,

hash(x)

return x % 101

Unfortunately, if there are more than 101 nodes willing to host objects, then we

can’t take advantage of all of them. On the other hand, if we select a number larger

than the largest possible number of nodes, then there will be some values of x that

will hash into an address for a node that does not exist. There is also the not-so-small

issue of translating the value returned by the hash function into an actual IP address.

To address these issues, structured peer-to-peer networks use an algorithm known

as consistent hashing, which hashes a set of objects x uniformly across a large id space.

Figure 9.23 visualizes a 128-bit id space as a circle, where we use the algorithm to place

both objects

hash(object name) −→ objid

and nodes

hash(IP addr) −→ nodeid

694 9 Applications

objid

nodeids

02128
-1

Figure 9.23 Both nodes and objects map (hash) onto the id space, where objects are
maintained at the nearest node in this space.

onto this circle. Since a 128-bit id space is enormous, it is unlikely that an object will

hash to exactly the same id as a machine’s IP address hashes to. To account for this

unlikelihood, each object is maintained on the node whose id is closest, in this 128-bit

space, to the object id. In other words, the idea is to use a high-quality hash function to

map both nodes and objects into the same large, sparse id space; you then map objects

to nodes by numerical proximity of their respective identifiers. Like ordinary hashing,

this distributes objects fairly evenly across nodes, but unlike ordinary hashing, only a

small number of objects have to move when a node (hash bucket) joins or leaves.

We now turn to the second question—how does a user who wants to access

object x know which node is closest in x’s id in this space? One possible answer is that

each node keeps a complete table of node ids and their associated IP addresses, but

this would not be practical for a large network. The alternative, which is the approach

used by structured peer-to-peer networks, is to route a message to this node! In other

words, if we construct the overlay in a clever way—which is the same as saying that

we need to choose entries for a node’s routing table in a clever way—then we find

a node simply by routing toward it. Collectively, this approach is sometimes called

distributed hash tables (DHT), since conceptually, the hash table is distributed over

all the nodes in the network.

9.4 Overlay Networks 695

d46a1c

locate(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4

d471f1

Figure 9.24 Objects are located by routing through the peer-to-peer overlay network.

Figure 9.24 illustrates what happens for a simple 28-bit id space. To keep the

discussion as concrete as possible, we consider the approach used by a particular peer-

to-peer network called Pastry. Other systems work in a similar manner. (See the papers

cited in the “Further Reading” section for additional examples.)

Suppose you are at the node with id 65a1fc (hex) and you are trying to locate

the object with id d46a1c. You realize that your id shares nothing with the object’s,

but you know of a node that shares at least the prefix d. That node is closer than you

in the 128-bit id space, so you forward the message to it. (We do not give the format

of the message being forwarded, but you can think of it as saying, “Locate object

d46a1c.”) Assuming node d13da3 knows of another node that shares an even longer

prefix with the object, it forwards the message on. This process of moving closer in

id space continues until you reach a node that knows of no closer node. This node is,

by definition, the one that hosts the object. Keep in mind that as we logically move

through “id space” the message is actually being forwarded, node to node, through

the underlying Internet.

Each node maintains both a routing table (more below) and the IP addresses of

a small set of numerically larger and smaller node ids. This is called the node’s leaf set.

The relevance of the leaf set is that once a message is routed to any node in the same

leaf set as the node that hosts the object, that node can directly forward the message to

the ultimate destination. Said another way, the leaf set facilitates correct and efficient

696 9 Applications

delivery of a message to the numerically closest node, even though multiple nodes may

exist that share a maximal length prefix with the object id. Moreover, the leaf set makes

routing more robust because any of the nodes in a leaf set can route a message just as

well as any other node in the same set. Thus, if one node is unable to make progress

routing a message, one of its neighbors in the leaf set may be able to. In summary, the

routing procedure is defined as follows:

Route(D)

if D is within range of my leaf set

forward to numerically closest member in leaf set

else

let l = length of shared prefix

let d = value of lth digit in D’s address

if RouteTab[l,d] exists

forward to RouteTab[l,d]

else

forward to known node with at least as long a prefix

and is numerically closer than this node

The routing table, denoted RouteTab, is a two-dimensional array. It has a row for

every hex digit in an id (there are 32 such digits in a 128-bit id) and a column for every

hex value (there are obviously 16 such values). Every entry in row i shares a prefix of

length i with this node, and within this row, the entry in column j has the hex value j

in the i + 1th position. Figure 9.25 shows the first three rows of an example routing

table for node 65a1fcx, where x denotes an unspecified suffix. This figure shows the id

prefix matched by every entry in the table. It does not show the actual value contained

in this entry—the IP address of the next node to route to.

Adding a node to the overlay works much like routing a “locate object message”

to an object. The new node must know of at least one current member. It asks this

member to route an “add node message” to the node numerically closest to the id of

the joining node, as shown in Figure 9.26. It is through this routing process that the

new node learns about other nodes with a shared prefix and is able to begin filling out

its routing table. Over time, as additional nodes join the overlay, existing nodes also

have the option of including information about the newly joining node in their routing

tables. They do this when the new node adds a longer prefix than they currently have

in their table. Neighbors in the leaf sets also exchange routing tables with each other,

which means that over time routing information propagates through the overlay.

You may have noticed that although structured overlays provide a probabilistic

bound on the number of routing hops required to locate a given object—the number of

hops in Pastry is bounded by log16N, where N is the number of nodes in the overlay—

each hop may contribute substantial delay. This is because each intermediate node may

9.4 Overlay Networks 697

0
x

1
x

2
x

3
x

4
x

5
x

7
x

8
x

9
x

a
x

b
x

c
x

d
x

e
x

f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

Row 0

Row 1

Row 2

Row 3

Figure 9.25 Example routing table at the node with id 65a1fcx.

d46a1c d462ba

d4213f

d13da3

65a1fc

d467c4

d471f1

addnode(d46a1c)

Figure 9.26 Adding a node to the network.

698 9 Applications

be at a random location in the Internet. (In the worst case, each node is on a different

continent!) In fact, in a worldwide overlay network using the algorithm as described

above, the expected delay of each hop is the average delay among all pairs of nodes

in the Internet! Fortunately, we can do much better in practice. The idea is to choose

each routing table entry such that it refers to a nearby node in the underlying physical

network, among all nodes with an id prefix that is appropriate for the entry. It turns

out that doing so achieves end-to-end routing delays that are within a small factor of

the delay between source and destination node.

Finally, the discussion up to this point has focused on the general problem of

locating objects in a peer-to-peer network. Given such a routing infrastructure, it is

possible to build different services. For example, a file sharing service would use file

names as object names. To locate a file, you first hash its name into a corresponding

object id, and then route a “locate object message” to this id. The system might also

replicate each file across multiple nodes to improve availability. Storing multiple copies

on the leaf set of the node to which a given file normally routes would be one way

of doing this. Keep in mind that even though these nodes are neighbors in the id

space, they are likely to be physically distributed across the Internet. Thus, while a

power outage in an entire city might take down physically close replicas of a file in

a traditional file system, one or more replicas would likely survive such a failure in a

peer-to-peer network.

Services other than file sharing can also be built on top of distributed hash ta-

bles. Consider multicast applications, for example. Instead of constructing a multicast

tree from a mesh, you could construct the tree from edges in the structured overlay,

thereby amortizing the cost of overlay construction and maintenance across several

applications and multicast groups.

9.4.3 Content Distribution Networks

We have already seen how HTTP running over TCP allows Web browsers to retrieve

pages from Web servers. However, anyone that has waited an eternity for a Web page

to return knows that the system is far from perfect. Considering that the backbone of

the Internet is now constructed from OC-192 (10-Gbps) links, it’s not obvious why

this should happen. It is generally agreed that when it comes to downloading Web

pages, there are three potential bottlenecks in the system:

■ The first mile: The Internet may have high-capacity links in it, but that doesn’t

help you download a Web page any faster when you’re connected by a 56-

Kbps modem.

■ The last mile: The link that connects the server to the Internet, along with the

server itself, can be overloaded by too many requests.

9.4 Overlay Networks 699

■ Peering points: The handful of ISPs that collectively implement the backbone

of the Internet may internally have high-bandwidth pipes, but they have little

motivation to provide high-capacity connectivity to their peers. If you are

connected to ISP A and the server is connected to ISP B, then the page you

request may get dropped at the point A and B peer with each other.

There’s not a lot anyone except you can do about the first problem, but it is possible

to use replication to address the second and third problems. A system that does this

is often called a content distribution network (CDN). Akamai and Digital Island are

probably the two best-known CDNs.

The idea of a CDN is to geographically distribute a collection of server surrogates

that cache pages normally maintained in some set of backend servers. Thus, rather

than have millions of users wait forever to contact www.cnn.com when a big news

story breaks—such a situation is known as a flash crowd—it is possible to spread

this load across many servers. Moreover, rather than having to traverse multiple ISPs

to reach www.cnn.com, if these surrogate servers happen to be spread across all the

backbone ISPs, then it should be possible to reach one without having to cross a

peering point. Clearly, maintaining thousands of surrogate servers all over the Internet

is too expensive for any one site that wants to provide better access to its Web pages.

Commercial CDNs provide this service for many sites, thereby amortizing the cost

across many customers.

Although we call them surrogate servers, in fact, they can just as correctly be

viewed as caches. If they don’t have a page that has been requested by a client, they

ask the backend server for it. In practice, however, the backend servers proactively

replicate their data across the surrogates rather than wait for surrogates to request it

on demand. It’s also the case that only static pages, as opposed to dynamic content,

are distributed across the surrogates. Clients have to go to the backend server for

any content that either changes frequently (e.g., sports scores and stock quotes) or is

produced as the result of some computation (e.g., a database query).

Having a large set of geographically distributed servers does not fully solve the

problem. To complete the picture, CDNs also need to provide a set of redirectors that

forward client requests to the most appropriate server, as shown in Figure 9.27. The

primary objective of the redirectors is to select the server for each request that results in

the best response time for the client. A secondary objective is for the system as a whole

to process as many requests per second as the underlying hardware (network links and

Web servers) is able to support. The average number of requests that can be satisfied in

a given time period—known as the system throughput—is primarily an issue when the

system is under heavy load, for example, when a flash crowd is accessing a small set of

pages or a distributed denial of service (DDoS) attacker is targeting a particular site,

as happened to CNN, Yahoo, and several other high-profile sites in February 2000.

700 9 Applications

Backend
servers

Geographically
distributed
surrogate
servers

Redirectors

Clients

Cache

aaa.com bbb.com ccc.com

Figure 9.27 Components in a content distribution network (CDN).

CDNs use several factors to decide how to distribute client requests. For example,

to minimize response time, a redirector might select a server based on its network

proximity. In contrast, to improve the overall system throughput, it is desirable to

evenly balance the load across a set of servers. Both throughput and response time

are improved if the distribution mechanism takes locality into consideration, that is,

selects a server that is likely to already have the page being requested in its cache. The

exact combination of factors that should be employed by a CDN is open to debate.

This section considers some of the possibilities.

Mechanisms

As described so far, a redirector is just an abstract function, although it sounds like

something a router might be asked to do since it logically forwards a request message

much like a router forwards packets. In fact, there are several mechanisms that can be

used to implement redirection. Note that for the purpose of this discussion we assume

that each redirector knows the address of every available server. (From here on, we

drop the “surrogate” qualifier and talk simply in terms of a set of servers.) In practice,

some form of out-of-band communication takes place to keep this information up-to-

date as servers come and go.

9.4 Overlay Networks 701

First, redirection could be implemented by augmenting DNS to return differ-

ent server addresses to clients. For example, when a client asks to resolve the name

www.cnn.com, the DNS server could return the IP address of a server hosting CNN’s

Web pages that is known to have the lightest load. Alternatively, for a given set of ser-

vers, it might just return addresses in a round-robin fashion. Note that the granularity

of DNS-based redirection is usually at the level of a site (e.g., cnn.com) rather than

a specific URL (e.g., http://www.cnn.com/2002/WORLD/europe/06/21/william.birthday/

index.html). However, when returning an embedded link, the server can rewrite the

URL, thereby effectively pointing the client at the most appropriate server for that

specific object.

Commercial CDNs essentially use a combination of URL rewriting and DNS-

based redirection. For scalability reasons, the high-level DNS server first points to a

regional-level DNS server, which replies with the actual server address. In order to

respond to changes quickly, the DNS servers tweak the TTL of the resource records

they return to a very short period, such as 20 seconds. This is necessary so clients

don’t cache results, and thus fail to go back to the DNS server for the most recent

URL-to-server mapping.

Another possibility is to use the HTTP redirect feature: The client sends a re-

quest message to a server, which responds with a new (better) server that the client

should contact for the page. Unfortunately, server-based redirection incurs an addi-

tional round-trip time across the Internet, and even worse, servers can be vulnerable

to being overloaded by the redirection task itself. Instead, if there is a node close to the

client—for example, a local Web proxy—that is aware of the available servers, then

it can intercept the request message and instruct the client to instead request the page

from an appropriate server. In this case, either the redirector would need to be on a

choke point so that all requests leaving the site pass through it, or the client would

have to cooperate by explicitly addressing the proxy (as with a classical, rather than

transparent, proxy).

At this point you may be wondering what CDNs have to do with overlay net-

works, and while viewing a CDN as an overlay is a bit of a stretch, they do share

one very important trait in common. Like an overlay node, a proxy-based redirector

makes an application-level routing decision. Rather than forward a packet based on

an address and its knowledge of the network topology, it forwards HTTP requests

based on a URL and its knowledge of the location and load of a set of servers. Today’s

Internet architecture does not support redirection directly—where by “directly” we

mean the client sends the HTTP request to the redirector, which forwards it to the

destination—so instead redirection is typically implemented indirectly by having the

redirector return the appropriate destination address and the client contacts the server

itself.

702 9 Applications

Policies

We now consider some example policies that redirectors might use to forward re-

quests. Actually, we have already suggested one simple policy—round robin. A similar

scheme would be to simply select one of the available servers at random. Both of these

approaches do a good job of spreading the load evenly across the CDN, but they do

not do a particularly good job of lowering the client-perceived response time.

It’s obvious that neither of these two schemes take network proximity into con-

sideration, but just as importantly, they also ignore locality. That is, requests for the

same URL are forwarded to different servers, making it less likely that the page will be

served from the selected server’s in-memory cache. This forces the server to retrieve the

page from its disk or possibly even from the backend server. How can a distributed set

of redirectors cause requests for the same page to go to the same server (or small set of

servers) without global coordination? The answer is surprisingly simple: All redirectors

use some form of hashing to deterministically map URLs into a small range of val-

ues. The primary benefit of this approach is that no inter-redirector communication is

required to achieve coordinated operation; no matter which redirector receives a URL,

the hashing process produces the same output.

So what makes for a good hashing scheme? The classic modulo hashing scheme—

which hashes each URL modulo the number of servers—is not suitable for this envi-

ronment. This is because should the number of servers change, the modulo calculation

will result in a diminishing fraction of the pages keeping their same server assignments.

While we do not expect frequent changes in the set of servers, the fact that addition

of new servers into the set will cause massive reassignment is undesirable.

An alternative is to use the same consistent hashing algorithm discussed in

Section 9.4.2. Specifically, each redirector first hashes every server into the unit cir-

cle. Then for each URL that arrives, the redirector also hashes the URL to a value on

the unit circle, and the URL is assigned to the server that lies closest on the circle to

its hash value. If a node fails in this scheme, its load shifts to its neighbors (on the

unit circle), so the addition/removal of a server only causes local changes in request

assignments. Note that unlike the peer-to-peer case, where a message is routed from

one node to another in order to find the server whose id is closest to the objects, each

redirector knows how the set of servers maps onto the unit circle, so they can each

independently select the “nearest” one.

This strategy can easily be extended to take server load into account. Assume the

redirector knows the current load of each of the available servers. This information

may not be perfectly up-to-date, but we can imagine the redirector simply counting

how many times it has forwarded a request to each server in the last few seconds, and

using this count as an estimate of that server’s current load. Upon receiving a URL, the

9.4 Overlay Networks 703

redirector hashes the URL plus each of the available servers, and sorts the resulting

values. This sorted list effectively defines the order in which the redirector will consider

the available servers. The redirector then walks down this list until it finds a server

whose load is below some threshold. The benefit of this approach compared to plain

consistent hashing is that server order is different for each URL, so if one server fails,

its load is distributed evenly among the other machines. This approach is the basis for

the Cache Array Routing Protocol (CARP) and is shown in pseudocode below.

SelectServer(URL, S)

for = each server si in server set S
weighti = hash(URL, address(si))

sort weight
for each server s j in decreasing order of weight j

if = Load(s j) < threshold then

return s j

return server with highest weight

As the load increases, this scheme changes from using only the first server on the

sorted list to spreading requests across several servers. Some pages normally handled

by “busy” servers will also start being handled by less busy servers. Since this process is

based on aggregate server load rather than the popularity of individual pages, servers

hosting some popular pages may find more servers sharing their load than servers

hosting collectively unpopular pages. In the process, some unpopular pages will be

replicated in the system simply because they happen to be primarily hosted on busy

servers. At the same time, if some pages become extremely popular, it is conceivable

that all of the servers in the system could be responsible for serving them.

Finally, it is possible to introduce network proximity into the equation in at least

two different ways. The first is to blur the distinction between server load and network

proximity by monitoring how long a server takes to respond to requests, and using this

measurement as the “server load” parameter in the preceding algorithm. This strategy

tends to perfer nearby/lightly loaded servers over distant/heavily loaded servers. A

second approach is to factor proximity into the decision at an earlier stage by limiting

the candidate set of servers considered by the above algorithm (S) to only those that

are nearby. The harder problem is deciding which of the potentially many servers are

suitably close. One approach would be to select only those servers that are available

on the same ISP as the client. A slightly more sophisticated approach would be to look

at the map of autonoumous systems produced by BGP and select only those servers

within some number of hops from the client as candidate servers. Finding the right

balance between network proximity and server cache locality is a subject of ongoing

research.

704 9 Applications

9.5 Summary

We have seen four client/server–based application protocols: the DNS protocol used

by the domain naming system, SMTP used to exchange electronic mail, HTTP used

to walk the World Wide Web, and SNMP used to query remote nodes for the sake of

network management. We have also seen a collection of application-level protocols,

including RTP and SIP, used to control and play streaming multimedia applications like

vic and vat, as well as the emerging voice-over-IP service. Finally, we looked at emerging

applications—including overlay, peer-to-peer, and content distribution networks—that

blend application processing and packet forwarding in innovative ways.

Application protocols are a curious lot. In many ways, the traditional client/server

applications are like another layer of transport protocol, except they have application-

specific knowledge built into them. You could argue that they are just specialized

transport protocols, and that transport protocols get layered on top of each other

until producing the precise service needed by the application. Similarly, the overlay and

peer-to-peer protocols can be viewed as providing an alternative routing infrastructure,

but again, one that is tailored for a particular application’s needs. The one sure lesson

we draw from this observation is that designing application-level protocols is really no

different than designing core network protocols, and that the more one understands

about the latter, the better they will do designing the former.

O P E N I S S U E

New Network Architecture

It’s difficult to put a finger on a spe-

cific open issue in the realm of ap-

plication protocols—the entire field

is open as new applications are in-

vented every day, and the network-

ing needs of these applications are,

well, application dependent. The real

challenge to network designers is to recognize that what applications need from the

network changes over time, and these changes drive the transport protocols we develop

and the functionality we put into network routers.

Developing new transport protocols is a reasonably tractable problem. You may

not be able to get the IETF to bless your transport protocol as an equal of TCP or

UDP, but there’s certainly nothing stopping you from designing the world’s greatest

multimedia application that comes bundled with a new end-to-end protocol that runs

on top of UDP, much like happens with RTP.

On the other hand, pushing application-specific knowledge into the middle of the

network—into the routers—is a much more difficult problem. This is because in order

Further Reading 705

to affect a particular application, any new network service or functionality may need to

be loaded into many, if not all, of the routers in the Internet. Overlay networks provide

a way of introducing new functionality into the network without the cooperation of

all (or even any) of the routers, but in the long run, we can expect the underlying

network architecture will need to change to accommodate these overlays. We saw this

issue with RON—how RON and BGP route selection interact with each other—and

can expect it to be a general question as overlay networks become more prevalent.

One possibility is that an alternative fixed architecture does not evolve, but in-

stead, the next network architecture will be highly adaptive. In the limit, rather than

defining an infrastructure for carrying data packets, the network architecture might

allow packets to carry both data and code (or possibly pointers to code) that tell the

routers how they should process the packet. Such a network raises a host of issues, not

the least of which is how to enforce security in a world where arbitrary applications

can effectively program routers.

F U R T H E R R E A D I N G

The seminal paper on application-layer protocols is that by Clark and Tennenhouse,

which is cited by the designers of RTP as their guiding vision. The development of

DNS is well described by Mockapetris and Dunlap. Although overlays and peer-to-

peer networks are still an emerging area, the last six research papers provide a good

place to start understanding the issues.

■ Clark, D., and D. Tennenhouse. Architectural considerations for a new gen-

eration of protocols. Proceedings of the SIGCOMM ’90 Symposium, pages

200–208, September 1990.

■ Mockapetris, P., and K. Dunlap. Development of the domain name system.

Proceedings of the SIGCOMM ’88 Symposium, pages 123–133, August 1988.

■ Karger, D., E. Lehman, F. T. Leighton, R. Panigrahy, M. Levine, and D. Lewin.

Consistent hashing and random trees: Distributed caching protocols for reliev-

ing hot spots on the World Wide Web. Proceedings of the ACM Symposium

on Theory of Computing, pages 654–663, 1997.

■ Chu, Y., S. Rao, and H. Zhang. A case for end system multicast. Proceedings

of the ACM SIGMETRICS ’00 Conference, pages 1–12, June 2000.

■ Andersen, D., H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay

networks. Proceedings of the 18th ACM Symposium on Operating Systems

Principles (SOSP), pages 131–145, October 2001.

706 9 Applications

■ Rowstron, A., and P. Druschel. Storage management and caching in PAST,

a large-scale persistent peer-to-peer storage utility. Proceedings of the 18th

ACM Symposium on Operating Systems Principles (SOSP), pages 188–201,

October 2001.

■ Stoica, I., R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A

peer-to-peer lookup service for Internet applications. Proceedings of the ACM

SIGCOMM Conference, pages 149–160, August 2001.

■ Ratnasamy, S., P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable

content-addressable network. Proceedings of ACM SIGCOMM ’01, pages

161–172, August 2001.

There are a wealth of papers on naming, as well as on the related issue of re-

source discovery (finding out what resources exist in the first place). General stud-

ies of naming can be found in Terry [Ter86], Comer and Peterson [CP89], Birrell

et al. [BLNS82], Saltzer [Sal78], Shoch [Sho78], and Watson [Wat81]; attribute-based

(descriptive) naming systems are described in Peterson [Pet88] and Bowman et al.

[BPY90]; and resource discovery is the subject of Bowman et al. [BDMS94].

SMTP is originally defined in RFC 821 [Pos82], and of course, RFC 822 is RFC

822 [Cro82]. MIME is defined in a series of RFCs; the original specification was in

RFC 1521 [BF93], and the most recent version is defined in RFC 2045 [FB96].

Version 1.0 of HTTP is specified in RFC 1945 [BLFF96], and the latest ver-

sion (1.1) is defined in RFC 2068 [FGMBL97]. There are a wealth of papers written

about Web performance, especially Web caching. A good example is a paper by Danzig

on Web traffic and its implications on the effectiveness of caching [Dan98].

Network management is a sufficiently large and important field that the IETF

devotes an entire area to it. There are well over 100 RFCs describing various aspects of

SNMP and MIBs. The two key references, however, are Case et al. [CMRW93], which

defines version 2 of SNMP (SNMPv2), and McCloghrie and Rose [MR91], which

defines the second version of the mandatory MIB variables (MIB-II). Many of the

other SNMP/MIB–related RFCs define extensions to the core set of MIB variables—for

example, variables that are specific to a particular network technology or to a particular

vendor’s product. Perkins and McGinnis [PM97] provides a good introduction to

SNMP and MIBs.

RTP is described in RFC 1889 [SCFJ96], although much of the interesting detail

is in Internet drafts that are yet to be published. McCanne and Jacobson [MJ95]

describe vic, one of the applications to use RTP.

SIP is defined in RFC 3261 [SCJ+02], which contains a helpful tutorial section

as well as the detailed specification of the protocol.

Exercises 707

The National Research Council report on the ossification of the Internet can be

found in [NRC01], and a proposal to use overlay networks to introduce disruptive

technology was made by Peterson et al. [PACR02]. The original case for overriding

BGP routes is made by Savage et al. [SCH+99]. The idea of using DNS to load-

balance a set of servers is described in RFC 1784 [Bri95]. The Cache Array Routing

Protocol (CARP) is defined in an Internet Draft [CPVR97]. A comprehensive treatment

of the issue of Web caching versus replicated servers can be found in Rabinovich

and Spatscheck’s book [RS02]. Wang et al. explore the design space for redirectors

[WPP02].

Finally, we recommend the following live reference to help keep tabs on the rapid

evolution of the Web:

■ http://www.w3.org: World Wide Web Consortium

E X E R C I S E S

1 ARP and DNS both depend on caches; ARP cache entry lifetimes are typically 10

minutes, while DNS cache is on the order of days. Justify this difference. What

undesirable consequences might there be in having too long a DNS cache entry

lifetime?

2 IPv6 simplifies ARP out of existence by allowing hardware addresses to be part of

the IPv6 address. How does this complicate the job of DNS? How does this affect

the problem of finding your local DNS server?

3 DNS servers also allow reverse lookup; given an IP address 128.112.169.4, it is

reversed into a text string 4.169.112.128.in-addr.arpa and looked up using DNS

PTR records (which form a hierarchy of domains analogous to that for the address

domain hierarchy). Suppose you want to authenticate the sender of a packet based

on its host name and are confident that the source IP address is genuine. Explain the

insecurity in converting the source address to a name as above and then comparing

this name to a given list of trusted hosts. Hint: Whose DNS servers would you be

trusting?

4 What is the relationship between a domain name (e.g., cs.princeton.edu) and an

IP subnet number (e.g., 192.12.69.0)? Do all hosts on the subnet have to be

identified by the same name server? What about reverse lookup, as in the previous

exercise?

708 9 Applications

5 Suppose a host elects to use a name server not within its organization for address

resolution. When would this result in no more total traffic, for queries not found

in any DNS cache, than with a local name server? When might this result in a

better DNS cache hit rate and possibly less total traffic?

6 Figure 9.4 shows the hierarchy of name servers. How would you represent this

hierarchy if one name server served multiple zones? In that setting, how does the

name server hierarchy relate to the zone hierarchy? How do you deal with the fact

that each zone may have multiple name servers?

7 Use the whois utility/service to find out who is in charge of your site, at least as

far as the InterNIC is concerned. Look up your site both by DNS name and by IP

network number; for the latter you may have to try an alternative whois server

(e.g., whois -h whois.arin.net. . .). Try princeton.edu and cisco.com as well.

8 Many smaller organizations have their Web sites maintained by a third party. How

could you use whois to find if this is the case, and if so, the identity of the third

party?

9 One feature of the existing DNS .com hierarchy is that it is extremely “wide.”

(a) Propose a more hierarchical reorganization of the .com hierarchy. What ob-

jections might you foresee to your proposal’s adoption?

(b) What might be some of the consequences of having most DNS domain names

contain four or more levels, versus the two of many existing names?

10 Suppose, in the other direction, we abandon any pretense at all of DNS hierar-

chy, and simply move all the .com entries to the root name server: www.cisco.com

would become www.cisco, or perhaps just cisco. How would this affect root name

server traffic in general? How would this affect such traffic for the specific case of

resolving a name like cisco into a Web server address?

11 What DNS cache issues are involved in changing the IP address of, say, a Web

server host name? How might these be minimized?

12 Take a suitable DNS-lookup utility (e.g., nslookup) and disable the recursive

lookup feature (e.g., with set norecurse), so that when your utility sends a query

to a DNS server, and that server is unable to fully answer the request from

its own records, the server sends back the next DNS server in the lookup

sequence rather than automatically forwarding the query to that next server.

Exercises 709

Then carry out manually a name lookup such as that in Figure 9.5; try the host

name www.cs.princeton.edu. List each intermediate name server contacted. You

may also need to specify that queries are for NS records rather than the usual A

records.

13 Discuss how you might rewrite SMTP or HTTP to make use of a hypotheti-

cal general-purpose request/reply protocol (perhaps something like CHAN RPC).

Could an appropriate analog of persistent connections be moved from the appli-

cation layer into such a transport protocol? What other application tasks might

be moved into this protocol?

14 Most Telnet clients can be used to connect to port 25, the SMTP port, instead of

to the Telnet port. Using such a tool, connect to an SMTP server and send yourself

(or someone else, with permission) some forged email. Then examine the headers

for evidence the message isn’t genuine.

15 What features might be used by (or added to) SMTP and/or a mail daemon

such as sendmail to provide some resistance to email forgeries as in the previous

exercise?

16 Find out how SMTP hosts deal with unknown commands from the other side, and

how in particular this mechanism allows for the evolution of the protocol (e.g.,

to “extended SMTP”). You can either read the RFC or contact an SMTP server

as in Exercise 14 and test its responses to nonexistent commands.

17 As presented in the text, SMTP involves the exchange of several small messages. In

most cases, the server responses do not affect what the client sends subsequently.

The client might thus implement command pipelining: sending multiple commands

in a single message.

(a) For what SMTP commands does the client need to pay attention to the server’s

responses?

(b) Assume the server reads each client message with gets() or the equivalent,

which reads in a string up to an <LF>. What would it have to do even to

detect that a client had used command pipelining?

(c) Pipelining is nonetheless known to break with some servers; find out how a

client can negotiate its use.

18 Find out what other features DNS MX records provide in addition to supplying an

alias for a mail server; the latter could, after all, be provided by a DNS CNAME

710 9 Applications

record. MX records are provided to support email; would an analogous WEB

record be of use in supporting HTTP?

19 One of the central problems faced by a protocol such as MIME is the vast number

of data formats available. Consult the MIME RFC to find out how MIME deals

with new or system-specific image and text formats.

20 MIME supports multiple representations of the same content using the multipart/

alternative syntax; for example, text could be sent as text/plain, text/richtext, and

application/postscript. Why do you think plaintext is supposed to be the first for-

mat, even though implementations might find it easier to place plaintext after their

native format?

21 Consult the MIME RFC to find out how base64 encoding handles binary data of

a length not evenly divisible by three bytes.

22 In HTTP version 1.0, a server marked the end of a transfer by closing the connec-

tion. Explain why, in terms of the TCP layer, this was a problem for servers. Find

out how HTTP version 1.1 avoids this. How might a general-purpose request/reply

protocol address this?

23 Find out how to configure an HTTP server so as to eliminate the 404 not found

message and have a default (and hopefully friendlier) message returned instead.

Decide if such a feature is part of the protocol or part of an implementation, or is

technically even permitted by the protocol. (Documentation for the apache HTTP

server can be found at www.apache.org.)

24 Why does the HTTP GET command on page 654,

GET http://www.cs.princeton.edu/index.html HTTP/1.1

contain the name of the server being contacted? Wouldn’t the server already know

its name? Use Telnet, as in Exercise 14, to connect to port 80 of an HTTP server

and find out what happens if you leave the host name out.

25 When an HTTP server initiates a close() at its end of a connection, it must then wait

in TCP state FIN WAIT 2 for the client to close the other end. What mechanism

within the TCP protocol could help an HTTP server deal with noncooperative or

poorly implemented clients that don’t close from their end? If possible, find out

about the programming interface for this mechanism, and indicate how an HTTP

server might apply it.

Exercises 711

26 The POP3 Post Office Protocol only allows a client to retrieve email, using a pass-

word for authentication. Traditionally, to send email a client would simply send

it to its server and expect that it be relayed.

(a) Explain why email servers often no longer permit such relaying from arbitrary

clients.

(b) Propose an SMTP option for remote client authentication.

(c) Find out what existing methods are available for addressing this issue.

27 Suppose a very large Web site wants a mechanism by which clients access whichever

of multiple HTTP servers is “closest” by some suitable measure.

(a) Discuss developing a mechanism within HTTP for doing this.

(b) Discuss developing a mechanism within DNS for doing this.

Compare the two. Can either approach be made to work without upgrading the

browser?

28 Find out if there is available to you an SNMP node that will answer queries you

send it. If so, locate some SNMP utilities (e.g., the ucd-snmp suite) and try the

following:

(a) Fetch the entire system group, using something like

snmpwalk nodename public system

Also try the above with 1 in place of system.

(b) Manually walk through the system group, using multiple SNMP GET-NEXT

operations (e.g., using snmpgetnext or equivalent), retrieving one entry at a

time.

29 Using the SNMP device and utilities of the previous exercise, fetch the tcp group

(numerically, group 6) or some other group. Then do something to make some of

the group’s counters change, and fetch the group again to show the change. Try

to do this in such a way that you can be sure your actions were the cause of the

change recorded.

30 What information provided by SNMP might be useful to someone planning the

IP spoofing attack of Exercise 19 in Chapter 5? What other SNMP information

might be considered sensitive?

712 9 Applications

31 Try to find situations where an RTP application might reasonably do the following:

■ Send multiple packets at essentially the same time that need different

timestamps.

■ Send packets at different times that need the same timestamp.

Argue, in consequence, that RTP timestamps must, in at least some cases, be

provided (at least indirectly) by the application. Hint: Think of cases where the

sending rate and playback rate might not match.

32 Having the timestamp clock count time in units of one frame time or one voice

sample time would be the minimum resolution to ensure accurate playback. But

the time unit is usually considerably smaller; what is the purpose of this?

33 Suppose we want returning RTCP reports from receivers to amount to no more

than 5% of the outgoing primary RTP stream. If each report is 84 bytes, and the

RTP traffic is 20 KBps, and there are 1000 recipients, how often do individual

receivers get to report? What if there are 10,000 recipients?

34 RFC 1889 specifies that the time interval between receiver RTCP reports in-

clude a randomization factor to avoid having all the receivers send at the same

time. If all the receivers sent in the same 5% subinterval of their reply time

interval, the arriving upstream RTCP traffic would rival the downstream RTP

traffic.

(a) Video receivers might reasonably wait to send their reports until the higher-

priority task of processing and displaying one frame is completed; this might

mean their RTCP transmissions were synchronized on frame boundaries. Is

this likely to be a serious concern?

(b) With 10 receivers, what is the probability of their all sending in one particular

5% subinterval?

(c) With 10 receivers, what is the probability half will send in one particular 5%

subinterval? Multiply this by 20 for an estimate of the probability half will

all send in the same arbitrary 5% subinterval. Hint: How many ways can we

choose 5 receivers out of 10?

35 What might a server actually do with the packet-loss-rate data and jitter data in

receiver reports?

Exercises 713

36 Video applications typically run over UDP rather than TCP because they cannot

tolerate retransmission delays. However, this means video applications are not

constrained by TCP’s congestion-control algorithm. What impact does this have

on TCP traffic? Be specific about the consequences.

Fortunately, these video applications often use RTP, which results in RTCP

“receiver reports” being sent from the sink back to the source. These reports are

sent periodically (e.g., once a second) and include the percentage of packets suc-

cessfully received in the last reporting period. Describe how the source might use

this information to adjust its rate in a TCP-compatible way.

37 Suppose some receivers in a large conference can receive data at a significantly

higher bandwidth than others. What sorts of things might be implemented to ad-

dress this? Hint: Consider both the Session Announcement Protocol (SAP) and the

possibility of utilizing third-party “mixers.”

38 Propose a mechanism for deciding when to report an RTP packet as lost. How

does your mechanism compare with the TCP adaptive retransmission mechanisms

of Section 5.2.6?

39 How might you encode audio (or video) data in two packets so that if one packet

is lost, then the resolution is simply reduced to what would be expected with half

the bandwidth? Explain why this is much more difficult if a JPEG-type encoding

is used.

40 Explain the relationship between uniform resource locators (URLs) and uniform

resource identifiers (URIs). Give an example of a URI that is not a URL.

41 What problem would a DNS-based redirection mechanism encounter if it wants

to select an appropriate server based on current load information?

This Page Intentionally Left Blank

G L O S S A R Y

4B/5B: A type of bit encoding scheme used in FDDI, in which every 4 bits of data are

transmitted as a 5-bit sequence.

802.3: IEEE Ethernet standard.

802.5: IEEE token ring standard.

802.11: IEEE wireless network standard.

822: Refers to RFC 822, which defines the format of Internet email messages. See

SMTP.

AAL: ATM Adaptation Layer. A protocol layer, configured over ATM. Two AALs are

defined for data communications, AAL3/4 and AAL5. Each protocol layer provides

a mechanism to segment large packets into cells at the sender and to reassemble the

cells back together at the receiver.

ABR: (1) Available bit rate. A rate-based congestion-control scheme being developed

for use on ATM networks. ABR is intended to allow a source to increase or decrease

its allotted rate, based on feedback from switches within the network. Contrast with

CBR, UBR, and VBR. (2) Area border router. Router at the edge of an area in a

link-state protocol.

ACK: An abbreviation for acknowledgment. An acknowledgment is sent by a receiver

of data to indicate to the sender that the data transmission was successful.

additive increase/multiplicative decrease: Congestion window strategy used by TCP.

TCP opens the congestion window at a linear rate, but halves it when losses are

experienced due to congestion. It has been shown that additive increase/multiplicative

decrease is a necessary condition for a congestion-control mechanism to be stable.

716 Glossary

AF: Assured forwarding. One of the per-hop behaviors proposed for Differentiated

Services.

ALF: Application Level Framing. A protocol design principle that says that applica-

tion programs better understand their communication needs than do general-purpose

transport protocols.

AMPS: Advanced Mobile Phone System. Analog-based cell phone system. Currently

being replaced by digital system, known as PCS.

ANSI: American National Standards Institute. Private U.S. standardization body

that commonly participates in the ISO standardization process. Responsible for

SONET.

API: Application programming interface. Interface that application programs use to

access the network subsystem (usually the transport protocol). Usually OS-specific.

The socket API from Berkeley Unix is a widely used example.

area: In the context of link-state routing, a collection of adjacent routers that share

full routing information with each other. A routing domain is divided into areas to

improve scalability.

ARP: Address Resolution Protocol. Protocol of the Internet architecture, used to

translate high-level protocol addresses into physical hardware addresses. Commonly

used on the Internet to map IP addresses into Ethernet addresses.

ARPA: Advanced Research Projects Agency. One of the research and development or-

ganizations within the Department of Defense. Responsible for funding the ARPANET

as well as the research that led to the development of the TCP/IP Internet. Also known

as DARPA, the D standing for Defense.

ARPANET: An experimental wide area packet-switched network funded by ARPA

and begun in the late 1960s, which became the backbone of the developing Internet.

ARQ: Automatic repeat request. General strategy for reliably sending packets over an

unreliable link. If the sender does not receive an ACK for a packet after a certain time

period, it assumes that the packet did not arrive (or was delivered with bit errors) and

retransmits it. Stop-and-wait and sliding window are two example ARQ protocols.

Contrast with FEC.

Glossary 717

ASN.1: Abstract Syntax Notation One. In conjunction with BER, a presentation for-

matting standard devised by the ISO as part of the OSI architecture.

ATM: Asynchronous transfer mode. A connection-oriented network technology that

uses small, fixed-size packets (called cells) to carry data.

ATMARP: Address Resolution Protocol as enhanced for ATM networks.

ATM Forum: A key ATM standards-setting body.

authentication: Security protocol by which two suspicious parties prove to each other

that they are who they claim to be.

autonomous system (AS): A group of networks and routers, subject to a common

authority and using the same intradomain routing protocol.

bandwidth: A measure of the capacity of a link or connection, usually given in units

of bits per second.

Bellman-Ford: A name for the distance-vector routing algorithm, from the names of

the inventors.

BER: Basic Encoding Rules. Rules for encoding data types defined by ASN.1.

best-effort delivery: The service model of the current Internet architecture. Delivery

of a message is attempted but is not guaranteed.

BGP: Border Gateway Protocol. An interdomain routing protocol by which auto-

nomous systems exchange reachability information. The most recent version is

BGP-4.

BISYNC: Binary Synchronous Communication. A byte-oriented link-level protocol

developed in the late 1960s by IBM.

bit stuffing: A technique used to distinguish control sequences and data on the bit

level. Used by the HDLC protocol.

BLAST: A protocol that performs fragmentation and reassembly of large messages,

used to build an RPC protocol.

718 Glossary

block: An OS term used to describe a situation in which a process suspends execution

while awaiting some event, such as a change in the state of a semaphore.

bridge: A device that forwards link-level frames from one physical network to another,

sometimes called a LAN switch. Contrast with repeater and router.

broadcast: A method of delivering a packet to every host on a particular network

or internet. May be implemented in hardware (e.g., Ethernet) or software (e.g., IP

broadcast).

BUS: Broadcast and unknown server. A device used in LAN emulation

(LANE).

CA: Certification authority (also known as certificate authority). An entity that signs

security certificates, thereby promising that the public key contained in the certificate

belongs to the entity named in the certificate.

CBR: Constant bit rate. A class of service in ATM that guarantees transmission of

data at a constant bit rate, thus emulating a dedicated transmission link. Contrast with

ABR, UBR, and VBR.

CCITT: The now defunct Comité Consultif International de Telegraphique et Tele-

phonique, a unit of the International Telecommunications Union (ITU) of the United

Nations. Now replaced by ITU-T.

CDN: Content distribution network. A collection of surrogate Web servers, distri-

buted across the Internet, that respond to Web HTTP requests in place of the server.

The goal of widely distributing the surrogate servers is to have a surrogate close to the

client, making it possible to respond to requests more quickly.

cell: A 53-byte ATM packet, capable of carrying up to 48 bytes of data.

certificate: A document digitally signed by one entity that contains the name and

public key of another entity. Used to distribute public keys. Also see CA.

CHAN: A protocol that implements request/reply channels.

channel: A generic communication term used in this book to denote a logical process-

to-process connection.

Glossary 719

checksum: Typically a ones complement sum over some or all of the bytes of a packet,

computed and appended to the packet by the sender. The receiver recomputes the

checksum and compares it to the one carried in the message. Checksums are used

to detect errors in a packet and may also be used to verify that the packet has been

delivered to the correct host. The term checksum is also sometimes (imprecisely) used

to refer generically to error-detecting codes.

chipping code: Random sequence of bits that is XORed with the data stream to

implement the direct sequence technique of spread spectrum.

CIDR: Classless interdomain routing. A method of aggregating routes that treats a

block of contiguous Class C IP addresses as a single network.

circuit switching: A general strategy for switching data through a network. It involves

establishing a dedicated path (circuit) between the source and destination. Contrast

with packet switching.

client: The requester of a service in a distributed system.

CLNP: Connectionless Network Protocol. The ISO counterpart to the Internet’s IP.

clock recovery: The process of deriving a valid clock from a serially transmitted digital

signal.

concurrent logical channels: Multiplexing several stop-and-wait logical channels onto

a single point-to-point link. No delivery order is enforced. This mechanism was used

by the IMP-IMP protocol of the ARPANET.

congestion: A state resulting from too many packets contending for limited resources

(e.g., link bandwidth and buffer space on routers or switches), which may force the

router (switch) to discard packets.

congestion control: Any network resource management strategy that has, as its goal,

the alleviation or avoidance of congestion. A congestion-control mechanism may be

implemented on the routers (switches) inside the network, by the hosts at the edges of

the network, or by a combination of both.

connection: In general, a channel that must be established prior to use (e.g., by the

transmission of some setup information). For example, TCP provides a connection

720 Glossary

abstraction that offers reliable, ordered delivery of a byte stream. Connection-oriented

networks, such as ATM, are often said to provide a virtual circuit abstraction.

connectionless protocol: A protocol in which data may be sent without any advance

setup. IP is an example of such a protocol.

context switch: An operation in which an operating system suspends the execution

of one process and begins the execution of another. A context switch involves saving

the state of the former process (e.g., the contents of all registers) and loading the state

of the latter process.

controlled load: One of the service classes available in the Internet’s Integrated Services

architecture.

CRC: Cyclic redundancy check. An error-detecting code computed over the bytes

composing a packet and then appended to the packet by the network hardware

(e.g., Ethernet adaptor). CRC provides stronger error detection than a simple

checksum.

crossbar switch: A simple switch design in which every input is directly connected to

every output and the output port is responsible for resolving contention.

CSMA/CD: Carrier Sense Multiple Access with Collision Detect. CSMA/CD is a func-

tionality of network hardware. “Carrier sense multiple access” means that multiple

stations can listen to the link and detect when it is in use or idle; “collision detect”

indicates that if two or more stations are transmitting on the link simultaneously, they

will detect the collision of their signals. Ethernet is the best-known technology that

uses CSMA/CD.

cut-through: A form of switching or forwarding in which a packet starts to be trans-

ferred to an output before it has been completely received by the switching node, thus

reducing latency through the node.

datagram: The basic transmission unit in the Internet architecture. A datagram con-

tains all of the information needed to deliver it to its destination, analogous to a letter

in the U.S. postal system. Datagram networks are connectionless.

DCE: Distributed Computing Environment. An RPC-based suite of protocols and

standards that support distributed computing. Defined by OSF.

Glossary 721

DDCMP: Digital Data Communication Message Protocol. A byte-oriented link-level

protocol used in Digital Equipment Corporation’s DECNET.

DDoS: Distributed denial of service. A DoS attack in which the attack originates at a

set of nodes. Each attacking node may put only a marginal load on the target machine,

but the aggregate load from all the attacking nodes swamps the target machine.

DECbit: A congestion-control scheme in which routers notify the endpoints of im-

minent congestion by setting a bit in the header of routed packets. The endpoints

decrease their sending rates when a certain percentage of received packets have the bit

set.

decryption: The act of reversing an encryption process to recover the data from an

encrypted message.

delay × bandwidth product: The product of a network’s RTT and bandwidth. Gives

a measure of how much data can be in transit on the network.

demultiplexing: Using information contained in a packet header to direct it upward

through a protocol stack. For example, IP uses the ProtNum field in the IP header to

decide which higher protocol (i.e., TCP, UDP) a packet belongs to, and TCP uses the

port number to demultiplex a TCP packet to the correct application process. Contrast

with multiplexing.

demultiplexing key: A field in a packet header that enables demultiplexing to take

place (e.g., the ProtNum field of IP).

dense mode multicast: PIM mode used when most routers or hosts need to receive

multicast packets.

DES: Data Encryption Standard. An algorithm for data encryption based on a 64-bit

secret key.

DHCP: Dynamic Host Configuration Protocol. A protocol used by a host, as it boots,

to learn various network information, such as its IP address.

DHT: Distributed hash table. A technique by which a message is routed toward a

machine that supports a particular object, based on the object’s name. The object is

hashed to a unique identifier, with each intermediate node along the route forwarding

722 Glossary

the message to a node that is able to interpret a larger prefix of this id. DHTs are often

used in peer-to-peer networks.

Differentiated Services: A new architecture for providing better than best-effort service

on the Internet. It has been proposed as an alternative to Integrated Services.

direct sequence: A spread spectrum technique that involves XORing the data stream

with a random bit sequence known as a chipping code.

distance vector: A lowest-cost-path algorithm used in routing. Each node advertises

reachability information and associated costs to its immediate neighbors, and uses the

updates it receives to construct its forwarding table. The routing protocol RIP uses a

distance-vector algorithm. Contrast with link state.

DMA: Direct memory access. An approach to connecting hosts to I/O devices, in

which the device directly reads data from and writes data to the host’s memory. Also

see PIO.

DNA/DECNET: Digital Network Architecture. An OSI-based architecture that sup-

ports a connectionless network model and a connection-oriented transport protocol.

DNS: Domain name system. The distributed naming system of the Internet, used to

resolve host names (e.g., cicada.cs.princeton.edu) into IP addresses (e.g., 192.12.69.35).

The DNS is implemented by a hierarchy of name servers.

domain: Can refer either to a context in the hierarchical DNS name space (e.g., the

“edu” domain) or to a region of the Internet that is treated as a single entity for the

purpose of hierarchical routing. The latter is equivalent to autonomous system.

DoS: Denial of service. A situation in which an attacking node floods a target node

with so much work (so many packets) that it effectively keeps legitimate users from

accessing the node; hence, they are denied servce.

DS3: A 44.7-Mbps transmission link service offered by the phone company. Also

called T3.

DSL: Digital subscriber line. A family of standards for transmitting data over twisted

pair telephone lines at multimegabit-per-second speeds.

Glossary 723

duplicate ACK: A retransmission of a TCP acknowledgment. The duplicate ACK does

not acknowledge any new data. The receipt of multiple duplicate ACKs triggers the

TCP fast retransmit mechanism.

DVMRP: Distance Vector Multicast Routing Protocol. Multicast routing protocol

used by the majority of the routers in the MBone.

DWDM: Dense wavelength division multiplexing. Multiplexing multiple light waves

(colors) onto a single physical fiber. The technique is “dense” in the sense that a large

number of optical wavelengths can be supported.

ECN: Explict congestion notification. A technique by which routers inform end hosts

about congestion by setting a flag in packets they are forwarding. Used in conjunction

with active queue management algorithms like RED.

EF: Expedited forwarding. One of the per-hop behaviors proposed for Differentiated

Services.

EGP: Exterior Gateway Protocol. An early interdomain routing protocol of the Inter-

net, which was used by exterior gateways (routers) of autonomous systems to exchange

routing information with other ASs. Replaced by BGP.

encapsulation: The operation, performed by a lower-level protocol, of attaching a

protocol-specific header and/or trailer to a message passed down by a higher-level

protocol. As a message travels down the protocol stack, it gathers a sequence of head-

ers, of which the outermost corresponds to the protocol at the bottom of the stack.

encryption: The act of applying a transforming function to data, with the intention

that only the receiver of the data will be able to read it (after applying the inverse

function, decryption). Encryption generally depends on either a secret shared by the

sender and receiver or on a public/private key pair.

Ethernet: A popular local area network technology that uses CSMA/CD and has a

bandwidth of 10 Mbps. An Ethernet itself is just a passive wire; all aspects of Ethernet

transmission are completely implemented by the host adaptors.

exponential backoff: A retransmission strategy that doubles the timeout value each

time a packet is retransmitted.

724 Glossary

exposed node problem: Situation that occurs on a wireless network where two nodes

receive signals from a common source, but each is able to reach other nodes that do

not receive this signal.

extended LAN: A collection of LANs connected by bridges.

fabric: The part of a switch that actually does the switching, that is, moves packets

from input to output. Contrast with port.

fair queuing (FQ): A round-robin-based queuing algorithm that prevents a badly

behaved process from capturing an arbitrarily large portion of the network capacity.

fast retransmit: A strategy used by TCP that attempts to avoid timeouts in the presence

of lost packets. TCP retransmits a segment after receiving three consecutive duplicate

ACKs, acknowledging the data up to (but not including) that segment.

FDDI: Fiber Distributed Data Interface. A high-speed token ring networking technol-

ogy designed to run over optical fiber.

FEC: Forward error correction. A general strategy for recovering from bit errors

introduced into data packets without having to retransmit the packet. Redundant

information is included with each packet that can be used by the receiver to determine

which bits in a packet are incorrect. Contrast with ARQ.

Fiber Channel: A bidirectional link protocol commonly used to connect computers

(usually supercomputers) to peripherals. Fiber Channel has a bandwidth of 100 MBps

and can span up to 30 m. Used in the same way as HiPPI.

firewall: A router that has been configured to filter (not forward) packets from certain

sources. Used to enforce a security policy.

flow control: A mechanism by which the receiver of data throttles the transmission

rate of the sender, so that data will not arrive too quickly to be processed. Contrast

with congestion control.

flowspec: Specification of a flow’s bandwidth and delay requirements presented to the

network to establish a reservation. Used with RSVP.

forwarding: The operation performed by a router on every packet: receiving it on an

input, deciding what output to send it to, and sending it there.

Glossary 725

forwarding table: The table maintained in a router that lets it make decisions on

how to forward packets. The process of building up the forwarding table is called

routing, and thus the forwarding table is sometimes called a routing table. In some

implementations, the routing and forwarding tables are separate data structures.

fragmentation/reassembly: A method for transmission of messages larger than the net-

work’s MTU. Messages are fragmented into small pieces by the sender and reassembled

by the receiver.

frame: Another name for a packet, typically used in reference to packets sent over a

single link rather than a whole network. An important problem is how the receiver

detects the beginning and ending of a frame, a problem known as framing.

Frame Relay: A connection-oriented public packet-switched service offered by the

phone company.

frequency hopping: A spread spectrum technique that involves transmitting data over

a random sequence of frequencies.

FTP: File Transfer Protocol. The standard protocol of the Internet architecture for

transferring files between hosts. Built on top of TCP.

GMPLS: Generalized MPLS. Allows IP to run native over optically switched net-

works.

gopher: An Internet information service.

GSM: Global System for Mobile communication. Digital cellular phone system being

deployed throughout the world (except the United States and Canada). Similar to PCS,

which is being deployed throughout the United States and Canada.

H.323: Session control protocol often used for internet telephony.

handle: In programming, an identifer or pointer that is used to access an object.

hardware address: The link-level address used to identify the host adaptor on the local

network.

HDLC: High-Level Data Link Control protocol. An ISO-standard link-level protocol.

It uses bit stuffing to solve the framing problem.

726 Glossary

hidden node problem: Situation that occurs on a wireless network where two nodes

are sending to a common destination, but are unaware that the other exists.

hierarchical routing: A multilevel routing scheme that uses the hierarchical structure

of the address space as the basis for making forwarding decisions. For example, packets

might first be routed to a destination network and then to a specific host on that

network.

HiPPI: High Performance Parallel Interface. An ANSI-standard network technology

capable of Gbps transmission rates, typically used to connect supercomputers to pe-

ripheral devices. Used in same way as Fiber Channel.

host: A computer attached to one or more networks that supports users and runs

application programs.

HTML: HyperText Markup Language. A language used to construct World Wide

Web pages.

HTTP: HyperText Transport Protocol. An application-level protocol based on a

request/reply paradigm and used in the World Wide Web. HTTP uses TCP connections

to transfer data.

IAB: Internet Activities Board. The main body that oversees the development and

standardization of protocols of the Internet architecture. The IRTF and IETF are task

forces of the IAB.

IBGP: Interior BGP, the protocol used to exchange interdomain routing information

among routers in the same domain.

ICMP: Internet Control Message Protocol. This protocol is an integral part of IP. It

allows a router or destination host to communicate with the source, typically to report

an error in IP datagram processing.

IEEE: Institute for Electrical and Electronics Engineers. A professional society for en-

gineers that also defines network standards, including the 802 series of LAN standards.

IETF: Internet Engineering Task Force. A task force of the IAB, responsible for pro-

viding short-term engineering solutions for the Internet.

Glossary 727

IMAP: Internet Message Access Protocol. An application-layer protocol that allows

a user to retrieve his or her email from a mail server.

IMP-IMP: A byte-oriented link-level protocol used in the original ARPANET.

Integrated Services: Usually taken to mean a packet-switched network that can effec-

tively support both conventional computer data and real-time audio and video. Also,

a name given to a proposed Internet service model that is being designed to replace

the current best-effort service model.

integrity: In the context of network security, a service that ensures that a received

message is the same one that was sent.

interdomain routing: The process of exchanging routing among different routing

domains. BGP is an example of an interdomain protocol.

internet: A collection of (possibly heterogeneous) packet-switching networks inter-

connected by routers. Also called an internetwork.

Internet: The global internet based on the Internet (TCP/IP) architecture, connecting

millions of hosts worldwide.

interoperability: The ability of heterogeneous hardware and multivendor software to

communicate by correctly exchanging messages.

interrupt: An event (typically generated by a hardware device) that tells the operating

system to stop its current activity and take some action. For example, an interrupt is

used to notify the OS that a packet has arrived from the network.

intradomain routing: The exchange of routing information within a single domain or

autonomous system. RIP and OSPF are example intradomain protocols.

IP: Internet Protocol (also known as IPv4). A protocol that provides a connectionless,

best-effort delivery service of datagrams across the Internet.

IPng: Internet Protocol—Next Generation (also known as IPv6). Proposed version

of IP that provides a larger, more hierarchical address space and other new

features.

728 Glossary

IPSEC: IP Security. An architecture for authentication, privacy, and message integrity,

among other security services to the Internet architecture.

IRTF: Internet Research Task Force. A task force of the IAB, responsible for charting

direction in research and development for the Internet.

ISDN: Integrated Services Digital Network. A digital communication service offered

by telephone carriers and standardized by ITU-T. ISDN combines voice connection

and digital data services in a single physical medium.

IS-IS: A link-state routing protocol, similar to OSPF.

ISO: International Standards Organization. The international body that drafted the

seven-layer OSI architecture, and a suite of protocols that has not enjoyed commercial

success.

ITU-T: A subcommittee of the International Telecommunications Union, a global

body that drafts technical standards for all areas of international analog and dig-

ital communication. ITU-T deals with standards for telecommunications, notably

ATM.

jitter: Variation in network latency. Large jitter has a negative impact on the quality

of video and audio applications.

JPEG: Joint Photographic Experts Group. Typically used to refer to a widely used

algorithm for compressing still images that was developed by JPEG.

Kerberos: A TCP/IP-based authentication system developed at MIT, in which two

hosts use a trusted third party to authenticate each other.

key distribution: Mechanism by which users learn each others’ public keys through

the exchange of digitally signed certificates.

LAN: Local area network. A network based on any physical network technology that

is designed to span distances of up to a few thousand meters (e.g., Ethernet or FDDI).

Contrast with SAN, MAN, and WAN.

LANE: Local area network emulation. Adding functionality to ATM to make it

behave like a shared-media (i.e., Ethernet-like) LAN.

Glossary 729

LAN switch: Another term for a bridge, usually applied to a bridge with many ports.

Also called an Ethernet switch if the link technology it supports is Ethernet.

latency: A measure of how long it takes a single bit to propagate from one end of a

link or channel to the other. Latency is measured strictly in terms of time.

LDAP: Lightweight Directory Access Protocol. A subset of the X.500 directory service

that has recently become a popular directory service for information about users.

LER: Label edge router. A router at the edge of an MPLS cloud. Performs a complete

IP lookup on arriving IP packets, and then applies labels to them as a result of the

lookup.

LES: LAN emulation (LANE) server.

link: A physical connection between two nodes of a network. It may be implemented

over copper or fiberoptic cable or it may be a wireless link (e.g., a satellite).

link-level protocol: A protocol that is responsible for delivering frames over a directly

connected network (e.g., an Ethernet, token ring, or point-to-point link). (Also called

link-layer protocol.)

link state: A lowest-cost-path algorithm used in routing. Information on directly con-

nected neighbors and current link costs are flooded to all routers; each router uses

this information to build a view of the network on which to base forwarding deci-

sions. The OSPF routing protocol uses a link-state algorithm. Contrast with distance

vector.

LSR: Label switching router. A router that runs IP control protocols, but uses the

label switching forwarding algorithm of MPLS.

MAC: Media access control. Algorithms used to control access to shared-media net-

works like Ethernet and FDDI.

MACA: Multiple Access with Collision Avoidance. Distributed algorithm used to

mediate access to a shared media.

MACAW: Multiple Access with Collision Avoidance for Wireless. Enhancement of

the general MACA algorithm to better support wireless networks. Used by 802.11.

730 Glossary

MAN: Metropolitan area network. A network based on any of several new network

technologies that operate at high speeds (up to several Gbps) and across distances wide

enough to span a metropolitan area. Contrast with SAN, LAN, and WAN.

Manchester: A bit encoding scheme that transmits the exclusive-OR of the clock and

the NRZ-encoded data. Used on the Ethernet.

MBone: Multicast Backbone. A logical network imposed over the top of the Internet,

in which multicast-enhanced routers use tunneling to forward multicast datagrams

across the Internet.

MD5: Message Digest version 5. An efficient cryptographic checksum algorithm com-

monly used to verify that the contents of a message are unaltered.

MIB: Management information base. Defines the set of network-related variables that

may be read or written on a network node. The MIB is used in conjunction with SNMP.

MIME: Multipurpose Internet Mail Extensions. Specifications for converting binary

data (such as image files) to ASCII text, which allows it to be sent via email.

Mosaic: A popular and free graphical World Wide Web browser developed at the

National Center for Supercomputing Applications at the University of Illinois.

MP3: MPEG Layer 3. Audio compression standard used with MPEG.

MPEG: Moving Picture Experts Group. Typically used to refer to an algorithm for

compressing video streams developed by MPEG.

MPLS: Multiprotocol Label Switching. A collection of techniques used to enhance

the capabilities of IP routers be attaching labels to packets.

MSAU: Multistation access unit. A device used in token ring networks to connect

several stations to the ring and remove them in the event of failure.

MTU: Maximum transmission unit. The size of the largest packet that can be sent

over a physical network.

multicast: A special form of broadcast in which packets are delivered to a specified

subgroup of network hosts.

Glossary 731

multiplexing: Combining distinct channels into a single lower-level channel. For

example, separate TCP and UDP channels are multiplexed into a single host-to-host

IP channel. The inverse operation, demultiplexing, takes place on the receiving host.

name resolution: The action of resolving host names (which are easy for humans to

read) into their corresponding addresses (which machines can read). See DNS.

NAT: Network address translation. A technique for extending the IP address space

that involves translating between globally understood IP addresses and local-only ad-

dresses at the edge of a network or site.

NDR: Network Data Representation. The data encoding standard used in the Dis-

tributed Computing Environment (DCE), as defined by the Open Software Foundation.

NDR uses a receiver-makes-right strategy and inserts an architecture tag at the front

of each message.

Netscape: A popular graphical WWW browser.

network-level protocol: A protocol that runs over switched networks, directly above

the link level.

NFS: Network File System. A popular distributed file system developed by Sun

Microsystems. NFS is based on SunRPC, an RPC protocol developed by Sun.

NIST: National Institute for Standards and Technology. The official U.S. standardiza-

tion body.

node: A generic term used for individual computers that make up a network. Nodes

include general-purpose computers, switches, and routers.

NRZ: Non-return to zero. A bit encoding scheme that encodes a 1 as the high signal

and a 0 as the low signal.

NRZI: Non-return to zero inverted. A bit encoding scheme that makes a transition

from the current signal to encode a 1 and stays at the current signal to encode a 0.

NSF: National Science Foundation. An agency of the U.S. government that funds

scientific research in the United States, including research on networks and on the

Internet infrastructure.

732 Glossary

NV: Network Video. A videoconferencing application that runs over the MBone.

OC: Optical Carrier. The prefix for various rates of SONET optical transmission. For

example, OC-1 refers to the SONET standard for 51.84-Mbps transmission over fiber.

An OC-n signal differs from an STS-n signal only in that the OC-n signal is scrambled

for optical transmission.

ONC: Open Network Computing. A version of SunRPC that is being standardized

for the Internet.

optical switch: A switching device that forwards optical light waves from input port

to output port without converting to electrical format.

OSF: Open Software Foundation. A consortium of computer vendors that have de-

fined standards for distributed computing, including the NDR presentation format.

OSI: Open Systems Interconnection. The seven-layer network reference model devel-

oped by the ISO. Guides the design of ISO and ITU-T protocol standards.

OSPF: Open Shortest Path First. A routing protocol developed by the IETF for the

Internet architecture. OSPF is based on a link-state algorithm, in which every node

constructs a topography of the Internet and uses it to make forwarding decisions.

Today known as Open Group.

overlay: A virtual (logical) network running on top of an existing physical network.

Overlay nodes communicate with each other through tunnels rather than over physical

links. Overlays are often used to deploy new network services since they do not require

the cooperation of the existing network infrastructure.

packet: A data unit sent over a packet-switched network. Also see frame and segment.

packet switching: A general strategy for switching data through a network. Packet

switching uses store-and-forward switching of discrete data units called packets and

implies statistical multiplexing.

participants: A generic term used to denote the processes, protocols, or hosts that are

sending messages to each other.

Glossary 733

PAWS: Protection against wrapped sequence numbers. Engineering transport protocol

with a large enough sequence number space to protect against the numbers wrapping

around on a network where packets can be delayed for a long period of time.

PCS: Personal Communication Services. New digital cellular phone system being

deployed throughout the United States and Canada. Similar to GSM, which is being

deployed throughout the rest of the world.

PDU: Protocol data unit. Another name for a packet or frame.

peer: A counterpart on another machine that a protocol module interoperates with

to implement some communication service.

peer-to-peer networks: A general class of applications that integrate application logic

(e.g., file storage) with routing. Popular examples include Napster and Gnutella.

Research prototypes often use distributd hash tables.

PEM: Privacy Enhanced Mail. Extensions to Internet email that support privacy and

integrity protection. See also PGP.

PGP: Pretty Good Privacy. A collection of public domain software that provides pri-

vacy and authentication capabilities using RSA and that uses a mesh of trust for public

key distribution.

PHB: Per-hop behavior. Behavior of individual routers in the Differentiated Services

architecture. AF and EF are two proposed PHBs.

physical-level protocol: The lowest layer of the OSI protocol stack. Its main function

is to encode bits onto the signals that are propagated across the physical transmission

media.

piconet: Wireless network spanning short distances (e.g., 10 m). Used to connect office

computers (laptops, printers, PDAs, workstations, etc.) without cables.

PIM: Protocol Independent Multicast. A multicast routing protocol that can be built

on top of different unicast routing protocols.

734 Glossary

Ping: A Unix utility used to test the RTT to various hosts over the Internet. Ping sends

an ICMP ECHO REQUEST message, and the remote host sends an ECHO RESPONSE

message back.

PIO: Programmed Input/Ouput. An approach to connecting hosts to I/O devices, in

which the CPU reads data from and writes data to the I/O device. Also see DMA.

poison reverse: Used in conjunction with split horizon. A heuristic technique to avoid

routing loops in distance-vector routing protocols.

port: A generic term usually used to mean the point at which a network user attaches

to the network. On a switch, a port denotes the input or output on which packets are

received and sent.

POTS: Plain old telephone service. Used to specify the existing phone service, in con-

trast to ISDN, ATM, or other technologies that the telephone companies offer now or

may offer in the future.

PPP: Point-to-Point Protocol. Data link protocol typically used to connect computers

over a dial-up line.

process: An abstraction provided by an operating system to enable different opera-

tions to take place concurrently. For example, each user application usually runs inside

its own process, while various operating system functions take place in other processes.

promiscuous mode: A mode of operation for a network adaptor in which it receives

all frames transmitted on the network, not just those addressed to it.

protocol: A specification of an interface between modules running on different

machines, as well as the communication service that those modules implement. The

term is also used to refer to an implementation of the module that meets this specifi-

cation. To distinguish between these two uses, the interface is often called a protocol

specification.

proxy: An agent sitting between a client and server that intercepts messages and pro-

vides some service. For example, a proxy can “stand in” for a server by responding to

client requests, perhaps using data it has cached, without contacting the server.

pseudoheader: A subset of fields from the IP header that are passed up to transport

protocols TCP and UDP for use in their checksum calculation. The pseudoheader

Glossary 735

contains source and destination IP addresses and IP datagram length, thus enabling

detection of corruption of these fields or delivery of a packet to an incorrect

address.

public key encryption: Any of several encryption algorithms (e.g., RSA), in which

each participant has a private key (shared with no one else) and a public key (available

to everyone). A secure message is sent to a user by encrypting the data with that user’s

public key; possession of the private key is required to decrypt the message, and so

only the receiver can read it.

QoS: Quality of service. Packet delivery guarantees provided by a network archi-

tecture. Usually related to performance guarantees, such as bandwidth and delay.

The Internet offers a best-effort delivery service, meaning that every effort is made to

deliver a packet but delivery is not guaranteed.

RED: Random early detection. A queuing discipline for routers in which, when con-

gestion is anticipated, packets are randomly dropped to alert the senders to slow down.

rendezvous point: A router used by PIM to allow receivers to learn about senders.

repeater: A device that propagates electrical signals from one Ethernet cable to an-

other. There can be a maximum of two repeaters between any two hosts in an Ethernet.

Repeaters forward signals, whereas bridges forward frames, and routers and switches

forward packets.

reverse-path broadcast (RPB): A technique used to eliminate duplicate broadcast

packets.

RFC: Request for Comments. Internet reports that contain, among other things, spec-

ifications for protocols like TCP and IP.

RIO: RED with In and Out. A packet drop policy based on RED, but involving two

drop curves: one for packets that have been marked as being “in” profile and one for

packets that have been marked “out” of profile. Designed to be used to implement

Differentiated Services.

RIP: Routing Information Protocol. An intradomain routing protocol supplied with

Berkeley Unix. Each router running RIP dynamically builds its forwarding table based

on a distance-vector algorithm.

736 Glossary

router: A network node connected to two or more networks that forwards packets

from one network to another. Contrast with bridge, repeater, and switch.

routing: The process by which nodes exchange topological information to build cor-

rect forwarding tables. See forwarding, link state, and distance vector.

routing table: See forwarding table.

RPC: Remote Procedure Call. Synchronous request/reply transport protocol used in

many client/server interactions.

RSA: A public key encryption algorithm named after its inventors: Rivest, Shamir,

and Adleman.

RSVP: Resource Reservation Protocol. A protocol for reserving resources in the net-

work. RSVP uses the concept of soft state in routers and puts responsibility for making

reservations on receivers instead of on senders.

RTCP: Real-time Transport Control Protocol. Control protocol associated with RTP.

RTP: Real-time Transport Protocol. An end-to-end protocol used by multimedia

applications that have real-time constraints.

RTT: Round-trip time. The time it takes for a bit of information to propagate from

one end of a link or channel to the other and back again; in other words, double the

latency of the channel.

SAN: System area network. A network that spans the components of a computer sys-

tem (e.g., display, camera, disk). Sometimes stands for storage area network and in-

cludes interfaces like HiPPI and Fiber Channel. Contrast with LAN, MAN, and WAN.

schema: A specification of how to structure and interpret a set of data. Defined for

XML documents.

scrambling: The process of XORing a signal with a pseudorandom bit stream before

transmission to cause enough signal transitions to allow clock recovery. Scrambling is

used in SONET.

SDP: Session Description Protocol. An application-layer protocol used to learn about

the available audio/video channels. It reports the name and purpose of the session,

Glossary 737

start and end times for the session, the media types (e.g., audio, video) that comprise

the session, and detailed information needed to receive the session (e.g., the multicast

address, transport protocol, and port numbers to be used).

segment: A TCP packet. A segment contains a portion of the byte stream that is being

sent by means of TCP.

SELECT: A synchronous demultiplexing protocol used to build an RPC protocol.

semaphore: A variable used to support synchronization between processes. Typically,

a process blocks on a semaphore while it waits for some other process to signal the

semaphore.

server: The provider of a service in a client/server distributed system.

signalling: At the physical level, denotes the transmission of a signal over some phy-

sical medium. In ATM, signalling refers to the process of establishing a virtual

circuit.

silly window syndrome: A condition occurring in TCP that may arise if each time

the receiver opens its receive window a small amount, the sender sends a small seg-

ment to fill the window. The result is many small segments and an inefficient use of

bandwidth.

SIP: Session Initiation Protocol. An application-layer protocol used in multimedia

applications. It determines the correct device with which to communicate to reach a

particular user, determines if the user is willing or able to take part in a particular com-

munication, determines the choice of media and coding scheme to use, and establishes

session parameters (e.g., port numbers).

sliding window: An algorithm that allows the sender to transmit multiple packets (up

to the size of the window) before receiving an acknowledgment. As acknowledgments

are returned for those packets in the window that were sent first, the window “slides”

and more packets may be sent. The sliding window algorithm combines reliable

delivery with a high throughput. See ARQ.

slow start: A congestion-avoidance algorithm for TCP that attempts to pace outgoing

segments. For each ACK that is returned, two additional packets are sent, resulting in

an exponential increase in the number of outstanding segments.

738 Glossary

SMDS: Switched Multimegabit Data Service. A service supporting LAN-to-WAN con-

nectivity, offered by some telephone companies.

SMTP: Simple Mail Transfer Protocol. The electronic mail protocol of the Internet.

See 822.

SNA: System Network Architecture. The proprietary network architecture of IBM.

SNMP: Simple Network Management Protocol. An Internet protocol that allows the

monitoring of hosts, networks, and routers.

socket: The abstraction provided by Unix that provides the application programming

interface (API) to TCP/IP.

soft state: Connection-related information contained in a router that is cached for a

limited period of time rather than being explicitly established (and requiring explicit

teardown) through a connection setup.

SONET: Synchronous Optical Network. A clock-based framing standard for digital

transmission over optical fiber. It defines how telephone companies transmit data over

optical networks.

source routing: Routing decisions performed at the source before the packet is sent.

The route consists of the list of nodes that the packet should traverse on the way to

the destination.

sparse mode multicast: A mode used in PIM when relatively few hosts or routers need

to receive multicast data for a certain group.

split horizon: A method of breaking routing loops in a distance-vector routing algo-

rithm. When a node sends a routing update to its neighbors, it does not send those

routes it learned from each neighbor back to that neighbor. Split horizon is used with

poison reverse.

spread spectrum: Encoding technique that involves spreading a signal over a wider

frequency than necessary, so as to minimize the impact of interference.

SSL: Secure Socket Layer. A protocol layer that runs over TCP to provide authentica-

tion and encryption of connections. Also known as Transport Layer Security (TLS).

Glossary 739

statistical multiplexing: Demand-based multiplexing of multiple data sources over a

shared link or channel.

stop-and-wait: A reliable transmission algorithm in which the sender transmits a

packet and waits for an acknowledgment before sending the next packet. Compare

with sliding window and concurrent logical channels. See also ARQ.

STS: Synchronous Transport Signal. The prefix for various rates of SONET transmis-

sion. For example, STS-1 refers to the SONET standard for 51.84-Mbps transmission.

subnetting: The use of a single IP network address to denote multiple physical net-

works. Routers within the subnetwork use a subnet mask to discover the physical

network to which a packet should be forwarded. Subnetting effectively introduces a

third level to the two-level hierarchical IP address.

SunRPC: Remote procedure call protocol developed by Sun Microsystems. SunRPC

is used to support NFS. See also ONC.

switch: A network node that forwards packets from inputs to outputs based on header

information in each packet. Differs from a router mainly in that it typically does not

interconnect networks of different types.

switching fabric: The component of a switch that directs packets from their inputs to

the correct outputs.

T1: A standard telephone carrier service equal to 24 ISDN circuits, or 1.544 Mbps.

Also called DS1.

T3: A standard telephone carrier service equal to 24 T1 circuits, or 44.736 Mbps.

Also called DS3.

TCP: Transmission Control Protocol. Connection-oriented transport protocol of the

Internet architecture. TCP provides a reliable, byte-stream delivery service.

Telnet: Remote terminal protocol of the Internet architecture. Telnet allows you to

interact with a remote system as if your terminal is directly connected to that machine.

throughput: The observed rate at which data is sent through a channel. The term is

often used interchangeably with bandwidth.

740 Glossary

TLS: Transport Layer Security. Security services that can be layered on top of a trans-

port protocol like TCP. It is often used by HTTP to perform secure transactions on

the World Wide Web. Derived from SSL.

token bucket: A way to characterize or police the bandwidth used by a flow. Concep-

tually, processes accumulate tokens over time, and they must spend a token to transmit

a byte of data and then must stop sending when they have no tokens left. Thus, overall

bandwidth is limited, with the accommodation of some burstiness.

token ring: A physical network technology in which hosts are connected in a ring.

A token (bit pattern) circulates around the ring. A given node must possess the

token before it is allowed to transmit. 802.5 and FDDI are examples of token ring

networks.

TP4: OSI Transport Protocol Class 4. The most powerful OSI transport protocol.

TP4 is the ISO equivalent of TCP.

transport protocol: An end-to-end protocol that enables processes on different hosts

to communicate. TCP is the canonical example.

TTL: Time to live. Usually a measure of the number of hops (routers) an IP datagram

can visit before it is discarded.

tunneling: Encapsulating a packet using a protocol that operates at the same layer

as the packet. For example, multicast IP packets are encapsulated inside unicast IP

packets to tunnel across the Internet to implement the MBone. Tunneling will also be

used during the transition from IPv4 to IPv6.

two-dimensional parity: A parity scheme in which bytes are conceptually stacked as

a matrix, and parity is calculated for both rows and columns.

Tymnet: An early network in which a virtual circuit abstraction was maintained across

a set of routers.

UBR: Unspecified bit rate. The “no frills” service class in ATM, offering best-effort

cell delivery. Contrast with ABR, CBR, and VBR.

UDP: User Datagram Protocol. Transport protocol of the Internet architecture that

provides a connectionless datagram service to application-level processes.

Glossary 741

unicast: Sending a packet to a single destination host. Contrast with broadcast and

multicast.

URI: Uniform resource identifier. A generalization of the URL. Used, for example, in

conjunction with SIP to set up multimedia sessions.

URL: Uniform resource locator. A text string used to identify the location of Inter-

net resources. A typical URL looks like http://www.cisco.com. In this URL, http is the

protocol to use to access the resource located on host www.cisco.com.

vat: Audioconferencing tool used on the Internet that runs over RTP.

VBR: Variable bit rate. One of the classes of service in ATM, intended for applications

with bandwidth requirements that vary with time, such as compressed video. Contrast

with ABR, CBR, and UBR.

VCI: Virtual circuit identifier. An identifier in the header of a packet that is used for

virtual circuit switching. In the case of ATM, the VPI and VCI together identify the

end-to-end connection.

vic: Unix-based videoconferencing tool that uses RTP.

virtual circuit: The abstraction provided by connection-oriented networks such as

ATM. Messages must usually be exchanged between participants to establish a vir-

tual circuit (and perhaps to allocate resources to the circuit) before data can be sent.

Contrast with datagram.

virtual clock: A service model that allows the source to reserve resources on routers

using a rate-based description of its needs. Virtual clock goes beyond the best-effort

delivery service of the current Internet.

VPI: Virtual path identifier. An 8-bit or 12-bit field in the ATM header. VPI can be used

to hide multiple virtual connections across a network inside a single virtual “path,”

thus decreasing the amount of connection state that the switches must maintain. See

also VCI.

VPN: Virtual private network. A logical network overlaid on top of some existing

network. For example, a company with sites around the world may build a virtual

network on top of the Internet rather than lease lines between each site.

742 Glossary

WAN: Wide area network. Any physical network technology that is capable of span-

ning long distances (e.g., cross-country). Compare with SAN, LAN, and WAN.

weighted fair queuing (WFQ): A variation of fair queuing in which each flow can be

given a different proportion of the network capacity.

well-known port: A port number that is, by convention, dedicated for use by a par-

ticular server. For instance, the Domain Name Server receives messages at well-known

UDP and TCP port 53 on every host.

WWW: World Wide Web. A hypermedia information service on the Internet.

X.25: The ITU packet-switching protocol standard.

X.400: The ITU electronic mail standard. The counterpart to SMTP in the Internet

architecture.

X.500: The ITU directory services standard, which defines an attribute-based naming

service.

X.509: An ITU standard for digital certificates.

XDR: External Data Representation. Sun Microsystems’ standard for machine-

independent data structures. Contrast with ASN.1 and NDR.

XML: Extensible Markup Language. Defines a syntax for describing data that may

be passed between Internet applications.

zone: A partition of the domain name hierarchy, corresponding to an administrative

authority that is responsible for that portion of the hierarchy. Each zone must have at

least two name servers to field DNS requests for the zone.

B I B L I O G R A P H Y

[Bat68] Batcher, K. E. Sorting networks and their applications. Proceedings

of the 1968 Spring AFIPS Joint Computer Conference 32:307–314,

1968.

[BBC+98] Blake, S., D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An

architecture for differentiated services. Request for Comments 2475,

December 1998.

[BCS94] Braden, R., D. Clark, and S. Shenker. Integrated services in the

internet architecture: An overview. Request for Comments 1633,

September 1994.

[BDMS94] Bowman, C. M., P. B. Danzig, U. Manber, and M. F. Schwartz. Scal-

able internet resource discovery: Research problems and approaches.

Communications of the ACM 37(8):98–107, August 1994.

[Bel00] Bellovin, S. M. ICMP traceback messages. Work in progress, Internet

draft draft-bellovin-itrace-00.txt, March 2000.

[BF93] Borenstein, N., and N. Freed. MIME (multipurpose internet mail

extensions) part one: Mechanisms for specifying and describing the

format of internet message bodies. Request for Comments 1521,

September 1993.

[BG92] Bertsekas, D., and R. Gallager. Data Networks. Prentice Hall,

Englewood Cliffs, NJ, second edition, 1992.

[BG93] Bjorkman, M., and P. Gunningberg. Locking effects in mul-

tiprocessor implementations of protocols. Proceedings of the

SIGCOMM ’93 Symposium, pages 74–83, September 1993.

744 Bibliography

[Bla87] Blahut, R. E. Principles and Practice of Information Theory. Addison-

Wesley, Reading, MA, 1987.

[BLFF96] Berners-Lee, T., R. Fielding, and H. Frystyk. Hypertext transfer

protocol—HTTP/1.0. Request for Comments 1945, May 1996.

[BLNS82] Birrell, A., R. Levin, R. Needham, and M. Schroeder. Grapevine:

An exercise in distributed computing. Communications of the ACM

25:250–273, April 1982.

[BM95] Bradner, S., and A. Mankin, editors. IPng: Internet Protocol Next

Generation. Addison-Wesley, Reading, MA, 1995.

[Boo95] Boorsook, P. How anarchy works. Wired 3(10):110–118, October

1995.

[BP95] Brakmo, L. S., and L. L. Peterson. TCP Vegas: End-to-end congestion

avoidance on a global internet. IEEE Journal of Selected Areas in

Communication (JSAC) 13(8):1465–1480, October 1995.

[BPY90] Bowman, M., L. L. Peterson, and A. Yeatts. Univers: An attribute-

based name server. Software—Practice and Experience 20(4):403–

424, April 1990.

[Bri95] Brisco, T. DNS support for load balancing. Request for Comments

1794, Rutgers University, New Brunswick, NJ, April 1995.

[BS88] Bic, L., and A. C. Shaw. The Logical Design of Operating Systems.

Prentice Hall, Englewood Cliffs, NJ, 1988.

[BS01] Barrett, D., and R. Silverman. SSH: The Secure Shell. O’Reilly, Se-

bastopol, CA, 2001.

[Buf94] Buford, John F. K. Multimedia Systems. ACM Press/Addison-Wesley,

Reading, MA, 1994.

[BZ96] Bennett, T., and H. Zhang. Hierarchical packet fair queueing algo-

rithms. Proceedings of the SIGCOMM ’96 Symposium, pages 143–

156, August 1996.

Bibliography 745

[CCITT92a] Comité Consultif International de Telegraphique et Telephonique.

Open systems interconnection: Specification of abstract syntax no-

tation one (ASN.1). CCIT Recommendation X.208, 1992.

[CCITT92b] Comité Consultif International de Telegraphique et Telephonique.

Open systems interconnection: Specification of basic encoding rules

for abstract syntax notation one (ASN.1). CCIT Recommendation

X.209, 1992.

[CF98] Clark, D., and W. Fang. Explicit allocation of best-effort packet

delivery service. IEEE/ACM Transactions on Networking 6(4):

362–373, August 1998.

[CFFD93] Cohen, D., G. Finn, R. Felderman, and A. DeSchon. ATOMIC:

A low-cost, very-high-speed, local communications architecture.

Proceedings of the 1993 Conference on Parallel Processing,

August 1993.

[Cha93] Chapin, A. L. The billion node Internet. In D. C. Lynch and M. T.

Rose, editors, Internet System Handbook, chapter 17, pages 707–

716. Addison-Wesley, Reading, MA, 1993.

[CJRS89] Clark, D. D., V. Jacobson, J. Romkey, and H. Salwen. An analysis of

TCP processing overhead. IEEE Communications 27(6):23–29, June

1989.

[Cla82] Clark, D. D. Modularity and efficiency in protocol implementation.

Request for Comments 817, July 1982.

[Cla85] Clark, D. D. The structuring of systems using upcalls. Proceedings of

the 10th ACM Symposium on Operating Systems Principles, pages

171–180, December 1985.

[Cla97] Clark, D. Internet cost allocation and pricing. In L. Knight and J.

Bailey, editors, Internet Economics, pages 215–253. MIT Press, Cam-

bridge, MA, 1997.

[CLNZ89] Chen, S. K., E. D. Lazowska, D. Notkin, and J. Zahorjan. Perfor-

mance implications of design alternatives for remote procedure call

746 Bibliography

stubs. Proceedings of the Ninth International Conference on Dis-

tributed Computing Systems, pages 36–41, June 1989.

[CMRW93] Case, J., K. McCloghrie, M. Rose, and S. Waldbusser. Structure of

management information for version 2 of the Simple Network Man-

agement Protocol (SNMPv2). Request for Comments 1442, April

1993.

[Com00] Comer, D. E. Internetworking with TCP/IP. Volume I: Principles,

Protocols, and Architecture. Prentice Hall, Upper Saddle River, NJ,

fourth edition, 2000.

[CP89] Comer, D. E., and L. L. Peterson. Understanding naming in dis-

tributed systems. Distributed Computing 3(2):51–60, May 1989.

[CPVR97] Cohen, J., N. Phadnis, V. Valloppillil, and K. W. Ross. Cache array

routing protocol v1.1. http://ds1.internic.net/internet-drafts/draft-

vinod-carp-v1-01.txt, September 1997.

[Cro82] Crocker, D. Standard for the format of ARPA Internet text message.

Request for Comments 822, August 1982.

[CS94] Comer, D. E., and D. L. Stevens. Internetworking with TCP/IP.

Volume III: Client-Server Programming and Applications, AT&T

TLI Version. Prentice Hall, Englewood Cliffs, NJ, 1994.

[CS97] Comer, D. E., and D. L. Stevens. Internetworking with TCP/IP.

Volume III: Client-Server Programming and Applications, Windows

Sockets Version. Prentice Hall, Englewood Cliffs, NJ, 1997.

[CS00] Comer, D. E., and D. L. Stevens. Internetworking with TCP/IP.

Volume III: Client-Server Programming and Applications, Linux/

Posix Sockets Version. Prentice Hall, Upper Saddle River, NJ, 2000.

[CV95] Chandranmenon, G. P., and G. Varghese. Trading packet headers for

packet processing. Proceedings of the SIGCOMM ’95 Symposium,

pages 162–173, October 1995.

Bibliography 747

[CZ85] Cheriton, D. R., and W. Zwaenepoel. Distributed process groups in

the V kernel. ACM Transactions on Computer Systems 3(2):77–107,

May 1985.

[Dan98] Danzig, P. NetCache architecture and deployment. Third Interna-

tional WWW Caching Workshop, June 1998.

[DBCP97] Degermark, M., A. Brodnik, S. Carlsson, and S. Pink. Small forward-

ing tables for fast routing lookups. Proceedings of the SIGCOMM

’97 Symposium, pages 3–14, October 1997.

[DCB+02] Davie, B., A. Charny, J. C. R. Bennett, K. Benson, J. Y. Le Boudec,

W. Courtney, S. Davari, V. Firoiu, and D. Stiliadis. An expedited

forwarding phb (per-hop behavior). Request for Comments 3246,

March 2002.

[DEF+96] Deering, S., D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei.

The PIM architecture for wide-area multicast routing. ACM/IEEE

Transactions on Networking 4(2):153–162, April 1996.

[DH98] Deering, S., and R. Hinden. Internet Protocol, version 6 (IPv6) spec-

ification. Request for Comments 2460, December 1998.

[DP93] Druschel, P., and L. L. Peterson. Fbufs: A high-bandwidth cross-

domain transfer facility. Proceedings of the 14th ACM Symposium

on Operating Systems Principles, pages 189–202, December 1993.

[DPD94] Druschel, P., L. L. Peterson, and B. S. Davie. Experience with a high-

speed network adaptor: A software perspective. Proceedings of the

SIGCOMM ’94 Symposium, pages 2–13, August 1994.

[DR00] Davie, B., and Y. Rekhter. MPLS: Technology and Applications.

Morgan Kaufmann Publishers, San Francisco, CA, 2000.

[DY75] Drysdale, R. L., and F. H. Young. Improved divide/sort/merge sorting

networks. SIAM Journal on Computing 4(3):264–270, September

1975.

748 Bibliography

[EFH+98] Estrin, D., D. Farinacci, A. Helmy, D. Thaler, S. Deering, M.

Handley, V. Jacobson, C. Liu, P. Sharma, and L. Wei. Protocol in-

dependent multicast-sparse mode (pim-sm): Protocol specification.

Request for Comments 2362, April 1998.

[EWL+94] Edwards, A., G. Watson, J. Lumley, D. Banks, C. Calamvokis, and

C. Dalton. User-space protocols deliver high performance to applica-

tions on a low-cost Gb/s LAN. Proceedings of the SIGCOMM ’94

Symposium, pages 14–23, August 1994.

[FB96] Freed, N., and N. Borenstein. Multipurpose Internet mail ex-

tensions (MIME) part one: Format of Internet message bodies.

Request for Comments 2045, November 1996.

[FGMBL97] Fielding, R., J. Gettys, J. Mogul, and T. Berners-Lee. HyperText

Transfer Protocol—HTTP/1.1. Request for Comments 2068, January

1997.

[FHPW00] Floyd, S., M. Handley, J. Padhye, and J. Widmer. Equation-based

congestion control for unicast applications. Proceedings of the SIG-

COMM ’00 Symposium, pages 43–56, Stockholm, Sweden, 2000.

[Fin88] Finkel, R. A. An Operating Systems Vade Mecum. Prentice Hall,

Englewood Cliffs, NJ, 1988.

[FKSS99] Feng, W.-C., D. Kandlur, D. Saha, and K. Shin. A self-configuring RED

gateway. IEEE INFOCOM, New York, pages 1320–1328, March

1999.

[FLYV93] Fuller, V., T. Li, J. Yu, and K. Varadhan. Classless interdomain routing

(CIDR): An address assignment and aggregation strategy. Request for

Comments 1519, September 1993.

[Gar00] Garber, L. Technology news: Denial-of-service attacks rip the Inter-

net. Computer 33(4):12–17, April 2000.

[GG94] Gopal, I., and R. Guerin. Network transparency: The plaNET

approach. IEEE/ACM Transactions on Networking 2(3):226–

239, June 1994.

Bibliography 749

[Gin99] D. Ginsburg, ATM: Solutions for Enterprise Internetworking.

Addison-Wesley, Reading, MA, second edition, 1999.

[GVC96] Goyal, P., H. Vin, and H. Chen. Start-time fair queueing: A schedul-

ing algorithm for integrated services packet switching networks. Pro-

ceedings of the SIGCOMM ’96 Symposium, pages 157–168, August

1996.

[Har00] Harrison, A. Cyber assaults hit Buy.com, eBay, CNN and Amazon.

Computerworld, February 2000.

[HC98] Harkins, D., and D. Carrel. The Internet Key Exchange (IKE). Re-

quest for Comments 2409, November 1998.

[Hed88] Hedrick, C. Routing information protocol. Request for Comments

1058, June 1988.

[HMPT89] Hutchinson, N., S. Mishra, L. Peterson, and V. Thomas. Tools for

implementing network protocols. Software—Practice and Experience

19(9):895–916, September 1989.

[HP91] Hutchinson, N., and L. Peterson. The x-kernel: An architecture for

implementing network protocols. IEEE Transactions on Software

Engineering 17(1):64–76, January 1991.

[HP95] Holzmann, G. J., and B. Pehrson. The Early History of Data Net-

works. IEEE Computer Society Press, Los Alamitos, CA, 1995.

[HP02] Hennessy, J. L., and D. A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann, San Francisco, CA, third

edition, 2002.

[Huf52] Huffman, D. A. A method for the construction of minimal-

redundancy codes. Proceedings of the IRE 40(9):1098–1101, Septem-

ber 1952.

[Jac88] Jacobson, V. Congestion avoidance and control. Proceedings of the

SIGCOMM ’88 Symposium, pages 314–329, August 1988.

750 Bibliography

[Jaf81] Jaffe, J. M. Flow control power is nondecentralizable. IEEE Transac-

tions on Communications COM-29(9):1301–1306, September 1981.

[Jai89] Jain, R. A delay-based approach for congestion avoidance in inter-

connected heterogeneous computer networks. ACM Computer Com-

munication Review 19(5):56–71, October 1989.

[Jai91] Jain, R. The Art of Computer Systems Performance Analysis: Tech-

niques for Experimental Design, Measurement, Simulation, and

Modeling. John Wiley & Sons, New York, 1991.

[Jai94] Jain, R. FDDI Handbook: High-Speed Networking Using Fiber and

Other Media. Addison-Wesley, Reading, MA, 1994.

[JBB92] Jacobson, V., R. Braden, and D. Borman. TCP extensions for high

performance. Request for Comments 1323, May 1992.

[KA98a] Kent, S., and R. Atkinson. IP authentication header. Request for Com-

ments 2402, November 1998.

[KA98b] Kent, S., and R. Atkinson. IP encapsulating security payload (ESP).

Request for Comments 2406, November 1998.

[KC88] Kanakia, H., and D. R. Cheriton. The VMP network adaptor board

(NAB): High-performance network communication for multiproces-

sors. Proceedings of the SIGCOMM ’88 Symposium, pages 175–187,

August 1988.

[Kes91] Keshav, S. A control-theoretic approach to flow control. Proceedings

of the SIGCOMM ’91 Symposium, pages 3–15, September 1991.

[KHR02] Katabi, D., M. Handley, and C. Rohrs. Congestion control for

high bandwidth-delay product networks. Proceedings of the ACM

SIGCOMM ’02, pages 89–102, August 2002.

[Kle75] Kleinrock, L. Queuing Systems. Volume 1: Theory. John Wiley &

Sons, New York, 1975.

[Kle79] Kleinrock, L. Power and deterministic rules of thumb for prob-

abilistic problems in computer communications. Proceedings of

Bibliography 751

the International Conference on Communications, pages 43.1.1–

43.1.10, June 1979.

[KM87] Kent, C., and J. Mogul. Fragmentation considered harmful. Pro-

ceedings of the SIGCOMM ’87 Symposium, pages 390–401,

August 1987.

[KP91] Karn, P., and C. Partridge. Improving round-trip time estimates in re-

liable transport protocols. ACM Transactions on Computer Systems

9(4):364–373, November 1991.

[KPS02] Kaufman, C., R. Perlman, and M. Speciner. Network Security:

Private Communication in a Public World. Prentice Hall, Englewood

Cliffs, NJ, 2002.

[LAAJ00] Labovitz, C., A. Ahuja, A. Abose, and F. Jahanian. Delayed

internet routing convergence. Proceedings of the SIGCOMM 2000

Symposium, Stockholm, Sweden, pages 293–306, August 2000.

[Lin93] Lin, H.-A. Estimation of the optimal performance of ASN.1/BER

transfer syntax. Computer Communications Review 23(3):45–58,

July 1993.

[LM97] Lin, D., and R. Morris. Dynamics of random early dectection. Pro-

ceedings of the SIGCOMM ’97 Symposium, pages 127–136, Cannes,

France, October 1997.

[LMKQ89] Leffler, S. J., M. K. McKusick, M. J. Karels, and J. S. Quarterman. The

Design and Implementation of the 4.3BSD UNIX Operating System.

Addison-Wesley, Reading, MA, 1989.

[LPW02] Low, S., L. Peterson, and L. Wang. Understanding TCP Vegas:

A duality model. Journal of the ACM 49(2):207–235, March 2002.

[LPW+02] Low, S., F. Paganini, J. Wang, S. Adlakha, and J. Doyle. Dynamics of

TCP/RED and a scalable control. IEEE INFOCOM, pages 239–248,

June 2002.

[LS98] Lakshman, T. V., and D. Stiliadis. High speed policy-based packet

forwarding using efficient multi-dimensional range matching.

752 Bibliography

Proceedings of the SIGCOMM ’98 Symposium, pages 203–214,

September 1998.

[LTWW94] Leland, W., M. Taqqu, W. Willinger, and D. Wilson. On the

self-similar nature of Ethernet traffic. IEEE/ACM Transactions on

Networking 2:1–15, February 1994.

[Mal93] Malkin, G. RIP version 2 carrying additional information. Request

for Comments 1388, January 1993.

[MD90] Mogul, J., and S. Deering. Path MTU discovery. Request for

Comments 1191, November 1990.

[MD93] McKenney, P. E., and K. F. Dove. Efficient demultiplexing of

incoming TCP packets. Proceedings of the SIGCOMM ’92 Sympo-

sium, pages 269–280, August 1993.

[MD98] Madson, C., and N. Doraswamy. The ESP DES-CBC cipher algorithm

with explicit IV. Request for Comments 2405, November 1998.

[MG98a] Madson, C., and R. Glenn. The use of HMAC-MD5-96 within ESP

and AH. Request for Comments 2403, November 1998.

[MG98b] Madson, C., and R. Glenn. The use of HMAC-SHA-1-96

within ESP and AH. Request for Comments 2404, November

1998.

[Min93] Minoli, D. Enterprise Networking: Fractional T1 to SONET, Frame

Relay to BISDN. Artech House, Norwood, MA, 1993.

[MJ95] McCanne, S., and V. Jacobson. vic: A flexible framework for packet

video. ACM Multimedia ’95, pages 511–522, 1995.

[Mor68] Morrison, D. PATRICIA—A practical algorithm to retrieve informa-

tion coded in alphanumeric. Journal of the ACM 15(4):514–534,

October 1968.

[Moy98] Moy, J. OSPF version 2. Request for Comments 2328, April 1998.

Bibliography 753

[MP85] Mogul, J., and J. Postel. Internet standard subnetting procedure. Re-

quest for Comments 950, August 1985.

[MPBO96] Mosberger, D., L. Peterson, P. Bridges, and S. O’Malley. Analy-

sis of techniques to improve protocol latency. Proceedings of the

SIGCOMM ’96 Symposium, pages 73–84, August 1996.

[MPFL96] Mitchell, J. L., W. B. Pennebaker, C. E. Fogg, and D. J. LeGall. MPEG

Video: Compression Standard. Chapman Hall, New York, 1996.

[MR91] McCloghrie, K., and M. Rose. Management information base for

network management of TCP/IP-based internets: MIB-II. Request for

Comments 1213, March 1991.

[MSST98] Maughan, D., M. Schertler, M. Schneider, and J. Turner. Inter-

net security association and key management protocol (ISAKMP).

Request for Comments 2408, November 1998.

[Mul90] Mullender, S. Amoeba: A distributed operating system for the 1990s.

IEEE Computer 23(5):44–53, May 1990.

[MVS01] Moore, D., G. Voelker, and S. Savage. Inferring Internet denial of

service activity. Proceedings of 2001 USENIX Security Symposium,

pages 9–22, August 2001.

[Nel92] Nelson, M. The Data Compression Book. M&T Books, San

Mateo, CA, 1992.

[Nol97] Noll, P. MPEG digital audio coding. IEEE Signal Processing

Magazine, pages 59–81, September 1997.

[NRC94] National Research Council, Computer Science and Telecommunica-

tions Board. Realizing the Information Future: The Internet and Be-

yond. National Academy Press, Washington, DC, 1994.

[NRC01] National Research Council. Looking Over the Fence at Networks.

National Academy Press, Washington, DC, 2001.

754 Bibliography

[NYKT94] Nahum, E. M., D. J. Yates, J. F. Kurose, and D. Towsley. Perfor-

mance issues in parallelized network protocols. Proceedings of the

First USENIX Symposium on Operating System Design and Imple-

mentation (OSDI), pages 125–137, November 1994.

[OCD+88] Ousterhout, J. K., A. R. Cherenson, F. Douglis, M. N. Nelson,

and B. B. Welch. The Sprite network operating system. IEEE Com-

puter 21(2):23–36, February 1988.

[OP91] O’Malley, S., and L. Peterson. TCP extensions considered harmful.

Request for Comments 1263, October 1991.

[OPM94] O’Malley, S. W., T. A. Proebsting, and A. B. Montz. Universal stub

compiler. Proceedings of the SIGCOMM ’94 Symposium, pages 295–

306, August 1994.

[OSF94] Open Software Foundation. OSF DCE Application Environment

Specification. Prentice Hall, Englewood Cliffs, NJ, 1994.

[PACR02] Peterson, L., T. Anderson, D. Culler, and T. Roscoe. A blueprint for

introducing disruptive technology into the Internet. Proceedings of

HotNets-I, October 2002.

[Pad85] Padlipsky, M. A. The Elements of Networking Style and Other Es-

says and Animadversions on the Art of Intercomputer Networking.

Prentice Hall, Englewood Cliffs, NJ, 1985.

[Par94] Partridge, C. Gigabit Networking. Addison-Wesley, Reading, MA,

1994.

[Par98] Partridge, C., et al. A 50 Gb/s IP router. IEEE/ACM Transactions on

Networking 6(3):237–247, June 1998.

[PB61] Peterson, W. W., and D. T. Brown. Cyclic codes for error detection.

Proceedings of the IRE, 49:228–235, January 1961.

[Per00] Perlman, R. Interconnections: Bridges, Routers, Switches and Inter-

networking Protocols. Addison-Wesley, Reading, MA, second edi-

tion, 2000.

Bibliography 755

[Pet88] Peterson, L. L. The Profile naming service. ACM Transactions on

Computer Systems 6(4):341–364, November 1988.

[PF94] Paxson, V., and S. Floyd. Wide-area traffic: The failure of Poisson

modeling. Proceedings of the SIGCOMM ’94 Symposium, pages

257–268, London, UK, August 1994.

[PFTK98] Padhye, J., V. Firoiu, D. Towsley, and J. Kursoe. Modeling TCP

throughput: A simple model and its empirical validation. ACM

SIGCOMM ’98 Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communication, pages 303–314,

Vancouver, Canada, 1998.

[Pip98] Piper, D. The Internet IP security domain of interpretation for

ISAKMP. Request for Comments 2407, November 1998.

[PL01] Park, K., and H. Lee. On the effectiveness of route-based packet fil-

tering for distributed DoS attack prevention in power-law internets.

Proceedings of ACM SIGCOMM ’01, pages 15–26, August 2001.

[PM97] Perkins, D., and E. McGinnis. Understanding SNMP MIBS. Prentice

Hall, Upper Saddle River, NJ, 1997.

[Pos81] Postel, J. Internet Protocol. Request for Comments 791, September

1981.

[Pos82] Postel, J. Simple Mail Transfer Protocol. Request for Comments 821,

August 1982.

[QPP02] Qie, X., R. Pang, and L. Peterson. Defensive programming: Using an

annotation toolkit to build DoS-resistant software. Proceedings of

OSDI ’02, pages 45–60, December 2002.

[Ram93] Ramakrishnan, K. K. Performance considerations in designing net-

work interfaces. IEEE Journal of Selected Areas in Communication

(JSAC) 11(2):203–219, February 1993.

[RDR+97] Rekhter, Y., B. Davie, E. Rosen, G. Swallow, D. Farinacci, and

D. Katz. Tag switching architecture overview. Proceeedings of the

IEEE 82(12):1973–1983, December 1997.

756 Bibliography

[RF89] Rao, T. R. N., and E. Fujiwara. Error-Control Coding for Computer

Systems. Prentice Hall, Englewood Cliffs, NJ, 1989.

[RF94] Romanow, A., and S. Floyd. Dynamics of TCP traffic over ATM

networks. Proceedings of the SIGCOMM ’94 Symposium, pages 79–

88, October 1994.

[RFB01] Ramakrishnan, K., S. Floyd, and D. Black. The addition of explicit

congestion notification (ECN) to IP. Request for Comments 3168,

September 2001.

[RHE99] Rejaie, R., M. Handley, and D. Estrin. RAP: An end-to-end rate-based

congestion control mechanism for realtime streams in the internet.

INFOCOM (3), pages 1337–1345, 1999.

[Rit84] Ritchie, D. A stream input-output system. AT&T Bell Laboratories

Technical Journal 63(8):311–324, October 1984.

[RL95] Rekhter, Y., and T. Li. A Border Gateway Protocol 4 (BGP-4). Request

for Comments 1771, March 1995.

[Rob93] Robertazzi, T. G., editor. Performance Evaluation of High Speed

Switching Fabrics and Networks: ATM, Broadband ISDN, and MAN

Technology. IEEE Press, Piscataway, NJ, 1993.

[Ros86] Ross, F. E. FDDI—A tutorial. IEEE Communications 24(5):10–17,

May 1986.

[ROY00] Rhee, I., V. Ozdemir, and Y. Yi. Tear: TCP emulation at receivers—

Flow control for multimedia streaming, NCSU technical report, April

2000.

[RR99] Rosen, E., and Y. Rekhter. BGP/MPLS VPNs. Request for Comments

2547, March 1999.

[RS01] Ramaswami, R., and K. Sivarajan. Optical Networks: A Practical

Perspective, Second Edition. Morgan Kaufmann Publishers, San

Francisco, second edition, 2001.

Bibliography 757

[RS02] Rabinovich, M., and O. Spatscheck. Web Caching and Replication.

Addison-Wesley, Reading, MA, 2002.

[Sal78] Saltzer, J. Naming and binding of objects. Lecture Notes on Computer

Science 60:99–208, 1978.

[SB89] Schroeder, M. D., and M. Burrows. Performance of Firefly RPC. Pro-

ceedings of the 12th ACM Symposium on Operating Systems Princi-

ples, pages 83–90, December 1989.

[SCFJ96] Schulzrinne, H., S. Casner, R. Frederick, and V. Jacobson. RTP: A

transport protocol for real-time applications. Request for Comments

1889, January 1996.

[Sch95] Schneier, B. Applied Cryptography: Protocols, Algorithms, and

Source Code in C. John Wiley & Sons, New York, 1995.

[SCH+99] Savage, S., A. Collins, E. Hoffman, J. Snell, and T. Anderson. The

end-to-end effects of Internet path selection. Proceedings of the

ACM SIGCOMM Conference, Cambridge, MA, pages 289–300,

September 1999.

[SCJ+02] Schulzrinne, H., G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. SIP: Session initiation protocol. Request

for Comments 3261, June 2002.

[Sha48] Shannon, C. A mathematical theory of communication. Bell Systems

Technical Journal 27:379–423, 623–656, 1948.

[Sho78] Shoch, J. Inter-network naming, addressing, and routing. Seventeenth

IEEE Computer Society International Conference (COMPCON),

pages 72–79, September 1978.

[SHP91] Spragins, J., J. Hammond, and K. Pawlikowski. Telecommunications:

Protocols and Design. Addison-Wesley, Reading, MA, 1991.

[SKPG01] Spalink, T., S. Karlin, L. Peterson, and Y. Gottlieb. Building a ro-

bust software-based router using network processors. Proceedings of

758 Bibliography

the 18th ACM Symposium on Operating Systems Principles (SOSP),

pages 216–229, Chateau Lake Louise, Banff, Alberta, Canada,

October 2001.

[SP99] Spatscheck, O., and L. Peterson. Defending against denial of service

attacks in Scout. Proceedings of OSDI ’99, pages 59–72, February

1999.

[SPS+01] Snoeren, A. C., C. Partridge, L. A. Sanchez, C. E. Jones, F.

Tchakountio, S. T. Kent, and W. T. Strayer. Hash-based IP traceback.

Proceedings of ACM SIGCOMM ’01, pages 3–14, August 2001.

[Sri95a] Srinivasan, R. RPC: Remote procedure call protocol specification

version 2. Request for Comments 1831, August 1995.

[Sri95b] Srinivasan, R. XDR: External data representation standard. Request

for Comments 1832, August 1995.

[SS98] Sisalem, D., and H. Schulzrinne. The loss-delay based adjust-

ment algorithm: A TCP-friendly adaptation scheme. Proceedings of

NOSSDAV, Cambridge, UK, pages 215–226, 1998.

[SSZ98] Stoica, I., S. Shenker, and H. Zhang. Core-stateless fair queuing: A

scalable architecture to approximate fair bandwidth allocations in

high-speed networks. ACM SIGCOMM ’98, pages 118–130, August

1998.

[Sta00a] Stallings, W. Data and Computer Communications. Prentice Hall,

Upper Saddle River, NJ, sixth edition, 2000.

[Sta00b] Stallings, W. Local and Metropolitan Area Networks. Prentice Hall,

Upper Saddle River, NJ, sixth edition, 2000.

[Ste94a] Steenkiste, P. A. A systematic approach to host interface design for

high speed networks. IEEE Computer 27(3):47–57, March 1994.

[Ste94b] Stevens, W. R. TCP/IP Illustrated. Volume 1: The Protocols. Addison-

Wesley, Reading, MA, 1994.

Bibliography 759

[SVSW98] Srinivasan, V., G. Varghese, S. Suri, and M. Waldvogel. Fast scalable

level four switching. Proceedings of the SIGCOMM ’98 Symposium,

pages 191–202, September 1998.

[SW95] Stevens, W. R., and G. R. Wright. TCP/IP Illustrated. Volume 2: The

Implementation. Addison-Wesley, Reading, MA, 1995.

[SWKA00] Savage, S., D. Wetherall, A. Karlin, and T. Anderson. Practical

network support for IP traceback. Proceedings of the 2000 ACM

SIGCOMM Conference, pages 295–306, August 2000.

[SZ97] Stoica, I., and H. Zhang. A hierarchical fair service curve algorithm

for link-sharing and priority services. Proceedings of the SIGCOMM

’97 Symposium, pages 249–262, October 1997.

[Tan01] Tanenbaum, A. S. Modern Operating Systems. Prentice Hall, Upper

Saddle River, NJ, second edition, 2001.

[Tan02] Tanenbaum, A. S. Computer Networks. Prentice Hall, Upper Saddle

River, NJ, fourth edition, 2002.

[Ter86] Terry, D. Structure-free name management for evolving distributed

environments. Sixth International Conference on Distributed Com-

puting Systems, pages 502–508, May 1986.

[TL93] Thekkath, C. A., and H. M. Levy. Limits to low-latency commu-

nication on high-speed networks. ACM Transactions on Computer

Systems 11(2):179–203, May 1993.

[TS93] Traw, C. B. S., and J. M. Smith. Hardware/software organization

of a high-performance ATM host interface. IEEE Journal of Selec-

ted Areas in Communications (JSAC) 11(2):240–253, February

1993.

[VL87] Varghese, G., and T. Lauck. Hashed and hierarchical timing wheels:

Data structures for the efficient implementation of a timer facility.

Proceedings of the 11th ACM Symposium on Operating Systems

Principles, pages 25–38, November 1987.

760 Bibliography

[Wat81] Watson, R. Identifiers (naming) in distributed systems. In B. Lampson,

M. Paul, and H. Siegert, editors, Distributed System—Architecture

and Implementation, pages 191–210. Springer-Verlag, New York,

1981.

[WC91] Wang, Z., and J. Crowcroft. A new congestion control scheme: Slow

start and search (Tri-S). ACM Computer Communication Review

21(1):32–43, January 1991.

[WC92] Wang, Z., and J. Crowcroft. Eliminating periodic packet losses in

4.3-Tahoe BSD TCP congestion control algorithm. ACM Computer

Communication Review 22(2):9–16, April 1992.

[Wel84] Welch, T. A technique for high-performance data compression. IEEE

Computer 17(6):8–19, June 1984.

[WM87] Watson, R. W., and S. A. Mamrak. Gaining efficiency in transport

services by appropriate design and implementation choices. ACM

Transactions on Computer Systems 5(2):97–120, May 1987.

[WMB99] Witten, I. H., A. Moffat, and T. C. Bell. Managing Gigabytes: Com-

pressing and Indexing Documents and Images. Morgan Kaufmann

Publishers, San Francisco, 1999.

[WPP02] Wang, L., V. Pai, and L. Peterson. The effectiveness of request redirec-

tion on CDN robustness. Proceedings of OSDI ’02, pages 345–360,

December 2002.

[WVTP97] Waldvogel, M., G. Varghese, J. Turner, and B. Plattner. Scalable high

speed routing lookups. Proceedings of the SIGCOMM ’97 Sympo-

sium, pages 25–36, October 1997.

[YHA87] Yeh, Y.-S., M. B. Hluchyj, and A. S. Acampora. The knockout

switch: A simple, modular architecture for high-performance packet

switching. IEEE Journal of Selected Areas in Communication (JSAC)

5(8):1274–1283, October 1987.

[ZDE+93] Zhang, L., S. Deering, D. Estrin, S. Schenker, and D. Zappala. RSVP:

A new resource reservation protocol. IEEE Network 7(9):8–18,

September 1993.

Bibliography 761

[ZL77] Ziv, J., and A. Lempel. A universal algorithm for sequential data

compression. IEEE Transactions on Information Theory 23(3):337–

343, May 1977.

[ZL78] Ziv, J., and A. Lempel. Compression of individual sequences via

variable-rate coding. IEEE Transactions on Information Theory

24(5):530–536, September 1978.

This Page Intentionally Left Blank

S O L U T I O N S T O S E L E C T E D E X E R C I S E S

Chapter 1

6. We will count the transfer as completed when the last data bit arrives at its desti-

nation.

(a) 1.5 MB = 12,582,912 bits. 2 initial RTTs (160 ms) + 12,582,912/10,000,000

bps (transmit) + RTT/2 (propagation) ≈ 1.458 seconds.

(b) To the above we add the time for 1499 RTTs (the number of RTTs between

when packet 1 arrives and packet 1000 arrives), for a total of 1.46+119.92 =
121.38.

(c) This is 74.5 RTTs, plus the initial 2, for 6.12 seconds.

(d) Right after the handshaking is done we send one packet. One RTT after the

handshaking we send two packets. At n RTTs past the initial handshaking we

have sent 1 + 2 + 4 + · · · + 2n = 2n+1 − 1 packets. At n = 10 we have thus

been able to send all 1000 packets; the last batch arrives 0.5 RTT later. Total

time is 2 + 10.5 RTTs, or 1 second.

8. Propagation delay is 50 × 103 m/(2 × 108 m/s) = 250 μs. 800 bits/250 μs is 3.2

Mbps. For 512-byte packets, this rises to 16.4 Mbps.

16. (a) Propagation delay on the link is (55 × 109)/(3 × 108) = 184 seconds. Thus

the RTT is 268 seconds.

(b) The delay × bandwidth product for the link is the RTT × the bandwidth =
23.5 Mb.

(c) After a picture is taken it must be transmitted on the link and be completely

propagated before Mission Control can interpret it. Transmit delay for 5 Mb

of data is 39 seconds. Thus, the total time required is transmit delay + prop-

agation delay = 223 seconds.

19. (a) For each link, it takes 1 Gbps/5 Kb = 5 μs to transmit the packet on the link,

after which it takes an additional 10 μs for the last bit to propagate across

764 Solutions to Selected Exercises

the link. Thus for a LAN with only one switch that starts forwarding only

after receiving the whole packet, the total transfer delay is two transmit delays

+ two propagation delays = 30 μs.

(b) For three switched and thus four links, the total delay is four transmit delays

+ four propagation delays = 60 μs.

(c) For “cut-through,” a switch need only decode the first 128 bits before begin-

ning to forward. This takes 128 ns. This delay replaces the switch transmit

delays in the previous answer, for a total delay of one transmit delay + three

cut-through decoding delays + four propagation delays = 45.384 μs.

29. (a) 1920 × 1080 × 24 × 30 = 1,492,992,000 ≈ 1.5 Gbps.

(b) 8 × 8000 = 64 Kbps.

(c) 260 × 50 = 13 Kbps.

(d) 24 × 88, 200 = 216, 800 ≈ 2.1 Mbps.

Chapter 2

3. The 4B/5B encoding of the given bit sequence is the following:

11011 11100 10110 11011 10111 11100 11100 11101

1 110 0 0 0 0 0 0 0 0 0 0 0 0 0Bits

NRZ

7. Let ∧ mark each position where a stuffed 0 bit was removed. There was one error

where the seven consecutive 1s are detected (err). At the end of the bit sequence,

the end of frame was detected (eof).

01101011111∧101001111111
err

0 110 01111110
eof

19. (a) We take the message 1011 0010 0100 1011, append eight Os, and divide by

1 0000 0111 (x8 + x2 + x1 + 1). The remainder is 1001 0011. We transmit the

original message with this remainder appended, resulting in

1011 0010 0100 0011 1001 0011.

Solutions to Selected Exercises 765

(b) Inverting the first bit gives 0011 0010 0100 1011 1001 0011. Dividing by

1 0000 0111 (x8 + x2 + x1 + 1) gives a remainder of 1011 0110.

25. One-way latency of the link is 100 ms. Bandwidth × roundtrip delay is about 125

packets/second × 0.2 seconds, or 25 packets. SWS should be this large.

(a) If RWS = 1, the necessary sequence number space is 26. Therefore 5 bits are

needed.

(b) If RWS = SWS, the sequence number space must cover twice the SWS, or up

to 50. Therefore 6 bits are needed.

32. The following gives the timeline for the first case. The second case reduces the

total transaction time by roughly 1 RTT.

FRAME[1]

FRAME[2]

FRAME[3]
FRAME[4]

FRAME[5]

FRAME[2]

FRAME[6]

ACK[1]

ACK[5]

ACK[6]

1 RTT

2 RTT

3 RTT

4 RTT

Timeout

FRAME[1]
FRAME[2]

FRAME[3]
FRAME[4]

FRAME[5]

FRAME[2]

FRAME[6]

ACK[1]

ACK[5]

ACK[6]

1 RTT

2 RTT

3 RTT

4 RTT

DUPACK[2]

DUPACK[2]

DUPACK[2]
DUPACK[2]

DUPACK[2]

DUPACK[2]

766 Solutions to Selected Exercises

Chapter 3

2. The following table is cumulative; at each part the VCI tables consist of the entries

at that part and also all previous entries.

Input Output
Exercise

part Switch Port VCI Port VCI

(a) 1 0 0 1 0

2 3 0 1 0

4 3 0 0 0

(b) 2 0 0 1 1

3 3 0 0 0

4 3 1 1 0

(c) 1 1 1 2 0

2 1 2 3 1

4 2 0 3 2

(d) 1 1 2 3 0

2 1 3 3 2

4 0 1 3 3

(e) 2 0 1 2 0

3 2 0 0 1

(f) 2 1 4 0 2

3 0 2 1 0

4 0 2 3 4

14. The following list shows the mapping between LANs and their designated bridges:

B1 A-interface: A B2-interface: D (not C)

B2 B1-interface: A B3-interface: C B4-interface: D

B3 C-interface: C B2-interface: A, D

B4 D-interface: D B2-interface: C (not A)

B1 dead

B2 A, B, D

B3 E, F, G, H

B4 I

Solutions to Selected Exercises 767

B5 idle

B6 J

B7 C

16. All bridges see the packet from D to C. Only B3, B2, and B4 see the packet from

C to D. Only B1, B2, and B3 see the packet from A to C.

33. Since the I/O bus speed is less than the memory bandwidth, it is the bottleneck.

Effective bandwidth that the I/O bus can provide is 1000/2 Mbps because each

packet crosses the I/O bus twice. Therefore, the number of interfaces is ⌊500/45⌋ =
11.

Chapter 4

5. By definition, path MTU is 512 bytes. Maximum IP payload size is 512 − 20 =
492 bytes. We need to transfer 2048 + 20 = 2068 bytes in the IP payload. This

would be fragmented into 4 fragments of size 492 bytes and 1 fragment of size

100 bytes. There are 5 packets in total if we use path MTU. In the previous setting

we needed 7 packets.

16. (a)

Information
Distance to Reach Node

Stored at Node A B C D E F

A 0 2 ∞ 5 ∞ ∞
B 2 0 2 ∞ 1 ∞
C ∞ 2 0 2 ∞ 3

D 5 ∞ 2 0 ∞ ∞
E ∞ 1 ∞ ∞ 0 3

F ∞ ∞ 3 ∞ 3 0

(b)

Information
Distance to Reach Node

Stored at Node A B C D E F

A 0 2 4 5 3 ∞
B 2 0 2 4 1 4

C 4 2 0 2 3 3

D 5 4 2 0 ∞ 5

E 3 1 3 ∞ 0 3

F ∞ 4 3 5 3 0

768 Solutions to Selected Exercises

(c)

Information
Distance to Reach Node

Stored at Node A B C D E F

A 0 2 4 5 3 6
B 2 0 2 4 1 4
C 4 2 0 2 3 3
D 5 4 2 0 5 5
E 3 1 3 5 0 3
F 6 4 3 5 3 0

19. The following is an example network topology:

AA CC FF

BB DD EE

22. Apply each subnet mask, and if the corresponding subnet number matches the

SubnetNumber column, then use the entry in NextHop.

(a) Applying the subnet mask 255.255.254.0, we get 128.96.170.0. Use interface

0 as the next hop.

(b) Applying subnet mask 255.255.254.0, we get 128.96.166.0 (next hop is R2).

Applying subnet mask 255.255.252.0, we get 128.96.164.0 (next hop is R3).

However, 255.255.254.0 is a longer prefix. Use R2 as the next hop.

(c) None of the subnet number entries match; hence use default router R4.

(d) Applying subnet mask 255.255.254.0, we get 128.96.168.0. Use interface 1

as the next hop.

(e) Applying subnet mask 255.255.252.0, we get 128.96.164.0. Use R3 as the

next hop.

29.

Step Confirmed Tentative

1 (A,0,-)

2 (A,0,-) (B,1,B) (D,5,D)

3 (A,0,-) (B,1,B) (D,4,B) (C,7,B)

4 (A,0,-) (B,1,B) (D,4,B) (C,5,B) (E,7,B)

5 (A,0,-) (B,1,B) (D,4,B) (C,5,B) (E,6,B)

6 (A,0,-) (B,1,B) (D,4,B) (C,5,B) (E,6,B)

Solutions to Selected Exercises 769

46. (a) F (b) B (c) E (d) A (e) D (f) C

56. The following denotes the active ports.

source

source
R1

R2

R3 R4 R5

R6 R7

D

E

R1
R2

R3 R4 R5

R6 R7

D

E

Chapter 5

10. The advertised window should be large enough to keep the pipe full; delay (RTT) ×
bandwidth here is 140 ms × 1 Gbps = 140 Mb = 17.5 MB of data. This requires 25

bits (225 = 33, 554, 432) for the AdvertisedWindow field. The sequence number

field must not wrap around in the maximum segment lifetime. In 60 seconds,

770 Solutions to Selected Exercises

7.5 GB can be transmitted. 33 bits allows a sequence space of 8.6 GB, and so will

not wrap in 60 seconds.

13. (a) 232 bytes / (5 GB) = 859 ms.

(b) 1000 ticks in 859 ms is once each 859 μs, indicating wraparound in 3.7 Ms

or approx 43 days.

27. Using initial Deviation = 50, it took 20 iterations for TimeOut to fall below 300.0.

Iteration SampleRTT EstRTT Dev diff TimeOut

0 200.0 90.0 50.0

1 200.0 103.7 57.5 110.0 333.7

2 200.0 115.7 62.3 96.3 364.9

3 200.0 126.2 65.0 84.3 386.2

4 200.0 135.4 66.1 73.8 399.8

5 200.0 143.4 66.0 64.6 407.4

6 200.0 150.4 64.9 56.6 410.0

7 200.0 156.6 63.0 49.6 408.6

8 200.0 162.0 60.6 43.4 404.4

9 200.0 166.7 57.8 38.0 397.9

10 200.0 170.8 54.8 33.3 390.0

11 200.0 174.4 51.6 29.2 380.8

12 200.0 177.6 48.4 25.6 371.2

13 200.0 180.4 45.2 22.4 361.2

14 200.0 182.8 42.0 19.6 350.8

15 200.0 184.9 38.9 17.2 340.5

16 200.0 186.7 36.0 15.1 330.7

17 200.0 188.3 33.2 13.3 321.1

18 200.0 189.7 30.6 11.7 312.1

19 200.0 190.9 28.1 10.3 303.3

20 200.0 192.0 25.8 9.1 295.2

Chapter 6

11. (a) First we calculate the finishing times Fi . We don’t need to worry about clock

speed here since we may take Ai = 0 for all the packets. Fi thus becomes just

the cumulative per-flow size, that is, Fi = Fi−1 + Pi .

Solutions to Selected Exercises 771

Packet Size Flow Fi

1 200 1 200

2 200 1 400

3 160 2 160

4 120 2 280

5 160 2 440

6 210 3 210

7 150 3 360

8 90 3 450

We now send in increasing order of Fi : packet 3, packet 1, packet 6, packet

4, packet 7, packet 2, packet 5, packet 8.

(b) To give flow 1 a weight of 2, we divide each of its Fi by 2, that is, Fi =
Fi−1 + Pi/2. To give flow 2 a weight of 4, we divide each of its Fi by 4, that is,

Fi = Fi−1 + Pi/4. To give flow 3 a weight of 3, we divide each of its Fi by 3,

that is, Fi = Fi−1 + Pi/3. Again we are using the fact that there is no waiting.

Packet Size Flow Weighted Fi

1 200 1 100

2 200 1 200

3 160 2 40

4 120 2 70

5 160 2 110

6 210 3 70

7 150 3 120

8 90 3 150

Transmitting in increasing order of the weighted Fi we send as follows: packet

3, packet 4, packet 6, packet 1, packet 5, packet 7, packet 8, packet 2.

15. (a) For the ith arriving packet on a given flow, we calculate its estimated finish-

ing time Fi by the formula Fi = max{Ai , Fi−1} + 1, where the clock used to

measure the arrival times Ai runs slow by a factor equal to the number of

772 Solutions to Selected Exercises

active queues. The Ai clock is global; the sequence of Fi ’s calculated as above

is local to each flow.

The following table lists all events by wall clock time. We identify pack-

ets by their flow and arrival time; thus, packet A4 is the packet that arrives on

flow A at wall clock time 4, that is, the third packet. The last three columns are

the queues for each flow for the subsequent time interval, including the packet

currently being transmitted. The number of such active queues determines the

amount by which Ai is incremented on the subsequent line. Multiple packets

appear on the same line if their Fi values are all the same; the Fi values are

in italic when Fi = Fi−1 + 1 (versus Fi = Ai + 1).

Wall A’s B’s C’s

Clock Ai Arrivals Fi Sent Queue Queue Queue

1 1.0 A1, B1, C1 2.0 A1 A1 B1 C1

2 1.333 C2 3.0 B1 B1 C1, C2

3 1.833 A3 3.0 C1 A3 C1, C2

4 2.333 B4 3.333 A3 A3 B4 C2, C4

C4 4.0

5 2.666 A5 4.0 C2 A5 B4 C2, C4

6 3.0 A6 5.0 B4 A5, A6 B4 C4, C6

C6 5.0

7 3.333 B7 4.333 A5 A5, A6 B7 C4, C6, C7

C7 6.0

8 3.666 A8 6.0 C4 A6, A8 B7, B8 C4, C6, C7

B8 5.333

9 4 A9 7.0 B7 A6, A8, A9 B7, B8, B9 C6, C7

B9 6.333

10 4.333 A6 A6, A8, A9 B8, B9 C6, C7

11 4.666 A11 8.0 C6 A8, A9, A11 B8, B9 C7

12 5 C12 7.0 B8 A8, A9, A11 B8, B9 C7, C12

13 5.333 B13 7.333 A8 A8, A9, A11 B9, B13 C7, C12

14 5.666 C7 A9, A11 B9, B13 C7, C12

15 6.0 B15 8.333 B9 A9, A11 B9, B13, B15 C12

16 6.333 A9 A9, A11 B13, B15 C12

17 6.666 C12 A11 B13, B15 C12

18 7 B13 A11 B13, B15

19 7.5 A11 A11 B15

20 8 B15 B15

Solutions to Selected Exercises 773

(b) For weighted fair queuing we have, for flow B,

Fi = max{Ai , Fi−1} + 0.5

For flows A and C, Fi is as before. Here is the table corresponding to the one

above.

Wall A’s B’s C’s

Clock Ai Arrivals Fi Sent Queue Queue Queue

1 1.0 A1, C1 2.0 B1 A1 B1 C1

B1 1.5

2 1.333 C2 3.0 A1 C1, C2

3 1.833 A3 3.0 C1 A1 C1, C2

4 2.333 B4 2.833 B4 A3 B4 C2, C4

C4 4.0

5 2.666 A5 4.0 A3 A3, A5 C2, C4

6 3.166 A6 5.0 C2 A5, A6 C2, C4, C6

C6 5.0

7 3.666 B7 4.167 A5 A5, A6 B7 C4, C6, C7

C7 6.0

8 4.0 A8 6.0 C4 A6, A8 B7, B8 C6, C7

B8 4.666

9 4.333 A9 7.0 B7 A6, A8, A9 B7, B8, B9 C6, C7

B9 5.166

10 4.666 B8 A6, A8, A9 B8, B9 C6, C7

11 5.0 A11 8.0 A6 A6, A8, A9, A11 B9 C6, C7

12 5.333 C12 7.0 C6 A8, A9, A11 B9 C6, C7, C12

13 5.666 B13 6.166 B9 A8, A9, A11 B9, B13 C7, C12

14 6.0 A8 A9, A11 B13 C7, C12

15 6.333 B15 6.833 C7 A9, A11 B13, B15 C12

16 6.666 B13 A9, A11 B13, B15 C12

17 7.0 B15 A11 B15 C12

18 7.333 A9 A11 C12

19 7.833 C12 A11 C12

20 8.333 A11 A11

774 Solutions to Selected Exercises

36. (a) We have

TempP = MaxP ×
AvgLen − MinThreshold

MaxThreshold − MinThreshold

AvgLen is halfway between MinThreshold and MaxThreshold, which implies

that the fraction here is 1/2 and so TempP = MaxP/2 = p/2.

We now have Pcount = TempP/(1 − count × TempP) = 1/(x − count),

where x = 2/p. Therefore 1 − Pcount = x− (count + 1)
x− count

. Evaluating the product

(1 − P1) × · · · × (1 − Pn) gives x− 2
x− 1 · x− 3

x− 2 · · · · x− (n + 1)
x− n

= x− (n + 1)
x− 1 , where

x = 2/p.

(b) From the result of the previous question, α = x− (n + 1)
x− 1 . Therefore x =

(n + 1) − α

1 − α
= 2/p. Accordingly, p = 2(1 − α)

(n + 1) − α
.

48. At every second, the bucket volume must not be negative. For a given bucket depth

D and token rate r , we can calculate the bucket volume v(t) at time t seconds,

and enforce v(t) to be nonnegative.

v(0) = D − 5 + r = D − (5 − r) ≥ 0

v(1) = D − 5 − 5 + 2r = D − 2(5 − r) ≥ 0

v(2) = D − 5 − 5 − 1 + 3r = D − (11 − 3r) ≥ 0

v(3) = D − 5 − 5 − 1 + 4r = D − (11 − 4r) ≥ 0

v(4) = D − 5 − 5 − 1 − 6 + 5r = D − (17 − 5r) ≥ 0

v(5) = D − 5 − 5 − 1 − 6 − 1 + 6r = D − 6(3 − r) ≥ 0

We define the functions f1(r), f2(r), . . . , f6(r) as follows:

f1(r) = 5 − r

f2(r) = 2(5 − r) = 2 f1(r) ≥ f1(r) (for 1 ≤ r ≤ 5)

f3(r) = 11 − 3r ≤ f2(r) (for r ≥ 1)

f4(r) = 11 − 4r < f3(r) (for r ≥ 1)

f5(r) = 17 − 5r

f6(r) = 6(3 − r) ≤ f5(r) (for r ≥ 1)

First of all, for r ≥ 5, fi (r) ≤ 0 for all i . This means if the token rate is faster

than 5 packets per second, any positive bucket depth will suffice, that is, D ≥ 0.

For 1 ≤ r ≤ 5, we only need to consider f2(r) and f5(r), since other functions

are less than these functions. You can easily find f2(r) − f5(r) = 3r − 7.

Solutions to Selected Exercises 775

Therefore, the bucket depth D is enforced by the following formula.

D ≥

⎧

⎨

⎩

f5(r) = 17 − 5r (r = 1, 2)

f2(r) = 2(5 − r) (r = 3, 4, 5)

0 (r ≥ 5)

Chapter 7
2. 4 M A R Y 4377 7 J A N U A R Y 7 2002 2 90000 150000 1

8. INT 4 15

INT 4 29496729

INT 4 58993458

10. 15 be 00000000 00000000 00000000 00001111
15 le 00001111 00000000 00000000 00000000

29496729 be 00000001 11000010 00010101 10011001
29496729 le 10011001 00010101 11000010 00000001

58993458 be 00000011 10000100 00101011 00110010
58993458 le 00110010 00101011 10000100 00000011

Chapter 8

4. We first note that the S box given implies that to get Ri+1 = F (Ri , Ki+1) ⊕ Li , we

simply XOR the middle 4 bits of each 6-bit chunk of Ki+1 with the corresponding

4-bit chunk of Ri . In bits, Ki+1 (5af310 7a3fff in hexadecimal) is

0101 1010 1111 0011 0001 0000 0111 1010 0011 1111 1111 1111

or with the middle four bits separated from each 6-bit piece, with only 4-bit

chunks shown below:

0 1011 01 0111 10 0110 00 1000 00 1111 01 0001 11 1111 11 1111 1
1011 -- 0111 -- 0110 -- 1000 -- 1111 -- 0001 -- 1111 -- 1111

Li = Ri−1 is deadbeef in hex. In bits, it is represented as follows:

1101 1110 1010 1101 1011 1110 1110 1111

From the previous exercise, we get Ri as follows:

1001 0011 0001 0110 1011 1110 1110 1111

776 Solutions to Selected Exercises

Now we can XOR three pieces, Li , Ri , and Ki+1. The final result Ri+1 is the

following:

1111 1010 1101 0011 1111 0001 1111 1111

or, in hex, fad3 f1ff.

7. (a) We must find d so that 5d ≡ 1 mod (p− 1)(q − 1). This means 5d + 72k = 1

for some k. Using the Euclidean mutually dividing algorithm, we find d =
29 + 72r , where r is an arbitrary integer. We take the least positive d = 29.

(b) pq = 91 so m5 mod pq = 75 mod 91 = 63.

(c) cd mod pq = 229 mod 91 = 32.

I N D E X

Numbers

4B/5B encoding, 78–79

defined, 78

efficiency, 78

FDDI, 129

illustrated, 79

See also encoding

6-Bone, 684

10Base2, 113, 114

10BaseT, 113–114

A

AAL3/4, 199–201

cell format, 200

defined, 199

encapsulation and
segmentation, 201

header, 200

packet format, 199

See also ATM Adaptation
Layer (AAL)

AAL5, 201–204

CS-PDU, 202–203

defined, 202

encapsulation and
segmentation, 202

functionality, 203

missing feature, 203

multiplexing and, 203

packet format, 202

See also ATM Adaptation
Layer (AAL)

abstract data type (ADT), 420

Abstract Syntax Notation
One (ASN.1), 543–544

BER, 543

compound data types, 544

data representation, 543

defined, 543

multibyte tags, 543–544

nesting in, 544

representation for 4-byte
integer, 544

representation for length,
545

XDR vs., 544

AC coefficients, 554

access points (APs), 134–136

active scanning, 136

as base station role, 135

illustrated, 135

passive scanning, 136

selecting, 135

See also wireless networks

acknowledgments (ACK)

defined, 98

duplicate, 476

implicit, 415

negative (NAK), 103

for pacing packet
transmission, 468

partial, 409

selective, 103, 409, 431

use strategy, 98

active queue management,
481

active scanning, 136

acyclic tree, 186

ad hoc mobile networks, 299

adaptive retransmission,
397–401

defined, 397

implementation, 400–401

Jacobson/Karels algorithm,
399–400

Karn/Partridge algorithm,
398–399

original algorithm,
397–398

See also Transmission
Control Protocol (TCP)

adaptive video coding,
564–566

additive increase/
multiplicative decrease
(AIMD), 468–471

“additive increase” part,
469–470

concept, 471

defined, 469

“multiplicative decrease”
part, 469

as necessary condition, 471

packets in transit, 469

See also congestion control

Address Resolution Protocol
(ARP), 207, 258–263,
642

ATM, 261–263

defined, 259

goal, 259

invocation, 259

messages, 297

778 Index

Address Resolution Protocol
(ARP) (continued)

packet format, 260

process, 261

proxy, 297

server, 261, 262

table, 260

uses, 260

address utilization, 301

addresses

anycast, 330

assignment efficiency, 306

assignment inefficiency, 301

care-of, 297, 298

contact, 679

flat, 634

global, 182, 250–252

hardware, 298

home, 296

LANE, 207

mapping names into, 693

multicast, 331

names translated into, 635

NSAP, 320

of record, 678–679

source, 182, 190

two-tier, 426

unicast, 323–325

See also IP addresses

addressing

challenge, 234

geographic, 324

hierarchical, 255

subnet, 303

admission control, 502–503

defined, 500, 502

dependency, 502

policing vs., 503

policy and, 503

See also Integrated Services
(IntServ)

Advanced Mobile Phone
System (AMPS), 74

advertised window, 403

aliases, 639

Aloha, 111

anycast address, 330

Application Level Framing
(ALF), 664

application processing, 680

application profile, 673

application programmer
perspective, 6

application programming
interfaces (APIs),
31–33

defined, 31

industry support for, 31

syntax, 31

applications, 4–6, 632–705

conferencing, 661

delay-adaptive, 498

DNS, 632, 634–643

e-mail, 644–650

example, 33–36

file transfer, 492

hybrid, 680–681

multimedia, 660–680

network management,
657–659

non-real-time, 493

performance needs, 48–50

rate-adaptive, 498

real-time, 492, 493–498

real-time audio, 493–496

sdr, 6

streaming, 4, 661–662

summary, 704

traditional, 643–659

vat, 6, 661, 663

vic, 5–6

videoconferencing, 5

video-on-demand, 4–5

voice/video, 492

wb, 6

World Wide Web, 650–657

application-specific protocols,
435–436

areas, 316–318

area border router (ABR),
316, 317

defined, 316

divided into, 317, 318

use of, 318

See also routing

argument marshalling

canonical intermediate
form, 539

conversion strategy,
538–539

data types, 537–538

defined, 536

illustrated, 538

receiver-makes-right, 539

stubs, 540–541

tagged data, 539–540

tags, 539–540

taxonomy, 537–541

untagged data, 539–540

ARPANET, 28

link-cost calculation, 291

new routing mechanism,
292

original routing
mechanism, 292

revised routing metric, 293

routing metric evolution,
291–292

ASCII, 644–646

character set, 646

email messages, 645

assured forwarding (AF),
510–511

asymmetric DSL (ADSL),
72

asynchronous protocols,
418–419

asynchronous transfer mode
(ATM), 165, 192–210

cell format, 197–198

cells, 193–198

circuit emulation by tunnel,
348

Index 779

as connection-oriented,
packet-switched
technology, 193

defined, 192

early packet discard (EPD),
486

Ethernet vs., 206

fixed-length packets, 193

future of, 221

homogeneous links, 256

implementation, 210–220

as LAN backbone, 206

in LANs, 205–210

networks, 71, 256

performance, 210–220

physical layers for,
204–205

popularity, 205

properties, 177

Q.2931, 193

scalability, 194

segmentation and
reassembly (SAR),
198–203

signalling, 193, 500

standardization, 196

switches, 205–206, 220

switches functioning as
MPLS LSRs, 344

virtual paths, 203–204

See also ATM QoS

ATM Adaptation Layer
(AAL)

AAL1, 199

AAL2, 199

AAL3/4, 199–201

AAL5, 201–204

defined, 198

ATM Forum, 207, 514

ATM QoS, 498, 513–517

ABR, 515–517

CBR, 514

classes, 513

definition time, 513

RVSP vs., 514–515

UBR, 514–515

VBR-nrt, 514

VBR-rt, 514

See also quality of service
(QoS)

ATMARP, 261–263

ARP server, 261, 262

defined, 261

IP-to-ATM address
mappings, 262

LIS, 261–262

at-most-once semantics, 414

ATM-over-SONET products,
204–205

audience, this book, ix–xx

authentication, 594–598

defined, 579

implementation, 594–598

PGP, 606

protocols, 594–598

public key, 597–598

server, 596

three-way handshake,
595–596

trusted third party,
596–597

See also security

Authentication Header (AH),
614, 615–616

AuthenticationData field,
616

defined, 615

illustrated, 616

NextHdr field, 615

PayloadLength field, 615

Reserved field, 615

SeqNum field, 616

SPI field, 615

See also IP Security (IPSEC)

autoconfiguration, 328–329

problem, 328

stateless, 328

support, 328

automatic repeat request
(ARQ), 147

algorithms, 98–1111

concurrent logical
channels, 110–111

defined, 98

point-to-point, 137

sliding window, 101–110

stop-and-wait, 98–101

autonomous systems (ASs),
301

border router, 310

concept, 309

default routes, 309

destinations outside of, 310

intradomain routing
protocols, 309

multihomed, 311

network with two, 309

stub, 311

transit, 311

available bit rate (ABR),
515–517

defined, 515

intention, 515

operation, 515

TCP congestion avoidance
and, 516

VC with segmented control
loops, 516

See also ATM QoS

AVP profile, 673–674

B

B frames

combining, 565

decompression, 560

defined, 557

generation, 560

macroblock processing,
559

sequence, 558

See also frames (MPEG)

backend servers, 699

bandwidth, 40–44

bit width, 42

780 Index

bandwidth (continued)

effective, 145, 146

high-speed network, 46

I/O bus, 211

latency and, 42–43

latency relationship, 47

leased line, 70

memory, 144, 211

need, reducing, 492

network, 145

peak, 144

physical link, 41

requirements, 41

RTCP, 669

specification, 44

subnet manager (SBM),
507–508

throughput vs., 40–42

See also performance

banyan network, 219

base types, 537

Basic Encoding Rules (BER),
543

Batcher-banyan switch,
219–220

baud rate, 76

Berkeley Software
Distribution (BSD), 280

best-effort service, 238–239,
375

connectionless, 239

defined, 238–239

model, 458

big-endian form

defined, 536

illustrated, 537

XDR, 542

Binary Synchronous
Communication
(BISYNC) protocol,
80–81

binding cache, 299

bit errors, 18

bit rate, 76

bit stuffing, 84

bit-by-bit round-robin, 465

bit-oriented protocols, 83–84

BLAST, 408–413

algorithm, 408–411

concept, 408–409

defined, 407

fragment retransmission,
411

message delivery, 408, 411

missing fragments and, 411

performance, 411

receive side, 409

receiver conditions,
409–410

representative timeline, 410

send side, 409

in simple RPC stack,
424–425

SRR, 409

See also Remote Procedure
Call (RPC)

BLAST message header,
411–413

DATA message, 413

defined, 411–412

FragMask field, 412

illustrated, 412

Length field, 413

MID field, 412–413

NumFrags field, 413

ProtNum field, 413

BOOTP, 266

Border Gateway Protocol
(BGP), 310–316, 705

BGP-4 update packet
format, 314

complete path
advertisement, 313

defined, 310

interior (IBGP), 316

looping path prevention,
313

network running example,
313

nodes participating in, 315

path cancellation, 314

sessions, 312

speakers, 312, 314, 315

starting position, 310

update message, 314

See also interdomain
routing

border routers, 310

bottleneck routers, 454

bridges, 180–192

closing loop, 185

configuration message
reception, 188–189

defined, 181, 254

designated, 187, 189

Ethernet, 181

in extended LANs, 187

forwarding table
maintained by, 182, 183

frame forwarding, 187

goal, 189

learning, 181–185

limitations of, 190–192

as link-level nodes, 254

multiport, 255

root, 188, 189

table, 185

broadcast

addresses, 116

defined, 10

reverse-path (RPB),
333–335

shortest-path, 335

support, 189–190

broadcast and unknown
server (BUS), 208, 209,
210

buffer descriptor lists, 141

buffering

internal, 214

output, 215

ports and, 214–215

buffers, 142

capacity, 49

Index 781

as delay source, 216

extra, 490

FIFO implementation, 215

playback, 494–495, 663

QoS characteristics and,
216

receive, 390

send, 389–390

VC, 175

burst errors, 18, 96

C

cable modems, 73–74

bandwidth sharing, 74

defined, 73

downstream/upstream
rates, 73

use of, 74

See also last-mile links

cables, 69

Cat-5 twisted pair, 69

types of, 70

See also links

Cache Array Routing

Protocol (CARP), 703

cache replacement algorithm,
185

caching, 656–657

benefits, 656

“cache directives,” 657

HTTP and, 657

implementation, 657

canonical intermediate form,
539

care-of address, 297, 298

Carrier Sense Multiple Access
(CSMA)

with Collision Detection
(CSMA/CD), 111

networks, 64

cell formats, 197–198

NNI, 197

UNI, 197

See also asynchronous
transfer mode (ATM)

cell switching, 192–210

cells, 193–198

boundaries, 205

characteristics, 193

fixed-length, 194

forwarding along tunnel,
350

link utilization and,
195–196

payload length, 196

queues and, 194–195

RM, 515, 516

size, 193–196

thirty-two-byte, 196

See also asynchronous
transfer mode (ATM)

centralized forwarding, 258

certificate revocation list
(CRL), 604

certificates, 601–604

chains of trust, 602–603

components, 603

defined, 602

handshake protocol and,
612

possession of, 604

revocation, 604

X.509 standard, 603

See also security

certification authority (CA)

CRL issued by, 604

defined, 602

root, 603

tree-structured hierarchy,
603

chains of trust, 602–603

CHAN, 414–423

algorithm, 414–416

at-most-once semantics,
414

client implementation, 422

data structures, 419

defined, 407, 414

implementation, 419–423

message delivery, 414

PROBE timer, 418, 423

request/reply algorithm
implementation, 425

RETRANSMIT timer, 418,
421, 423

server implementation, 422

in simple RPC stack, 425

SunRPC vs., 426

as synchronous protocol,
418–419

timeline, 415

timeline using implicit
ACKs, 415

timeout and
acknowledgment
mechanism, 425

timeouts, 418

See also Remote Procedure
Call (RPC)

CHAN message format,
416–417

BID field, 417

CID field, 416

defined, 416

illustrated, 517

MID field, 416–417

ProtNum field, 416

changes, this edition, xx–xxi

channels

abstract, 16

capacity, available, 49

existing, options, 17

functionality, 15, 18

inventing new, 17

logical, 15, 110–111, 414

message stream, 17

request/reply, 17

character stuffing, 81

checksums, 88, 89

cryptographic, 581

defined, 89

Internet algorithm, 90–91

MD5, 601

782 Index

checksums (continued)

TCP, 384

UDP, 377

variations, 90

See also error detection

cipher block chaining (CBC),
586–587, 598–599

defined, 587

illustrated, 588

ciphertext messages, 578

circuit switches, 164

circuit-switched networks, 8

Classical IP over ATM model,
261, 262

classical proxy, 621

classless interdomain routing
(CIDR), 306–308,
352–353

defined, 306

multiple address collapse,
307

prefix length, 308

route aggregation with, 308

supernetting, 307

See also routing

Clear to Send (CTS) frames,
134

clients

defined, 17

example application,
33–35

SMTP, 649

SNMP, 659

See also servers

clock-based framing, 84–87

clouds, 9

coarse-grained timeouts,
477–478

collision domain, 114

color images, 556–557

compression vs. fidelity,
557

RGB, 556

YUV, 556

See also JPEG

Common Object Request
Broker Architecture
(CORBA), 428

complex types, 538

compression, 548–568

algorithms, 550

audio, 566–568

benefits, 549

image, 552–557

JPEG, 552–557

lossless, 549

lossy, 549

MP3, 566–568

MPEG, 557–565

ratio, 549

summary, 568

video, 557–565

computer networks. See
networks

concurrency management,
425

concurrent logical channels,
110–111

behavior, 111

defined, 110

See also automatic repeat
request (ARQ)

conferencing applications,
661

congestion

collapse, 460

defined, 176

introduction to, 176–177

lost segments and, 399

in packet-switched
networks, 453

X.25 model and, 177

congestion avoidance,
478–491

ABR interaction, 516

DECbit, 478–480

defined, 478

RED, 480–486

source-based, 486–491

congestion control, 468–478

additive
increase/multiplicative
decrease, 468–471

behavior, 474

congestion window,
468–469

defined, 379, 450, 452, 468

equation-based, 517–518

evaluating, 491–493

fairness, 452

fast recovery, 478

flow control vs., 452

introduction of, 468

mechanism invention,
492–493

packet-pair, 476

real-time applications and,
517

routing vs., 453–454

slow start, 471–476

summary, 518

TCP, 379, 468–478

“TCP-friendly,” 517

See also resource allocation

congestion window, 468–469,
478

decreasing, 490, 491

flattening, 474, 475

illustrated, 491

increasing, 472, 474

increasing/decreasing over
time, 474

observed throughput rate
vs., 489

reset, 475

target, 473

TCP Vegas adjustment,
490

connectionless flows,
454–455

defined, 454

illustrated, 455

See also flows

connectionless networks. See
datagrams

Index 783

connection-oriented

approach. See virtual

circuit switching

connectivity, 7–10, 51

clouds, 9

host-to-host, 10

internetwork, 9–10

levels, 7

links, 7

nodes, 7–9

consistent hashing, 693–694,
702

constant bit rate (CBR), 514

constrained shortest path first
(CSPF), 348

contact address, 679

content distribution networks
(CDNs), 698–703

Akamai, 699

commercial, 699, 701

components illustration,
700

defined, 699

Digital Island, 699

distribution factors, 700

flash crowd, 699

load balance, 700

locality, 700

mechanisms, 700–701

network proximity, 700,
703

as overlay networks, 701

policies, 702–703

redirectors, 699

server surrogates, 699

system throughput, 699

contention

occurrence, 176

problem, 165

contributing source (CSRC),
668

control status register (CSR),
139–140

defined, 139

example, 139–140

location, 139

See also network adapters

controlled load service, 499

convergence

defined, 276

delaying, 278

speed of, 278

convergence sublayer PDUs

(CS-PDU), 199–200

AAL3/4, 199–200

AAL5, 202

count to infinity problem, 278

counting semaphore, 105

crossbar switches, 216–217

cryptographic algorithms,
580–594

best, 582

as building blocks, 581

deployment risks, 582

DES, 581, 582, 583–588

hashing, 580

implementation, 593–594

MD5, 581, 591–593

performance, 594

PGP use of, 607

public key, 580

requirements, 582–583

RSA, 581, 588–591

secret key, 580

types of, 579

See also security

cryptographic checksum, 581

cyclic redundancy check
(CRC), 81, 88–89

calculation, 92–95

common polynomials, 96

CRC-32, 89

defined, 88

divisor polynomial, 92–93

mechanics, 92

polynomial arithmetic
modulo 2, 93

with polynomial long
division, 95

with shift register, 97

See also error detection

D

data compression, 535,
548–568

Data Encryption Standard
(DES), 579, 580,
583–588

breaking, 587

with CBC, 586–587,
598–599

complexity, 582

compression permutation,
586

defined, 583

example S box, 587

expansion phase, 587

functioning of both sides
of, 586

high-level outline, 584

initial (and final)
permutation, 584

initialization vector (IV),
587

key permutation, 585

key rotation amount per
round, 585

manipulation at each
round, 585

marginal security, 583

performance, 594

phases, 583

security proof, 587

substitution box, 586

triple (3DES), 588

See also cryptographic
algorithms

data manipulation functions,
535

data types, 537–538

base, 537

complex, 538

flat, 538

784 Index

data types (continued)

See also argument
marshalling

datagram forwarding

algorithm, 253, 305

defined, 252

handling, 252–253

illustration, 169

IP, 252–258

table, 168, 253

datagrams, 168–170

defined, 168

IP, 238, 242–243

network characteristics,
169–170

source routing and,
179

switch/link failure, 170

DC coefficient, 554, 555

DCE-RPC, 428–431

ActivityId field, 430

at-most-once call
semantics, 428

defined, 428

fragmentation with
selective
acknowledgments, 431

FragmentNum field, 430

message exchange, 429

message labeling, 428

multiple call semantics
support, 428

SequenceNum field, 430

ServerBoot field, 429–430

See also Remote Procedure
Call (RPC)

DECbit, 478–480

congestion bit, 479

defined, 479

host part, 479–480

RED vs., 480–481

See also congestion
avoidance

decompression, 548

algorithms, 549

defined, 555

See also compression

decryption, 578

default routes, 309

delay

buffer source, 216

end-to-end routing, 698

example distribution of,
496

propagation, 41–42, 44, 50

queuing, 42, 50

throughput ratio, 459

See also latency

delay x bandwidth product,
44–46

data loss and, 475

defined, 44

importance, 45

RTT and, 46

using, 45

See also performance

delay-adaptive applications,
498

delta encoding, 551

demultiplexing, 25–26

demux keys, 25, 32

denial-of-service attack,
623–624

defined, 618, 623

example, 623–624

protecting against, 624

SYN attack, 623

dense wavelength division
multiplexing (DWDM),
179

equipment, 179

terminals, 180

designated bridges, 187

designated router (DR), 338

designated subnet bandwidth
manager (DSBM), 507

destination-based forwarding,

340–346

device drivers, 143–144

defined, 66–67, 143

routines, 143

See also network adapters

dictionary-based compression
methods, 551–552

differential Manchester, 78,
126

Differential Pulse Code
Modulation (DPCM),
551

Differentiated Services
(DiffServ), 509–513

code points (DSCPs), 510,
512

defined, 509

as middle ground, 519

per-hop behaviors (PHBs),
510–511

stringent applications and,
519

traffic classes, 509

See also quality of service
(QoS)

Diffie-Hellman key exchange,
597–599

defined, 597–598

parameters, 598

process, 598–599

Digital Data Communication
Message Protocol
(DDCMP), 80, 82–83

defined, 82

frame format, 82

Digital Network Architecture
(DNA), 478

digital signatures

defined, 599, 602

DSS, 600

with RSA, 599–600

digital subscriber line (DSL),
72–73

asymmetric (ADSL), 72

very high rate (VDSL), 73

See also last-mile links

Dijkstra’s shortest-path
algorithm, 285, 332

direct link networks, 64–148

Index 785

direct memory access (DMA),
141–143, 211

buffer descriptor lists, 141

defined, 141

gather-write, 142

scatter-read, 142

use decision, 148

See also network adapters

direct sequence, 132

discrete cosine transform
(DCT), 553

AC coefficients, 554

DC coefficient, 554, 555

formulas, 554

phase, 553–555

signal breaking, 553

distance-vector multicast,
332–335

RPB, 333–335

RPM, 335

as two-stage process,
332–333

See also multicast

distance-vector routing,
274–280

defined, 274

functioning, 274–276

implementation, 279–280

initial distance at nodes,
275

link-state routing vs., 288

node messages, 275–276

periodic update, 276–277

RIP, 280–282

triggered update, 277

See also routing

Distributed Computing
Environment (DCE)

defined, 428

NDR, 544–545

See also DCE-RPC

distributed denial-of-service
(DDos), 624, 699

distributed hash tables
(DHT), 694, 698

distributed routing, 273–274

divisor polynomial, 92–93

domain hierarchy, 635–636

illustrated, 636

resource records and, 638

tree, 636

zones, 636–638

domain name system (DNS),
634–643

domain hierarchy, 635–636

hierarchical name space,
635

name resolution, 640–643

name servers, 636–640,
701

names, 635

naming conventions,
640–641

double-bit errors, 96

drop policies, 462–463

drop probability, 481, 482

dual attachment stations
(DASs), 128

duplicate acknowledgments,
476

Dynamic Host Configuration
Protocol (DHCP),
263–266

BOOTP and, 266

complexity and, 266

defined, 264

goal, 264

message format, 265

network manageability
and, 266

packet format, 265

packets, 266

relay agent, 264–265

server, 264, 265, 266

server contact, 264

dynamic port selection, 619

E

early packet discard (EPD),
486

early random drop, 481

edge weights, 294

effective resource allocation,
458–460

effective throughput, 145,
146

electromagnetic spectrum,
68

electronic mail, 644–650

mail reader, 649–650

message format, 644–646

message header, 644–645

message transfer, 647–649

See also applications

Encapsulating Security
Payload (ESP), 614, 615,
616–617

benefits, 616

for building IPSEC tunnels,
617

defined, 616

fields, 617

illustrated, 617

See also IP Security
(IPSEC)

encapsulation, 24–25

defined, 24

illustrated, 25

process, 24

encoding, 75–79, 146

4B/5B, 78–79

defined, 64

delta, 551

Manchester, 77–78

NRZ, 75–77

NRZI, 77

phase, 556

strategy illustration, 77

encryption

defined, 578

PGP, 607

public key, 580, 588–591

secret key, 578, 580,
583–588

See also security

786 Index

end system multicast,
684–688

defined, 684

host joining, 687

mesh maintenance, 688

mesh overlay, 685, 686

See also multicast

end-to-end data, 534–569

data compression, 548–568

presentation formatting,
536–548

summary, 568

end-to-end protocols,
374–436

defined, 374

measured round-trip
latencies, 433

performance, 431–434

properties, 374

RPC, 405–431

shaping forces, 374

summary, 434–435

TCP, 378–405

UDP, 376–378

See also protocols

end-to-end routing delays,
698

equation-based congestion
control, 517–518

defined, 518

general form, 518

See also congestion control

error correction, 88

approaches, 88

ECC, 95

error detection vs., 96–98

forward (FEC), 98

error detection, 88–97, 147

checksums, 88, 89, 90–91

concept, 88

CRC, 88–89, 92–97

defined, 64

error correction vs., 96–98

on hop-by-hop basis, 381

two-dimensional parity, 88,
89–90

error-correcting code (ECC),
95

errors

burst, 96

double-bit, 96

reporting, 266–267

single-bit, 96

Ethernet, 111–120

1-persistent protocol, 116

10Base2, 113, 114

10BaseT, 113–114

access control, 114–119

addresses, 115–116

addresses, mapping IP
addresses into, 260

ATM vs., 206

beginnings, 111

bridges, 181

bridging, 165

collision domain, 114

experience with, 119–120

exponential backoff, 119

Fast, 111–112

frame format, 114–115

Gigabit, 112, 206

globally unique identifiers,
168

hosts, 119

hubs, 114

interface cards, 211

with lightly loaded
conditions, 119

media access control
(MAC), 114

multiple segments,
112

physical properties,
112–114

p-persistent protocols,
116–117

repeaters, 112, 113

switches, 221

token ring vs., 121

transceiver and adapter,
112

transmitter algorithm,
116–119

worse-case scenario, 118

exact match algorithm, 343

exercises

applications, 707–713

congestion control and
resource allocation,
521–533

direct link networks,
150–163

end-to-end data, 570–576

end-to-end protocols,
437–448

foundation, 55–62

internetworking, 355–373

network security, 625–631

packet switching, 223–232

solutions to, 763–776

styles, xxv

expedited forwarding (EF),
510

Explicit Congestion
Notification (ECN),
480–481

bit set, 480, 481

standardization, 480

explicit routing, 346–348

benefits, 347

CSPF, 348

defined, 346

fast enroute, 347

network requirement, 347

traffic engineering
application, 347

See also Multiprotocol
Label Switching (MPLS);
source routing

exponential backoff, 119

extended LANs, 181,

190–192

bridges in, 187

with loops, 186

Index 787

scale and, 190

See also LANs

Extensible Markup Language
(XML), 546–548

built-in types support, 547

defined, 546

documents, 546, 547, 548

as generalization of
HTML, 546

schemas, 547

extension headers, 327, 329

Exterior Gateway Protocol
(EGP), 310

External Data Representation
(XDR), 541–543

ASN.1 vs., 544

big-endian format, 542

defined, 541

example encoding of
structures in, 542

integer, 542

performance, 543

taxonomy, 541–542

variable-length arrays, 542

F

fabrics, 216–220

banyan, 217

crossbar, 216–217

defined, 212–213

functions, 216

high-performance, 216

packet switching, 213

self-routing, 213–214, 217

shared-bus, 216

shared-memory, 216

fair queuing (FQ), 463–468

approximating bit-by-bit
round-robin, 465

behavior simulation, 465

with congestion-control
mechanism, 464

defined, 464

drop policies, 467

example illustration, 466

fairness, 464

guaranteed minimum
bandwidth, 467

implementation, 466

at routers, 464

as scheduling algorithm,
467

weighted (WFQ), 467–468

work-conserving, 466, 467

See also queuing

fair resource allocation,
460–461

defined, 460

fairness index, 461

RED, 484

See also resource allocation

fairness index, 461

fast enroute, 347

Fast Ethernet, 111–112

fast recovery, 478

fast retransmit, 476–478

based on duplicate ACKs,
476–477

defined, 476

illustrated, 477

trace of TCP with, 477

See also congestion control

features, this book, xxiii

feedback-based resource
allocation, 456–457

Fiber Channel, 13

Fiber Distributed Data
Interface (FDDI), 28,
120, 127–131

4B/5B encoding, 129

asynchronous, 129

claim frames, 130

defined, 127

dual attachment stations
(DASs), 128

dual-fiber ring, 127

frame format, 131

physical media, 128

physical properties,
127–129

ring monitor, 130

single attachment stations
(SASs), 127–128

synchronous, 129

target token rotation time
(TTRT), 129–130

timed-token algorithm,
129–130

token maintenance,
130–131

See also token rings

field-programmable gate
arrays (FPGAs),
138–139

File Transfer Protocol (FTP),
16, 29

defined, 27

proxy, 621

as supported application,
16

filter-based firewalls,
618–619

configuration, 618–619

dynamic port selection, 619

filter installation, 619

as level 4 switches, 619

See also firewalls

firewalls, 617–622

defined, 617–618

filter-based, 618–619

function illustration, 618

limitations, 622

mobile code and, 622

proxy-based, 618, 620–621

uses, 618

vulnerabilities, 622

See also security

first-come-first-served (FCFS)

queuing, 462

first-in-first-out (FIFO)
queuing, 14, 462–463

defined, 462

drawbacks, 463–464

788 Index

first-in-first-out (FIFO)
queuing (continued)

illustrated, 462

priority queuing variation,
463

as scheduling discipline,
462

with tail drop, 462–463

See also queuing

“fish” network, 346

fixed-length packets, 194,
195

flash crowd, 699

flat types, 538

flow control

congestion control vs., 452

defined, 379

hop-by-hop, 176

sliding window for, 110

TCP, 380, 390–393

UDP and, 377

flows

abstraction, 454

connectionless, 454–455

defined, 454

with different token bucket
descriptions, 502

explicit, 455

fairness index, 461

hard state, 455

implicit, 455

multicast, 504

multiple, passing through
set of routers, 455

soft state, 455

WFQ, 467

flowspecs, 500–502

defined, 500

RSpec, 500

TSpec, 500–502, 505–506

See also Integrated Services
(IntServ)

foreign agent, 296–299

care-of address, 297

defined, 296

See also mobile host
routing

forward error correction
(FEC), 98

forward search algorithm,
286

forwarding

assured (AF), 510–511

ATM cells along tunnel,
350

centralized, 258

datagram, 169, 252–258

destination-based, 340–346

distributed, 258

expedited (EF), 510

IP, 308

packet, 680

port, 609–610

routing vs., 271

See also switching

forwarding tables, 168

bridge-maintained, 182,
183

defined, 168, 271

directly connected network
information, 254

entries, scanning, 184

example, 254, 455

example rows, 272

illustrated, 168

routers, 255

routing tables vs., 271

structures, 271

with subnetting, 304

at tunnel entrance, 269

update, 184

fragmentation, 242–245

header fields, 244

output, 244–245

process, 243–244

reassembly and, 245–249

with selective
acknowledgments, 431

frame format

token ring, 126–127

wireless, 136–137

frame formats

802.11, 136–137

BISYNC, 80

DDCMP, 82

Ethernet, 114–115

FDDI, 131

HDLC, 83

PPP, 81

Frame Relay, 177

features, 177

packet format, 177

switches, 257

frames

802.3, 115

802.5, 126–127

802.11, 136–137

beacon, 126

claim, 130

collision, 117

corrupted, 126

CTS, 134

defined, 64

order, 109–110

orphaned, 126

receiving, 142

RTS, 134

runt, 117

size, 84

SONET, 85, 86, 87

STS-1, 85, 86, 87

STS-N, 86

transmitting, 142

frames (MPEG)

B, 557, 558, 559, 560, 561

as collection of
macroblocks, 559

defined, 557

I, 557, 558

P, 557, 558, 559, 560, 561

types, 557–561

framing, 79–87, 146

byte-counting approach,
82–83

Index 789

clock-based, 84–87

defined, 64

errors, 82

sentinel approach, 80–82

frequency hopping, 132

frequency-division
multiplexing (FDM), 12

full-duplex links, 69

G

gateways. See routers

gather-write, 142

generalized MPLS (GMPLS),
346

Gigabit Ethernet

defined, 112

links, 206

See also Ethernet

global addresses, 250–252

Global System for Mobile
Communication (GSM),
74

globally unique identifiers,
168

Gnutella peer-to-peer
network, 691–692

defined, 691

example topology, 691

QUERY messages, 691,
692

QUERY RESPONSE
messages, 691, 692

as unstructured overlay,
692–693

See also peer-to-peer
networks

Graphical Interchange
Format (GIF), 534–535

guaranteed service, 499

H

H.323, 679–680

defined, 679

H.245 protocol and, 680

network, 679

terminals, 679, 680

half-duplex links, 69

handshake protocol,
611–612

for certificate exchange,
612

defined, 611–612

illustrated, 612

See also Transport Layer
Security (TLS)

hard state, 455

hardware building blocks,
66–75

defined, 66

links, 67–75

nodes, 66–67

hash function, 580, 581

hash tables

defined, 693

distributed (DHT), 694,
698

hashing algorithms, 580

consistent, 693–694, 702

flaw, 693

modulo, 702

head-of-line blocking,

215–216

defined, 215

illustrated example, 215

hidden nodes, 133

hierarchical addressing, 255

hierarchical aggregation, 256,
263

hierarchical name space, 634,
635

High Performance European
Radio LAN
(HIPERLAN), 75

High-Level Data Link
Control (HDLC), 83–84

bit stuffing, 84

defined, 83

frame format, 83

high-speed networks, 46–48

bandwidth, 46

data transmission on,
47–48

HiPPI (High Performance
Parallel Interface), 13

home addresses, 296

home agent, 296–299

defined, 296

packet wrapping, 297

See also mobile host
routing

hop-by-hop flow control, 176

host configuration, 263–266

DHCP, 264–266

error-prone process, 264

host-centric resource

allocation, 456

hubs, 114

hypertext links, 653

HyperText Markup Language
(HTML), 545–546

defined, 644

documents, 655

HyperText Transfer Protocol
(HTTP), 4, 29, 643

caching, 656–657

header types, 653

message form, 653

operations, 613

persistent connections, 656
proxy, 620, 621

redirect feature, 701

request messages,
653–654

request operations, 654

response messages,
654–655

result codes, 655

Secure (HTTPS), 611

TCP connections, 655–656

as text-oriented protocol,
653

use, 643

well-known port 80, 620

790 Index

I

I frames

combining, 565

defined, 557

losing, 565

as reference frames, 558

sequence, 558

See also frames (MPEG)

I/O bus bandwidth, 211

ICMP-Redirects, 267

IEEE

802.3, 111–120

802.5, 64, 120–127

802.11, 65, 75, 131–137

image compression, 552–557

color images, 556–557

DCT, 553–554

encoding phase, 556

quantization phase,
554–555

implicit acknowledgments,
415

input ports, 212, 213

packet processing, 214

performance bottlenecks,
214

See also ports

Integrated Services and
Specific Link Layers
(ISSLL), 506–507

Integrated Services Digital
Network (ISDN), 71–72

CODEC, 72

connections, 71–72

Integrated Services (IntServ),
499–509

admission control, 500,
502–503

ATM QoS and, 506–507

controlled load service, 499

flowspecs, 500–502

guaranteed service, 499

overview of mechanisms,
499–500

packet classifying and
scheduling, 507–508

real-time service, 500

reservation protocol,
503–506

scalability issues, 508–509

service classes, 499

subnet technologies and,
506–508

See also quality of service
(QoS)

interdomain routing,
308–316

BGP, 310–316

challenges, 311–312

complexity, 315

EGP, 310

intradomain routing
integration, 315–316

problem, 309

protocols, 272

reachability, 312

See also routing

interior BGP (IBGP), 316

interior gateway protocols
(IGPs), 272

internal buffering, 214

International Data
Encryption Algorithm
(IDEA), 580

International Standards
Organization (ISO), 23,
26, 27

International
Telecommunications
Union (ITU), 27

H.225, 679

H.245, 680

H.323, 679–680

“H series,” 561

Internet

ATM network vs., 256

backbone routing, 312

defined, 236

domain names, 252

local traffic, 311

multibackbone, 311

routing domains, 309

scalability problem, 301

topology, 300

transit traffic, 311

tree structure, 300

Internet architecture, 27–30

evolution, 27–28

features, 29

hourglass design
philosophy, 29, 30

illustrated, 28

See also network
architecture

Internet checksum, 90–91

defined, 90

implementation, 91

variations, 90

See also error detection

Internet Control Message
Protocol (ICMP),
266–267

control message definition,
267

defined, 266

error message definition,

266

ICMP-Redirects, 267

Internet Engineering Task
Force (IETF)

defined, 23

Integrated Services and
Specific Link Layers
(ISSLL), 506–507

Internet Group Management
Protocol (IGMP), 331

Internet Key Exchange (IKE),
615

Internet Message Access
Protocol (IMAP), 650

defined, 650

message attributes, 650

state transition diagram,
651

Internet Protocol. See IP

Index 791

Internet Security Association
and Key Management
Protocol (ISAKMP),
614, 615

internetworks, 234–354

defined, 9, 236–237

illustrated, 237, 238

as logical networks, 236

with protocol layers, 238

routing protocols in, 280

simple, 236–270

structure, 263

tunnels through, 269

interpacket gap, 50

interrupt handler, 144

defined, 140

logic, 144

interrupts, 140–141

intradomain routing,
315–316

interdomain routing
integration, 315–316

protocols, 272

See also routing

IP, 235, 236–270

datagram forwarding in,
252–258

defined, 237

devices, 569

error reporting, 266–267

experimental versions of,
683–684

forwarding, 308

hierarchical aggregation,
263

host configuration,
263–266

networks, 235, 351

routing, 235

tunnels, 268–270

virtual networks, 267–268

IP addresses, 250–252, 569

blocks of, 353

class A, 251, 306

class B, 251, 301, 306

class C, 250–251, 301, 306

classes, 250–251, 320

decimal integers, 251–252

flexibility, 251

global, 250–252

hierarchical, 250

home, 296

host part, 250, 259

illustrated, 251

Internet domain names vs.,
252

internetwork structure and,
263

IPv4, 353

IPv6, 320, 323

mapping, 259

name translation into, 642

network part, 250

original intent, 301

partitioning, 263

prefixes, 354

in query message, 259

space, 306

uniqueness, 263

IP datagrams, 238

as fragmentation output,
244–245

self-contained, 243

size, 242

traversing physical
networks, 243

variable length, 257

IP Security (IPSEC), 614–617

Authentication Header
(AH), 614, 615–616

defined, 614

degrees of freedom, 614

Encapsulating Security
Payload (ESP), 614, 615,
616–617

operation, 604

tunnels, 617

See also security

IP service model, 238–249

datagram deliver, 238–239

fragmentation and

reassembly, 242–245

implementation, 245–249

packet format, 239–241

IPng Directorate, 319–320

IPv4 packet header

Checksum field, 241

DestinationAddr field, 241

HLen field, 240, 241

illustrated, 240

Length field, 240

Protocol field, 241

SourceAddr field, 241

TOS field, 240

TTL field, 241

Version field, 239–240

IPv6, 236, 318–330, 353

address assignment, 324

address notation, 322–323

address prefix assignments,
321

address space allocation,
320–322

addresses, 320, 323

advanced routing
capabilities, 329–330

aggregatable global unicast
addresses, 323–325

anycast address, 330

autoconfiguration,
328–329

defined, 235, 319

deployment issue, 353–354

Draft Standards, 320

dual-stack operation, 322

extension headers, 327,
329

features, 330

historical perspective,
319–320

hosts, 322

incremental deployment,
322

multicast support, 331

NAT, 328–330

792 Index

IPv6 (continued)

packet format, 325–327

prefixes, 354

provider-based unicast
address, 325

routing, 320

source-directed routing,
330

transition period, 319

transition to, 322–323

tunneling, 322–323

unicast address allocation
plan, 324

See also IP

IPv6 packet header, 325–327

FlowLabel field, 326

fragmentation extension,
327

HopLimit field, 326

illustrated, 326

length, 326

NextHeader field, 326, 327

PayLoadLen field, 326

TrafficClass field, 326

Version field, 325–326

IPX, 237

J

Jacobson/Karels algorithm,
399–400

clock and, 400

defined, 399

timeout computation, 399

jitter

defined, 49

elimination and, 50

network-induced, 50

relevance of, 50

Joint Photographic Experts
Group., See also JPEG

JPEG, 534

block diagram, 553

color images, 556–557

compression vs. fidelity,
557

DCT phase, 553–554

defined, 552

encoding phase, 556

quantization phase,
554–556

quantization table, 555

K

Kahn-Cerf protocol. See IP

Karn/Partridge algorithm,
398–399

defined, 399

introduction, 399

See also adaptive
retransmission

keeping the pipeline full, 101

key distribution problem,
579, 581

key ring, 606

keyed MD5, 600–601

defined, 600

public key cryptography
combination, 600–601

See also Message Digest 5
(MD5)

kilo, 44, 45

L

Label Distribution Protocol,
341

label edge routers (LERs),
341

label switching routers
(LSRs), 343–346

defined, 343

routers peer with, 345

routing protocols on, 346

LAN emulation (LANE),
207–210

addresses/identifiers, 207

clients (LECs), 207–208

configuration server
(LECS), 208

defined, 207

server (LES), 208, 209

LAN switches, 180–192

defined, 180

dependence, 255

LANs

ATM in, 205–210

bridges, 255

broadcast support,
189–190

defined, 12

extended, 181, 186,
190–192

interconnecting, 181

multicast support, 190

switching, 165

virtual (VLANs), 191

last-mile links, 71–74

ADSL, 72

cable modems, 73–74

ISDN, 71–72

POTS, 71

VDSL, 73

xDSL, 72–73

See also links

latency, 41–42

bandwidth and, 42–43

bandwidth relationship, 47

components, 41–42

data transmit, 42

defined, 40

end-to-end protocols, 433

high-speed networks and,
46–47

memory, 67

perceived, vs. RTT, 43

queuing, 42

retransmission and, 492

speed-of-light, 41–42

variability, 495

See also delay; performance

layer 2 devices, 255

Index 793

layered systems

with alternative
abstractions, 21

illustrated example, 20

layering, 20–26

leaf set

defined, 695

storing multiple copies of,
698

See also nodes

learning bridges, 181–185

defined, 181–182

illustrated, 183

implementation, 183–185

See also bridges

leased lines, 69–71

common bandwidths, 70

defined, 69–70

DS1/DS3, 70

implementation, 71

STS-N, 70

See also links

Lempel-Ziv (LZ)
compression, 551–552

defined, 552

Unix compress command,
551, 552

variation, 552

See also compression

level-7 switches, 681

level 4 switches, 619

Lightweight Directory Access
Protocol (LDAP), 640

line rate, 257

Link Control Protocol (LCP),
81

link-cost calculation, 291

link-local scope, 171, 174

links

attributes, 68–69

bit stream encoding, 69

cable, 69

defined, 7

full-duplex, 69

Gigabit Ethernet, 206

half-duplex, 69

last-mile, 71–74

leased line, 69–71

media, 67

multiple-access, 7

obtaining, 69

OC-48, 393

overloaded, 291

physical, cut, 19

point-to-point, 7

satellite, 293

SONET, 182

STS-N, 70

wireless, 74–75

See also hardware building
blocks

link-state advertisements
(LSAs), 289, 290

defined, 289

illustrated, 290

type 1, 290

type 2, 290

See also Open Shortest Path
First (OSPF) protocol

link-state multicast, 332

link-state packets (LSPs),
283–285

defined, 283

deleting, 285

flooding of, 283, 284

generation, 284

information, 283

periodic generation of, 284

sequence numbers, 284

time to live, 285

link-state routing, 282–291

defined, 282

distance-vector routing vs.,
288

example network, 286

forward search algorithm,
286–287

nodes in, 282

OSPF, 288–291

properties, 288

reliable flooding, 282–285

response speed, 288

route calculation, 285–288

stabilize speed, 288

traffic generation, 288

See also routing

little-endian form

defined, 536

illustrated, 537

load

balancing, 289, 700

control, 460

setting, 459

throughput/delay ratio as
function of, 459

local area networks. See
LANs

local traffic, 311

logical channels, 15

ARPANET support, 111

concurrent, 110–111

request/reply, 414

See also channels

logical IP subnet (LIS),
261–262

advantages, 262

defined, 261

illustrated, 262

logical networks, 236

longest match, 343

lossless compression

algorithms, 550–552

defined, 549

dictionary-based, 551–552

DPCM, 551

LZ, 551–552

RLE, 550

See also compression

lossy compression, 549

M

Macromedia FLASH, 562

mail daemons, 647

794 Index

mail gateways, 647

mail readers, 647, 649–650

management information
base (MIB), 658–659

defined, 658

group variables, 658–659

groups, 658

Manchester encoding, 77–78

bit rate vs. baud rate, 76

defined, 77–78

differential, 78, 126

illustrated, 77

problem, 78

token ring, 126

See also encoding

maximum segment lifetime
(MSL)

defined, 380

as engineering choice, 380

recommended, 393

maximum segment size
(MSS), 469, 470

maximum transmission unit
(MTU), 242

MBone, 270, 672, 683–684

defined, 683

forwarding algorithm,
683–684

media access control

defined, 64

Ethernet, 64

token ring, 122–125

media gateways (MGs),
568–569

mega, 44, 45

memory

bandwidth, 144, 211

bottleneck, 144–146

latency, 67

node, 66

on-chip cache, 146

memory system

effective throughput, 145,
146

transfer size and, 145

mesh overlay, 686

message buffers, 38–40

Message Digest 5 (MD5),
579, 581, 591–593

checksum, 601

computation efficiency, 581

keyed, 600–601

operation, 591

operation implementation,
593

performance, 594

properties, 581

requirements, 583

with RSA signature, 601

transformation, 592

transformation passes,
592–593

use of, 591

See also cryptographic
algorithms

message digest function, 580

message format, 644–646

MIME, 644–646

RFC 822, 644, 645

See also electronic mail

message integrity, 598–601

defined, 579

DES with CBC, 598–599

digital signature with RSA,
599–600

keyed MD5, 600–601

MD5 with RSA signature,
601

need for, 598

PGP, 606

See also security

message integrity code (MIC),
598

message stream channels, 17

messages

ADT for, 420

ARP, 297

BLAST format, 411–413

body, 24

CHAN format, 416–417

ciphertext, 578

data structure example, 40

defined, 142

DHCP, 265

header, 24

high-level, 24, 25

low-level, 24, 25

OSPF, 289

PATH, 504, 505

plaintext, 578

processing, 568

RESV, 504–505

routing, authentication,
288

SRR, 409

trailer, 24

metropolitan area networks
(MANs), 12

microprotocol, 407

middleware, 634

mobile host routing, 295–299

address, 295

care-of-address, 297, 298

foreign agent, 296–299

hardware address, 298

home agents, 296–299

mobility agents and,
296–297

open issues, 299

route optimization,
298–299

security challenges, 299

See also routing

Mobile IP working group,
296

mobility agents, 296–297

modulation

defined, 68

example, 68–69

modulo hashing, 702

monitor, 123, 125, 126

for checking
corrupted/orphaned
frames, 126

defined, 123

Index 795

FDDI, 130

healthy, 125

See also token rings

Morgan Kaufmann Web site,
xxvi

motion estimation, 560

Moving Picture Experts
Group. See MPEG

MP3, 566–568

compression rates, 567

defined, 567

header, 568

quantization tables, 567

subbands, 567

MPEG, 557–565

addresses, 567

complexity, 562

compression ratio, 561

decoding, 558–559, 561

defined, 557

effectiveness and
performance, 561

frame redundancy, 557

frame types, 557–561

header, 562

macroblocks, 559

motion estimation, 560

MPEG-2, 562

MPEG-4, 561–562

stream packetization,

564–565

transmitting, over network,
562–565

video stream format, 562,
563

multicast, 331–340

addresses, 116

defined, 10

development motivation,
331

distance-vector, 332–335

end system, 684–688

extension, 190

flow support, 504

groups, 331

IPv6 support, 331

link-state, 332

receiver-driven layered
(RLM), 566

reverse-path (RPM), 335

support, 189–190

trees, 685, 686

trees, reservations on, 505

video stream, 565–566

multicast address, 331

multihomed AS, 311

multimedia applications,
660–680

conferencing, 661

frame boundary indication,
663

protocol stack, 662

with RTP, 660–671

streaming, 661–662

Multiple Access with
Collision Avoidance
(MACA), 134

multiple-access links, 7

multiplexing

defined, 11

frequency-division (FDM),
12

PDUs, 200

statistical, 12–14

synchronous time-division
(STDM), 11–13

Multiprotocol Label
Switching (MPLS), 221,
235, 340–352

control protocols, 346

defined, 340

destination-based
forwarding, 340–346

explicit routing, 346–348

generalized (GMPLS), 346

headers, 344

IP routing protocols, 344

label stacking, 350

layer, 344

LSRs, 344

performance improvement
goal, 340

routers, 340

summary, 352

tunnels, 349–352

uses, 340

virtual private networks
(VPNs), 348–352

Multipurpose Internet Mail
Extensions (MIME), 644

definitions, 645

encoding, 645

messages, 646

version of, 645

multistation access unit
(MSAU), 122

N

Nagle’s algorithm, 396–397

self-clocking solution, 396

transmission rule, 397

turning off, 397

name resolution, 640–643

local server query, 641

in practice, 642

questions, 641–642

See also domain name
system (DNS)

name servers, 636–640

defined, 634

hierarchy of, 637

local, 641

root, 638

third-level, 639

zones, 636–638

See also domain name
system (DNS)

name-to-address bindings,
634

Napster peer-to-peer
network, 690

National Institute for
Standards and
Technology (NIST), 600

796 Index

n-bit chipping code, 132

negative acknowledgment
(NAK), 103

network adapters, 137–146

block diagram, 138

bus interface, 138

components, 138–139

control status register
(CSR), 139–140

defined, 66, 138

device drivers, 143–144

direct memory access
(DMA), 141–143

interrupts, 140–141

link interface, 138

management, 66–67

memory bottleneck,
144–146

programmed I/O (PIO),
141–143

view from host, 139–144

network address translation
(NAT), 328–330

boxes, 329, 330, 353

defined, 328

network architecture, 19–30

defined, 3, 19

defining, 51

Internet, 27–30

layering, 20–26

OSI, 26–27

Network Data
Representation (NDR),
428, 544–545

architecture tag, 545

defined, 544

receiver-makes-right, 544

stubs generation, 545

network designers

channels and, 17

perspective, 6

Network File System (NFS),
425

Network Information Center
(NIC), 634

network management,
657–659

problem, 657

process, 659

SNMP, 658–659

network processors, 258

network provider perspective,
6

network security, 578–624

example systems, 604–617

firewalls, 617–622

mechanisms, 594–604

summary, 622–623

taxonomy, 581

network service access point
(NSAP), 193

networks

ATM, 71

banyan, 219

computer vs. regular, 2

connectionless, 169–170

connection-oriented,
170–177

content distribution,
698–703

defined, 2

direct link, 64–148

Ethernet, 111–120

“fish,” 346

generality, 2

graph representation,
272–274

growth, 50–51

high-speed, 46–48

IP, 235

logical, 236

overlay, 344, 680–703

peer-to-peer, 690–698

perspectives, 6

as pipe, 45

power of, 459

proximity, 700, 703

scalable, 256

service provider, 310

shared-media, 206

software implementation,
30–40

switched, 8

token ring, 120–131

virtual private (VPNs),
267–268

wireless, 131–137

X.25, 175, 176–177

next hop routers, 253

NNI ATM cell format, 197

nodes

adding, to overlay, 696,
697

addresses, 10

in BGP, 315

defined, 7

edge weights, 294

exposed, 133

hidden, 133

internet-level, 254

leaf set, 695, 698

link failure detection,
277–278

link-level, 254

in link-state routing, 282

memory, 66

mobility, 136

network-level, 254

overlay network, 682, 684

routing information to, 276

types of, 66

See also hardware building
blocks

non-real-time applications,
493

non-return to zero inverted
(NRZI) encoding, 77

code transmission with, 78

defined, 77

illustrated, 77

See also encoding

non-return to zero (NRZ)
encoding, 75–77

baseline wander, 76

Index 797

of bit stream, 76

clock recovery, 76

defined, 75

illustrated, 77

problems, 76

SONET, 86

See also encoding

NSFNET backbone, 300

O

online resources, xxvi

open issues

application-specific
protocols, 435–436

computer networks meet
consumer electronics,
568–569

denial-of-service attacks,
623–624

deployment of IPv6,
353–354

does it belong in
hardware?, 147–148

future of ATM, 221

inside versus outside the
network, 519–520

mobile networking, 299

new network architecture,
704–705

ubiquitous networking,
51–52

Open Shortest Path First
(OSPF) protocol,
288–291, 352

authentication, 288

defined, 288

header format, 289

hierarchy, 288–289

information, 289

load balancing, 289

LSAs, 289, 290

messages, 289

TOS information, 291

See also link-state routing

Open Software Foundation
(OSF), 428

Open Systems
Interconnection. See OSI
network architecture

optical amplifiers, 179, 180

optical switches, 181–182

microscopic mirrors, 182

“real” circuits, 182

SONET framing and, 181

See also switches

optical switching, 179–183

DWDM, 179, 180

optical amplifiers, 179,

180

repeaters, 179

SONET, 181, 182

organization, this book,
xxiii–xxv

OSI network architecture,
26–27

application layer, 27

contributions, 82

data link layer, 27

defined, 26–27

illustrated, 26

network layer, 27

physical layer, 27

presentation layer, 27

session layer, 27

transport layer, 27

See also network
architecture

output ports, 212, 213

overlay networks, 344,
680–703

6-Bone, 684

content distribution
networks as, 701

defined, 681

functionality, 705

layered on physical

network, 681

MBone, 683–684

nodes, 682, 684

ossification of the Internet
and, 682–684

peer-to-peer, 690–698

resilient, 688–690

routing, 682–690

structured, 692–698

unstructured, 692–693

P

P frames

combining, 565

defined, 557

generation, 560

macroblock processing,
559

sequence, 558

See also frames (MPEG)

packet scheduling, 500,
507–508

algorithms, 508

defined, 507

details, 508

packet switches

defined, 164

workstation as, 211

packet switching, 164–221

packet-pair, 476

packets

AAL3/4 format, 199

classifying, 507

contending, 450

defined, 13

DHCP format, 265

dropping, 257–258,
481–484

fixed-length, 193

forwarding, 680

IP format, 239–241

IPv6 format, 325–327

link-state (LSPs), 283–285

marking, 480

maximum segment lifetime
(MSL), 380, 393

minimum-sized, 193

798 Index

packets (continued)

most recently received, 184

per second (pps) rate, 212,
213

premium, 512, 513

retransmission, 292

RIP format, 281

sequence of, 13

size, 42

spacing, 473

total number sent, 194

variable-length, 193, 195,
256

packet-switched networks

congestion in, 453

defined, 8

resource allocation in,
453–454

store-and-forward, 8–9

parallelism, 194

partial packet discard (PPD),
486

passive scanning, 136

PATRICIA tree, 308

Paxson, Vern, 295

peer interface, 21, 22

peering points, 699

peer-to-peer networks,
690–698

consistent hashing,
693–694

defined, 690

Gnutella, 691–692

Napster and, 690

object location by routing
through, 695

structured, 692–698

performance, 40–50

application needs, 48–50

bandwidth, 40–44

delay x bandwidth product,
44–46

designing for, 40

high-speed network, 46–48

latency, 40–44

per-hop behaviors (PHBs),
510–511

AF, 510–511

EF, 510

periodic update, 276–277

permanent virtual circuits
(PVCs), 171, 173

persistent connections, 656

Personal Communication
Services (PCS), 74

piconets, 75

plain old telephone service
(POTS), 71

plaintext messages, 578

playback

buffer, 494–495, 663

time, 494, 495

playback point, 494

advancing, 498

setting, 497–498

shifting, 497

point-to-point links, 7

Point-to-Point Protocol (PPP),
81–82

defined, 81

frame format, 81–82

policing, 503

polling, 140

port forwarding, 609–610

defined, 609–610

illustrated, 610

Port Mapper, 426–427

ports, 212–216

buffering function, 214

defined, 167

elements, 212–213

input, 212, 213, 214

jobs, 213

output, 212, 213

UDP, 426–427

well-known, 377

Post Office Protocol (POP),
650

power (network)

curve, 460

defined, 459

p-persistent protocols,
116–117

premium traffic, 512–513

presentation formatting,
536–548

defined, 534, 536

examples, 541–545

illustrated, 536

markup languages,
545–548

taxonomy, 537–541

Pretty Good Privacy (PGP),
604, 605–607

certification relationships,
605

cryptographic algorithms,
607

defined, 605–607

encryption, 607

key management software,
606

key ring, 606

key-signing parties,
605–606

message integrity and
authentication, 606

See also security

priority queuing, 463

Privacy Enhanced Mail
(PEM), 605

private key, 580

probability calculations,
92–93

process models, 36–38

process-per-message, 37–38

process-per-protocol, 37

processes, 36

programmed I/O (PIO),
141–143

buffering, 143

illustrated, 143

use decision, 148

See also network adapters

Index 799

propagation delay

defined, 44

speed-of-light, 41–42

protocol data units (PDUs)

convergence sublayer
(CS-PDUs), 199, 200

defined, 199

multiplexing, 200

single-cell, 200

protocol graphs

defined, 22

example illustration, 23

Protocol Independent
Multicast (PIM), 331,
336–340

defined, 336

design, 339

operation illustration, 337

protocol independence, 339

rendezvous point (RP),
336–339

shared trees, 336, 337, 338

source-specific trees, 336,
340

sparse mode (PIM-SM),
336

protocols

bit-oriented, 83–84

defined, 21

end-to-end, 29

implementation issues,
36–40

implementing, 51

interface definitions, 21

link-layer, 83

specifications, 23

See also specific protocols

protocols stacks, 22

protocol-to-protocol
interface, 39

proxies

classical, 621

defined, 620

FTP, 621

HTTP, 620, 621

local Web, 701

SIP, 675, 676

Telnet, 621

transparent, 621

proxy-based firewalls,
620–621

classical, 621

defined, 620

illustrated, 621

transparent, 621

See also firewalls

pseudoheader, 377

pseudowire emulation, 348

public key, 580

algorithm, 580

authentication, 597–598

construction, 588

cryptography, 580

distribution, 601–604

encryption, 580, 588–591

push operation, 401

Q

Q.2931, 514

quality of service (QoS), 14,
492–518

application requirements,
493–498

approaches, 498

architecture, 498

ATM, 498, 513–517

coarse-grained approaches,
498

Differentiated Services
(DiffServ), 509–513

fine-grained approaches,
498

Integrated Services
(IntServ), 499–509

real-time applications,
493–498

service model, 458, 493

summary, 519

virtual circuit model, 176

quantization

equation, 555

phase, 554–556

table, 554, 555

queue length, 195

average, computing, 479

average, weighted running,
482

management, 485

queues

behavior control, 194

best-effort, 512

cells and, 194–195

output time, 194

premium, 512

queuing, 461–468

delays, 42, 50

disciplines, 451, 461–468

fair (FQ), 463–468

FIFO, 462–463

priority, 463

R

random early detection
(RED), 480–486

algorithm, 481

average queue length
computation, 481

DECbit vs., 480, 481

defined, 480

drop distribution, 484

drop probability, 481, 482

early random drop, 481

fair resource allocation,
484

implementation, 480

with In and Out (RIO),
510–512

packet dropping, 481

parameters, 484–485

with PPD, 486

queue length averaged over
time, 484

800 Index

random early detection
(RED) (continued)

queue length thresholds,
482

random nature of, 484

tail drop mode, 484

thresholds on FIFO queue,
483

weighted (WRED), 512

See also congestion
avoidance

rate-adaptive applications,
498

rate-based design, 404

rate-based resource
allocation, 457–458

reachability concept, 312

real-time applications, 492,
493–498

adaptability, 496–497

audio example, 493–496

defined, 492

distinguishing
characteristics, 492

intolerant, 496

taxonomy of, 496–498

TCP congestion control
and, 517

tolerant, 496

real-time audio application,
493–496

data generation, 493

illustrated, 494

playback buffer, 494–495

playback time, 494

Real-time Transport Control
Protocol (RTCP),
668–671

application-specific control
packets, 669

bandwidth, 669

canonical name (CNAME),
668, 671

control stream functions,
668

defined, 664

messages, 671

packet types, 669

receiver reports, 669, 670

reports, 669

sender reports, 669, 670

source descriptions, 669,
671

traffic, limiting, 669

Real-time Transport Protocol
(RTP), 660–671

coding scheme
communication, 662

CSRC, 668

data stream granularities,
670

defined, 661

details, 664–665

header, 664, 665, 666

header format, 665–668

lost packet detection, 667

multiple media streams
using, 666

packet padding, 666

profile, 664, 667

protocol stack for
applications using, 662

requirements, 662–664

running over UDP, 662

SSRC, 667–668

standard, 664

timing relationship
determination, 662–663

reassembly, 245–249

background process, 249

complexity, 249

routine, 246–249

receive buffer, 390

defined, 390

emptying, 391

pointers, 390

See also Transmission
Control Protocol (TCP)

receiver-driven layered
multicast (RLM), 566

receiver-makes right, 539

record boundaries, 401–402

record protocol, 613

RED with In and Out (RIO),
510–512

classes, 511

congestion and, 512

defined, 510–511

illustrated, 511

in/out packet order, 512

relay agent, 264–265

reliability, 18–19

reliable byte stream, 378–405

reliable datagram protocol,
419

reliable flooding, 282–285

defined, 282

design goals, 284

LSP illustration, 284

See also link-state routing

Remote Procedure Call
(RPC), 375, 405–431

BLAST, 407, 408–413,
424–425

bulk transfer, 408–413

CHAN, 407, 414–423, 425

components, 406

DCE, 428–431

defined, 405

dispatcher, 423–424

functions, 407

implementation, 408

invoking, 407

layer, 408–409

local procedure call basis,
405

mechanism illustration,
406

popularity, 405

problems, 405–406

protocol design, 407

protocol issues, 425

request/reply, 414–423

SELECT, 407, 423–424,
425

simple stack, 424–425

Index 801

stub compiler, 406

summary, 435

SunRPC, 425–428

timeline for, 405

as transport protocol,
409

See also end-to-end
protocols

rendezvous points (RPs),
336–339

candidate, 336

defined, 336

source-specific tree, 336,
337

See also Protocol
Independent Multicast
(PIM)

repeaters

defined, 112

illustrated, 113

See also Ethernet

Request to Send (RTS)
frames, 134

request/reply channels, 17

requirements

bandwidth, 41

connectivity, 7–10

cryptographic algorithms,
582–583

MD5, 583

resource sharing, 10–14

RTP, 662–664

service support, 15–19

reservation-based resource
allocation, 456–457

resilient overlay networks
(RON), 688–690, 705

defined, 689

performance

improvements, 689

questions, 690

resolution mechanism, 634

resource allocation, 452–461

defined, 450–451, 452

effective, 458–460

evaluation criteria,
458–461

fair, 460–461

feedback-based, 456–457

host-centric, 456

implementation, 452

issues, 452–461

in packet-switched
networks, 453–454

rate-based, 457–458

reservation-based, 456–457

router-centric, 456

service model, 456

summary, 518

taxonomy, 456–458

throughput increase,
458–459

window-based, 457–458

See also congestion control

resource management (RM),
515, 516

Resource Reservation
Protocol (RSVP), 347,
500, 503–506

ATM QoS vs., 514–515

connectionless model, 514

defined, 503

multicast flow support, 504

PATH message, 504, 505

receiver-oriented approach,
504

reservation styles, 506

RESV message, 504–505

soft state use, 503–504

underlying assumptions,
503

resource reservations

defined, 500

on multicast tree, 505

styles, 506

resource sharing, 10–14

retransmission, 292

adaptive, 397–401

latency and, 492

selective request (SRR), 409

reverse-path broadcast (RPB),
333–335

defined, 335

shortest-path broadcast
implementation, 335

reverse-path multicast
(RPM), 335

revised ARPANET routing
metric, 293

defined, 293

illustrated, 293

observations, 294

See also ARPANET; routing

RFC 822, 644, 645

Rivest, Shamir, Adleman
(RSA), 579, 588–591

breaking, 583, 590

defined, 588

digital signatures with,
599–600

key length, 588

performance, 594

premise, 590

public key, 588

public/private key pair, 590

See also cryptographic
algorithms

root bridge, 188, 189

round-trip time (RTT), 44

calculation, 401

defined, 41

in delay x bandwidth, 46

minimum/maximum
average, 487

on high-speed network,
47–48

packet drops per, 484

perceived latency vs., 43

TCP sampling, 471

route calculation, 285–288

router-centric resource
allocation, 456

routers

area border (ABR), 316,
317

802 Index

routers (continued)

block diagram, 257

border, 310

bottleneck, 454

congested, 454

default, 253

defined, 10, 237, 254

design, 256

designated (DR), 338

fair queuing at, 464

firewalls, 617–622

forwarding tables, 255

fragmentation in, 242

goal, 280–281

implementation, 256–258

as internet-level nodes, 254

label edge (LERs), 341

label switching (LSRs),
343–346

line rate, 257

MPLS-based, 340

next hop, 253

packet size and, 257

sender-specific state,
339

switches vs., 256

throughput, 257

use of, 256

routing, 169

areas, 316–318

around, 453

behavior monitoring,
294–295

challenge, 234

classless, 306–308

complexity, 294

congestion control vs.,
453–454

defined, 10, 252

distance-vector, 274–280

distributed, 273–274

domains, 309

explicit, 346–348

forwarding vs., 271

as graph theory problem,
272

interdomain, 308–316

Internet backbone, 312

intradomain, 315–316

IP, 235

IPv6, 320

link-state, 282–291

loops, 278

lowest-cost path problem,
273

message authentication,
288

metrics, 291–294

mobile host, 295–299

problem, 271

source, 168, 177–180, 346

source-directed, 330

to subnets, 305

triangle, 298

updates, 276–277, 279,
280

Routing Information Protocol
(RIP), 280–282

example network running,
281

packet format, 281

routers running, 282

version 2 (RIPv2), 282

See also distance-vector
routing

routing overlays, 682–690

end system multicast,
684–688

experimental versions of IP,
683–684

resilient, 688–690

See also overlay networks

routing protocols, 256

distributed algorithms, 273

interdomain, 272

in internetworks, 280

intradomain, 272

running, 273

routing tables, 168

build steps, 287

defined, 271

example, 341, 697

example rows, 272

forwarding tables vs., 271

initial, 275

structures, 271

as two-dimensional array,
696

RSpecs, 500

run length encoding (RLE),
550

S

scalability

achieving, 256

hierarchy principle and,
301

information hiding and,
318

Internet, 301

IntServ, 508–509

optimality tradeoff, 318

subnetting and, 306

scaling factor, 403

scatter-read, 142

secret key

algorithm, 580

defined, 578

encryption, 580, 583–588

secure hash algorithm (SHA),
591

Secure Shell (SSH), 604–605,
607–610

for client/server
authentication, 608

defined, 607

importance, 608

protocols, 608

remote login support, 607

SSH-AUTH, 608

SSH-COMM, 609

SSH-TRANS, 608–609

See also security

Index 803

Secure Socket Layer (SSL),
610

security

authentication, 579,
594–598

cryptographic algorithms,
579, 580–594

encryption, 578, 580

example systems, 604–617

firewalls, 617–622

IPSEC, 604, 614–617

mechanisms, 594–604

message integrity, 579,
598–601

PGP, 604, 605–607

public key distribution,
601–604

SSH, 604–605, 607–610

summary, 622–623

taxonomy, 581

TLS, 605, 610–614

types of, 604–605

security association (SA), 615

security parameters index
(SPI), 615

segmentation and reassembly
(SAR), 198–203

defined, 198

illustrated, 198

See also asynchronous
transfer mode (ATM)

segments

contents, 397

defined, 382

format, 382–384

lost, 399

probe, 392–393

response, 392

See also Transmission
Control Protocol (TCP)

SELECT, 423–424

address space definition,
425

concurrency management,
425

defined, 407, 423

implementation, 424

invocation, 424

on client side, 423

on server side, 423

in simple RPC stack, 425

simplicity, 423

SunRPC and, 426

version configuration, 423

See also Remote Procedure
Call (RPC)

selective acknowledgments,
103, 409

defined, 103

fragmentation with, 431

See also acknowledgments

selective retransmission
request (SRR), 409

self-clocking, 468

self-routing fabrics, 213–214

banyan, 217

defined, 217

research, 217

self-routing header, 217,
218

See also fabrics

send buffer, 389–390

defined, 389–390

filling, 391

overflow, 392

pointers, 390

See also Transmission
Control Protocol (TCP)

separating policy and
mechanism, 467–468

separation of concerns, 110

server surrogates, 699

servers

backend, 699

“busy,” 703

defined, 17

example application, 35–36

name, 634, 636–640, 701

SMTP, 649

SNMP, 658

service interface, 21, 22

service models

best-effort, 458

defined, 456

multiple QoS, 456

QoS-based, 458, 493

service provider networks,
310

session control, 671–680

defined, 660

issues, 671

protocols, 671

Session Description Protocol
(SDP), 671, 672–674

defined, 672

formatting rules, 673

information, 672

message example, 672

SIP and, 674

version zero of, 673

session directory tool, 674

Session Initiation Protocol
(SIP), 671, 675–679

capabilities, 675

defined, 675

in human-to-human
communication, 675

proxies, 675, 676

registration capabilities,
678

SDP and, 674

session message flow, 678

URI, 676

session resumption, 613–614

Shannon’s theorem, 72–73

defined, 72

formula, 73

use of, 72–73

shared trees, 336, 337

defined, 336

packet delivery along, 338

See also Protocol
Independent Multicast
(PIM)

804 Index

shared-bus fabric, 216

shared-media networks, 206

shared-memory switches, 216
shortest paths, 273

shortest-path multicast trees

defined, 332

illustrated, 334

signalling

defined, 171

PVCs, 173

SVCs, 173

signals

data encoding in, 68

propagation, 67

between signalling
components, 76

silly window syndrome,
395–396

defined, 395

illustrated, 396

problem existence, 396

See also Transmission
Control Protocol
(TCP)

Simple Internet Protocol Plus
(SIPP), 320

Simple Mail Transfer Protocol
(SMTP), 29, 643

client, 649

example, 648–649

implementation, 647

independent connection,
648

server, 649

use, 643

Simple Network
Management Protocol
(SNMP), 294, 543, 643

client, 659

defined, 658

MIB and, 658

server, 658

use, 643, 658

single attachment stations
(SASs), 127–128

single-bit errors, 96

sliding window, 101–110,
175

algorithm, 101–104

defined, 101

finite sequence numbers
and, 104–105

flow control, 110

frame order, 109–110

implementation of,
105–109

largest acceptable frame,
102

last acknowledgment
received, 101

last frame received, 102

last frame sent, 101

negative acknowledgment
(NAK), 103

on receiver, 102

on sender, 102

receive window size, 102

roles, 109

selective acknowledgments,
103

send window size, 101, 104

sequence number, 101

TCP, 379, 383, 389–394

timeline, 101

window size, 391

X.25, 381

See also automatic repeat
request (ARQ)

Sliding Window Protocol
(SWP), 105

defined, 105

implementation, 107

sending side, 106

slow start, 471–476

alternatives, 476

defined, 472

packets in transit during,
472

to restart flow, 473

for spacing packets, 473

use situations, 473

See also congestion control

smart sender/dumb receiver
rule, 393

socket interface, 31

sockets

defined, 31

return value from, 32

soft state

defined, 455

refreshment, 504

RSVP use, 503–504

SONET, 84–87

data rates, 86

defined, 85

frames, 85, 86

frames out of phase, 87

links, 182

NRZ encoding, 86

optical switches and, 181

overhead, 205

specification, 85

STS-1 frame, 85

support, 86

source addresses, 182, 190

source routing, 168,

177–180, 346

in datagram networks,
179

defined, 177

example, 178–179

header handling methods,
180

headers, 178–179, 180

illustrated, 178

implementation, 177–178

scaling problem, 179–180

uses, 179–180

in virtual private networks,
179

See also routing

source-based congestion
avoidance, 486–491

TCP Reno, 486–487, 488

Index 805

TCP Tahoe, 486, 488

TCP Vegas, 488–491

throughput calculation,
487

See also congestion
avoidance

source-directed routing, 330,
487

source-specific trees, 336, 340

spanning tree algorithm,
185–189, 255–256

basic concept, 187

defined, 185–186

distributed, 185

illustrated, 186

with some ports not
selected, 188

split horizon, 278

star topology, 166

stateless autoconfiguration,
328

state-transition diagram,
386–389

CLOSED state, 388, 389

ESTABLISHED state, 386,
388

illustrated, 386

LISTEN state, 387

SYN RCVD state, 387

SYN SENT state, 387

TIME WAIT state, 388

See also TCP connections

statistical multiplexing,
12–14

stop-and-wait, 98–101

defined, 98

scenarios, 98–99

shortcoming, 100

subtlety, 99–100

timeline, 100

See also automatic repeat
request (ARQ)

store-and-forward, 8–9

streaming applications, 4,
661–662

structured overlays, 692–698

adding nodes to, 696, 697

consistent hashing,
693–694

distributed hash tables,
694, 698

number of routing hops
and, 696

See also overlay networks

STS-N links, 70

stub AS, 311

stub compiler

defined, 406

illustrated, 541

stubs, 540–541

compilation-based
approach, 541

defined, 540

interpretation-based
approach, 541

NDR generation, 545

on client side, 540

on server side, 540

See also argument
marshalling

subnet bandwidth manager
(SBM), 507–508

defined, 507

designated (DSBM), 507

subnet masks

byte boundary alignment
and, 305

defined, 302

noncontiguous, 305

subnets

addressing, 303

defined, 302

IntServ and, 506–508

multiple, 305

number, 302, 305

proximity to each other,
302

routing to, 305

subnetting, 301–306

defined, 302

forwarding table with, 304

hosts and, 303–304

scalability and, 306

support, 304

use situation, 302

subnetworks, 236, 262

substitution box, 586

SunRPC, 425–428

CHAN vs., 426

defined, 425

header definition, 427

header formats, 427–428

issues, 425

Port Mapper, 426–427

protocol graph, 426

SELECT and, 426

as standard, 425

two-tier addresses, 426

See also Remote Procedure
Call (RPC)

supernetting, 307

switched networks

circuit-switched, 8

defined, 8

illustrated, 8

packet-switched, 8

scalability, 167

switched virtual circuits
(SVCs), 171, 173

switches

4 × 4, 215

ATM, 205–206, 220

Batcher-banyan, 219–220

circuit, 164

congested, 165

crossbar, 216–217

defined, 9, 254

Ethernet, 221

Frame Relay, 257

functionality, 18

LAN, 180–192, 255

level-7, 681

level 4, 619

806 Index

switches (continued)

as network-level nodes, 254

optical, 181–182

packet, 164

performance, 212–213

protocol graph running on,
167

routers vs., 256

shared-bus, 216

shared-memory, 216

star topology, 166

with three input/output
ports, 167

throughput, 212–214

use example, 14

utilization, 177

WAN, 255

switching, 166–180

cell, 192–210

datagram, 168–170

defined, 167

optical, 179–183

packet, 164–221

source routing, 168,
177–180

virtual circuit, 168,
170–177

SYN attack, 623

synchronization source
(SSRC), 667–668

Synchronous Data Link
Control (SDLC), 83

Synchronous Optical
Network. See SONET

synchronous protocols,
418–419

synchronous time-division
multiplexing (STDM),
11–13

defined, 11–12

limitations, 12

system area networks (SANs),
13

system throughput, 699

systems approach

defined, xxi

implications, xxi–xxii

T

tagged data, 539–540

tail drop, 462–463

defined, 462

FIFO queuing with,
462–463

RED, 484

See also first-in-first-out
(FIFO) queuing

target token rotation time
(TTRT), 129–130

TCP connections, 4, 379,
380, 381

coarse-grained timeouts,
477–478

establishment and
termination, 384–389

HTTP, 655–656

MPEG stream over, 564

packet drop from, 485

setup, 384

state-transition diagram,
386–389

termination messages, 384

three-way handshake,
385–386

See also Transmission
Control Protocol (TCP)

TCP Reno, 486–487, 488

TCP Tahoe, 486, 488

TCP Vegas, 488–491

congestion window
adjustment, 490

congestion window
decrease, 490, 491

congestion-avoidance
actions, 488

defined, 486

driving on ice metaphor,
488

goal, 488

intuition behind, 488

sending rate calculation,
489–490

tracing
congestion-avoidance
mechanism, 491

See also source-based
congestion avoidance

TCP/IP, 147, 148

thrashing, 460

threaded indices, 340–341

three-way handshake,
385–386, 595–596

algorithm timeline, 385

for authentication,
595–596

defined, 385

illustrated, 595

process, 595–596

See also TCP connections

throughput

delay ratio, 459

designers and, 214

effective, 145, 146

as function of traffic, 213

resource allocation and,
458–459

router, 257

switch, 212–214

system, 699

See also bandwidth

timed-token algorithm,
129–130

timeouts

coarse-grained, 477–478

defined, 98

use strategy, 98

timestamp, 402

token buckets, 500–501

defined, 500

parameters, 500

single flow description, 502

use illustration, 502

token holding time (THT),
123–124

default, 124

Index 807

defined, 123

token rings, 120–131

beacon frame, 126

dead station detection, 126

defined, 120

delayed release, 125

early release, 125

Ethernet vs., 121

FDDI, 120, 127–131

frame format, 126–127

functioning of, 121

illustrated, 120–131

maintenance, 125–126

Manchester encoding, 126

media access control
(MAC), 122–125

monitor, 123, 125, 126

multistation access unit
(MSAU), 122

physical properties,
121–122

relay used on, 121

reservation bits, 124

storage capacity, 122–123

strict priority scheme, 124

token holding time (THT),
123–124

token rotation time (TRT),
124

token rotation time (TRT),
124

measured, 129

target (TTRT), 129–130

traceroute tool, 295

traffic

DiffServ classes, 509

local, 311

models, 213–214

premium, 512–513

throughput as function of,
213

transit, 311

transceivers, 112

transit AS, 311

transit traffic, 311

Transmission Control
Protocol (TCP), 28,
378–405

32-bit timestamp, 402

adaptive retransmission,
397–401

alternative design choices,
403–405

blocking sending process,
392

byte stream management,
382

as byte-oriented protocol,
403

byte-stream channel, 29

characteristics, 379

checksum, 384

congestion-control
mechanism, 379,
468–478

defined, 378–379

demultiplexing support,
379

end-to-end issues, 379–381

explicit setup/teardown
phases, 404

extensions, 402–403

flow control, 380, 390–393

header format, 383

headers, 384

maximum segment size
(MSS), 469, 470

measured round-trip
latencies, 433

Nagle’s algorithm, 396–397

packet lifetime, 380

peers, packet exchange,
382

pipe fullness, 393–394

process illustration, 383

push operation, 401

receive buffer, 390

record boundaries,
401–402

reliable/ordered delivery,
389–390

for request/reply
applications, 403

round-trip time sampling,
471

sawtooth pattern, 471

segment format, 382–384

segments, 382

self-clocking, 468

send buffer, 389–390

silly window syndrome,
395–396

sliding window algorithm,
379, 383, 389–394

summary, 434–435

timeout mechanism, 402

triggering transmission,
395–397

urgent data feature, 401

as window-based protocol,
404

wraparound protection,
393

See also end-to-end
protocols; TCP
connections

transparent proxy, 621

Transport Layer Security
(TLS), 605, 610–614

handshake protocol,
611–612

parts, 611

in practice, 614

problem solutions, 610

record protocol, 613

session resumption feature,
613–614

See also security

triggered update, 277

triple-DES (3DES), 588

Trivial File Transport
Protocol (TFTP), 29

trusted third party, 596–597

authentication server, 596

in Kerberos, 596

process, 596–597

See also authentication

808 Index

TSpecs, 500–502

calculating, 506

flow conformance to, 503

flow not conforming to,
503

receiver collection, 506

sender, 504

See also flowspecs

tunnels, 268–270

defined, 268

downside of, 270

endpoints, 270

for forcing packet delivery,
270

forwarding table of router
at entrance, 269

between home agent and
foreign agent, 297

illustrated, 269

IPSEC, 617

IPv6, 322–323

MPLS, 349–352

two-dimensional parity, 88,
89–90

calculation, 90

defined, 89

illustrated, 90

See also error detection

type of service (TOS)
information, 291

U

ubiquitous networking,
51–52

UNI ATM cell format

cell loss priority (CLP),
197–198

defined, 197

generic flow control (GFC),
197

header error check (HEC),
198

illustrated, 197

NNI format vs., 197

virtual circuit identifier
(VCI), 197

virtual path identifier (VPI),
197

See also cell formats

unicast

addresses, 116

defined, 10

uniform resource identifier
(URI), 673, 676

uniform resource locators
(URLs), 651–652,
702–703

defined, 4

embedded, 653

mapping, 702

redirector hashing, 703

units of measure, 44–45

unmarshalling, 536

unreliable service, 239

unresponsive flow problem,
485

unspecified bit rate (UBR),
514–515

defined, 514

maximum send rate, 515

See also ATM QoS

untagged data, 539–540

updates, 280

BGP, 314–315

binding, 299

periodic, 276–277

routing table, 279

triggered, 277

See also routing

User Datagram Protocol
(UDP), 28, 376–378,
660

checksum algorithm, 377

datagram delivery channel,
29

defined, 376

flow control and, 377

header format, 376

length field, 377

measured round-trip
latencies, 433

measured throughput
using, 434

message queue, 378

ports, 426–427

pseudoheader, 377

RTP running over, 662

summary, 434

See also end-to-end
protocols

V

variable bit
rate—non-real-time
(VBR-nrt), 514

variable bit rate—real-time
(VBR-rt), 514

vat, 6, 661, 663

very high rate DSL (VDSL),
73

vic, 663

video compression, 557–565

ITU-T H series, 561

Macromedia FLASH, 562

MPEG, 557–561

See also compression

videoconferencing
application, 5–6

video-on-demand application,
4

virtual circuit identifiers
(VCIs), 349

defined, 171

link-local scope, 171, 174

unused value, 174

value, 172

virtual circuit switching,
170–177

connection request, 175

link decision, 175

network illustration, 170

packet sent to, 173

QoS, 176

Index 809

source routing and, 179
switch/link connection

failure, 175

See also switching

virtual circuits (VCs)

buffers, 175

defined, 170

permanent (PVCs), 171,
173

signalled, 171

switched (SVCs), 171, 173

table configuration, 173

table entries, 172

virtual destination (VD), 516

virtual LANs (VLANs), 191

virtual path identifiers (VPIs),
203–204

virtual paths, 203–204

advantage, 204

defined, 203

example illustration, 204

virtual private networks
(VPNs), 177, 267–268

defined, 267

illustrated, 268

implementation, 681

layer 3 example, 351

MPLS, 348–352

MPLS label stacks, 351

virtual source (VS), 516

virtualization, 690

W

wavelength, 68

weighted fair queuing
(WFQ), 467–468

defined, 467

flows, 467

policies, 468

premium packets, 513

as reservation-based
resource allocation
component, 467

router performing, 467

See also fair queuing

weighted RED (WRED), 512

well-known ports, 377

whiteboard (wb) application,
6

wide area networks (WANs)

defined, 12–13

switches, 255

window-based resource
allocation, 457–458

wireless links, 74–75

AMPS, 74

Bluetooth, 75

GSM, 74

HIPERLAN, 75

IEEE 802.11, 75

PCS, 74

See also links

wireless networks, 131–137

access points (APs),
134–136

collision avoidance,
133–134

direct sequence, 132

distribution system,
134–136

exposed node problem, 133

frame format, 136–137

frequency hopping, 132

hidden nodes, 133

illustrated example, 133

MACA, 134

n-bit chipping code, 132

node mobility, 136

physical properties,
132–133

standard, 131

work-conserving, 466, 467

workstations

architecture, 67

as packet switches, 211

World Wide Web, 650–657

wraparound, 393

X

X.25 networks, 175,

176–177

congestion and, 177

sliding window protocol,
381

X.500 standard, 640

X.509 standard, 603

xDSL, 72–73

Z

zero-or-more semantics, 414

zones, 636–638

defined, 636

domain hierarchy
partitioned into, 637

implementation, 637–638

relevance, 637

See also name servers

A B O U T T H E A U T H O R S

Larry L. Peterson is Professor of Computer Science at Princeton University and has

previously taught at the University of Arizona. He has been involved in the design and

evaluation of several network protocols, and currently directs the PlanetLab project.

He has served as the Editor-in-Chief of ACM Transactions on Computer Systems, and

on the program committees for SOSP, SIGCOMM, OSDI, and ASPLOS. He is an ACM

Fellow and a member of the Internet’s End-to-End Research Group.

Bruce S. Davie is a Cisco Fellow at Cisco Systems, Inc., where he is involved in the

development of MPLS and quality of service technologies. He is an author of numerous

journal articles, conference papers, and RFCs, and co-author of two additional books

for MKP. He is an active participant in both the Internet Engineering Task Force and

the End-to-End Research Group, as well as a senior member of the IEEE.

