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          P r e f a c e 
 
 
General Remarks 
 
The purpose of this manual is to give guidance on how to use the 
eighth edition of the book An Introduction to Database 
Systems──referred to throughout the manual as simply "the book," 
or "this book," or "the present book," or just "the eighth 
edition"──as a basis for teaching a database course.  The book is 
suitable for a primary (one- or two-semester) course at the junior 
or senior undergraduate or first-year graduate level; it also 
contains some more forward-looking and research-oriented material 
that would be relevant to a more advanced course.  Students are 
expected to have a basic understanding of (a) the storage and file 
management capabilities (indexing, hashing, etc.) of a modern 
computer system, and (b) the features of a typical high-level 
programming language (Java, Pascal, C, PL/I, etc.).   
 

Let me immediately say a little more regarding these two 
prerequisites:   

 
1.  In connection with the first, please note that although the 

book proper contains nothing on the subject, there's an online 
appendix available──Appendix D, "Storage Structures and Access 
Methods──that does provide a tutorial overview of such 
matters.  That appendix is an upgraded version of material 
that was included in the book proper in the first six 
editions.  But file management isn't specific to database 
systems; what's more, it's a huge subject in its own right, 
and it has textbooks of its own──see, e.g., File Organization 
for Database Design, by Gio Wiederhold, published by McGraw-
Hill in 1987 (which, despite the title, is really about files, 
not databases).  That's why I've dropped the inline coverage 
of such material from the last two editions of the present 
book.   

 
2.  In connection with the second, please note that the book uses 

a hypothetical language called Tutorial D as a basis for 
examples throughout.  Tutorial D might be characterized, 
loosely, as a Pascal-like language; it's defined in detail in 
reference [3.3].  (See the subsection immediately following 
for an explanation of this reference format.  I'll have more 
to say regarding reference [3.3] in particular later in these 
introductory notes──see the subsection on The Third Manifesto, 
pages 6-8.)   

 
All of that being said, I want to say too that I don't think 

either of these prerequisites is particularly demanding; but you 
should be prepared, as an instructor, to sidetrack occasionally 
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and give a brief explanation of (e.g.) what indexes are all about, 
if the question arises.   

 
A note on style:  The book itself follows convention in being 

written in the first person plural (we, our, etc.).  This manual, 
by contrast, is written in the first person singular (I, my, 
etc.)──except where (a) it quotes directly from the book, or (b) 
it reflects ideas, opinions, positions, etc., that are due to both 
Hugh Darwen and myself (again, see the subsection on The Third 
Manifesto, pages 6-8).  The latter case applies particularly to 
Chapter 20 on type inheritance, Chapter 23 on temporal databases, 
and Chapter 26 on object/relational databases.   

 
The manual is also a little chattier than the book, using 

elisions such as "it's" and "they're" instead of the more stilted 
"it is" and "they are," etc.   

 
 

Structure of the Book 
 
The book overall consists of a preface plus 27 chapters (divided 
into six parts), together with four appendixes, as follows:   
 
Part I : Preliminaries  
 
1. An Overview of Database Management  
2. Database System Architecture  
3. An Introduction to Relational Databases  
4. An Introduction to SQL  
 

Part II : The Relational Model  
 
5. Types  
6. Relations  
7. Relational Algebra  
8. Relational Calculus  
9. Integrity  

10. Views  
 
Part III : Database Design  
 
11. Functional Dependencies  
12. Further Normalization I: 1NF, 2NF, 3NF, BCNF  
13. Further Normalization II: Higher Normal Forms  
14. Semantic Modeling  
 
Part IV : Transaction Management  
 
15. Recovery  
16. Concurrency  
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Part V : Further Topics  
 
17. Security  
18. Optimization  
19. Missing Information  
20. Type Inheritance  
21. Distributed Databases  
22. Decision Support  
23. Temporal Databases  
24. Logic-Based Databases  
 
Part VI : Objects, Relations, and XML  
 
25. Object Databases  
26. Object/Relational Databases  
27. The World Wide Web and XML  
 
Appendixes  
 
A. The TransRelationaltm Model  
B. SQL Expressions  
C. Abbreviations, Acronyms, and Symbols  
D. Storage Structures and Access Methods (online only)  
 

The preface gives more specifics regarding the contents of each 
part, chapter, etc.  It also summarizes the major differences 
between this eighth edition and its immediate predecessor.   
 

By the way, if you're familiar with earlier editions, I'd like 
to stress the point that this edition, like each of its 
predecessors, is in large degree a brand new book──not least 
because (of course) I keep learning myself and improving my own 
understanding, and producing a new edition allows me to correct 
past mistakes.  (In this connection, I'd like to draw your 
attention to the wonderful quote from Bertrand Russell in the 
book's preface.  Also please note the epigraphs by George 
Santayana and Maurice Wilkes!  It would be nice if the computer 
science community would take these remarks to heart.)   

 
The following notes, also from the book's preface, are lightly 

edited here:   
 

(Begin quote) 
 
The book overall is meant to be read in sequence more or less as 
written, but you can skip later chapters, and later sections 
within chapters, if you choose.  A suggested plan for a first 
reading would be:   
 
•  Read Chapters 1 and 2 "once over lightly."   
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•  Read Chapters 3 and 4 very carefully.   
 
•   Read Chapters 5, 6, 7, 9, and 10 carefully, but skip Chapter 

8──except, probably, for Section 8.6 on SQL (in fact, you 
might want to treat portions of Section 8.6 "early," perhaps 
along with the discussion of embedded SQL in Chapter 4).  
Note:  It would be possible to skip or skim Chapter 5, too, 
but if you do you'll need to come back and deal with it 
properly before you cover Chapter 20 or Chapters 25-27.   

 
•  Read Chapter 11 "once over lightly."   
 
•   Read Chapters 12 and 14 carefully, but skip Chapter 13.  (You 

could also read Chapter 14 earlier if you like, possibly right 
after Chapter 4.  Many instructors like to treat the 
entity/relationship material much earlier than I do.  For that 
reason I've tried to make Chapter 14 more or less self-
contained, so that it can be read "early" if you like.)   

 
•  Read Chapters 15 and 16 carefully.   
 
•   Read subsequent chapters selectively (but in sequence), 

according to taste and interest.   
 

I'd like to add that instructors, at least, should read the 
preface too (most people don't!).   
 

Each chapter opens with an introduction and closes with a 
summary; each chapter also includes a set of exercises (and the 
online answers often give additional information about the subject 
at hand).  Each chapter also includes a set of references, many of 
them annotated.  This structure allows the subject matter to be 
treated in a multi-level fashion, with the most important concepts 
and results being presented inline in the main body of the text 
and various subsidiary issues and more complex aspects being 
deferred to the exercises, or answers, or reference annotation, as 
appropriate.   

 
With regard to those references, by the way, I should explain 

that references are identified in the text by two-part numbers in 
square brackets.  For example, the reference "[3.1]" refers to the 
first item in the list of references at the end of Chapter 3: 
namely, a paper by E. F. Codd published in CACM 25, No. 2, in 
February, 1982.  (For an explanation of abbreviations used in 
references──e.g., "CACM"──see Appendix B.  Regarding Codd in 
particular, let me draw your attention to the dedication in this 
new edition of the book.  It's a sad comment on the state of our 
field that I often encounter database students or professionals 
who have never heard of Ted Codd.)   
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(End quote) 
 

This manual gives more specific guidance, with rationale, on 
what can safely be skipped and what really ought not to be.  As 
indicated above, it also gives answers to the exercises──or most 
of them, at any rate; note, however, that some exercises don't 
have any single "right" answer, but instead are intended to 
promote group discussion and perhaps serve as some kind of 
miniproject.  Such cases are flagged in this manual by the phrase 
No answer provided.  Note:  The book also includes a number of 
inline exercises embedded in the body of the text, and the remarks 
of this paragraph apply to those inline exercises too.   

 
 

Structure of this Manual 
 
The broad structure of this manual mirrors that of the book 
itself:  It consists of this preface, together with notes on each 
part, each chapter, and each appendix from the subject book 
(including the online Appendix D).  Among other things, the notes 
on a given part or chapter or appendix:   
 
•  Spell out what that piece of the book is trying to achieve  
 
•   Explain the place of that piece in the overall scheme of 

things  
 
•  Describe and hit the highlights from the relevant text  
 
•   Indicate which items can be omitted if desired and which must 

definitely not be  
 
•  Include additional answers to exercises (as already noted)  
 

and, more generally, give what I hope are helpful hints regarding 
the teaching of the material.   
 
 
The Third Manifesto 
 
You might be aware that, along with my colleague Hugh Darwen, I 
published another database book a little while back called The 
Third Manifesto [3.3].*  The Third Manifesto consists of a 
detailed technical proposal for the future of data and database 
systems; not surprisingly, therefore, the ideas contained therein 
inform the present book throughout.  Which isn't to say The Third 
Manifesto is a prerequisite to the present book──it isn't; but it 
is directly relevant to much that's in this book, and further 
pertinent information is often to be found there.  Instructors in 
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particular really ought to have a copy available, if only for 
reference purposes.  (I realize this recommendation is somewhat 
self-serving, but I make it in good faith.)  Students, on the 
other hand──at least beginning students──would probably find much 
of The Third Manifesto pretty heavy going.  It's more of a 
graduate text, not an undergraduate one.   
 
 
────────── 
 
*  The full title is Foundation for Future Database Systems: The 
Third Manifesto (2nd edition, Addison-Wesley, 2000).  The first 
edition (1998) had the slightly different title Foundation for 
Object/Relational Databases: The Third Manifesto; however, it 
wasn't exclusively about object/relational databases as such, 
which was why we changed the title for the second edition.  By the 
way, there's a website, too: http://www.thethirdmanifesto.com.  
The website http://www.dbdebunk.com also contains much relevant 
material.   
 
────────── 
 
 

I should explain why we called that book The Third Manifesto.  
The reason is that there were two previous ones:   

 
•  The Object-Oriented Database System Manifesto [20.2,25.1]   
 
•  The Third Generation Database System Manifesto [26.44]    
 

Like our own Manifesto, each of these documents proposes a basis 
for future DBMSs.  However:   
 
•   The first essentially ignores the relational model!  In our 

opinion, this flaw is more than enough to rule it out 
immediately as a serious contender.   

 
•   The second does agree that the relational model mustn't be 

ignored──but unfortunately goes on to say that supporting the 
relational model means supporting SQL.   

 
The Third Manifesto, by contrast, takes the position that any 
attempt to move forward, if it's to stand the test of time, must 
reject SQL unequivocally (see the next subsection, "Some Remarks 
on SQL," for further elaboration of this point).  Of course, we're 
not so stupid as to think SQL is going to go away; after all, 
COBOL has never gone away.  Au contraire, SQL databases and SQL 
applications are obviously going to be with us for a long time to 
come.  So we do have to worry about what to do about today's "SQL 
legacy," and The Third Manifesto does include some specific 
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suggestions in this regard.  Further discussion of those 
suggestions would be out of place here, however.   
 

The Third Manifesto also discusses and stresses several 
important logical differences (the term is due to 
Wittgenstein)──i.e., differences that are quite simple, yet 
crucial, and ones that many people (not to mention products!) seem 
to get confused over.  Some of the differences in question are:   

 
•  Model vs. implementation  
 
•  Value vs. variable  

 
•  Type vs. representation  
 
•  Read-only operator vs. update operator  
 
•  Argument vs. parameter  
 
•  Type vs. relation  
 

and so on (this isn't meant to be an exhaustive list).  These 
notes aren't the place to spell out exactly what all of the 
differences are (in any case, anyone who claims to be an 
instructor in this field should be thoroughly familiar with them 
already); rather, my purpose in mentioning them here is to alert 
you to the fact that they are appealed to numerous times 
throughout the book, and also to suggest that you might want to be 
on the lookout for confusion over them among your students.  Of 
course, the various differences are all explained in detail in The 
Third Manifesto, as well as in the book itself.   
 

As noted earlier, The Third Manifesto also includes a 
definition of Tutorial D──although, to be frank, there shouldn't 
be any need to refer to that definition in the context of the 
present book (the Tutorial D examples should all be pretty much 
self-explanatory).   

 
 

Some Remarks on SQL 
 
As noted in the previous subsection, The Third Manifesto takes the 
position that any attempt to move forward, if it's to stand the 
test of time, must reject SQL.  This rather heretical position 
clearly needs some defending; after all, earlier editions of An 
Introduction to Database Systems actually used SQL to illustrate 
relational ideas, in the belief that it's easier on the student to 
show the concrete before the abstract.  Unfortunately, however, 
the gulf between SQL and the relational model has now grown so 
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wide that I feel it would be actively misleading to continue to 
use it for such a purpose.  Indeed, we're talking here about 
another huge logical difference:  SQL and the relational model 
aren't the same thing!──and in my opinion it's categorically not a 
good idea (any more) to use SQL as a vehicle for teaching 
relational concepts.  Note:  I make this observation in full 
knowledge of the fact that many database texts and courses do 
exactly what I'm here saying they shouldn't.   
 

At the risk of beating a dead horse, I'd like to add that SQL 
today is, sadly, so far from being a true embodiment of relational 
principles──it suffers from so many sins of both omission and 
commission (see, e.g., references [4.15-4.20] and [4.22])──that my 
own preference would have been to relegate it to an appendix, or 
even to drop it entirely.  However, SQL is so important from a 
commercial point of view (and every database professional does 
need to have some familiarity with it) that it really wouldn't 
have been appropriate to dismiss it in so cavalier a fashion.  
I've therefore settled on a compromise: a chapter on SQL basics in 
Part I of the book (Chapter 4), and individual sections in later 
chapters describing those aspects of SQL, if any, that are 
relevant to the subject of the chapter in question.  (You can get 
some idea of the extent of that SQL coverage from the fact that 
there are "SQL Facilities" sections in 14 out of a total of 23 
subsequent chapters.)   

 
The net result of the foregoing is that, while the eighth 

edition does in fact discuss all of the most important aspects of 
SQL, the language overall is treated as a kind of second-class 
citizen.  And while I feel this treatment is appropriate for a 
book of the kind the eighth edition is meant to be, I do recognize 
that some students need more emphasis on SQL specifically.  For 
such students, I believe the book provides the basics──not to 
mention the proper solid theoretical foundation──but instructors 
will probably need to provide additional examples etc. of their 
own to supplement what's in the book.  (In this connection, I'd 
like, somewhat immodestly, to recommend reference [4.20] as a good 
resource.)   

 
 

What Makes this Book Different? 
 
The following remarks are also taken from the book's preface, but 
again are lightly edited here:   
 
(Begin quote) 
 
Every database book on the market has its own individual strengths 
and weaknesses, and every writer has his or her own particular ax 
to grind.  One concentrates on transaction management issues; 
another stresses entity/relationship modeling; another looks at 
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everything through a SQL lens; yet another takes a pure "object" 
point of view; still another views the field exclusively in terms 
of commercial products; and so on.  And, of course, I'm no 
exception to this rule──I too have an ax to grind: what might be 
called the foundation ax.  I believe very firmly that we must get 
the foundation right, and understand it properly, before we try to 
build on that foundation.  This belief on my part explains the 
heavy emphasis in this book on the relational model; in 
particular, it explains the length of Part II──the most important 
part of the book──where I present my own understanding of the 
relational model as carefully as I can.  I'm interested in 
foundations, not fads and fashions.  Products change all the time, 
but principles endure.   
 

In this regard, I'd like to draw your attention to the fact 
that there are several important "foundation" topics for which 
this book, virtually alone among the competition, includes an 
entire in-depth chapter (or an appendix, in one case).  The topics 
in question include:   

 
•  Types  
•  Integrity  
•  Views 
•  Missing information 
•  Inheritance 
•  Temporal databases 
•  The TransRelational Model  
 

In connection with that same point (the importance of 
foundations), I have to admit that the overall tone of the book 
has changed over the years.  The first few editions were mostly 
descriptive in nature; they described the field as it actually was 
in practice, "warts and all."  Later editions, by contrast, were 
much more prescriptive; they talked about the way the field ought 
to be and the way it ought to develop in the future, if we did 
things right.  And the eighth edition is certainly prescriptive in 
this sense (in other words, it's a text with an attitude!).  Since 
the first part of that "doing things right" is surely educating 
oneself as to what those right things actually are, I hope this 
new edition can help in that endeavor.   

 
(End quote) 
 

The foregoing remarks explain (among other things) the 
comparative lack of emphasis on SQL.  Of course, it's true that 
students who learn the theory thoroughly first are going to have a 
few unpleasant surprises in store if and when they get out into 
the commercial world and have to deal with SQL products; it's also 



Copyright (c) 2003 C. J. Date                            page 
fm.11 
 

true that tradeoffs and compromises sometimes have to be made in a 
commercial context.  However, I believe very firmly that:   

 
•   Any such tradeoffs and compromises should always be made from 

a position of conceptual strength.   
 
•   Such tradeoffs and compromises should not have to be made in 

the academic or research world.   
 
•   An emphasis on the way things ought to be, instead of on the 

way things currently are, makes it a little more likely that 
matters will improve in the future.   

 
So the focus of the book is clearly on theory.  But that 

doesn't mean it's not practical!  It's my very strong opinion that 
the theory we're talking about is very practical indeed, and 
moreover that products that were faithful to that theory would be 
more practical──certainly more user-friendly, and probably easier 
to implement──than the products that are currently out there in 
the commercial world.   

 
And one more point:  When I say the focus is on theory, I 

mean, primarily, that the focus is on the insights such theory can 
provide.  The book contains comparatively little in the way of 
formal proofs and the like──such material can always be found in 
the research literature, and appropriate references to that 
literature are included in the book.  Rather, the emphasis 
throughout is on insight and understanding (and precision), not so 
much on formalisms.  And I believe it's this emphasis that truly 
sets the book apart from the competition.   

 
 

Concluding Remarks 
 
The field of database management has grown very large, and it can 
be divided up in various ways.  One clear division is into model 
vs. implementation issues, and (as should be clear from what I've 
already said above) the book's focus is very heavily on the former 
rather than the latter.  However, please don't interpret this fact 
as meaning that I think implementation issues are unimportant──of 
course not!  But I do think we should know what we're trying to 
do, and why, before getting into the specifics of how.  Thus, I 
believe implementers too should be familiar with the material 
covered in the book.  (I also believe that "data model"* people 
should have some knowledge of implementation issues, but for 
present purposes I regard that as a separate and secondary point.  
Though the book certainly doesn't ignore implementation issues 
entirely!  In this connection, see in particular Chapter 18 and 
Appendixes A and D.)   
 



Copyright (c) 2003 C. J. Date                            page 
fm.12 
 

 
────────── 
 
*  See Chapter 1 for a discussion of the two very different 
meanings of the term data model.  I'm using it here in its 
primary──i.e., more fundamental and more important──sense.   
 
────────── 
 
 

To repeat, the field has grown very large, a fact that 
accounts for the book's somewhat embarrassing length.  When I 
wrote the first edition, I tried to be comprehensive; now, with 
this new edition, I can claim only that the book is, as 
advertised, truly an introduction to the subject.  Accordingly, 
I've tried to concentrate on topics that genuinely are fundamental 
and primary (the relational model being the obvious example), and 
I've gone into less detail on matters that seem to me to be 
secondary (decision support might be an example here).   

 
This brings me to the end of these introductory notes.  Let me 

close by wishing you well in your attempts to teach this material, 
and indeed in all of your database activities.  If you have any 
comments or questions, I can be reached via the publisher, Addison 
Wesley Longman, at 75 Arlington St. #300, Boston, Mass. 02116, 
care of Katherine Harutunian (617/848-7518).  Thank you for your 
interest.   

 
 

Healdsburg, California                                  C. J. Date 
2003  
 
 
          *** End of Preface *** 
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          P A R T   I 
 
 
          P R E L I M I N A R I E S 
 
 
The introduction to Part I in the book itself is more or less 
self-explanatory:   
 
(Begin quote) 
 
Part I consists of four introductory chapters:   
 
•   Chapter 1 sets the scene by explaining what a database is and 

why database systems are desirable.  It also briefly discusses 
the differences between relational systems and others.   

 
•   Next, Chapter 2 presents a general architecture for database 

systems, the so-called ANSI/SPARC architecture.  That 
architecture serves as a framework on which the rest of the 
book will build.   

 
•   Chapter 3 then presents an overview of relational systems 

(the aim is to serve as a gentle introduction to the much more 
comprehensive discussions of the same subject in Part II and 
later parts of the book).  It also introduces and explains the 
running example, the suppliers-and-parts database. 

 
•   Finally, Chapter 4 introduces the standard relational 

language SQL (more precisely, SQL:1999).   
 

(End quote) 
 

Chapters 1 and 2 can probably be covered quite quickly.  
Chapter 3 must be treated thoroughly, however, and the same almost 
certainly goes for Chapter 4 as well.  See the notes on the 
individual chapters for further elaboration of these remarks.   

 
 
 
 

          *** End of Introduction to Part I 
*** 
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           Chapter 1  
 
 
          A n   O v e r v i e w 
 
 
          o f   D a t a b a s e   M a n a g e 
m e n t 
 
 
Principal Sections 
 
•  What's a DB system? 
•  What's a DB? 
•  Why DB? 
•  Data independence 
•  Relational systems and others 
 
 

General Remarks 
 
The purpose of Chapter 1 is, of course, basically just to set the 
scene for the chapters to follow; it covers a lot of "necessary 
evils" that have to be addressed before we can get on to the 
interesting stuff.  In a live course, however, I doubt whether 
it's necessary (or even desirable) to spend too much time on this 
material up front.  As the chapter itself says at the end of 
Section 1.1 (the following quote is slightly edited here):   
 
(Begin quote) 
 
While a full understanding of this chapter and the next is 
necessary to a proper appreciation of the features and 
capabilities of a modern database system, it can't be denied that 
the material is somewhat abstract and rather dry in places (also, 
it does tend to involve a large number of concepts and terms that 
might be new to you).  In Chapters 3 and 4 you'll find material 
that's much less abstract and hence more immediately 
understandable, perhaps.  You might therefore prefer just to give 
these first two chapters a "once over lightly" reading for now, 
and to reread them more carefully later as they become more 
directly relevant to the topics at hand.   
 
(End quote) 
 

The fact is, given the widespread availability and use of 
database systems today (on desktop and laptop computers in 
particular), many people have a basic understanding of what a 
database is already.  In order to motivate the students, 
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therefore, it might be sufficient just to give a brief discussion 
of an example such as the following.  Note:  This particular 
example is due to Roger King.  It was used in the instructor's 
manual for earlier editions.  Of course, you can use a different 
example if you like, but please note that Roger's example 
illustrates (in particular) the distinction between a database 
system as such and a file system, and any replacement example 
should do likewise.   

 
(Begin example) 
 
Before the age of database systems, data-intensive computer 
systems often involved a maze of separate files.  Consider an 
insurance company, for example.  One division might be processing 
claims, and there might be many thousands of such claims every 
day.  Another might be keeping track of hundreds of thousands of 
subscriber accounts, processing premium payments and maintaining 
personal data.  The actuarial division might be maintaining 
statistics on the relative risks of various kinds of subscribers.  
The underwriting division might be developing group insurance 
plans and calculating appropriate premium charges.  You can see 
that the actuaries need access to claim data in order to calculate 
their statistics, the underwriters need access to subscriber 
information for obvious reasons, the claims personnel need access 
to underwriting data and subscriber information in order to know 
who is covered and how, and so on.   
 

As this example suggests, a large company maintains massive 
amounts of data, and its various employees must share that data, 
and share it simultaneously.  In fact, the example illustrates the 
two key properties of a database system:  Such a system must allow 
the enterprise (a) to integrate its data and (b) to share that 
integrated data effectively.   

 
(End example) 
 

To repeat, examples like the foregoing might suffice by way of 
motivation, and much of the chapter might thus be skipped on a 
first reading.  For this reason, it's really not worth giving a 
blow-by-blow analysis of the individual sections here.  However, 
some attention should certainly be paid to the concept of 
(physical) data independence and the associated distinctions 
between:   

 
a. Logical vs. physical issues  
 
b. Model vs. implementation issues  
 

In connection with the second of these distinctions (which is 
really a special case of the first), the general concept of a data 
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model should also be covered (with illustrations of objects and 
operators taken specifically from the discussion of the relational 
model earlier in the chapter).  Further:   

 
•   Stress the fact that the term data model is used in the 

database field with two different meanings, but we'll be using 
it almost exclusively in the more general and more 
important──in fact, more fundamental──sense.   

 
•   Also stress the point that most existing database systems are 

based on the relational model; most future database systems 
are likely to be so, too; and hence the emphasis throughout 
the book is on relational systems (for good solid theoretical 
as well as practical reasons!).  Hugh Darwen's article [1.2] 
is strongly recommended, for instructors as well as students; 
ideally, it should be provided as a handout.   

 
•   Also stress the point that this book concentrates on model 

issues rather than implementation ones.  Both kinds of issues 
are important, of course, but──in the industrial world, at 
least, and to some extent in the academic world as well──model 
issues tend to take a back seat to implementation ones (in 
fact, most people have only a hazy understanding of the 
distinction).  It's my position that while the model folks 
obviously need the implementation folks, the opposite is true 
too (possibly "even more true"), and yet isn't nearly as 
widely appreciated.  To repeat a remark from the preface to 
this manual (at least in essence):  It's important to know 
what we're trying to do, and why, before getting into the 
specifics of how.   

 
Other items that mustn't be omitted at this early stage:   
 

•   What SQL is (of course), with simple examples of SELECT, 
INSERT, UPDATE, and DELETE──with the emphasis on simple, 
however.  One reviewer of a previous edition objected to the 
fact that simple SQL coding examples and exercises appeared in 
this introductory chapter before SQL is discussed in depth.  
Here's my response to that criticism:   

 
a. The SQL examples are included in order to give the "flavor" 

of database languages, and in particular to illustrate the 
point that such languages typically include statements to 
perform the four basic operations of data retrieval, 
insertion, deletion, and replacement.  They're meant to be 
(and in fact are) pretty much self-explanatory!   

 
b. As for the SQL exercises, it seems to me that very little 

extrapolation from the examples is required on the part of 
the student in order to understand the exercises and answer 
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them (they really aren't very difficult).  Of course, the 
exercises can be skipped if desired.   

 
•  Terminology:  Terminology is such a problem ... We often have 

several terms for the same thing (or almost the same thing), 
and this point raises its ugly head almost immediately.  To be 
specific, explain (a) files / records / fields vs. (b) tables 
/ rows / columns vs. (c) relations / tuples / attributes.   

 
•   Data types:  Stress the point that data types are not limited 

to simple things like numbers and strings.   
 
•   Entities and relationships:  Stress that a relationship is 

really just a special kind of entity.  Distinguish carefully 
between entity types and entity occurrences (or instances).  
Myself, I wouldn't elide either "type" or "occurrence"──in 
this context or any other──until the concepts have become 
second nature to the students (and maybe not even then).  
Perhaps mention that the relational model in particular 
represents both entities and relationships in the same way, 
which is one of the many reasons why it's simpler and more 
flexible than other models.   

 
•   Simple E/R diagrams (if you like; most people do like these 

things, though I don't much myself):  If you do cover them 
here, at least mention that they fail to capture the most 
important part of any design, viz., integrity constraints!  
See the further remarks on this subject in this manual in the 
notes on Chapter 14, especially in the annotation to reference 
[14.39].   

 
•   Explain the basic concept of a transaction.  (Also, be aware 

that Chapter 16 offers some heretical opinions on this 
topic──but don't mention those opinions here, of course.)   

 
•   Explain the basic concepts of security and integrity.  Note:  

These concepts are often confused; be sure to distinguish 
between them properly!  The following rather glib definitions 
from Chapter 17 might help:   

 
a. Security means making sure users are allowed to do the 

things they're trying to do.   
 
b. Integrity means making sure the things they're trying to do 

are correct.  (By the way:  Don't get into this issue right 
now, but this question of correctness is a tricky one.  
We'll be taking a much closer look at it in Chapters 9 and 
16.)   
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•  Introduce the basic concept of a relation──and explain that 
(a) relation is not the same as relationship and (b) relations 
don't contain pointers.   

 
A couple more points for the instructor:   
 

a.  If you mention network database systems at all, you might 
want to warn the students that "network" in this context 
refers to a certain data structure, not to a data 
communications network like the Internet!   

 
b.  A nice but perhaps rather sophisticated way to think about a 

relational system is the following:  Such a system consists of 
a relational language compiler together with a very extensive 
run-time system.  (I wouldn't mention this point unless asked 
about it, but it might help understanding for some more 
"advanced" students.)   

 
Finally, let me call your attention to a couple of small 

points: the double underlining convention for primary key columns 
in figures (as in, e.g., Fig. 1.1), and the preferred (and 
official) pronunciation "ess-cue-ell" for SQL.   
 
 
Answers to Exercises 
 
1.1 Some of the following definitions elaborate slightly on those 
given in the book per se.   
 
•  A binary relationship type is a relationship type involving 

exactly two entity types (not necessarily distinct).  
Analogously, of course, a binary relationship instance is a 
relationship instance involving exactly two entity instances 
(again, not necessarily distinct).  Note:  As an example of a 
binary relationship instance in which the two entity instances 
aren't distinct, consider the often heard remark to the effect 
that so-and-so is his or her own worst enemy!   

 
•   A command-driven interface is an interface that permits the 

user to issue requests to the system by means of explicit 
commands (also known as statements), typically expressed in 
the form of text strings in some formal language such as SQL.   

 
•   Concurrent access means──at least from the user's point of 

view──that several users are allowed to use the same DBMS 
(more precisely, the same copy or instance of the same DBMS) 
to access the same database at the same time.  The system 
provides controls to ensure that such concurrent access does 
not cause incorrect results (at least in principle; however, 
see further discussion in Chapter 16).   
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•   Data administration is the task of (a) deciding what data 

should be kept in the database and (b) establishing the 
necessary policies for maintaining and dealing with that data 
once it has been entered into that database.   

 
•   A database is a repository for a collection of computerized 

data files.  (At least, this would be the normal definition.  
A much better definition is:  A database is a collection of 
propositions, assumed by convention to be ones that evaluate 
to TRUE.  See reference [1.2] for further explanation.)   

 
•   A database system is a computerized system whose overall 

purpose is to maintain a database and to make the information 
in that database available on demand.  (As in the body of the 
chapter, we assume for simplicity, here and throughout these 
answers, that all of the data in the system is in fact kept in 
just one database.  This assumption is very unrealistic in 
practice.)   

 
•   (Physical) data independence is the immunity of applications 

to changes in storage structure (how the data is physically 
stored) and access technique (how it is physically accessed).  
Note:  Logical data independence is discussed in Chapters 2, 
3, and especially 10.  See also Appendixes A and D.   

 
•   The database administrator (DBA) is the person whose job it 

is to create the actual database and to implement the 
technical controls needed to enforce the various policy 
decisions made by the data administrator.  The DBA is also 
responsible for ensuring that the system operates with 
adequate performance and for providing a variety of other 
related technical services.   

 
•   The database management system (DBMS) is a software component 

that manages the database and shields users from low-level 
details (in particular, details of how the database is 
physically stored and accessed).  All requests from users for 
access to the database are handled by the DBMS.   

 
Caveat:  Care is needed over terminology here.  The three 

concepts database, DBMS product, and DBMS instance are 
(obviously) logically distinct.  Yet the term DBMS is often 
used to mean either DBMS product or DBMS instance, as the 
context demands, and the term database is often used to mean 
DBMS in either sense.  What's more, the term DBMS is even used 
on occasion to mean the database!  In the book and this manual 
the unqualified term database ALWAYS means database, not DBMS, 
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and the unqualified term DBMS ALWAYS means DBMS instance, not 
DBMS product.   

 
•   An entity is any distinguishable person, place, or thing that 

is deemed to be of interest for some reason.  Entities can be 
as concrete or as abstract as we please.  A relationship 
(q.v.) is a special kind of entity.  (As with relationships, 
we really need to distinguish between entity types and entity 
occurrences or instances, but in informal contexts the same 
term entity is often used for both concepts.)   

 
•   An entity/relationship diagram is a pictorial representation 

of (a) the entities (more accurately, entity types) that are 
of interest to some enterprise and (b) the relationships (more 
accurately, relationship types) that hold among those 
entities.  Note:  The point is worth making that while an E/R 
diagram might represent "all" of the entities of interest, it 
is virtually certain that it will not represent all of the 
relationships of interest.  The fact is, the term 
"relationship" in an E/R context really refers to a very 
special kind of relationship──viz., the kind that is 
represented in a relational database by a foreign key.  But 
foreign key relationships are far from being the only possible 
ones, or the only ones that might be of interest, or even the 
most important ones.   

 
•   A forms-driven interface is an interface that permits the 

user to issue requests to the system by filling in "forms" on 
the screen (where the term "form" refers to an on-screen 
analog of some conventional paper form).   

 
•   Integration means the database can be thought of as a 

unification of several otherwise distinct data files, with any 
redundancy among those files wholly or partly eliminated.   

 
•  Integrity means, loosely, accuracy or correctness; thus, the 

problem of integrity is the problem of ensuring──insofar as is 
possible──that the data in the database does not contain any 
incorrect information.  Note:  The integrity concept is 
CRUCIAL and FUNDAMENTAL, as later chapters (especially Chapter 
9) make clear.   

 
•   A menu-driven interface is an interface that permits the user 

to issue requests to the system by selecting and combining 
items from predefined menus displayed on the screen.   

 
•   A multi-user system is a system that supports concurrent 

access (q.v.).  It is contrasted with a single-user system.   
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•   An online application is an application whose purpose is to 
support an end user who is accessing the database from an 
online workstation or terminal.   

 
•   Persistent data is data whose lifetime typically exceeds that 

of individual application program executions.  In other words, 
it is data that (a) is stored in the database and (b) persists 
from the moment it is created until the moment it is 
explicitly destroyed.  (Nonpersistent data, by contrast, is 
typically destroyed implicitly when the application program 
that created it ceases execution, or possibly even sooner.)   

 
•   A property is some characteristic or feature possessed by 

some entity (or some relationship).  Examples are a person's 
name, a part's weight, a car's color, or a contract's 
duration.  (By the way, is a contract an entity or a 
relationship?  What do you think?  Justify your answer!)   

 
•   A query language is a language that supports the expression 

of high-level commands (such as SELECT, INSERT, etc.) to the 
DBMS.  SQL is an example of such a language.  Note:  Despite 
the name, query languages typically support much more than 
just query──i.e., retrieval──operations alone.  (Though not 
always!  OQL and XQuery──see Chapter 25 and Chapter 27, 
respectively──are examples of query languages that do support 
retrieval only.)   

 
•   Redundancy means the very same piece of information (say the 

fact that a certain employee is in a certain department) is 
recorded more than once, possibly in more than one way.  Note 
that redundancy at the physical storage level is often 
desirable (for performance reasons), while redundancy at the 
logical user level is usually undesirable (because it 
complicates the user interface, among other things).  But 
physical redundancy need not imply logical redundancy, so long 
as the system provides an adequate degree of data 
independence.   

 
•   A relationship is an association among entities.  Note:  As 

with entities, it is strictly necessary to distinguish between 
relationship types and relationship occurrences or instances, 
but in informal contexts we often use the same term 
relationship for both concepts.   

 
•   Security means the protection of the data in the database 

against unauthorized access.   
 
•   Sharing refers to the possibility that individual pieces of 

data in the database can be shared among several different 
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users, in the sense that each of those users can have access 
to the same piece of data, possibly even at the same time (and 
different users can use it for different purposes).   

 
•   A stored field is the smallest unit of stored data.*  The 

type vs. occurrence (or instance) distinction is important 
once again, just as it is with entities and relationships.   

 
 
────────── 
 
*  But see Appendix A (regarding not only this term but also the 
terms stored file and stored record).   
 
────────── 
 
 
•  A stored file is the collection of all currently existing 

occurrences of one type of stored record.   
 
•   A stored record is a collection of related stored fields.  

The type vs. occurrence distinction is important yet again.   
 
•   A transaction is a logical unit of work, typically involving 

several database operations (in particular, several update 
operations), whose execution is guaranteed to be atomic──i.e., 
all or nothing──from a logical point of view.   

 
1.2 Some of the advantages are as follows:   
 
•  Compactness  
 
•  Speed  
 
•  Less drudgery  
 
•  Currency  
 
•  Centralized control  
 
•  Data independence  
 

Some of the disadvantages are as follows:   
 
•  Security might be compromised (without good controls).   
 
•  Integrity might be compromised (without good controls).   
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•  Additional hardware might be required.   
 
•  Performance overhead might be significant.   
 
•  Successful operation is crucial (the enterprise might be 

highly vulnerable to failure).   
 
•   The system is likely to be complex (though such complexity 

should be concealed from the user).   
 

1.3 A relational system is a system that is based on the 
relational model.  Loosely speaking, therefore, it is a system in 
which:   
 
a. The data is perceived by the user as tables (and nothing but 

tables).   
 
b.  The operators at the user's disposal (e.g., for data 

retrieval) are operators that generate new tables from old.   
 

In a nonrelational system, by contrast, the user is presented with 
data in the form of other structures, either instead of or in 
addition to the tables of a relational system.  Those other 
structures, in turn, require other operators to manipulate them.  
For example, in a hierarchic system, the data is presented to the 
user in the form of a set of tree structures (hierarchies), and 
the operators provided for manipulating such structures include 
operators for traversing hierarchic paths──in effect, following 
pointers──up and down those trees.   
 

Note:  It's worth pointing out that, in a sense, a relation 
might be thought of as a special case of a hierarchy (to be 
specific, it's a root-only hierarchy).  In principle, therefore, a 
hierarchic system requires all of the relational operators plus 
certain additional operators.  And those additional operators 
certainly add complexity, but they don't add any functionality 
(there's nothing useful that can be done with hierarchies that 
can't be done with just relations).   

 
1.4 A data model is an abstract, self-contained, logical 
definition of the objects,* operators, and so forth, that together 
constitute the abstract machine with which users interact (the 
objects allow us to model the structure of data, the operators 
allow us to model its behavior).  An implementation of a given 
data model is a physical realization on a real machine of the 
components of that model.  In a nutshell:  The model is what users 
have to know about; the implementation is what users don't have to 
know about.   
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────────── 
 
*  The term object is being used here in its generic sense, not 
its special object-oriented sense.   
 
────────── 
 
 

The difference between model and implementation is important 
because (among other things) it forms the basis for achieving data 
independence.   

 
┌───────────┬───────────┐ 

1.5 a. │ WINE      │ PRODUCER  │ 
├═══════════┼═══════════┤ 
│ Zinfandel │ Rafanelli │ 
└───────────┴───────────┘ 
 
┌────────────────┬──────────────┐ 

b. │ WINE           │ PRODUCER     │ 
├════════════════┼══════════════┤ 
│ Chardonnay     │ Buena Vista  │ 
│ Chardonnay     │ Geyser Peak  │ 
│ Joh. Riesling  │ Jekel        │ 
│ Fumé Blanc     │ Ch. St. Jean │ 
│ Gewurztraminer │ Ch. St. Jean │ 
└────────────────┴──────────────┘ 
 
┌──────┬────────────┬──────┐ 

c. │ BIN# │ WINE       │ YEAR │ 
├══════┼────────────┼──────┤ 
│    6 │ Chardonnay │ 2002 │ 
│   22 │ Fumé Blanc │ 2000 │ 
│   52 │ Pinot Noir │ 1999 │ 
└──────┴────────────┴──────┘ 
 
┌────────────────┬──────┬──────┐ 

d. │ WINE           │ BIN# │ YEAR │ 
├────────────────┼══════┼──────┤ 
│ Cab. Sauvignon │   48 │ 1997 │ 
└────────────────┴──────┴──────┘ 
 

1.6 We give a solution for part a. only:  "Rafanelli is a producer 
of Zinfandel"──or, more precisely, "Some bin contains some bottles 
of Zinfandel that were produced by Rafanelli in some year, and 
they will be ready to drink in some year."   
 
1.7 a. The specified row (for bin number 80) is added to the 

CELLAR table.   
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b. The rows for bin numbers 45, 48, 64, and 72 are deleted  
from the CELLAR table.   
 

c. The row for bin number 50 has the number of bottles set to  
5.   
 

d. Same as c.   
 
Incidentally, note how convenient it is to be able to refer to 

rows by their primary key value (the primary key for the CELLAR 
table is {BIN#}──see Chapter 8).  In other words, such key values 
effectively provide a row-level addressing mechanism in a 
relational system.   

 
1.8 a. SELECT BIN#, WINE, BOTTLES 

FROM   CELLAR 
WHERE  PRODUCER = 'Geyser Peak' ; 
 

b. SELECT BIN#, WINE 
FROM   CELLAR 
WHERE  BOTTLES > 5 ; 
 

c. SELECT BIN# 
FROM   CELLAR 
WHERE  WINE = 'Cab. Sauvignon' 
OR     WINE = 'Pinot Noir' 
OR     WINE = 'Zinfandel' 
OR     WINE = 'Syrah' 
OR     ....... ; 
 
There's no shortcut answer to this question, because "color 
of wine" isn't explicitly recorded in the database; thus, 
the DBMS doesn't know that (e.g.) Pinot Noir is red.   
 

d. UPDATE CELLAR 
SET    BOTTLES = BOTTLES + 3 
WHERE  BIN# = 30 ; 
 

e. DELETE  
FROM   CELLAR 
WHERE  WINE = 'Chardonnay' ; 
 

f. INSERT  
INTO   CELLAR ( BIN#, WINE, PRODUCER, YEAR, BOTTLES, READY ) 
VALUES ( 55, 'Merlot', 'Gary Farrell', 2000, 12, 2005 ) ; 
 

1.9 No answer provided.   
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          *** End of Chapter 1 *** 
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Chapter 2 
 
 

          D a t a b a s e   S y s t e m   A r 
c h i t e c t u r e 
 
 
Principal Sections 
 
•  The three levels of the architecture 
•  The external level 
•  The conceptual level 
•  The internal level 
•  Mappings 
•  The DBA  
•  The DBMS  
•  Data communications  
•  Client/server architecture 
•  Utilities 
•  Distributed processing 
 
 

General Remarks 
 
This chapter resembles Chapter 1 in that it's probably best given 
just a "once over lightly" treatment on a first pass.  As with 
Chapter 1, therefore, it's not really worth giving a blow-by-blow 
analysis of the individual sections here.  However, the following 
topics, at least, should be touched on in a live class:   
 
•   The external, conceptual, and internal levels (and common 

synonyms──e.g., physical or stored in place of internal, 
community logical or just logical in place of conceptual, user 
logical or just logical in place of external ... the 
terminology issue rears its ugly head again!).   

 
•   DDLs, DMLs, and schemas (the last of these also known more 

simply as data definitions).   
 
•   Point out that the relational model has nothing explicit to 

say regarding the internal level (deliberately, of course).   
 
•   Logical data independence (at least a brief mention, with a 

forward reference to Chapters 3 and──especially──10).   
 
•   Steps in processing and executing a DML request (hence, an 

overview of the basic components of a DBMS).   
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•   Basic client/server concepts (and note that client vs. server 

is, primarily, a logical distinction, not a physical one).   
 
•  Basic idea (very superficial) of distributed systems.   
 

Note:  Section 2.2 and (to a lesser extent) subsequent 
sections make use of a rather trivial example based on PL/I and 
COBOL.  Of course, I do realize that PL/I and COBOL are regarded 
as antediluvian in some circles (though they're still very 
significant commercially), but which actual languages are used 
isn't important!  What's more, no PL/I- or COBOL-specific 
knowledge is really needed in order to follow the example.  
Naturally you can substitute your own favorite more modern 
languages if you prefer.   

 
 

Answers to Exercises 
 
2.1 See Fig. 2.3 in the body of the chapter.   
 
2.2 Some of the following definitions elaborate slightly on those 
given in the body of the chapter.   
 
•  Back end:  Same as server, q.v.   
 
•   A client is an application that runs on top of the 

DBMS──either a user-written application or a "built-in" 
application, i.e., an application provided by the DBMS vendor 
or some third-party software vendor.  The term is also used to 
refer to the hardware platform the client application runs on, 
especially when that platform is distinct from the one the 
server runs on.   

 
•   The conceptual view is an abstract representation of the 

database in its entirety.  The conceptual schema is a 
definition of that conceptual view.  The conceptual DDL is a 
language for writing conceptual schemas.   

 
•   The conceptual/internal mapping defines the correspondence 

between the conceptual view and the stored database.   
 
•   A data definition language (DDL) is a language for defining, 

or declaring, database objects.   
 
•   The data dictionary is a system database that contains "data 

about the data"──i.e., definitions of other objects in the 
system, also known as metadata (in particular, all of the 
various schemas and mappings will physically be stored, in 
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both source and object form, in the dictionary).  A 
comprehensive dictionary will also include cross-reference 
information, showing, for instance, which applications use 
which pieces of the database, which users require which 
reports, what terminals or workstations are connected to the 
system, and so on.  The dictionary might even──in fact, 
probably should──be integrated into the database it defines, 
and thus include its own definition (i.e., be "self-
describing").   

 
•   A data manipulation language (DML) is a language for 

"manipulating" or processing database objects.   
 
•   A data sublanguage is that portion of a given language that's 

concerned specifically with database objects and operations.  
It might or might not be clearly separable from the host 
language (q.v.) in which it's embedded or from which it's 
invoked.   

 
•   A database/data-communications system (DB/DC system) is a 

combination of a DC manager and a DBMS, in which the DBMS 
looks after the database and the DC manager handles all 
messages to and from the DBMS (or, more accurately, to and 
from applications that use the DBMS).   

 
•   The data communications manager (DC manager) is a software 

component that manages all message transmissions between the 
user and the DBMS (more accurately, between the user and some 
application running on top of the DBMS).   

 
•   A distributed database is (loosely) a database that is 

logically centralized but physically distributed across many 
distinct physical sites.  It's a little difficult to make this 
definition more precise (different writers tend to use the 
term in different ways); carried to its logical conclusion, 
however, full support for distributed database implies that a 
single application should be able to operate "transparently" 
on data that is spread across a variety of different 
databases, managed by a variety of different DBMSs, running on 
a variety of different machines, supported by a variety of 
different operating systems, and connected together by a 
variety of different communication networks──where 
"transparently" means that the application operates from a 
logical point of view as if the data were all managed by a 
single DBMS running on a single machine.   

 
•   Distributed processing means that distinct machines can be 

connected together into some kind of communications network, 
in such a way that a single data processing task can be spread 
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across several machines in the network (and, typically, 
carried out in parallel).   

 
•   An external view is a more or less abstract representation of 

some portion of the total database.  An external schema is a 
definition of such an external view.  An external DDL is a 
language for writing external schemas.   

 
•   An external/conceptual mapping defines the correspondence 

between an external view and the conceptual view.   
 
•  Front end:  Same as client, q.v.   
 
•   A host language is a language in which a data sublanguage is 

embedded.  The host language is responsible for providing 
various nondatabase facilities, such as I/O operations, local 
variables, computational operations, if-then-else logic, and 
so on.   

 
•   Load is the process of creating the initial version of the 

database (or portions thereof) from one or more nondatabase 
files.   

 
•   Logical database design is the process of identifying the 

entities of interest to the enterprise and identifying the 
information to be recorded about those entities.  Note:  
Chapter 9 and Part III of the book make it clear that 
integrity constraints are highly relevant to the logical 
database design process.  Note too that logical design should 
be done before the corresponding physical design (q.v.).   

 
•   The internal view is the database as physically stored.*  The 

internal schema is the definition of that internal view.  The 
internal DDL is a language for writing internal schemas.  
Note:  The book usually uses the more intuitive terms "stored 
database" and "stored database definition" in place of 
"internal view" and "internal schema," respectively.   

 
 
────────── 
 
*  A slight oversimplification.  To paraphrase some remarks from 
Section 2.5, the internal view is really "at one remove" from the 
physical level, since it doesn't deal with physical records──also 
called blocks or pages──nor with device-specific considerations 
such as cylinder or track sizes.  In other words, it effectively 
assumes an unbounded linear address space; details of how that 
address space maps to physical storage are highly system-specific 
and are deliberately omitted from the general architecture.   
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────────── 
 
 
•   Physical database design is the process of deciding how the 

logical database design is to be physically represented at the 
stored database level.   

 
•   A planned request is a request for which the need was 

foreseen well in advance of the time at which the request is 
actually to be executed.  The DBA will probably have tuned the 
physical database design in such a way as to guarantee good 
performance for planned requests.   

 
•   Reorganization is the process of rearranging the way the data 

is stored at the physical level.  It is usually (perhaps 
always, in the last analysis) done for performance reasons.   

 
•   The server is the DBMS per se.  The term is also used to 

refer to the hardware platform the DBMS runs on, especially 
when that platform is distinct from the one the clients run 
on.   

 
•  Stored database definition:  Same as internal schema, q.v.   
 
•   Unload/reload is the process of unloading the database, or 

portions thereof, to backup storage for recovery purposes and 
subsequently reloading the database (or portions thereof) from 
such backup copies.  Note:  Load and reload are usually done 
by means of the same utility, of course.   

 
•   An unplanned request is an ad hoc query, i.e., a request for 

which the need wasn't seen in advance, but instead arose in a 
spur-of-the-moment fashion.   

 
•   The user interface is essentially just the system as seen by 

the user.  In other words, it's essentially identical to an 
external view, in the ANSI/SPARC sense.   

 
•   A utility is a program designed to help the DBA with some 

administration task, such as load or reorganization.   
 

2.3 As explained in the body of the chapter, any given external 
record occurrence will require fields from several conceptual 
record occurrences (in general), and each conceptual record 
occurrence in turn will require fields from several stored record 
occurrences (in general).  Conceptually, then, the DBMS must first 
retrieve all required stored record occurrences; next, construct 
the required conceptual record occurrences; finally, construct the 
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required external record occurrence.  At each stage, data type or 
other conversions might be necessary.   
 
2.4 The major functions performed by the DBMS include:   
 
•  Data definition support  
 
•  Data manipulation support  
 
•  Data security and integrity support  
 
•  Data recovery and concurrency support  
 
•  Data dictionary support  
 

Of course, it's desirable that the DBMS perform all of these 
functions as efficiently as possible.   
 
2.5 Logical data independence means users and user programs are 
immune to changes in the logical structure of the database 
(meaning changes at the conceptual or "community logical" level).  
Physical data independence means users and user programs are 
immune to changes in the physical structure of the database 
(meaning changes at the internal or stored level).  A good DBMS 
will provide both.   
 
2.6 Metadata or descriptor data is "data about the data"──i.e., 
definitions of other objects in the system.  Examples include all 
of the various schemas and mappings (external, conceptual, etc.) 
and all of the various security and integrity constraints.  
Metadata is kept in the dictionary or catalog.   
 
2.7 The major functions performed by the DBA include:   
 
•   Defining the conceptual schema (i.e., logical database 

design; done in conjunction with the data administrator)  
 
•  Defining the internal schema (i.e., physical database design)  
 
•  Liaising with users (help write the external schemas, etc.)  
 
•  Defining security and integrity constraints  
 
•  Defining backup and recovery procedures  
 
•  Monitoring performance and responding to changing requirements  
 

This isn't an exhaustive list.   
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2.8 The file manager is that component of the overall system that 
manages stored files (it's "closer to the disk" than the DBMS is).  
It supports the creation and destruction of stored files and 
simple retrieval and update operations on stored records in such 
files.  In contrast to the DBMS, the typical file manager:   
 
•   Is unaware of the internal structure of stored records, and 

hence can't handle requests that rely on a knowledge of that 
structure  

 
•  Provides little or no security or integrity support  
 
•  Provides little or no recovery or concurrency support  
 
•  Doesn't support a true data dictionary  
 
•  Provides much less data independence  
 

In addition, files are typically not "integrated" or "shared" in 
the same sense that the database is, but instead are usually 
private to some particular user or application.  See Appendix D 
for further discussion.   
 
2.9 Such tools fall into many categories:   
 
•  Query language processors  
 
•  Report writers  
 
•  Business graphics subsystems  
 
•  Spreadsheets  
 
•  Natural language processors  
 
•  Statistical packages  
 
•  Copy management or data extract tools  
 
•  Application generators (including 4GL processors)  
 
•   Other application development tools, including computer-aided 

software engineering (CASE) products  
 
•  Data mining and visualization tools  
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and so on.  Specific commercial examples are beyond the scope of 
this text (any database trade publication will include references 
to any number of such products).   
 
2.10 Examples of database utilities include:   
 
•  Load routines  
 
•  Unload/reload routines  
 
•  Reorganization routines  
 
•  Statistical routines  
 
•  Analysis routines  
 

and many others.   
 
2.11 No answer provided.   
 
 
 
 
          *** End of Chapter 2 *** 
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Chapter 3  
 
 

           A n   I n t r o d u c t i o n 
 

t o 
 

           R e l a t i o n a l   D a t a b a 
s e s  
 
 
Principal Sections 
 
•  An informal look at the relational model 
•  Relations and relvars 
•  What relations mean 
•  Optimization 
•  The catalog 
•  Base relvars and views 
•  Transactions  
•  The suppliers-and-parts DB 
 
 

General Remarks 
 
The overall purpose of this chapter is to give the student "the 
big picture" of what database systems (in particular, relational 
systems) are and how they work.  It thus provides a framework for 
the more detailed information presented in later chapters to build 
on.  The chapter is therefore crucial, at least for students who 
are new to database technology; it mustn't be skipped, skimped, or 
skimmed (except possibly as indicated below).   
 
 
3.2 An Informal Look at the Relational Model 
 
Briefly discuss structural, integrity, and manipulative aspects 
and restrict, project, and join operations.  Mention types (and 
explain the "domain" terminology).  Stress the relational closure 
property and the set-at-a-time nature of relational operations.  
Cover The Information Principle,* and in particular its "no 
pointers" corollary (no pointers visible to the user, that is).  
Mention primary and foreign keys (but don't discuss them in 
depth).  Explain who Ted Codd is (or was, rather; sadly, Ted died 
as this book was going to press).   
 
 
────────── 
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*  The Information Principle, along with several other important 
principles to be discussed in later chapters, is repeated at the 
back of the book (overleaf from the left endpaper).   
 
────────── 
 
 

Note:  The book favors the more formal term restrict over the 
possibly more common name select in order to avoid confusion with 
the SELECT operator of SQL.   

 
The section closes with a rather terse abstract definition of 

the relational model.  Don't attempt to explain that definition at 
this point, but mention that we'll come back to it later (at the 
very end of Chapter 10).   

 
 

3.3 Relations and Relvars 
 
The following analogy is helpful in explaining the basic point of 
this section.  Suppose we say in some programming language:   
 

DECLARE N INTEGER ... ; 
 

N here is not an integer; it's an integer variable whose values 
are integers per se──different integers at different times (that's 
what variable means).  In exactly the same way, if we say in SQL:   
 

CREATE TABLE T ... ; 
 

T here is not a table (or, as I'd prefer to say, relation)──it's a 
relation (table) variable whose values are relations (tables) per 
se──different relations (tables) at different times.*  Thus, when 
we "update T" (e.g., by "inserting a row"), what we're really 
doing is replacing the old relation value of T en bloc by a new, 
different relation value.  Of course, it's true that the old value 
and the new value are somewhat similar──the new one just has one 
more row than the old one──but conceptually they are different 
values.  (In mathematics, the sets {a,b,c} and {a,b,c,d} are 
different sets──there's no notion of one somehow being just an 
"updated version" of the other.)   
 
 
────────── 
 
*  T can be regarded as a relation variable rather than a table 
variable only if various SQL quirks are ignored and not "taken 
advantage of."  In particular, there must be no duplicate rows, 
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there must be no nulls, and we must ignore the left-to-right 
column ordering.   
 
────────── 
 
 

The term relvar (= relation variable) is not in common usage 
but ought to be!──much confusion has arisen over the years from 
the fact that the same term, relation (table, in SQL contexts), 
has been used for these two very different concepts:   

 
•   Relations are values; they can thus be "read" but not 

updated, by definition.  (The one thing you can't do to any 
value is update it──for if you could, then after such an 
update it wouldn't be the same value any more.  E.g., consider 
the value that's the integer 3.)   

 
•   Relvars are variables; they can thus be "read" and updated, 

by definition.  (In fact, "variable" really means "updatable."  
To say that something is a variable is to say, precisely, that 
that something can be used as the target of an assignment 
operation──no more and no less.)   

 
The unqualified term "relation" is thus short for relation value, 
just as, e.g., the unqualified term "integer" is short for integer 
value.   
 

Note:  The distinction between values and variables in general 
is a crucial one, and both instructors and students should be very 
clear on it.  It's a distinction that permeates the entire 
computing field, the entire database field, and the entire book.  
(It's worth mentioning too in passing that the object world tends 
to be somewhat confused over it!)  See Chapter 1 of The Third 
Manifesto or the answer to Exercise 5.2 in this manual for further 
elaboration.   

 
Observe now that the operations of the relational algebra all 

apply to relations (possibly to the relations that happen to be 
the current values of relvars), not to relvars as such; the only 
operation that applies to relvars specifically is (relational) 
assignment, together with its shorthand forms INSERT, DELETE, and 
UPDATE.  Observe too that update operations and integrity 
constraints both apply specifically to relvars, not relations.   

 
The book uses Tutorial D instead of SQL to explain concepts, 

for reasons explained in the preface (Section 3.3 is the first 
place in the book in which Tutorial D syntax appears).  This fact 
should not cause any difficulties──Tutorial D is a "Pascal-like" 
language and should be easy enough to follow for any reader having 
the prerequisites stated in the preface.   



Copyright (c) 2003 C. J. Date                             page 3.4 
 

 
By the way, now that we know about relvars, we have another 

way of stating The Information Principle:  The only variables 
allowed in a relational database are, specifically, relvars.   

 
 

3.4 What Relations Mean 
 
Regarding the business of users being able to define their own 
types, give a forward reference to Chapter 5.  This functionality 
wasn't included in SQL:1992 but is part──the major new part, in 
fact──of SQL:1999, and we'll be looking at it in detail when we 
get to Chapter 5.   
 

The concepts heading, body, predicate, and proposition are all 
ABSOLUTELY FUNDAMENTAL.  Note that they apply to relation 
variables as well as relation values.  Stress the point that 
propositions in general aren't necessarily true ones, but those 
represented by rows in relational tables are assumed (or believed) 
to be so.  Perhaps mention the Closed World Assumption or 
Interpretation (covered in more detail in Chapter 6).   

 
Note:  There's a possible source of confusion here.  Sometimes 

we put rows in the database whose truth we're not certain of 
(loosely speaking); thus it might be felt that we can't say that 
"all rows in the database correspond to true propositions."  If 
this issue comes up, explain that it's taken care of either via 
the predicate ("it's true that we are fairly sure but not definite 
that such and such is true") or via an explicit "confidence 
factor" column ("it's true that our confidence level that such and 
such is true is x percent").   

 
Emphasize the point that every relation, base or derived, has 

a predicate.  Ditto relvars.   
 
Types and relations are (a) necessary, (b) sufficient, (c) not 

the same thing!   
 
 

3.5 Optimization 
 
Don't go into too much detail; simply show (by example) the 
increased simplicity in query formulation that automatic 
navigation affords, and explain that the optimizer has to do some 
"smart thinking" in order to support such automatic navigation.  
Forward references to Chapters 7 and 18.   
 

Note:  This section of the book includes the following example 
of a relational expression, expressed (of course) in Tutorial D:   
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( EMP WHERE EMP# = EMP# ('E4') ) { SALARY }  
 

Observe: 
 
•   The use of braces surrounding the commalist of names of 

columns over which the projection is to be done (in the 
example, of course, that commalist contains just one name).  
Tutorial D generally uses braces when the enclosed material is 
supposed to represent a set of items, as here.  Note:  See 
Section 4.6 in the book or the next chapter in this manual for 
an explanation of the term "commalist."   

 
•   The EMP# literal (actually a selector invocation) EMP#('E4').  

Don't get into details here:  Just say that this expression 
denotes a specific employee number, and we'll be talking about 
such things in detail in Chapter 5.  (In fact, other EMP# 
literals also appeared in other examples earlier in the 
chapter.)   

 
 

3.6 The Catalog 
 
The catalog was mentioned in Chapter 2.  Here just stress the 
point that the catalog in a relational system will itself consist 
of relvars──of course!   
 

The section closes with the following inline exercise:  "What 
does the following do?"   

 
( ( TABLE JOIN COLUMN )  

WHERE COLCOUNT < 5 ) { TABNAME, COLNAME } 
 

Answer:  This relational expression (or "query") yields table- and 
column-name pairs for tables with fewer than five columns.   
 
 
3.7 Base Relvars and Views 
 
One reason it's desirable to explain the basic notion of views at 
this early stage in the book is so that we can distinguish base 
relvars from them!──and hence explain base relvars, and go on to 
distinguish such relvars from "stored" ones.  (The notion of 
"base" relvars can't be properly explained if there isn't any 
other kind.)  Introducing views here as another kind of relvar 
also serves as a little subtle softening up for the discussion of 
The Principle of Interchangeability in Chapter 10.   
 

Views are (named) derived relvars──and, conceptually at least, 
they're virtual, i.e., not materialized.  Of course, it's true 
that some systems do implement views via materialization, but 



Copyright (c) 2003 C. J. Date                             page 3.6 
 

that's an implementation matter, not part of the model.  It's also 
true that more recently some systems (typically data warehouse 
systems) have started talking about "materialized views" (see 
Chapters 10 and 22), but that's a model vs. implementation 
confusion!  Such "materialized views" are better called snapshots 
(they aren't really views at all, and snapshot was the original 
term for the concept in question).  Snapshots are discussed in 
Chapter 10.   

 
Operations on views are translated, at least conceptually, via 

substitution into operations on the underlying data.  Thus, views 
provide logical data independence.   

 
Do not fall into:   
 

•  The trap of equating base and stored relvars  
 
•   The trap of taking the term "tables" (or "relations" or 

"relvars") to mean, specifically, base tables (or relations or 
relvars) only  

 
People fall into both of these traps all too often, especially in 
SQL contexts.  The SQL standard, for example, makes frequent use 
of expressions such as "tables and views"──implying very strongly 
that a view isn't a table.  And yet the whole point about a view 
is that it is a table (much as, in mathematics, the whole point 
about a subset is that it is a set).  To fall into either of these 
traps is to fail to think relationally.  And this failure leads to 
mistakes: mistakes in databases, mistakes in applications, 
mistakes in the design of SQL itself.   
 
 
3.8 Transactions 
 
The usual stuff here (the topic is not peculiar to relational 
systems): BEGIN TRANSACTION, COMMIT, ROLLBACK; atomicity, 
durability, isolation, serializability.  (Incidentally, note that 
these are not exactly "the ACID properties"; that's deliberate, 
and so is the lack of reference to the ACID acronym.)  
Superficial!──this is just an introduction.  Forward references to 
Chapters 15 and 16.   
 
 
3.9 The Suppliers-and-Parts DB 
 
More or less self-explanatory.  Note the user-defined types 
(forward reference to Chapter 5).  As the summary section says 
(more or less):  "It's worth taking the time to familiarize 
yourself with this example now, if you haven't already done so; 
that is, you should at least know which relvars have which columns 
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and what the primary and foreign keys are (it isn't so important 
to know exactly what the sample data values are!)."  Mention the 
fact that Fig. 3.8 is repeated inside the back cover of the book, 
for ease of subsequent reference.   
 
 
Answers to Exercises 
 
3.1 As usual, some of the following definitions elaborate slightly 
on those given in the body of the chapter.   
 
•   The term automatic navigation refers to the fact that (in a 

relational system) the process of "navigating" around the 
stored data in order to implement user requests is performed 
automatically by the system, not manually by the user.   

 
•   A base relvar──also known as a real relvar [3.3]──is a relvar 

that has independent or autonomous existence.  More precisely, 
it's a relvar that isn't a derived relvar (q.v.).  It's not 
necessarily the same thing as a "stored relvar."   

 
•   The catalog is a set of system relvars whose purpose is to 

contain descriptors regarding the various objects that are of 
interest to the system itself, such as base relvars, views, 
indexes, users, integrity constraints, security constraints, 
and so on.   

 
•   The term closure (of relational operations) refers to the 

fact that (a) the output from any relational operation is the 
same kind of object as the input──they're all relations──and 
so (b) the output from one operation can become input to 
another.  Closure implies that we can write nested (relation-
valued) expressions.   

 
Note:  We stress the point that when we say that the output 

from each operation is another relation, we are talking from a 
conceptual point of view.  We don't necessarily mean to imply 
that the system actually has to materialize the result of 
every individual operation in its entirety.  In fact, of 
course, the system tries very hard not to, if such 
materialization is logically unnecessary (see the brief 
discussion of pipelined evaluation in the body of the 
chapter).   

 
•   Commit is the operation that signals successful end-of-

transaction.  Any updates made to the database by the 
transaction in question are now "made permanent" and become 
visible to other transactions.   
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•   A derived relvar is a relvar whose value at any given time is 
the result of evaluating a specified relational expression, 
typically involving other relvars (ultimately, base relvars).  
Note that (like a base relvar) a derived relvar is still a 
variable!*──in other words, the term "relvar" does not refer 
just to base relvars; moreover, derived relvars must be 
updatable (for otherwise they cannot be said to be variables).   

 
 
────────── 
 
*  To be more precise, a derived relvar is a variable if and only 
if its defining relational expression involves at least one 
relvar; otherwise it would be more accurate to think of it as a 
relation constant (a "relcon"?), and it wouldn't be updatable.   
 
────────── 
 
 
•   A foreign key is a column or combination of columns in one 

relvar whose values are required to match those of the primary 
key in some other relvar (or possibly in the same relvar).  
Note:  This definition is only approximate.  A more precise 
definition is given in Chapter 9 (where, among other things, 
the point is stressed that a foreign key is a set of columns 
and a foreign key value is a set of values──in fact, a 
(sub)tuple).   

 
•   Join is a relational operation that joins two relations 

together on the basis of common values in a common column.  
Note:  This definition is only approximate.  A more precise 
definition is given in Chapter 7.   

 
•   Optimization is the process of deciding how to implement user 

access requests.  In other words, it's the process of deciding 
how to perform automatic navigation (q.v.).   

 
•   A predicate is a truth-valued function.  Every relation has a 

corresponding predicate that defines (loosely) "what the 
relation means."  Each row in a given relation denotes a 
certain true proposition, obtained from the predicate by 
substituting certain argument values of the appropriate type 
for the parameters of the predicate ("instantiating the 
predicate").  Note:  These remarks are all true of relvars as 
well as relations, mutatis mutandis.   

 
•   The primary key of a given relvar is a column or combination 

of columns in that relvar whose values can be used to identify 
rows within that relvar uniquely (in other words, it's a 
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unique identifier for the rows of that relvar).  Note:  This 
definition is only approximate.  A more precise definition is 
given in Chapter 9 (where, among other things, the point is 
stressed that a primary key is a set of columns and a primary 
key value is a set of values──in fact, a (sub)tuple).   

 
•   Projection is a relational operation that extracts specified 

columns from a relation.  Note:  This definition is only 
approximate.  A more precise definition is given in Chapter 7.   

 
•   A proposition is, loosely, something that evaluates to either 

TRUE or FALSE, unequivocally.   
 
•   A relational database is a database in which the data is 

perceived by the user at any given time as relations (and 
nothing but relations).  Equivalently, a relational database 
is a container for relvars (and nothing but relvars).   

 
•   A relational DBMS is a DBMS that supports relational 

databases and relational operations such as restrict, project, 
and join on the data in those databases.   

 
•   The relational model is an abstract theory of data that's 

based on certain aspects of mathematics (principally set 
theory and predicate logic).  It can be thought of as a way of 
looking at data──i.e., as a prescription for a way of 
representing data (namely, by means of relations), and a 
prescription for a way of manipulating such a representation 
(namely, by means of operators such as join).  Note:  The very 
abstract definition of the relational model given at the end 
of Section 3.2 is explained in detail in Chapter 10 of these 
notes (in the answer to Exercise 10.20).   

 
•   Restriction (also known as selection) is a relational 

operation that extracts specified rows from a relation.  Note:  
This definition is only approximate.  A more precise 
definition is given in Chapter 7.   

 
•   Rollback is the operation that signals unsuccessful end-of-

transaction.  Any updates made to the database by the 
transaction in question are "rolled back" (undone) and are 
never made visible to other transactions.   

 
•   A set-level operation is an operation that operates on entire 

sets as operands and returns an entire set as a result.  
Relational operations are all set-level, since they operate on 
and return entire relations, and relations contain sets of 
rows.   
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•   A (relational) view──also known as a virtual relvar [3.3]──is 
a named derived relvar.  Views are virtual, in the sense that 
they don't have any existence apart from the base relvars from 
which they're derived (but users should typically not be aware 
that a given view is in fact virtual in this sense, though SQL 
falls very short in this regard, owing to its weak support for 
view updating).  Operations on views are processed by 
translating them into equivalent operations on those 
underlying base relvars.   

 
3.2 The following figure doesn't include the catalog entries for 
relvars TABLE and COLUMN themselves.  Note:  The figure is 
incomplete in many other ways as well.  See Exercise 5.10 in 
Chapter 5.   
 
╔════════════════════════════════════════════════════════════════╗ 
║          ┌─────────┬──────────┬──────────┬───────┐             ║ 
║  TABLE   │ TABNAME │ COLCOUNT │ ROWCOUNT │ ..... │             ║ 
║          ├═════════┼──────────┼──────────┼───────┤             ║ 
║          │ S       │        4 │        5 │ ..... │             ║ 
║          │ P       │        5 │        6 │ ..... │             ║ 
║          │ SP      │        3 │       12 │ ..... │             ║ 
║          │ ....... │ ........ │ ........ │ ..... │             ║ 
║                                                                ║ 
║          ┌─────────┬──────────┬───────┐                        ║ 
║  COLUMNS │ TABNAME │ COLNAME  │ ..... │                        ║ 
║          ├═════════┼══════════┼───────┤                        ║ 
║          │ S       │ S#       │ ..... │                        ║ 
║          │ S       │ SNAME    │ ..... │                        ║ 
║          │ S       │ STATUS   │ ..... │                        ║ 
║          │ S       │ CITY     │ ..... │                        ║ 
║          │ P       │ P#       │ ..... │                        ║ 
║          │ P       │ PNAME    │ ..... │                        ║ 
║          │ P       │ COLOR    │ ..... │                        ║ 
║          │ P       │ WEIGHT   │ ..... │                        ║ 
║          │ P       │ CITY     │ ..... │                        ║ 
║          │ SP      │ S#       │ ..... │                        ║ 
║          │ SP      │ P#       │ ..... │                        ║ 
║          │ SP      │ QTY      │ ..... │                        ║ 
║          │ ....... │ ........ │ ..... │                        ║ 
║                                                                ║ 
╚════════════════════════════════════════════════════════════════╝  
 
3.3 The following figure shows the entries for the TABLE and 
COLUMN relvars only (i.e., the entries for the user's own relvars 
are omitted).  It's obviously not possible to give precise 
COLCOUNT and ROWCOUNT values.   
 
╔════════════════════════════════════════════════════════════════╗ 
║          ┌─────────┬──────────┬──────────┬───────┐             ║ 
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║  TABLE   │ TABNAME │ COLCOUNT │ ROWCOUNT │ ..... │             ║ 
║          ├═════════┼──────────┼──────────┼───────┤             ║ 
║          │ TABLES  │     (>3) │     (>2) │ ..... │             ║ 
║          │ COLUMNS │     (>2) │     (>5) │ ..... │             ║ 
║          │ ....... │ ........ │ ........ │ ..... │             ║ 
║                                                                ║ 
║          ┌─────────┬──────────┬───────┐                        ║ 
║  COLUMN  │ TABNAME │ COLNAME  │ ..... │                        ║ 
║          ├═════════┼══════════┼───────┤                        ║ 
║          │ TABLE   │ TABNAME  │ ..... │                        ║ 
║          │ TABLE   │ COLCOUNT │ ..... │                        ║ 
║          │ TABLE   │ ROWCOUNT │ ..... │                        ║ 
║          │ COLUMN  │ TABNAME  │ ..... │                        ║ 
║          │ COLUMN  │ COLNAME  │ ..... │                        ║ 
║          │ ....... │ ........ │ ..... │                        ║ 
║                                                                ║ 
╚════════════════════════════════════════════════════════════════╝  
 
3.4 The query retrieves supplier number and city for suppliers who 
supply part P2.   
 
3.5 The meaning of the query is "Get supplier numbers for London 
suppliers who supply part P2."  The first step in processing the 
query is to replace the name V by the expression that defines V, 
giving:   
 

( ( ( ( S JOIN SP ) WHERE P# = P# ('P2') ) { S#, CITY } ) 
WHERE CITY = 'London' ) { S# } 
 

This simplifies to:   
 

( ( S WHERE CITY = 'London' ) JOIN  
( SP WHERE P# = P# ('P2') ) ) { S# } 
 

For further discussion and explanation, see Chapters 10 and 18.   
 
3.6 Atomicity means that transactions are guaranteed (from a 
logical point of view) either to execute in their entirety or not 
to execute at all, even if (say) the system fails halfway through 
the process.  Durability means that once a transaction 
successfully commits, its updates are guaranteed to be applied to 
the database, even if the system subsequently fails at any point.  
Isolation means that database updates made by a given transaction 
T1 are kept hidden from all distinct transactions T2 until and 
unless T1 successfully commits.  Serializability means that the 
interleaved execution of a set of concurrent transactions is 
guaranteed to produce the same result as executing those same 
transactions one at a time in some (unspecified) serial order.   
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3.7 The Information Principle states that the entire information 
content of the database is represented in one and only one way: 
namely, as explicit values in column positions in rows in tables.  
Equivalently:  The database contains relvars, and nothing but 
relvars.  Note:  As indicated in the chapter, The Information 
Principle might better be called The Principle of Uniform 
Representation.   
 
3.8 No answer provided.   
 
 
 
 
          *** End of Chapter 3 *** 
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Chapter 4  
 
 

          A n   I n t r o d u c t i o n   t o   
S Q L 
 
 
Principal Sections 
 
•  Overview  
•  The catalog  
•  Views  
•  Transactions 
•  Embedded SQL 
•  Dynamic SQL and SQL/CLI  
•  SQL isn't perfect 
 
 

General Remarks 
 
The overall purpose of Chapter 3 was to give the student the big 
picture of what relational systems in general are (or should be!) 
all about.  By contrast, the overall purpose of the present 
chapter is to give the student the big picture of what SQL systems 
in particular are all about.   
 

All SQL discussions in the book are based on the current 
standard SQL:1999 (except for a few brief mentions here and there 
of the expected next version, SQL:2003).  Warn the students that 
"their mileage may vary" when it comes to commercial SQL 
dialects!──see reference [4.22].  Also warn them that we 
deliberately won't be using SQL as a vehicle for teaching database 
principles; we'll cover the principles first and then consider how 
(and to what extent) those principles are realized──or departed 
from──in SQL afterward.  While SQL is obviously important from a 
pragmatic standpoint, it's a very poor realization of proper 
database principles, as well as being a very poorly designed 
language from just about any standpoint.  Better that students 
learn proper concepts and principles first before getting their 
heads bent out of shape by SQL.   

 
Incidentally, I can't resist the temptation to point out that 

it's really a bit of a joke──or a confidence trick──to be talking 
about "SQL:2003," when nobody has yet implemented even SQL:1992 in 
its entirety, let alone SQL:1999.  Nor in fact could anybody do 
so!──given that SQL:1992 is full of gaps and contradictions, gaps 
and contradictions that still exist in SQL:1999 and will certainly 
still exist in SQL:2003 as well.  See reference [4.20], Appendix 
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D, for an extended discussion of some of those gaps and 
contradictions.   

 
I also can't resist mentioning the fact that upgrading the SQL 

coverage to the SQL:1999 level caused me more trouble than 
anything else in producing the eighth edition.  The 1999 standard 
is simultaneously enormous in size and extremely hard to 
understand (in this regard, you can get a sense of the general 
flavor from the not atypical quote that appears in Chapter 10, 
Section 10.6; that same quote is repeated in Chapter 10 of this 
manual).   

 
The foregoing negative remarks notwithstanding, the chapter 

per se contains little in the way of detailed or specific 
criticism; rather, such criticisms appear, where relevant, at 
appropriate points in later chapters.  See also references [4.15-
4.20] at the end of the chapter.  Note:  The chapter and all "SQL 
Facilities" sections in later chapters could be skipped if the 
course is concerned only with principles and not pragma.  But few 
instructors are likely to enjoy such a luxury.   

 
One point instructors need to be aware of:  Exercise 4.1 

introduces the extended version of the running suppliers-and-parts 
example (viz., suppliers, parts, and projects).  Subsequent 
chapters tend to use suppliers-and-parts as a basis for the main 
body of the text and suppliers, parts, and projects as a basis for 
exercises; however, this separation is not rigidly adhered to.  Be 
aware, therefore, that there might be some occasional potential 
for confusion in this area.  The endpapers can help here (Figs. 
3.8 and 4.5 are both repeated inside the back cover).   

 
 

BNF Notation 
 
Chapter 4 is the first in the book to use standard BNF notation, 
or rather a simple variant thereof.  The variant in 
question──which isn't explained in detail in the book──is defined 
as follows:   
 
•   Special characters and material in uppercase must be written 

exactly as shown.  Material in lowercase enclosed in angle 
brackets "<" and ">" represents a syntactic category that 
appears on the left side of another production rule, and hence 
must eventually be replaced by specific items chosen by the 
user.   

 
•  Vertical bars "|" are used to separate alternatives.   
 
•   Square brackets "[" and "]" are used to indicate that the  

material enclosed in those brackets is optional.   
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The text also makes extensive use of a shorthand based on 

lists and commalists.  These terms are explained in the book (in 
Sections 5.4 and 4.6, respectively), but I'll repeat the 
explanations here for convenience.  Let <xyz> denote an arbitrary 
syntactic category (i.e., anything that appears on the left side 
of some BNF production rule).  Then: 

 
•   The expression <xyz list> denotes a sequence of zero or more 

<xyz>s in which each pair of adjacent <xyz>s is separated by 
one or more blanks.   

 
•   The expression <xyz commalist> denotes a sequence of zero or 

more <xyz>s in which each pair of adjacent <xyz>s is separated 
by a comma (and possibly one or more blanks on either side of 
the comma).   

 
Give some simple examples.   
 
 
4.2 Overview 
 
SQL talks in terms of tables (and rows and columns), not relations 
(and tuples and attributes).  SQL is often said to include both 
data definition and data manipulation facilities (though these 
terms have become increasingly inappropriate as SQL has expanded 
to become a computationally complete programming language*).  It 
also includes a bunch of miscellaneous other facilities.   
 
 
────────── 
 
*  With the ratification of SQL/PSM in 1996, SQL is indeed now 
computationally complete──entire applications can now be written 
in SQL, without any need for a distinct host language (except for 
I/O facilities, which SQL doesn't provide).   
 
────────── 
 

Regarding data definition, cover CREATE TABLE and (briefly) 
built-in scalar types.  Note:  User-defined types were added in 
SQL:1999, and we'll discuss them in detail in the next chapter 
(we'll say a bit more in that chapter about built-in types as 
well).  Do not discuss SQL-style "domains"!  (See reference [4.20] 
for an explanation of how SQL-style domains differ from true 
types.)   

 
Regarding data manipulation, cover SELECT (including "SELECT 

*" and SELECT formulations of restrict, project, and join queries) 
and set-level INSERT, DELETE, and UPDATE (no relational assignment 
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as such!).  Note carefully, however, that this section 
deliberately doesn't get into a lot of detail on SELECT (and so 
the exercises and answers don't, either); such matters are 
deferred to Section 8.6, after the relevant relational concepts 
have been described.*  INSERT, DELETE, and UPDATE, by contrast, 
are not explained much further in any later chapter (the treatment 
here is it, more or less).   

 
 

────────── 
 
*  If you like, you could beef up the treatment of SELECT by 
bringing in some of the material from Section 8.6 in here.   
 
────────── 
 
 
4.3 The Catalog / 4.4 Views / 4.5 Transactions 
 
Briefly survey the relevant SQL features:   
 
•  Information Schemas. 
 
•   CREATE VIEW and the substitution mechanism (how does it look 

in SQL?──leads to a brief introduction to nested subqueries).  
Do not get into details of SQL view updating.   

 
•   START TRANSACTION, COMMIT WORK, ROLLBACK WORK.  No need to 

get into the effect of these operations on cursors yet (unless 
anyone asks)──that material's covered in Chapter 15.  Don't 
mention SET TRANSACTION.  Note:  START TRANSACTION was added 
in SQL:1999; prior to that, transactions could be started in 
SQL only implicitly, a state of affairs that caused some 
grief.  For reasons of backward compatibility, of course, it's 
still possible to start transactions implicitly, but I 
wouldn't get into this unless anyone asks about it.  A tiny 
point of syntax:  It's really odd that the SQL committee chose 
to call the operator START TRANSACTION and not BEGIN 
TRANSACTION, given that BEGIN was already a reserved word and 
START wasn't.  An illustration of the point that designing a 
language by committee isn't a very good idea?   

 
 

4.6 Embedded SQL 
 
This section is probably the most important in the chapter; it 
gives details (some of them unfortunately a little tedious) that 
don't logically belong anywhere else in the book.  Discuss:   
 
•  The dual-mode principle  
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•  SQLSTATE  
 
•  Singleton SELECT, INSERT, and searched DELETE and UPDATE  
 
•   Cursors (in reasonable detail, including DECLARE CURSOR, 

ORDER BY, OPEN, CLOSE, FETCH, and positioned UPDATE and 
DELETE)  

 
As previously noted, you could beef up the treatment of SELECT 
here if you like, by bringing in some of the material from Chapter 
8 (Section 8.6).   
 

Stress the point that ORDER BY isn't a relational operation 
(because its result isn't a relation).  This fact doesn't mean 
that ORDER BY isn't useful, but it does mean it isn't part of the 
relational algebra or calculus (see Chapters 7 and 8), or more 
generally the relational model.   

 
Examples and certain minor details in this section are based 

on PL/I ("for definiteness").  As in Chapter 2, you can substitute 
(e.g.) C for PL/I if you prefer; however, you should be aware that 
some of the specifics need rather more substantial revision if the 
host language happens to be Java.  Further details are beyond the 
scope of both the book and this manual.   

 
Here's an oddity you might want to be aware of (though I 

certainly wouldn't discuss it in class unless anyone raises the 
issue).  Consider:   

 
DECLARE CURSOR C1 FOR SELECT S# FROM SP ORDER BY S# ... ;  
/* the "..." stands for a FOR UPDATE clause -- excluded */ 
/* here because it isn't discussed in the chapter       */ 
 
OPEN C1 ;  
FETCH C1 ... ;  
DELETE SP WHERE CURRENT OF C1 ;  
 

Which specific SP row is deleted?  The standard doesn't say!  
(Specifically, it doesn't say it's the row the cursor is 
positioned on.  And if you think about it, there's no way it could 
say that, because there's no way to identify which row that is.)   
 

Another point you should be aware of, though again I wouldn't 
mention it unless asked:  SQL tables can have duplicate column 
names!  Here's a trivial illustration:   

 
SELECT S.S#, SP.S# 
FROM   S, SP  
WHERE  ... ;  
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The result of this query has two columns, both of which are called 
S#.  Note:  Further discussion of this issue and many related ones 
(and the problems such considerations can lead to) can be found in 
an article by myself, "A Sweet Disorder," due to be published soon 
on the website http://www.dbdebunk.com (probably before the book 
itself is published).   
 
 
4.7 Dynamic SQL and SQL/CLI  
 
The topics of this section can be skipped if desired; the book 
deliberately doesn't go very deep, anyway (the topics are full of 
messy details that don't really belong in a textbook like this 
one).   
 
 
4.8 SQL Isn't Perfect 
 
The sole paragraph in this section in the book says it all.  The 
message is important, though.   
 
 
Answers to Exercises 
 
As already mentioned, Fig. 4.5 is repeated (along with Fig. 3.8) 
inside the back cover of the book, for ease of subsequent 
reference.   
 
4.1 CREATE TYPE S# ... ;  

CREATE TYPE P# ... ;  
CREATE TYPE J# ... ;  
CREATE TYPE NAME ... ;  
CREATE TYPE COLOR ... ;  
CREATE TYPE WEIGHT ... ;  
CREATE TYPE QTY ... ;  
 
CREATE TABLE S 

( S#      S#, 
SNAME   NAME, 
STATUS  INTEGER, 
CITY    CHAR(15), 

PRIMARY KEY ( S# ) ) ; 
 

CREATE TABLE P 
( P#      P#, 

PNAME   NAME, 
COLOR   COLOR, 
WEIGHT  WEIGHT, 
CITY    CHAR(15),  
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PRIMARY KEY ( P# ) ) ; 
 

CREATE TABLE J 
( J#      J#, 

JNAME   NAME, 
CITY    CHAR(15), 

PRIMARY KEY ( J# ) ) ; 
 

CREATE TABLE SPJ 
( S#      S#, 

P#      P#, 
J#      J#, 
QTY     QTY, 

PRIMARY KEY ( S#, P#, J# ), 
FOREIGN KEY ( S# ) REFERENCES S, 
FOREIGN KEY ( P# ) REFERENCES P,  
FOREIGN KEY ( J# ) REFERENCES J ) ; 
 

4.2 No answer provided.   
 
4.3 No answer provided.   
 
4.4 a. INSERT INTO S ( S#, SNAME, CITY ) 

VALUES ( S# ('S10'), NAME ('Smith'), 'New York' ) ; 
 

STATUS here is set to the applicable default value (see 
Chapter 6, Section 6.6).   
 

b. DELETE 
FROM   J 
WHERE  J# NOT IN 

( SELECT J# 
FROM   SPJ ) ; 
 

Note the nested subquery and the IN operator (actually, the 
negated IN operator) in this solution.  See Section 8.6 for 
further explanation.   
 

c. UPDATE P 
SET    COLOR = 'Orange' 
WHERE  COLOR = 'Red' ; 
 

4.5 Note first that there might be some suppliers who supply no 
projects at all; the following solution deals with such suppliers 
satisfactorily.  How, exactly?  Answer:  By printing supplier 
details followed by no project details──i.e., it does at least 
print the supplier information.  Note to the instructor:  Avoid 
getting sidetracked into a discussion of outer join here!  We'll 
get to that deprecated operator in Chapter 19.  (Note in 



Copyright (c) 2003 C. J. Date                             page 4.8 
 

particular that it's not a relational operator, because it yields 
a result that's not a relation.)   
 

First we define two cursors, CS and CJ, as follows:   
 
EXEC SQL DECLARE CS CURSOR FOR 

SELECT S.S#, S.SNAME, S.STATUS, S.CITY 
FROM   S 
ORDER  BY S# ; 
 

EXEC SQL DECLARE CJ CURSOR FOR 
SELECT J.J#, J.JNAME, J.CITY 
FROM   J 
WHERE  J.J# IN 

( SELECT SPJ.J# 
FROM   SPJ 
WHERE  SPJ.S# = :CS_S# ) 

ORDER  BY J# ; 
 

Note the nested subquery and the IN operator once again.   
 

When cursor CJ is opened, host variable CS_S# will contain a 
supplier number value, fetched via cursor CS.  The procedural 
logic is essentially as follows (pseudocode):   

 
EXEC SQL OPEN CS ; 
DO for all S rows accessible via CS ; 

EXEC SQL FETCH CS INTO :CS_S#, :CS_SN, :CS_ST, :CS_SC ; 
print CS_S#, CS_SN, CS_ST, CS_SC ; 
EXEC SQL OPEN CJ ; 
DO for all J rows accessible via CJ ; 

EXEC SQL FETCH CJ INTO :CJ_J#, :CJ_JN, :CJ_JC ; 
print CJ_J#, CJ_JN, CJ_JC ; 

END DO ; 
EXEC SQL CLOSE CJ ; 

END DO ; 
EXEC SQL CLOSE CS ; 
 

4.6 The basic problem here is this:  We need to "explode" the 
given part to n levels, but we don't know the value of n.  Now, 
SQL:1999 introduced the ability to write recursive expressions.  
Using that feature, we can formulate the query as follows:   
 

WITH RECURSIVE TEMP ( MINOR_P# ) AS 
( ( SELECT MINOR_P#                  /* initial subqueryy  */ 

FROM   PART_STRUCTURE  
WHERE  MAJOR_P# = :GIVENP# )  

UNION  
( SELECT PP.MINOR_P#               /* recursive subquery */ 

FROM   PP, TEMP                          
WHERE  PP.MAJOR_P# = TEMP.MINOR_P# ) ) 
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SELECT DISTINCT MINOR_P#              /* final subquery     */ 
FROM   TEMP ;  
 
If recursive expressions aren't supported, however, we'll have 

to write a program to do the job.  We might consider a recursive 
program like the following (pseudocode):   

 
CALL RECURSION ( GIVENP# ) ; 
 
RECURSION: PROC ( UPPER_P# ) RECURSIVE ; 

DCL UPPER_P# ... ; 
DCL LOWER_P# ... ; 
EXEC SQL DECLARE C "reopenable" CURSOR FOR 

SELECT MINOR_P# 
FROM   PART_STRUCTURE 
WHERE  MAJOR_P# = :UPPER_P# ; 
 

print UPPER_P# ; 
EXEC SQL OPEN C ; 
DO for all PART_STRUCTURE rows accessible via C ; 

EXEC SQL FETCH C INTO :LOWER_P# ; 
CALL RECURSION ( LOWER_P# ) ; 

END DO ; 
EXEC SQL CLOSE C ; 

END PROC ;  
 

Each recursive invocation here creates a new cursor; we've assumed 
that the (fictitious) specification "reopenable" on DECLARE CURSOR 
means it's legal to OPEN that cursor even if it's already open, 
and that the effect of such an OPEN is to create a new instance of 
the cursor for the specified table expression (using the current 
values of any host variables referenced in that expression).  
We've assumed further that references to such a cursor in FETCH 
(etc.) are references to the "current" instance, and that CLOSE 
destroys that instance and reinstates the previous instance as 
"current."  In other words, we've assumed that a reopenable cursor 
forms a stack, with OPEN and CLOSE serving as the "push" and "pop" 
operators for that stack.   
 

Unfortunately, these assumptions are purely hypothetical 
today.  There's no such thing as a reopenable cursor in SQL today 
(indeed, an attempt to OPEN a cursor that's already open will 
fail).  The foregoing code is illegal.  But the example makes it 
clear that "reopenable cursors" would be a very desirable 
extension to existing SQL.*   

 
 

────────── 
 
*  We note in passing that a solution very like the one just shown 
is possible in SQLJ [4.7]──i.e., if the host language is 
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Java──because cursors in SQLJ are replaced by Java "iterator 
objects" that can be stacked in recursive calls (thanks to an 
anonymous reviewer for these observations).   
 
────────── 
 
 

Since the foregoing approach doesn't work, we give a sketch of 
a possible (but very inefficient) approach that does:   

 
CALL RECURSION ( GIVENP# ) ; 
 
RECURSION: PROC ( UPPER_P# ) RECURSIVE ; 

DCL UPPER_P# ... ; 
DCL LOWER_P# ... INITIAL ( '      ' ) ; 
EXEC SQL DECLARE C CURSOR FOR 

SELECT MINOR_P# 
FROM   PART_STRUCTURE 
WHERE  MAJOR_P# = :UPPER_P# 
AND    MINOR_P# > :LOWER_P# 
ORDER  BY MINOR_P# ; 
 

print UPPER_P# ; 
DO "forever" ; 

EXEC SQL OPEN C ; 
EXEC SQL FETCH C INTO :LOWER_P# ; 
EXEC SQL CLOSE C ; 
IF no "lower P#" retrieved THEN RETURN ; END IF ; 
IF "lower P#" retrieved THEN  

CALL RECURSION ( LOWER_P# ) ; END IF ; 
END DO ; 

END PROC ;  
 
Observe in this solution that the same cursor is used on every 

invocation of RECURSION.  (By contrast, new instances of the 
variables UPPER_P# and LOWER_P# are created dynamically each time 
RECURSION is invoked; those instances are destroyed at completion 
of that invocation.)  Because of this fact, we have to use a 
trick── 

 
... AND MINOR_P# > :LOWER_P# ORDER BY MINOR_P# 
 

──so that, on each invocation of RECURSION, we ignore all 
immediate components (LOWER_P#s) of the current UPPER_P# that have 
already been processed.   
 

Additional notes:   
 

a.  Reference [4.4] includes an extensive discussion of an 
alternative approach to problems like this one, plus a brief 
description of the (nonrelational) Oracle CONNECT BY and START 
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WITH extensions, which are also intended to address this kind 
of problem.  (See the short paper "The Importance of Closure" 
in my book Relational Database Writings 1991-1994, Addison-
Wesley, 1995, for an explanation of why the Oracle extensions 
are indeed, as just claimed, nonrelational.)   

 
b.  Reference [4.8] includes a lengthy discussion of the approach 

adopted by IBM's DB2 to recursive queries.  SQL:1999's 
recursive expressions are based on the IBM approach.  The IBM 
approach is unfortunately subject to a large number of 
restrictions that are hard to understand, explain, justify, or 
remember; fortunately, the SQL:1999 support relaxes most if 
not all of those IBM restrictions.   

 
c.  Chapter 7 (end of Section 7.8) describes a pertinent 

relational operator called transitive closure.   
 
 
 
 

          *** End of Chapter 4 *** 
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          P A R T   I I 
 
 
          T H E   R E L A T I O N A L   M O D 
E L 
 
 
The relational model is the foundation of modern database 
technology; it's what makes the field a science.  Thus, any book 
on the fundamentals of database technology must include thorough 
coverage of the relational model, and any database professional 
must understand the relational model in depth.  Of course, the 
material isn't "difficult," but (to repeat) it is the foundation, 
and it will remain so for as far out as anyone can see (claims to 
the contrary from advocates of object orientation, XML, and other 
such technologies notwithstanding).   
 

Note carefully, however, that the relational model isn't a 
static thing──it has evolved and expanded over the years and 
continues to do so.  This part of the book reflects the current 
thinking of myself and other workers in this field (and the 
treatment is meant to be fairly complete, even definitive, as of 
the time of writing), but it should not be taken as the last word 
on the subject; further evolutionary developments can certainly be 
expected.  By way of example, see the discussion of temporal data 
in Chapter 23 of the present book.   

 
The chapters are as follows:   
 

5. Types  
6. Relations  
7. Relational Algebra  
8. Relational Calculus  
9. Integrity  

10. Views  
 
Throughout these chapters, we use the formal relational 
terminology of relations, tuples, attributes, etc. (except in the 
SQL sections, where we naturally use SQL's own terms──tables, 
rows, columns, etc.).   
 

The chapters are, regrettably, very long (this part of the 
book is almost a book in its own right); however, the length 
reflects the importance of the subject matter.  ALL CHAPTERS (with 
the possible exception of Chapter 8) MUST BE COVERED CAREFULLY AND 
THOROUGHLY:  Everything else builds on this material, and it 
mustn't be skipped or skimped or skimmed, except possibly as 
indicated in the notes on individual chapters.  (However, detailed 
treatment of Chapter 5 might be deferred.  See the specific notes 
on that chapter.)   
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Note:  This part of the book is the part above all others that 

distinguishes this book from its competitors.  While other 
database books do deal with the relational model (of course!), 
they mostly seem to treat it as just another aspect of the overall 
subject of database technology (like, e.g., security, or recovery, 
or "semantic modeling"), and thus typically fail to emphasize the 
relational model's crucial role as the foundation.  They also 
usually fail to explain the important issue of interpretation (the 
predicate stuff).  Sometimes, they even get significant details 
wrong ... No names, no pack drill.   

 
Finally, a word regarding SQL.  We've already seen that SQL is 

the standard "relational" database language, and just about every 
database product on the market supports it (or, more accurately, 
some dialect of it [4.22]).  As a consequence, no modern database 
book would be complete without fairly extensive coverage of SQL.  
The chapters that follow on various aspects of the relational 
model therefore do also discuss the relevant SQL facilities, where 
applicable (they build on Chapter 4, which covers basic SQL 
concepts).  Other aspects of SQL are likewise covered in sections 
in the relevant chapters later in the book.   

 
A couple of further points:   
 

•   One reviewer of the previous edition of the book suggested 
that "as commercial products support more features or aspects 
of the relational model," I keep "raising the bar," thereby 
putting "my" relational model always out of reach.  "This is 
fine because it results in better commercial products.  
However, ... it also makes it difficult for the reader to be 
sympathetic [to] Date's criticisms of commercial products."   

 
I'd like to respond to this comment.  I don't think I do 

keep "raising the bar."  I certainly do try to keep improving 
my explanations of what the relational model is, but I don't 
think those improved explanations reflect substantial changes 
to the model as such; I would say rather that they merely 
reflect improvements in my own understanding.  What's more, 
what changes have occurred in those explanations have, I 
think, always been "backward compatible"; I don't think a 
commercial product that implemented the model as I first 
described it would be precluded in any significant way from 
supporting the model as I see it now.   

 
•   Anyone who tries to teach the relational model from this book 

will almost certainly be familiar already with the notion of 
nulls (in particular, with nulls as supported in SQL).  Please 
be aware, therefore, that I categorically reject nulls, for 
numerous good reasons.  Some of those reasons are explained in 



Copyright (c) 2003 C. J. Date                            page II.3 
 

detail in Chapter 19; here let me just say that (pace Codd) a 
relation that "contains nulls" isn't a relation, and "the 
relational model with nulls" isn't the relational model.  So 
(to spell the point out), whenever I use the term "the 
relational model," I mean quite categorically something that 
doesn't include any nulls.   

 
In accordance with the foregoing, the definitions and 

discussions and examples in this part of the book all assume, 
tacitly, that there's no such thing as a null.  There are, 
inevitably, one or two forward references to Chapter 19, but 
the point I'm trying to make is that the instructor shouldn't 
be tempted into falling into either:   

 
a. The trap of thinking that I'd forgotten about nulls  
 
b. The trap of trying to "embellish" the material by adding 

anything (anything positive, that is!) having to do with 
nulls  

 
Indeed, it's my very strong opinion that nulls are a 

mistake and should never have been introduced at all, but it 
would be wrong in a book of this nature to ignore them 
entirely; that's why Chapter 19 is included.   

 
 
 
 

          *** End of Introduction to Part II 
*** 
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Chapter 5  
 
 

          T y p e s 
 
 
Principal Sections 
 
•  Values vs. variables  
•  Types vs. representations  
•  Type definition  
•  Operators  
•  Type generators  
•  SQL facilities  
 
 

General Remarks 
 
This chapter is new in this edition (it's a greatly expanded and 
completely rewritten version of portions of Chapter 5 from the 
seventh edition).  It opens with this remark:   
 

Note:  You might want to give this chapter a "once over 
lightly" reading on a first pass.  The chapter does logically 
belong here, but large parts of the material aren't really 
needed very much prior to Chapter 20 in Part V and Chapters 
25-27 in Part VI.   
 

From a teaching point of view, therefore, you might want to just 
take types as a given for now and go straight on to Chapter 6.  If 
you do, however, you'll need to come back to this material before 
covering any of Chapters 20 and 25-27, and you'll need to be 
prepared for occasional questions prior to that point on the 
topics you've temporarily skipped.   
 

As noted in the introduction in this manual to this part of 
the book, it's this part above all others that I believe 
distinguishes this book from the competition.  With respect to 
this chapter specifically, one feature that sets the book apart 
from others (including previous editions of this book) is its 
emphasis on domains as types.  The chapter goes into considerable 
detail on what's involved in defining──and, to some extent, 
implementing──such types (associated operators included).  The 
stated position that a domain and a type are the same thing 
permeates the entire book from this point forward; in fact, I 
prefer the term type, and use domain mostly just in contexts where 
history demands it.   
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So we're talking about type theory.  Type theory is really a 
programming language topic; however, it's highly relevant to 
database theory, too (in fact, it provides a basis on which to 
build such a theory).  It might be characterized as the point 
where "databases meet programming languages."  It seems to me that 
the database community ignored this stuff for far too long, to 
their cost (to ours too, as users).  I could certainly quote some 
nonsense from the database literature in this connection.  For 
example:   

 
(Begin quote)  
 
Even bizarre requests can easily be stated; for example,  
 

SELECT c.customer_name 
FROM   Customer_Table c, Zoo_animal_Table z 
WHERE  c.no_of_children = z.no_of_legs 
AND    c.eye_color = z.eye_color ;  
 

This request joins the Customer_Table and Zoo_animal_Table 
relations based on relationships phrased in terms of 
no_of_children, no_of_legs, and eye_color.  The meaning of these 
relationships is not entirely clear.   
 
(End quote)   
 
This quote is taken from a book on object databases; I'll leave it 
as an exercise for you to deconstruct it.   
 

By way of a second example, I could simply point to the mess 
the SQL standard has made of this whole issue (see Section 5.7 in 
this chapter, also the "SQL Facilities" sections in Chapters 6, 9, 
19, 20, and 26).   

 
The approach we advocate (to databases overall), then, is 

founded on four core concepts: type, value, variable, operator.  
These concepts are NOT novel (I like to say "they're not new and 
they'll never be old").  Of them, type is the most fundamental ... 
To see why, consider type INTEGER (this example is taken from the 
annotation to reference [3.3], The Third Manifesto):   

 
•  The integer "3" might be a value of that type.   
 
•   N might be a variable of that type, whose value at any given 

time is some integer value (i.e., some value of that type).   
 
•   And "+" might be an operator that applies to integer values 

(i.e., to values of that type).   
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Basic point:  Operands for a given operator must be of the right 
type (give examples).  We assume throughout that type checking is 
done at compile time, wherever possible.  Points arising:   
 
•   Types (domains) are not limited to being scalar types only, 

though people often think they are.   
 
•   We prefer the term operator over the "equivalent" term 

function.  One reason for that preference is that all 
functions are operators, but not all operators are functions.  
For further discussion, see reference [3.3].   

 
•   Following on from the previous point:  Please note that we're 

not following SQL usage here, which makes a purely syntactic 
distinction between operator and function.  To be specific, 
SQL uses function to mean an operator that's invoked by means 
of classical functional notation──or an approximation to that 
notation, at any rate!──and operator to mean one that's 
invoked using a special prefix or infix notation (as in, e.g., 
prefix or infix minus).  We're not very interested in matters 
that are primarily syntactic in nature.   

 
Types can be system-defined (built in) or user-defined.   
 
Note right up front that "=" and ":=" must be defined for 

every type.  You can use this fact to introduce the important 
notion of overloading (meaning different operators with the same 
name).  Note too that v1 = v2 if and only if v1 and v2 are in fact 
the very same value (our "=" is really identity).  This point is 
worth repeating whenever it makes sense to do so, until the point 
is crystal clear and second nature to everyone.  Aside:  SQL 
allows "=" to have user-defined semantics! ... and possibly not to 
be defined at all! ... at least for structured types.  Note some 
of the implications:  Can't specify "uniqueness" on columns 
containing such values ... Can't do joins over such columns ... 
Can't do GROUP BY on such columns ... And so on.   

 
Forward reference to Chapter 6:  The relational model doesn't 

prescribe specific types──with one exception, type BOOLEAN (the 
most fundamental type of all).*  In other words, the question as 
to what data types are supported is orthogonal to the question of 
support for the relational model as such.  Many people, and 
products, are confused over this simple point, typically claiming 
that "the relational model can support only simple types like 
numbers and strings."  Not so!  There's a nice informal jingle 
that can serve to reinforce this message:  Types are orthogonal to 
tables [3.3].   

 
 

────────── 
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*  Of course, it also prescribes one type generator, RELATION, but 
a type generator isn't a type.   
 
────────── 
 
 

Some text from Chapter 26 to illustrate the foregoing popular 
misconception:   

 
The following quotes are quite typical:  "Relational database 
systems support a small, fixed collection of data types (e.g., 
integers, dates, strings)" [26.34]; "a relational DBMS can 
support only ... its built-in types [basically just numbers, 
strings, dates, and times]" [25.31]; "object/relational data 
models [sic] extend the relational data model by providing a 
richer type system" [16.21]; and so on.   

 
(To explain that "[sic]":  We'll argue in Chapter 26 that there's 
only one "object/relational model," and that model is in fact the 
relational model──nothing more and nothing less.)   
 
 
5.2 Values vs. Variables  
 
One of the great logical differences (see the preface).  We'll be 
appealing to this particular distinction (between values and 
variables) many, many times in the chapters to come.  It's 
IMPORTANT, and a great aid to clear thinking.   
 

Every value is of just one type (this becomes "just one most 
specific type" when we get to inheritance in Chapter 20; declared 
types are always known at compile time, but "most specific types" 
might not be).  Every variable is of just one type, too, called 
the declared type.  Relational attributes, read-only operators, 
parameters, and expressions in general also all have a declared 
type.  Give examples.   

 
 

5.3 Types vs. Representations 
 
Another of the great logical differences!──and one that SQL in 
particular gets confused over.  (Actually SQL gets confused over 
values vs. variables as well.)   
 

Carefully explain:   
 

•  Scalar vs. nonscalar types (and values and variables etc.)   
 
•  Possible representations ("possreps")  
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•  Selectors  
 
•  THE_ operators  
 

Regarding scalar types:  A scalar type is one that has no 
user-visible components.  Note carefully, however, that fairly 
complicated things can be scalar values!  Chapter 5 includes 
examples in which (e.g.) geometric points and line segments are 
legitimately regarded as scalar values.  Make sure the students 
understand the difference between components of a type per se and 
components of a possible representation for a type.  Sometimes we 
do sloppily say things like "the X component of point P," but what 
we should really be saying is "the X component of a certain 
possible representation of point P."   

 
Regarding possreps:  The distinction between physical (or 

actual) and possible representations is much blurred in the 
industry (especially in SQL), but it really ought not to be.  It's 
crucial to, and permeates, the proposals of reference [3.3].   

 
Regarding selectors:  Selectors are a generalization of 

literals.  And, of course, "everyone knows" what a literal is──or 
do they?  Certainly it seems to be hard to find a definition of 
the concept in the literature (good or bad); in fact, there seems 
to be some confusion out there (see ODMG, for example).  Here's a 
good definition (from The Third Manifesto):   

 
A literal is a symbol that denotes a value that's fixed and 
determined by the particular symbol in question (and the type 
of that value is also fixed and determined by the symbol in 
question).  Loosely, we can say that a literal is self-
defining.   
 

Note:  The term selector is nonstandard──it comes from reference 
[3.3], of course──but there doesn't seem to be a standard term for 
the concept.  Don't confuse it with a constructor; a constructor, 
at least as that term is usually understood, constructs a 
variable, but a selector selects a value (SQL has its own quirks 
in this area, however, as we'll see).   
 

Regarding THE_ operators:  Once again these ideas come from 
reference [3.3].  Note, however, that most commercial products 
support, not THE_ operators as such, but rather "GET_ and SET_ 
operators" of some kind (possibly, as in SQL, via dot 
qualification syntax).  The distinction is explained in detail in 
reference [3.3]; in a nutshell, however, GET_ and THE_ operators 
are the same thing (just different spellings), but SET_ operators 
and THE_ pseudovariables are not the same thing (because SET_ 
operators are typically defined to have a return value).  Note 
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that, by definition, THE_ operator invocations appear in source 
positions──typically the right side of an assignment──while THE_ 
pseudovariable invocations appear in target positions──typically 
the left side of an assignment.   

 
Further explanation:  Essentially, a pseudovariable is an 

operational expression (not just a simple variable reference) that 
can appear in a target position.  The term is taken from PL/I.  
SUBSTR provides a PL/I example.   

 
Note:  This section of the book includes the following:  

"Alternatively, THE_R and THE_θ could be defined directly in terms 
of the protected operators (details left as an exercise)."  Here's 
an answer to that exercise:   

 
OPERATOR THE_R ( P POINT ) RETURNS ( RATIONAL ) ; 

BEGIN ; 
VAR X RATIONAL ; VAR Y RATIONAL ; 
X  :=  X component of physical representation of P ; 
Y  :=  Y component of physical representation of P ; 
RETURN ( SQRT ( X ** 2 + Y ** 2 ) ) ; 

END ; 
END OPERATOR ; 
 
OPERATOR THE_θ ( P POINT ) RETURNS ( RATIONAL ) ; 

BEGIN ; 
VAR X RATIONAL ; VAR Y RATIONAL ; 
X  :=  X component of physical representation of P ; 
Y  :=  Y component of physical representation of P ; 
RETURN ( ARCTAN ( Y / X ) ) ; 

END ; 
END OPERATOR ; 
 
 

5.4 Type Definition  
 
Distinguish types introduced via the TYPE statement and types 
obtained by invoking some type generator.  They're all types, of 
course, and can all be used wherever a type is needed; however, I 
note in passing that an analogous remark does not apply to SQL 
(were you surprised?).  This section is concerned with the former 
case only, and with scalar types only.   
 

Explain type constraints carefully (forward reference to 
Chapter 9).  Obviously fundamental──but SQL doesn't support them!  
(Forward reference to Section 5.7.)   

 
 

5.5 Operators  
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Carefully explain:   
 
•  Read-only vs. update operators  
 
•  THE_ pseudovariables (if not already covered)  
 
•  Multiple assignment  
 
•  Strong typing (if not already covered)  
 
 

Read-only vs. Update Operators  
 
The distinction between read-only and update operators──another 
logical difference!──becomes particularly important when we get to 
inheritance (Chapter 20).  Prior to that point, it's mostly common 
sense.  You should be aware, however, that the idea that update 
operators return no value and must be invoked by explicit CALLs 
isn't universally accepted but is required──for good reasons──by 
the type model adopted in The Third Manifesto [3.3].   
 

A note regarding the REFLECT example:  The alert student might 
notice that REFLECT is in fact a scalar update operator 
specifically, and might object, correctly, that scalar update 
operators aren't part of the relational model.  The discussion of 
such operators in this chapter might thus be thought a little out 
of place.  The point is, however, that such operators are 
definitely needed as part of the total environment that surrounds 
any actual implementation of the relational model.*  (Also, there 
really isn't any other sensible place in the book to move the 
discussion to!)   

 
 

────────── 
 
*  In the same kind of way, scalar variables aren't part of the 
relational model but will surely be available in any environment 
in which a relational implementation exists.  For example, a 
scalar variable will be needed to serve as a receiver for any 
scalar value that might be retrieved from some tuple in some 
relation in the database.   
 
────────── 
 
 

By the way:  If a given type has no operators other than the 
prescribed ones ("=", ":=", selectors, THE_ operators, plus a few 
more to be defined in subsequent chapters), then the type probably 
wasn't worth defining in the first place.   
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Multiple Assignment  
 
Assignment as such is the only update operator logically required 
(all other update operators are just shorthand for certain 
assignments, as we already know in the case of relational 
assignments specifically).  Multiple assignment is somewhat novel 
and not fully supported in today's products, but we believe it's 
logically required.  Basic idea is to allow several individual 
assignments to be executed (a) without any integrity checking 
being done until the end and at the same time (b) without the 
application being able to see any temporarily inconsistent state 
of the database "in the middle" of those individual assignments.  
A couple of points arising:   
 
•   As the book says, the semantics are carefully specified to 

give a well-defined result when distinct individual 
assignments update distinct parts of the same target variable 
(an important special case).  It's not worth getting into this 
issue in a live presentation, but here are the rules for 
purposes of reference:   

 
Let MA be the multiple assignment  
 
A1 , A2 , ... , An ; 
 
Then the semantics of MA are defined by the following four 
steps (pseudocode):   
 
Step 1:  For i := 1 to n, we can consider Ai to take the form 
(after syntactic substitution, if necessary)  
 
Vi := Xi  

 
where Vi is the name of some declared variable and Xi is an 
expression whose declared type is some subtype of that of Vi.   
 
Step 2:  Let Ap and Aq (p < q) be such that (a) Vp and Vq are 
identical and (b) there is no Ar (r < p or p < r < q) such 
that Vp and Vr are identical.  Replace Aq in MA by an 
assignment of the form  
 
Vq := WITH Xp AS Vq : Xq  
 
and remove Ap from MA.  Repeat this process until no such pair 
Ap and Aq remains.  Let MA now consist of the sequence  
 
U1 := Y1 , U2 := Y2 , ... , Um := Ym ;  
 
where each Ui is some Vj (1 ≤ i ≤ j ≤ m ≤ n).   
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Step 3:  For i := 1 to m, evaluate Yi.  Let the result be yi.   
 
Step 4:  For i := 1 to m, assign yi to Ui.  █ 
 

•   As already indicated, multiple assignment is unorthodox but 
important.  In fact, it will become "more orthodox" with 
SQL:2003, which will explicitly introduce such a thing (albeit 
not for relational assignment, since SQL doesn't support 
relational assignment at all as yet):   

 
SET ( target list ) = row ;  
 
The odd thing is that SQL in fact does already support 
multiple assignment explicitly in the case of the UPDATE 
statement.  What's more, it supports multiple relational 
assignment as well, implicitly, in at least two situations:   
 
1. As part of its support for referential actions such as ON 

DELETE CASCADE  
 
2. As part of its (limited) support for updating (e.g.) join 

views  
 
Values can be converted from one type to another by means of 

explicit CAST operators or by coercion (implicit, by definition; 
the point is worth making that coercions are──presumably──possible 
only where explicit CASTs are possible).  The book adopts the 
conservative position that coercions are illegal, however (for 
reasons of both simplicity and safety); thus, it requires 
comparands for "=" to be of the same type, and it requires the 
source and target in ":=" to be of the same type (in both cases, 
until we get to Chapter 20).   

 
Forward reference to Chapter 26:  Domains, types, and object 

classes are all the same thing; hence, domains are the key to 
marrying object and relational technologies (i.e., the key to 
"object/relational" database systems).   
 

Draw the attention of students to the use of WITH (in the 
definition of the DIST operator), if you haven't already done so.  
We'll be using this construct a lot.   

 
 

5.6 Type Generators  
 
Type generators and corresponding generated types are known by 
many different names.  Type generators have generic "possreps" and 
generic operators and generic constraints.  Illustrate these ideas 
with reference to ARRAY (as in the book) or your own preferred 
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type generator ... You should be aware that we will be introducing 
an important type generator, INTERVAL, in Chapter 23.   
 

Most generated types are nonscalar (but not all; SQL's REF 
types are a counterexample, as are the interval types discussed in 
Chapter 23).   

 
Two (definitely nonscalar) type generators of particular 

importance in the relational world are TUPLE and RELATION, to be 
discussed in the next chapter.   

 
 

5.7 SQL Facilities 
 
Quite frankly, this section is much longer than it ought to be, 
thanks to SQL's extreme lack of orthogonality (numerous special 
cases, constructs with overlapping but not identical 
functionality, unjustified exceptions, etc., all of which have to 
be individually explained).  In fact, this very state of affairs 
could be used to introduce and justify the concept of 
orthogonality (the book itself doesn't explain this concept until 
Chapter 8, Section 8.6, though the term is mentioned in passing in 
Chapter 6).   
 

Regarding SQL built-in types:  Note that bit string types were 
added in SQL:1992 and will be dropped again in SQL:2003!  There 
are other examples of this phenomenon, too.  Why?  (Rhetorical 
question ... Could the answer have anything to do with "design by 
committee"?)  You might want to note too that almost 
nobody──actually nobody at all, so far as I know──has implemented 
type BOOLEAN (which I earlier called "the most fundamental type of 
all").  As a consequence, certain SQL expressions──in particular, 
those in WHERE and HAVING clauses──return a value of a type that's 
unknown in the language (!).   

 
The fact that SQL already supports a limited form of multiple 

assignment is worth noting, if you haven't already mentioned it.   
 
Regarding DISTINCT types:  Note all of the violations of 

orthogonality this construct involves!  Might be an interesting 
exercise to list them.   

 
Regarding structured types:  Now this is a big topic.  This 

chapter covers the basics, but we'll have a lot more to say in 
Chapter 6 (where we discuss the idea of defining tables to be "of" 
some structured type); Chapter 20 (where we discuss SQL's approach 
to type inheritance, which applies to structured types only); and 
Chapter 26 (where we discuss the use of structured types in SQL's 
approach to "object/relational" support).   
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Here's an example to explain──or at least illustrate──SQL's 
"mutators" (mention "observers" too).  Consider the following 
assignment statement:   

 
SET P.X = Z ;  
 

P here is of type POINT and has "attributes" [sic] X and Y.  This 
assignment is defined to be equivalent to the following one:   
 

SET P = P.X ( Z ) ; 
 

The expression on the right side here invokes the "mutator" X on 
the variable P and passes it as argument Z.  That mutator 
invocation returns a point value identical to that previously 
contained in P, except that the X attribute is whatever the value 
of Z is.  That returned point value is then assigned back to P.   
 

Note, therefore, that SQL's "mutators" don't really do any 
"mutating"!──they're really read-only operators, and they return a 
value.  But that value can then be assigned to the relevant 
variable, thereby achieving the conventional "mutation" effect as 
usually understood.  As an exercise, you might want to think about 
the implications of this approach for the more complicated 
assignment  

 
SET LS.BEGIN.X = Z ;  
 

(Try writing out the expanded form for which this is just a 
shorthand.)   
 

In a somewhat similar manner, SQL's "constructors" aren't 
exactly constructors as usually understood in the object world.  
In particular, they return values, not variables (and they don't 
allocate any storage).   

 
It is very unclear as to (a) why SQL allows some types not to 

have an "=" operator and (b) why it allows the semantics of that 
operator to be user-defined when it does exist.   

 
Regarding type generators (ROW and ARRAY):  There are many 

oddities here, some of which are noted in the text.   
 
Here are some further weirdnesses of which, as an instructor, 

you probably ought at least to be aware:   
 

1. Assignment doesn't always mean assignment:  Suppose X3 is of 
type CHAR(3) and we assign the string 'AB' to it.  After that 
assignment, the value of X3 is actually 'AB ' (note the 
trailing blank), and the comparison X3 = 'AB' won't give TRUE 
if NO PAD is in effect (see reference [4.20]).  Note:  Many 
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similar but worse situations arise when nulls are taken into 
account (see Chapter 19).   

 
2.  Equality isn't always equality:  Again suppose X3 is of type 

CHAR(3) and we assign the string 'AB' to it.  After that 
assignment, the value of X3 is actually 'AB ' (note the 
trailing blank), but the comparison X3 = 'AB' does give TRUE 
if PAD SPACE is in effect (again, see reference [4.20]).*  
Note:  There are many other situations in SQL in which two 
values x and y are distinct and yet the comparison x = y gives 
TRUE.  This state of affairs causes great complexity in, e.g., 
uniqueness checks, GROUP BY operations, DISTINCT operations, 
etc.   

 
 
────────── 
 
*  At the same time X3 LIKE 'AB' gives FALSE ... so two values can 
be equal but not "like" each other!  Some people find this state 
of affairs amusing (Lewis Carroll, perhaps?).   
 
────────── 
 
 
3. The following text is taken from Section 5.7:   
 

(Begin quote)  
 
[We] could define a function──a polymorphic function, in 
fact──called ADDWT ("add weight") that would allow two values 
to be added regardless of whether they were WEIGHT values or 
DECIMAL(5,1) values or a mixture of the two.  All of the 
following expressions would then be legal:   
 
ADDWT ( WT, 14.7 )      
ADDWT ( 14.7, WT )     
ADDWT ( WT, WT ) 
ADDWT ( 14.7, 3.0 )  
 
(End quote)  
 
Note, however, that──even if the current value of WT is 
WEIGHT(3.0)──the four invocations aren't constrained to return 
the same value, or even values of the same type, or even of 
compatible types!  The reason is that we're talking here about 
overloading polymorphism, not inclusion ditto (see Chapter 
20); the four ADDWTs are thus really four different functions, 
and their semantics are up to the definer in each case.   
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4.  Suppose X and Y are of type POINT and "=" hasn't been defined 
for that type.  In order to determine whether X and Y are in 
fact equal, we can see whether the expression  

 
X.X = Y.X AND X.Y = Y.Y  
 
gives TRUE.  Likewise, if X and Y are of type LINESEG and "=" 
hasn't been defined for either POINT or LINESEG, we can see 
whether the following expression  
 
X.BEGIN.X = Y.BEGIN.X AND  
X.BEGIN.Y = Y.BEGIN.Y AND  
X.END.X   = Y.END.X   AND  
X.END.Y   = Y.END.Y  
 
gives TRUE (and so on).  Your comments here.   
 
 

Answers to Exercises 
 
5.1 For assignment, the declared types of the target variable and 
the source expression must be the same.  For equality comparison, 
the declared types of the comparands must be the same.  Note:  
Both of these rules will be refined somewhat in Chapter 20.   
 
5.2 For value vs. variable, see Section 5.2.  For type vs. 
representation, see Section 5.3.  For physical vs. possible 
representation, see Section 5.3, subsection "Possible 
Representations, Selectors, and THE_ Operators."  For scalar vs. 
nonscalar, see Section 5.3, subsection "Scalar vs. Nonscalar 
Types"; see also elaboration below.  For read-only vs. update 
operators, see Section 5.5.   
 

Note:  As a matter of fact, the precise nature of the scalar 
vs. nonscalar distinction is open to some debate.  We appeal to 
that distinction in this book──quite frequently, in fact──because 
it does seem intuitively useful; however, it's possible that it'll 
be found, eventually, not to stand up to close scrutiny.  The 
issue isn't quite as clearcut as it might seem.   

 
5.3 Brief definitions:   
 
•  Coercion is implicit conversion.   
 
•  A generated type is a type obtained by invocation of a type 

generator.   
 
•   A literal is a symbol that denotes a value that's fixed and 

determined by the particular symbol in question (and the type 
of that value is also fixed and determined by the symbol in 
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question).  For example, 5 is a literal denoting the fixed 
value five (of type INTEGER); 'literal' is a literal denoting 
the fixed value literal (of type CHAR); WEIGHT (17.0) is a 
literal denoting the fixed value weight 17.0 (of type WEIGHT); 
and so on.   

 
•   An ordinal type is a type T such that the expression v1 > v2 

is defined for all pairs of values v1 and v2 of type T.   
 
•   An operator is said to be polymorphic if it's defined in 

terms of some parameter P and the arguments corresponding to P 
can be of different types on different invocations.   

 
•   A pseudovariable is an operator invocation appearing in a 

target position (in particular, on the left side of an 
assignment).  THE_ pseudovariables are an important special 
case.   

 
•   A selector is an operator that allows the user to specify or 

select a value of the type in question by supplying a value 
for each component of some possible representation of that 
type.  Literals are an important special case.   

 
•   Strong typing means that whenever an operator is invoked, the 

system checks that the operands are of the right types for 
that operator.   

 
•   A THE_ operator provides access to a specified component of a 

specified possible representation of a specified value.   
 
•  A type generator is an operator that returns a type.   
 

5.4 Because they're just shorthand──any assignment that involves a 
pseudovariable is logically equivalent to one that does not.   
 
5.5 OPERATOR CUBE ( N RATIONAL ) RETURNS RATIONAL ;  

RETURN ( N * N * N ) ;  
END OPERATOR ; 
 

5.6 OPERATOR FG ( P POINT ) RETURNS POINT ;  
RETURN ( CARTESIAN ( F ( THE_X ( P ) ), 

G ( THE_Y ( P ) ) ) ) ; 
END OPERATOR ;  
 

5.7 OPERATOR FG ( P POINT ) UPDATES P ;  
THE_X ( P ) := F ( THE_X ( P ) ) , 
THE_Y ( P ) := G ( THE_Y ( P ) ) ;  

END OPERATOR ;  
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Note the multiple assignment here.  Note too that there's no 
explicit RETURN statement; rather, an implicit RETURN is executed 
when the END OPERATOR statement is reached.   
 
5.8 TYPE LENGTH POSSREP { RATIONAL } ; 

TYPE POINT  POSSREP { X RATIONAL, Y RATIONAL } ; 
TYPE CIRCLE POSSREP { R LENGTH, CTR POINT } ; 

/* R represents (the length of) the radius of the circle */ 
/* and CTR the center                                    */ 
 

The sole selector that applies to type CIRCLE is as follows:   
 

CIRCLE ( r, ctr ) 
/* returns the circle with radius r and center ctr */ 
 

The THE_ operators are:   
 

THE_R ( c ) 
/* returns the length of the radius of circle c */ 
 
THE_CTR ( c ) 
/* returns the point that is the center of circle c */ 
 

a. OPERATOR DIAMETER ( C CIRCLE ) RETURNS LENGTH ; 
RETURN ( 2 * THE_R ( C ) ) ; 

END OPERATOR ; 
 
OPERATOR CIRCUMFERENCE ( C CIRCLE ) RETURNS LENGTH ; 

RETURN ( 3.14159 * DIAMETER ( C ) ) ; 
END OPERATOR ; 
 
OPERATOR AREA ( C CIRCLE ) RETURNS AREA ; 

RETURN ( 3.14159 * ( THE_R ( C ) ** 2 ) ) ; 
END OPERATOR ; 
 
We're assuming in these operator definitions that (a) 
multiplying a length by an integer or a rational returns a 
length* and (b) multiplying a length by a length returns an 
area (where AREA is another user-defined type).   
 
 

────────── 
 
*  Point for discussion:  What if the integer or rational is 
negative or zero?   
 
────────── 
 
 
b. OPERATOR DOUBLE_R ( C CIRCLE ) UPDATES C ; 

THE_R ( C )  :=  2 * THE_R ( C ) ; 
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END OPERATOR ; 
 

5.9 A triangle can possibly be represented by (a) its three 
vertices or (b) the midpoints of its three sides.*  A line segment 
can possibly be represented by (a) its begin and end points or (b) 
its midpoint, length, and slope.   
 
 
────────── 
 
*  As a subsidiary exercise, you might like to try proving that a 
triangle is indeed uniquely determined by the midpoints of its 
sides.   
 
────────── 
 
 
5.10 No answer provided.   
 
5.11 No answer provided.   
 
5.12 Just to remind you of the possibility, we show one type 
definition with a nontrivial type constraint:   
 

TYPE WEIGHT POSSREP { D DECIMAL (5,1)  
CONSTRAINT D > 0.0 AND D < 5000.0 } ;  
 

(See also Chapter 9.)  For simplicity, however, we exclude such 
CONSTRAINT specifications from the remaining type definitions:   
 

TYPE S#    POSSREP { CHAR } ; 
TYPE P#    POSSREP { CHAR } ; 
TYPE J#    POSSREP { CHAR } ; 
TYPE NAME  POSSREP { CHAR } ;  
TYPE COLOR POSSREP { CHAR } ;  
TYPE QTY   POSSREP { INTEGER } ; 
 

We've also omitted the possrep names and possrep component names 
that the foregoing type definitions would probably require in 
practice.   
 
5.13 We show a typical value for each attribute.  First, relvar S:   
 

S#      :  S# ('S1') 
SNAME   :  NAME ('Smith') 
STATUS  :  20  
CITY    :  'London'  
 

Relvar P:   
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P#      :  P# ('P1') 
PNAME   :  NAME ('Nut') 
COLOR   :  COLOR ('Red') 
WEIGHT  :  WEIGHT (12.0) 
CITY    :  'London' 
 

Relvar J:   
 

J#      :  J# ('J1') 
JNAME   :  NAME ('Sorter') 
CITY    :  'Paris' 
 

Relvar SPJ:  
 

S#      :  S# ('S1') 
P#      :  P# ('P1') 
J#      :  J# ('J1') 
QTY     :  QTY (200)  
 

5.14   
 
a. Legal; BOOLEAN.   
 
b. Illegal; NAME ( THE_NAME ( JNAME ) ││ THE_NAME ( PNAME ) ).  

Note:  The idea here is to concatenate the (possible) 
character-string representations and then "convert" the result 
of that concatenation back to type NAME.  Of course, that 
conversion itself will fail on a type error, if the result of 
the concatenation can't be converted to a legal name.   

 
c. Legal; QTY.   
 
d. Illegal; QTY + QTY ( 100 ).   
 
e. Legal; INTEGER.   
 
f. Legal; BOOLEAN.   
 
g. Illegal; THE_COLOR ( COLOR ) = P.CITY.   
 
h. Legal.   
 

5.15 The following observations are pertinent.  First, as pointed 
out at the end of Section 5.4, the operation of defining a type 
doesn't actually create the corresponding set of values; 
conceptually, those values already exist, and always will exist 
(think of type INTEGER, for example).  Thus, all the "define type" 
operation──e.g., the TYPE statement, in Tutorial D──really does is 
introduce a name by which that set of values can be referenced.  
Likewise, the DROP TYPE statement doesn't actually drop the 
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corresponding values, it merely drops the name that was introduced 
by the corresponding TYPE statement.  It follows that "updating an 
existing type" really means dropping the existing type name and 
then redefining that same name to refer to a different set of 
values.  Of course, there's nothing to preclude the use of some 
kind of "alter type" shorthand to simplify such an operation (as 
SQL does, in fact, at least for "structured types").   
 
5.16 Here first are SQL type definitions for the scalar types 
involved in the suppliers-and-parts database:   
 

CREATE TYPE S#     AS CHAR(5)      FINAL ; 
CREATE TYPE P#     AS CHAR(6)      FINAL ; 
CREATE TYPE J#     AS CHAR(4)      FINAL ; 
CREATE TYPE NAME   AS CHAR(20)     FINAL ;  
CREATE TYPE COLOR  AS CHAR(12)     FINAL ;  
CREATE TYPE WEIGHT AS DECIMAL(5,1) FINAL ;  
CREATE TYPE QTY    AS INTEGER      FINAL ; 
 
With respect to the question of representing weights in either 

pounds or grams, the best we can do is define two distinct types 
with appropriate CASTs (definitions not shown) for converting 
between them:   

 
CREATE TYPE WEIGHT_IN_LBS AS DECIMAL (5,1) FINAL ;  
 
CREATE TYPE WEIGHT_IN_GMS AS DECIMAL (7,1) FINAL ;  
 
Types POINT and LINESEG will become "structured" types:   

 
CREATE TYPE CARTESIAN AS ( X FLOAT, Y FLOAT ) NOT FINAL ;  
 
CREATE TYPE POLAR AS ( R FLOAT, THETA FLOAT ) NOT FINAL ;  
 
CREATE TYPE LINESEG  

AS ( BB CARTESIAN, EE CARTESIAN ) NOT FINAL ;  
 

5.17 See Answer 4.1 and Answer 5.16.   
 
5.18 No answer provided.   
 
5.19 See Section 5.7, subsection "Structured Types."   
 
5.20 No answer provided.   
 
5.21 Such a type──we call it type omega──turns out to be 
critically important in connection with the type inheritance model 
defined in reference [3.3].  The details are unfortunately beyond 
the scope of the book and these answers; see reference [3.3] for 
further discussion.   
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5.22 We "explain" the observation by appealing to the SQL standard 
itself (reference [4.23]), which simply doesn't define any such 
constructs.  As for "justifying" it:  We can see no good 
justification at all.  Another consequence of "design by 
committee"?   
 
5.23 To paraphrase from the body of the chapter:  The type 
designer can effectively conceal the change by a judicious choice 
of operators.  The details are beyond the scope of the book and 
these answers; suffice it to say that (in my own not unbiased 
opinion) they're far from being as straightforward as their 
Tutorial D counterparts, either theoretically or in their 
pragmatic implications.   
 
5.24 There seems to be little logical difference.  It isn't clear 
why CARDINALITY wasn't called COUNT.   
 
 
 
 
          *** End of Chapter 5 *** 
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Chapter 6  
 
 

          R e l a t i o n s 
 
 
Principal Sections 
 
•  Tuples 
•  Relation types 
•  Relation values 
•  Relation variables 
•  SQL facilities 
 
 

General Remarks 
 
This chapter is a greatly expanded and completely rewritten 
version of portions of Chapter 5 from the seventh edition.  It 
contains a very careful presentation of relation types, relation 
values (relations), and relation variables (relvars).  Since 
relations are made out of tuples, it covers tuple types and values 
and variables as well, but note immediately that this latter topic 
isn't all that important in it itself──it's included only because 
it's needed as a stepping-stone to the former topic.  Caveat:  
Relation values are made out of tuple values, but do NOT make the 
mistake of thinking that relation variables are made out of tuple 
variables!  In fact, there aren't any tuple variables in the 
relational model at all (just as there aren't any scalar variables 
in the relational model either, as we saw in the previous chapter 
in this manual).   
 

It's worth saying right up front that relations have 
attributes, and attributes have types, and the types in question 
can be any types whatsoever (possibly even relation types):   

 
┌────────────────────────────────────────────────────────────────┐ 
│   The question of what data types are supported is orthogonal  │ 
│      to the question of support for the relational model       │ 
└────────────────────────────────────────────────────────────────┘ 
 
Or, more catchily:  "Types are orthogonal to tables" (though I'm 
going to argue later that it would be much better always to talk 
in terms of relations, not tables).   
 
 
6.2 Tuples 
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Suggestion:  Show the following picture of a tuple as an example 
and annotate it dynamically to illustrate the formal terms tuple 
value (tuple for short), component, attribute, attribute name, 
attribute value, attribute type (and attribute type name), degree, 
heading, tuple type (and tuple type name).  Note in particular 
that we define an attribute to consist specifically of an 
attribute-name / type-name pair.  Note further that it will follow 
(when we get to relvars) that, e.g., attributes S# in relvar S and 
S# in relvar SPJ are the same attribute.  This will become 
important when we get to the relational algebra in Chapter 7.   
 

┌──────────┬────┬──────────┬────┬─────┬─────┐                   
│ MAJOR_P# : P# │ MINOR_P# : P# │ QTY : QTY │                   
├──────────┴────┼──────────┴────┼─────┴─────┤                   
│ P2            │ P4            │         7 │                   
└───────────────┴───────────────┴───────────┘                   
 

Note:  Attribute values should really be P#('P2'), P#('P4'), 
QTY(7)──explain.  In a similar vein, we often omit the type names 
when we give informal examples of tuple (and relation) headings.   
 

Don't bother to talk through the precise formal definition of 
"tuple"──just say it's in the book (you can show it, if you like, 
but the point is that, as so often, precise definitions make 
simple concepts look very complicated).   

 
Show a Tutorial D tuple selector invocation, and explain the 

following important properties of tuples:   
 

•   Every tuple contains exactly one value (of the appropriate 
type) for each of its attributes.  Note:  As an aside, you 
might want to point out that null is not a value, so right 
here we have an overwhelming argument against nulls (as 
usually understood).   

 
•  There's no left-to-right ordering to the components.   
 
•   Every subset of a tuple is a tuple, and every subset of a 

heading is a heading──and these remarks are true of the empty 
subset in particular.   

 
Explain the TUPLE type generator.  Probably don't get into the 

point that tuple types have no name apart from the one we already 
know about of the form TUPLE { <attribute commalist> }.   

 
Explain tuple equality very carefully (so much depends on 

it!).  As the book says, all of the following are defined in terms 
of tuple equality:   
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•  Candidate keys (see Chapter 9)  
 
•  Foreign keys (see Chapter 9 again)  
 
•   Essentially all of the operators of the relational algebra 

(see Chapter 7)  
 
•  Functional and other dependencies (see Chapters 11-13)  
 

and more besides.   
 

The "<" and ">" operators do not apply to tuples (explain 
why──fundamentally because tuples are sets).   

 
Mention tuple projection.   
 
Don't discuss tuple types vs. possreps unless someone asks 

about it ... Even then, I'd probably deal with the issue offline.   
 
 

6.3 Relation Types  
 
Suggestion:  Show the following picture of a relation as an 
example and annotate it dynamically to illustrate the formal terms 
relation value (relation for short), attribute, attribute name, 
attribute value, attribute type (and attribute type name), degree, 
cardinality, heading, body, relation type (and relation type 
name).   
 

┌──────────┬────┬──────────┬────┬─────┬─────┐                   
│ MAJOR_P# : P# │ MINOR_P# : P# │ QTY : QTY │                   
├══════════╧════┼══════════╧════┼─────┴─────┤                   
│ P1            │ P2            │         5 │                   
│ P1            │ P3            │         3 │                   
│ P2            │ P3            │         2 │                   
│ P2            │ P4            │         7 │                   
│ P3            │ P5            │         4 │                   
│ P4            │ P6            │         8 │                   
└───────────────┴───────────────┴───────────┘                   
 

Note:  Attribute values should really be P#('P1') etc.  Note that 
the tuple we talked about in the previous section is a tuple in 
(the body of) this relation.   
 

Don't bother to talk through the precise formal definition of 
"relation"──just say it's in the book.   

 
Show a Tutorial D relation selector invocation.  Every subset 

of a heading is a heading (as with tuples); every subset of a body 
is a body.  In both cases, the subset in question might be empty.   
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Explain the RELATION type generator and relation equality.   
 
 

6.4 Relation Values 
 
This section is perhaps the core of this chapter.  State "the four 
properties" of relations:   
 
1. Relations are normalized.   
 
2. Attributes are unordered, left to right.   
 
3. Tuples are unordered, top to bottom.   
 
4. There are no duplicate tuples.   
 

Now justify them:   
 

1.  Regarding normalization:  You should be aware that the 
history here is somewhat confused (in particular, the first 
few editions of this book were confused).  The true state of 
affairs is as follows:   

 
Attribute values are single values, but those values can be 
absolutely anything.   
 
We reject the old notion of "value atomicity," on the grounds 
that it has no absolute meaning──it simply depends on your 
point of view.*  (Draw a parallel with atoms in physics, if 
you like, which are regarded as indivisible for some purposes 
but not for others.)  Thus, all relations are normalized in 
the relational model──even relations that contain other 
relations nested inside themselves.  It's true that relations 
with others nested inside themselves are often 
contraindicated, but that's a separate point (which we'll be 
addressing in Chapter 12).   
 
 

────────── 
 
*  In other words, the concept of "nonatomic values" has never 
been very clearly defined (certainly it's not very precise).  
After all, even a number might be decomposed (e.g., into decimal 
digits, or into integer and fractional parts) in suitable 
circumstances; so is a number atomic?  What about bit and 
character strings, which are obviously decomposable?  What about 
dates and times?  And so on.   
 
────────── 
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You might want to add that one reason relation-valued 

attributes (RVAs) are often──though not 
always──contraindicated is that relations involving RVAs are 
usually asymmetric, leading to complications over query 
formulation (see Section 11.6 for further discussion).  
Another is that the predicate for such a relation is often 
fairly complicated.*  For example, consider the relation of 
Fig. 6.2.  That relation shows among other things that 
supplier S1 supplies the set of parts {P1,P2,P3,P4,P5,P6}.  It 
is thus a "true fact" that supplier S1 supplies the set of 
parts {P1,P2,P3,P4,P5} ... and the set of parts {P1,P2,P3,P4} 
... and the set of parts {P1,P2,P3} ... and many other sets of 
parts as well (actually 60 others).  Doesn't the Closed World 
Assumption thus require the relation to include tuples 
corresponding to these additional "true facts" as well?  Well, 
obviously not ... but why not, exactly?   

 
 

────────── 
 
*  Some might say it's second-order.   
 
────────── 
 
 

Note:  Further discussion of the whole issue of all 
relations being in first normal form (also of relation-valued 
attributes) can be found in an article by myself, "What Does 
First Normal Form Really Mean?" (in two parts), to appear soon 
on the website http://www.dbdebunk.com (probably before the 
book itself is published).  Among other things, this article 
offers some thoughts on the current flurry of interest in the 
so-called "multi-value" (or "multi-value column") systems, 
which you might find you need to be aware of in order to fend 
off certain possible criticisms.   

 
2.  Regarding no attribute ordering:  The book doesn't explicitly 

make this point, but a good pragmatic argument to justify this 
property is that, without it, A JOIN B is different from B 
JOIN A!  Another is that, in SQL, programs that use "SELECT *" 
are fragile (they can break in the face of left-to-right 
column rearrangements in the database──lack of data 
independence!).  Note:  Further discussion of this issue can 
be found in another article by myself, "A Sweet Disorder," 
also due to appear soon on the website www.dbdebunk.com.   

 
3.  Regarding no tuple ordering:  The argument that "n ways to 

represent information means n sets of operators" (and n = 1 is 
sufficient) is a very strong one.  Of course, "no tuple 
ordering" doesn't mean we can't do ORDER BY ... but it does 
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mean the result of ORDER BY isn't a relation (important 
point!).   

 
4. Regarding no duplicate tuples:   
 

■   A strong logical argument here is the one that relies on 
the fact that tuples are supposed to represent true 
propositions.  If I tell you "The sun is shining outside" 
and "The sun is shining outside," then I'm simply telling 
you "The sun is shining outside."  If something is true, 
saying it twice doesn't make it more true!   

 
■   One philosophical argument is:  If things are distinct, 

they must have distinct identities (quote The Principle of 
Identity of Indiscernibles?*); the relational model says 
let's represent those identities in the same way as 
everything else (namely, as attribute values within 
tuples), and then all kinds of good things will happen.   

 
 

────────── 
 
*  If there's no discernible difference between two entities, then 
there aren't two but only one.   
 
────────── 
 
 

■   One technical argument is:  Duplicates inhibit the 
optimizer (because they make expression transformation──aka 
"query rewrite"──harder to do and less widely applicable), 
thereby leading to worse performance among other things.  
We'll elaborate on this argument in Chapter 7.   

 
■   Another (and this one is, specifically, an SQL argument):  

Suppose rows r1 and r2 are duplicates.  If we position a 
cursor on r1 (say) and issue a DELETE via that cursor, 
there's no guarantee──at least according to my reading of 
the standard──that the effect won't be to delete r2 instead 
(!).   

 
 

Relations vs. Tables  
 
The book summarizes some of the main differences between relations 
and tables.  It's worth spending a few minutes on that topic here; 
in fact, all of the points made in this subsection are worth an 
airing in a live class.  Note that (as the book says) the list of 
differences is not exhaustive; others include (a) the fact that 
tables are usually thought of as having at least one column (we'll 
talk about this one in a few minutes); (b) the fact that tables 
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(at least in SQL) are allowed to include nulls (forward reference 
to Chapter 19); and (c) the horrible but widespread perception 
that "relations are flat" (forward reference to Chapter 22).    
 

Note:  The book also makes the point that columns (as opposed 
to attributes) might have duplicate names, or even no names at 
all, and asks the question:  What are the column names in the 
result of the following SQL query?   

 
SELECT S.CITY, S.STATUS * 2, P.CITY  
FROM   S, P ;  
 

Answer:  Column 1 is called CITY; column 2 has no name; column 3 
is called CITY again.  Note for barrack-room lawyers:  Actually, 
the SQL standard does say the implementation is required to assign 
names to otherwise anonymous columns, but those names are 
implementation-dependent (they vary from system to system, 
possibly even from release to release or even more frequently).  
In any case, those names are also invisible (they're not exposed 
to the user).  Besides, this implementation requirement, even if 
you believe in it, still doesn't address the problem of duplicate 
column names.   
 
 
Relation-Valued Attributes  
 
Some of the points made in this subsection are probably best made 
under the earlier discussion of normalization──it probably isn't 
worth making a separate topic out of them in a live class.   
 
 
Relations with No Attributes  
 
A gentle introduction to this concept is DEFINITELY worth 
including as a separate topic.  Strong logical justification:  
TABLE_DEE plays a role in the relational algebra analogous to that 
played by zero in ordinary arithmetic.  Don't get into details──I 
think the point's intuitively clear.  Can you imagine an 
arithmetic without zero?  Of course not.*  Well ... just as you 
can't imagine an arithmetic without zero, so you shouldn't be able 
to imagine a relational algebra without TABLE_DEE.   
 
 
────────── 
 
*  Of course, we did have an arithmetic without zero for many 
centuries (think of the ancient Romans), but it didn't work very 
well.  In fact, the invention (or discovery) of the concept of 
zero is arguably one of the great intellectual achievements of the 
human race.   
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────────── 
 
 
Operators on Relations  
 
Definitely discuss relation comparisons (including "=" in 
particular, though it was mentioned previously in Section 6.3).  
Relation comparisons are another (important!) topic typically 
omitted in other database texts.  Note that the availability of 
relational comparisons makes the "complicated" operator DIVIDEBY 
logically unnecessary (forward pointer to Chapter 7).  Mention the 
IS_EMPTY shorthand (it is shorthand; to be specific, IS_EMPTY(r) 
is shorthand for r{} = TABLE_DUM).   
 

Relational comparisons aren't relational operators, since they 
return a truth value, not a relation.   

 
Explain "t ε r" and TUPLE FROM r (also not relational 

operators).  Don't bother with type inference (here or anywhere 
else in this chapter).   

 
You've probably already discussed ORDER BY──but if not, then 

certainly discuss it here.   
 
 

6.5 Relation Variables 
 
Remind students what a relvar is (relations vs. relvars is an 
important special case of values vs. variables in general).  We 
distinguish base relvars vs. views ("real vs. virtual relvars" in 
The Third Manifesto).  Here we're primarily concerned with base 
relvars, but anything we say about "relvars" without that "base" 
qualifier is true of relvars in general, not just base ones.  
Remind students that base relvars are not necessarily physically 
stored!  To be more specific, the degree of variation allowed 
between base and stored relvars should be at least as great as 
that allowed between views and base relvars (see Chapter 10); the 
only logical requirement is that it must be possible to obtain the 
base relvars somehow from those that are physically stored (and 
then the derived ones can be obtained too).  Possible forward 
pointer to Appendix A?   
 

Explain base relvar definition syntax (and cover default 
values briefly).  The terms heading, body, attribute, tuple, 
degree, etc., are all interpreted in the obvious way to apply to 
relvars as well as relations.  Candidate keys and foreign keys 
will be discussed in detail in Chapter 9.  Note:  Prior to Chapter 
9, the book assumes for simplicity that each base relvar has 
exactly one candidate key, called the primary key.  In Chapter 9, 
we're going to argue that the historical emphasis on primary keys 
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has always been a little bit off base, but don't get into that 
discussion here.   

 
Relvars have predicates (also discussed in Chapter 9).   
 
Explain relational assignment (including a reminder re 

multiple assignment) and INSERT, DELETE, and UPDATE shorthands 
(including Tutorial D expansions).  Further points to emphasize:   

 
•  Remind students re the use of WITH.   
 
•  Relational assignment, and hence INSERT, UPDATE, and DELETE, 

are all set-level operations.  These operations sometimes 
can't be simulated by a sequence of tuple-level operations (in 
fact, there are no tuple-level operations in the relational 
model──one of several reasons why SQL's cursor operations are 
a bad idea, incidentally).   

 
•   Of course, sets sometimes have cardinality one, but updating 

a set containing just one tuple isn't always possible 
(assuming the system supports integrity constraints 
properly──but most don't).  See Chapter 9 for further 
discussion.   

 
•   Expressions such as (e.g.) "updating a tuple" are really 

rather sloppy (though convenient); tuples, like relations, are 
values and can't be updated, by definition (quite apart from 
the fact that we should really be talking about the set that 
contains the tuple in question anyway, instead of about the 
tuple itself).   

 
 
Relvars and Their Interpretation 
 
Although not new, this stuff is important and bears repeating.  
Explain intended interpretation and the Closed World Assumption.  
Forward reference to Chapter 9.   
 
 
6.6 SQL Facilities 
 
SQL supports rows, not tuples (remind students of [some of] the 
differences).  Briefly explain columns, fields, row value 
constructors, row type constructors, row assignment, row 
comparisons.  Note:  As a practical matter, nobody──no SQL vendor, 
that is──supports rows (apart from rows within tables) at the time 
of writing.   
 

SQL supports tables, not relations (remind students of [some 
of] the differences, or at least of the fact that they are 
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different).  Explain table value constructors.  SQL does not 
support (a) "table type constructors," (b) table assignment, or 
(c) table comparisons.  (It does support IS_EMPTY, more or less, 
via NOT EXISTS.)  Explain the IN operator and "row subqueries" 
(this term isn't used in the book, but it means a table expression 
enclosed in parentheses that is required to evaluate to a table 
containing just one row ... note the coercion involved here!).  
SQL doesn't properly distinguish between table values and table 
variables.   

 
Discuss CREATE TABLE* (classic version──we'll get to "typed 

tables" in a little while).  No table-valued columns.  Mention 
DROP and ALTER TABLE if you like.   

 
 

────────── 
 
*  Note that "TABLE" in this context means a base table 
specifically: a prime indicator of SQL's lack of understanding of 
relational concepts right there!   
 
────────── 
 
 

The SQL INSERT, UPDATE, and DELETE operations were covered in 
Chapter 4.  SELECT will be covered in more detail in Chapter 8.   

 
There's more to say regarding CREATE TABLE.  Recall structured 

types from Chapter 5.  In that chapter we implied that such types 
were scalar──though the availability of SQL's "observer and 
mutator methods" mean they aren't really scalar, because those 
methods "break encapsulation" for those structured types (in fact, 
structured types are more like tuple types in some ways).  
And──following on from this observation──such types can be used as 
the basis for creating base tables:  The attributes of the 
structured type become columns of the base table.  (Actually the 
base table has one extra column too, which we'll get to in a 
moment.)  Here's the example from the book:   

 
CREATE TYPE POINT AS ( X FLOAT, Y FLOAT ) NOT FINAL  

REF IS SYSTEM GENERATED ;  
 

CREATE TABLE POINTS OF POINT   
( REF IS POINT# SYSTEM GENERATED ... ) ; 
 

Follow the explanation as given in the book but no further (more 
details will come at more appropriate points later).  What's this 
stuff all about?  Well, it has to do primarily with the idea of 
incorporating some kind of "object functionality" into SQL; that's 
why we defer detailed discussion for now (we need to talk about 
"objects" in some detail first).  But there's nothing in the 
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standard to say that the features in question can be used only in 
connection with that object functionality, which is why we at 
least mention them here.  We'll ignore them from this point on, 
however, until much later (Chapter 26).   
 
 
References and Bibliography 
 
Reference [6.1] (either version) is strongly recommended and 
should be distributed to students if at all possible.  By 
contrast, reference [6.2] is mentioned in the book only because it 
would be inappropriate not to!  Students should be warned that few 
authorities agree with all──or even very many──of the positions 
articulated in reference [6.2].  See references [6.7] and [6.8] 
for some specific criticisms.   
 
 
Answers to Exercises 
 
6.1 Fundamentally, cardinality is a concept that applies to sets:  
The cardinality of a set is the number of elements it contains.  
However, the concept is extended to other kinds of "collections" 
also; thus, we speak of the cardinality of a bag, the cardinality 
of a list, and so on.  In particular, the cardinality of a 
relation is the number of tuples in the body of that relation, and 
the cardinality of a relvar is the cardinality of the relation 
that happens to be the current value of that relvar.  Sometimes 
the term is even applied to an attribute of some relation, in 
which case it means the cardinality of either (a) the bag or (b) 
the set of values (with duplicates eliminated) appearing in that 
attribute in that relation.  Note:  Since interpretation (a) is 
guaranteed to give a result identical to the cardinality of the 
containing relation, interpretation (b) is probably more 
common──but watch out for the possibility of confusion in this 
regard (especially since, to repeat, cardinality is fundamentally 
a concept that applies to sets rather than bags).   
 
6.2 See Sections 6.2 and 6.3.   
 
6.3 Note first that two x's are equal if and only if they are the 
same x, and this observation is valid regardless of whether the 
x's are tuples, or tuple types, or relations, or relation types 
(or anything else).*  For tuples, see Section 6.2, subsection 
"Operators on Tuples."  For tuple types, see Section 6.2, 
subsection "The TUPLE Type Generator."  For relations, see Section 
6.4, subsection "Operators on Relations."  For relation types, see 
Section 6.3, subsection "The RELATION Type Generator."   
 
 
────────── 
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*  We refer here to what might be called genuine equality, not the 
rather strange kind of equality supported by SQL.   
 
────────── 
 
 
6.4 Predicates:   
 
•  S:  Supplier S# is under contract, is named SNAME, has status 

STATUS, and is located in city CITY.   
 
•   P:  Part P# is of interest,* is named PNAME, has color COLOR 

and weight WEIGHT, and is stored in a warehouse in city CITY.   
 
•   J:  Project J# is under way, is named JNAME, and is located 

in city CITY.   
 
•   SPJ:  Supplier S# supplies part P# to project J# in quantity 

QTY.   
 
 
────────── 
 
*  For some unspecified reason!   
 
────────── 
 
 
Tutorial D definitions:   
 

VAR S BASE RELATION  
{ S#      S#,  
SNAME   NAME,  
STATUS  INTEGER,  
CITY    CHAR }  

PRIMARY KEY { S# } ;  
 

VAR P BASE RELATION  
{ P#      P#,  

PNAME   NAME,  
COLOR   COLOR,  
WEIGHT  WEIGHT,  
CITY    CHAR }  

PRIMARY KEY { P# } ;  
 

VAR J BASE RELATION  
{ J#      J#,  

JNAME   NAME,  
CITY    CHAR }  
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PRIMARY KEY { J# } ;  
 

VAR SPJ BASE RELATION  
{ S#      S#,  
P#      P#,  
J#      J#,  
QTY     QTY }  

PRIMARY KEY { S#, P#, J# }  
FOREIGN KEY { S# } REFERENCES S 
FOREIGN KEY { P# } REFERENCES P   
FOREIGN KEY { J# } REFERENCES J ; 
 

6.5 TUPLE { S# S# ('S1'), SNAME NAME ('Smith'),  
STATUS 20, CITY 'London' }  
 

TUPLE { P# P# ('P1'), PNAME NAME ('Nut'), COLOR COLOR ('Red'),  
WEIGHT WEIGHT (12.0), CITY 'London' } 
 

TUPLE { J# J# ('J1'), JNAME NAME ('Sorter'), CITY 'Paris' } 
 
TUPLE { S# S# ('S1'), P# P# ('P1'), J# J# ('J1'),  

QTY QTY (200) } 
 

Of course, no significance attaches to the order in which the 
arguments appear in any given tuple selector invocation.   
 
6.6 VAR SPJV TUPLE { S# S#, P# P#, J# J#, QTY QTY } ; 
 
6.7 They're all relation selector invocations, and they denote, 
respectively, (a) an empty relation of the same type as relvar 
SPJ; (b) a relation of the same type as relvar SPJ containing just 
one tuple (with S# S1, P# P1, J# J1, and QTY 200); (c) a nullary 
relation containing just one tuple, or in other words TABLE_DEE; 
(d) same as (c); (e) TABLE_DUM.   
 
6.8 The term has lost much of its original meaning.  Originally it 
meant a relation in which every attribute value is 
"atomic"──implying that a relation in which some attribute value 
isn't "atomic" isn't in first normal form.  However, we now 
believe that the term "atomic" has no absolute meaning (in 
particular, we do not equate it with scalar), and we therefore 
reject the "atomicity requirement."  As far as the relational 
model is concerned, therefore, all relations are in first normal 
form.   
 
6.9 See Section 6.3, subsection "Relations vs. Tables."   
 
6.10 Here are some possibilities:   
 

┌────┬──────────────┐    ┌────┬────┬─────┐  
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a. │ S# │ PQ           │    │ S# │ P# │ QTY │     
├════┼──────────────┤    ├════┼════┼─────┤     
│    │ ┌────┬─────┐ │    │ S1 │ P1 │ 300 │     
│ S1 │ │ P# │ QTY │ │    │ S1 │ P2 │ 200 │     
│    │ ├════┼─────┤ │    └────┴────┴─────┘     
│    │ │ P1 │ 300 │ │        
│    │ │ P2 │ 200 │ │        
│    │ └────┴─────┘ │        
└────┴──────────────┘        
 
Note, however, that a relation like the one on the left can 
represent a supplier who supplies no parts, while a relation 
like the one on the right can't.   
 
┌────┬────────┬────────┐     ┌────┬────┬────┐  

b. │ A  │ B_REL  │ C_REL  │     │ A  │ B  │ C  │  
├════┼────────┼────────┤     ├════┼════┼════┤  
│    │ ┌────┐ │ ┌────┐ │     │ a1 │ b1 │ c1 │  
│ a1 │ │ B  │ │ │ C  │ │     │ a1 │ b1 │ c2 │  
│    │ ├════┤ │ ├════┤ │     │ a1 │ b2 │ c1 │  
│    │ │ b1 │ │ │ c1 │ │     │ a1 │ b2 │ c2 │  
│    │ │ b2 │ │ │ c2 │ │     │ a2 │ b1 │ c1 │  
│    │ └────┘ │ └────┘ │     │ a2 │ b1 │ c3 │  
│    │ ┌────┐ │ ┌────┐ │     │ a2 │ b1 │ c4 │  
│ a2 │ │ B  │ │ │ C  │ │     └────┴────┴────┘  
│    │ ├════┤ │ ├════┤ │  
│    │ │ b1 │ │ │ c1 │ │  
│    │ └────┘ │ │ c3 │ │  
│    │        │ │ c4 │ │  
│    │        │ └────┘ │  
└────┴────────┴────────┘  
 
A more concrete example resembling this second pair of 
relations will be discussed in Chapter 13.   
 

6.11 P{} = TABLE_DUM.  Explanation:  The left comparand here is 
the projection of P on no attributes at all.  That projection will 
yield TABLE_DEE if P currently contains at least one tuple, 
TABLE_DUM otherwise.   
 
6.12 See Section 6.4, subsections "Operators on Relations."   
 
6.13 If tuple t satisfies the predicate for relvar R but doesn't 
currently appear in R, then the proposition represented by t is 
assumed to be currently false.  See Chapter 9 for further 
explanation of the term "the predicate for relvar R."   
 
6.14 We might agree that a tuple does resemble a record 
(occurrence, not type) and an attribute a field (type, not 
occurrence).  These correspondences are only approximate, however.  
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A relvar shouldn't be regarded as "just a file," but rather as a 
disciplined file.  The discipline in question is one that results 
in a considerable simplification in the structure of the data as 
seen by the user, and hence in a corresponding simplification in 
the operators needed to deal with that data, and indeed in the 
user interface in general.   
 
6.15  
 
a. INSERT SPJ RELATION { TUPLE { S# S#('S1'), P# P#('P1'),  

J# J#('J2'), QTY QTY(500) } } ; 
 

b. INSERT S RELATION { TUPLE { S# S#('S10'), SNAME NAME('Smith'),  
CITY 'New York' } } ;  
 

The status for the new supplier will be set to the applicable 
default value, if there is one; otherwise (i.e., if STATUS has 
"defaults not allowed"), the INSERT will fail.  Note that this 
error (if it is an error) can be caught at compile time.   
 

c. DELETE P WHERE COLOR = COLOR('Blue') ; 
 
d. DELETE J WHERE IS_EMPTY ( ( ( J JOIN SPJ ) RENAME J# AS X )  

WHERE X = J# ) ;  
 

This solution relies on the RENAME operator, to be discussed 
in Chapter 7.   
 

e. UPDATE P WHERE COLOR = COLOR('Red')  
{ COLOR := COLOR('Orange') } ;  
 

f. UPDATE SPJ WHERE S# = S#('S1') { S# := S#('S9') } , 
UPDATE S   WHERE S# = S#('S1') { S# := S#('S9') } ;  
 
Note the need to use multiple assignment here (if we used two 
separate UPDATE statements, a foreign key integrity violation 
would occur).   
 

6.16 In principle, the answer is yes, it might be possible to 
update the catalog by means of regular INSERT, DELETE, and UPDATE 
operations.  However, allowing such operations would potentially 
be very dangerous, because it would be all too easy to destroy 
(inadvertently or otherwise) catalog information that the system 
needs in order to be able to function correctly.  Suppose, for 
example, that the DELETE operation  
 

DELETE RELVAR WHERE RVNAME = NAME ('SP') ; 
 

(where RELVAR is the catalog relvar that describes the relvars in 
the database and RVNAME is the attribute in RELVAR that contains 
relvar names) were allowed on the suppliers-and-parts catalog.  
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Its effect would be to remove the tuple describing relvar SP from 
the RELVAR relvar.  As far as the system is concerned, relvar SP 
would now no longer exist──i.e., the system would no longer have 
any knowledge of that relvar.  Thus, all subsequent attempts to 
access that relvar would fail.   
 

In most real products, therefore, INSERT, DELETE, and UPDATE 
operations on the catalog either (a) aren't permitted at all (the 
usual case) or (b) are permitted only to very highly authorized 
users (perhaps only to the DBA); instead, catalog updates are 
performed by means of data definition statements.  For example, 
defining relvar SP causes (a) an entry to be made for SP in the 
RELVAR relvar and (b) a set of three entries, one for each of the 
three attributes of SP, to be made in the ATTRIBUTE relvar (say).*  
Thus, defining a new object──e.g., a new type, a new operator, or 
a new base relvar──is in some ways the analog of INSERT for the 
catalog.  Likewise, DROP is the analog of DELETE; and in SQL, 
which provides a variety of ALTER statements──e.g., ALTER (base) 
TABLE──for changing catalog entries in various ways, ALTER is the 
analog of UPDATE.   

 
 

────────── 
 
*  It also causes a number of other things to happen that are of 
no concern to us here.   
 
────────── 
 
 

Note:  The catalog also includes entries for the catalog 
relvars themselves, as we've seen.  However, those entries aren't 
created by explicit data definition operations.  Instead, they're 
created automatically by the system itself as part of the system 
installation process; in effect, they're "hardwired" into the 
system.   

 
6.17 There are at least two exceptions.  First, relations in the 
database can't have an attribute of type pointer.  Second, a 
relation of type RT can't have an attribute of type RT.  Note:  
The second exception generalizes in an obvious way; for example, a 
relation of type RT can't have an attribute of some relation type 
RT' that in turn has an attribute of type RT (and so on).   
 
6.18 A column is a component of a table.  (Also, SQL often speaks 
of columns of a row, when the row in question is one that's 
directly contained in a table.)  A field is a component of a row 
that isn't (the row, that is) directly contained in a table.  An 
attribute is a component of a structured type, or a component of a 
value or variable of some structured type (however, if a table is 
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defined to be "of" some structured type, then those components are 
called columns, not attributes).  Hmmm ...  
 
6.19 The change causes table POINTS, and (typically) applications 
that use that table, to "break."  Lack of data independence!   
 
 
 
 
          *** End of Chapter 6 *** 
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Chapter 7  
 
 

          R e l a t i o n a l   A l g e b r a 
 
 
Principal Sections 
 
•  Closure revisited 
•  Syntax  
•  Semantics  
•  Examples 
•  What's the algebra for? 
•  Further points  
•  Additional operators 
•  Grouping and ungrouping 
 
 

General Remarks 
 
No "SQL Facilities" section in this chapter──it's deferred to 
Chapter 8, for reasons to be explained in that chapter.  There 
are, however, many references to SQL in this chapter in passing.   
 

Begin with a quick overview of "the original eight operators" 
(Fig. 7.1, repeated for convenience on the left endpaper at the 
back of the book).  A small point:  What I'm calling the 
"original" algebra is not quite the same as the set of operators 
defined in Codd's original relational model paper [6.1].  See 
Chapter 2 of reference [6.9] for a detailed discussion of the 
operators from reference [6.1].   

 
Stress the point that the relational algebra──or, 

equivalently, the relational calculus──is part of the relational 
model.  Some writers seem not to understand this point!  For 
example, one textbook has a chapter entitled "The Relational Data 
Model and Relational Algebra," and another has separate chapters 
entitled "The Relational Model" and "Relational Algebra and 
Calculus."  Perhaps the confusion arises because of the secondary 
meaning of the term data model as a model of the persistent data 
of some particular enterprise, where the manipulative aspects are 
very much downplayed, or even ignored altogether.   

 
Note:  According to Chambers Twentieth Century Dictionary, an 

algebra is "[a system] using symbols and involving reasoning about 
relationships and operations."  (Math texts offer much more 
precise definitions, of course, but this one is good enough for 
our purposes.)  More specifically, an algebra consists of a set of 
objects and a set of operators that together satisfy certain 
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axioms or laws, such as the laws of closure, commutativity, 
associativity, and so on (closure is particularly important, of 
course).  The word "algebra" itself ultimately derives from Arabic 
al-jebr, meaning a resetting (of something broken) or a 
combination.   

 
The operators are (a) generic, (b) read-only.   
 
Finally, please note the following remarks from near the end 

of Section 7.1 (slightly reworded here):   
 

(Begin quote) 
 
We often talk about, e.g., "the projection over attribute A of 
relvar R," meaning the relation that results from taking the 
projection over that attribute A of the current value of that 
relvar R.  Occasionally, however, it's convenient to use 
expressions like "the projection over attribute A of relvar R" in 
a slightly different sense.  For example, suppose we define a view 
SC of the suppliers relvar S that consists of just the S# and CITY 
attributes of that relvar.  Then we might say, loosely but very 
conveniently, that relvar SC is "the projection over S# and CITY 
of relvar S"──meaning, more precisely, that the value of SC at any 
given time is the projection over S# and CITY of the value of 
relvar S at that time.  In a sense, therefore, we can talk in 
terms of projections of relvars per se, rather than just in terms 
of projections of current values of relvars.  We hope this kind of 
dual usage of the terminology on our part does not cause any 
confusion.   
 
(End quote) 
 

The foregoing remarks are particularly pertinent to 
discussions of views (Chapter 10) and dependencies and further 
normalization (Chapters 11-13).   

 
 

7.2 Closure Revisited 
 
The emphasis in this section on relation type inference rules, and 
the consequent need for a (column) RENAME operator, are further 
features that distinguish this book from its competitors.  (The 
need for such rules was first noted at least as far back as 1975 
[7.10], but they still get little play in the literature.)  Note 
too the concomitant requirement that (where applicable) operators 
be defined in terms of matching attributes; e.g., JOIN requires 
the joining attributes to have the same name──as well as the same 
type, of course.*  SQL doesn't work this way, and nor does the 
relational algebra as described in most of the literature; after 
much investigation into (and experimentation with) other 
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approaches, however, I believe strongly that this scheme is the 
best basis on which to build and move forward.   
 
 
────────── 
 
*  In other words, each joining attribute is the same attribute in 
the two relations (see the remarks on this topic in the previous 
chapter of this manual).   
 
────────── 
 
 

Stress the points that (a) RENAME is not like SQL's ALTER 
TABLE, (b) a RENAME invocation is an expression, not a command or 
statement (so it can be nested inside other expressions).   

 
By the way, it's worth noting that, in a sense, the relational 

algebra is "more closed" than ordinary arithmetic, inasmuch as it 
includes nothing analogous to the "divide by zero" problem in 
arithmetic (TABLE_DUM and TABLE_DEE are relevant here!).  See 
Exercise 7.9.   

 
 

7.3 Syntax / 7.4 Semantics / 7.5 Examples 
 
These sections should be mostly self-explanatory.  Just a few 
points:   
 
•   Codd had a very specific purpose in mind, which we'll examine 

in the next chapter, for defining just the eight operators he 
did.  But any number of operators can be defined that satisfy 
the simple requirement of "relations in, relations out," and 
many additional operators have indeed been defined, by many 
different writers.  We'll discuss the original eight 
first──not exactly as they were originally defined but as 
they've since become──and use them as the basis for discussing 
a variety of algebraic ideas; then we'll go on to consider 
some of the many useful operators that have subsequently been 
added to the original set.   

 
•   Remind students that most of these operators rely on tuple 

equality for their definition (give one or two examples).   
 
•   Regarding union, intersection, and difference, you might be 

interested to note that an extensive discussion of the 
troubles that plague SQL in connection with these operators 
can be found in the article "A Sweet Disorder," already 
mentioned in Chapters 4 and 6 of this manual.   
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•  Note the generalization of the restrict operator.   
 
•   Stress the fact that joins are not always between a foreign 

key and a matching primary (or candidate) key.  Note:  
Candidate keys were first briefly mentioned in Chapter 6 but 
won't be fully explained until Chapter 9.   

 
•   Note that the book correctly defines TIMES as a degenerate 

case of JOIN.  By contrast, other presentations of the algebra 
usually──also correctly, but less desirably──define JOIN in 
terms of TIMES (i.e., as a projection of a restriction of a 
product).  See Exercise 7.5.   

 
•   You might want to skip divide, since relational comparisons 

do the job better (it might be sufficient just to mention that 
very point).  If you do cover it, however, note that Codd's 
original divide [7.1] was a dyadic operator; the "Small 
Divide," by contrast, is a triadic one.  Consider the query 
"Get supplier numbers for suppliers who supply all purple 
parts."  A putative formulation of this query, using Codd's 
divide (see the annotation to reference [7.4]), might look 
like this:   

 
SP { S#, P# } DIVIDEBY  

( P WHERE COLOR = COLOR ('Purple') ) { P# }  
 

This formulation is incorrect, however.  Suppose there are 
no purple parts.  Then every supplier supplies all of 
them!──even suppliers like supplier S5 who supply no parts at 
all (given our usual sample data values).  Yet the formulation 
shown can't possibly return suppliers who supply no parts at 
all, because such suppliers aren't represented in SP in the 
first place.   

 
Note:  If you're having difficulty with the idea that 

supplier S5 supplies all purple parts, consider the statement:  
"For all purple parts p, supplier S5 supplies part p."  This 
statement in turn is logically equivalent to:  "There does not 
exist a purple part p such that supplier S5 does not supply 
p."  And this latter statement undeniably evaluates to TRUE, 
because the opening quantified expression "There does not 
exist a purple part p" certainly evaluates to TRUE.  (More 
generally, the expression NOT EXISTS x (...) certainly 
evaluates to TRUE──regardless of what the "..." stands for──if 
there aren't any x's.)   

 
A correct formulation of the query, using the Small Divide, 

looks like this:   
 

S { S# } DIVIDEBY  
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( P WHERE COLOR = COLOR ('Purple') ) { P# }  
PER SP { S#, P# } 
 

•   Again stress the usefulness of WITH in breaking complex 
expressions down into "step-at-a-time" ones.  Also stress the 
fact that using WITH does not sacrifice nonprocedurality.   

 
Note:  The discussion of projection in Section 7.4 includes 

the following question:  Why can't any attribute be mentioned more 
than once in the attribute name commalist?  The answer, of course, 
is that the commalist is supposed to denote a set of attributes, 
and attribute names in the result must therefore be unique.   

 
The discussion under Example 7.5.5 includes the following 

text:   
 

(Begin quote) 
 
The purpose of the condition SA < SB is twofold:   
 
•  It eliminates pairs of supplier numbers of the form (x,x).   
 
•   It guarantees that the pairs (x,y) and (y,x) won't both 

appear.   
 

(End quote) 
 
The example might thus be used, if desired, to introduce the 
concepts of:   
 
•   Reflexivity:  A binary relation R{A,B} is reflexive if and 

only if A and B are of the same type and the tuple {A:x,B:x} 
appears in R for all applicable values x of that common type.   

 
•   Symmetry:  A binary relation R{A,B} is reflexive if and only 

if A and B are of the same type and whenever the tuple 
{A:x,B:y} appears in R, then the tuple {A:y,B:x} also appears 
in R).   

 
See, e.g., reference [24.1] for further discussion.   
 
 
7.6 What's the Algebra for? 
 
Dispel the popular misconception that the algebra (or the 
calculus) is just for queries.  Note in particular that the 
algebra or calculus is fundamentally required in order to be able 
to express integrity constraints, which is why Chapters 7 and 8 
precede Chapter 9.   
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Regarding relational completeness:  The point is worth making 
that, once Codd had defined this notion of linguistic power, it 
really became incumbent on the designer of any database language 
either to ensure that the language in question was at least that 
powerful or to have a really good justification for not doing so.  
And there really isn't any good justification ... This fact is a 
cogent criticism of several nonrelational database languages, 
including object ones in particular and, I strongly suspect, XML 
query languages (see Chapter 27).   

 
Regarding primitive operators:  The "RISC algebra" A is worth 

a mention.   
 
The section includes the following inline exercise:  The 

expression  
 
( ( SP JOIN S ) WHERE P# = P# ( 'P2' ) ) { SNAME } 
 

can be transformed into the logically equivalent, but probably 
more efficient, expression  
 

( ( SP WHERE P# = P# ( 'P2' ) ) JOIN S ) { SNAME } 
 

In what sense is the second expression probably more efficient?  
Why only "probably"?   
 

Answer:  The second expression performs the restriction before 
the join.  Loosely speaking, therefore, it reduces the size of the 
input to the join, meaning there's less data to be scanned to do 
the join, and the result of the join is smaller as well.  In fact, 
the second expression might allow the result of the join to be 
kept in main memory, while the first might not; thus, there could 
be orders of magnitude difference in performance between the two 
expressions.   

 
On the other hand, recall that the relational model has 

nothing to say regarding physical storage.  Thus, for example, the 
join of SP and S might be physically stored as a single file, in 
which case the first expression might perform better.  Also, there 
will be little performance difference between the two expressions 
anyway if the relations are small (as an extreme case, consider 
what happens if they're both empty).   

 
This might be a good place to digress for a couple of minutes 

to explain why duplicate tuples inhibit optimization!  A detailed 
example and discussion can be found in reference [6.6].  That same 
paper also refutes the claim that a "tuple-bag algebra" is "just 
as respectable" (and in particular just as optimizable) as the 
relational algebra.   
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7.7 Further Points  
 
Explain associativity and commutativity briefly and show which 
operators are associative and which commutative.  Discuss some of 
the implications.  Note:  One such implication, not explicitly 
mentioned in the book, is that we can legitimately talk about 
(e.g.) the join of any number of relations (i.e., such an 
expression does have a well-defined unique meaning).   
 

Also explain the specified equivalences──especially the ones 
involving TABLE_DEE.  Introduce the terms "identity restriction," 
etc.   

 
Define "joins" (etc.) of one relation and of no relations at 

all.  I wouldn't bother to get into the specifics of why the join 
of no relations and the intersection of no relations aren't the 
same!  But if you're interested, an explanation can be found in 
Chapter 1 of reference [23.4].  See also Exercise 7.10.   

 
 

7.8 Additional Operators 
 
Regarding semijoin:  It's worth noting that semijoin is often more 
directly useful in practice than join is!  A typical query is "Get 
suppliers who supply part P2."  Using SEMIJOIN:   
 

S SEMIJOIN ( SP WHERE P# = P# ( 'P2' ) ) 
 

Without SEMIJOIN:   
 

( S JOIN ( SP WHERE P# = P# ( 'P2' ) ) )  
{ S#, SNAME, STATUS, CITY } 
 

It might be helpful to point out that the SQL analog refers to 
table S (only) in the SELECT and FROM clauses and mentions table 
SP only in the WHERE clause:   
 

SELECT * 
FROM   S 
WHERE  S# IN 

( SELECT S# 
FROM   SP 
WHERE  P# = 'P2' ) ; 
 

In a sense, this SQL expression corresponds more directly to the 
semijoin formulation than to the join one.   
 

Analogous remarks apply to semidifference.   
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Regarding extend:  EXTEND is one of the most useful operators 
of all.  Consider the query "Get parts and their weight in grams 
for parts whose gram weight exceeds 10000" (recall that part 
weights are given in pounds).  Relational algebra formulation:*   

 
( EXTEND P ADD ( WEIGHT * 454 ) AS GMWT )  

WHERE GMWT > WEIGHT ( 10000.0 )  
 

Conventional SQL analog (note the repeated subexpression):   
 

SELECT P.*, ( WEIGHT * 454 ) AS GMWT 
FROM   P 
WHERE  ( WEIGHT * 454 ) > 10000.0 ; 

 
The name GMWT cannot be used in the WHERE clause because it's the 
name of a column of the result table.   
 
 
────────── 
 
*  The discussion of EXTEND in the book asks what the type of the 
result of the expression WEIGHT * 454 is.  As this formulation 
suggests, the answer is, obviously enough, WEIGHT once again.  
However, if we assume (as we're supposed to) that WEIGHT values 
are given in pounds, then the result of WEIGHT * 454 presumably 
has to be interpreted as a weight in pounds, too!──not as a weight 
in grams.  Clearly something strange is going on here ... See the 
discussion of units of measure in Chapter 5, Section 5.4.   
 
────────── 
 
 

As this example suggests, the SQL idea that all queries must 
be expressed as a projection (SELECT) of a restriction (WHERE) of 
a product (FROM) is really much too rigid, and of course there's 
no such limitation in the relational algebra──operations can be 
combined in arbitrary ways and executed in arbitrary sequences.   

 
    Note:  It's true that the SQL standard would now allow the 
repetition of the subexpression to be avoided as follows:   
 

SELECT P#, PNAME, COLOR, WEIGHT, CITY, GMWT 
FROM ( SELECT P.*, ( WEIGHT * 454 ) AS GMWT 

FROM   P ) AS POINTLESS 
WHERE  GMWT > 10000.0 ; 

 
(The specification AS POINTLESS is pointless but is required by 
SQL's syntax rules──see reference [4.20].)  However, not all SQL 
products permit subqueries in the FROM clause at the time of 
writing.  Note too that a select-item of the form "P.*" in the 
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outer SELECT clause would be illegal in this formulation!  See 
reference [4.20] for further discussion of this point also.   
 

Note:  The subsection on EXTEND is also the place where the 
aggregate operators COUNT, SUM, etc., are first mentioned.  
Observe the important differences (both syntactic and semantic) in 
the treatment of such operators between Tutorial D and SQL.  Note 
too the aggregate operators ALL and ANY, both of which operate on 
arguments consisting of boolean values; ALL returns TRUE if and 
only if all arguments evaluate to TRUE, ANY returns TRUE if and 
only if any argument does.   

 
Regarding summarize:  As the book says, please note that a 

<summarize add> is not the same thing as an <aggregate operator 
invocation>.  An <aggregate operator invocation> is a scalar 
expression and can appear wherever a scalar selector 
invocation──in particular, a scalar literal──can appear.  A 
<summarize add>, by contrast, is merely a SUMMARIZE operand; it's 
not a scalar expression, it has no meaning outside the context of 
SUMMARIZE, and in fact it can't appear outside that context.   

 
Note the two forms of SUMMARIZE (PER and BY).   
 
Regarding tclose:  Don't go into much detail.  The operator is 

mentioned here mainly for completeness.  Do note, though, that it 
really is a new primitive──it can't be defined in terms of 
operators we've already discussed.  (Explain why?  See the answer 
to Exercise 8.7 in the next chapter.)   

 
 

7.8 Grouping and Ungrouping 
 
This section could either be deferred or assigned as background 
reading.*  Certainly the remarks on reversibility shouldn't be 
gone into too closely on a first pass.  Perhaps just say that 
since we allow relation-valued attributes, we need a way of 
mapping between relations with such attributes and relations 
without them, and that's what GROUP and UNGROUP are for.  Show an 
ungrouped relation and its grouped counterpart; that's probably 
sufficient.   
 
 
────────── 
 
*  The article "What Does First Normal Form Really Mean?" (already 
mentioned in Chapter 6 of this manual) is relevant.   
 
────────── 
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Note clearly that "grouping" as described here is not the same 
thing as the GROUP BY operation in SQL──it returns a relation 
(with a relation-valued attribute), not an SQL-style "grouped 
table."  In fact, SQL's GROUP BY violates the relational closure 
property.   

 
Relations with relation-valued attributes are not "NF² 

relations"!  In fact, it's hard to say exactly what "NF² 
relations" are──the concept doesn't seem too coherent when you 
really poke into it.  (Certainly we don't need all of the 
additional operators──and additional complexity──that "NF² 
relations" seem to involve.)   

 
 

Answers to Exercises 
 
7.1 The only operators whose definitions don't rely on tuple 
equality are restrict, Cartesian product, extend, and ungroup.  
(Even these cases are debatable, as a matter of fact.)   
 
7.2 The trap is that the join involves the CITY attributes as well 
as the S# and P# attributes.  The result looks like this:   
 
┌────┬───────┬────────┬────────┬────┬─────┬───────┬───────┬───────
─┐ 
│ S# │ SNAME │ STATUS │ CITY   │ P# │ QTY │ PNAME │ COLOR │ WEIGHT │ 
├════┼───────┼────────┼────────┼════┼─────┼───────┼───────┼────────┤ 
│ S1 │ Smith │     20 │ London │ P1 │ 300 │ Nut   │ Red   │   12.0 │ 
│ S1 │ Smith │     20 │ London │ P4 │ 200 │ Screw │ Red   │   14.0 │ 
│ S1 │ Smith │     20 │ London │ P6 │ 100 │ Cog   │ Red   │   19.0 │ 
│ S2 │ Jones │     10 │ Paris  │ P2 │ 400 │ Bolt  │ Green │   17.0 │ 
│ S3 │ Blake │     30 │ Paris  │ P2 │ 200 │ Bolt  │ Green │   17.0 │ 
│ S4 │ Clark │     20 │ London │ P4 │ 200 │ Screw │ Red   │   14.0 │ 
└────┴───────┴────────┴────────┴────┴─────┴───────┴───────┴────────┘ 
 
7.3 2n.  This count includes the identity projection (i.e., the 
projection over all n attributes), which yields a result identical 
to the original relation r, and the nullary projection (i.e., the 
projection over no attributes at all), which yields TABLE_DUM if 
the original relation r is empty and TABLE_DEE otherwise.   
 
7.4 INTERSECT and TIMES are both special cases of JOIN, so we can 
ignore them here.  The commutativity of UNION and JOIN is obvious 
from the definitions, which are symmetric in the two relations 
concerned.  We can show that UNION is associative as follows.  Let 
t be a tuple.  Then:*   
 

t ε A UNION (B UNION C) iff t ε A OR t ε (B UNION C),  
i.e., iff t ε A OR (t ε B OR t ε C),  
i.e., iff (t ε A OR t ε B) OR t ε C,  
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i.e., iff t ε (A UNION B) OR t ε C,  
i.e., iff t ε (A UNION B) UNION C.   
 

Note the appeal in the third line to the associativity of OR.   
 
 
────────── 
 
*  The shorthand "iff" stands for "if and only if."   
 
────────── 
 
 

The proof that JOIN is associative is analogous.   
 

7.5 We omit the verifications, which are straightforward.  The 
answer to the last part of the exercise is b SEMIJOIN a.   
 
7.6 JOIN is discussed in Section 7.4.  INTERSECT can be defined as 
follows:   
 

A INTERSECT B  ≡  A MINUS ( A MINUS B ) 
 

or (equally well)  
 

A INTERSECT B  ≡  B MINUS ( B MINUS A ) 
 

These equivalences, though valid, are slightly unsatisfactory, 
since A INTERSECT B is symmetric in A and B and the other two 
expressions aren't.  Here by contrast is a symmetric equivalent:   
 

( A MINUS ( A MINUS B ) ) UNION ( B MINUS ( B MINUS A ) ) 
 

Note:  Given that A and B must be of the same type, we also have:   
 

A INTERSECT B  ≡  A JOIN B  
 
As for DIVIDEBY, we have:   
 
A DIVIDEBY B PER C  ≡  A { X }  

MINUS ( ( A { X } TIMES B { Y } ) 
MINUS C { X, Y } ) { X }  

 
Here X is the set of attributes common to A and C and Y is the set 
of attributes common to B and C.   
 

Note:  DIVIDEBY as just defined is actually a generalization 
of the version defined in the body of the chapter──though it's 
still a Small Divide [7.4]──inasmuch as we assumed previously that 
A had no attributes apart from X, B had no attributes apart from 
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Y, and C had no attributes apart from X and Y.  The foregoing 
generalization would allow, e.g., the query "Get supplier numbers 
for suppliers who supply all parts," to be expressed more simply 
as just  

 
S DIVIDEBY P PER SP 
 

instead of (as previously) as  
 

S { S# } DIVIDEBY P { P# } PER SP { S#, P# } 
 

7.7 The short answer is no.  Codd's original DIVIDEBY did satisfy 
the property that  
 

( a TIMES b ) DIVIDEBY b  ≡  a 
 

so long as b is nonempty (what happens otherwise?).  However:   
 
•   Codd's DIVIDEBY was a dyadic operator; our DIVIDEBY is 

triadic, and hence can't possibly satisfy a similar property.   
 
•   In any case, even with Codd's DIVIDEBY, dividing a by b and 

then forming the Cartesian product of the result with b will 
yield a relation that might be identical to a, but is more 
likely to be some proper subset of a:   

 
( A DIVIDEBY B ) TIMES B  ⊆  A 
 
Codd's DIVIDEBY is thus more analogous to integer division in 
ordinary arithmetic (i.e., it ignores the remainder).   
 

 
7.8 We can say that TABLE_DEE (DEE for short) is the analog of 1 
with respect to multiplication in ordinary arithmetic because  
 

r TIMES DEE  ≡  DEE TIMES r  ≡  r 
 

for all relations r (in other words, DEE is the identity with 
respect to TIMES and, more generally, with respect to JOIN).  
However, there's no relation that behaves with respect to TIMES in 
a way that is exactly analogous to the way that 0 behaves with 
respect to multiplication──but the behavior of TABLE_DUM (DUM for 
short) is somewhat reminiscent of the behavior of 0, inasmuch as  
 

r TIMES DUM  ≡  DUM TIMES r  ≡  an empty relation with 
the same heading as r 
 

for all relations r.   
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We turn now to the effect of the algebraic operators on DEE 
and DUM.  We note first that the only relations that are of the 
same type as DEE and DUM are DEE and DUM themselves.  We have:  
 

UNION │ DEE DUM     INTERSECT │ DEE DUM     MINUS │ DEE DUM 
──────┼────────     ──────────┼────────     ──────┼──────── 
DEE  │ DEE DEE        DEE    │ DEE DUM      DEE  │ DUM DEE 
DUM  │ DEE DUM        DUM    │ DUM DUM      DUM  │ DUM DUM 
 

In the case of MINUS, the first operand is shown at the left and 
the second at the top (for the other operators, of course, the 
operands are interchangeable).  Notice how reminiscent these 
tables are of the truth tables for OR, AND, and AND NOT, 
respectively; of course, the resemblance isn't a coincidence.   
 

As for restrict and project, we have:   
 

•   Any restriction of DEE yields DEE if the restriction 
condition evaluates to TRUE, DUM if it evaluates to FALSE.   

 
•  Any restriction of DUM yields DUM.   
 
•   Projection of any relation over no attributes yields DUM if 

the original relation is empty, DEE otherwise.  In particular, 
projection of DEE or DUM, necessarily over no attributes at 
all, returns its input.   

 
For extend and summarize, we have:   
 

•   Extending DEE or DUM to add a new attribute yields a relation 
of degree one and the same cardinality as its input.   

 
•   Summarizing DEE or DUM (necessarily by no attributes at all) 

yields a relation of degree one and the same cardinality as 
its input.   

 
Note:  We omit consideration of DIVIDEBY, SEMIJOIN, and 

SEMIMINUS because they're not primitive.  TCLOSE is irrelevant (it 
applies to binary relations only).  We also omit consideration of 
GROUP and UNGROUP for obvious reasons.   

 
7.9 No!   
 
7.10 INTERSECT is defined only if its operand relations are all of 
the same type, while no such limitation applies to JOIN.  It 
follows that, when there are no operands at all, we can define the 
result for JOIN generically, but we can't do the same for 
INTERSECT──we can define the result only for specific INTERSECT 
operations (i.e., INTERSECT operations that are specific to some 
particular relation type).  In fact, when we say that INTERSECT is 
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a special case of JOIN, what we really mean is that every specific 
INTERSECT is a special case of some specific JOIN.  Let S_JOIN be 
such a specific JOIN.  Then S_JOIN and JOIN aren't the same 
operator, and it's reasonable to say that the S_JOIN and the JOIN 
of no relations at all give different results.   
 
7.11 In every case the result is a relation of degree one.  If r 
is nonempty, all four expressions return a one-tuple relation 
containing the cardinality n of r.  If r is empty, expressions a. 
and c. both return an empty result, while expressions b. and d. 
both return a one-tuple relation containing zero (the cardinality 
of r).   
 
7.12 Relation r has the same cardinality as SP and the same 
heading, except that it has one additional attribute, X, which is 
relation-valued.  The relations that are values of X have degree 
zero (i.e., they are nullary relations); furthermore, each of 
those relations is TABLE_DEE, not TABLE_DUM, because every tuple 
sp in SP effectively includes the 0-tuple as its value for that 
subtuple of sp that corresponds to the empty set of attributes.  
Thus, each tuple in r effectively consists of the corresponding 
tuple from SP extended with the X value TABLE_DEE.   
 

The expression r UNGROUP X yields the original SP relation 
again.   

 
7.13 J 
 
7.14 J WHERE CITY = 'London' 
 
7.15 ( SPJ WHERE J# = J# ( 'J1' ) ) { S# } 
 
7.16 SPJ WHERE QTY ≥ QTY ( 300 ) AND QTY ≤ QTY ( 750 ) 
 
7.17 P { COLOR, CITY } 
 
7.18 ( S JOIN P JOIN J ) { S#, P#, J# } 
 
7.19 ( ( ( S RENAME CITY AS SCITY ) TIMES 

( P RENAME CITY AS PCITY ) TIMES 
( J RENAME CITY AS JCITY ) )     

WHERE SCITY =/ PCITY 
OR    PCITY =/ JCITY  
OR    JCITY =/ SCITY ) { S#, P#, J# } 
 

7.20 ( ( ( S RENAME CITY AS SCITY ) TIMES 
( P RENAME CITY AS PCITY ) TIMES 
( J RENAME CITY AS JCITY ) )     

WHERE SCITY =/ PCITY 
AND   PCITY =/ JCITY  
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AND   JCITY =/ SCITY ) { S#, P#, J# } 
 

7.21 P SEMIJOIN ( SPJ SEMIJOIN ( S WHERE CITY = 'London' ) )  
 
7.22 Just to remind you of the possibility, we show a step-at-a-
time solution to this exercise:   
 

WITH ( S WHERE CITY = 'London' ) AS T1, 
( J WHERE CITY = 'London' ) AS T2, 
( SPJ JOIN T1 ) AS T3, 
T3 { P#, J# } AS T4, 
( T4 JOIN T2 ) AS T5 : 
T5 { P# } 

 
Here's the same query without using WITH:   
 

( ( SPJ JOIN ( S WHERE CITY = 'London' ) ) { P#, J# } 
JOIN ( J WHERE CITY = 'London' ) ) { P# } 
 

We'll give a mixture of solutions (some using WITH, some not) to 
the remaining exercises.   
 
7.23 ( ( S RENAME CITY AS SCITY ) JOIN SPJ JOIN 

( J RENAME CITY AS JCITY ) ) { SCITY, JCITY } 
 

7.24 ( J JOIN SPJ JOIN S ) { P# } 
 
7.25 ( ( ( J RENAME CITY AS JCITY ) JOIN SPJ JOIN 

( S RENAME CITY AS SCITY ) )  
WHERE JCITY =/ SCITY ) { J# } 
 

7.26 WITH ( SPJ { S#, P# } RENAME ( S# AS XS#, P# AS XP# ) )  
AS T1, 

( SPJ { S#, P# } RENAME ( S# AS YS#, P# AS YP# ) )  
AS T2, 

( T1 TIMES T2 ) AS T3, 
( T3 WHERE XS# = YS# AND XP# < YP# ) AS T4 : 
T4 { XP#, YP# } 
 

7.27 ( SUMMARIZE SPJ { S#, J# }  
PER RELATION { TUPLE { S# S# ( 'S1' ) } }  
ADD COUNT AS N ) { N } 
 

The expression in the PER clause here is a relation selector 
invocation (in fact, it's a relation literal, denoting a relation 
containing just one tuple).   
 
7.28 ( SUMMARIZE SPJ { S#, P#, QTY } 

PER RELATION { TUPLE { S# S# ( 'S1' ), P# P# ( 'P1' ) } } 
ADD SUM ( QTY ) AS Q ) { Q } 
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7.29 SUMMARIZE SPJ PER SPJ { P#, J# } ADD SUM ( QTY ) AS Q  
 
7.30 WITH ( SUMMARIZE SPJ PER SPJ { P#, J# } 

ADD AVG ( QTY ) AS Q ) AS T1, 
( T1 WHERE Q > QTY ( 350 ) ) AS T2 : 
T2 { P# } 
 

7.31 ( J JOIN ( SPJ WHERE S# = S# ( 'S1' ) ) ) { JNAME } 
 
7.32 ( P JOIN ( SPJ WHERE S# = S# ( 'S1' ) ) ) { COLOR } 
 
7.33 ( SPJ JOIN ( J WHERE CITY = 'London' ) ) { P# } 
 
7.34 ( SPJ JOIN ( SPJ WHERE S# = S# ( 'S1' ) ) { P# } ) { J# } 
 
7.35 ( ( ( SPJ JOIN  

( P WHERE COLOR = COLOR ( 'Red' ) ) { P# } ) { S# } 
JOIN SPJ ) { P# } JOIN SPJ ) { S# } 
 

7.36 WITH ( S { S#, STATUS } RENAME ( S# AS XS#,  
STATUS AS XSTATUS ) ) AS T1, 

( S { S#, STATUS } RENAME ( S# AS YS#,  
STATUS AS YSTATUS ) ) AS T2, 

( T1 TIMES T2 ) AS T3,  
( T3 WHERE XS# = S# ( 'S1' ) AND  

XSTATUS > YSTATUS ) AS T4 : 
T4 { YS# } 
 

7.37 ( ( EXTEND J ADD MIN ( J, CITY ) AS FIRST ) 
WHERE CITY = FIRST ) { J# } 
 

7.38 WITH ( SPJ RENAME J# AS ZJ# ) AS T1, 
( T1 WHERE ZJ# = J# AND P# = P# ( 'P1' ) ) AS T2, 
( SPJ WHERE P# = P# ( 'P1' ) ) AS T3, 
( EXTEND T3 ADD AVG ( T2, QTY ) AS QX ) AS T4, 
T4 { J#, QX } AS T5, 
( SPJ WHERE J# = J# ( 'J1' ) ) AS T6, 
( EXTEND T6 ADD MAX ( T6, QTY ) AS QY ) AS T7, 
( T5 TIMES T7 { QY } ) AS T8, 
( T8 WHERE QX > QY ) AS T9 : 
T9 { J# } 
 

7.39 WITH ( SPJ WHERE P# = P# ( 'P1' ) ) AS T1, 
T1 { S#, J#, QTY } AS T2, 
( T2 RENAME ( J# AS XJ#, QTY AS XQ ) ) AS T3, 
( SUMMARIZE T1 PER SPJ { J# } 

ADD AVG ( QTY ) AS Q ) AS T4, 
( T3 TIMES T4 ) AS T5, 
( T5 WHERE XJ# = J# AND XQ > Q ) AS T6 : 
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T6 { S# } 
 

7.40 WITH ( S WHERE CITY = 'London' ) { S# } AS T1, 
( P WHERE COLOR = COLOR ( 'Red' ) ) AS T2, 
( T1 JOIN SPJ JOIN T2 ) AS T3 : 
J { J# } MINUS T3 { J# }  
 

7.41 J { J# } MINUS ( SPJ WHERE S# =/ S# ( 'S1' ) ) { J# } 
 
7.42 WITH ( ( SPJ RENAME P# AS X ) WHERE X = P# ) { J# } AS T1, 

( J WHERE CITY = 'London' ) { J# } AS T2, 
( P WHERE T1 ≥ T2 ) AS T3 : 
T3 { P# } 
 

7.43 S { S#, P# } DIVIDEBY J { J# } PER SPJ { S#, P#, J# } 
 
7.44 ( J WHERE  

( ( SPJ RENAME J# AS Y ) WHERE Y = J# ) { P# } ≥  
( SPJ WHERE S# = S# ( 'S1' ) ) { P# } ) { J# } 

 
7.45 S { CITY } UNION P { CITY } UNION J { CITY } 
 
7.46 ( SPJ JOIN ( S WHERE CITY = 'London' ) ) { P# } 

UNION 
( SPJ JOIN ( J WHERE CITY = 'London' ) ) { P# } 
 

7.47 ( S TIMES P ) { S#, P# } MINUS SP { S#, P# } 
 
7.48 We show two solutions to this problem.  The first, which is 
due to Hugh Darwen, uses only the operators of Sections 7.3-7.4:   
 

WITH ( SP RENAME S# AS SA ) { SA, P# } AS T1, 
/* T1 {SA,P#} : SA supplies part P# */ 

 
( SP RENAME S# AS SB ) { SB, P# } AS T2, 
/* T2 {SB,P#} : SB supplies part P# */ 

 
T1 { SA } AS T3, 
/* T3 {SA} : SA supplies some part */ 
 
T2 { SB } AS T4, 
/* T4 {SB} : SB supplies some part */ 
 
( T1 TIMES T4 ) AS T5, 
/* T5 {SA,SB,P#} : SA supplies some part and  

SB supplies part P# */ 
 

( T2 TIMES T3 ) AS T6, 
/* T6 {SA,SB,P#} : SB supplies some part and  

SA supplies part P# */ 
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( T1 JOIN T2 ) AS T7, 
/* T7 {SA,SB,P#} : SA and SB both supply part P# */ 
 
( T3 TIMES T4 ) AS T8, 
/* T8 {SA,SB} : SA supplies some part and  

SB supplies some part */ 
 

SP { P# } AS T9, 
/* T9 {P#} : part P# is supplied by some supplier */ 
 
( T8 TIMES T9 ) AS T10, 
/* T10 {SA,SB,P#} :  

SA supplies some part,  
SB supplies some part, and 
part P# is supplied by some supplier */ 

 
( T10 MINUS T7 ) AS T11, 
/* T11 {SA,SB,P#} : part P# is supplied,  

but not by both SA and SB */ 
 

( T6 INTERSECT T11 ) AS T12, 
/* T12 {SA,SB,P#} : part P# is supplied by SA  

but not by SB */ 
 

( T5 INTERSECT T11 ) AS T13, 
/* T13 {SA,SB,P#} : part P# is supplied by SB  

but not by SA */ 
 

T12 { SA, SB } AS T14, 
/* T14 {SA,SB} :  

SA supplies some part not supplied by SB */ 
 

T13 { SA, SB } AS T15, 
/* T15 {SA,SB} :  

SB supplies some part not supplied by SA */ 
 

( T14 UNION T15 ) AS T16, 
/* T16 {SA,SB} : some part is supplied by SA or SB  

but not both */ 
 

T7 { SA, SB } AS T17, 
/* T17 {SA,SB} :  
some part is supplied by both SA and SB */ 

 
( T17 MINUS T16 ) AS T18, 
/* T18 {SA,SB} :  

some part is supplied by both SA and SB, 
and no part supplied by SA is not supplied by SB, 
and no part supplied by SB is not supplied by SA 
-- so SA and SB each supply exactly the same parts */ 
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( T18 WHERE SA < SB ) AS T19 : 
/* tidy-up step */ 
 

T19 
 

The second solution──which is much more straightforward!──makes 
use of the relational comparisons introduced in Chapter 6:   
 

WITH ( S RENAME S# AS SA ) { SA } AS RA , 
( S RENAME S# AS SB ) { SB } AS RB : 
( RA TIMES RB )  

WHERE ( SP WHERE S# = SA ) { P# } =  
( SP WHERE S# = SB ) { P# } 

AND   SA < SB 
 

7.49 SPJ GROUP ( J#, QTY ) AS JQ 
 
7.50 Let SPQ denote the result of the expression shown in the 
answer to Exercise 7.49.  Then:   
 

SPQ UNGROUP JQ  
 
 
 
 

          *** End of Chapter 7 *** 
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Chapter 8  
 
 

          R e l a t i o n a l   C a l c u l u 
s 
 
 
Principal Sections 
 
•  Tuple calculus 
•  Examples 
•  Calculus vs. algebra 
•  Computational capabilities  
•  SQL facilities 
•  Domain calculus 
•  Query-By-Example  
 
 

General Remarks 
 
As noted in the discussion of the introduction to this part of the 
book, it might be possible, or even advisable, to skip much of 
this chapter on a first pass.  The SQL stuff probably needs to be 
covered, though (if you didn't already cover it in Chapter 4).  
And "database professionals"──i.e., anyone who's serious about the 
subject of database technology──really ought to be familiar with 
both tuple and domain calculus.  And everybody ought at least to 
understand the quantifiers.   
 

Note:  The term "calculus" signifies merely a system of 
computation (the Latin word calculus means a pebble, perhaps used 
in counting or some other form of reckoning).  Thus, relational 
calculus can be thought of as a system for computing with 
relations.  Incidentally, it's common to assert (as Section 8.1 in 
fact does) that the relational model is based on predicate 
calculus specifically.  In a real computer system, however, all 
domains and relations are necessarily finite, and the predicate 
calculus thus degenerates──at least in principle──to the simpler 
propositional calculus.  In particular, the quantifiers EXISTS and 
FORALL can therefore be defined (as indeed they are in Section 
8.2) as iterated OR and AND, respectively.   

 
A brief overview of Codd's ALPHA language appears in reference 

[6.9] (Chapters 6 and 7).   
 
 

8.2 Tuple Calculus 
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It would be possible to skip the rather formal presentation in 
this section and go straight to the more intuitively 
understandable examples in Section 8.3.   
 

This section claims that the abbreviation WFF is pronounced 
"weff," but the pronunciations "wiff" and "woof" are also heard.   

 
Let V range over an empty relation.  Then it must be clearly 

understood that EXISTS V (p(V)) gives FALSE and FORALL V (p(V)) 
gives TRUE, regardless of the nature of p.   

 
 

8.3 Examples 
 
This section suggests that algebraic versions of the examples be 
given as well, for "compare and contrast" purposes.  In fact 
algebraic versions of most of them can be found in Chapter 6.  To 
be specific:   
 

Example 8.3.2 corresponds to Example 6.5.5   
Example 8.3.3 corresponds to Example 6.5.1 (almost)   
Example 8.3.4 corresponds to Example 6.5.2   
Example 8.3.6 corresponds to Example 6.5.3   
Example 8.3.7 corresponds to Example 6.5.6   
Example 8.3.8 corresponds to Example 6.5.4    
 
Here are algebraic versions of the other three:   
 

•  Example 8.3.1:   
 

( S WHERE CITY = 'Paris' AND STATUS > 20 ) { S#, STATUS } 
 

•  Example 8.3.5:   
 

( ( ( SP WHERE S# = S# ( 'S2' ) ) { P# } JOIN SP ) JOIN S ) 
{ SNAME } 
 

•  Example 8.3.9:   
 

( P WHERE WEIGHT > WEIGHT ( 16.0 ) ) { P# } 
UNION 
( SP WHERE S# = S# ( 'S2' ) ) { P# } 
 
 

8.4 Calculus vs. Algebra / 8.5 Computational Capabilities 
 
These sections should be self-explanatory.   
 
 
8.6 SQL Facilities 
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This section contains the principal discussion in the book of SQL 
retrieval operations (mainly SELECT).  We include that discussion 
at this point in the chapter because SQL is (or, at least, is 
supposed to be) based on the tuple calculus specifically.  Note:  
The important concept of orthogonality is also introduced in 
passing in this section.   
 

The first paragraph of Section 8.6 includes the following 
remarks (slightly reworded here):  "Some aspects of SQL are 
algebra-like, some are calculus-like, and some are neither ... We 
leave it as an exercise to figure out which aspects are based on 
the algebra, which on the calculus, and which on neither."  Here's 
a partial answer to this exercise (we concentrate on SQL table 
expressions only, since such expressions are the only part of SQL 
for which the exercise really makes much sense):   

 
•  Algebra:   
 

UNION, INTERSECT, EXCEPT 
explicit JOIN 
 

•  Calculus:   
 

EXISTS 
range variables* 
 
 

────────── 
 
*  SQL doesn't use the term "range variables"; rather, it talks 
about something it calls "correlation names"──but it never says 
exactly what such names name!   
 
────────── 
 
 
•  Neither of the above:   
 

nested subqueries (?)  
GROUP BY (?), HAVING (?)  
nulls 
duplicate rows  
left-to-right column ordering 
 
Note:  Nulls are discussed in Chapter 19.  Duplicate rows need 

to be discussed now, at least with respect to their effects on SQL 
queries.  Recommendation:  Always specify DISTINCT!──but be 
annoyed about it.   
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Explain the SQL WITH clause (which isn't quite the same as the 
Tutorial D WITH clause; loosely, the SQL WITH clause is based on 
text substitution, while the Tutorial D one is based on 
subexpression evaluation).  By the way, note that the Tutorial D 
WITH clause can be used with the relational calculus as well as 
the relational algebra (of course).   

 
You might want show algebraic and/or calculus formulations of 

some of the SQL examples in this section.  Stress the point that 
the SQL formulations shown are very far from being the only ones 
possible.   

 
The reader is asked to give some alternative join formulations 

of Example 8.6.11.  Here are a couple of possibilities.  Note the 
need for DISTINCT in both cases ...  

 
SELECT DISTINCT S.SNAME 
FROM   S, SP, P 
WHERE  S.S# = SP.S# 
AND    SP.P# = P.P# 
AND    P.COLOR = COLOR ('Red') ; 
 
SELECT DISTINCT S.SNAME 
FROM   ( SELECT S#, SNAME FROM S ) AS POINTLESS1 

NATURAL JOIN  
SP  
NATURAL JOIN  
( SELECT P#, COLOR FROM P ) AS POINTLESS2 

WHERE  P.COLOR = COLOR ('Red') ; 
 
I wouldn't discuss the point in class unless somebody asks 

about it, but you should at least be aware of the fact that (as 
mentioned in the notes on Chapter 7) SQL gets into a lot of 
trouble over union, intersection, and difference.  One point that 
might be worth mentioning is that we can't always talk sensibly in 
SQL of "the" union (etc.) of a given pair of tables, because there 
might be more than one such.   

 
 

8.7 Domain Calculus 
 
You could skip this section even if you didn't skip the tuple 
calculus sections.  Note, however, that the section isn't meant to 
stand alone──it does assume a familiarity with the basic ideas of 
the tuple calculus.  Alternatively, you might just briefly cover 
QBE at an intuitive level and skip the domain calculus per se.   
 
 
8.8 Query-By-Example  
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QBE is basically a syntactically sugared form of the domain 
calculus (more or less──it does also implicitly support the tuple 
calculus version of EXISTS).  The section is more or less self-
explanatory (as far as it goes, which deliberately isn't very 
far).  The fact that QBE isn't relationally complete is probably 
worth mentioning.   
 
 
Answers to Exercises 
 
8.1 a. Not valid.  b. Not valid.  c. Valid.  d. Valid.  e. Not 
valid.  f. Not valid.  g.  Not valid.  Note:  The reason e. isn't 
valid is that FORALL applied to an empty set yields TRUE, while 
EXISTS applied to an empty set yields FALSE.  Thus, e.g, the fact 
that the statement "All purple parts weigh over 100 pounds" is 
true (i.e., is a true proposition) doesn't necessarily mean any 
purple parts actually exist.   
 

We remark that the (valid!) equivalences and implications can 
be used as a basis for a set of calculus expression transformation 
rules, much like the algebraic expression transformation rules 
mentioned in Chapter 7 and discussed in detail in Chapter 18.  An 
analogous remark applies to the answers to Exercises 8.2 and 8.3 
as well.   

 
8.2 a. Valid.  b. Valid.  c. Valid (this one was discussed in the 
body of the chapter).  d. Valid (hence each of the quantifiers can 
be defined in terms of the other).  e. Not valid.  f. Valid.  
Observe that (as a. and b. show) a sequence of like quantifiers 
can be written in any order without changing the meaning, whereas 
(as e. shows) for unlike quantifiers the order is significant.  By 
way of illustration of this latter point, let x and y range over 
the set of integers and let p be the WFF "y > x".  Then it should 
be clear that the WFF  
 

FORALL x EXISTS y ( y > x ) 
 

("For all integers x, there exists a larger integer y") evaluates 
to TRUE, whereas the WFF  
 

EXISTS y FORALL x ( y > x ) 
 

("There exists an integer x that is larger than every integer y") 
evaluates to FALSE.  Hence interchanging unlike quantifiers 
changes the meaning.  In a calculus-based query language, 
therefore, interchanging unlike quantifiers in a WHERE clause will 
change the meaning of the query.  See reference [8.3].   
 
8.3 a. Valid.  b. Valid.   
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8.4 If supplier S2 currently supplies no parts, the original query 
will return all supplier numbers currently appearing in S 
(including in particular S2, who presumably appears in S but not 
in SP).  If we replace SX by SPX throughout, it will return all 
supplier numbers currently appearing in SP.  The difference 
between the two formulations is thus as follows:  The first means 
"Get supplier numbers for suppliers who supply at least all those 
parts supplied by supplier S2" (as required).  The second means 
"Get supplier numbers for suppliers who supply at least one part 
and supply at least all those parts supplied by supplier S2."   
 
8.5 a. Get part name and city for parts supplied to every project 
in Paris by every supplier in London in a quantity less than 500.  
b. The result of this query is empty.   
 
8.6 This exercise is very difficult!──especially when we take into 
account the fact that part weights aren't unique.  (If they were, 
we could paraphrase the query as "Get all parts such that the 
count of heavier parts is less than three.")  The exercise is so 
difficult, in fact, that we don't even attempt to give a pure 
calculus solution here.  It illustrates very well the point that 
relational completeness is only a basic measure of expressive 
power, and probably not a sufficient one.  (The next two exercises 
also illustrate this point.)  See reference [7.5] for an extended 
discussion of queries of this type.   
 
8.7 Let PSA, PSB, PSC, ..., PSn be range variables ranging over 
(the current value of) relvar PART_STRUCTURE, and suppose the 
given part is part P1.  Then:   
 
a.  A calculus expression for the query "Get part numbers for all 

parts that are components, at the first level, of part P1" is:   
 

PSA.MINOR_P# WHERE PSA.MAJOR_P# = P# ( 'P1' )  
 

b.  A calculus expression for the query "Get part numbers for all 
parts that are components, at the second level, of part P1" 
is:   

 
PSB.MINOR_P# WHERE EXISTS PSA  

( PSA.MAJOR_P# = P# ( 'P1' ) AND 
PSB.MAJOR_P# = PSA.MINOR_P# ) 
 

c.  A calculus expression for the query "Get part numbers for all 
parts that are components, at the third level, of part P1" is:   

 
PSC.MINOR_P# WHERE EXISTS PSA EXISTS PSB 

( PSA.MAJOR_P# = P# ( 'P1' ) AND 
PSB.MAJOR_P# = PSA.MINOR_P# AND 
PSC.MAJOR_P# = PSB.MINOR_P# ) 
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And so on.  A calculus expression for the query "Get part 
numbers for all parts that are components, at the nth level, 
of part P1" is:   
 
PSn.MINOR_P# WHERE EXISTS PSA EXISTS PSB ... EXISTS PS(n-1) 

( PSA.MAJOR_P# = P# ( 'P1' ) AND 
PSB.MAJOR_P# = PSA.MINOR_P# AND 
PSC.MAJOR_P# = PSB.MINOR_P# AND 

.....................    AND 
PSn.MAJOR_P# = PS(n-1).MINOR_P# ) 
 

All of these result relations a., b., c., ... then need to be 
"unioned" together to construct the PART_BILL result.   
 
The problem is, of course, that there's no way to write n such 

expressions if the value of n is unknown.  In fact, the part 
explosion query is a classic illustration of a problem that can't 
be formulated by means of a single expression in a language that's 
only relationally complete──i.e., a language that's no more 
powerful than the original calculus (or algebra).  We therefore 
need another extension to the original calculus (and algebra).  
The TCLOSE operator discussed briefly in Chapter 7 is part of the 
solution to this problem (but only part).  Further details are 
beyond the scope of this book.   

 
Note:  Although this problem is usually referred to as "bill-

of-materials" or "parts explosion," it's actually of much wider 
applicability than those names might suggest.  In fact, the kind 
of relationship typified by the "parts contain parts" structure 
occurs in a very wide range of applications.  Other examples 
include management hierarchies, family trees, authorization 
graphs, communication networks, software module invocation 
structures, transportation networks, etc., etc.   

 
8.8 This query can't be expressed in either the calculus or the 
algebra.  For example, to express it in the calculus, we would 
basically need to be able to say something like the following:   
 

Does there exist a relation r such that there exists a tuple t 
in r such that t.S# = S#('S1')?   
 

In other words, we would need to be able to quantify over 
relations instead of tuples, and we would therefore need a new 
kind of range variable, one that denoted relations instead of 
tuples.  The query therefore can't be expressed in the relational 
calculus as currently defined.   
 

Note, incidentally, that the query under discussion is a 
"yes/no" query (the desired answer is basically a truth value).  
You might be tempted to think, therefore, that the reason the 
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query can't be handled in the calculus or the algebra is that 
calculus and algebra expressions are relation-valued, not truth-
valued.  However, yes/no queries can be handled in the calculus 
and algebra if properly implemented!  The crux of the matter is to 
recognize that yes and no (equivalently, TRUE and FALSE) are 
representable as relations.  The relations in question are 
TABLE_DEE and TABLE_DUM, respectively.   

 
8.9 In order to show that SQL is relationally complete, we have to 
show, first, (a) that there exist SQL expressions for each of the 
five primitive (algebraic) operators restrict, project, product, 
union, and difference, and then (b) that the operands to those SQL 
expressions can be arbitrary SQL expressions in turn.   
 

We begin by observing that SQL effectively does support the 
relational algebra RENAME operator, thanks to the availability of 
the optional "AS <column name>" specification on items in the 
SELECT clause.*  We can therefore ensure that all tables do have 
proper column names, and in particular that the operands to 
product, union, and difference satisfy the requirements of (our 
version of) the algebra with respect to column naming.  
Furthermore──provided those operand column-naming requirements are 
indeed satisfied──the SQL column name inheritance rules in fact 
coincide with those of the algebra as described (under the name 
relation type inference) in Chapter 7.   

 
 

────────── 
 
*  To state the matter a little more precisely:  An SQL analog of 
the algebraic expression T RENAME A AS B is the (extremely 
inconvenient!) SQL expression SELECT A AS B, X, Y, ..., Z FROM T 
(where X, Y, ..., Z are all of the columns of T apart from A, and 
we choose to overlook the fact that the SQL expression results in 
a table with a left-to-right ordering to its columns).   
 
────────── 
 
 

Here then are SQL expressions corresponding approximately to 
the five primitive operators:   

 
Algebra               SQL 
 
A WHERE p             SELECT * FROM A WHERE p   
 
A { X, Y, ..., Z }    SELECT DISTINCT X, Y, ..., Z FROM A   
 
A TIMES B             SELECT * FROM A, B  
 
A UNION B             SELECT * FROM A UNION SELECT * FROM B 
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A MINUS B             SELECT * FROM A EXCEPT SELECT * FROM B 
 
Reference [4.20] shows that each of A and B in the SQL 

expressions shown above is in fact a <table reference>.  It also 
shows that if we take any of the five SQL expressions shown and 
enclose it in parentheses, what results is in turn a <table 
reference>.*  It follows that SQL is indeed relationally complete.   

 
 

────────── 
 
*  We ignore the fact that SQL would in fact require such a <table 
reference> to include a pointless range variable definition.   
 
────────── 
 
 

Note:  Actually there is a glitch in the foregoing──SQL fails 
to support projection over no columns at all (because it also 
fails to support empty SELECT clauses).  As a consequence, it 
doesn't support TABLE_DEE or TABLE_DUM.   

 
8.10 SQL supports EXTEND but not SUMMARIZE (at least, not very 
directly).  Regarding EXTEND, the relational algebra expression  
 

EXTEND A ADD exp AS Z 
 

can be represented in SQL as  
 

SELECT A.*, exp' AS Z  
FROM   ( A ) AS A 
 

The expression exp' in the SELECT clause is the SQL counterpart of 
the EXTEND operand exp.  The parenthesized A in the FROM clause is 
a <table reference> of arbitrary complexity (corresponding to the 
EXTEND operand A); the other A in the FROM clause is a range 
variable name.   
 

Regarding SUMMARIZE, the basic problem is that the relational 
algebra expression  

 
SUMMARIZE A PER B ... 
 

yields a result with cardinality equal to that of B, while the SQL 
"equivalent"  
 

SELECT ... 
FROM   A 
GROUP  BY C ; 
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yields a result with cardinality equal to that of the projection 
of A over C.   
 
8.11 SQL doesn't support relational comparisons directly.  
However, such operations can be simulated, albeit only in a very 
cumbersome manner.  For example, the comparison  
 

A = B 
 

(where A and B are relvars) can be simulated by the SQL expression  
 

NOT EXISTS ( SELECT * FROM A 
WHERE NOT EXISTS ( SELECT * FROM B 

WHERE A-row = B-row ) ) 
AND 
NOT EXISTS ( SELECT * FROM B 

WHERE NOT EXISTS ( SELECT * FROM A 
WHERE B-row = A-row ) ) 
 

(where A-row and B-row are <row value constructor>s representing 
an entire row of A and an entire row of B, respectively).   
 
8.12 Here are a few such formulations.  Note that the following 
list isn't even close to being exhaustive [4.19].  Note too that 
this is a very simple query!   
 

SELECT DISTINCT S.SNAME 
FROM   S 
WHERE  S.S# IN 

( SELECT SP.S# 
FROM   SP 
WHERE  SP.P# = P#('P2') ) ; 
 

SELECT DISTINCT T.SNAME 
FROM ( S NATURAL JOIN SP ) AS T 
WHERE  T.P# = P#('P2') ; 
 
SELECT DISTINCT T.SNAME 
FROM ( S JOIN SP ON S.S# = SP.P# AND SP.P# = P#('P2') ) AS T ; 
 
SELECT DISTINCT T.SNAME 
FROM ( S JOIN SP USING S# ) AS T 
WHERE  T.P# = P#('P2') ; 
 
SELECT DISTINCT S.SNAME 
FROM   S 
WHERE  EXISTS 

( SELECT * 
FROM   SP 
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WHERE  SP.S# = S.S#  
AND    SP.P# = P#('P2') ) ; 
 

SELECT DISTINCT S.SNAME 
FROM   S, SP 
WHERE  S.S# = SP.S#  
AND    SP.P# = P#('P2') ; 
 
SELECT DISTINCT S.SNAME 
FROM   S 
WHERE  0 < 

( SELECT COUNT(*) 
FROM   SP 
WHERE  SP.S# = S.S#  
AND    SP.P# = P#('P2') ) ; 
 

SELECT DISTINCT S.SNAME 
FROM   S 
WHERE  P#('P2') IN 

( SELECT SP.P# 
FROM   SP 
WHERE  SP.S# = S.S# ) ; 
 

SELECT S.SNAME 
FROM   S, SP 
WHERE  S.S# = SP.S# 
AND    SP.P# = P#('P2') 
GROUP  BY S.SNAME ; 
 
Subsidiary question:  What are the implications of the 

foregoing?  Answer:  The language is harder to document, teach, 
learn, remember, use, and implement efficiently, than it ought to 
be.   

 
8.13 We've numbered the following solutions as 8.13.n, where 7.n 
is the number of the original exercise in Chapter 7.  We assume 
that SX, SY, PX, PY, JX, JY, SPJX, SPJY (etc.) are range variables 
ranging over suppliers, parts, projects, and shipments, 
respectively; definitions of those range variables aren't shown.   
 
8.13.13 JX  
 
8.13.14 JX WHERE JX.CITY = 'London' 
 
8.13.15 SPJX.S# WHERE SPJX.J# = J# ( 'J1' ) 
 
8.13.16 SPJX WHERE SPJX.QTY ≥ QTY ( 300 ) AND  

SPJX.QTY ≤ QTY ( 750 ) 
 

8.13.17 { PX.COLOR, PX.CITY } 
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8.13.18 { SX.S#, PX.P#, JX.J# } WHERE SX.CITY = PX.CITY 

AND   PX.CITY = JX.CITY 
 

8.13.19 { SX.S#, PX.P#, JX.J# } WHERE SX.CITY =/ PX.CITY 
OR    PX.CITY =/ JX.CITY 
OR    JX.CITY =/ SX.CITY 
 

8.13.20 { SX.S#, PX.P#, JX.J# } WHERE SX.CITY =/ PX.CITY 
AND   PX.CITY =/ JX.CITY 
AND   JX.CITY =/ SX.CITY 
 

8.13.21 SPJX.P# WHERE EXISTS SX ( SX.S# = SPJX.S# AND 
SX.CITY = 'London' ) 
 

8.13.22 SPJX.P# WHERE EXISTS SX EXISTS JX 
( SX.S# = SPJX.S# AND SX.CITY = 'London' AND 
JX.J# = SPJX.J# AND JX.CITY = 'London' ) 
 

8.13.23 { SX.CITY AS SCITY, JX.CITY AS JCITY } 
WHERE EXISTS SPJX ( SPJX.S# = SX.S# AND SPJX.J# = JX.J# ) 
 

8.13.24 SPJX.P# WHERE EXISTS SX EXISTS JX 
( SX.CITY = JX.CITY AND 
SPJX.S# = SX.S# AND 
SPJX.J# = JX.J# ) 
 

8.13.25 SPJX.J# WHERE EXISTS SX EXISTS JX 
( SX.CITY =/ JX.CITY AND 
SPJX.S# = SX.S# AND 
SPJX.J# = JX.J# ) 
 

8.13.26 { SPJX.P# AS XP#, SPJY.P# AS YP# } 
WHERE SPJX.S# = SPJY.S# AND SPJX.P# < SPJY.P# 
 
 

8.13.27 COUNT ( SPJX.J# WHERE SPJX.S# = S# ( 'S1' ) ) AS N  
 
8.13.28 SUM ( SPJX WHERE SPJX.S# = S# ( 'S1' )  

AND SPJX.P# = P# ( 'P1' ), QTY ) AS Q   
 

Note:  The following "solution" is not correct (why not?): 
 

SUM ( SPJX.QTY WHERE SPJX.S# = S# ( 'S1' )  
AND SPJX.P# = P# ( 'P1' ) ) AS Q   
 

Answer:  Because duplicate QTY values will now be eliminated 
before the sum is computed.   
 
8.13.29 { SPJX.P#, SPJX.J#,  
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SUM ( SPJY WHERE SPJY.P# = SPJX.P# 
AND   SPJY.J# = SPJX.J#, QTY ) AS Q } 
 

8.13.30 SPJX.P# WHERE 
AVG ( SPJY WHERE SPJY.P# = SPJX.P# 

AND   SPJY.J# = SPJX.J#, QTY ) > QTY ( 350 ) 
 

8.13.31 JX.JNAME WHERE EXISTS SPJX ( SPJX.J# = JX.J# AND 
SPJX.S# = S# ( 'S1' ) ) 
 

8.13.32 PX.COLOR WHERE EXISTS SPJX ( SPJX.P# = PX.P# AND 
SPJX.S# = S# ( 'S1' ) ) 
 

8.13.33 SPJX.P# WHERE EXISTS JX ( JX.CITY = 'London' AND 
JX.J# = SPJX.J# ) 
 

8.13.34 SPJX.J# WHERE EXISTS SPJY ( SPJX.P# = SPJY.P# AND 
SPJY.S# = S# ( 'S1' ) ) 
 

8.13.35 SPJX.S# WHERE EXISTS SPJY EXISTS SPJZ EXISTS PX 
( SPJX.P# = SPJY.P# AND 

SPJY.S# = SPJZ.S# AND 
SPJZ.P# = PX.P# AND 
PX.COLOR = COLOR ( 'Red' ) ) 
 

8.13.36 SX.S# WHERE EXISTS SY ( SY.S# = S# ( 'S1' ) AND 
SX.STATUS < SY.STATUS ) 
 

8.13.37 JX.J# WHERE FORALL JY ( JY.CITY ≥ JX.CITY ) 
 
Or:     JX.J# WHERE JX.CITY = MIN ( JY.CITY ) 
 
8.13.38 SPJX.J# WHERE SPJX.P# = P# ( 'P1' ) AND 

AVG ( SPJY WHERE SPJY.P# = P# ( 'P1' )  
AND   SPJY.J# = SPJX.J#, QTY ) > 

MAX ( SPJZ.QTY WHERE SPJZ.J# = J# ( 'J1' ) ) 
 

8.13.39 SPJX.S# WHERE SPJX.P# = P# ( 'P1' )  
AND   SPJX.QTY > 

AVG ( SPJY  
WHERE SPJY.P# = P# ( 'P1' )  
AND   SPJY.J# = SPJX.J#, QTY ) 
 

8.13.40 JX.J# WHERE NOT EXISTS SPJX EXISTS SX EXISTS PX 
( SX.CITY = 'London' AND  
PX.COLOR = COLOR ( 'Red' ) AND 
SPJX.S# = SX.S# AND  
SPJX.P# = PX.P# AND  
SPJX.J# = JX.J# ) 
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8.13.41 JX.J# WHERE FORALL SPJY ( IF SPJY.J# = JX.J# 
THEN SPJY.S# = S# ( 'S1' )  
END IF ) 
 

8.13.42 PX.P# WHERE FORALL JX  
( IF JX.CITY = 'London' THEN 
EXISTS SPJY ( SPJY.P# = PX.P# AND 

SPJY.J# = JX.J# )  
END IF ) 
 

8.13.43 SX.S# WHERE EXISTS PX FORALL JX EXISTS SPJY 
( SPJY.S# = SX.S# AND 
SPJY.P# = PX.P# AND 
SPJY.J# = JX.J# ) 
 

8.13.44 JX.J# WHERE FORALL SPJY ( IF SPJY.S# = S# ( 'S1' ) THEN 
EXISTS SPJZ 

( SPJZ.J# = JX.J# AND 
SPJZ.P# = SPJY.P# )  
END IF ) 
 

8.13.45 RANGEVAR VX RANGES OVER  
( SX.CITY ), ( PX.CITY ), ( JX.CITY ) ; 
 

VX.CITY  
 

8.13.46 SPJX.P# WHERE EXISTS SX ( SX.S# = SPJX.S# AND 
SX.CITY = 'London' ) 

OR    EXISTS JX ( JX.J# = SPJX.J# AND 
JX.CITY = 'London' ) 
 

8.13.47 { SX.S#, PX.P# }  
WHERE NOT EXISTS SPJX ( SPJX.S# = SX.S# AND  

SPJX.P# = PX.P# ) 
 

8.13.48 { SX.S# AS XS#, SY.S# AS YS# } 
WHERE FORALL PZ 
( ( IF   EXISTS SPJX ( SPJX.S# = SX.S# AND  

SPJX.P# = PZ.P# ) 
THEN EXISTS SPJY ( SPJY.S# = SY.S# AND  

SPJY.P# = PZ.P# )  
END IF ) 

AND 
( IF   EXISTS SPJY ( SPJY.S# = SY.S# AND  

SPJY.P# = PZ.P# ) 
THEN EXISTS SPJX ( SPJX.S# = SX.S# AND  

SPJX.P# = PZ.P# )  
END IF ) ) 
 

8.13.49 { SPJX.S#, SPJX.P#, { SPJY.J#, SPJY.QTY WHERE 
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SPJY.S# = SPJX.S# AND 
SPJY.P# = SPJX.P# } AS JQ } 
 

8.13.50 Let R denote the result of evaluating the expression shown 
in the previous solution.  Then:   
 

RANGEVAR RX RANGES OVER R , 
RANGEVAR RY RANGES OVER RX.JQ ; 
 
{ RX.S#, RX.P#, RY.J#, RY.QTY } 
 

We're extending the syntax and semantics of <range var def> 
slightly here.  The idea is that the definition of RY depends on 
that of RX (note that the two definitions are separated by a 
comma, not a semicolon, and are thereby bundled into a single 
operation).  See reference [3.3] for further discussion.   
 
8.14 We've numbered the following solutions as 8.14.n, where 7.n 
is the number of the original exercise in Chapter 7.   
 
8.14.13 SELECT * 

FROM   J ; 
 

Or simply:   
 

TABLE J ; 
 

8.14.14 SELECT J.*  
FROM   J  
WHERE  J.CITY = 'London' ; 
 

8.14.15 SELECT DISTINCT SPJ.S#  
FROM   SPJ  
WHERE  SPJ.J# = J#('J1') ; 
 

8.14.16 SELECT SPJ.* 
FROM   SPJ 
WHERE  SPJ.QTY >= QTY(300) 
AND    SPJ.QTY <= QTY(750) ; 
 

8.14.17 SELECT DISTINCT P.COLOR, P.CITY 
FROM   P ; 
 

8.14.18 SELECT S.S#, P.P#, J.J# 
FROM   S, P, J 
WHERE  S.CITY = P.CITY 
AND    P.CITY = J.CITY ; 
 

8.14.19 SELECT S.S#, P.P#, J.J# 
FROM   S, P, J 
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WHERE  NOT ( S.CITY = P.CITY AND 
P.CITY = J.CITY ) ; 

 
8.14.20 SELECT S.S#, P.P#, J.J# 

FROM   S, P, J 
WHERE  S.CITY <> P.CITY 
AND    P.CITY <> J.CITY 
AND    J.CITY <> P.CITY ; 
 

8.14.21 SELECT DISTINCT SPJ.P# 
FROM   SPJ 
WHERE  ( SELECT S.CITY  

FROM   S  
WHERE  S.S# = SPJ.S# ) = 'London' ; 
 

8.14.22 SELECT DISTINCT SPJ.P# 
FROM   SPJ 
WHERE  ( SELECT S.CITY  

FROM   S  
WHERE  S.S# = SPJ.S# ) = 'London' 

AND    ( SELECT J.CITY  
FROM   J  
WHERE  J.J# = SPJ.J# ) = 'London' ; 
 

8.14.23 SELECT DISTINCT S.CITY AS SCITY, J.CITY AS JCITY 
FROM   S, J 
WHERE  EXISTS  

( SELECT * 
FROM   SPJ 
WHERE  SPJ.S# = S.S# 
AND    SPJ.J# = J.J# ) ; 
 

8.14.24 SELECT DISTINCT SPJ.P# 
FROM   SPJ 
WHERE  ( SELECT S.CITY 

FROM   S 
WHERE  S.S# = SPJ.S# ) =  

( SELECT J.CITY 
FROM   J 
WHERE  J.J# = SPJ.J# ) ; 
 

8.14.25 SELECT DISTINCT SPJ.J# 
FROM   SPJ 
WHERE  ( SELECT S.CITY 

FROM   S 
WHERE  S.S# = SPJ.S# ) <>  

( SELECT J.CITY 
FROM   J 
WHERE  J.J# = SPJ.J# ) ; 
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8.14.26 SELECT DISTINCT SPJX.P# AS PA, SPJY.P# AS PB 
FROM   SPJ AS SPJX, SPJ AS SPJY 
WHERE  SPJX.S# = SPJY.S# 
AND    SPJX.P# < SPJY.P# ; 
 

8.14.27 SELECT COUNT ( DISTINCT SPJ.J# ) AS N 
FROM   SPJ 
WHERE  SPJ.S# = S#('S1') ; 
 

8.14.28 SELECT SUM ( SPJ.QTY ) AS X 
FROM   SPJ 
WHERE  SPJ.S# = S#('S1') 
AND    SPJ.P# = P#('P1') ; 
 

8.14.29 SELECT SPJ.P#, SPJ.J#, SUM ( SPJ.QTY ) AS Y 
FROM   SPJ 
GROUP  BY SPJ.P#, SPJ.J# ; 
 

8.14.30 SELECT DISTINCT SPJ.P# 
FROM   SPJ 
GROUP  BY SPJ.P#, SPJ.J# 
HAVING AVG ( SPJ.QTY ) > QTY(350) ; 
 

8.14.31 SELECT DISTINCT J.JNAME 
FROM   J, SPJ 
WHERE  J.J# = SPJ.J# 
AND    SPJ.S# = S#('S1') ; 
 

8.14.32 SELECT DISTINCT P.COLOR 
FROM   P, SPJ 
WHERE  P.P# = SPJ.P# 
AND    SPJ.S# = S#('S1') ; 
 

8.14.33 SELECT DISTINCT SPJ.P# 
FROM   SPJ, J 
WHERE  SPJ.J# = J.J# 
AND    J.CITY = 'London' ; 
 

8.14.34 SELECT DISTINCT SPJX.J# 
FROM   SPJ AS SPJX, SPJ AS SPJY 
WHERE  SPJX.P# = SPJY.P# 
AND    SPJY.S# = S#('S1') ; 
 

8.14.35 SELECT DISTINCT SPJX.S# 
FROM   SPJ AS SPJX, SPJ AS SPJY, SPJ AS SPJZ 
WHERE  SPJX.P# = SPJY.P# 
AND    SPJY.S# = SPJZ.S# 
AND  ( SELECT P.COLOR  

FROM   P 
WHERE  P.P# = SPJZ.P# ) = COLOR('Red') ; 
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8.14.36 SELECT S.S# 

FROM   S 
WHERE  S.STATUS < ( SELECT S.STATUS 

FROM   S 
WHERE  S.S# = S#('S1') ) ; 
 

8.14.37 SELECT J.J# 
FROM   J 
WHERE  J.CITY = ( SELECT MIN ( J.CITY ) 

FROM   J ) ; 
 

8.14.38 SELECT DISTINCT SPJX.J# 
FROM   SPJ AS SPJX 
WHERE  SPJX.P# = P#('P1') 
AND  ( SELECT AVG ( SPJY.QTY ) 

FROM   SPJ AS SPJY 
WHERE  SPJY.J# = SPJX.J# 
AND    SPJY.P# = P#('P1') ) > 

( SELECT MAX ( SPJZ.QTY ) 
FROM   SPJ AS SPJZ 
WHERE  SPJZ.J# = J#('J1') ) ; 
 

8.14.39 SELECT DISTINCT SPJX.S# 
FROM   SPJ AS SPJX 
WHERE  SPJX.P# = P#('P1') 
AND    SPJX.QTY > ( SELECT AVG ( SPJY.QTY ) 

FROM   SPJ AS SPJY 
WHERE  SPJY.P# = P#('P1') 
AND    SPJY.J# = SPJX.J# ) ; 
 

8.14.40 SELECT J.J# 
FROM   J 
WHERE  NOT EXISTS 

( SELECT * 
FROM   SPJ, P, S 
WHERE  SPJ.J# = J.J# 
AND    SPJ.P# = P.P# 
AND    SPJ.S# = S.S# 
AND    P.COLOR = COLOR('Red') 
AND    S.CITY = 'London' ) ; 
 

8.14.41 SELECT J.J# 
FROM   J 
WHERE  NOT EXISTS 

( SELECT * 
FROM   SPJ 
WHERE  SPJ.J# = J.J# 
AND    NOT ( SPJ.S# = S#('S1') ) ) ; 
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8.14.42 SELECT P.P# 
FROM   P 
WHERE  NOT EXISTS 

( SELECT * 
FROM   J 
WHERE  J.CITY = 'London' 
AND    NOT EXISTS 

( SELECT * 
FROM   SPJ 
WHERE  SPJ.P# = P.P# 
AND    SPJ.J# = J.J# ) ) ; 
 

8.14.43 SELECT S.S# 
FROM   S 
WHERE  EXISTS 

( SELECT * 
FROM   P 
WHERE  NOT EXISTS 

( SELECT * 
FROM   J 
WHERE  NOT EXISTS 

( SELECT * 
FROM   SPJ 
WHERE  SPJ.S# = S.S# 
AND    SPJ.P# = P.P# 
AND    SPJ.J# = J.J# ) ) ) ; 
 

8.14.44 SELECT J.J# 
FROM   J 
WHERE  NOT EXISTS 

( SELECT * 
FROM   SPJ AS SPJX 
WHERE  SPJX.S# = S#('S1') 
AND    NOT EXISTS 

( SELECT * 
FROM   SPJ AS SPJY 
WHERE  SPJY.P# = SPJX.P# 
AND    SPJY.J# = J.J# ) ) ; 
 

8.14.45 SELECT S.CITY FROM S 
UNION 
SELECT P.CITY FROM P 
UNION 
SELECT J.CITY FROM J ; 
 

8.14.46 SELECT DISTINCT SPJ.P# 
FROM   SPJ 
WHERE  ( SELECT S.CITY 

FROM   S 
WHERE  S.S# = SPJ.S# ) = 'London' 
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OR     ( SELECT J.CITY 
FROM   J 
WHERE  J.J# = SPJ.J# ) = 'London' ; 
 

8.14.47 SELECT S.S#, P.P# 
FROM   S, P 
EXCEPT 
SELECT SPJ.S#, SPJ.P# 
FROM   SPJ ; 
 

8.14.48 No answer provided.   
 
8.14.49-8.14.50 Can't be done (because SQL doesn't support 
relation-valued attributes).   
 
8.15 We've numbered the following solutions as 8.15.n, where 7.n 
is the number of the original exercise in Chapter 7.  We follow 
the same conventions as in Section 8.7 regarding the definition 
and naming of range variables.   
 
8.15.13 ( JX, NAMEX, CITYX ) 

WHERE J ( J#:JX, JNAME:NAMEX, CITY:CITYX ) 
 

8.15.14 ( JX, NAMEX, 'London' AS CITY ) 
WHERE J ( J#:JX, JNAME:NAMEX, CITY:'London' ) 
 

8.15.15 SX WHERE SPJ ( S#:SX, J#:J#('J1') ) 
 
8.15.16 ( SX, PX, JX, QTYX ) 

WHERE SPJ ( S#:SX, P#:PX, J#:JX, QTY:QTYX ) 
AND   QTYX ≥ QTY ( 300 ) AND QTYX ≤ QTY ( 750 ) 
 

8.15.17 ( COLORX, CITYX WHERE P ( COLOR:COLORX, CITY:CITYX ) ) 
 
8.15.18 ( SX, PX, JX ) WHERE EXISTS CITYX 

( S ( S#:SX, CITY:CITYX ) AND 
P ( P#:PX, CITY:CITYX ) AND 
J ( J#:JX, CITY:CITYX ) ) 
 

8.15.19 ( SX, PX, JX )  
WHERE EXISTS CITYX EXISTS CITYY EXISTS CITYZ 

( S ( S#:SX, CITY:CITYX ) AND 
P ( P#:PX, CITY:CITYY ) AND 
J ( J#:JX, CITY:CITYZ ) 
AND ( CITYX =/ CITYY OR 

CITYY =/ CITYZ OR 
CITYZ =/ CITYX ) ) 
 

8.15.20 ( SX, PX, JX )  
WHERE EXISTS CITYX EXISTS CITYY EXISTS CITYZ 
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( S ( S#:SX, CITY:CITYX ) AND 
P ( P#:PX, CITY:CITYY ) AND 
J ( J#:JX, CITY:CITYZ ) 
AND ( CITYX =/ CITYY AND 

CITYY =/ CITYZ AND 
CITYZ =/ CITYX ) ) 
 

8.15.21 PX WHERE EXISTS SX ( SPJ ( P#:PX, S#:SX ) AND 
S ( S#:SX, CITY:'London' ) ) 
 

8.15.22 PX WHERE EXISTS SX EXISTS JX 
( SPJ ( S#:SX, P#:PX, J#:JX ) 

AND S ( S#:SX, CITY:'London' ) 
AND J ( J#:JX, CITY:'London' ) 

 
8.15.23 ( CITYX AS SCITY, CITYY AS JCITY ) 

WHERE EXISTS SX EXISTS JY 
( S ( S#:SX, CITY:CITYX ) 
AND J ( J#:JY, CITY:CITYY ) 
AND SPJ ( S#:SX, J#:JY ) ) 
 

8.15.24 PX WHERE EXISTS SX EXISTS JX EXISTS CITYX 
( S ( S#:SX, CITY:CITYX ) 
AND J ( J#:JX, CITY:CITYX ) 
AND SPJ ( S#:SX, P#:PX, J#:JX ) ) 

 
8.15.25 JY WHERE EXISTS SX EXISTS CITYX EXISTS CITYY 

( SPJ ( S#:SX, J#:JY ) 
AND S ( S#:SX, CITY:CITYX ) 
AND J ( J#:JY, CITY:CITYY ) 
AND CITYX =/ CITYY ) 
 

8.15.26 ( PX AS XP#, PY AS YP# ) WHERE EXISTS SX 
( SPJ ( S#:SX, P#:PX ) 
AND SPJ ( S#:SX, P#:PY ) 
AND PX < PY ) 
 

8.15.27-8.15.30 No answers provided (because Section 8.7 didn't 
discuss aggregate operators).   
 
8.15.31 NAMEX WHERE EXISTS JX 

( J ( J#:JX, JNAME:NAMEX ) 
AND SPJ ( S#:S#('S1'), J#:JX ) ) 
 

8.15.32 COLORX WHERE EXISTS PX 
( P ( P#:PX, COLOR:COLORX ) AND 
SPJ ( S#:S#('S1'), P#:PX ) ) 
 

8.15.33 PX WHERE EXISTS JX 
( SPJ ( P#:PX, J#:JX ) AND 
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J ( J#:JX, CITY:'London' ) ) 
 

8.15.34 JX WHERE EXISTS PX 
( SPJ ( P#:PX, J#:JX ) AND 
SPJ ( P#:PX, S#:S#('S1') ) ) 
 

8.15.35 SX WHERE EXISTS PX EXISTS SY EXISTS PY 
( SPJ ( S#:SX, P#:PX ) AND 
SPJ ( P#:PX, S#:SY ) AND 
SPJ ( S#:SY, P#:PY ) AND 
P ( P#:PY, COLOR:COLOR('Red') ) ) 

 
8.15.36 SX WHERE EXISTS STATUSX EXISTS STATUSY 

( S ( S#:SX, STATUS:STATUSX ) AND 
S ( S#:S#('S1'), STATUS:STATUSY ) AND 
STATUSX < STATUSY ) 
 

8.15.37 JX WHERE EXISTS CITYX 
( J ( J#:JX, CITY:CITYX ) AND 
FORALL CITYY ( IF J ( CITY:CITYY ) 

THEN CITYY ≥ CITYX  
END IF ) 
 

8.15.38-8.15.39 No answers provided (because Section 8.7 didn't 
discuss aggregate operators).   
 
8.15.40 JX WHERE J ( J#:JX ) AND 

NOT EXISTS SX EXISTS PX 
( SPJ ( S#:SX, P#:PX, J#:JX ) AND 
S ( S#:SX, CITY:'London' ) AND 
P ( P#:PX, COLOR:COLOR('Red') ) ) 
 

8.15.41 JX WHERE J ( J#:JX ) 
AND   FORALL SX ( IF SPJ ( S#:SX, J#:JX ) 

THEN SX = S#('S1')  
END IF ) 

 
8.15.42 PX WHERE P ( P#:PX ) 

AND   FORALL JX ( IF J ( J#:JX, CITY:'London' ) 
THEN SPJ ( P#:PX, J#:JX )  
END IF ) 

 
8.15.43 SX WHERE S ( S#:SX ) 

AND   EXISTS PX FORALL JX 
( SPJ ( S#:SX, P#:PX, J#:JX ) ) 
 

8.15.44 JX WHERE J ( J#:JX ) 
AND   FORALL PX ( IF SPJ ( S#:S#('S1'), P#:PX ) 

THEN SPJ ( P#:PX, J#:JX )  
END IF ) 
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8.15.45 CITYX WHERE S ( CITY:CITYX ) 

OR    P ( CITY:CITYX ) 
OR    J ( CITY:CITYX ) 
 

8.15.46 PX WHERE EXISTS SX ( SPJ ( S#:SX, P#:PX ) AND 
S ( S#:SX, CITY:'London' ) ) 

OR    EXISTS JX ( SPJ ( J#:JX, P#:PX ) AND 
J ( J#:JX, CITY:'London' ) ) 
 

8.15.47 ( SX, PX ) WHERE S ( S#:SX ) AND P ( P#:PX ) 
AND NOT SPJ ( S#:SX, P#:PX ) 
 

8.15.48 ( SX AS XS#, SY AS YS# ) 
WHERE S ( S#:SX ) AND S ( S#:SY ) AND FORALL PZ 
( ( IF SPJ ( S#:SX, P#:PZ ) THEN SPJ ( S#:SY, P#:PZ )  

END IF ) 
AND 
( IF SPJ ( S#:SY, P#:PZ ) THEN SPJ ( S#:SX, P#:PZ )  
END IF ) ) 
 

8.15.49-8.15.50 No answers provided (because Section 8.7 didn't 
discuss grouping and ungrouping).   
 
8.16 No answers provided (because some of the queries are trivial; 
others can't be done using only the subset of QBE sketched in the 
chapter; and others can't be done in QBE at all, since QBE isn't 
relationally complete).   
 
          *** End of Chapter 8 *** 
 



Copyright (c) 2003 C. J. Date                             page 9.1 
 

Chapter 9  
 
 

          I n t e g r i t y 
 
 
Principal Sections 
 
•  A closer look  
•  Predicates and propositions  
•  Relvar predicates and DB predicates  
•  Checking the constraints  
•  Internal vs. external predicates  
•  Correctness vs. consistency  
•  Integrity and views  
•  A constraint classification scheme  
•  Keys  
•  Triggers (a digression)  
•  SQL facilities  
 
 

General Remarks 
 
This chapter has been rewritten from beginning to end in the 
eighth edition (even the division into sections has changed 
drastically).  It's based in part on reference [9.16].  It's also 
one of the most important chapters in the entire book.   
 

What's the most important thing about a database?  Surely it's 
to make sure──insofar as possible──that the data it contains is 
correct!  This simple observation is the justification for my 
constant claims to the effect that integrity is crucial and 
fundamental, and that (as stated in Chapter 1) a database isn't 
really just a collection of "data"──rather, it's a collection of 
"true facts" (i.e., true propositions).   

 
This heavy emphasis on integrity (or semantics, if you prefer) 

is yet another feature that sets this book apart from its 
competitors.  In fact, I did a quick survey of a whole shelfload 
of database textbooks──37 in all (!)──and found that:   

 
•   Only one had an entire chapter devoted to the topic, and that 

chapter was structured and balanced very strangely (the 
sections were entitled "Domain Constraints,"* "Referential 
Integrity," "Assertions," "Triggers," and "Functional 
Dependencies"; this seems to me a little bit like having a 
chapter in a biology text with sections entitled "Flightless 
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Birds, Birds of Prey, Birds, How Flying Birds Fly, and 
Sparrows").   

 
 
────────── 
 
*  Corresponding to a mixture of type and attribute constraints, 
in terms of the classification scheme presented in the book.   
 
────────── 
 
 

Note:  At first glance it looked as if there were three 
others that had a whole chapter on the subject too, but closer 
examination revealed that one was using the term to refer to 
normalization issues solely, while the other two were using it 
to refer, not to integrity in its usual sense at all, but 
rather to locking and concurrency control issues.  Caveat 
lector!   

 
•   Most of the books didn't even mention integrity in a chapter 

title at all, and those that did tended to bundle it with 
other topics in what seemed a very haphazard fashion 
("Integrity, Views, Security, and Catalogs"──?!?──is a typical 
example).   

 
•   The coverage in the rest was limited to one section each, 

typically in a chapter on SQL.  (In fact, the coverage in all 
of the books tended to be SQL-specific, and SQL is not a good 
basis for explaining integrity!──see Section 9.12.)   

 
•   I couldn't find a good explanation or definition of the 

concept, let alone the kind of emphasis I think the concept 
deserves, in any of the books at all.   

 
The classification scheme for integrity constraints──into 

type, attribute, relvar, and database constraints──described in 
this chapter is based on work done by myself with David McGoveran.  
It's more logical and more systematic than some other schemes 
described in the literature.  Note in particular that relvar and 
database constraints are crucial to the view updating mechanism 
described in Chapter 10, and type constraints are crucial to the 
type inheritance mechanism described in Chapter 20.  As for 
attribute constraints, they're essentially trivial, for reasons 
explained in Section 9.9, subsection "Attribute Constraints."   

 
It's worth stressing that integrity is not "just keys."  

Integrity has to do with semantics or "business rules," and 
"business rules" can be arbitrarily complex; key constraints are 
just an important special case.   
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All of the "preliminary points" in Section 9.1 need to be 

covered.   
 
We use the calculus, not the algebra, as a basis for our 

examples "for reasons that should become clear as we proceed" (as 
the text puts it).*  The choice is arbitrary, of course, but in 
this context, at least, it does seem as if the fact that "the 
calculus is closer to natural language" argues in its favor.  
Note:  Section 9.1 and Exercise 9.2 both suggest that the reader 
try converting certain calculus-based constraints into algebraic 
form.  No answer provided.   

 
 

────────── 
 
*  This shouldn't be a problem even if you skipped Chapter 8.  The 
constraint formulations aren't hard to follow, even without a deep 
knowledge of the calculus──though an understanding of the 
quantifiers will surely help.   
 
────────── 
 
 
9.2 A Closer Look 
 
Constraints apply to variables, not values.  We're interested in 
relation variables specifically.  Attribute declared types 
represent an a priori constraint on the relvar (explain), but 
there's much more to it!   
 

Explain the general form of a constraint:   
 

•   IF certain tuples appear in certain relvars, THEN those 
tuples satisfy a certain condition.   

 
Common special cases:   
 
•   IF certain tuples appear in a certain relvar, THEN those 

tuples satisfy a certain condition.   
 
•   IF a certain tuple appears in a certain relvar, THEN that 

tuple satisfies a certain condition.   
 

Explain the terms logical implication, antecedent, consequent.  Go 
through the six examples (each illustrates one new point).  Note 
that (candidate) KEY and FOREIGN KEY constraints can be expressed, 
albeit longwindedly, using this general constraint language.  Use 
either Tutorial D or pure calculus──not both──for examples in 
class (Tutorial D is probably the better choice).   
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9.3 Predicates and Propositions  
 
People are frequently confused over the message of this section, 
which is SIMPLE but IMPORTANT:   
 
•  A constraint as formally stated is a predicate.   
 
•   When that constraint is checked, arguments are substituted 

for the parameters and the predicate is thereby reduced to a 
proposition──and that proposition is then required to evaluate 
to TRUE.   

 
The parameters in question stand for relvars.  Don't get into it 
yet, but the predicate in question is an internal predicate 
specifically (we'll get into internal vs. external 
predicates──another important logical difference!──in Section 
9.6).   
 
 
9.4 Relvar and DB Predicates  
 
The material of this section is of fundamental importance.  
Unfortunately, however, it isn't very widely supported in 
practice, nor even much understood, even though in principle it's 
quite straightforward.  It's also not much discussed in the 
literature!   
 

Explain relvar predicates (and note slight shift in meaning 
since the seventh edition).  The Golden Rule (first version):   

 
No update operation must ever assign to any relvar a value 
that causes its relvar predicate to evaluate to FALSE.   
 

The text doesn't say this explicitly, but the rule applies to all 
relvars, derived as well as base (in particular, it applies to 
views──forward pointer to Chapter 10).   
 

Explain database predicates and The Golden Rule (second and 
final version):   

 
No update operation must ever assign to any database a value 
that causes its database predicate to evaluate to FALSE.   
 

Predicates are the criterion for the acceptability of updates. 
 
 
9.5 Checking the Constraints 
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Implementation issue (not very interesting, it's essentially just 
a matter of optimization):  Check the constraints before doing the 
update, if possible.  Model issue (VERY important, and a violation 
of "conventional wisdom"):  All constraint checking is 
immediate!──constraints are satisfied at statement boundaries──no 
deferred (COMMIT-time) checking at all.  Explain that this 
position (a) is unconventional and (b) will be justified later (in 
Chapter 16).   
 

Note:  In the seventh edition, I said that database 
constraints (see Section 9.9) should be checked at COMMIT time, 
not immediately, and went on to say:   

 
"It would be possible to insist that database constraints be 
checked immediately ... Whether it would be desirable is 
another matter, however, one that's still under investigation.  
My own current feeling──subject to possible revision!──is that 
it would not be desirable."   

 
Well, I did "revise" my feelings on the matter.  See Chapter 16.   
 
 
9.6 Internal vs. External Predicates 
 
Another IMPORTANT section ... You might have noticed that in this 
chapter so far we've been using the term predicate in a sense 
slightly different from that in which we used it in earlier 
chapters (Chapters 3 and 6 in particular).  Now we need to clarify 
... Be very clear on the difference between the formal, internal, 
system-understood predicate for a given relvar (the relvar 
predicate for that relvar) and the corresponding informal, 
external, user-understood predicate.  Ditto for databases, mutatis 
mutandis.  Note that from this point forward the unqualified term 
predicate is used in the book to mean an internal predicate 
specifically (barring explicit statements to the contrary).   
 

The Closed World Assumption applies to external predicates, 
not internal ones.  (A tuple might satisfy some relvar 
predicate──an interval predicate, that is──and yet validly not 
appear in the corresponding relvar.)  The next section elaborates.   

 
 

9.7 Correctness vs. Consistency  
 
Another HUGELY important section (and a logical difference with a 
vengeance) ... The system cannot enforce truth, only consistency.  
As the chapter says, correct implies consistent (but not the other 
way around), and inconsistent implies incorrect (but not the other 
way around)──where by correct we mean the database is correct if 
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and only if it fully reflects the true state of affairs in the 
real world.    
 
 
9.8 Integrity and Views  
 
Self-explanatory, but once again important──and a trifle 
unorthodox (most people think integrity applies to base relvars 
only).  The only slightly tricky point is in Example 2 (projection     
involves the introduction of an EXISTS corresponding to the 
attribute that has been projected away).  We'll be appealing to 
these ideas in the next chapter in particular.   
 
 
9.9 A Constraint Classification Scheme  
 
There have been many attempts (most of them not very successful) 
to come up with a sensible classification scheme for integrity 
constraints.  I've made several such attempts myself!──see among 
other things my Relational Database Writings series, especially 
the 1991-1994 and 1994-1997 volumes (Addison-Wesley, 1995 and 
1998, respectively); see also the two editions, coauthored with 
Hugh Darwen, of the Third Manifesto book.  Other writers who have 
also tried to come up with classification schemes include:   
 
•  Ted Codd (in reference [6.2])  
 
•  Mike Stonebraker (1975 ACM SIGMOD Conference Proceedings)  
 
•   Jeff Ullman and Jennifer Widom (A First Course in Database 

Systems, Prentice Hall, 1997)  
 
•   Ralph Kimball (Intelligent Enterprise 3, Nos. 11 and 12, 

August 1st and 18th, 2000, respectively)  
 
•   Ron Ross (The Business Rule Book: Classifying, Defining, and 

Modeling Rules, 2nd edition, Business Rule Solutions LLC, 
1997)    

 
(Not to mention the SQL standard──see Section 9.12.)  The scheme 
presented in this section has a feeling of "rightness" about it, 
however, in that the structure of the classification mirrors the 
structure of the data itself.  Databases are made out of relvars; 
relvars are made out of attributes; attributes are made out of 
types.  So:   
 
•   A database constraint is a constraint on the values a given 

database is permitted to assume.   
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•   A relvar constraint is a constraint on the values a given 
relvar is permitted to assume.   

 
•   An attribute constraint is a constraint on the values a given 

attribute is permitted to assume.   
 
•   A type constraint is, precisely, a definition of the set of 

values that constitute a given type.   
 

Type constraints:  Already discussed in Chapter 5──but we didn't 
explain in that chapter that such constraints are, at least 
conceptually, always checked ("immediately") during the execution 
of some selector invocation.  A type constraint is, precisely, a 
specification of the values that make up the type in question.  
The declared type of possrep components is an a priori constraint, 
but further constraints are possible.  No relvar can ever acquire 
a value for any attribute in any tuple that isn't of the 
appropriate type (in a system that supports type constraints 
properly, of course, which unfortunately excludes all of today's 
SQL systems ... see Section 9.12!).   
 
Attribute constraints:  Self-explanatory.  Note that if the system 
enforces type constraints properly, attribute constraints can 
never be violated.   
 
Relvar constraints:  Can be arbitrarily complex, so long as they 
explicitly refer to exactly one relvar.  Candidate key 
constraints, discussed in detail in the next section, are an 
important special case.  The relvar in question isn't necessarily 
a base relvar (see Chapter 10).   
 
DB constraints:  Can be arbitrarily complex, so long as it 
explicitly refers to at least two relvars.  Foreign key 
constraints, discussed in detail in the next section 9.8, are an 
important special case (unless the referenced and referencing 
relvar happen to be one and the same, in which case the foreign 
key constraint is a relvar constraint instead).  The database in 
question isn't necessarily the "real" database (see Chapter 10).   
 

Relvar and database constraints are what we've been 
concentrating on in this chapter so far.  The difference between 
them isn't──and in fact can't be, thanks to The Principle of 
Interchangeability of Base and Derived Relvars, which we'll be 
discussing in the next chapter──very important from a theoretical 
point of view, though it might be useful from a pragmatic one.   

 
State vs. transition constraints:  Self-explanatory──but note that 
transition constraints aren't much supported (if at all) in 
practice, despite the fact that they're very common in the real 
world.  They're certainly not supported in SQL.  (Note:  They can 
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be enforced by means of SQL triggers, of course, but I don't 
regard such procedural enforcement as proper "support."  The whole 
point of all this stuff is that we want declarative support for 
everything, insofar as declarative support is possible.  Further 
discussion to follow in Section 9.11.)   
 
 
9.10 Keys 
 
Keys are a logical notion, not a physical one.  They don't apply 
just to base relvars!  The book espouses at least two slightly 
heretical positions with respect to keys:   
 
•   Relvars must have at least one candidate key but not 

necessarily a primary key.   
 
•   Foreign keys must reference a candidate key but not 

necessarily a primary key.   
 

Detailed arguments in defense of these positions can be found in 
reference [9.14].   
 

Stress the fact that keys are sets of attributes and key 
values are therefore sets of attribute values; in fact, a key 
value is a (sub)tuple, and we're appealing to the notion of tuple 
equality once again.  Syntax:  Commalist of attribute names 
enclosed in braces.   

 
Regarding candidate keys:  Note that irreducibility is 

referred to as minimality in much of the literature.  Mention 
superkeys.   

 
Regarding foreign keys:  Note the requirement──analogous to 

the requirement for, e.g., join──that each attribute of a given 
foreign key must have the same name (as well as the same type, of 
course) as the corresponding attribute of the matching candidate 
key; formally speaking, in fact, they're the same attribute.   

 
The discussion of foreign keys includes this example of a 

"self-referencing" relvar:   
 
VAR EMP BASE RELATION 

{ EMP# EMP#, ..., MGR_EMP# EMP#, ... }  
PRIMARY KEY { EMP# } 
FOREIGN KEY { RENAME MGR_EMP# AS EMP# } REFERENCES EMP ; 
 

It goes on to ask the reader to invent some sample data for this 
example.  One possible answer to this exercise is as follows:   
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┌──────┬─────┬──────────┬─────┐  

EMP  │ EMP# │ ... │ MGR_EMP# │ ... │  
├══════┼─────┼──────────┼─────┤  
│ E1   │ ... │ E1       │ ... │  
│ E2   │ ... │ E1       │ ... │  
│ E3   │ ... │ E2       │ ... │  
│ E4   │ ... │ E2       │ ... │  
└──────┴─────┴──────────┴─────┘  
 

Note in passing that the manager for employee E1 is shown as 
employee E1, not as some kind of "null"!──i.e., E1 is his or her 
own manager.   

 
Actually, a design in which the employee-to-manager 

relationship is split out into a separate relvar would probably be 
preferable, as here:   

 
┌──────┬─────┬─────┐              ┌──────┬──────────┐  

EMP  │ EMP# │ ... │ ... │         EMM  │ EMP# │ MGR_EMP# │   
├══════┼─────┼─────┤              ├══════┼──────────┤  
│ E1   │ ... │ ... │              │ E2   │ E1       │  
│ E2   │ ... │ ... │              │ E3   │ E2       │  
│ E3   │ ... │ ... │              │ E4   │ E2       │  
│ E4   │ ... │ ... │              └──────┴──────────┘  
└──────┴─────┴─────┘  
 

Observe that EMM includes no tuple with EMP# = employee number 
E1, and the referential constraint is now a database constraint 
(it spans two relvars), not a relvar constraint.  See reference 
[19.19] for further discussion of this kind of design.   

 
Regarding the referential integrity rule:  Note (a) the remark 

to the effect that the rule can be regarded as a "metaconstraint"; 
(b) the fact that discussion of its companion "metaconstraint," 
the entity integrity rule, is deferred to Chapter 19 (because it 
has to do with nulls).   

 
Regarding referential actions:  Use these ideas as a 

springboard for a brief discussion of triggered procedures (see 
the next section), but stress the fact that referential actions 
are specified declaratively, not procedurally, and declarative 
solutions are always preferable (because declarative means the 
system does the work, while procedural means the user does).   

 
 

9.11 Triggers (a digression)  
 
This section could be skipped; it's included here mainly for 
completeness (also because there's no other obvious place to put 
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it).  Everything else in the chapter is important; triggers are 
more of a pragmatic issue.  In fact, I think they represent an 
abdication of responsibility on the part of the vendor:  "We don't 
know how to solve this problem, so we'll punt and pass it back to 
the user" (who now has to write a bunch of procedural code).  If 
you do cover them, stress the point that triggers are much more 
useful for other purposes than they are for constraint checking, 
for which they're not the recommended solution.   
 
 
9.12 SQL Facilities 
 
Mostly self-explanatory ... but note that "self-explanatory" is 
not the same thing as making sense.   
 
 
Answers to Exercises 
 
9.1  
 
1. INSERT on S, UPDATE on S.STATUS  
 
2. INSERT on S, UPDATE on S.STATUS, UPDATE on S.CITY  
 
3. INSERT on P, DELETE on P, UPDATE on P.COLOR  
 
4. INSERT on S, UPDATE on S.S#  
 
5. INSERT on SP, DELETE on S, UPDATE on SP.S#, UPDATE on S.S#  
 
6.  INSERT on SP, UPDATE on S.S#, UPDATE on S.STATUS, UPDATE on 

SP.S#, UPDATE on SP.QTY  
 

9.2  
 
1. CONSTRAINT SC1  

IS_EMPTY ( S WHERE STATUS < 1 OR STATUS > 100 ) ; 
 

2. CONSTRAINT SC2  
IS_EMPTY ( S WHERE CITY = 'London' AND STATUS =/ 20 ) ; 
 

3. CONSTRAINT PC3 IS_EMPTY ( P ) OR  
NOT ( IS_EMPTY ( P WHERE COLOR = COLOR ( 'Blue' ) ) ) ; 
 

4. CONSTRAINT SC4 COUNT ( S ) = COUNT ( S { S# } ) ; 
 
5. CONSTRAINT SSP5 SP { S# } ⊆ S { S# } ; 
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6. CONSTRAINT SSP6 IS_EMPTY ( ( S JOIN SP )  
WHERE STATUS < 20 
AND   QTY > QTY ( 500 ) ) ;  
 

9.3  
 
a. TYPE CITY  

POSSREP { C CHAR CONSTRAINT C = 'London'  
OR C = 'Paris'  
OR C = 'Rome'  
OR C = 'Athens'  
OR C = 'Oslo'  
OR C = 'Stockholm'  
OR C = 'Madrid'  
OR C = 'Amsterdam' } ; 
 

An obvious shorthand would be:   
 

a. TYPE CITY  
POSSREP { C CHAR CONSTRAINT C IN { 'London', 'Paris', 

'Rome', 'Athens', 
'Oslo', 'Stockholm', 
'Madrid', 'Amsterdam' } ; 
 

Note:  A better solution might be to keep the legal city names 
in a relvar and to use foreign keys to ensure that no other 
relvar ever includes a city name that isn't one of the legal 
ones (this approach is likely to be more forgiving if a new 
city becomes legal).  Such a solution would thus replace the 
foregoing type constraint (and corresponding attribute 
constraints) by a set of database constraints.   
 

b. TYPE S# POSSREP { C CHAR CONSTRAINT 
LENGTH ( C ) ≥ 2 AND LENGTH ( C ) ≤ 5 AND  
SUBSTR ( C, 1, 1 ) = 'S' AND 
CAST_AS_INTEGER ( SUBSTR ( C, 2 ) ≥ 0 AND 
CAST_AS_INTEGER ( SUBSTR ( C, 2 ) ≤ 9999 } ; 
 

We assume here that the operators LENGTH, SUBSTR, and 
CAST_AS_INTEGER are available and have the obvious semantics.   
 

c. CONSTRAINT C FORALL PX ( IF PX.COLOR = COLOR ( 'Red' )  
THEN PX.WEIGHT < WEIGHT ( 50.0 ) 
END IF ) ;  

 
Here and throughout the rest of these answers we follow our 
usual conventions regarding the definition and naming of range 
variables.   
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d. CONSTRAINT D  
FORALL JX FORALL JY ( IF JX.J# =/ JY.J#  

THEN JX.CITY =/ JY.CITY END IF ) ;  
 

e. CONSTRAINT E COUNT ( SX WHERE SX.CITY = 'Athens' ) ≤ 1 ; 
 
f. CONSTRAINT F  

FORALL SPJX ( SPJX.QTY ≤ 2 * AVG ( SPJY, QTY ) ) ;  
 

g. CONSTRAINT G 
FORALL SX FORALL SY ( IF SX.STATUS = MAX ( S, STATUS ) AND 

SY.STATUS = MIN ( S, STATUS )  
THEN SX.CITY =/ SY.CITY END IF ) ;  
 

Actually, the terms "highest status supplier" and "lowest 
status supplier" aren't well-defined, since status values 
aren't unique.  We've interpreted the requirement to be that 
if Sx and Sy are any suppliers with "highest status" and 
"lowest status," respectively, then Sx and Sy mustn't be 
colocated.  Note that the constraint will necessarily be 
violated if the "highest" and "lowest" status are equal!──in 
particular, it'll be violated if there's just one supplier.  
We could fix this problem by inserting AND SX.STATUS =/ 
SY.STATUS immediately before the THEN.   
 

h. CONSTRAINT H FORALL JX EXISTS SX ( SX.CITY = JX.CITY ) ;  
 
i. CONSTRAINT I FORALL JX EXISTS SX EXISTS SPJX  

( SX.CITY = JX.CITY AND  
SX.S# = SPJX.S# AND SPJX.J# = JX.J# ) ;  
 

j. CONSTRAINT J EXISTS PX ( PX.COLOR = COLOR ( 'Red' ) ) ; 
 

This constraint will be violated if there are no parts at all.  
A better formulation might be:   
 
CONSTRAINT J NOT EXISTS PX ( TRUE ) OR  

EXISTS PX ( PX.COLOR = COLOR ( 'Red' ) ) ; 
 

k. CONSTRAINT K FORALL SX ( AVG ( SY, STATUS ) > 19 ) ;  
 

The initial "FORALL SX" here is to avoid the error that would 
otherwise occur if the system tried to check the constraint 
when there were no suppliers at all.   
 

l. CONSTRAINT L  
FORALL SX ( IF SX.CITY = 'London' THEN 

EXISTS SPJX ( SPJX.S# = SX.S# AND  
SPJX.P# = P# ( 'P2' ) END IF ) ;  
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m. CONSTRAINT M NOT EXISTS PX ( PX.COLOR = COLOR ( 'Red' ) ) OR 
EXISTS PX ( PX.COLOR = COLOR ( 'Red' ) AND  

PX.WEIGHT < WEIGHT ( 50.0 ) ) ;  
 

n. CONSTRAINT N  
COUNT ( SPJX.P# WHERE  

EXISTS SX ( SX.S# = SPJX.S# AND  
SX.CITY = 'London' ) ) >  

COUNT ( SPJY.P# WHERE  
EXISTS SY ( SY.S# = SPJY.S# AND  

SY.CITY = 'Paris'  ) ) ;  
 

o. CONSTRAINT O  
SUM ( SPJX WHERE  

EXISTS SX ( SX.S# = SPJX.S# AND  
SX.CITY = 'London' ), QTY ) >  

SUM ( SPJY WHERE  
EXISTS SY ( SY.S# = SPJY.S# AND  

SY.CITY = 'Paris'  ), QTY ) ;  
 

p. CONSTRAINT P  
FORALL SPJX' FORALL SPJX ( SPJX'.S# =/ SPJX.S# OR  

SPJX'.P# =/ SPJX.P# OR  
SPJX'.J# =/ SPJX.J# OR  
0.5 * SPJX'.QTY ≤ SPJX.QTY ) ;  
 

q. CONSTRAINT Q  
FORALL SX' FORALL SX ( SX'.S# =/ SX.S# OR  

( IF SX'.CITY = 'Athens' THEN  
SX. CITY = 'Athens' OR 
SX. CITY = 'London' OR 
SX. CITY = 'Paris' END IF ) OR  

( IF SX'.CITY = 'London' THEN  
SX. CITY = 'London' OR 
SX. CITY = 'Paris' END IF ) ) ;  

 
9.4 Constraints A and B are type constraints, of course.  Of the 
others, constraints C, D, E, F, G, J, K, M, P, and Q are relvar 
constraints, the rest are database constraints.  The operations 
that might cause the constraints to be violated are as follows:   
 
a. CITY selector invocation  
 
b. S# selector invocation  
 
c. INSERT on P, UPDATE on P.WEIGHT  
 
d. INSERT on J, UPDATE on J.CITY  
 
e. INSERT on S, UPDATE on S.CITY  
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f. INSERT on SPJ, DELETE on SPJ, UPDATE on SPJ.QTY  
 
g. INSERT on S, DELETE on S, UPDATE on S.STATUS, UPDATE on S.CITY  
 
h. INSERT on J, DELETE on S, UPDATE on S.CITY, UPDATE on J.CITY  
 
i.  INSERT on J, DELETE on S, DELETE on SPJ, UPDATE on S.CITY, 

UPDATE on J.CITY, UPDATE on SPJ.S#, UPDATE on SPJ.J#  
 
j. INSERT on P, DELETE on P, UPDATE on P.COLOR  
 
k. INSERT on S, DELETE on S, UPDATE on S.STATUS  
 
l.  INSERT on S, DELETE on SPJ, UPDATE on S.S#, UPDATE on S.CITY, 

UPDATE on SPJ.S#, UPDATE on SPJ.P#  
 
m.  INSERT on P, DELETE on P, UPDATE on P.COLOR, UPDATE on 

P.WEIGHT  
 
n.  INSERT on S, INSERT on SPJ, DELETE on S, DELETE on SPJ, 

UPDATE on S.S#, UPDATE on S.CITY, UPDATE on SPJ.S#, UPDATE on 
SPJ.P#  

 
o.  INSERT on S, INSERT on SPJ, DELETE on S, DELETE on SPJ, 

UPDATE on S.S#, UPDATE on S.CITY, UPDATE on SPJ.S#, UPDATE on 
SPJ.QTY  

 
p. UPDATE on SPJ.QTY  
 
q. UPDATE on S.CITY  
 

9.5  
 
a. Accepted  
 
b. Rejected (candidate key uniqueness violation)  
 
c. Rejected (violates RESTRICT specification)  
 
d.  Accepted (supplier S3 and all shipments for supplier S3 are 

deleted)  
 
e. Rejected (violates RESTRICT specification)  
 
f.  Accepted (project J4 and all shipments for project J4 are 

deleted)  
 
g. Accepted  
 
h. Rejected (candidate key uniqueness violation)  
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i. Rejected (referential integrity violation)  
 
j. Accepted  
 
k. Rejected (referential integrity violation)  
 
l.  Rejected (referential integrity violation──the default 

project number jjj does not exist in relvar J)  
 

9.6 There's no explicit foreign key INSERT rule, because INSERTs 
on the referencing relvar──also UPDATEs on the foreign key in the 
referencing relvar──are governed by the basic referential 
integrity rule itself (i.e., the requirement that there be no 
unmatched foreign key values).  In other words, taking suppliers 
and parts as a concrete example:   
 
•   An attempt to INSERT a shipment (SP) tuple will succeed only 

if (a) the supplier number in that tuple exists as a supplier 
number in S, and (b) the part number in that tuple exists as a 
part number in P.   

 
•   An attempt to UPDATE a shipment (SP) tuple will succeed only 

if (a) the supplier number in the updated tuple exists as a 
supplier number in S, and (b) the part number in the updated 
tuple exists as a part number in P.   

 
Note carefully also that the foregoing remarks apply to the 

referencing relvar, whereas the (explicit) DELETE and UPDATE rules 
apply to the referenced relvar.  Thus, to talk about an "INSERT 
rule," as if such a rule were somehow similar to the existing 
DELETE and UPDATE rules, is really a rather confusing thing to do.  
This fact provides additional justification for not including any 
explicit "INSERT rule" support in the concrete syntax.   

 
9.7 The referential diagram is shown in the figure below.  A 
possible database definition follows.  For simplicity, we haven't 
bothered to define any type constraints──except inasmuch as the 
POSSREP specification on a given type definition serves as an a 
priori constraint on the type, of course.   
 
╔════════════════════════════════════════════════════════════════╗ 
║                        ┌──────────────┐                        ║ 
║                        │    PREREQ    │                        ║ 
║                        └───┬──────┬───┘                        ║ 
║                SUP_COURSE# │      │ SUB_COURSE#                ║ 
║                        ┌───*──────*───┐                        ║ 
║                        │    COURSE    │                        ║ 
║                        └──────*───────┘                        ║ 
║                               │ COURSE#                        ║ 
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║        COURSE#,OFF#    ┌──────┴───────┐    COURSE#,OFF#        ║     
║                ┌───────*   OFFERING   *───────┐                ║ 
║                │       └──────────────┘       │                ║ 
║          ┌─────┴─────┐                 ┌──────┴──────┐         ║ 
║          │  TEACHER  │                 │  ENROLLMENT │         ║ 
║          └─────┬─────┘                 └──────┬──────┘         ║ 
║                │       ┌──────────────┐       │                ║ 
║                └───────*   EMPLOYEE   *───────┘                ║ 
║                EMP#    └──────────────┘    EMP#                ║ 
╚════════════════════════════════════════════════════════════════╝  
 

TYPE COURSE# POSSREP { CHAR } ; 
TYPE TITLE   POSSREP { CHAR } ; 
TYPE OFF#    POSSREP { CHAR } ; 
TYPE OFFDATE POSSREP { DATE } ; 
TYPE CITY    POSSREP { CHAR } ; 
TYPE EMP#    POSSREP { CHAR } ; 
TYPE NAME    POSSREP { NAME } ; 
TYPE JOB     POSSREP { CHAR } ; 
TYPE GRADE   POSSREP { CHAR } ; 
 
VAR COURSE BASE RELATION  

{ COURSE# COURSE#, 
TITLE   TITLE } 

PRIMARY KEY { COURSE# } ; 
 

VAR PREREQ BASE RELATION  
{ SUP_COURSE# COURSE#, 

SUB_COURSE# COURSE# } 
KEY { SUP_COURSE#, SUB_COURSE# } 
FOREIGN KEY { RENAME SUP_COURSE# AS COURSE# } 

REFERENCES COURSE 
ON DELETE CASCADE 
ON UPDATE CASCADE 

FOREIGN KEY { RENAME SUB_COURSE# AS COURSE# } 
REFERENCES COURSE  
ON DELETE CASCADE 
ON UPDATE CASCADE ; 
 

VAR OFFERING BASE RELATION  
{ COURSE#  COURSE#, 
OFF#     OFF#, 
OFFDATE  OFFDATE, 
LOCATION CITY } 

KEY { COURSE#, OFF# } 
FOREIGN KEY { COURSE# } REFERENCES COURSE   

ON DELETE CASCADE 
ON UPDATE CASCADE ; 
 

VAR EMPLOYEE BASE RELATION  
{ EMP#  EMP#, 
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ENAME NAME, 
JOB   JOB } 

KEY { EMP# } ; 
 

VAR TEACHER BASE RELATION  
{ COURSE# COURSE#, 

OFF#    OFF#, 
EMP#    EMP# } 

KEY { COURSE#, OFF#, EMP# } 
FOREIGN KEY { COURSE#, OFF# } REFERENCES OFFERING 

ON DELETE CASCADE 
ON UPDATE CASCADE 

FOREIGN KEY { EMP# } REFERENCES EMPLOYEE 
ON DELETE CASCADE 
ON UPDATE CASCADE ; 
 

VAR ENROLLMENT BASE RELATION ENROLLMENT 
{ COURSE# COURSE#, 
OFF#    OFF#, 
EMP#    EMP#, 
GRADE   GRADE }   

KEY { COURSE#, OFF#, EMP# } 
FOREIGN KEY { COURSE#, OFF# } REFERENCES OFFERING 

ON DELETE CASCADE 
ON UPDATE CASCADE 

FOREIGN KEY { EMP# } REFERENCES EMPLOYEE 
ON DELETE CASCADE 
ON UPDATE CASCADE ; 
 

Points arising: 
 

1.  The (singleton) attribute sets {COURSE#} in TEACHER and 
{COURSE#} in ENROLLMENT could also be regarded as foreign 
keys, both of them referring to COURSE.  However, if the 
referential constraints from TEACHER to OFFERING, ENROLLMENT 
to OFFERING, and OFFERING to COURSE are all properly 
maintained, the referential constraints from TEACHER to COURSE 
and ENROLLMENT to COURSE will be maintained automatically.  
See reference [9.11] for further discussion.   

 
2.  OFFERING is an example of a relvar that's simultaneously both 

referenced and referencing:  There's a referential constraint 
to OFFERING from ENROLLMENT (also from TEACHER, as a matter of 
fact), and a referential constraint from OFFERING to COURSE:   

 
          ENROLLMENT ───* OFFERING ───* COURSE 
 
3.  Note that there are two distinct referential paths from 

ENROLLMENT to COURSE──one direct (foreign key {COURSE#} in 
ENROLLMENT), and the other indirect via OFFERING (foreign keys 
{COURSE#,OFF#} in ENROLLMENT and {COURSE#} in OFFERING):   
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          ┌──────────────────────────┐ 

│                          │ 
│                          * 

ENROLLMENT ───* OFFERING ───* COURSE 
 

However, the two paths aren't truly independent of one another 
(the upper path is implied by the combination of the lower 
two).  For further discussion of this point, see reference 
[9.11] once again.   
 

4.  There are also two distinct referential paths from PREREQ to 
COURSE, but this time the two paths are truly independent 
(they have totally separate meanings).  See reference [9.11] 
yet again.   

 
9.8 The referential diagram is shown in the figure below.  Note 
that the database involves a referential cycle (there's a 
referential path from each of the two relvars to itself).  Apart 
from this consideration, the database definition is essentially 
straightforward.  We omit the details.   
 
╔════════════════════════════════════════════════════════════════╗ 
║                        ┌──────────────┐                        ║ 
║                        │     DEPT     │                        ║ 
║                        └───┬──────*───┘                        ║ 
║                  MGR_EMP#  │      │  DEPT#                     ║ 
║                        ┌───*──────┴───┐                        ║ 
║                        │     EMP      │                        ║ 
║                        └──────────────┘                        ║ 
╚════════════════════════════════════════════════════════════════╝  
 
9.9 We show just the relvar definitions (and those only in 
outline):   
 

VAR EMP BASE RELATION  
{ EMP# ... , 

...... , 
JOB  ... }  

KEY { EMP# } ; 
 

VAR PGMR BASE RELATION  
{ EMP# ... , 

...... , 
LANG ... }  

KEY { EMP# }   
FOREIGN KEY { EMP# } REFERENCES EMP 

ON DELETE CASCADE     
ON UPDATE CASCADE ; 
 

Points arising:   
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1.  This example illustrates the point that a foreign key can 

also be a candidate key of its containing relvar.  Relvar EMP 
contains all employees, and relvar PGMR contains just those 
employees that are programmers; thus, every employee number 
appearing in PGMR must also appear in EMP (but the converse 
isn't true).  The primary key of PGMR is also a foreign key, 
referring to the primary key of EMP.   

 
2.  Note that there's another constraint that needs to be 

maintained in this example──namely, the constraint that a 
given employee will appear in PGMR if and only if the value of 
JOB for that employee is "Programmer."  This constraint isn't 
a referential constraint, of course.   

 
9.10 A candidate key with no attributes (a nullary or "empty key") 
is certainly possible.  In particular, a nullary relvar──i.e., one 
that has no attributes, and hence one whose only legal values are 
DEE and DUM──"obviously" and necessarily has such a key.  But a 
relvar doesn't have to be nullary itself in order to have a 
nullary key.  However, it's at least true that if relvar R has a 
nullary key NK, then:   
 
•   NK is the only candidate key for R, because any nonempty set 

of attributes of R would include NK as a proper subset and 
would thus violate the irreducibility requirement for 
candidate keys.*  (NK is therefore in fact the primary key, if 
a primary key must be chosen.)   

 
 
────────── 
 
*  Recall that the empty set is a subset of every set.   
 
────────── 
 
 
•   R is constrained to contain at most one tuple, because every 

tuple has the same value (namely, the 0-tuple) for NK.  In 
other words, to say that R has a nullary key is to constrain R 
to contain at most one tuple, and such a constraint could 
certainly be useful in some circumstances [6.5].   

 
Note that Tutorial D certainly does permit the declaration of 

such a relvar──for example:   
 
VAR R BASE RELATION { ... } 

KEY { } ; 
 



Copyright (c) 2003 C. J. Date                             page 9.20 
 

It also permits the declaration of a relvar with no attributes at 
all──i.e., a relvar whose only possible values are DEE and DUM:   
 

VAR R BASE RELATION { } 
PRIMARY KEY { } ; 
 

As an aside, we note that SQL doesn't support either of these 
possibilities.   
 
9.11 Let m be the largest integer greater than or equal to n/2.  R 
will have the maximum possible number of keys if either (a) every 
distinct set of m attributes is a key or (b) n is odd and every 
distinct set of m-1 attributes is a key.  Either way, it follows 
that the maximum number of keys in R is n! / ( m! * (n-m)! ).  
Note:  Relvars ELEMENT and MARRIAGE in Section 9.10 are both 
examples of relvars with the maximum possible number of keys; so 
is any nullary relvar.  (If n = 0, the formula becomes 0!/(0!*0!), 
and 0! is 1.)   
 
9.12 In many cases it's possible to make precise statements 
regarding superkeys only, rather than candidate keys as such.   
 
a. Every key of A is a superkey for every restriction of A.   
 
b.  If the projection includes a key K of A, then K is a superkey 

for the projection.  Otherwise all that can be said in general 
is that the combination of all attributes of the projection is 
a superkey for the projection.   

 
c.  Every combination K of a key KA of A and a key KB of B is a 

key for the product A TIMES B.   
 
d.  The combination of all attributes is a superkey for the union 

A UNION B.   
 
e.  Every key of A or B is a superkey for the intersection A 

INTERSECT B.   
 
f. Every key of A is a superkey for the difference A MINUS B.   
 
g.  Every combination K of a key KA of A and a key KB of B is a 

superkey for the join A JOIN B.  Note:  In the special case 
where the joining attributes in A include a key of A, every 
key of B is a superkey for the join.   

 
h. Every key of A is a key for every extension of A.   
 
i.  Every key of B is a superkey for an arbitrary summarization 

of A "per B."   
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j. Every key of A is a superkey for the semijoin A SEMIJOIN B.   
 
k.  Every key of A is a superkey for the semidifference A 

SEMIMINUS B.   
 

However, many of the foregoing statements can be refined 
somewhat in certain situations.  For example:   

 
•   The combination {S#,P#,J#} isn't the only superkey for the 

restriction SPJ WHERE S# = S#('S1'), because the combination 
{P#,J#} is as well.   

 
•   If A has heading {X,Y,Z} and sole candidate key X and 

satisfies the functional dependency Y → Z (see Chapter 11), 
then Y is a superkey for the projection of A over Y and Z.   

 
•   If A and B are both restrictions of C, then every key of C is 

a superkey for A UNION B.   
 

This whole question of key inference is discussed in some detail 
in reference [11.7].   
 
9.13 Clearly, if a candidate key can be empty, then so can a 
matching foreign key──and nullary foreign keys, like nullary 
candidate keys, can certainly be useful on occasion.  See 
reference [6.5] for a detailed discussion.   
 
9.14 Note first that SQL doesn't support type constraints, as 
such, at all.  Part a. of the exercise thus can't be solved 
directly.  However, we can keep the legal city names in a base 
table and use foreign keys to ensure that no other table ever 
includes a city name that isn't one of the legal ones.*  Analogous 
remarks apply to part b.  We omit further details here.   
 
 
────────── 
 
*  We could also use SQL-style "domains" [4.20].   
 
────────── 
 
 
c. CREATE ASSERTION SQL_C CHECK 

( P.COLOR <> COLOR ( 'Red') OR  
P.WEIGHT < WEIGHT ( 50.0 ) ) ; 
 

Here and throughout the rest of these answers we choose to use 
"assertions" rather than "base table check constraints."   
 

d. CREATE ASSERTION SQL_D CHECK 
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( NOT EXISTS ( SELECT * FROM J AS JX WHERE 
EXISTS ( SELECT * FROM J AS JY WHERE 

( JX.J# <> JY.J# AND  
JX.CITY = JY.CITY ) ) ) ) ; 
 

e. CREATE ASSERTION SQL_E CHECK 
( ( SELECT COUNT(*) FROM S  

WHERE  S.CITY = 'Athens' ) ≤ 1 ) ; 
 

f. CREATE ASSERTION SQL_F CHECK 
( NOT EXISTS ( SELECT *  

FROM   SPJ AS SPJX  
WHERE  SPJX.QTY > 2 * 

( SELECT AVG ( SPJY.QTY ) 
FROM   SPJ AS SPJY ) ) ) ; 
 

g. CREATE ASSERTION SQL_G CHECK 
( NOT EXISTS ( SELECT * FROM S SX WHERE 

EXISTS ( SELECT * FROM S SY WHERE 
SX.STATUS = ( SELECT MAX ( S.STATUS ) 

FROM   S ) AND 
SY.STATUS = ( SELECT MIN ( S.STATUS ) 

FROM   S ) AND 
SX.STATUS <> SY.STATUS AND 
SX.CITY = SY.CITY ) ) ) ; 
 

h. CREATE ASSERTION SQL_H CHECK 
( NOT EXISTS ( SELECT * FROM J WHERE 
NOT EXISTS ( SELECT * FROM S WHERE 

S.CITY = J.CITY ) ) ) ; 
 

i. CREATE ASSERTION SQL_I CHECK 
( NOT EXISTS ( SELECT * FROM J WHERE 
NOT EXISTS ( SELECT * FROM S WHERE 

S.CITY = J.CITY AND 
EXISTS ( SELECT * FROM SPJ  

WHERE  SPJ.S# = S.S#  
AND    SPJ.J# = J.J# ) ) ) ) ; 
 

j. CREATE ASSERTION SQL_J CHECK 
( NOT EXISTS ( SELECT * FROM P )  

OR EXISTS ( SELECT * FROM P  
WHERE  P.COLOR = COLOR ( 'Red' ) ) ) ; 
 

k. CREATE ASSERTION SQL_K CHECK 
( ( SELECT AVG ( S.STATUS ) FROM S ) > 19 ) ; 
 

If the suppliers table is empty, the SQL AVG operator will 
(incorrectly!) return a null, the comparison will evaluate to 
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unknown, and the constraint will not be regarded as violated.  
See Chapter 19 for further explanation.   
 

l. CREATE ASSERTION SQL_L CHECK 
( NOT EXISTS ( SELECT * FROM S  

WHERE  S.CITY = 'London' 
AND    NOT EXISTS  

( SELECT * FROM SPJ 
WHERE  SPJ.S# = S.S# 
AND    SPJ.P# = P# ( 'P2' ) ) ) ) ; 
 

m. CREATE ASSERTION SQL_M CHECK 
( NOT EXISTS ( SELECT * FROM P  

WHERE  P.COLOR = COLOR ( 'Red' ) ) 
OR EXISTS ( SELECT * FROM P 

WHERE  P.COLOR = COLOR ( 'Red' ) 
AND    P.WEIGHT < WEIGHT ( 50.0 ) ) ) ; 
 

n. CREATE ASSERTION SQL_N CHECK 
( ( SELECT COUNT ( DISTINCT P# ) FROM SPJ  

WHERE  EXISTS ( SELECT * FROM S WHERE 
( S.S# = SPJ.S# AND 
S.CITY = 'London' ) ) ) > 

( SELECT COUNT ( DISTINCT P# ) FROM SPJ  
WHERE  EXISTS ( SELECT * FROM S WHERE 

( S.S# = SPJ.S# AND 
S.CITY = 'Paris' ) ) ) ) ;  
 

o. CREATE ASSERTION SQL_O CHECK 
( ( SELECT SUM ( SPJ.QTY ) FROM SPJ 

WHERE  ( SELECT S.CITY FROM S 
WHERE  S.S# = SPJ.S# ) = 'London' ) > 

( SELECT SUM ( SPJ.QTY ) FROM SPJ 
WHERE  ( SELECT S.CITY FROM S 

WHERE  S.S# = SPJ.S# ) = 'Paris' ) ) ; 
 

Note the use of two scalar subqueries in this example.   
 

p.  Can't be done directly (SQL doesn't support transition 
constraints).  We could write a trigger, though.  No further 
answer provided.   

 
q. Same as p.   
 

9.15 The answers are trivial syntactic variations on those already 
given for Exercises 9.7-9.9.  No further answer provided.   
 
9.16 No.  An important exception is predicates of the form 
illustrated by this example: "i is an integer."  This is a 
membership predicate; in fact, it's the type constraint for the 
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type INTEGER.*  Note:  If instead of treating INTEGER as a type we 
tried to define a relvar INTEGER to list all possible integers, 
what type would the single attribute I of that relvar be?   
 
 
────────── 
 
*  At least, for an ideal type INTEGER; we ignore the fact that no 
real computer system is capable of directly representing all 
possible integers.   
 
────────── 
 
 
9.17 Suppose we were to define a relvar SC{S#,CITY} with predicate 
"Supplier S# does not have an office in city CITY."  Suppose 
further that supplier S1 has an office in just ten cities; then 
the Closed World Assumption would imply that relvar SC must have 
N-10 tuples for supplier S1, where N is the total number of cities 
in the world!   
 
 
 
 
          *** End of Chapter 9 *** 
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          Chapter 10 
 
 
          V i e w s 
 
 
Principal Sections 
 
•  What are views for? 
•  View retrievals 
•  View updates  
•  Snapshots (a digression) 
•  SQL facilities 
 
 

General Remarks 
 
From the user's perspective, there should be no discernible 
difference between views and base relvars (another place where SQL 
and the vendors fail to support the relational model 
adequately──though, to be fair, the principles of view updating in 
particular were not well understood or articulated until the mid 
1990s).  A view is a relvar.  Note:  I deliberately include views 
in Part II of the book to emphasize the fact that view 
functionality was always intended to be a key ingredient of the 
relational model (see reference [6.9], Chapter 2).   
 

The emphasis on views is yet another feature that sets this 
book apart from its competitors.  In fact, a quick survey of six 
leading database textbooks reveals that:   

 
•  Not one has a chapter devoted to views.   
 
•   What coverage there is tends to be SQL-specific and thus 

reflects the usual SQL flaws.  One book even limits its 
coverage to a section within a chapter entitled "Advanced SQL" 
[sic!].   

 
•   None of the books displays much insight into what views are 

really all about.  What's more, several of them quite 
explicitly equate base and stored relvars, thereby implicitly 
violating The Principle of Interchangeability (see Section 
10.2).  The following extract from one of the books was quoted 
in a footnote in Chapter 3, and is fairly typical:  "[It] is 
important to make a distinction between stored relations, 
which are tables, and virtual relations, which are views ... 
When we want to emphasize that a relation is stored, rather 
than a view, we shall sometimes use the term base relation or 
base table."   
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From the perspective of the relational model, a view is a 

window into certain underlying data.  Views are (at least 
conceptually) implemented by substitution, not materialization,* 
and are thus NEVER "out of synch" with the underlying data.  Views 
work──more precisely, the substitution process works──precisely 
because of closure.   

 
 

────────── 
 
*  As indicated in the notes on Chapter 3, materialization might 
sometimes be used as an implementation mechanism, but at the level 
of the model the phrase "materialized view" is a contradiction in 
terms.  See Section 10.5.   
 
────────── 
 
 
10.2 What Are Views For? 
 
The benefits of views are as follows (to summarize):   
 
1.  Shorthand ("canned queries"──see the discussion in the final 

subsection in this section of the chapter)  
 
2. Database customizing or tailoring  
 
3.  Security (but security isn't the raison d'être for views, 

it's more of a bonus)  
 
4. Logical data independence (the big one!)  
 

Note that logical data independence implies that it must be 
possible to define integrity constraints──in particular, candidate 
and foreign key constraints──that refer to views instead of base 
relvars.  (Does SQL support this notion?)   

 
The Principle of Interchangeability (of base and derived 

relvars):  There must be no arbitrary and unnecessary distinctions 
between base and derived relvars.   

 
The Principle of Database Relativity:  Which expressible 

database is considered to be the "real" one is arbitrary, so long 
as all such databases are information-equivalent.*  From the 
user's point of view, in other words, all relvars are base 
relvars, by definition (except for views explicitly defined by the 
user in question, as a shorthand).   
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────────── 
 
*  Here's a loose definition:  Two databases A and B are 
information-equivalent if and only if every relation that can be 
derived from A can also be derived from B and vice versa.   
 
────────── 
 
 
10.3 View Retrievals 
 
Basically self-explanatory.  Regarding the final bulleted 
paragraph in this section (on cases in commercial products where 
the substitution procedure doesn't work), see Exercise 10.16 at 
the end of the chapter.   
 
 
10.4 View Updates 
 
The material of this section isn't included in other books (it's 
critically dependent on the idea of relvar predicates, also not 
covered in other books).*  The section's rather long, and it might 
be desirable just to skim some of the examples (on the other hand, 
at least one reviewer of the previous edition suggested adding 
extra ones!).   
 
 
────────── 
 
*  You might want to note also that it's the subject of a recent 
US patent application (not by me)──see reference [10.11].   
 
────────── 
 
 

All views are updatable (barring integrity constraint 
violations, of course).   

 
Explain the basic idea of predicate inference.  Discuss The 

Golden Rule again──no relvar must ever be allowed to violate its 
own predicate──and the various principles identified in this 
section:   

 
1. View updatability is a semantic issue.   
 
2.  The updating mechanism must work for base relvars too (so 

we're really talking about a theory of updating in general, 
not just updating views specifically).   

 
3. Preserve symmetry.   
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4.  Take triggered procedures (including referential actions) 

into account.   
 
5.  UPDATE is shorthand for a DELETE-then-INSERT sequence 

(loosely speaking).   
 
6. INSERTs map to INSERTs and DELETEs map to DELETEs.   
 
7. The mechanism must be recursive.   
 
8. We can't assume the database is well designed.   
 
9. Each kind of view should support both INSERT and DELETE.   
 

10. INSERT and DELETE should be inverses.   
 

Recall that updates (as well as retrievals) are always set-
level, though for simplicity the examples in the book mostly 
assume a set of cardinality one (i.e., a set that contains just 
one tuple).   

 
Union/intersect/difference:  These subsections should be self-
explanatory.  Note:  Examples to illustrate various specific rules 
are left in the book as an exercise.  No answer provided.   
 
Restrict:  Also self-explanatory.  Note:  The subsection says:  
"An attempt to update the LS tuple (S1,Smith,20,London) to 
(S6,Green,20,London) will succeed.  An attempt to update that same 
tuple (S1,Smith,20,London) to either (S2,Smith,20,London) or 
(S1,Smith,20,Athens) will fail (why, exactly, in each case?)."  
Answer:  The first fails because it violates the constraint (part 
of the relvar predicate for LS) that {S#} is a key.  The second 
fails because it violates the constraint (also part of the relvar 
predicate for LS) that the CITY value must be London.   
 
Project:  Again fairly self-explanatory (though project is a 
little trickier than the operators covered prior to this point).  
Note:  The subsection says:  "An attempt to update the SC tuple 
(S1,London) ... to (S2,London) will fail (why, exactly?)."  
Answer:  Because it violates the {S#} key constraint.   
 

The subsection also says:  "Consideration of the case in which 
the projection does not include a key of the underlying relvar 
(e.g., the projection of relvar S over STATUS and CITY) is left as 
an exercise."  Answer:  INSERTs probably fail (because probably 
there's no default defined for attribute S# in relvar S).  DELETEs 
delete all tuples from S that have the same STATUS and CITY values 
as (any of) the tuple(s) specified for deletion from the 
projection.  UPDATEs update all tuples in S that have the same 
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STATUS and CITY values as (any of) the tuple(s) specified for 
update in the projection.   

 
Extend:  Self-explanatory again.  Note:  The subsection says:  "An 
attempt to insert the tuple (P7,Cog,Red,12,Paris,5449) will fail 
(why?) ... An attempt to insert the tuple 
(P1,Cog,Red,12,Paris,5448) will fail (why?)."  Answer:  The first 
fails because it violates the constraint that the GMWT value must 
be 454 times the WEIGHT value.  The second fails because it 
violates the {P#} key uniqueness constraint.   
 

The subsection also says:  "An attempt to update [the tuple 
for P1] to one for P2 (with all other values unchanged) or to one 
in which the GMWT value is not equal to 454 times the WEIGHT value 
will fail (in each case, why?)."  Answer:  The first fails because 
it violates the {P#} key uniqueness constraint.  The second fails 
because it violates the constraint that the GMWT value must be 454 
times the WEIGHT value.   
 
Join:  The argument in support of the position that join views 
(like all other views!) are always theoretically updatable is 
important.  It hinges on the flaw in the usual argument that join 
views are generally not updatable.  The flaw in question is as 
follows:   
 
a.  It's usually assumed that it's always possible to update an 

individual tuple of a base relvar independently of all other 
tuples in that base relvar.   

 
b. However, that assumption is incorrect!   
 

One point (not necessarily for airing in class, but 
instructors should at least be aware of it):  There's an 
argument──at least a syntactic one, though possibly not one of 
real substance──that says that an attempt to perform a view update 
that doesn't have exactly the specified effect should be rejected.  
For example, a request to insert a single tuple into a certain 
join view might (if accepted) have the effect of adding several 
tuples to the view.  If it does, then the system is effectively 
performing certain compensating actions under the covers (akin, 
somewhat, to cascade deletes).  I'm a little suspicious of 
compensating actions in general ... In the example, a real system 
might require the INSERT operator to specify all of the tuples 
that are to be added to the view.  But the book ignores this 
possibility, and so do these notes from this point forward.   

 
The subsection also asks a series of questions, as follows:*   
 
 

────────── 
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*  The notes that follow answer these questions for INSERT and 
DELETE only, not UPDATE.   
 
────────── 
 
 
•   What's the effect of the update rules on the join of the 

suppliers relvar S to itself over supplier numbers (only)?  
Answer:  Observe first that the join in question will have to 
be expressed in terms of certain RENAMEs──e.g., as follows:   

 
S JOIN ( S RENAME ( SNAME AS X, STATUS AS Y, CITY AS Z ) ) 
 
The result satisfies the constraint that, in any given tuple, 
SNAME = X AND STATUS = Y AND CITY = Z.   
 
a. Inserting the tuple (s,sn,st,sc,sn,st,sc) into the join is 

equivalent to inserting the tuple (s,sn,st,sc) into S.   
 
b. Deleting the tuple (s,sn,st,sc,sn,st,sc) from the join is 

equivalent to deleting the tuple (s,sn,st,sc) from S.   
 

•  Suppose we have another base relvar SR with attributes S# and 
REST, where S# identifies a supplier and REST identifies that 
supplier's favorite restaurant.  Assume that not all suppliers 
in S appear in SR.  What's the effect of the join update rules 
on S JOIN SR?  Answer:   

 
a. Inserting the tuple (s,sn,st,sc,rt) into the join is 

equivalent to inserting the tuple (s,sn,st,sc) into S 
(unless it's already present) and inserting the tuple 
(s,rt) into SR (it mustn't already be present).   

 
b. Deleting the tuple (s,sn,st,sc,rt) from the join is 

equivalent to deleting the tuple (s,sn,st,sc) from S and 
deleting the tuple (s,rt) from SR.   

 
•  What difference would it make if some supplier could appear in 

SR and not in S?  Answer:  No effect on DELETE.  The following 
slight revision applies to INSERT:   

 
a. Inserting the tuple (s,sn,st,sc,rt) into the join is 

equivalent to inserting the tuple (s,sn,st,sc) into S 
(unless it's already present) and inserting the tuple 
(s,rt) into SR (unless it's already present).   

 
•  An attempt to insert the tuple (S4,Clark,20,Athens,P6,100) 

into SSP will fail (why?).  Answer:  Key uniqueness violation 
on S (note that SSP is defined as S JOIN SP).   
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•   An attempt to insert the tuple (S1,Smith,20,London,P1,400) 
into SSP will fail (why?).  Answer:  Key uniqueness violation 
on SP.   

 
•   An attempt to update the SSP tuple 

(S1,Smith,20,London,P1,300) to (S6,Smith,20,London,P1,300) 
will "succeed"──see the note below──and will have the effect 
of updating the S tuple (S1,Smith,20,London) to 
(S6,Smith,20,London) and the SP tuple (S1,P1,300) to 
(S6,P1,300).   

 
Note:  Actually, the overall effect of this attempted 

update will depend on the foreign key UPDATE rule from 
shipments to suppliers.  The details are left as an exercise.  
Answer:  If the rule specifies RESTRICT the overall operation 
will fail.  If it specifies CASCADE it will have the side 
effect of updating all other SP tuples (and hence SSP tuples) 
for supplier S1 as well.   

 
•   "Further examples are left as an exercise" (examples, that 

is, of updates to S JOIN P).  No answer provided.   
 

Other Operators:  Mostly self-explanatory.  Note:  Given the view-
defining expression── 
 

SUMMARIZE SP BY { S# } ADD SUM ( QTY ) AS TOTQTY 
 

──the subsection says:  "An attempt to insert the tuple (S5,0) 
will fail (why, exactly?)."  Answer:  Because (probably) no 
default is defined for attribute P# in relvar SP; also because 
(possibly) attribute QTY in relvar SP does not accept zero values.   
 
 
10.5 Snapshots (a digression)  
 
As the book says, this section is something of a digression from 
the main theme of the chapter.  It's included partly (a) because 
snapshots are becoming increasingly important in practice, thanks 
to the growing use of (asynchronous) replication and data 
warehouse products, and partly (b) to criticize the prevailing use 
of the term "materialized views" or──worse──just "views" to refer 
to things that aren't views at all.  To quote:   
 
(Begin quote) 
 
At the time of writing, snapshots have come to be known──almost 
exclusively, in fact──not as snapshots at all but rather as 
materialized views* (see the "References and Bibliography" section 
in Chapter 22).  However, this terminology is unfortunate in the 
extreme, and in this writer's opinion should be resisted, firmly.  
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Snapshots are not views.  The whole point about views is that 
they're not materialized, at least so far as the model is 
concerned.  (Whether they're in fact materialized under the covers 
is an implementation issue and has nothing to do with the model.)  
As far as the model is concerned, in other words, "materialized 
view" is a contradiction in terms──and yet (all too predictably) 
"materialized view" has become so ubiquitous that the unqualified 
term view has come to mean, almost always, a "materialized view" 
specifically!  And so we no longer have a good term to use when we 
want to refer to a view in the original sense.  Certainly we run a 
severe risk of being misunderstood when we use the unqualified 
term view for that purpose.  In this book, however, we choose to 
take that risk; to be specific, we won't use the term 
"materialized view" at all (except when quoting from other 
sources), keeping the term snapshot for the concept in question, 
and we'll always use the unqualified term view in its original 
relational sense.   
 
 
────────── 
 
*  Some writers (not all) reserve the term materialized view to 
mean a snapshot that is guaranteed to be always up to date──i.e., 
one for which REFRESH ON EVERY UPDATE has been specified.   
 
────────── 
 
 
(End quote)  
 

The section also asks what the predicate is for the following 
snapshot:   

 
VAR P2SC SNAPSHOT 

( ( S JOIN SP ) WHERE P# = P# ( 'P2' ) ) { S#, CITY }  
REFRESH EVERY DAY ; 
 

Answer:  "Supplier S# supplies part P2, and is located in city 
CITY, as of at most 24 hours ago."  In fact, almost all relvar 
predicates (not just snapshot predicates) ought really to include 
some kind of temporal qualifier like this one ("as of ..."), but 
that qualifier is usually implicit.  See Chapter 23 for further 
discussion.   
 
 
10.6 SQL Facilities 
 
Mostly self-explanatory, except for the rules regarding view 
updating (see below).  Note:  A very careful explanation of both 
LOCAL and CASCADED forms of WITH CHECK OPTION──and in particular 
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the complicated business of how they interact with each other and 
with "WITHOUT CHECK OPTION"──can be found in reference [4.20].  It 
might or might not help to point out that CASCADED in this context 
"goes the opposite way" from CASCADE in (e.g.) a DELETE rule.   
 

I'm not alone in thinking that SQL's rules regarding view 
updating are hard to understand; a recent book on SQL:1999 [4.28] 
spends ten full and very confusing (and possibly confused) pages 
on the subject and still essentially fails to answer the question 
of exactly which views are updatable.  Just to remind you, here's 
the quote from the standard that I show (as a "horrible example") 
in the chapter:   

 
(Begin quote)  
 
[The] <query expression> QE1 is updatable if and only if for every 
<query expression> or <query specification> QE2 that is simply 
contained in QE1:   
 
a) QE1 contains QE2 without an intervening <non join query 

expression> that specifies UNION DISTINCT, EXCEPT ALL, or 
EXCEPT DISTINCT.   

 
b)  If QE1 simply contains a <non join query expression> NJQE 

that specifies UNION ALL, then:   
 

i) NJQE immediately contains a <query expression> LO and a 
<query term> RO such that no leaf generally underlying 
table of LO is also a leaf generally underlying table of 
RO.   

 
ii)  For every column of NJQE, the underlying columns in the 

tables identified by LO and RO, respectively, are either 
both updatable or not updatable.   

 
c) QE1 contains QE2 without an intervening <non join query term> 

that specifies INTERSECT.   
 
d) QE2 is updatable.   
 

(End quote)  
 

I hope that's all perfectly clear!  To me it all looks like 
epicycles on epicycles.  Instead of a single systematic approach 
to the problem, SQL essentially treats the entire issue as a 
mishmash of special cases.  As the book says, (a) the rule quoted 
above is just one of many that have to be taken in combination in 
order to determine whether a given view is updatable; (b) the 
rules in question aren't all given in one place but are scattered 
over many different parts of the document; and (c) all of those 
rules rely on a variety of additional concepts and 
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constructs──e.g., updatable columns, leaf generally underlying 
tables, <non join query term>s──that are in turn defined in still 
further parts of the document.  It's hopeless.   

 
My pragmatic teaching suggestion is this:  Just list the 

simple cases from near the end of the section (noting, however, 
that even these limited cases are treated incorrectly, thanks to 
SQL's lack of understanding of predicates, and in particular to 
the fact that it permits duplicate rows).  You might also mention 
that SQL identifies four distinct cases: updatable, potentially 
updatable, simply updatable, or insertable into (?).  Which aren't 
exactly very clear.   

 
 

References and Bibliography 
 
Reference [10.3] is the source of Codd's famous──or 
infamous──"twelve rules" for relational DBMSs.  An analysis of 
those rules can be found in reference [6.7]; see also the 
annotation to reference [10.2].  Reference [10.6] is, regrettably, 
still the only widely available source for the view updating 
mechanism advocated in the present chapter.   
 
 
Answers to Exercises 
 
10.1 VAR LONDON_SUPPLIER VIEW 

( S WHERE CITY = 'London' ) { ALL BUT CITY } ; 
 

We omit the CITY attribute here because we know its value must be 
London for every supplier in the view.  Observe, however, that 
this omission means that any INSERT on the view will necessarily 
fail (unless the default value for attribute CITY in the 
underlying suppliers relvar happens to be London).  In other 
words, a view like this one probably can't support INSERT 
operations at all.  Alternatively, we might consider the 
possibility of defining the default value for CITY for tuples 
inserted via this view to be London.  This idea of view-specific 
defaults requires more study.  (Of course, we can achieve this 
effect by means of triggers, as we saw in Chapter 9.  However, a 
declarative solution is naturally to be preferred.)   
 
10.2 VAR NON_COLOCATED VIEW 

( S { S# } JOIN P { P# } ) MINUS ( S JOIN P ) { S#, P# } ; 
 

We could replace the first JOIN here by TIMES if we liked.   
 
10.3 The question here is:  How should attribute QTY be defined in 
the SP view?  The sensible answer seems to be that, for a given 
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S#-P# pair, it should be the sum of all SPJ.QTY values, taken over 
all J#'s for that S#-P# pair:   
 

VAR SP VIEW 
SUMMARIZE SPJ BY { S#, P# } ADD SUM ( QTY ) AS QTY ; 
 

10.4 VAR JC VIEW 
( ( SPJ WHERE S# = S# ( 'S1' ) ) { J# } JOIN 

( SPJ WHERE P# = P# ( 'P1' ) ) { J# } ) JOIN  
J { J#, CITY } ; 

 
10.5 We don't bother to show the converted forms.  However, we 
remark that c. will fail at run time, because the tuple presented 
for insertion doesn't satisfy the predicate for the view.   
 
10.6 Again c. fails at run time, though for a different reason 
this time.  First, the DBMS will include a default WEIGHT value, w 
say, in the tuple to be inserted, since the user hasn't provided a 
"real" WEIGHT value (in fact, of course, the user can't provide a 
"real" WEIGHT value).  Second, it's extremely unlikely that 
whatever WT (not WEIGHT) value the user provides will be equal to 
w * 454──even if (as is not the case in the INSERT shown) that 
particular WT value happens to be greater than 6356.0.  Thus, the 
tuple presented for insertion again fails to satisfy the predicate 
for the view.  Note:  It could be argued that the WEIGHT value in 
the tuple to be inserted should properly be set to the specified 
WT value divided by 454.  This possibility requires more study.   
 
10.7 We've numbered the following solutions as 10.7.n, where n is 
the number of the original example in Section 10.1.  We make our 
usual assumptions regarding range variables.   
 
10.7.1 VAR REDPART VIEW  

{ PX.P#, PX.PNAME, PX.WEIGHT AS WT, PX.CITY } 
WHERE PX.COLOR = COLOR ( 'Red' ) ; 
 

10.7.2 VAR PQ VIEW  
{ PX.P#,  

SUM ( SPX WHERE SPX.P# = PX.P#, QTY ) AS TOTQTY } ; 
 

10.7.3 VAR CITY_PAIR VIEW 
{ SX.CITY AS SCITY, PX.CITY AS PCITY } 

WHERE EXISTS SPX ( SPX.S# = SX.S# AND 
SPX.P# = PX.P# ) ; 
 

10.7.4 VAR HEAVY_REDPART VIEW 
RPX WHERE RPX.WT > WEIGHT ( 12.0 ) ; 

 
RPX here is a range variable that ranges over REDPART.   
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10.8 Because the result of ORDER BY isn't a relation.   
 
10.9 The following list of reasons is taken from reference [6.7]:   
 
•  If users are to interact with views instead of base relvars, 

then it's clear that those views should look to the user as 
much like base relvars as possible.  Ideally, in fact, the 
user should not even have to know they are views, but should 
be able to treat them as if they actually were base relvars, 
thanks to The Principle of Database Relativity.  And just as 
the user of a base relvar needs to know what candidate keys 
that base relvar has (in general), so the user of a view needs 
to know what candidate keys that view has (again, in general).  
Explicitly declaring those keys is the obvious way to make 
that information available.   

 
•   The DBMS might be unable to deduce candidate keys for itself 

(this is almost certainly the case with DBMSs on the market 
today).  Explicit declarations are thus likely to be the only 
means available (to the DBA, that is) of informing the 
DBMS──as well as the user──of the existence of such keys.   

 
•   Even if the DBMS were able to deduce candidate keys for 

itself, explicit declarations would at least enable the system 
to check that its deductions and the DBA's explicit 
specifications were consistent.   

 
•   The DBA might have some knowledge that the DBMS doesn't, and 

might thus be able to improve on the DBMS's deductions.  
Reference [6.7] gives an example of this possibility.   

 
And reference [12.3] offers another reason, which is essentially 
that such a facility would provide a simple and convenient way of 
stating certain important integrity constraints that could 
otherwise be stated only in a very circumlocutory fashion.   
 
10.10 It's obviously impossible to provide a definitive answer to 
this question.  We offer the following observations.   
 
•  Each view and each snapshot will have an entry in the catalog 

relvar RELVAR (see the answer to Exercise 6.16), with a RVKIND 
value of "View" or "Snapshot" as appropriate.  (RVKIND 
here──"relvar kind"──is an attribute of the catalog relvar 
RELVAR.)   

 
•   Each view will also have an entry in a new catalog relvar, 

which we might as well call VIEW.  That entry should include 
the relevant view-defining expression.   
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•   Similarly, each snapshot will also have an entry in a new 
catalog relvar (SNAPSHOT).  That entry should include the 
relevant defining expression.  It should also include 
information regarding the snapshot refresh interval.   

 
•   Yet another catalog relvar will show which views and 

snapshots are defined in terms of which other relvars.  Note 
that the structure of this relvar is somewhat similar to that 
of the PART_STRUCTURE relvar (see Fig. 4.6 in Chapter 4):  
Just as parts can contain other parts, so views and snapshots 
can be defined in terms of other views and snapshots.  Note, 
therefore, that the points discussed in the answer to Exercise 
8.7 are relevant here.   

 
10.11 Yes!──but note the following.  Suppose we replace the 
suppliers relvar S by two restrictions, SA and SB say, where SA is 
the suppliers in London and SB is the suppliers not in London.  We 
can now define the union of SA and SB as a view called S.  If we 
now try (through this view) to UPDATE a London supplier's city to 
something other than London, or a "nonLondon" supplier's city to 
London, the implementation must map that UPDATE to a DELETE on one 
of the two restrictions and an INSERT on the other.  Now, the 
rules given in Section 10.4 do handle this case correctly──in 
fact, we (deliberately) defined UPDATE as a DELETE followed by an 
INSERT; however, there was a tacit assumption that the 
implementation would actually use an UPDATE, for efficiency 
reasons.  This example shows that sometimes mapping an UPDATE to 
an UPDATE does not work; in fact, determining those cases in which 
it does work can be regarded as an optimization.   
 
10.12 Yes!   
 
10.13 Yes!   
 
10.14 INSERT and DELETE will always be inverses of each other so 
long as (a) the database is designed in accordance with The 
Principle of Orthogonal Design (see Chapter 13, Section 13.6) and 
(b) the DBMS supports relvar predicates properly.  If these 
conditions aren't satisfied, however, then it's possible they 
might not be inverses of each other after all.  For example, if A 
and B are distinct base relvars, inserting tuple t into V = A 
INTERSECT B might cause t to be inserted into A only (because it's 
already present in B); subsequently deleting t from V will now 
cause t to be deleted from both A and B.  (On the other hand, 
deleting t from V and then reinserting it will always preserve the 
status quo.)  However, note carefully that such an asymmetry can 
arise only if t satisfies the predicate for A and yet isn't 
present in A in the first place.   
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10.15 We offer the following comments.  First, the replacement 
process itself involves several steps, which might be summarized 
as follows.  (This sequence of operations will be refined in a 
moment.)   
 

/* define the new base relvars */ 
 
VAR SNC BASE RELATION  

{ S# S#, SNAME NAME, CITY CHAR }  
KEY { S# } ; 
 

VAR ST BASE RELATION  
{ S# S#, STATUS INTEGER } 
KEY { S# } ; 
 

/* copy the data to the new base relvars */ 
 
INSERT SNC S { S#, SNAME, CITY } ; 
 
INSERT ST  S { S#, STATUS } ; 
 
/* drop the old relvar */ 
 
DROP VAR S ; 
 
Now we can create the desired view: 
 
VAR S VIEW  

SNC JOIN ST ; 
 

We now observe that each of the two S# attributes (in SNC and 
ST) constitutes a foreign key that references the other.  Indeed, 
there's a strict one-to-one relationship between relvars SNC and 
ST, and so we run into a variety of "one-to-one" difficulties that 
have been discussed in some detail by this writer elsewhere 
[14.8].*   

 
 

────────── 
 
*  Some of those difficulties might be alleviated if the system 
supported multiple assignment, a possibility not discussed in 
reference [14.8].   
 
────────── 
 
 

Note also that we must do something about the foreign key in 
relvar SP that references the old base relvar S.  Clearly, it 
would be best if that foreign key could now be taken as referring 
to the view S instead;* if this is impossible (as indeed it 
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typically is in today's products), then it would be better to add 
a third projection of base relvar S to the database, as follows:   

 
 

────────── 
 
*  Indeed, logical data independence is a strong argument in favor 
of allowing constraints in general to be defined for views as well 
as base relvars.   
 
────────── 
 
 

VAR SS BASE RELATION  
{ S# S# } KEY { S# } ; 
 

INSERT SS S { S# } ; 
 

(In fact, this design is recommended in reference [9.11] for other 
reasons anyway.)  We now change the definition of view S thus:   
 

VAR S VIEW  
SS JOIN SNC JOIN ST ; 
 

We also add the following foreign key specification to the 
definitions of relvars SNC and ST:   

 
FOREIGN KEY { S# } REFERENCES SS 

ON DELETE CASCADE 
ON UPDATE CASCADE 
 

Finally, we must change the specification for the foreign key 
{S#} in relvar SP to refer to SS instead of S.   

 
10.16 Regarding part a. of this exercise, here's one example of a 
view retrieval that certainly does fail in some products at the 
time of writing.  Consider the following SQL view definition:   
 

CREATE VIEW PQ AS 
SELECT SP.P#, SUM ( SP.QTY ) AS TOTQTY 
FROM   SP 
GROUP  BY SP.P# ; 
 

Consider also the following attempted query:   
 

SELECT AVG ( PQ.TOTQTY ) AS PT 
FROM   PQ ; 
 

If we follow the simple substitution process explained in the body 
of the chapter (i.e., we try to replace references to the view 
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name by the expression that defines the view), we obtain something 
like the following:   
 

SELECT AVG ( SUM ( SP.QTY ) ) AS PT 
FROM   SP 
GROUP  BY SP.P# ; 
 

And this isn't a valid SELECT statement, because (as noted in the 
discussion following Example 8.6.7 in Chapter 8) SQL doesn't allow 
aggregate operators to be nested in this fashion.   
 

Here's another example of a query against the same view PQ 
that also fails in some products for much the same reason:   

 
SELECT PQ.P#  
FROM   PQ   
WHERE  PQ.TOTQTY > 500 ; 

 
Precisely because of the problem illustrated by these 

examples, incidentally, some products──IBM's DB2 is a case in 
point──sometimes physically materialize the view (instead of 
applying the more usual substitution procedure) and then execute 
the query against that materialized version.  This technique will 
always work, of course, but it's liable to incur a performance 
penalty.  Moreover, in the case of DB2 in particular, it's still 
the case that some retrievals on some views don't work; i.e., DB2 
doesn't always use materialization if substitution doesn't work, 
nor is it easy to say exactly which cases work and which don't.   

 
10.17 First, here's a definition of Design b. in terms of Design 
a.:   
 

VAR SSP VIEW 
S JOIN SP ; 
 

VAR XSS VIEW 
S MINUS ( S JOIN SP ) { S#, SNAME, STATUS, CITY } ; 
 

And here's a definition of Design a. in terms of Design b.:   
 
VAR S VIEW 

XSS UNION SSP { S#, SNAME, STATUS, CITY } ; 
 

VAR SP VIEW 
SSP { S#, P#, QTY } ; 
 

The applicable database constraints for the two designs can be 
stated as follows:   

 
CONSTRAINT DESIGN_A  

IS_EMPTY ( SP { S# } MINUS S { S# } ) ; 
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CONSTRAINT DESIGN_B  

IS_EMPTY ( SSP { S# } INTERSECT XSS { S# } ) ; 
 

We remark in passing that──given that {S#} is a key for relvar 
S──constraint DESIGN_A here exemplifies another way of formulating 
a referential constraint.   

 
Design a. is clearly superior, for reasons discussed in detail 

in Chapter 12.   
 

10.18 We've numbered the following solutions as 10.18.n, where n 
is the number of the original exercise.   
 
10.18.1 CREATE VIEW LONDON_SUPPLIER  

AS SELECT S.S#, S.SNAME, S.STATUS 
FROM   S 
WHERE  S.CITY = 'London' ; 
 

10.18.2 CREATE VIEW NON_COLOCATED  
AS SELECT S.S#, P.P# 

FROM   S, P 
WHERE  S.CITY <> P.CITY ; 
 

10.18.3 CREATE VIEW SP 
AS SELECT SPJ.S#, SPJ.P#, SUM ( SPJ.QTY ) AS QTY 

FROM   SPJ 
GROUP  BY SPJ.S#, SPJ.P# ; 
 

10.18.4 CREATE VIEW JC 
AS SELECT J.J#, J.CITY 

FROM   J 
WHERE  J.J# IN ( SELECT SPJ.J# 

FROM   SPJ 
WHERE  SPJ.S# = S# ( 'S1' ) ) 

AND    J.J# IN ( SELECT SPJ.J# 
FROM   SPJ 
WHERE  SPJ.P# = P# ( 'P1' ) ) ; 
 

10.19 The criticism mentioned in this exercise is heard quite 
often.  Here's a possible counterargument.   
 
1. Loosely speaking, DELETE deletes a set of zero or more tuples 

from a specified relvar.  For simplicity, let's assume that 
the set of tuples is always of cardinality one, and so we can 
talk, even more loosely, in terms of "deleting a tuple" from 
the relvar in question.   

 
2.  Tuples in relvars correspond to propositions (assumed by 

convention to be true ones).  The propositions in question are 
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instantiations of the predicate corresponding to the relvar in 
question.   

 
3.  Hence, the real-world interpretation of the operation "delete 

a tuple" is "remove a proposition" (presumably because we 
don't believe it's true any more).   

 
4.  So the question becomes:  What should the semantics of 

deleting a tuple from a "join view" be?  There are two basic 
approaches we can take to this question:   

 
■  The first is the one advocated in the present chapter.  To 

spell it out, we take "remove a proposition" to mean 
"remove all portions of that proposition"──and we apply 
this rule uniformly across the board.   

 
■  The other (which is effectively the one suggested by people 

who criticize the first approach) is to do different things 
depending on whether the join is one-to-one, many-to-one, 
or many-to-many.  In other words, the suggestion is that in 
certain circumstances we can "remove a proposition" by 
effectively removing just some portion of it.  Certainly 
such partial removal would mean that the database no longer 
states that the overall proposition is true.   

 
■  But then we have to face up to questions such as:  Does 

(e.g.) many-to-one mean a relationship that's inherently, 
necessarily many-to-one, or does it mean one that just 
happens to be many-to-one because of the actual values 
involved right now?  Presumably the former──but we must be 
clear.  And then does "inherently many-to-one" mean, 
specifically, a foreign-key-to-matching-candidate-key join, 
or are there other cases that are inherently many-to-one?  
(If there are, it would be wrong to make foreign key 
specifications the sole deciding factor.)   

 
■  Whatever we do, we mustn't come up with rules that say the 

semantics of DELETE on a view depend on the syntax of how 
that view is defined and not on its semantics.  In 
particular, the rules for join must be consistent with 
those for intersect, difference, extend, and all of the 
other operators.   

 
■  If we decide to define the semantics of DELETE on a join 

view in some special way, along the lines suggested above, 
then of course we'll have to define the semantics of INSERT 
in a special way too.  (It's a fundamental principle that 
DELETE and INSERT should be inverses of each other, in the 
sense that "DELETE t FROM R" followed immediately by 
"INSERT t INTO R" should effectively be a no-op, as should 
"INSERT t INTO R" followed immediately by "DELETE t FROM 
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R"──assuming the INSERTs and DELETEs all succeed, of 
course.)   

 
■  Again, if we decide to treat join views in some special 

way, then consistency dictates that we treat EACH AND EVERY 
relational operator in its own special way──special rules 
for union, special rules for divide, and so on.  Everything 
becomes a special case (in fact, consistency dictates 
inconsistency!).  This surely can't be a good idea.  Of 
course, it's essentially what today's DBMSs all do, insofar 
as they address the problem at all.   

 
The net of all this is that one simple rule that applies in 

all cases is surely the right way to go.  Especially since, in the 
example of S JOIN SP, we can achieve the desired DELETE behavior 
by applying the DELETE direct to relvar SP instead of to the join 
view!   

 
Of course, nothing in the foregoing argument precludes the 

possibility of placing logic in application code (sitting on top 
of the DBMS) that (a) allows the join to be displayed as a single 
table on the screen, (b) allows the end user to remove a row from 
that table somehow, and (c) implements that removal by doing a 
DELETE on relvar SP (only) under the covers.  But we must avoid 
any suggestion that what the end user would be doing in such a 
scenario is a relational DELETE.  It's a different operation (and 
the user would need to understand that fact, in general), it has 
different semantics, and it should be given a different name.   

 
10.20 The relational model consists of five components:   
 
1. An open-ended collection of scalar types (including in 

particular the type boolean or truth value)  
 

Comment:  The scalar types can be system- or user-defined, in 
general; thus, a means must be available for users to define 
their own types (this requirement is implied, partly, by that 
"open-ended").  A means must therefore also be available for 
users to define their own operators, since types without 
operators are useless.  The only built-in (i.e., system-
defined) type we insist on is type BOOLEAN, but a real system 
will surely support integers, strings, etc., as well.   
 

2.  A relation type generator and an intended interpretation for 
relations of types generated thereby  

 
Comment:  The relation type generator allows users to define 
their own relation types (in Tutorial D, the definition of a 
given relation type is, typically, bundled in with the 
definition of a relation variable of that type──there's no 
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separate "define relation type" operator, for reasons 
explained in detail in reference [3.3]).  The intended 
interpretation for a given relation type is the predicate 
stuff.   
 

3.  Facilities for defining relation variables of such generated 
relation types  

 
Comment:  Of course!  Note that relation variables are the 
only variables allowed inside a relational database (The 
Information Principle, in effect).   
 

4.  A relational assignment operation for assigning relation 
values to such relation variables  

 
Comment:  Variables are updatable by definition (that's what 
"variable" means); hence, every kind of variable is subject to 
assignment (that's how updating is done), and relation 
variables are no exception.  Of course, INSERT, UPDATE, and 
DELETE shorthands are legal and indeed useful, but strictly 
speaking they are only shorthands.   
 

5.  An open-ended collection of generic relational operators for 
deriving relation values from other relation values  

 
Comment:  These operators make up the relational algebra, and 
they're therefore built-in (though there's no inherent reason 
why users shouldn't be able to define additional ones).  Note 
that the operators are generic──i.e., they apply to all 
possible relations, loosely speaking.   
 

          *** End of Chapter 10 *** 
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          P A R T   I I I 
 
 
          D A T A B A S E   D E S I G N 
 
 
The database design problem can be stated as follows:  Given some 
body of data to be represented in a database, how do we decide on 
a suitable logical structure for that data?  In other words, how 
do we decide what relvars should exist and what attributes they 
should have?  (Of course, "design" here means logical or 
conceptual design specifically.  The "right" way to do database 
design is to do a clean logical design first, and then, as a 
separate and subsequent step, to map that logical design into 
whatever physical structures the target DBMS happens to support.  
Logical design is a fit subject for a book of this nature, but 
physical design──though important──isn't.)   
 

One significant point of difference between the treatment of 
design issues in this book and that found in some other books is 
the heavy emphasis on data integrity (the predicate stuff once 
again).   

 
Database design is, sadly, still more of an art than a 

science.  It's true that there are some scientific principles that 
can be brought to bear on the problem, and those principles are 
the subject of Chapters 11-13; unfortunately, however, there are 
numerous design issues that those principles just don't address at 
all.  As a consequence, various design methodologies──some of them 
fairly rigorous, others less so, but all of them ad hoc to a 
degree──have been proposed, and such methodologies are the general 
subject of Chapter 14.  (In fact, the principal focus of that 
chapter is on "E/R modeling," since that particular methodology is 
the one most widely used in practice──despite the fact that, at 
least in my opinion, it suffers from a variety of serious 
shortcomings.  Some of those shortcomings are identified in the 
chapter.)   

 
Note:  See the preface for a discussion of my reasons for 

deferring the design chapters to what some might think is a fairly 
late part of the book.*  Basically, I believe students aren't 
ready to design databases properly, or to appreciate design issues 
fully, until they have some understanding of what databases are 
all about and how they're meant to be used.   

 
 

────────── 
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*  On the other hand, one reviewer of the previous edition 
suggested that Part III should be omitted entirely and made into a 
whole new book!   
 
────────── 
 
 

None of the chapters in this part of the book has a "SQL 
Facilities" section, for fairly obvious reasons.   

 
 
 
 

          *** End of Introduction to Part III 
*** 
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Chapter 11  
 
 

          F u n c t i o n a l   D e p e n d e 
n c i e s 
 
 
Principal Sections 
 
•  Basic definitions 
•  Trivial and nontrivial FDs 
•  Closure of a set of FDs 
•  Closure of a set of attributes 
•  Irreducible sets of FDs 
 
 

General Remarks 
 
This is the most formal chapter in the book.  But it isn't very 
formal, and it isn't very long, and it can probably just be 
skimmed if the instructor doesn't want to get too deeply into 
formal proofs and the like.  Indeed, the chapter is included, in 
part, just to show that there really is some mathematical rigor 
underlying relational database theory.  But the focus of the book 
in general is, as noted in the preface, on insight and 
understanding, not on formalisms and algorithms (the latter can 
always be found in the references).  Observe in particular that 
the book deliberately doesn't cover the theory of MVDs and JDs 
anywhere near as thoroughly as it does that of FDs.   
 

Be that as it may, the proofs (etc.) in this chapter aren't 
really difficult, though we all know that formalism and precise 
terminology can be a little daunting to the average reader.  
However, the following ideas, at least, do need to be explained:   

 
•   What an FD is, and the fact that the interesting ones are 

those that hold "for all time," meaning they're integrity 
constraints (in fact, of course, the term "FD" is usually 
taken to refer to this latter case specifically).   

 
•  The left and right sides of an FD are sets of attributes.   
 
•   If K is a candidate key for R, then K → A holds for all 

attributes A of R.   
 
•   If R satisfies X → A and X is not a candidate key, then R 

will probably involve some redundancy (a hint that the FD 
notion might have a role to play in logical database 



Copyright (c) 2003 C. J. Date                            page 11.2 
 

design──we'll be wanting to get rid of redundancy and 
therefore we'll be wanting to find ways to get rid of certain 
FDs).   

 
•  Some FDs imply others.   
 
•   Given a set of FDs, the complete set of FDs implied by the 

given set can be found by means of Armstrong's inference rules 
or axioms (the rules should at least be mentioned, and perhaps 
briefly illustrated, but they don't need to be exhaustively 
discussed).   

 
 

11.2 Basic Definitions / 11.3 Trivial and Nontrivial FDs / 11.4 
Closure of a Set of FDs / 11.5 Closure of a Set of Attributes / 
11.6 Irreducible Sets of FDs 
 
The material of these sections can be summarized as follows:   
 
•   First of all, every relvar necessarily satisfies certain 

trivial FDs (an FD is trivial if and only if the right side is 
a subset──not necessarily a proper subset, of course──of the 
left side).   

 
•   Given a set S of FDs, the closure S+ of that set is the set 

of all FDs implied by the FDs in S.  Armstrong's inference 
rules provide a sound and complete basis for computing S+ from 
S (though we usually don't actually perform that computation).  
Several other useful rules can easily be derived from 
Armstrong's rules (see the exercises).   

 
•   Given a set Z of attributes of relvar R and a set S of FDs 

that hold for R, the closure Z+ of Z under S is the set of all 
attributes A of R such that the FD Z → A is a member of S+ 
(i.e., such that the FD Z → A is implied by the FDs in S).  
If and only if Z+ is all of the attributes of R, Z is a 
superkey for R (and a candidate key is an irreducible 
superkey).  There's a simple algorithm for computing Z+ from Z 
and S, and hence a simple way of determining whether a given 
FD X → Y is a member of S+ (X → Y is a member of S+ if and 
only if Y is a subset of X+).   

 
•   Two sets of FDs S1 and S2 are equivalent if and only if 

they're covers for each other, i.e., if and only if S1+ = S2+.  
Every set of FDs is equivalent to at least one irreducible 
set.  A set of FDs is irreducible if and only if all three of 
the following are true:   
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a. Every FD in the set has a singleton right side.   
 
b. No FD in the set can be discarded without changing the 

closure of the set.   
 
c. No attribute can be discarded from the left side of any FD 

in the set without changing the closure of the set.   
 
If I is an irreducible set equivalent to S, enforcing the FDs 
in I will automatically enforce the FDs in S.   
 
The sections also contain three inline exercises:   
 

•   Check that the FDs stated to hold in the relation in Fig. 
11.1 do in fact hold.  Answer:  Here, of course, we're talking 
about FDs that happen to hold in a specific relation value, 
not ones that hold for all time.  The exercise is trivial.  No 
further answer provided.   

 
•   State the complete set of FDs satisfied by relvar SCP.  

Answer:  The most important ones are clearly:   
 

{ S#, P# } → QTY 
S# → CITY 
 
There are 83 additional FDs (!) implied by these two (i.e., 
the closure consists of 85 FDs in total).   
 

•   Prove the algorithm given in Fig. 11.2 is correct.  No answer 
provided.   

 
 

Answers to Exercises 
 
11.1 (a) An FD is basically a statement of the form A → B, where 
A and B are each subsets of the set of attributes of R.  Given 
that a set of n elements has 2n possible subsets, it follows that 
each of A and B has 2n possible values, and hence an upper limit 
on the number of possible FDs in R is 22n.  (b) Every tuple t of R 
has the same value (namely, the 0-tuple) for that subtuple of t 
that corresponds to the empty set of attributes.  If B is empty, 
therefore, the FD A → B is trivially true for all possible sets A 
of attributes of R; in fact, it's a trivial FD, in the sense of 
that term as defined in Section 11.3, and it isn't very 
interesting.*  On the other hand, if A is empty, the FD A → B 
means all tuples of R have the same value for B (since they 
certainly all have the same value for A).  And if B in turn is 
"all of the attributes of R"──i.e., if R has an empty key──then R 
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is constrained to contain at most one tuple (for further 
discussion, see the answer to Exercise 9.10).   
 
 
────────── 
 
*  If A is empty as well, the FD degenerates to {} → {}, which 
has some claim to being "the least momentous observation that can 
be made in Relationland" [6.5].   
 
────────── 
 
 
11.2 The rules are sound in the sense that, given a set S of FDs, 
FDs not implied by S can't be derived from S using the rules.  
They're complete in the sense that all FDs implied by S can be so 
derived.   
 
11.3 The reflexivity rule states that if B is a subset of A, then 
A → B.  Proof:  Let the relvar in question be R, and let t1 and 
t2 be any two tuples of R that agree on A.  Then certainly t1 and 
t2 agree on B.  Hence A → B.   
 

The augmentation rule states that if A → B, then AC → BC.  
Proof:  Again let the relvar in question be R, and let t1 and t2 
be any two tuples of R that agree on AC.  Then certainly t1 and t2 
agree on C.  They also agree on A, and therefore on B, because A 
→ B.  Hence they agree on BC.  Hence AC → BC.   

 
The transitivity rule states that if A → B and B → C, then A 

→ C.  Proof:  Once again let the relvar in question be R, and let 
t1 and t2 be any two tuples of R that agree on A.  Then t1 and t2 
agree on B, because A → B.  Hence they also agree on C, because B 
→ C.  Hence A → C.   

 
11.4 The self-determination rule states that A → A.  Proof:  
Immediate, by reflexivity.   
 

The decomposition rule states that if A → BC, then A → B and 
A → C.  Proof:  A → BC (given) and BC → B by reflexivity.  Hence 
A → B by transitivity (and likewise for A → C).   

 
The union rule states that if A → B and A → C, then A → BC.  

Proof:  A → B (given), hence A → BA by augmentation; also, A → C 
(given), hence BA → BC by augmentation.  Hence A → BC by 
transitivity.   
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The composition rule states that if A → B and C → D, then AC 
→ BD.  Proof:  A → B (given), hence AC → BC by augmentation; 
likewise, C → D (given), hence BC → BD by augmentation.  Hence 
AC → BD by transitivity.   

 
11.5 This proof requires intersection and difference, as well as 
union, of sets of attributes; we therefore show all three 
operators explicitly, union included, in the proof.  (By contrast, 
previous proofs used simple concatenation of attributes to 
represent union.)   
 
1. A → B                                  (given) 
2. C → D                                  (given) 
3. A → B ∩ C                              (joint dependence, 1) 
4. C - B → C - B                          (self-determination) 
5. A ∪ ( C - B ) → ( B ∩ C ) ∪ ( C - B )  (composition, 3, 4) 
6. A ∪ ( C - B ) → C                      (simplifying 5) 
7. A ∪ ( C - B ) → D                      (transitivity, 6, 2) 
8. A ∪ ( C - B ) → B ∪ D                  (composition, 1, 7)  
 

This completes the proof.   
 

The rules used in the proof are as indicated in the comments.  
The following rules are all special cases of Darwen's theorem: 
union, transitivity, composition, and augmentation.  So too is the 
following useful rule:   

 
•  If A → B and AB → C, then A → C.   
 

11.6 (a) The closure of a set of FDs is the set of all FDs that 
are implied by the given set.  (b) The closure of a set of 
attributes is the set of all attributes that are functionally 
dependent on the given set.   
 
11.7 The complete set of FDs──i.e., the closure──for relvar SP is 
as follows:   
 

{ S#, P#, QTY } → { S#, P#, QTY } 
{ S#, P#, QTY } → { S#, P# } 
{ S#, P#, QTY } → { P#, QTY } 
{ S#, P#, QTY } → { S#, QTY } 
{ S#, P#, QTY } → { S# } 
{ S#, P#, QTY } → { P# } 
{ S#, P#, QTY } → { QTY } 
{ S#, P#, QTY } → { } 
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{ S#, P# }      → { S#, P#, QTY } 
{ S#, P# }      → { S#, P# } 
{ S#, P# }      → { P#, QTY } 
{ S#, P# }      → { S#, QTY } 
{ S#, P# }      → { S# } 
{ S#, P# }      → { P# } 
{ S#, P# }      → { QTY } 
{ S#, P# }      → { } 
 
{ P#, QTY }     → { P#, QTY } 
{ P#, QTY }     → { P# } 
{ P#, QTY }     → { QTY } 
{ P#, QTY }     → { } 
 
{ S#, QTY }     → { S#, QTY } 
{ S#, QTY }     → { S# } 
{ S#, QTY }     → { QTY } 
{ S#, QTY }     → { } 
 
{ S# }          → { S# } 
{ S# }          → { } 
 
{ P# }          → { P# } 
{ P# }          → { } 
 
{ QTY }         → { QTY } 
{ QTY }         → { } 
 
{ }             → { } 
 

11.8 {A,C}+ = {A,B,C,D,E}.  The answer to the second part of the 
question is yes.   
 
11.9 Two sets S1 and S2 of FDs are equivalent if and only if they 
have the same closure.   
 
11.10 A set of FDs is irreducible if and only if all three of the 
following properties hold:   
 
•  Every FD has a singleton right side.   
 
•  No FD can be discarded without changing the closure.   
 
•  No attribute can be discarded from the left side of any FD 

without changing the closure.   
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11.11 They're equivalent.  Let's number the FDs of the first set 
as follows:   
 
1. A  → B               
2. AB → C               
3. D  → AC 
4. D  → E 
 

Now, 3 can be replaced by:   
 

3. D → A and D → C 
 

Next, 1 and 2 together imply that 2 can be replaced by:   
 

2. A → C 
 

But now we have D → A and A → C, so D → C is implied (by 
transitivity) and so can be dropped, leaving:   

 
3. D → A 
 

The first set of FDs is thus equivalent to the following 
irreducible set:   

 
A → B 
A → C 
D → A 
D → E 
 
The second given set of FDs  
 
A → BC 
D → AE   
 

is clearly also equivalent to this irreducible set.  Thus, the two 
given sets are equivalent.   
 
11.12 The first step is to rewrite the given set such that every 
FD has a singleton right side:   
 
1. AB  → C 
2. C   → A 
3. BC  → D 
4. ACD → B 
5. BE  → C 
6. CE  → A 
7. CE  → F 
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8. CF  → B 
9. CF  → D 
11. D   → E 
11. D   → F 
 
Now:   
 
•  2 implies 6, so we can drop 6.   
 
•  8 implies CF → BC (by augmentation), which with 3 implies CF 

→ D (by transitivity), so we can drop 11.   
 
•   8 implies ACF → AB (by augmentation), and 11 implies ACD → 

ACF (by augmentation), and so ACD → AB (by transitivity), and 
so ACD → B (by decomposition), so we can drop 4.   

 
No further reductions are possible, and so we're left with the 
following irreducible set:   
 

AB  → C 
C   → A 
BC  → D 
BE  → C 
CE  → F 
CF  → B 
D   → E 
D   → F 
 
Alternatively:   
 

•  2 implies CD → ACD (by composition), which with 4 implies CD 
→ B (by transitivity), so we can replace 4 by CD → B.   

 
•  2 implies 6, so we can drop 6 (as before).   
 
•   2 and 10 imply CF → AD (by composition), which implies CF → 

ADC (by augmentation), which with (the original) 4 implies CF 
→ B (by transitivity), so we can drop 8.   

 
No further reductions are possible, and so we're left with the 
following irreducible set:   
 

AB  → C 
C   → A 
BC  → D 
CD  → B 
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BE  → C 
CE  → F 
CF  → D 
D   → E 
D   → F 
 
Observe, therefore, that there are two distinct irreducible 

equivalents for the original set of FDs.   
 

11.13 FDs:  No answer provided.  Candidate keys:  L, DPC, and DPT.   
 
11.14 Abbreviating NAME, STREET, CITY, STATE, and ZIP* to N, R, C, 
T, and Z, respectively, we have:   
 

N → RCT    RCT → Z    Z → CT 
 

An obviously equivalent irreducible set is:   
 

N → R    N → C    N → T    RCT → Z    Z → C    Z → T 
 

The only candidate key is N.   
 
 
────────── 
 
*  By the way, did you know that ZIP is an acronym?  It stands for 
zoning improvement program.   
 
────────── 
 
 
11.15 No!  In particular, the FD Z → CT doesn't hold (though it 
"almost does").  If it did hold, it would mean that distinct city 
and state combinations always have distinct zip codes──but there 
are exceptions; for example, the cities of Jenner and Fort Ross in 
California both have zip code 95450.   
 
11.16 We don't give a full answer to this exercise, but content 
ourselves with the following observations.  First, the set is 
clearly not irreducible, since C → J and CJ → I together imply C 
→ I.  Second, an obvious superkey is {A,B,C,D,G,J} (i.e., the set 
of all attributes mentioned on the left sides of the given FDs).  
We can eliminate J from this set because C → J, and we can 
eliminate G because AB → G.  Since none of A, B, C, D appears on 
the right side of any of the given FDs, it follows that {A,B,C,D} 
is a candidate key.   
 
 



Copyright (c) 2003 C. J. Date                            page 11.10 
 

          *** End of Chapter 11 *** 
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Chapter 12 
 
 

          F u r t h e r   N o r m a l i z a t 
i o n   I : 
 
 
          1 N F ,   2 N F ,   3 N F ,   B C N 
F 
 
 
Principal Sections 
 
•  Nonloss decomposition and FDs  
•  1NF, 2NF, 3NF  
•  FD preservation 
•  BCNF  
•  A note on RVAs  
 
 

General Remarks 
 
This chapter is concerned with FDs as an aid to database design; 
don't skip it.  The treatment is deliberately not as formal as 
that of the preceding chapter.  Note in particular the following 
caveat from the beginning of Section 12.3:   
 
(Begin quote) 
 
Throughout this section [on 1NF, 2NF, and 3NF], we assume for 
simplicity that each relvar has exactly one candidate key, which 
we further assume is the primary key.  These assumptions are 
reflected in our definitions, which ... aren't very rigorous.  The 
case of a relvar having more than one candidate key is discussed 
in Section 12.5.   
 
(End quote) 
 

A little bit of history:  The first three normal forms were 
originally defined by Ted Codd, and they weren't too hard to 
understand.  But then more and more researchers (Ted Codd, Raymond 
Boyce, Ron Fagin, others) began to define more and more new normal 
forms──Boyce/Codd, 4th, 5th, as well as some others not shown in 
Fig. 12.2──and people began to panic:  Where's this all going to 
end?  Will there be a 6th, a 7th, an 8th, a 9th, a 10th, ... 
normal form?  Will there ever be an end to this progression?  
Well, I'm pleased to be able to tell you that there is an end:  
Fifth normal form really is the final normal form──in a very 
special sense, which we'll get to in the next chapter.   
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The basic problem with a relvar that's less than fully 

normalized* is redundancy.  Redundancy in turn leads to "update 
anomalies."  Note the little piece of insight in the footnote near 
the beginning of Section 12.1:   

 
(Begin quote) 
 
Throughout this chapter and the next, it's necessary to assume 
(realistically enough!) that relvar predicates aren't being fully 
enforced──for if they were, [some of the update anomalies to be 
discussed] couldn't possibly arise ... One way to think about the 
normalization discipline is as follows:  It helps structure the 
database in such a way as to make more single-tuple updates 
logically acceptable than would otherwise be the case (i.e., if 
the design weren't fully normalized).  This goal is achieved 
because the relvar predicates are simpler if the design is fully 
normalized than they would be otherwise.   
 
(End quote) 
 
 
────────── 
 
*  To jump ahead to Chapter 13 for a moment, a precise statement 
of what it means for relvar R to be "less than fully normalized" 
is that R satisfies a certain JD that's not implied by the 
candidate keys of R.  Of course, that JD might be an MVD or even 
an FD.   
 
────────── 
 
 

Normalized and 1NF mean exactly the same thing──though 
"normalized" is often used to mean some higher level of 
normalization (typically 3NF).  All relvars are in 1NF (see 
Chapter 6 and/or the article "What Does First Normal Form Really 
Mean?" (in two parts), due to appear soon on the website 
www.dbdebunk.com.  Note:  In particular, this article contains an 
extended treatment of RVAs──more extensive than the treatment in 
the present chapter.  I wouldn't suggest including such extensive 
treatment in a live class, but as an instructor you might want to 
be aware of some of the issues.   

 
Full normalization isn't required but is STRONGLY recommended.  

Backing off from full normalization usually implies unforeseen 
problems (but might be necessary in today's products, given their 
weak logical/physical separation).   
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In practice we rarely apply the normalization procedure 
directly; rather, we use the ideas of normalization to verify that 
a design achieved in some other manner doesn't unintentionally 
violate normalization principles.  But the normalization procedure 
does provide a convenient framework in which to describe those 
principles──so we adopt the useful fiction (for the purposes of 
this chapter only) that we are indeed carrying out the design 
process by applying that procedure.   

 
 

12.2 Nonloss Decomposition and FDs  
 
Explain nonloss decomposition (reversibility) and Heath's theorem.  
Stress the role of the projection and join operators.  Discuss 
left-irreducible FDs (aka "full" FDs).  Explain FD diagrams.   
 

With regard to nonloss decomposition, note the discussion of 
the additional requirement that none of the projections is 
redundant in the (re)join:  "For simplicity, let's agree from this 
point forward that this additional requirement is in fact always 
in force, barring explicit statements to the contrary."   

 
A nice intuitive characterization of the normalization 

procedure (at least up to BCNF):  It's a procedure for eliminating 
arrows that aren't arrows out of candidate keys.  Note that this 
characterization can be extended straightforwardly to deal with 
normalization up to 4NF and 5NF as well (see Chapter 13).   

 
This section includes the following inline exercise:   
 
[If we replace S by two projections and then join those 
projections back together again,] we get back all of the 
tuples in the original S, [possibly] together with some 
additional "spurious" tuples; we can never get back anything 
less than the original S.  Exercise:  Prove this statement.   
 

Answer:  Let X and Y be the two projections, let the attributes 
common to X and Y be B, let the other attributes of X be A, and 
let the other attributes of Y be C (the [disjoint] union of A, B, 
and C is all of the attributes of S, of course).  Let t = (a,b,c) 
be a tuple in S.  Then tuple tx = (a,b) appears in X and tuple ty 
= (b,c) appears in Y, whence tuple t = (a,b,c) appears in the join 
of X and Y.  █   
 

The section also leaves as an exercise detailed consideration 
of how replacing SECOND by SC and CS overcomes certain update 
anomalies.  Answer:   
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•   INSERT:  We can insert the information that Rome has a status 
of 50, even though no supplier is currently located in Rome, 
by simply inserting the appropriate tuple into CS.   

 
•   DELETE:  We can delete supplier S5 from SC without losing the 

information that Athens has status 30.   
 
•   UPDATE:  In the revised structure, the status for a given 

city appears once, not many times, because there's precisely 
one tuple for a given city in CS (the primary key is {CITY}); 
in other words, the CITY-STATUS redundancy has been 
eliminated.  Thus, we can change the status for London from 20 
to 30 by changing it once and for all in the relevant CS 
tuple.   

 
 

12.3 1NF, 2NF, 3NF  
 
Mostly self-explanatory.  Another nice intuitive characterization 
of the normalization procedure:  It's an unbundling procedure──put 
logically separate information into separate relvars.  Highlight 
the following "algorithms":   
 
1. Given:  R { A, B, C, D } 

PRIMARY KEY { A, B } 
/* assume A → D holds */ 
 

Replace R by R1 and R2:   
 
R1 { A, D } 

PRIMARY KEY { A } 
 

R2 { A, B, C } 
PRIMARY KEY { A, B } 
FOREIGN KEY { A } REFERENCES R1 
 

2. Given:  R { A, B, C } 
PRIMARY KEY { A } 
/* assume B → C holds */ 
 

Replace R by R1 and R2:   
 
R1 { B, C } 

PRIMARY KEY { B } 
 

R2 { A, B } 
PRIMARY KEY { A } 
FOREIGN KEY { B } REFERENCES R1 
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If you want to get into more formalism, see the algorithm at 
the end of Section 12.4 for obtaining 3NF (in an FD-preserving 
way).   

 
Note that a given relvar can be said to be at a given level of 

normalization only with respect to a specified set of dependencies 
(but it's usual to ignore this point in informal contexts).  E.g., 
the relvar  

 
NADDR { NAME, STREET, CITY, STATE, ZIP }  
 

can be regarded as fully normalized if the FD ZIP → { CITY, 
STATE } is of no interest and hence isn't mentioned.  (Of course, 
that FD doesn't really hold in practice anyway, as we saw in the 
answers to the exercises in Chapter 11.)   
 
 
12.4 FD Preservation 
 
Like further normalization in general, FD preservation can be seen 
as a way of designing the database in such a manner as to simplify 
the integrity constraints that need to be stated and enforced.   
 

The section includes the following:  "Replacing SECOND by its 
two projections on {S#,STATUS} and {CITY,STATUS} isn't a valid 
decomposition, because it isn't nonloss.  Exercise:  Prove this 
statement."  Answer:  Given the usual sample data values, the join 
of these two projections clearly includes a tuple relating 
supplier S3 to the city Athens, yet no such tuple appears in the 
original S.   

 
 

12.5 BCNF  
 
BNCF is the normal form if FDs are the only kind of dependency 
considered; in some respects, therefore, 2NF and 3NF are of 
historical interest merely (though they can be pragmatically 
useful concepts in the practical business of database design).  
Presumably for this very reason, some textbooks go straight to 
BCNF and ignore 2NF and 3NF.   
 

Regarding the SSP example:  Students might object that SSP is 
not even in 2NF, because (e.g.) SNAME is not irreducibly dependent 
on the "primary" key {S#,P#}.  (If nobody does object, then raise 
the objection yourself!)  Explain that it is in 2NF (and 3NF) 
according to Codd's original definitions [11.6]──the definitions 
in Section 12.3 were deliberately somewhat simplified, and ignored 
the glitch in Codd's original definition.  (Zaniolo's nice 
definition of 3NF, repeated below, is equivalent to Codd's 
original definition.)   
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Stress the point that BCNF (like all the other formal ideas 

discussed in this chapter and the next) are basically just 
formalized common sense──but formalizing common sense is a neat 
trick! (and not easy to do).   

 
BCNF and FD preservation can be conflicting objectives (see 

the SJT example).   
 
Zaniolo's nice definitions:   
 

•   3NF:  R is in 3NF if and only if, for every FD X → A in R, 
at least one of the following is true:   

 
1. X contains A (so the FD is trivial).   
 
2. X is a superkey.   
 
3. A is contained in a candidate key of R.   
 

•  BCNF:  As above, except (a) drop possibility 3 and (b) replace 
"3NF" by "BCNF" (of course).  Possibility 3 is why SSP is in 
3NF, incidentally (see above); it corresponds to the glitch in 
Codd's original definition.   

 
Note that Zaniolo's definitions make it immediately obvious 

that (a) all BCNF relvars are in 3NF and (b) the converse isn't 
true (there do exist 3NF relvars that aren't in BCNF).   

 
If you want to get into more formalism, see the algorithm at 

the end of this section for obtaining BCNF (albeit not necessarily 
in an FD-preserving way, given that BCNF and FD preservation can 
be conflicting objectives, as we already know).   

 
In its discussion of the SJT example (in which SJT is replaced 

by the two projections ST{S,T} and TJ{T,J}), this section includes 
the following:  "Show the values of these two relvars 
corresponding to the data of Fig. 12.14; draw a corresponding FD 
diagram; prove that the two projections are indeed in BCNF (what 
are the candidate keys?); and check that the decomposition does in 
fact avoid the anomalies."  Answer:  ST satisfies no nontrivial 
FDs at all; TJ has {T} as its sole key and satisfies no nontrivial 
FDs except for the FD {T} → {J}; both are therefore in BCNF.  No 
answer provided for the rest of the exercise.   

 
In its discussion of the EXAM example, the section includes 

the following:  "However, EXAM is in BCNF, because the candidate 
keys are the only determinants, and update anomalies such as those 
discussed earlier in the chapter don't occur with this relvar.  
Exercise:  Check this claim."  Answer:  It's easy to see that 
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"update anomalies such as those discussed earlier in the chapter" 
don't occur.  But others can!  For example, deleting the tuple 
{S:Smith,J:Math,P:5} will "leave a gap," in the sense that now 
nobody comes 5th in the class list with respect to Math (in other 
words, a certain integrity constraint has been violated).  The 
EXAM example thus clearly illustrates the point that not all 
update anomalies can be eliminated by normalization (i.e., by 
taking projections).  In fact, of course, normalization can 
eliminate precisely those anomalies that are caused by FDs or MVDs 
or JDs that aren't implied by keys──just those anomalies and no 
others.   

 
 

12.6 A Note on RVAs  
 
Possibly skip this section on a first pass.  While RVAs are legal 
(see Chapter 6), they're usually contraindicated.  (Of course, 
most textbooks──including earlier editions of this one──regard 
RVAs as illegal anyway.  The section thus perhaps requires careful 
attention more by people who already know something about 
relational databases than it does by beginners.)   
 

If you do cover this material, certainly point out the 
asymmetry (fundamental problem) and mention predicate complexity.  
Here are the examples from the text.  First, the (symmetric) 
queries── 
 
1. Get S# for suppliers who supply part P1  
 
2. Get P# for parts supplied by supplier S1  
 
──have very different formulations:   
 
1. ( SPQ WHERE TUPLE { P# P# ('P1') } ε PQ { P# } ) { S# } 
 
2. ( ( SPQ WHERE S# = S# ('S1') ) UNGROUP PQ ) { P# } 
 

Second, the (symmetric) updates──  
 
1. Create a new shipment for supplier S6, part P5, quantity 500  
 
2. Create a new shipment for supplier S2, part P5, quantity 500  
 
──look like this:   
 
1. INSERT SPQ RELATION  

{ TUPLE { S# S# ('S6'), 
PQ RELATION { TUPLE { P#  P# ('P5'),  

QTY QTY ( 500 ) } } } } ; 
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2. UPDATE SPQ WHERE S# = S# ('S2') 
{ INSERT PQ RELATION { TUPLE { P#  P# ('P5'),  

QTY QTY ( 500 ) } } } ; 
 

Moreover, all of these formulations are significantly more 
complicated than their SP counterparts.   
 

RVAs are thus usually contraindicated in base relvars (i.e., 
in logical DB designs).  This doesn't mean they're contraindicated 
in derived relations or relvars, or always contraindicated even in 
base relvars.   

 
By the way, relvar SPQ is in 5NF! (and thus certainly in 

BCNF).   
 
 

Answers to Exercises 
 
12.1 Heath's theorem states that if R{A,B,C} satisfies the FD A → 
B (where A, B, and C are sets of attributes), then R is equal to 
the join of its projections R1 on {A,B} and R2 on {A,C}.  In the 
following proof of this theorem, we adopt our usual informal 
shorthand for tuples.   
 

First we show that no tuple of R is lost by taking the 
projections and then joining those projections back together 
again.  Let (a,b,c) ε R.  Then (a,b) ε R1 and (a,c) ε R2, and so 
(a,b,c) ε R1 JOIN R2.   

 
Next we show that every tuple of the join is indeed a tuple of 

R (i.e., the join doesn't generate any "spurious" tuples).  Let 
(a,b,c) ε R1 JOIN R2.  In order to generate such a tuple in the 
join, we must have (a,b) ε R1 and (a,c) ε R2.  Hence there must 
exist a tuple (a,b',c) ε R for some b', in order to generate the 
tuple (a,c) ε R2.  We therefore must have (a,b') ε R1.  Now we 
have (a,b) ε R1 and (a,b') ε R1; hence we must have b = b', 
because A → B.  Hence (a,b,c) ε R.   

 
The converse of Heath's theorem would state that if R{A,B,C} 

is equal to the join of its projections on {A,B} and on {A,C}, 
then R satisfies the FD A → B.  This statement is false.  For 
example, Fig. 13.2 in the next chapter shows a relation that's 
certainly equal to the join of two of its projections and yet 
doesn't satisfy any (nontrivial) FDs at all.   

 
12.2 The claim is almost but not quite valid.  The following 
(pathological?) counterexample is taken from reference [6.5].  
Consider the relvar  
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USA {  COUNTRY, STATE } 
 

(interpreted as "STATE is part of COUNTRY," where COUNTRY is the 
United States of America in every tuple).  Then the FD  
 

{ } → COUNTRY  
 

holds in this relvar, and yet the empty set {} is not a candidate 
key.  So USA isn't in BCNF (it can be nonloss-decomposed into its 
two unary projections──though whether it really should be further 
normalized in this way might be the subject of debate).   
 
12.3 The figure below shows the most important FDs, both those 
implied by the wording of the exercise and those corresponding to 
reasonable semantic assumptions (stated explicitly below).  The 
attribute names are intended to be self-explanatory.   
 
╔════════════════════════════════════════════════════════════════╗ 
║  ┌───────────┐                   ┌───────────┐                 ║ 
║  │   AREA    │                   │  DBUDGET  │                 ║ 
║  └─────*─────┘                   └─────*─────┘                 ║ 
║        │                               │                       ║ 
║  ┌─────┴─────┐                   ┌─────┴─────┐  ┌───────────┐  ║ 
║  │   OFF#    ├───────────────────*   DEPT#   *──*  MGR_EMP# │  ║ 
║  └─────*─────*───────┐   ┌───────*─────*─────┘  └───────────┘  ║ 
║        │        ┌────┼───┼────┐        │                       ║ 
║  ┌─────┴─────┐  │┌───┴───┴───┐│  ┌─────┴─────┐  ┌───────────┐  ║ 
║  │   PHONE#  *──┼┤   EMP#    ├┼──*   PROJ#   ├──*  PBUDGET  │  ║ 
║  └───────────┘  │└───────────┘│  └───────────┘  └───────────┘  ║ 
║  ┌───────────┐  │┌───────────┐│  ┌───────────┐                 ║ 
║  │ JOBTITLE  *──┤│   DATE    │├──*  SALARY   │                 ║ 
║  └───────────┘  │└───────────┘│  └───────────┘                 ║ 
║                 └─────────────┘                                ║ 
╚════════════════════════════════════════════════════════════════╝  
 
Semantic assumptions: 
 
•  No employee is the manager of more than one department at a 

time.   
 
•  No employee works in more than one department at a time.   
 
•  No employee works on more than one project at a time.   
 
•  No employee has more than one office at a time.   
 
•  No employee has more than one phone at a time.   
 
•  No employee has more than one job at a time.   
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•  No project is assigned to more than one department at a time.   
 
•  No office is assigned to more than one department at a time.   
 
•   Department numbers, employee numbers, project numbers, office 

numbers, and phone numbers are all "globally" unique.   
 

Step 0: Establish initial relvar structure 
 
Observe first that the original hierarchic structure can be 
regarded as a 1NF relvar DEPT0 with relation-valued attributes:   
 

DEPT0 { DEPT#, DBUDGET, MGR_EMP#, XEMP0, XPROJ0, XOFFICE0 } 
KEY { DEPT# } 
KEY { MGR_EMP# } 
 

Attributes DEPT#, DBUDGET, and MGR_EMP# are self-explanatory, but 
attributes XEMP0, XPROJ0, and XOFFICE0 are relation-valued and do 
require a little more explanation:   
 
•  The XPROJ0 value within a given DEPT0 tuple is a relation with 

attributes PROJ# and PBUDGET.   
 
•   Likewise, the XOFFICE0 value within a given DEPT0 tuple is a 

relation with attributes OFF#, AREA, and (say) XPHONE0, where 
XPHONE0 is relation-valued in turn.  XPHONE0 relations have 
just one attribute, PHONE#.   

 
•   Finally, the XEMP0 value within a given DEPT0 tuple is a 

relation with attributes EMP#, PROJ#, OFF#, PHONE#, and (say) 
XJOB0, where XJOB0 is relation-valued in turn.  XJOB0 
relations have attributes JOBTITLE and (say) XSALHIST0, where 
XSALHIST0 is once again relation-valued (XSALHIST0 relations 
have attributes DATE and SALARY).   

 
The complete hierarchy can thus be represented by the following 
nested structure:   
 

DEPT0 { DEPT#, DBUDGET, MGR_EMP#,  
XEMP0 { EMP#, PROJ#, OFF#, PHONE#,  

XJOB0 { JOBTITLE,  
XSALHIST0 { DATE, SALARY } } }, 

XPROJ0 { PROJ#, PBUDGET }, 
XOFFICE0 { OFF#, AREA, XPHONE0 { PHONE# } } } 
 

Note:  Instead of attempting to show candidate keys, we've used 
italics here to indicate attributes that are at least "unique 
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within parent" (in fact, DEPT#, EMP#, PROJ#, OFF#, and PHONE# are, 
according to our stated assumptions, all globally unique).   
 
Step 1: Eliminate relation-valued attributes 
 
Now let's assume for simplicity that we wish every relvar to have 
a primary key specifically──i.e., we'll always designate one 
candidate key as primary for some reason (the reason isn't 
important here).  In the case of DEPT0 in particular, let's choose 
{DEPT#} as the primary key (and so {MGR_EMP#} becomes an alternate 
key).   
 

We now proceed to get rid of all of the relation-valued 
attributes in DEPT0, since as noted in Section 12.6 such 
attributes are usually undesirable:*   

 
 

────────── 
 
*  We remark that the procedure given here for eliminating RVAs 
amounts to repeatedly executing the UNGROUP operator (see Chapter 
7, Section 7.9) until the desired result is obtained.  
Incidentally, the procedure as described also guarantees that any 
multi-valued dependencies (MVDs) that aren't FDs are eliminated 
too; as a consequence, the relvars we eventually wind up with are 
in fact in 4NF, not just BCNF (see Chapter 13).   
 
────────── 
 
 
•  For each RVA in DEPT0──i.e., attributes XEMP0, XPROJ0, and 

XOFFICE0──form a new relvar with attributes consisting of the 
attributes from the underlying relation type, together with 
the primary key of DEPT0.  The primary key of each such relvar 
is the combination of the attribute that previously gave 
"uniqueness within parent," together with the primary key of 
DEPT0.  (Note, however, that many of those "primary keys" will 
include attributes that are redundant for unique 
identification purposes and will be eliminated later in the 
overall reduction procedure.)  Remove attributes XEMP0, 
XPROJ0, and XOFFICE0 from DEPT0.   

 
•   If any relvar R still includes any RVAs, perform an analogous 

sequence of operations on R.   
 

We obtain the following collection of relvars, with (as indicated) 
all RVAs eliminated.  Note, however, that while the resulting 
relvars are necessarily in 1NF (of course), they aren't 
necessarily in any higher normal form.   
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DEPT1 { DEPT#, DBUDGET, MGR_EMP# } 
PRIMARY KEY { DEPT# } 
ALTERNATE KEY { MGR_EMP# } 
 

EMP1 { DEPT#, EMP#, PROJ#, OFF#, PHONE# } 
PRIMARY KEY { DEPT#, EMP# } 
 

JOB1 { DEPT#, EMP#, JOBTITLE } 
PRIMARY KEY { DEPT#, EMP#, JOBTITLE } 
 

SALHIST1 { DEPT#, EMP#, JOBTITLE, DATE, SALARY } 
PRIMARY KEY { DEPT#, EMP#, JOBTITLE, DATE } 
 

PROJ1 { DEPT#, PROJ#, PBUDGET } 
PRIMARY KEY { DEPT#, PROJ# } 
 

OFFICE1 { DEPT#, OFF#, AREA } 
PRIMARY KEY { DEPT#, OFF# } 
 

PHONE1 { DEPT#, OFF#, PHONE# } 
PRIMARY KEY { DEPT#, OFF#, PHONE# } 
 
 

Step 2: Reduce to 2NF 
 
We now reduce the relvars produced in Step 1 to an equivalent 
collection of relvars in 2NF by eliminating any FDs that aren't 
irreducible.  We consider the relvars one by one.   
 
DEPT1:    This relvar is already in 2NF.   
 
EMP1:     First observe that DEPT# is actually redundant as a 

component of the primary key for this relvar.  We can 
take {EMP#} alone as the primary key, in which case the 
relvar is in 2NF as it stands.   

 
JOB1:     Again, DEPT# isn't needed as a component of the primary 

key.  Since DEPT# is functionally dependent on EMP#, we 
have a nonkey attribute (DEPT#) that isn't irreducibly 
dependent on the primary key (the combination 
{EMP#,JOBTITLE}), and hence JOB1 isn't in 2NF.  We can 
replace it by  

 
JOB2A { EMP#, JOBTITLE } 

PRIMARY KEY { EMP#, JOBTITLE } 
 

and  
 
JOB2B { EMP#, DEPT# } 

PRIMARY KEY { EMP# } 
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However, JOB2A is a projection of SALHIST2 (see below), 
and JOB2B is a projection of EMP1 (renamed as EMP2 
below), so both of these relvars can be discarded.   
 

SALHIST1: As with JOB1, we can project away DEPT# entirely.  
Moreover, JOBTITLE isn't needed as a component of the 
primary key; we can take the combination {EMP#,DATE} as 
the primary key, to obtain the 2NF relvar  

 
SALHIST2 { EMP#, DATE, JOBTITLE, SALARY } 

PRIMARY KEY { EMP#, DATE } 
 

PROJ1:    As with EMP1, we can consider DEPT# as a nonkey 
attribute; the relvar is then in 2NF as it stands.   

 
OFFICE1:  Similar remarks apply.   
 
PHONE1:   We can project away DEPT# entirely, since the relvar 

(DEPT#,OFF#) is a projection of OFFICE1 (renamed as 
OFFICE2 below).  Also, OFF# is functionally dependent on 
PHONE#, so we can take {PHONE#} alone as the primary 
key, to obtain the 2NF relvar  

 
PHONE2 { PHONE#, OFF# } 

PRIMARY KEY { PHONE# } 
 

Note that this relvar isn't necessarily a projection of 
EMP2 (phones or offices might exist without being 
assigned to employees), so we can't discard it.   
 

Hence our collection of 2NF relvars is  
 
DEPT2 { DEPT#, DBUDGET, MGR_EMP# } 

PRIMARY KEY { DEPT# } 
ALTERNATE KEY { MGR_EMP# } 
 

EMP2 { EMP#, DEPT#, PROJ#, OFF#, PHONE# } 
PRIMARY KEY { EMP# } 
 

SALHIST2 { EMP#, DATE, JOBTITLE, SALARY } 
PRIMARY KEY { EMP#, DATE } 
 

PROJ2 { PROJ#, DEPT#, PBUDGET } 
PRIMARY KEY { PROJ# } 
 

OFFICE2 { OFF#, DEPT#, AREA } 
PRIMARY KEY { OFF# } 
 

PHONE2 { PHONE#, OFF# } 
PRIMARY KEY { PHONE# } 
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Step 3: Reduce to 3NF 
 
Now we reduce the 2NF relvars to an equivalent 3NF set by 
eliminating transitive FDs.  The only 2NF relvar not already in 
3NF is the relvar EMP2, in which OFF# and DEPT# are both 
transitively dependent on the primary key {EMP#}──OFF# via PHONE#, 
and DEPT# via PROJ# and also via OFF# (and hence via PHONE#).  The 
3NF relvars (projections) corresponding to EMP2 are  
 

EMP3 { EMP#, PROJ#, PHONE# } 
PRIMARY KEY { EMP# } 
 

X { PHONE#, OFF# } 
PRIMARY KEY { PHONE# } 
 

Y { PROJ#, DEPT# } 
PRIMARY KEY { PROJ# } 
 

Z { OFF#, DEPT# } 
PRIMARY KEY { OFF# } 
 

However, X is PHONE2, Y is a projection of PROJ2, and Z is a 
projection of OFFICE2.  Hence our collection of 3NF relvars is 
simply  
 

DEPT3 { DEPT#, DBUDGET, MGR_EMP# } 
PRIMARY KEY { DEPT# } 
ALTERNATE KEY { MGR_EMP# } 
 

EMP3 { EMP#, PROJ#, PHONE# } 
PRIMARY KEY { EMP# } 
 

SALHIST3 { EMP#, DATE, JOBTITLE, SALARY } 
PRIMARY KEY { EMP#, DATE } 
 

PROJ3 { PROJ#, DEPT#, PBUDGET } 
PRIMARY KEY { PROJ# } 
 

OFFICE3 { OFF#, DEPT#, AREA } 
PRIMARY KEY { OFF# } 
 

PHONE3 { PHONE#, OFF# } 
PRIMARY KEY { PHONE# } 
 

Finally, it's easy to see that each of these 3NF relvars is in 
fact in BCNF.   
 

Note that, given certain (reasonable) additional semantic 
constraints, this collection of BCNF relvars is strongly redundant 
[6.1], in that the projection of relvar PROJ3 over {PROJ#,DEPT#} 
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is at all times equal to a projection of the join of EMP3 and 
PHONE3 and OFFICE3.   

 
Observe finally that it's possible to "spot" the BCNF relvars 

from the FD diagram (how?).  Answer:  Loosely, there'll be one 
such relvar for each box that has an arrow emerging from it; that 
relvar will include the attributes from that original box as a 
candidate key, together with an attribute for every box pointed to 
from the original box (and no other attributes).  Of course, some 
refinement is needed to this loose statement in order to take care 
of relvars like DEPT3 that have two or more candidate keys.  Note:  
We don't claim that it's always possible to "spot" a BCNF 
decomposition──only that it's often possible to do so in practical 
cases.   

 
To revert to the company database example:  As a subsidiary 

exercise──not much to do with normalization as such, but very 
relevant to database design in general──try extending the 
foregoing design to incorporate the necessary foreign key 
specifications as well.  Answer:   

 
DEPT3 { DEPT#, DBUDGET, MGR_EMP# } 

PRIMARY KEY { DEPT# } 
ALTERNATE KEY { MGR_EMP# } 
FOREIGN KEY { RENAME MGR_EMP# AS EMP# } REFERENCES EMP3 
 

EMP3 { EMP#, PROJ#, PHONE# } 
PRIMARY KEY { EMP# } 
FOREIGN KEY { PROJ# } REFERENCES PROJ3 
FOREIGN KEY { PHONE# } REFERENCES PHONE3 
 

SALHIST3 { EMP#, DATE, JOBTITLE, SALARY } 
PRIMARY KEY { EMP#, DATE } 
FOREIGN KEY { EMP# } REFERENCES EMP3 
 

PROJ3 { PROJ#, DEPT#, PBUDGET } 
PRIMARY KEY { PROJ# } 
FOREIGN KEY { DEPT# } REFERENCES DEPT3 
 

OFFICE3 { OFF#, DEPT#, AREA } 
PRIMARY KEY { OFF# } 
FOREIGN KEY { DEPT# } REFERENCES DEPT3 
 

PHONE3 { PHONE#, OFF# } 
PRIMARY KEY { PHONE# } 
FOREIGN KEY { OFF# } REFERENCES OFFICE3 
 

12.4 The figure below shows the most important FDs for this 
exercise.  The semantic assumptions are as follows:   
 
╔════════════════════════════════════════════════════════════════╗ 
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║                                                 ┌───────────┐  ║ 
║                                        ┌────────*    BAL    │  ║ 
║                                        │        └───────────┘  ║ 
║                  ┌───────────┐   ┌─────┴─────┐  ┌───────────┐  ║ 
║                  │  ADDRESS  ├───*   CUST#   ├──*  CREDLIM  │  ║ 
║                  └─────*─────┘   └─────┬─────┘  └───────────┘  ║ 
║                        │               │        ┌───────────┐  ║ 
║                        │               └────────* DISCOUNT  │  ║ 
║                 ┌──────┼──────┐                 └───────────┘  ║ 
║  ┌───────────┐  │┌─────┴─────┐│  ┌───────────┐                 ║ 
║  │   QTYORD  *──┤│   ORD#    ├┼──*   DATE    │                 ║ 
║  └───────────┘  │└───────────┘│  └───────────┘                 ║ 
║  ┌───────────┐  │┌───────────┐│                                ║ 
║  │   QTYOUT  *──┤│   LINE#   ││                                ║ 
║  └───────────┘  │└───────────┘│                                ║ 
║                 └──────┬──────┘                                ║ 
║                 ┌──────┼──────┐                                ║ 
║  ┌───────────┐  │┌─────*─────┐│  ┌───────────┐                 ║ 
║  │   DESCN   *──┼┤   ITEM#   │├──*   QTYOH   │                 ║ 
║  └───────────┘  │└───────────┘│  └───────────┘                 ║ 
║                 │┌───────────┐│  ┌───────────┐                 ║ 
║                 ││   PLANT#  │├──*  DANGER   │                 ║ 
║                 │└───────────┘│  └───────────┘                 ║ 
║                 └─────────────┘                                ║ 
╚════════════════════════════════════════════════════════════════╝  
 
•  No two customers have the same ship-to address.   
 
•  Each order is identified by a unique order number.   
 
•  Each detail line within an order is identified by a line 

number, unique within the order.   
 

An appropriate set of BCNF relvars is as follows:   
 
CUST { CUST#, BAL, CREDLIM, DISCOUNT } 

KEY { CUST# } 
 

SHIPTO { ADDRESS, CUST# } 
KEY { ADDRESS } 
 

ORDHEAD { ORD#, ADDRESS, DATE } 
KEY { ORD# } 
 

ORDLINE { ORD#, LINE#, ITEM#, QTYORD, QTYOUT } 
KEY { ORD#, LINE# } 
 

ITEM { ITEM#, DESCN } 
KEY { ITEM# } 
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IP { ITEM#, PLANT#, QTYOH, DANGER } 
KEY { ITEM#, PLANT# } 
 

12.5 Consider the processing that must be performed by a program 
handling orders.  We assume that the input order specifies 
customer number, ship-to address, and details of the items ordered 
(item numbers and quantities).   
 

retrieve CUST WHERE CUST# = input CUST# ; 
check balance, credit limit, etc. ; 
retrieve SHIPTO WHERE ADDRESS = input ADDRESS 

AND   CUST#   = input CUST#   
/* this checks the ship-to address */ ; 
IF everything is OK THEN process the order ; END IF ; 
 
If 99 percent of customers actually have only one ship-to 

address, it would be rather inefficient to put that address in a 
relvar other than CUST (if we consider only that 99 percent, 
ADDRESS is in fact functionally dependent on CUST#).  We can 
improve matters as follows.  For each customer we designate one 
valid ship-to address as that customer's primary address.  For the 
99 percent, of course, the primary address is the only address.  
Any other addresses we refer to as secondary.  Relvar CUST can 
then be redefined as  

 
CUST { CUST#, ADDRESS, BAL, CREDLIM, DISCOUNT } 

KEY { CUST# } 
 

and relvar SHIPTO can be replaced by  
 

SECOND { ADDRESS, CUST# } 
KEY { ADDRESS } 
 

Here CUST contains the primary address, and SECOND contains 
all secondary addresses (and corresponding customer numbers).  
These relvars are both in BCNF.  The order processing program now 
looks like this:   

 
retrieve CUST WHERE CUST# = input CUST# ; 
check balance, credit limit, etc. ; 
IF retrieved ADDRESS =/ input ADDRESS THEN 

retrieve SECOND WHERE ADDRESS = input ADDRESS 
AND   CUST#   = input CUST#   

/* this checks the ship-to address */ ; 
END IF : 
IF everything is OK THEN process the order ; END IF ; 
 
The advantages of this approach include the following:   
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•  Processing is simpler (and possibly more efficient) for 99 
percent of customers.   

 
•   If the ship-to address is omitted from the input order, the 

primary address could be used by default.   
 
•   Suppose the customer can have a different discount for each 

ship-to address.  With the original approach (shown as the 
answer to the previous exercise), the DISCOUNT attribute would 
have to be moved to the SHIPTO relvar, making processing still 
more complicated.  With the revised approach, however, the 
primary discount (corresponding to the primary address) can be 
represented by an appearance of DISCOUNT in CUST, and 
secondary discounts by a corresponding appearance of DISCOUNT 
in SECOND.  Both relvars are still in BCNF, and processing is 
again simpler for 99 percent of customers.   

 
To sum up:  Isolating exceptional cases seems to be a valuable 

technique for obtaining the best of both worlds──i.e., combining 
the advantages of BCNF with the simplification in retrieval that 
can occur if the restrictions of BCNF are violated.   

 
12.6 The figure below shows the most important FDs.  A possible 
collection of relvars is:   
 
╔════════════════════════════════════════════════════════════════╗ 
║    ┌─────┐              ┌─────┐              ┌─────┐           ║ 
║    │┌───┐│              │┌───┐│              │┌───┐│   ┌───┐   ║ 
║    ││ D ││              ││ D ││              ││ D │├───* C │   ║ 
║    │└───┘│   ┌───┐      │└───┘│   ┌───┐      │└───┘│   └─*─┘   ║ 
║    │     ├───* T │      │     ├───* C │      │     │     │     ║ 
║    │┌───┐│   └─*─┘      │┌───┐│   └─*─┘      │┌───┐│   ┌─┴─┐   ║ 
║    ││ P ││     │        ││ P ││     │        ││ P │├───* L │   ║ 
║    │└───┘│   ┌─┴─┐      │└───┘│   ┌─┴─┐      │└───┘│   └─┬─┘   ║ 
║    │     *───* L │      │     *───* L │      │     │     │     ║ 
║    │┌───┐│   └───┘      │┌───┐│   └───┘      │┌───┐│   ┌─*─┐   ║ 
║    ││ C ││              ││ T ││              ││ S │├───* T │   ║ 
║    │└───┘│              │└───┘│              │└───┘│   └───┘   ║ 
║    └─────┘              └─────┘              └─────┘           ║ 
╚════════════════════════════════════════════════════════════════╝  
 

SCHED { L, T, C, D, P } 
KEY { L } 
KEY { T, D, P } 
KEY { C, D, P } 
 

STUDY { S, L } 
KEY { S, L } 
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12.7 NADDR is in 2NF but not 3NF (and hence not BCNF).  A better 
design might be:   
 

NSZ { NAME, STREET, ZIP } 
KEY { NAME } 
 

ZCS { ZIP, CITY, STATE } 
KEY { ZIP } 
 

These two relvars are both in BCNF.  Note, however, that:   
 
•  Since STREET, CITY, and STATE are almost invariably required 

together (think of printing a mailing list), and since zip 
codes don't change very often, it might be argued that such a 
decomposition is hardly worthwhile.  (In other words, 
normalization should generally be carried out with respect to 
all relevant dependencies──not necessarily all dependencies 
that exist.)   

 
•   Observe in particular that retrieving the full address for a 

given NAME now requires a join (although that join could be 
concealed from the user by defining NADDR as a view of NSZ and 
ZCS).  Hence, it might be argued that normalization to BCNF is 
good for update but bad for retrieval──i.e., the redundancy 
that occurs in the absence of full normalization certainly 
causes problems with update but might help with retrieval.*  
Redundancy causes difficulties if it's uncontrolled; but 
controlled redundancy (i.e., redundancy that's declared to the 
DBMS, and managed by the DBMS) might be acceptable in some 
situations.  (Note, by the way, that the redundancy we're 
talking about here is redundancy at the logical level──i.e., 
it's visible to the user.)   

 
 
────────── 
 
*  On the other hand, such redundancy can actually hinder certain 
retrievals (i.e., it can make the corresponding queries more 
awkward to formulate), as we'll see in Section 13.5 in the next 
chapter.   
 
────────── 
 
 
•  The FD { STREET, CITY, STATE } → ZIP isn't directly 

represented by this design; instead, it'll have to be 
maintained separately, either declaratively (if the DBMS 
supports a declarative integrity language along the lines of 
the one sketched in Chapter 9), or procedurally otherwise.  In 
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fact, of course, relvars NSZ and ZCS are not independent in 
Rissanen's sense [12.6].   

 
Note:  We saw in the answer to Exercise 11.15 that in fact the 

FD ZIP → { CITY, STATE } does not hold in practice.  As a 
subsidiary exercise, therefore, revise your answer to Exercise 
12.7 to take this fact into account.  Answer:  We don't give a 
full answer here, but remark that the techniques illustrated in 
the answer to Exercise 12.5 are relevant.   

 
12.8 This one is surprisingly tricky!──but the following should 
suffice:  Let spqt be an arbitrary tuple appearing in relvar SPQ, 
and let s and pq be the S# and PQ values, respectively, appearing 
in that tuple spqt.  Let pqt be an arbitrary tuple appearing in 
pq, and let p and q be the P# and QTY values, respectively, 
appearing in that tuple pqt.  Then (a) s doesn't appear in any 
tuple of SPQ apart from spqt; (b) p doesn't appear in any tuple of 
pq apart from pqt; (c) s supplies p in quantity q; (d) s doesn't 
supply any other parts.   
 
          *** End of Chapter 12 *** 
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Chapter 13 
 
 

          F u r t h e r   N o r m a l i z a t 
i o n   I I : 
 
 
          H i g h e r   N o r m a l   F o r m 
s 
 
 
Principal Sections 
 
•  MVDs and 4NF  
•  JDs and 5NF  
•  The normalization procedure summarized 
•  A note on denormalization 
•  Orthogonal design (a digression) 
•  Other normal forms 
 
 

General Remarks 
 
This chapter can just be skimmed, or even skipped entirely, if 
desired.  Obviously, the following notes assume the chapter is not 
skipped.   
 

The basic idea, of course, is that FDs can be generalized and 
those generalizations can then be used to help avoid further 
update anomalies.  Perhaps a better way to put it is this:  FDs 
are just a pragmatically important special case of what's called a 
JD; JDs are the general case (of this particular kind of integrity 
constraint).  And MVDs are a kind of halfway house between FDs and 
JDs, very loosely speaking.   

 
It's important to understand that (as in the previous chapter) 

we're still talking about nonloss decomposition, with projection 
as the decomposition operator and join as the recomposition 
operator.   

 
 

13.2 MVDs and 4NF  
 
Mostly self-explanatory.  Possible points for the instructor to 
note:   
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•   If A → B, then certainly A →→ B, but the converse is not 
true.  (If A →→ B and the cardinality of the set of B values 
matching any given A value is always one, then A → B.)   

 
•   An MVD A →→ B is trivial if either A is a superset of B or 

the union of A and B is the entire heading.   
 
•   Let R{A,B,C} be a relvar, where A, B, and C are sets of 

attributes.  Then R is equal to the join of its projections on 
{A,B} and {A,C} iff* R satisfies the MVDs A →→ B | C.  (This 
theorem, due to Fagin, is a stronger version of Heath's 
theorem as defined in Chapter 12.)   

 
 
────────── 
 
*  Recall from Chapter 7 that "iff" stands for "if and only if."   
 
────────── 
 
 
•   "Fourth" normal form is really fifth if you count──it was 

called 4NF because BCNF was still being called third at the 
time (at least by some people).   

 
•  4NF is always achievable.   
 
•   In practice, the first step in eliminating RVAs should be to 

separate them out into separate relvars.  E.g., starting with 
HCTX, split into HCT { COURSE, TEACHERS } and HCX { COURSE, 
TEXTS }; then ungrouping HCT and HCX will take us straight to 
CT and CX.  (See the discussion of Answer 12.3 in the previous 
chapter.)   

 
•   In practice, if a relvar is in BCNF, it's almost certainly in 

4NF too (one reason why the chapter can probably be skipped, 
especially if the emphasis is on practice rather than theory).   

 
If you want to get into more formalism, see the algorithm in 

Answer 13.4 for obtaining 4NF.   
 
The section includes the following as an inline exercise:  

Give a relational expression by which CTX can be derived from 
HCTX.  Answer:   

 
( HCTX UNGROUP TEACHERS ) UNGROUP TEXTS 
 

Of course, the following works too:   
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( HCTX UNGROUP TEXTS ) UNGROUP TEACHERS  
 

In other words, the ungroupings can be done in either order.   
 
 
13.3 JDs and 5NF  
 
Again mostly self-explanatory.  Possible points for the instructor 
to note:   
 
•   The "cyclic constraint" stuff (this is a helpful intuitive 

characterization of a relvar that's in 4NF but not 5NF; 
perhaps mention that such constraints seem to be rare in 
practice?──see the seventh bullet in this list).   

 
•   A →→ B | C  ≡  * { AB, AC }.  In other words, MVDs are 

indeed just a special case of JDs──and if JDs had been defined 
first, there wouldn't have been any need to define MVDs, as 
such, at all.  However, MVDs (like FDs) do have an intuitive 
interpretation that's not too hard to understand, whereas JDs 
in their full generality don't seem to (the best I can come up 
with is the "cyclic constraint" stuff).   

 
•   JDs are the most general form of dependency possible (using 

the term "dependency" in a very special sense!), and 5NF (aka 
PJ/NF) is the final normal form with respect to projection and 
join.  Note:  "Projection and join" here refers (of course) to 
those operators as classically understood.  In Chapter 23, 
we'll be defining generalized versions of those operators; 
then we'll generalize JDs as well, and come up with a sixth 
normal form that is qualitatively different from (and "more 
normalized" than) 5NF.  But we're not going to get into those 
generalizations in this chapter; for now, 5NF is the "final" 
normal form.   

 
•   A JD *{A,B,...,Z} is trivial iff at least one of A, B, ..., Z 

is the identity projection.   
 
•   A JD *{A,B,...,Z} is implied by candidate keys iff each of A, 

B, ..., Z is in fact a superkey.   
 
•  5NF is always achievable.   
 
•   In practice, if a relvar is in 4NF, it's almost certainly in 

5NF too.  (Personally, I've only ever seen two genuine 
relvars──i.e., actual relvars in actual business 
databases──that were in 4NF and not 5NF.)   
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•   A nice theorem [13.11] that seems not to as widely known as 
it might be:  If a relvar is in 3NF and has no composite keys, 
it's in 5NF.  This result doesn't mean that, as a database 
designer, you don't have to know about MVDs and JDs and 4NF 
and 5NF*──but it does mean there are many situations where you 
don't have to worry about them (because you have a very simple 
test, a test that will often be satisfied in practice, for 
checking whether a given relvar is in fact in the final normal 
form).  Note:  Reference [13.11] gives Ron Fagin and myself as 
the source of this theorem.  While I was the one who 
conjectured that it might be true, Ron was really the one who 
did the work of proving it to be so (not a very equal division 
of labor!).   

 
 
────────── 
 
*  It also doesn't mean we can force a non5NF relvar into 5NF by 
simply introducing a noncomposite surrogate key!  Introducing a 
new key doesn't mean previously existing keys, composite or 
otherwise, suddenly aren't keys after all.  (Apologies for what 
might look like an extremely obvious remark, but people often seem 
to misconstrue the theorem for some reason.)   
 
────────── 
 
 

Regarding the SPJ example, the text says this:  "Observe that 
the result of the first join is to produce a copy of the original 
SPJ relation plus one additional (spurious) tuple, and the effect 
of the second join is then to eliminate that spurious tuple, 
thereby bringing us back to the original SPJ relation.  In other 
words, the original SPJ relation is 3-decomposable.  Note:  The 
net result is the same whatever pair of projections we choose for 
the first join, though the intermediate result is different in 
each case.  Exercise:  Check this claim."   

 
Answer:   
 

•   SP JOIN PJ yields the spurious tuple (S2,P1,J2); there's no 
(J2,S2) tuple in JS; hence the final result is SPJ (as we've 
already seen).   

 
•   PJ JOIN JS yields the spurious tuple (S2,P2,J1); there's no 

(S2,P2) tuple in SP; hence the final result is SPJ again.   
 
•   JS JOIN SP yields the spurious tuple (S1,P2,J2); there's no 

(P2,J2) tuple in PJ; hence the final result is SPJ once again.   
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The section also includes the following:  "We've seen ... that 
relvar SPJ, with its JD *{SP,PJ,JS}, can be 3-decomposed.  The 
question is, should it be?  And the answer is probably yes.  
Relvar SPJ (with its JD) suffers from a number of problems over 
update operations, problems that are removed when it is 3-
decomposed.  Some examples of such problems are illustrated in 
Fig. 13.5.  Consideration of what happens after 3-decomposition is 
left as an exercise."  No answer provided.   

 
"The problem with relvar SPJ is that it involves a JD that's 

not an MVD, and hence not an FD either.  Exercise:  Why is this a 
problem, exactly?"  Answer:  Because it means (among other things) 
that procedural code is needed, in general, in order to avoid 
certain update anomalies──anomalies that could be avoided 
declaratively (via the system's key uniqueness enforcement 
mechanism) if the relvar were in 5NF.   

 
 

13.4 The Normalization Procedure Summarized 
 
Again fairly self-explanatory.  The "attractive parallelism" 
mentioned in the text is worth highlighting:   
 
•   R is in BCNF iff every FD satisfied by R is implied by the 

candidate keys of R.   
 
•   R is in 4NF iff every MVD satisfied by R is implied by the 

candidate keys of R.   
 
•   R is in 5NF iff every JD satisfied by R is implied by the 

candidate keys of R.   
 

Also stress that normalization is not a panacea [13.9].   
 

The following list of normalization principles (taken from 
reference [13.10]) is probably worth a brief review:   

 
1.  A non5NF relvar should be decomposed into a set of 5NF 

projections.  (Even if you experience performance problems, 
owing to product deficiencies, you should denormalize only as 
a last resort.)   

 
2.  The original relvar should be reconstructable by joining the 

projections back together again.  (The decomposition must be 
nonloss.)   

 
3.  The decomposition process should preserve dependencies.  

(Preferably decompose into independent projections──though as 
we know, this objective and the objective of decomposing to 
5NF, or even just to BCNF, can unfortunately be in conflict.)   
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4.  Every projection should be needed in the reconstruction 

process.  (This one is often overlooked!──or at least taken 
for granted.  But it's worth spelling out explicitly.)   

 
5.  Stop normalizing as soon as all relvars are in 5NF.  (This 

one isn't as firm as the first four.  But the general idea is 
not to "normalize too much."  Though I should mention that, 
when we get to Chapter 23, we'll find cases where we really 
ought to normalize "as far as possible.")   

 
 

13.5 A Note on Denormalization 
 
It's interesting that we hear talk of "denormalization" in the 
commercial world all the time, and yet textbooks (including 
earlier editions of this one) typically don't discuss it at all, 
or define it, or even mention it!  This observation is the 
justification for including such a discussion here.   
 

Stress the point that denormalization (as the term is usually 
understood) is an issue in current products only because those 
products don't adequately distinguish between the logical and 
physical levels of the system (base relvars are, typically, 
physically stored in those products).  Forward pointer to Appendix 
A?   

 
Also stress the point that (contrary to conventional wisdom) 

denormalization can be bad for retrieval as well as for update.*  
In fact, denormalization flies in the face of the objective of 
application-independent design:  It "optimizes" the design (maybe) 
for some applications at the expense of others.  Normalization, by 
contrast, is more application-neutral.   

 
 

────────── 
 
*  Bad, that is, both physically and logically──physically because 
(fairly obviously) it can make some queries perform worse; 
logically because (less obviously) it can make some queries harder 
to formulate (e.g., suppose relvar S satisfies the FD CITY → 
STATUS, and consider the query "Get average status per city").   
 
────────── 
 
 

See also the annotation to reference [13.6].   
 
 

13.6 Orthogonal Design (a digression) 
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A little more science!  The Principle of Orthogonal Design:  Let A 
and B be any two base relvars* in the database.  Then there must 
not exist nonloss decompositions of A and B into A1, ..., Am and 
B1, ..., Bn (respectively) such that some projection Ai in the set 
A1, ..., Am and some projection Bj in the set B1, ..., Bn have 
overlapping meanings.  (This version of the principle subsumes the 
simpler version, because one nonloss decomposition that always 
exists for relvar R is the identity projection of R, i.e., the 
projection of R over all of its attributes.)   
 
 
────────── 
 
*  Recall that, from the user's point of view, all relvars are 
base ones (apart from views defined as mere shorthands); i.e., the 
principle applies to the design of all "expressible" databases, 
not just to the "real" database──The Principle of Database 
Relativity at work once again.  Of course, analogous remarks apply 
to the principles of normalization also.   
 
────────── 
 
 

It's predicates, not names, that represent data semantics.   
 
Mention "orthogonal decomposition" (this will be relevant when 

we get to distributed databases in Chapter 21).   
 
Violating The Principle of Orthogonal Design in fact violates 

The Information Principle!  The principle is just formalized 
common sense, of course (like the principles of further 
normalization).  Remind students of the relevance of the principle 
to updating union, intersection, and difference views (Chapter 
10).   

 
 

13.7 Other Normal Forms 
 
You're welcome to skip this section.  If you do cover it, note 
that there's some confusion in the literature over exactly what 
DK/NF is (see, e.g., "The Road to Normalization," by Douglas W. 
Hubbard and Joe Celko, DBMS, April 1994).  Note:  After I first 
wrote these notes, the topic of DK/NF came up on the website 
www.dbdebunk.com.  I've attached my response to that question as 
an appendix to this chapter of the manual.   
 
 
References and Bibliography 
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Reference [13.15] is a classic and should be distributed to 
students if at all possible.   
 

The annotation to reference [13.14] says this:  "The two 
embedded MVDs [in relvar CTXD] would have to be stated as 
additional, explicit constraints on the relvar.  The details are 
left as an exercise."  Answer:   

 
CONSTRAINT EMVD_ON_CTXD 

CTXD { COURSE, TEACHER, TEXT } =  
CTXD { COURSE, TEACHER } JOIN CTXD { COURSE, TEXT } ;  
 

Note that this constraint is much harder to state in SQL, because 
SQL doesn't support relational comparisons!  Here it is in SQL:   
 

CREATE ASSERTION EMVD_ON_CTXD 
( NOT EXISTS ( SELECT DISTINCT COURSE, TEACHER, TEXT 

FROM   CTXD AS CTXD1 
WHERE  NOT EXISTS 

( SELECT DISTINCT COURSE, TEACHER, TEXT 
FROM ( ( SELECT DISTINCT COURSE, TEACHER 

FROM   CTXD ) AS POINTLESS1 
NATURAL JOIN 

( SELECT DISTINCT COURSE, TEXT 
FROM   CTXD ) AS POINTLESS2 ) ) 

AS CTXD2 
WHERE  CTXD1.COURSE  = CTXD2.COURSE 
AND    CTXD1.TEACHER = CTXD2.TEACHER 
AND    CTXD1.TEXT    = CTXD2.TEXT ) 

AND 
( NOT EXISTS ( SELECT DISTINCT COURSE, TEACHER, TEXT 

FROM ( ( SELECT DISTINCT COURSE, TEACHER 
FROM   CTXD ) AS POINTLESS1 
NATURAL JOIN 
( SELECT DISTINCT COURSE, TEXT 
FROM   CTXD ) AS POINTLESS2 ) ) 
AS CTXD2 

WHERE  NOT EXISTS 
( SELECT DISTINCT COURSE, TEACHER, TEXT 
FROM   CTXD AS CTXD1 
WHERE  CTXD1.COURSE  = CTXD2.COURSE 
AND    CTXD1.TEACHER = CTXD2.TEACHER 
AND    CTXD1.TEXT    = CTXD2.TEXT ) ;  
 

You might want to discuss this SQL formulation in detail.   
 
 
Answers to Exercises 
 
13.1 Here first is the MVD for relvar CTX (algebraic version):   
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CONSTRAINT CTX_MVD CTX = CTX { COURSE, TEACHER } JOIN 

CTX { COURSE, TEXT } ; 
 

Calculus version:   
 

CONSTRAINT CTX_MVD CTX =  
{ CTXX.COURSE, CTXX.TEACHER, CTXY.TEXT }  

WHERE CTXX.COURSE = CTXY.COURSE ;  
 

CTXX and CTXY are range variables ranging over CTX.   
 

Second, here is the JD for relvar SPJ (algebraic version):   
 
CONSTRAINT SPJ_JD SPJ = SPJ { S#, P# } JOIN 

SPJ { P#, J# } JOIN 
SPJ { J#, S# } ; 
 

Calculus version:   
 

CONSTRAINT SPJ_JD SPJ =  
{ SPJX.S#, SPJY.P#, SPJZ.J# } WHERE SPJX.P# = SPJY.P#  

AND SPJY.J# = SPJZ.J#  
AND SPJZ.S# = SPJX.S# ;  

 
SPJX, SPJY, and SPJZ are range variables ranging over SPJ.   
 
13.2 Note first that R contains every a value paired with every b 
value, and further that the set of all a values in R, S say, is 
the same as the set of all b values in R.  Loosely speaking, 
therefore, the body of R is equal to the Cartesian product of set 
S with itself; more precisely, R is equal to the Cartesian product 
of its projections R{A} and R{B}.  R thus satisfies the following 
MVDs (which are not trivial, please note, since they're certainly 
not satisfied by all binary relvars):   
 

{ } →→ A | B 
 

Equivalently, R satisfies the JD *{A,B} (remember that join 
degenerates to Cartesian product when there are no common 
attributes).  It follows that R isn't in 4NF, and it can be 
nonloss-decomposed into its projections on A and B.*  R is, 
however, in BCNF (it's all key), and it satisfies no nontrivial 
FDs.   
 
 
────────── 
 
*  Those projections will have identical bodies, of course.  For 
that reason, it might be better to define just one of them as a 
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base relvar, and define R as a view over that base relvar (the 
Cartesian product of that base relvar with itself, loosely 
speaking).   
 
────────── 
 
 

Note:  R also satisfies the MVDs  
 
A →→ B | { } 
 

and  
 

B →→ A | { } 
 

However, these MVDs are trivial, since they're satisfied by every 
binary relvar R with attributes A and B.   
 
13.3 First we introduce three relvars  
 

REP     { REP#, ... } 
KEY { REP# } 
 

AREA    { AREA#, ... } 
KEY { AREA# } 
 

PRODUCT { PROD#, ... } 
KEY { PROD# } 
 

with the obvious interpretation.  Second, we can represent the 
relationship between sales representatives and sales areas by a 
relvar  
 

RA { REP#, AREA# } 
KEY { REP#, AREA# } 
 

and the relationship between sales representatives and products by 
a relvar  
 

RP { REP#, PROD# } 
KEY { REP#, PROD# } 
 

(both of these relationships are many-to-many).   
 

Next, we're told that every product is sold in every area.  So 
if we introduce a relvar  

 
AP { AREA#, PROD# } 

KEY { AREA#, PROD# } 
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to represent the relationship between areas and products, then we 
have the constraint (let's call it C) that  
 

AP = AREA { AREA# } JOIN PRODUCT { PROD# } 
 

Notice that constraint C implies that relvar AP isn't in 4NF (see 
Exercise 13.2).  In fact, relvar AP doesn't give us any 
information that can't be obtained from the other relvars; to be 
precise, we have  
 

AP { AREA# } = AREA { AREA# } 
 

and  
 

AP { PROD# } = PRODUCT { PROD# }  
 

But let's assume for the moment that relvar AP is included in our 
design anyway.   
 

No two representatives sell the same product in the same area.  
In other words, given an {AREA#,PROD#} combination, there's 
exactly one responsible sales representative (REP#), so we can 
introduce a relvar   

 
APR { AREA#, PROD#, REP# } 

KEY { AREA#, PROD# } 
 

in which (to make the FD explicit)  
 

{ AREA#, PROD# } → REP# 
 

(of course, specification of the combination {AREA#,PROD#} as a 
key is sufficient to express this FD).  Now, however, relvars RA, 
RP, and AP are all redundant, since they're all projections of 
APR; they can therefore all be dropped.  In place of constraint C, 
we now need constraint C1:   
 

APR { AREA#, PROD# } = AREA { AREA# } JOIN PRODUCT { PROD# } 
 

This constraint must be stated separately and explicitly (it isn't 
"implied by keys").   
 

Also, since every representative sells all of that 
representative's products in all of that representative's areas, 
we have the additional constraint C2 on relvar APR:   

 
REP# →→ AREA# | PROD# 
 

(a nontrivial MVD; relvar APR isn't in 4NF).  Again the constraint 
must be stated separately and explicitly.   
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Thus the final design consists of the relvars REP, AREA, 

PRODUCT, and APR, together with the constraints C1 and C2:   
 
CONSTRAINT C1 APR { AREA#, PROD# } =  

AREA { AREA# } JOIN PRODUCT { PROD# } ;  
 

CONSTRAINT C2 APR = 
APR { REP#, AREA# } JOIN APR { REP#, PROD# } ; 
 

This exercise illustrates very clearly the point that, in 
general, the normalization discipline is adequate to represent 
some semantic aspects of a given problem (basically, dependencies 
that are implied by keys, where by "dependencies" we mean FDs, 
MVDs, or JDs), but explicit statement of additional dependencies 
might also be needed for other aspects, and some aspects can't be 
represented in terms of such dependencies at all.  It also 
illustrates the point (once again) that it isn't always desirable 
to normalize "all the way" (relvar APR is in BCNF but not in 4NF).   

 
Note:  As a subsidiary exercise, you might like to consider 

whether a design involving RVAs might be appropriate for the 
problem under consideration.  Might such a design mean that some 
of the comments in the previous paragraph no longer apply?   

 
13.4 The revision is straightforward──all that's necessary is to 
replace the references to FDs and BCNF by analogous references to 
MVDs and 4NF, thus:   
 
1. Initialize D to contain just R.   
 
2. For each non4NF relvar T in D, execute Steps 3 and 4.   
 
3.  Let X →→ Y be an MVD for T that violates the requirements 

for 4NF.   
 
4.  Replace T in D by two of its projections, that over X and Y 

and that over all attributes except those in Y.   
 

13.5 This is a "cyclic constraint" example.  The following design 
is suitable:   
 

REP     { REP#, ... } 
KEY { REP# } 
 

AREA    { AREA#, ... } 
KEY { AREA# } 
 

PRODUCT { PROD#, ... } 
KEY { PROD# } 
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RA { REP#, AREA# } 

KEY { REP#, AREA# } 
 

AP { AREA#, PROD# } 
KEY { AREA#, PROD# } 
 

PR { PROD#, REP# } 
KEY { PROD#, REP# } 
 

Also, the user needs to be informed that the join of RA, AP, and 
PR does not involve any "connection trap":   
 

CONSTRAINT NO_TRAP  
( RA JOIN AP JOIN PR ) { REP#, AREA# }  = RA AND 
( RA JOIN AP JOIN PR ) { AREA#, PROD# } = AP AND 
( RA JOIN AP JOIN PR ) { PROD#, REP# }  = PR ;  
 

Note:  As with Exercise 13.3, you might like to consider 
whether a design involving RVAs might be appropriate for the 
problem under consideration.   

 
13.6 Perhaps surprisingly, the design does conform to 
normalization principles!  First, SX and SY are both in 5NF.  
Second, the original suppliers relvar can be reconstructed by 
joining SX and SY back together.  Third, neither SX nor SY is 
redundant in that reconstruction process.  Fourth, SX and SY are 
independent in Rissanen's sense.   
 

Despite the foregoing observations, the design is very bad, of 
course; to be specific, it involves some obviously undesirable 
redundancy.  But the design isn't bad because it violates the 
principles of normalization; rather, it's bad because it violates 
The Principle of Orthogonal Design, as explained in Section 13.6.  
Thus, we see that following the principles of normalization are 
necessary but not sufficient to ensure a good design.  We also see 
that (as stated in Section 13.6) the principles of normalization 
and The Principle of Orthogonal Design complement each other, in a 
sense.   

 
 

Appendix (DK/NF)  
 
This appendix consists (apart from this introductory paragraph) of 
the text──slightly edited here──of a message posted on the website 
www.dbdebunk.com in May 2003.  It's my response to a question from 
someone I'll refer to here as Victor.   
 
(Begin quote)  
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Victor has "trouble understanding ... domain-key normal form 
(DK/NF)."  I don't blame him; there's certainly been some serious 
nonsense published on this topic in the trade press and elsewhere.  
Let me see if I can clarify matters.   
 

DK/NF is best thought of as a straw man (sorry, straw person).  
It was introduced by Ron Fagin in his paper "A Normal Form for 
Relational Databases that Is Based on Domains and Keys," ACM TODS 
6, No. 3 (September 1981).  As Victor says (more or less), Fagin 
defines a relvar R to be in DK/NF if and only if every constraint 
on R is a logical consequence of what he (Fagin) calls the domain 
constraints and key constraints on R.  Here:   

 
•   A domain constraint──better called an attribute 

constraint──is simply a constraint to the effect a given 
attribute A of R takes its values from some given domain D.   

 
•   A key constraint is simply a constraint to the effect that a 

given set A, B, ..., C of R constitutes a key for R.   
 

Thus, if R is in DK/NF, then it is sufficient to enforce the 
domain and key constraints for R, and all constraints on R will be 
enforced automatically.  And enforcing those domain and key 
constraints is, of course, very simple (most DBMS products do it 
already).  To be specific, enforcing domain constraints just means 
checking that attribute values are always values from the 
applicable domain (i.e., values of the right type); enforcing key 
constraints just means checking that key values are unique.   

 
The trouble is, lots of relvars aren't in DK/NF in the first 

place.  For example, suppose there's a constraint on R to the 
effect that R must contain at least ten tuples.  Then that 
constraint is certainly not a consequence of the domain and key 
constraints that apply to R, and so R isn't in DK/NF.  The sad 
fact is, not all relvars can be reduced to DK/NF; nor do we know 
the answer to the question "Exactly when can a relvar be so 
reduced?"   

 
Now, it's true that Fagin proves in his paper that if relvar R 

is in DK/NF, then R is automatically in 5NF (and hence 4NF, BCNF, 
etc.) as well.  However, it's wrong to think of DK/NF as another 
step in the progression from 1NF to 2NF to ... to 5NF, because 5NF 
is always achievable, but DK/NF is not.   

 
It's also wrong to say there are "no normal forms higher than 

DK/NF."  In recent work of my own──documented in the book Temporal 
Data and the Relational Model, by myself with Hugh Darwen and 
Nikos Lorentzos (Morgan Kaufmann, 2003)──my coworkers and I have 
come up with a new sixth normal form, 6NF.  6NF is higher than 5NF 
(all 6NF relvars are in 5NF, but the converse isn't true); 
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moreover, 6NF is always achievable, but it isn't implied by DK/NF.  
In other words, there are relvars in DK/NF that aren't in 6NF.  A 
trivial example is:   

 
EMP { EMP#, DEPT#, SALARY } KEY { EMP# } 
 

(with the obvious semantics).   
 

Victor also asks:  "If a [relvar] has an atomic primary key 
and is in 3NF, is it automatically in DK/NF?"  No.  If the EMP 
relvar just shown is subject to the constraint that there must be 
at least ten employees, then EMP is in 3NF (and in fact 5NF) but 
not DK/NF.  (Incidentally, this example also answers another of 
Victor's questions:  "Can [we] give "an example of a [relvar] 
that's in 5NF but not ... in DK/NF?")  Note:  I'm assuming here 
that the term "atomic key" means what would more correctly be 
called a simple key (meaning it doesn't involve more than one 
attribute).  I'm also assuming that the relvar in question has 
just one key, which we might harmlessly regard as the "primary" 
key.  If either of these assumptions is invalid, the answer to the 
original question is probably "no" even more strongly!   

 
The net of all of the above is that DK/NF is (at least at the 

time of writing) a concept that's of some considerable theoretical 
interest but not yet of much practical ditto.  The reason is that, 
while it would be nice if all relvars in the database were in 
DK/NF, we know that goal is impossible to achieve in general, nor 
do we know when it is possible.  For practical purposes, stick to 
5NF (and 6NF).  Hope this helps!   

 
(End quote)  
 
 
 
 
          *** End of Chapter 13 *** 
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Chapter 14 
 
 

          S e m a n t i c   M o d e l i n g 
 
 
Principal Sections 
 
•  The overall approach 
•  The E/R model 
•  E/R diagrams 
•  DB design with the E/R model 
•  A brief analysis 
 
 

General Remarks 
 
The field of "semantic modeling" encompasses more than just 
database design, but for obvious reasons the emphasis in this 
chapter is on database design aspects (though the first two 
sections do consider the wider perspective briefly, and so does 
the annotation to several of the references at the end of the 
chapter).  The chapter shouldn't be skipped, but portions of it 
might be skipped.  You could also beef up the treatment of "E/R 
modeling" if you like.   
 

Let me repeat the following remarks from the preface to this 
manual:   

 
You could also read Chapter 14 earlier if you like, possibly 
right after Chapter 4.  Many instructors like to treat the 
entity/relationship material much earlier than I do.  For that 
reason I've tried to make Chapter 14 more or less self-
contained, so that it can be read "early" if you like.   
 

And the expanded version of these remarks from the preface to the 
book itself:   
 

Some reviewers of earlier editions complained that database 
design issues were treated too late.  But it's my feeling that 
students aren't ready to design databases properly or to 
appreciate design issues fully until they have some 
understanding of what databases are and how they're used; in 
other words, I believe it's important to spend some time on 
the relational model and related matters before exposing the 
student to design questions.  Thus, I still believe Part III 
is in the right place.  (That said, I do recognize that many 
instructors prefer to treat the entity/relationship material 
much earlier.  To that end, I've tried to make Chapter 14 more 
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or less self-contained, so that they can bring it in 
immediately after, say, Chapter 4.)   
 
On to the substance.  The predicate stuff is important yet 

again.  Indeed, my own preferred way of doing database design is 
to start by writing down the predicates (i.e., the external 
predicates, aka the "business rules").  However, most people 
prefer to draw pictures.  Pictures can certainly be helpful, but 
they don't even begin to capture enough of the semantics to do the 
whole job.  In this connection, note the following remarks from 
the annotation to reference [14.39]:   

 
E/R diagrams and similar formalisms ... are strictly less 
powerful than formal logic ... [They] are completely incapable 
of dealing with ... anything involving explicit 
quantification, which includes almost all integrity 
constraints ... (The quantifiers were invented by Frege in 
1879, which makes E/R diagrams "a pre-1879 kind of logic"!)   
 
 

14.2 The Overall Approach 
 
Summarize the four steps.  The first step is informal, the others 
formal.  Stress the point that the rules and operators are just as 
much part of the model as the objects are; the operators might be 
thought by some people to be less important than the objects and 
rules from a database design point of view, but we need the 
operators to express the rules!  (And, to say it one more time, 
the rules are crucial.)   
 

Note:  The section uses RM/T to illustrate the ideas, but you 
can certainly use something else instead if you don't care for 
RM/T for some reason.  I prefer RM/T myself because──unlike most 
other approaches──it very explicitly addresses the rules and the 
operators as well as the objects.*  (I also like RM/T's 
categorization of entities into kernel, characteristic, and 
associative entities, though that categorization isn't discussed 
in the body of the chapter.  See the annotation to reference 
[14.7].)   

 
 

────────── 
 
*  That said, I should say too that a lot more work is needed on 
these aspects of the model.   
 
────────── 
 
 

Important:  The very same object in the real world might 
legitimately be regarded as an entity by some people and as a 
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relationship by others.*  It follows that, while distinguishing 
between entities and relationships can be useful, intuitively, 
it's not a good idea to make that distinction formal.  This 
criticism applies to "the E/R model"; it also applies (applied?) 
to the old IMS and CODASYL approaches, and it applies to certain 
object-based approaches as well──see, e.g., the proposals of ODMG 
[25.11].  And XML.   

 
 

────────── 
 
*  And possibly as a property by still others.   
 
────────── 
 
 

Caveat:  Conflicts in terminology between the semantic and 
underlying formal levels can lead to confusion and error.  In 
particular, "entity types" at the semantic level almost certainly 
do not map to "types"* at the formal level (forward pointer to 
Chapter 26, Section 26.2, if you like), and "entity supertypes and 
subtypes" at the semantic level almost certainly do not map to 
"supertypes and subtypes" at the formal level (forward pointer to 
Chapter 20, Section 20.1, if you like).   

 
 

────────── 
 
*  Certainly not to scalar types, at any rate.  They might map to 
relation types.  (Even if they do, however, it's almost certainly 
still the case that entity supertypes and subtypes don't map to 
supertypes and subtypes at the formal level──not even to relation 
supertypes and subtypes.)   
 
────────── 
 
 
14.3 The E/R Model 
 
More or less self-explanatory.  Emphasize the fact that the E/R 
model is not the only "extended" model.  Note that there are often 
good reasons to treat one-to-one and one-to-many relationships as 
if they were in fact many-to-many.   
 

You could augment or even replace the treatment of the E/R 
stuff, both in this section and in the next two, by a treatment of 
some other approach (e.g., UML, perhaps).   

 
 

14.4 E/R Diagrams 
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A picture is worth a thousand words ... but if so, why do we say 
so in words?  And in any case, which picture?  Words are, or at 
least can be, precise.  Pictures──in a context like the one at 
hand──need very careful explanation (in words!) if errors and 
misconceptions are to be avoided.  I have no problem with using 
pictures to help in the design process, but don't give the 
impression that they do the whole job.   
 
 
14.5 Database Design with the E/R Model 
 
Mostly self-explanatory.  But note very carefully the suggestion 
that entity supertypes and subtypes are best handled by means of 
views.  (There's a tacit assumption here that view updating is 
properly supported.  If it isn't, suitable support will have to be 
provided "by hand" via stored or triggered procedures.)   
 
 
14.6 A Brief Analysis  
 
A somewhat contentious section ... It can be skipped if it's not 
to the instructor's taste.  The subsections are:   
 
•  The E/R Model as a Foundation for the Relational Model?   
 
•  Is the E/R Model a Data Model?   
 
•  Entities vs. Relationships   
 
•  A Final Observation   
 

The last of these asks a good rhetorical question:  How would 
you represent an arbitrary join dependency in an E/R diagram?   

 
 

References and Bibliography 
 
References [14.22-14.24] and [14.33] are recommended.   
 
 
Answers to Exercises 
 
14.1 Semantic modeling is the activity of attempting to represent 
meaning.   
 
14.2 The four steps in defining an "extended" model are as 
follows:   
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•  Identify useful semantic concepts.   
•  Devise formal objects.   
•  Devise formal integrity rules ("metaconstraints").   
•  Devise formal operators.   
 

14.3 See Section 14.3.   
 
14.4  
 

CONSTRAINT TUTD_14_4 
FORALL PX ( EXISTS SPX ( SPX.P# = PX.P# ) ) ;  
 

CREATE ASSERTION SQL_14_4 CHECK ( 
NOT EXISTS ( SELECT PX.* FROM P PX  

WHERE NOT EXISTS ( SELECT SPX.* FROM SP SPX  
WHERE SPX.P# = PX.P# ) )  

) ;  
 

14.5 (a) Let employees have dependents and dependents have 
friends, and consider the relationship between dependents and 
friends.  (b) Let shipments be a relationship between suppliers 
and parts, and consider the relationship between shipments and 
projects.  (c) Consider "large shipments," where a large shipment 
is one with quantity greater than 1000, say.  (d) Let large 
shipments (only) be containerized and hence have containers as 
corresponding weak entities.   
 
14.6 No answer provided.   
 
14.7 No answer provided.   
 
14.8 No answer provided.   
 
14.9 No answer provided.   
 
14.10 No answer provided.   
 
 
 
 
          *** End of Chapter 14 *** 
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          P A R T   I V 
 
 
          T R A N S A C T I O N   M A N A G E 
M E N T 
 
 
This part of the book contains two chapters, both of which are 
crucial (they mustn't be skipped).  Chapter 15 discusses recovery 
and Chapter 16 discusses concurrency.  Both describe conventional 
techniques in the main body of the chapter and alternative or more 
forward-looking ideas (e.g., multi-version controls, in the case 
of concurrency) in the exercises and/or the "References and 
Bibliography" section, and/or in the answers in this manual.  
Note:  As far as possible, Chapter 15 avoids concurrency issues.   
 
 
 
 
          *** End of Introduction to Part IV 
*** 
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          Chapter 15 
 
 
          R e c o v e r y 
 
 
Principal Sections 
 
•  Transactions  
•  Transaction recovery 
•  System recovery 
•  Media recovery  
•  Two-phase commit 
•  Savepoints (a digression)  
•  SQL facilities 
 
 

General Remarks 
 
Transaction theory (which, it should immediately be said, 
represents a huge and very successful contribution to the database 
field) is, in principle, somewhat independent of the relational 
model.  On the other hand, much transaction theory is in fact 
explicitly formulated in relational terms, because the relational 
model provides a framework that:   
 
a. Is crystal clear and easy to understand, and  
 
b.  Allows problems to be precisely articulated and hence 

systematically attacked.   
 

These remarks apply to Chapter 16 as well as the present chapter.   
 

Recovery involves some kind of (controlled) redundancy.  The 
redundancy in question is, of course, between the database per se 
and the log.*   

 
 

────────── 
 
*  A nice piece of conventional wisdom:  The database isn't the 
database; the log is the database, and the database is just an 
optimized access path to the most recent part of the log.  Note 
the relevance of these observations to the subject of Chapter 23.   
 
────────── 
 
 
15.2 Transactions 
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Essentially standard stuff:*  How to make something that's not 
"atomic" at the implementation level behave as if it were atomic 
at the model level──BEGIN TRANSACTION, COMMIT, ROLLBACK.  Briefly 
discuss the recovery log.   
 
 
────────── 
 
*  Though we're going offer some rather heretical opinions on this 
subject in the next chapter, q.v.   
 
────────── 
 
 

A transaction is a unit of work.  No nested transactions until 
the next chapter.  Important:  Remind students of the difference 
between consistent and correct (note the relevance of the 
predicate stuff yet again!).  Explain the place of multiple 
assignment in the overall scheme of things:  If supported, 
transactions as a unit of work wouldn't be necessary (in theory, 
though they'd presumably still be useful in practice).  So we'll 
ignore multiple assignment until further notice (= Section 16.10).   

 
 

15.3 Transaction Recovery 
 
Commit points or "synchpoints."  Program execution as a sequence 
of transactions (no nesting).  Implicit ROLLBACK.  The write-ahead 
log rule.  ACID properties.  Explain stealing and forcing; revisit 
the write-ahead log rule.  Group commit.   
 

A transaction is a unit of recovery, a unit of concurrency 
(see the next chapter), and a unit of integrity (but see the next 
chapter).   

 
 

15.4 System Recovery 
 
Soft vs. hard crashes.  Transaction undo (backward recovery) and 
redo (forward recovery); checkpoints; system restart; ARIES.  
Forward pointer to Chapter 16 regarding not letting concurrency 
undermine recoverability ("we'll revisit the topic of recovery 
briefly in the next chapter, since──as you might 
expect──concurrency has some implications for recovery").   
 

The section includes the following inline exercise:  "Note 
that transactions that completed unsuccessfully (i.e., with a 
rollback) before the time of the crash don't enter into the 
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restart process at all (why not?)."  Answer:  Because their 
updates have already been undone, of course.   

 
 

15.5 Media Recovery 
 
Included for completeness.  Unload/reload.   
 
 
15.6 Two-Phase Commit 
 
Don't go into too much detail, just explain the basic idea.  
Forward pointer to Chapter 21 on distributed databases ... but 
it's important to understand that "2øC"──note the fancy 
abbreviation!──is applicable to centralized systems, too.   
 
 
15.7 Savepoints (a digression)  
 
Self-explanatory.  Concrete examples in the next section (?).  
Note:  Just as an aside──this point isn't mentioned in the book──I 
think it was always a mistake to distinguish the operations of 
establishing a savepoint and committing the transaction.  One 
consequence of making that distinction is that existing 
transaction source code can't be directly incorporated into some 
new program that has its own transaction structure.  A similar 
remark applies to dynamic invocation, too.   
 
 
15.8 SQL Facilities 
 
Explain START TRANSACTION (access mode and isolation level──the 
latter to be discussed in detail in the next chapter).  Note:  
START TRANSACTION was added to SQL in 1999.  Probably ignore SET 
TRANSACTION (it's deliberately not mentioned in the text).  Ditto 
for implicit START TRANSACTION.   
 

By the way:  It's odd that the SQL standards committee decided 
to call the operation START TRANSACTION, not BEGIN TRANSACTION, 
when they added the functionality to the standard in 1999, given 
that BEGIN was already a reserved word but START wasn't.   

 
"The possibly complex repositioning code" that might be needed 

on the next OPEN if the cursor WITH HOLD option isn't supported is 
probably worth illustrating.*  Use an ORDER BY based on (say) 
three columns (e.g., ORDER BY S#, P#, J#); the WHERE clause gets 
pretty horrible pretty quickly!──perhaps especially if some of the 
"sort columns" specify ASC and some DESC.  Note:  SQL:1999 
supports the WITH HOLD option but SQL:1992 didn't.   
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────────── 
 
*  A simple example is given in the answer to Exercise 15.6.   
 
────────── 
 
 

Illustrate savepoints.  Why didn't SQL call the operators 
CREATE and DROP SAVEPOINT?  This is a rhetorical question, of 
course; I suppose the answer is that (as Hugh Darwen once 
remarked) it would be inconsistent to fix the inconsistencies of 
SQL.   
 
 
References and Bibliography 
 
Reference [15.1] is recommended as a tutorial introduction to TP 
monitors.  References [15.4], [15.7-15.8], and [15.10] are 
classics, and reference [15.20] is becoming one (reference [15.10] 
is subsumed by the "instant classic" reference [15.12], of 
course).  References [15.3], [15.9], and [15.16-15.17] are 
concerned with various "extended" transaction models; perhaps say 
a word on why the classical model might be unsatisfactory in 
certain newer kinds of application areas, especially ones 
involving a lot of human interaction.   
 
 
Answers to Exercises 
 
15.1 Such a feature would conflict with the objective of 
transaction atomicity.  If a transaction could commit some but not 
all of its updates, then the uncommitted ones might subsequently 
be rolled back, whereas the committed ones of course couldn't be.  
Thus, the transaction would no longer be "all or nothing."   
 
15.2 See Section 16.10, subsection "Durability."   
 
15.3 Basically, the write-ahead log rule states that the log 
records for a given transaction T must be physically written 
before commit processing for T can complete.  The rule is 
necessary to ensure that the restart procedure can recover any 
transaction that completed successfully but didn't manage to get 
its updates physically written to the database prior to a system 
crash.  See Section 15.3 for further discussion.   
 
15.4 (a) Redo is never necessary following system failure.  (b) 
Physical undo is never necessary, and hence undo log records are 
also unnecessary.   
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15.5 For a statement of the two-phase commit protocol, see Section 
15.6.  For a discussion of failures during the process, see 
Chapter 21.   
 
15.6 This exercise is typical of a wide class of applications, and 
the following outline solutions are typical too.  First we show a 
solution without using the CHAIN and WITH HOLD features that were 
introduced with SQL:1999:   
 

EXEC SQL DECLARE CP CURSOR FOR 
SELECT P.P#, P.PNAME, P.COLOR, P.WEIGHT, P.CITY 
FROM   P 
WHERE  P.P# > previous_P# 
ORDER  BY P# ; 
 

previous_P# := '' ; 
eof := FALSE ; 
DO WHILE ( NOT eof ) ; 

EXEC SQL START TRANSACTION ;  
EXEC SQL OPEN CP ; 
DO count := 1 TO 10 ; 

EXEC SQL FETCH CP INTO :P#, ... ; 
IF SQLSTATE = '02000' THEN 

DO ; 
EXEC SQL CLOSE CP ; 
EXEC SQL COMMIT ; 
eof := TRUE ; 

END DO ; 
ELSE print P#, ... ; 
END IF ; 

END DO ; 
EXEC SQL DELETE FROM P WHERE P.P# = :P# ; 
EXEC SQL CLOSE CP ;    
EXEC SQL COMMIT ; 
previous_P# := P# ; 

END DO ; 
 
Observe that we lose position within the parts table P at the 

end of each transaction (even if we didn't close cursor CP 
explicitly, the COMMIT would close it automatically anyway).  The 
foregoing code will therefore not be particularly efficient, 
because each new transaction requires a search on the parts table 
in order to reestablish position.  Matters might be improved 
somewhat if there happens to be an index on the P# column──as in 
fact there probably will be, since {P#} is the primary key──and 
the optimizer chooses that index as the access path for the table.   

 
Here by way of contrast is a solution using the new CHAIN and 

WITH HOLD features:   
 
EXEC SQL DECLARE CP CURSOR WITH HOLD FOR 
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SELECT P.P#, P.PNAME, P.COLOR, P.WEIGHT, P.CITY 
FROM   P 
ORDER  BY P# ; 
 

eof := FALSE ; 
EXEC SQL START TRANSACTION ;  
EXEC SQL OPEN CP ; 
DO WHILE ( NOT eof ) ; 

DO count := 1 TO 10 ; 
EXEC SQL FETCH CP INTO :P#, ... ; 
IF SQLSTATE = '02000' THEN 

DO ; 
EXEC SQL CLOSE CP ; 
EXEC SQL COMMIT ; 
eof := TRUE ; 

END DO ; 
ELSE print P#, ... ; 
END IF ; 

END DO ; 
EXEC SQL DELETE FROM P WHERE P.P# = :P# ; 
EXEC SQL COMMIT AND CHAIN ; 

END DO ; 
 
A blow-by-blow comparison of the two solutions is left as a 

subsidiary exercise.   
 
 
 
 

          *** End of Chapter 15 *** 
 
 



Copyright (c) 2003 C. J. Date                            page 16.1 
 

          Chapter 16 
 
 
          C o n c u r r e n c y 
 
 
Principal Sections 
 
•  Three concurrency problems 
•  Locking  
•  The three concurrency problems revisited 
•  Deadlock  
•  Serializability 
•  Recovery revisited  
•  Isolation levels  
•  Intent locking 
•  Dropping ACID  
•  SQL facilities 
 
 

General Remarks 
 
Very intuitive introduction:  Two independently acting agents* can 
get in each other's way (i.e., interfere with each other)──think 
of, e.g., two people both trying to use the bathroom at the same 
time in the morning.  The solution to the problem is to introduce 
a mechanism (door locks) and a protocol for using that mechanism 
(lock the bathroom door if you don't want to be disturbed).   
 
 
────────── 
 
*  I'm not using the term "agent" here in any special technical 
sense──in particular, not in the formal sense of Chapter 21.   
 
────────── 
 
 

By analogy with intuitive examples such as the foregoing, 
concurrency control in transaction processing systems has 
traditionally been based on a mechanism called locking (though of 
course the locks involved are software constructs, not hardware) 
and a protocol ("the two-phase locking protocol") for using that 
mechanism.  Moreover, most systems still typically rely on locking 
right up to this day, a fact that explains the emphasis on locking 
in the body of the chapter.  However, certain nonlocking schemes 
are described in the annotation to several of the references in 
the "References and Bibliography" section.   
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16.2 Three Concurrency Problems 
 
The three classic problems: lost updates, uncommitted 
dependencies, and inconsistent analysis.  The examples are 
straightforward.  Observe that the lost update problem can occur 
in two different ways.  Note:  Uncommitted dependencies are also 
called dirty reads, and inconsistent analysis is also called 
nonrepeatable read (though this latter term is sometimes taken to 
include the phantom problem also).  Mention conflict terminology:  
RR ═* no problem; RW ═* inconsistent analysis / nonrepeatable 
read; WR ═* uncommitted dependency; WW ═* lost update.   
 
 

16.3 Locking 
 
Discuss only exclusive (X) and shared (S) locks at this stage.  
Carefully distinguish between the mechanism and the protocol 
(beginners often get confused over which is which; both are 
needed!).  Explain that the whole business is usually implicit in 
practice.   
 
 
16.4 The Three Concurrency Problems Revisited 
 
Self-explanatory.   
 
 
16.5 Deadlock 
 
Mostly self-explanatory.  Explain the Wait-For Graph (it isn't 
discussed in detail in the text because it's fairly obvious, not 
to say trivial; see the answer to Exercise 16.4).  Detection vs. 
avoidance vs. timeout (perhaps skip avoidance).   
 
 
16.6 Serializability 
 
A given interleaved execution (= schedule) is considered to be 
correct if and only if it is equivalent to some serial execution 
(= schedule); thus, there might be several different but equally 
correct overall outcomes.   
 

Discuss the two-phase locking theorem (important!) and the 
two-phase locking protocol.   

 
If A and B are any two transactions in some serializable 

schedule, then either B can see A's output or A can see B's.   
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If transaction A is not two-phase, it's always possible to 
construct some other transaction B that can run interleaved with A 
in such a way as to produce an overall schedule that's not 
serializable and not correct.  Real systems typically do allow 
transactions that aren't two-phase (see the next section but one), 
but allowing such a transaction──T, say──amounts to a gamble that 
no interfering transaction will ever coexist with T in the system.  
Such gambles aren't recommended!  (Personally, I really question 
whether isolation levels lower than the maximum would ever have 
been supported if we'd started out with a good understanding of 
the importance of the integrity issue in the first place.  See 
Section 16.8.)   

 
 

16.7 Recovery Revisited  
 
This section could be skipped.  If not, explain the concept of an 
unrecoverable schedule, plus the sufficient conditions for 
recoverable and cascade-free schedules.   
 
 
16.8 Isolation Levels 
 
(Begin quote)  
 
Serializability guarantees isolation in the ACID sense.  One 
direct and very desirable consequence is that if all schedules are 
serializable, then the application programmer writing the code for 
a given transaction A need pay absolutely no attention at all to 
the fact that some other transaction B might be executing in the 
system at the same time.  However, it can be argued that the 
protocols used to guarantee serializability reduce the degree of 
concurrency or overall system throughput to unacceptable levels.  
In practice, therefore, systems usually support a variety of 
levels of "isolation" (in quotes because any level lower than the 
maximum means the transaction isn't truly isolated from others 
after all, as we'll soon see).   
 
(End quote)   
 

As this extract indicates, I think the concept of "isolation 
levels" is and always was a logical mistake.  But it has to be 
covered ... The only safe level is the highest (no interference at 
all), called repeatable read in DB2 and SERIALIZABLE──a 
misnomer──in SQL:1999.  Cursor stability (this is the DB2 
term──the SQL:1999 equivalent is READ COMMITTED) should also be 
discussed, however.*  Perhaps mention U locks (partly to 
illustrate the point that X and S locks, though the commonest 
perhaps, aren't the only kind).   
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────────── 
 
*  I remark in passing that DB2 now supports the same four 
isolation levels as the SQL standard does, albeit under different 
names: RR or repeatable read ("SERIALIZABLE"), RS or read 
stability ("REPEATABLE READ"), CS or cursor stability ("READ 
COMMITTED"), and UR or uncommitted read ("READ UNCOMMITTED").  The 
terms in parentheses are the standard ones.  Incidentally, DB2 
allows these various options to be specified at the level of 
specific database accesses (i.e., individual SELECT, UPDATE, etc., 
statements).   
 
────────── 
 
 

Stress the point that if transaction T operates at less than 
the maximum isolation level, then we can no longer guarantee that 
T if running concurrently with other transactions will transform a 
"correct" (consistent) state of the database into another such 
state.  A system that supports any isolation level lower than the 
maximum should provide some explicit concurrency control 
facilities (e.g., an explicit LOCK statement) to allow users to 
guarantee safety for themselves in the absence of such a guarantee 
from the system itself.  DB2 does provide such facilities but the 
standard doesn't.  (In fact, the standard doesn't mention locks, 
as such, at all──deliberately.  The idea is to allow an 
implementation to use some nonlocking scheme if it wants to.)   

 
Explain phantoms and the basic idea (only) of predicate 

locking.  Mention access path locking as an implementation of 
predicate locking.   

 
 

16.9 Intent Locking 
 
This is good stuff (unlike the isolation level stuff!).  Discuss 
locking granularity and corresponding tradeoffs.  Conflict 
detection requires intent locks: intent shared (IS), intent 
exclusive (IX), and shared intent exclusive (SIX).  Discuss the 
intent locking protocol (simplified version only; the full version 
is explained in the annotation to reference [16.10]).  Mention 
lock precedence and lock escalation.   
 
 
16.10 Dropping ACID 
 
This section offers some fresh and slightly skeptical (unorthodox, 
contentious) observations on the question of the so-called ACID 
properties of transactions.  You might want to skip it.   
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Review the intended meaning of "the ACID properties" (C for 

correctness, not consistency, though).  We now propose to 
deconstruct these concepts; in fact, I believe we've all been sold 
a bill of goods, slightly, in this area, especially with respect 
to "consistency" or "correctness" ...  

 
Begin by taking care of some unfinished business:  Explain why 

we believe all constraint checking has to be immediate (for 
detailed arguments, see the book).  Critical role of multiple 
assignment.   

 
Now discuss the ACID properties per se (in the order C-I-D-A).  

Follow the arguments in the book.   
 

•   With respect to "C":  Could it have been that transaction 
theory was worked out before we had a clear notion of 
consistency?  (Yes, I think so.)  Note the quotes from the 
Gray & Reuter book!  Note too this text from the discussion in 
the chapter:  "[If] the C in ACID stands for consistency, then 
in a sense the property is trivial; if it stands for 
correctness, then it's unenforceable.  Either way, therefore, 
the property is essentially meaningless, at least from a 
formal standpoint."   

 
•   With regard to "I":  The original term was "degrees of 

consistency" ... Not the happiest of names!  Data is either 
consistent or it isn't.  (Quote from the annotation to 
reference [16.11].)   

 
•   With regard to "D":  Makes sense only if there's no nesting 

... but nesting is desirable "for at least three reasons: 
intra-transaction parallelism, intra-transaction recovery 
control, and system modularity" [15.15].   

 
•  With regard to "A":  Multiple assignment again!   
 

In sum:  A makes sense only because we don't have multiple 
assignment (but we need multiple assignment, and we already have 
it partially──even in SQL!──and we're going to get more of it in 
SQL:2003); C is only a desideratum, it can't be guaranteed; the 
same is true for I; and D makes sense only without nesting, but we 
want nesting.  To quote the conclusion of this section in the 
book, then:   

 
(Begin quote)  
 
We conclude that, overall, the transaction concept is important 
more from a pragmatic point of view than it is from a theoretical 
one.  Please understand that this conclusion mustn't be taken as 
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disparaging!  We have nothing but respect for the many elegant and 
useful results obtained from over 25 years of transaction 
management research.  We're merely observing that we now have a 
better understanding of some of the assumptions on which that 
research has been based──a better appreciation of integrity 
constraints in particular, plus a recognition of the need to 
support multiple assignment as a primitive operator.  Indeed, it 
would be surprising if a change in assumptions didn't lead to a 
change in conclusions.   
 
(End quote)  
 
 
16.11 SQL Facilities 
 
No explicit locking, but SQL does support isolation levels 
(discuss options on START TRANSACTION; recall that REPEATABLE READ 
in the SQL standard is not the same thing as "repeatable read" in 
DB2).  Explain SQL's definitions of dirty read, nonrepeatable 
read, and phantoms (are they the same as the definitions given in 
the body of the chapter?).  Is the SQL support broken?──see 
references [16.2] and [16.14].   
 
 
References and Bibliography 
 
References [16.1], [16.3], [16.7-16.8], [16.13], [16.15-16.17], 
and [16.20] discuss approaches to concurrency control that are 
wholly or partly based on something other than locking.   
 
 
Answers to Exercises 
 
16.1 See Section 16.6.   
 
16.2 For a precise statement of the two-phase locking protocol and 
the two-phase locking theorem, see Section 16.6.  For an 
explanation of how two-phase locking deals with RW, WR, and WW 
conflicts, see Sections 16.2-16.4.   
 
16.3  
 
a.  There are six possible correct results, corresponding to the 

six possible serial schedules:   
 

Initially : A = 0 
T1-T2-T3  : A = 1 
T1-T3-T2  : A = 2 
T2-T1-T3  : A = 1 
T2-T3-T1  : A = 2 
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T3-T1-T2  : A = 4 
T3-T2-T1  : A = 3 
 
Of course, the six possible correct results aren't all 
distinct.  As a matter of fact, it so happens in this 
particular example that the possible correct results are all 
independent of the initial state of the database, owing to the 
nature of transaction T3.   
 

b.  There are 90 possible distinct schedules.  We can represent 
the possibilities as follows.  (Ri, Rj, Rk stand for the three 
RETRIEVE operations R1, R2, R3, not necessarily in that order; 
similarly, Up, Uq, Ur stand for the three UPDATE operations 
U1, U2, U3, again not necessarily in that order.)   

 
Ri-Rj-Rk-Up-Uq-Ur : 3 * 2 * 1 * 3 * 2 * 1 = 36 possibilities 
Ri-Rj-Up-Rk-Uq-Ur : 3 * 2 * 2 * 1 * 2 * 1 = 24 possibilities 
Ri-Rj-Up-Uq-Rk-Ur : 3 * 2 * 2 * 1 * 1 * 1 = 12 possibilities 
Ri-Up-Rj-Rk-Uq-Ur : 3 * 1 * 2 * 1 * 2 * 1 = 12 possibilities 
Ri-Up-Rj-Uq-Rk-Ur : 3 * 1 * 2 * 1 * 1 * 1 =  6 possibilities 

──────────────── 
TOTAL = 90 combinations 

════════════════ 
 

c.  Yes.  For example, the schedule R1-R2-R3-U3-U2-U1 produces 
the same result (one) as two of the six possible serial 
schedules (Exercise:  Check this statement), and thus happens 
to be "correct" for the given initial value of zero.  But it 
must be clearly understood that this "correctness" is a mere 
fluke, and results purely from the fact that the initial data 
value happened to be zero and not something else.  As a 
counterexample, consider what would happen if the initial 
value of A were ten instead of zero.  Would the schedule R1-
R2-R3-U3-U2-U1 shown above still produce one of the genuinely 
correct results?  (What are the genuinely correct results in 
this case?)  If not, then that schedule isn't serializable.   

 
d.  Yes.  For example, the schedule R1-R3-U1-U3-R2-U2 is 

serializable (it's equivalent to the serial schedule T1-T3-
T2), but it cannot be produced if T1, T2, and T3 all obey the 
two-phase locking protocol.  For, under that protocol, 
operation R3 will acquire an S lock on A on behalf of 
transaction T3; operation U1 in transaction T1 will thus not 
be able to proceed until that lock has been released, and that 
won't happen until transaction T3 terminates (in fact, 
transactions T3 and T1 will deadlock when operation U3 is 
reached).   

 
This exercise illustrates very clearly the following important 

point.  Given a set of transactions and an initial state of the 
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database, (a) let ALL be the set of all possible schedules 
involving those transactions; (b) let "CORRECT" be the set of all 
schedules that do at least produce a correct final state from the 
given initial state; (c) let SERIALIZABLE be the set of all 
guaranteed correct (i.e., serializable) schedules; and (d) let 
PRODUCIBLE be the set of all schedules producible under the two-
phase locking protocol.  Then, in general,  

 
ALL ⊇ "CORRECT" ⊇ SERIALIZABLE ⊇ PRODUCIBLE 
 

16.4 At time tn no transactions are doing any useful work at all!  
There's one deadlock, involving transactions T2, T3, T9, and T8; 
in addition, T4 is waiting for T9, T12 is waiting for T4, and T10 
and T11 are both waiting for T12.  We can represent the situation 
by means of a graph (the Wait-For Graph), in which the nodes 
represent transactions and a directed edge from node Ti to node Tj 
indicates that Ti is waiting for Tj (see the figure below).  Edges 
are labeled with the name of the database item and level of lock 
they're waiting for.   
 
╔════════════════════════════════════════════════════════════════╗ 
║                                                                ║ 
║                T10         T11                                 ║ 
║         A ( X ) └─────┬─────┘ C ( X )                          ║ 
║                       *                                        ║ 
║                      T12                                       ║ 
║               D ( X ) │                                        ║ 
║                       *                                        ║ 
║                       T4                                       ║ 
║               G ( S ) │                                        ║ 
║                       *     H ( X )                            ║ 
║                       T9 ────────────* T8                      ║ 
║                       *                │ E ( S )               ║ 
║               G ( S ) │                *                       ║ 
║                       T3 *──────────── T2                      ║ 
║                             F ( X )                            ║ 
║                                                                ║ 
╚════════════════════════════════════════════════════════════════╝  
 
16.5 Isolation level CS has the same effect as isolation level RR 
on the problems of Figs. 16.1-16.3.  (Note, however, that this 
statement does not apply to CS as implemented in DB2, thanks to 
DB2's use of U locks in place of S locks [4.21].)  As for the 
inconsistent analysis problem (Fig. 16.4):  Isolation level CS 
doesn't solve this problem; transaction A must execute under RR in 
order to retain its locks until end-of-transaction, for otherwise 
it'll still produce the wrong answer.  (Alternatively, of course, 
A could lock the entire accounts relvar via some explicit lock 
request, if the system supports such an operation.  This solution 
would work under both CS and RR isolation levels.)   
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16.6 See Section 16.9.  Note in particular that the formal 
definitions are given by the lock type compatibility matrix (Fig. 
16.13).   
 
16.7 See Section 16.9.   
 
16.8 See the annotation to reference [16.10].   
 
16.9 The three concurrency problems identified in Section 16.2 
were lost update, uncommitted dependency, and inconsistent 
analysis.  Of these three:   
 
•   Lost updates:  The SQL implementation is required to 

guarantee (in all circumstances) that lost updates never 
occur.   

 
•   Uncommitted dependency:  This is just another name for dirty 

read.   
 
•   Inconsistent analysis:  This term covers both nonrepeatable 

read and phantoms.   
 

16.10 The following brief description is based on one given in 
reference [15.6].  First of all, the system must keep:   
 
1.  For each data object, a stack of committed versions (each 

stack entry giving a value for the object and the ID of the 
transaction that established that value; i.e., each stack 
entry essentially consists of a pointer to the relevant entry 
in the log).  The stack is in reverse chronological sequence, 
with the most recent entry being on the top.   

 
2.  A list of transaction IDs for all committed transactions (the 

commit list).   
 

When a transaction starts executing, the system gives it a 
private copy of the commit list.  Read operations on an object are 
directed to the most recent version of the object produced by a 
transaction on that private list.  Write operations, by contrast, 
are directed to the actual current data object (which is why 
write/write conflict testing is still necessary).  When the 
transaction commits, the system updates the commit list and the 
data object version stacks appropriately.   

 
 
 
 

          *** End of Chapter 16 *** 
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          P A R T   V 
 
 
          F U R T H E R   T O P I C S 
 
 
The introduction to Part V in the book itself says it all:   
 
(Begin quote) 
 
We claimed in Part II of this book that the relational model is 
the foundation for modern database technology, and so it is.  
However, it's only the foundation:  There's a lot more to database 
technology than just the relational model as described in Part II, 
and database students and professionals need to be familiar with 
many additional concepts and facilities in order to be fully 
"database-aware" (as indeed should be obvious from our discussions 
in Parts III and IV).  We now turn our attention to a 
miscellaneous collection of further important topics.  The topics 
to be covered, in sequence, are as follows:   
 
•  Security (Chapter 17)  
 
•  Optimization (Chapter 18)  
 
•  Missing information (Chapter 19)  
 
•  Type inheritance (Chapter 20)  
 
•  Distributed databases (Chapter 21)  
 
•  Decision support (Chapter 22)  
 
•  Temporal data (Chapter 23)  
 
•  Logic-based databases (Chapter 24)  
 

Actually the foregoing sequence is a little arbitrary, but the 
chapters have been written on the assumption that they'll be read 
(possibly selectively) in order as written.   
 
(End quote) 
 

As this quote indicates, it's up to you, somewhat, to decide 
which of these chapters you want to cover and which skip.  Further 
guidance is included in the notes on each chapter.   
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          *** End of Introduction to Part V 
*** 
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          Chapter 17 
 
 
          S e c u r i t y 
 
 
Principal Sections 
 
•  Discretionary access control 
•  Mandatory access control 
•  Statistical DBs 
•  Data encryption 
•  SQL facilities 
 
 

General Remarks 
 
Security can be defined as the protection of data against 
unauthorized access (i.e., unauthorized disclosure, alteration, or 
destruction).  Regarding the superficial similarities between 
security and integrity:  Integrity is paramount (it's part of the 
foundation); security, by contrast, is secondary (it builds on the 
foundation, but isn't itself part of that foundation).   
 

Note:  When I say security is secondary, of course I don't 
mean to suggest it's not important.  On the contrary, it's very 
important, and becoming more so, especially in these days of the 
Internet and e-commerce.  But it's secondary from a database 
foundations point of view.   

 
Explain discretionary vs. mandatory control.  Mention 

authentication and user groups (also called roles──see Section 
17.6).   

 
Any or all of Sections 17.3-17.6 can be skipped if desired.  

Section 17.2 probably shouldn't be skipped, however.   
 
 

17.2 Discretionary Access Control 
 
This kind of access control is the one most commonly found in 
practice.  It's supported by SQL (through the GRANT and REVOKE 
statements──see Section 17.6).  The term authority doesn't exactly 
have an SQL equivalent, though; what's more, SQL's "privileges" 
(its counterpart to authorities) have no name!  (Makes them 
difficult to talk about, and in fact led to a bug in the original 
System R implementation [17.10].)   
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The section should be more or less self-explanatory.  Explain 
the Ingres request modification scheme (relate to view processing, 
and possibly to integrity enforcement too).  Mention audit trails.   

 
 

17.3 Mandatory Access Control 
 
There's quite a lot in the research literature on "multi-level 
security" (MLS).  Explain the basic idea.   
 

The section includes the following inline exercise:  "Do you 
think the [relational MLS] ideas ... constitute a violation of The 
Information Principle?  Justify your answer!"  Answer:  No, they 
don't.  Polyinstantiated relvars are analogous, somewhat, to 
views, though with view-specific defaults.  Note that there's 
presumably at least one user──the DBA, or perhaps the security 
administrator?──who's allowed to see the hidden classification 
levels.   

 
 

17.4 Statistical DBs 
 
Most database textbooks have comparatively little to say on this 
topic, but the growing interest in data warehouses (see Chapter 
22) makes the material increasingly relevant.  The details of 
individual and general trackers, etc., are interesting and 
straightforward, if somewhat depressing.  (By the way, there was a 
bug in this area in the 7th edition, but it's been corrected now.  
Thanks to Guy de Tré of Ghent University for drawing my attention 
to the bug in question.)   
 
 
17.5 Data Encryption 
 
Self-explanatory.  The point's worth making that the biggest 
threat to security isn't the database or the DBMS but the 
communications network (wireless or otherwise).  Mention the DES 
and the AES.  Emphasize the public key stuff (the RSA algorithm in 
particular).  Explain digital signatures.   
 

The section includes an example in which the plaintext string  
 
AS KINGFISHERS CATCH FIRE 
 

is encrypted as follows:   
 

FDIZBSSOXLMQ GTHMBRAERRFY 
 

It then asks the reader to decrypt this ciphertext.  Answer:  
Obvious.  But the real question is, can you figure out the 
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encryption key, given just the ciphertext?  (Not too easy.)  Or 
given both the ciphertext and the plaintext?  (Trivial.)  
Subsidiary question:  Do you recognize the source of the quote?   
 
 
17.6 SQL Facilities 
 
Self-explanatory again, except perhaps for the grant option stuff 
and RESTRICT vs. CASCADE (the "abandoned privileges" stuff).  
Briefly explain the less commonly encountered privileges USAGE, 
UNDER, REFERENCES, TRIGGER, and EXECUTE.  Note that GRANT and 
REVOKE are really CREATE and DROP AUTHORITY, but because the 
syntax is different those "authorities" are unnamed.   
 

The text includes the following example of a "context-
dependent" authority in SQL:   

 
CREATE VIEW S_NINE_TO_FIVE AS 

SELECT S.S#, S.SNAME, S.STATUS, S.CITY 
FROM   S 
WHERE  CURRENT_TIME ≥ TIME '09:00:00' 
AND    CURRENT_TIME ≤ TIME '17:00:00' ; 
 

GRANT SELECT, UPDATE ( STATUS ) 
ON    S_NINE_TO_FIVE 
TO    ACCOUNTING ; 
 

It then goes to point out that S_NINE_TO_FIVE is "rather an odd 
kind of view!──its value changes over time, even if the underlying 
data does not."  And it asks what the predicate is for this view.  
Answer:  Without going into details, it should be clear that the 
predicate in question must include "the current time" as one of 
its parameters (and instantiating that predicate must involve 
substituting the actual "current time" for that parameter).  By 
contrast, the predicate for what we might call a "regular" relvar 
(regardless of whether it's base or derived) includes only 
parameters that stand for values recorded in the database.   
 
 
Answers to Exercises 
 
17.1  
 
a. AUTHORITY AAA 

GRANT RETRIEVE ON STATS TO Ford ; 
 

b. AUTHORITY BBB 
GRANT INSERT, DELETE ON STATS TO Smith ; 
 

c. AUTHORITY CCC 
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GRANT RETRIEVE 
ON    STATS 
WHEN  USER () = NAME  
TO    ALL ; 
 

We're assuming here that users use their own name as their 
user ID.  Note the use of a WHEN clause and the niladic built-
in operator USER().   
 

d. AUTHORITY DDD 
GRANT RETRIEVE, UPDATE { SALARY, TAX } 
ON    STATS 
TO    Nash ; 
 

e. AUTHORITY EEE 
GRANT RETRIEVE { NAME, SALARY, TAX } 
ON    STATS 
TO    Todd ; 
 

f. AUTHORITY FFF 
GRANT RETRIEVE { NAME, SALARY, TAX }, 

UPDATE { SALARY, TAX } 
ON    STATS 
TO    Ward ; 
 

g. VAR PREACHERS VIEW 
STATS WHERE OCCUPATION = 'Preacher' ; 
 

AUTHORITY GGG 
GRANT ALL  
ON    PREACHERS  
TO    Pope ; 
 

Note the need to use a view in this example.   
 

h. VAR NONSPECIALIST VIEW 
WITH ( STATS RENAME OCCUPATION AS X ) AS T1, 

( EXTEND STATS  
ADD COUNT ( T1 WHERE X = OCCUPATION ) AS Y ) AS T2, 

( T2 WHERE Y > 10 ) AS T3 : 
T3 { ALL BUT Y } 
 

AUTHORITY HHH 
GRANT DELETE 
ON    NONSPECIALIST 
TO    Jones ; 
 

i. VAR JOBMAXMIN VIEW 
WITH ( STATS RENAME OCCUPATION AS X ) AS T1, 

( EXTEND STATS ADD 
( MAX ( T1 WHERE X = OCCUPATION, SALARY ) AS MAXSAL, 
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MIN ( T1 WHERE X = OCCUPATION, SALARY ) AS MINSAL ) )  
AS T2 : 

T2 { OCCUPATION, MAXSAL, MINSAL } 
 
AUTHORITY III 

GRANT RETRIEVE ON JOBMAXMIN TO King ; 
 

17.2 We make just one observation here:  A user who has the 
authority to define a new base relvar and in fact does so can be 
regarded as the owner of that new relvar.  As in SQL, the owner of 
a given base relvar should automatically be granted all possible 
privileges on that relvar,* including not only the RETRIEVE, 
INSERT, UPDATE, and DELETE privileges (of course), but also the 
privilege of defining authorities that grant privileges on that 
relvar to other users.   
 
 
────────── 
 
*  Some might disagree with this statement, arguing that it should 
be possible for one user (perhaps the DBA) to be able to define a 
new base relvar on some other user's behalf and not be 
automatically granted all privileges on the relvar in question.   
 
────────── 
 
 
17.3 An individual tracker for Hal is  
 

CHILDREN > 1 AND NOT ( OCCUPATION = 'Homemaker' ) 
 

Consider the following sequence of queries:   
 

COUNT ( STATS WHERE CHILDREN > 1 ) 
 

Result:  6.   
 

COUNT ( STATS WHERE CHILDREN > 1 AND NOT 
( OCCUPATION = 'Homemaker' ) )   
 

Result:  5.   
 
Hence the expression  
 

CHILDREN > 1 AND OCCUPATION = 'Homemaker' 
 

uniquely identifies Hal.   
 

SUM ( STATS WHERE CHILDREN > 1, TAX ) 
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Result:  48K.   
 

SUM ( STATS WHERE CHILDREN > 1 AND NOT 
( OCCUPATION = 'Homemaker' ), TAX ) 
 

Result:  46K.   
 
Hence Hal's tax figure is 2K.   
 
17.4 General tracker:  SEX = 'F'.   
 

SUM ( STATS WHERE SEX = 'F', TAX )  
 

Result:  70K.   
 

SUM ( STATS WHERE NOT ( SEX = 'F' ), TAX ) 
 

Result:  16K.   
 
Hence the total tax is 86K.   
 

SUM ( STATS WHERE ( CHILDREN > 1 AND 
OCCUPATION = 'Homemaker' ) OR 

SEX = 'F', TAX )  
 

Result:  72K.   
 

SUM ( STATS WHERE ( CHILDREN > 1 AND 
OCCUPATION = 'Homemaker' ) OR NOT 
( SEX = 'F' ), TAX )  

 
Result:  16K.   
 
Adding these results and subtracting the total previously 
calculated, we have Hal's tax figure = 88K - 86K = 2K.   
 
17.5 The plaintext is  
 

EYES I DARE NOT MEET IN DREAMS 
 

What is the encryption key?  No answer provided. Subsidiary 
question:  Do you recognize the source of the quote?   
 
17.6 No answer provided.   
 
17.7 One problem is that, even in a system that supports 
encryption, data might still have to be processed in its plaintext 
form internally (e.g., for comparisons to operate correctly), and 
there might thus still be a risk of sensitive data being 
accessible to concurrently executing applications or appearing in 
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a memory dump.  Also, there are severe technical problems in 
indexing encrypted data and in maintaining log records for such 
data (but see reference [17.4]).   
 
17.8  
 
a. GRANT SELECT ON STATS TO Ford ; 
 
b. GRANT INSERT, DELETE ON STATS TO Smith ; 
 
c. CREATE VIEW MINE AS 

SELECT STATS.* 
FROM   STATS 
WHERE  STATS.NAME = CURRENT_USER ; 
 

GRANT SELECT ON MINE TO PUBLIC ; 
 
We're assuming here that users use their own name as their 
user ID.  Note the use of the niladic built-in operator 
CURRENT_USER.   
 

d. GRANT SELECT, UPDATE ( SALARY, TAX ) ON STATS TO Nash ; 
 
e. GRANT SELECT ( NAME, SALARY, TAX ) ON STATS TO Todd ; 
 
f. GRANT SELECT ( NAME, SALARY, TAX ),  

UPDATE ( SALARY, TAX ) ON STATS TO Ward ; 
 

g. CREATE VIEW PREACHERS AS 
SELECT STATS.* 
FROM   STATS 
WHERE  STATS.OCCUPATION = 'Preacher' ; 
 

GRANT ALL PRIVILEGES ON PREACHERS TO Pope ; 
 
Observe the use of the shorthand "ALL PRIVILEGES" in this 
example.  ALL PRIVILEGES in SQL doesn't literally mean all 
privileges, however──it means all privileges on the relevant 
object for which the user issuing the GRANT has grant 
authority.   
 

h. CREATE VIEW NONSPECIALIST AS 
SELECT STX.* 
FROM   STATS AS STX 
WHERE  ( SELECT COUNT(*) 

FROM   STATS AS STY 
WHERE  STY.OCCUPATION = STX.OCCUPATION ) > 10 ; 
 

GRANT DELETE ON NONSPECIALIST TO Jones ; 
 

i. CREATE VIEW JOBMAXMIN AS 
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SELECT STATS.OCCUPATION,  
MAX ( STATS.SALARY ) AS MAXSAL,  
MIN ( STATS.SALARY ) AS MINSAL 

FROM   STATS 
GROUP  BY STATS.OCCUPATION ; 
 

GRANT SELECT ON JOBMAXMIN TO King ; 
 

17.9 
 
a. REVOKE SELECT ON STATS FROM Ford RESTRICT ; 
 
b. REVOKE INSERT, DELETE ON STATS FROM Smith RESTRICT ; 
 
c. REVOKE SELECT ON MINE FROM PUBLIC RESTRICT ; 
 
d. REVOKE SELECT, UPDATE ( SALARY, TAX )  

ON STATS FROM Nash RESTRICT ; 
 

e. REVOKE SELECT ( NAME, SALARY, TAX ) ON STATS  
FROM Todd RESTRICT ; 
 

f. REVOKE SELECT ( NAME, SALARY, TAX ), UPDATE ( SALARY, TAX )  
ON STATS FROM Ward RESTRICT ; 
 

g. REVOKE ALL PRIVILEGES ON PREACHERS FROM Pope RESTRICT ; 
 
h. REVOKE DELETE ON NONSPECIALIST FROM Jones RESTRICT ; 

 
i. REVOKE SELECT ON JOBMAXMIN FROM King RESTRICT ;  
 
 
 
 

          *** End of Chapter 17 *** 
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          Chapter 18 
 
 
          O p t i m i z a t i o n 
 
 
Principal Sections 
 
•  A motivating example 
•  An overview of query processing 
•  Expression transformation  
•  DB statistics  
•  A divide-and-conquer strategy 
•  Implementing the relational operators 
 
 

General Remarks 
 
No "SQL Facilities" section in this chapter.  However, some SQL-
specific optimization issues are discussed in the annotation to 
several of the references (especially references [18.37-18.43]).  
Also, the summary section mentions the fact that 3VL, SQL's 
(flawed) support for 3VL, and duplicate rows all serve as 
optimization inhibitors (and the same is true for SQL's left-to-
right column ordering, though this last one isn't mentioned in the 
chapter itself).  The articles mentioned under reference [4.19] 
are also relevant.   
 

The material of this chapter is stuff that──in principle, 
given a perfect system──the user really shouldn't need to know 
about.  It's part of the implementation, not part of the model.  
However, just as a knowledge of what goes on under the hood can 
help you be a better driver, a knowledge of what's involved in 
executing queries might help you use the system better.  In any 
case, it's interesting stuff!──and it's a major part of relational 
technology in general, though not part of the relational model per 
se.  The chapter really shouldn't be omitted, but it might be 
downplayed a little (though it goes against the grain to say so).   

 
There are two broad aspects to optimization: expression 

transformation (aka "query rewrite") and access path selection 
(using indexes and other storage structures appropriately to get 
to the stored data).  The relational model is directly relevant to 
the first aspect, inasmuch as it's the formal properties of the 
relational algebra that make expression transformation possible in 
the first place.  It's not so directly relevant to the second 
aspect, except inasmuch as its clean logical vs. physical 
separation is what permits so many different access paths to be 
deployed (physical data independence).  Commercial optimizers do a 
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reasonably good job on the second aspect* but, strangely, not such 
a good job on the first──even though there's a wealth of relevant 
material available in the technical literature, going back as far 
as the early 1970s.   

 
 
────────── 
 
*  Though there's always room for improvement!  Don't give the 
students the impression that today's optimizers are perfect.  
What's more, there's a possibility that we're on the threshold of 
some radical developments in this area (see Appendix A)──where by 
"radical" I mean that access path selection, as such, might no 
longer be needed!  I'll say a little more about these developments 
in a few moments.   
 
────────── 
 
 

The activities of the TPC should at least be mentioned (see 
the annotation to reference [18.5]).  Some brief discussion of 
parallelism should also be included (see the annotation to 
reference [18.56]; forward pointer to distributed databases 
perhaps?).  Perhaps mention too the possibility of holding the 
entire database in main memory (see, e.g., reference [18.50])──a 
possibility that changes the implementation (and optimization) 
picture dramatically!  Also, be aware of the following remarks 
(they're from the end of Section 18.8, the summary section):   

 
(Begin quote)  
 
In this chapter, we've discussed optimization as conventionally 
understood and conventionally implemented; in other words, we've 
described "the conventional wisdom."  More recently, however, a 
radically new approach to DBMS implementation has emerged, an 
approach that has the effect of invalidating many of the 
assumptions underlying that conventional wisdom.  As a 
consequence, many aspects of the overall optimization process can 
be simplified (even eliminated entirely, in some cases), 
including:   
 
•   The use of cost-based optimizing (Stages 3 and 4 of the 

process)   
 
•  The use of indexes and other conventional access paths  
 
•   The choice between compiling and interpreting database 

requests  
 
•  The algorithms for implementing the relational operators  
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and many others.  See Appendix A for further discussion.   
 
(End quote)  
 
We live in exciting times!   
 
 
18.2 A Motivating Example 
 
Self-explanatory.  Drive the message home by stressing the "human 
factors" aspect:  If the original unoptimized query took three 
hours to run, the final version will run in just over one second.   
 

It can reasonably be argued that relational systems stand or 
fall on the basis of how good their optimizer is.  (Though I do 
have to admit that there's at least one extremely successful 
commercial SQL product that managed to survive for years with what 
might be called "the identity optimizer."  I can't explain this 
fact on technical grounds.  I strongly suspect the explanation 
isn't a technical one at all.)   

 
 

18.3 An Overview of Query Processing 
 
The four stages (refer to Fig. 18.1):   
 
1. Cast the query into internal form  
2. Convert to canonical form  
3. Choose candidate low-level procedures  
4. Generate query plans and choose the cheapest  
 

In practice, Stage 1 effectively becomes "convert the SQL 
query to a relational algebra equivalent" (and that's what real 
commercial optimizers typically do──see, e.g., the classic paper 
by Selinger et al. [18.33]).  The obvious question arises:  Why 
wasn't the original query stated in algebraic form in the first 
place?  A good question ... Could perhaps sidetrack to review the 
origins of SQL here, and the current ironical situation, if the 
instructor is familiar with this story and wants to discuss it 
(see reference [4.16]).   

 
View processing ("query modification") is also done during 

Stage 1.   
 
Stage 2:  This is the "query rewrite" stage.  Elaborated in 

Section 18.4.  Explain the general notion of canonical form 
(either here or in that later section), if you haven't already 
done so at some earlier point in the class.   
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Stage 3:  The first stage at which physical storage 
structures, data value distributions, etc. (and hence catalog 
access), become relevant.  Elaborated in Sections 18.5 and 18.7 
(note, however, that students are expected to have a basic 
understanding of file structures, indexes, etc., already; you 
might mention the online Appendix D in this regard, and possibly 
even set it as a reading assignment).  Stage 3 flows into Stage 4 
(in fact, Fig. 18.1 doesn't distinguish between Stages 3 and 4).   

 
Stage 4:  "Access path selection" (important term!──though 

it's sometimes used to encompass Stage 3 as well).  Elaborated in 
Sections 18.5 and 18.7.  "Choose the cheapest plan":  What's 
involved in evaluating the cost formulas?  Need estimates of 
intermediate result sizes ... Estimating those sizes is a 
difficult problem, in general.  Are optimizers only as good as 
their estimating?  (No, they're not, but good estimating is 
important.)  Note:  Early experience with System R showed that the 
optimizer's estimates were often wildly wrong but that it didn't 
matter, in the sense that the plan the optimizer thought was 
cheapest was in fact the cheapest, the plan it thought was the 
second cheapest was in fact the second cheapest, and so on.*  I 
can't begin to explain this state of affairs; perhaps it was just 
a fluke, and insufficient measurement of the optimizer was done.  
I still think good estimating is important.   

 
 

────────── 
 
*  I hope I'm remembering this right; I can't track down the 
original source.   
 
────────── 
 
 
18.4 Expression Transformation 
 
The section begins:  "In this section we describe some 
transformation laws or rules that might be useful in Stage 2 of 
the optimization process.  Producing examples to illustrate the 
rules and deciding exactly why they might be useful are both left 
(in part) as exercises."  No answer provided (other than what's in 
the book).   
 

Explain distributivity, commutativity, associativity*──also 
idempotence and absorption (see Exercise 18.5 re the last of these 
concepts).  Theory is practical!  Also discuss transformation of 
other kinds of expressions──arithmetic expressions, boolean 
expressions, etc.  Note to the instructor:  What are the 
implications of user-defined types and object/relational systems 
on these ideas?  See Chapter 26, Section 26.4.  See also the 
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annotation to reference [25.40] for a note regarding the 
implications for object systems.   

 
 

────────── 
 
*  I note in passing that some writers seem to confuse these 
terms, using (e.g.) commutativity to mean distributivity.   
 
────────── 
 
 

Discuss semantic transformations──not much supported yet in 
current products, but they could be, and the potential payoff is 
enormous.  Declarative integrity support is crucial!  (So what are 
object systems going to do?)   

 
 
18.5 Database Statistics 
 
Self-explanatory, pretty much (but see Exercise 18.15).  Be sure 
to mention RUNSTATS (or some counterpart to RUNSTATS).   
 
 
18.6 A Divide-and-Conquer Strategy 
 
This section describes the historically important Ingres query 
decomposition approach and can serve as a springboard for getting 
into specifics of other tricks and techniques.  The section might 
be skipped, but in any case it's fairly self-explanatory (it does 
use QUEL as a basis, but QUEL is easy to understand).  It might be 
set as a reading assignment.   
 
 
18.7 Implementing the Relational Operators   
 
To quote:  "[The] primary reason for including this material is 
simply to remove any remaining air of mystery that might possibly 
still surround the optimization process."  In other words, the 
implementation techniques to be described are all pretty much what 
you might expect──it's all basically common sense.  But see also 
the annotation to, e.g., references [18.9-18.15] at the end of the 
chapter.   
 

The following inline exercises are included in this section:   
 

•   Give pseudocode procedures for project, summarize, and many-
to-one merge join.   

 
•  Derive cost estimates for hash lookup and hash join.   
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These exercises can be used as a basis for class discussion.  No 
answers provided.   
 
 
References and Bibliography 
 
References [18.2] and [18.3] are both recommended; either would 
make a good handout, though of course the latter is more recent 
and thus preferable.  Reference [18.4] is, in my opinion, a much 
overlooked classic (the book in which it appears is likely to be 
hard to find, unfortunately; perhaps the original IBM Research 
Report──IBM reference number RJ1072, dated July 27th, 1972──could 
be tracked down?).  References [18.37-18.41] illustrate some of 
the implementation difficulties caused by duplicates and nulls in 
SQL!  (By contrast, the book as such──i.e., the eighth edition, 
especially Chapter 19──concentrates on the model or conceptual 
difficulties caused by such things.)   
 
 
Answers to Exercises 
 
18.1 a. Valid.  b. Valid.  c. Valid.  d. Not valid.  e. Valid.  f. 
Not valid (it would be valid if we replaced the AND by an OR).  g. 
Not valid.  h. Not valid.  i. Valid.   
 
18.2 This exercise and the next overlap considerably with Exercise 
7.4, q.v.  INTERSECT is a special case of JOIN, so we can ignore 
it.  The commutativity of UNION and JOIN is obvious from the 
definitions, which are symmetric in the two relations concerned.  
The proof that MINUS isn't commutative is trivial.   
 
18.3 As already noted, this exercise and the previous one overlap 
considerably with Exercise 7.4, q.v.  INTERSECT is a special case 
of JOIN, so we can ignore it.  The associativity of UNION is shown 
in the answer to Exercise 7.4; the proof that JOIN is associative 
is analogous.  The proof that MINUS isn't associative is trivial.   
 
18.4 We show that (a) UNION distributes over INTERSECT.  The proof 
that (b) INTERSECT distributes over UNION is analogous.   
 
•   If t ε A UNION (B INTERSECT C), then t ε A or t ε (B INTERSECT 

C).   
 

■  If t ε A, then t ε A UNION B and t ε A UNION C and hence t ε 
(A UNION B) INTERSECT (A UNION C).   
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■  If t ε B INTERSECT C, then t ε B and t ε C, so t ε A UNION B 
and t ε A UNION C and hence (again) t ε (A UNION B) 
INTERSECT (A UNION C).   

 
•  Conversely, if t ε (A UNION B) INTERSECT (A UNION C), then t ε 

A UNION B and t ε A UNION C.  Hence t ε A or t ε both of B and 
C.  Hence t ε A UNION (B INTERSECT C).   

 
18.5 We show that A UNION (A INTERSECT B) ≡ A.  If t ε A then 
clearly t ε A UNION (A INTERSECT B).  Conversely, if t ε A UNION 
(A INTERSECT B), then t ε A or t ε both of A and B; either way, t 
ε A.  The proof that A INTERSECT (A UNION B) ≡ A is analogous.   
 
18.6 The two conditional cases were covered in Section 18.4.  The 
unconditional cases are straightforward.  We show that projection 
fails to distribute over difference by giving the following 
counterexample.  Let A{X,Y} and B{X,Y} each contain just one 
tuple──namely, the tuples {X x,Y y} and {X x,Y z}, respectively (y 
=/ z).  Then (A MINUS B){X} gives a relation containing just the 
tuple {X x}, while A{X} MINUS B{X} gives an empty relation.   
 
18.7 We don't give a detailed answer to this exercise, but here 
are the kinds of questions you should be asking yourself:  Can a 
sequence of extends be combined into a single operation?  Is an 
extend followed by a restrict the same as a restrict followed by 
an extend?  Does extend distribute over union?  Over difference?  
What about summarize?  And so on.   
 
18.8 No answer provided.   
 
18.9 A good set of such rules can be found in reference [18.2].   
 
18.10 A good set of such rules can be found in reference [18.2].   
 
18.11  
 
a. Get "nonLondon" suppliers who do not supply part P2.   
 
b. Get the empty set of suppliers.   
 
c. Get "nonLondon" suppliers such that no supplier supplies fewer 

kinds of parts.   
 
d. Get the empty set of suppliers.   
 
e. No simplification possible.   
 
f. Get the empty set of pairs of suppliers.   
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g. Get the empty set of parts.   
 
h.  Get "nonParis" suppliers such that no supplier supplies more 

kinds of parts.   
 

Note that certain queries──to be specific, queries b., d., f., and 
g.──can be answered directly from the constraints.   
 
18.12 No answer provided.   
 
18.13 This exercise could form the basis of a simple class 
project; the results might even be publishable!  No answer 
provided.   
 
18.14 No answer provided.   
 
18.15 For processing reasons, the true highest and/or lowest value 
is sometimes some kind of dummy value──e.g., the highest "employee 
name" might be a string of all Z's, the lowest might be a string 
of all blanks.  Estimates of (e.g.) the average increment from one 
column value to the next in sequence would be skewed if they were 
based on such dummy values.   
 
18.16 Such hints might be useful in practice, but in my opinion 
they amount to an abdication of responsibility on the part of the 
optimizer (or of the vendor, rather).  Users shouldn't have to get 
involved in performance issues at all!  Note the implications for 
portability, too (or lack thereof, rather).  Note:  In the 
particular case at hand (OPTIMIZE FOR n ROWS), it seems likely 
that what's really required is some kind of quota query 
functionality.  See reference [7.5].   
 
18.17 This exercise can be used as a basis for class discussion.  
No answer provided.   
 
18.18 No answer provided.   
 
 
 
 
          *** End of Chapter 18 *** 
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          Chapter 19 
 
 
          M i s s i n g   I n f o r m a t i o 
n 
 
 
Principal Sections 
 
•  An overview of the 3VL approach 
•  Some consequences of the foregoing scheme 
•  Nulls and keys  
•  Outer join (a digression) 
•  Special values 
•  SQL facilities 
 
 

General Remarks 
 
Missing information is an important problem, but nulls and 3VL (= 
three-valued logic) are NOT a good solution to that problem; in 
fact, they're a disastrously bad one.  However, it's necessary to 
discuss them,* owing to their ubiquitous nature out there in the 
commercial world (and, regrettably, in the research world also, at 
least to some extent).  This chapter shouldn't be skipped, though 
it could perhaps be condensed somewhat.   
 
 
────────── 
 
*  At least, I think it is.  But I suppose you could just say to 
the students "Trust me, don't ever use nulls"; perhaps suggest a 
reading assignment; and move on quickly to the next topic.   
 
────────── 
 
 

Note:  By "the commercial world" (and, somewhat, "the research 
world" as well) in the previous paragraph, what I really mean is 
the SQL world, of course.   

 
Now, you might be aware that I've been accused of "conducting 

a tirade against nulls."  Guilty as charged!  But it's not just 
me; in fact, I don't know anyone working in the database field who 
both (a) fully understands nulls and (b) thinks they're a good 
idea.  The fact is, not only are nulls a very bad idea, the full 
extent of their awfulness is still not widely enough appreciated 
in the community at large, and so the tirade seems to be 
necessary.  (As the preface says, this is a textbook with an 
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attitude.)  It's odd, really; there seems to be so much interest 
in "semantic modeling" out there in the community at large; and 
yet there seems to be comparatively little interest in the 
question of how to deal properly with missing information.  Surely 
the latter is directly and highly relevant to the former?  And if 
people really looked at the latter, they'd quickly come to 
appreciate some of the problems with nulls.   

 
Anyway, the crucial point is this:  A system that supports 

nulls produces wrong answers.  Of course, it probably produces 
right answers too; but since we have no way of knowing which ones 
are right and which wrong, all answers become suspect).  It's 
important to understand too that it's not just queries that 
directly involve nulls that can give wrong answers──all answers 
become suspect if nulls are permitted in any relvar in the 
database [19.19].   

 
Here are some show-stopping facts that don't seem to be 

generally understood:   
 

•   Nulls aren't values (SQL falls down on this one, in part); 
thus, the frequently heard term "null value" (as opposed to 
just "null") is a contradiction in terms.   

 
•  A domain that "contains a null" isn't a domain.   
 
•  An attribute that "contains a null" isn't an attribute.   
 
•   A tuple that "contains a null" isn't a tuple.  (It isn't a 

tuple at all, let alone being one that represents an 
instantiation of the applicable predicate.)   

 
•  A relation that "contains a null" isn't a relation.   
 

Just why each of the foregoing assertions is valid is left as a 
(trivial) exercise for the reader.  Hint:  Appeal to the 
definitions!   
 

The argument made in the annotation to reference [19.11], 
regarding the number of logical operators required for nVL, is 
worth calling out explicitly (see Exercise 19.6).  As for the 
questions── 

 
•  What's a suitable set of primitive operators?   
 
•  What's a suitable set of useful operators?   
 

(for 3VL in particular)──let alone the obvious follow-on questions 
regarding proof, correctness, implementation, usability, and so 
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forth──well, these are questions I've never heard the 3VL 
advocates even ask, let alone answer.  (Note that if you want to 
support 3VL, then you must support all 19,000 plus operators; 
otherwise you aren't supporting 3VL.  I don't know what it might 
be that you are supporting in such a case, but it isn't 3VL.)   
 

"It all makes sense if you squint a little and don't think too 
hard" [11.10].  Yes, that's right.  Nulls do look attractive at 
first, at least superficially.  It's only when you start poking 
into them in detail that you begin to discover the problems.   

 
 

19.2 An Overview of the 3VL Approach 
 
In this section I "suspend disbelief" and explain how the 3VL 
approach is supposed to work.*  Note the use of the terms UNK 
(i.e., null) and unk ("the third truth value").  They're not the 
same thing! (though SQL thinks they are)──another logical 
difference here, in fact.  Explain the need for the IS_UNK and 
MAYBE logical operators.   
 
 
────────── 
 
*  Emphasis on supposed to.  SQL doesn't fully abide by the 
principles laid down in this section; note carefully, however, 
that this fact doesn't constitute a flaw in three-valued logic per 
se, but rather a flaw in SQL's attempt to implement that logic.   
 
────────── 
 
 

By the way, note the slightly tricky formulation involved in 
the SQL counterpart to the MAYBE example (i.e., the "AND NOT" 
bit); SQL does support MAYBE directly, via its IS UNKNOWN 
construct, but the whole point of the example is to demonstrate 
the "need" to support MAYBE.  In other words, if you really want 
to support 3VL, then you need to support MAYBE.  (Of course, I 
don't want to support 3VL at all, but I do think if you're going 
to do it, then you should do it right, and doing it right includes 
supporting MAYBE.)   

 
Explain the effect on the quantifiers (SQL falls down here, 

too) and the relational operators.  Note the strange──I would say 
completely untenable──definition of "duplicates" in particular!  
Discuss the effect on integrity constraints.   

 
 

19.3 Some Consequences of the Foregoing Scheme 
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Recall the following from Chapter 6 of this manual (slightly 
reworded here), and note the final sentence in particular:   
 

Assignment doesn't always mean assignment:  Suppose X3 is of 
type CHAR(3) and we assign the string 'AB' to it.  After that 
assignment, the value of X3 is actually 'AB ' (note the 
blank), and the comparison X3 = 'AB' won't give true if NO PAD 
is in effect (see reference [4.20]).  Note:  Many similar but 
worse situations arise when nulls are taken into account (see 
Chapter 19).   
 

Here's one thing that happens when nulls are taken into account:   
 

Assignment doesn't always mean assignment:  Suppose X and Y 
are variables, suppose Y is null, and we assign Y to X.  After 
that assignment, X too is null, but the comparison X = Y won't 
give true.   
 
To continue:  Discuss the implications for expression 

transformation (and hence for both the optimizer and the user).  
Regarding the departments and employees example, observe that:   

 
a. Optimizations that are valid in 2VL might not be valid in 3VL.   
 
b.  More important, answers that are correct according to the 

logic might not be correct in the real world ("the 
interpretation issue").   

 
The database doesn't contain "the real world" but only 

knowledge about the real world (this obvious but important point 
is true regardless of whether we're dealing with nulls and 3VL, of 
course).   

 
Explain the predicate stuff, too.   
 
 

19.4 Nulls and Keys 
 
Regarding the entity integrity rule:  People often erroneously 
think this rule says that primary key values must be unique.  It 
doesn't.  It says that primary keys in base relvars can't accept 
nulls.  Weirdnesses with this rule:  It artificially distinguishes 
between primary and alternate keys; it artificially distinguishes 
between base and derived relvars (thereby violating The Principle 
of Interchangeability).   
 

Regarding foreign keys:  Note that the apparent "need" to 
permit nulls in foreign keys can be avoided by appropriate 
database design [19.19], and such avoidance is strongly 
recommended.   
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19.5 Outer Join (a digression) 
 
Deprecated operator!  Note that:   
 
•   The result of an outer join is, in general, a mixture of two 

(or more) different relations with different predicates.  It's 
not a relation, in general, since it "contains nulls."  It 
would be better to stay in the relational framework and issue 
separate queries to obtain the separate relations that are the 
separate results.  (Or, possibly, to extend the relational 
algebra to permit operators that return sets of relations, an 
idea that requires more study.)   

 
•   The operation is actually much more complicated than simple 

examples suggest.   
 
•   The interpretation problem raises its head again ... What do 

the nulls in the result of an outer join mean?  (In fact, the 
only interpretation that makes any logical sense is, 
precisely, "value is the empty set"──see the next bullet.)   

 
•   RVAs provide a much better solution to the problem anyway.  

Outer join as usually understood would be completely 
unnecessary if RVAs were supported.   

 
•   Mention the possibility (and undesirability!) of defining 

other "outer" operations.  A telling point:  A version of 
"outer union" was added to the SQL standard with SQL:1992 and 
will be dropped agin with SQL:2003.   

 
 

19.6 Special Values 
 
Special values are often called default values, but this latter 
term isn't very good because it suggests something that was never 
intended: namely, that the value in question occurs so frequently 
that it might as well be the default.   
 

The approach isn't pretty──in some ways, in fact, it's 
downright ugly──but it does have the virtue of staying squarely in 
2VL and not wrecking the relational model.  So the recommendation 
is to go with it, and hope that one day the researchers will come 
up with a good solution to the missing information problem.  (But 
don't hold your breath; they've been trying for over 30 years now 
and don't seem to have succeeded yet.)   

 
"There's no such thing as a null in the real world."   
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Stress the point that if, e.g., the "unknown" special value 

for HOURS_WORKED is "?", then the underlying type is not just 
INTEGER──it's a type containing integers plus "?" (loosely 
speaking).  A nice analogy:  Type TRUMPS contains five values, not 
four──♥, ♣, ♦, ♠, and "no trumps."   

 
Note:  Nulls advocates will argue that the special values 

scheme amounts to anarchy ("different users will represent missing 
information in different ways, thereby undermining the utility of 
the database as a shared resource").  And indeed there's some 
merit to this argument.  The counterargument, of course, is that 
the special values approach needs to be, and can be, a disciplined 
scheme.  Section 19.6 deliberately doesn't spell out much in the 
way of specifics, for space reasons (they're fairly obvious, 
anyway); see reference [19.12] for the details.   

 
 

19.7 SQL Facilities 
 
To quote:  "The full implications and ramifications of SQL's null 
support are very complex ... For additional information, we refer 
you to the official standard document [4.23] or the detailed 
tutorial treatment in reference [4.20]."  In fact, Chapter 16 of 
reference [4.20] provides a treatment that's meant to be not only 
very careful but fairly complete, too (at least as of SQL:1992).  
You should be aware that although SQL does support 3VL in broad 
outline, it also manages to make a variety of mistakes in that 
support.  Also, you might want to develop more complete examples 
to illustrate the points in this section──the book contains mostly 
just code fragments.   
 

Very curious behavior of type BOOLEAN!──thanks to mistaken 
equation of UNK and unk.   

 
Horrible implications for structured and generated types (a 

composite value can have null components and yet not be null*).  
In fact, consider this example.  Suppose x is the row value (1,y) 
and y IS NULL evaluates to TRUE.  Then the expressions  

 
 

────────── 
 
*  The reason is that there's a logical difference between, e.g., 
a null row and a row all of whose components are null.   
 
────────── 
 
 

x IS NULL 
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and  
 

x IS NOT NULL 
 

both evaluate to FALSE!  So x is apparently neither null nor 
nonnull ...  
 

Here's another example, if you have the stomach for it 
(acknowledgments to Hugh Darwen for this one):  Suppose x is not a 
row value, and x IS NULL evaluates to TRUE.  Then  

 
ROW ( x ) IS NULL  
 

and  
 

ROW ( x, x ) IS NULL  
 

both evaluate to TRUE, but  
 

ROW ( ROW ( x ) ) IS NULL  
 

and  
 

ROW ( ROW ( x ), x ) IS NULL  
 

both evaluate to FALSE!  (The problem here is that the "IS NULL" 
operator doesn't really mean what it says.  If ROW(x,y,z) IS NULL 
gives TRUE, it doesn't mean the row is null──it means its 
components are null.)  As Hugh says (in a private communication):  
"This is yet another case of incautious language design having 
unforeseen consequences.  It was long before the ROW type 
generator was introduced that one was able to write, e.g., WHERE 
(x,y,z) IS NULL as shorthand for WHERE x IS NULL AND y IS NULL AND 
z IS NULL.  What's more, the expression (x,y,z) was deemed to 
denote a row!  And that's what lies behind the absurdity in 
question."   
 

An extract from the text that's worth highlighting:   
 

(Begin quote)  
 
[You] might like to meditate on the following slightly edited 
extract from reference [4.20]:  "Let k2 be a new value for K that 
some user is attempting to introduce via an INSERT or UPDATE 
operation ... That INSERT or UPDATE will be rejected if k2 is the 
same as some value for K, k1 say, that already exists in the table 
... What then does it mean for the two values k1 and k2 to be the 
same?  It turns out that no two of the following three statements 
are equivalent:   
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1. k1 and k2 are the same for the purposes of comparison  
 
2.  k1 and k2 are the same for the purposes of candidate key 

uniqueness  
 
3.  k1 and k2 are the same for the purposes of duplicate 

elimination  
 

Number 1 is defined in accordance with the rules of 3VL; Number 2 
is defined in accordance with the rules for the UNIQUE condition; 
and Number 3 is defined in accordance with the definition of 
duplicates in Section 19.2.  Suppose, for example, that k1 and k2 
are both null; then Number 1 gives unk, Number 2 gives false, and 
Number 3 gives true.   
 
(End quote)  
 
Of course, the three statements are all equivalent in the absence 
of nulls.  Draw your own conclusions.   
 
 
Answers to Exercises 
 
19.1 a. unk.  b. true.  c. true.  d. unk (note the 
counterintuitive nature of this one).  e. false.  f. false (note 
that IS_UNK never returns unk).  g. false.  h. true.   
 
19.2 a. unk.  b. unk.  c. true.  d. false.  e. unk.  f. true.  g. 
false.   
 
19.3 Because of the following identity:   
 

IS_UNK ( x )  ≡  MAYBE ( x = x ) 
 

19.4 Because (e.g.) "MAYBE_RESTRICT r WHERE p" is the same as "r 
WHERE MAYBE(p)."   
 
19.5 The four monadic operators can be defined as follows (A is 
the single operand):   
 

A  
NOT(A)  
A OR NOT(A) 
A AND NOT(A) 
 

The 16 dyadic operators can be defined as follows (A and B are the 
two operands):   
 

A OR NOT(A) OR B OR NOT(B)  
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A AND NOT(A) AND B AND NOT(B)  
A  
NOT(A) 
B  
NOT(B) 
A OR B 
A AND B 
A OR NOT(B) 
A AND NOT(B) 
NOT(A) OR B 
NOT(A) AND B 
NOT(A) OR NOT(B) 
NOT(A) AND NOT(B) 
(NOT(A) OR B) AND (NOT(B) OR A) 
(NOT(A) AND B) OR (NOT(B) AND A) 
 
Incidentally, to see that we do not need both AND and OR, 

observe that, e.g.,  
 
A OR B  ≡  NOT ( NOT ( A ) AND NOT ( B ) ) 
 

19.6 See the annotation to reference [19.11].   
 
19.7 Thanks to Exercise 19.5, it's sufficient to show that NOT and 
AND can both be expressed in terms of NOR:   
 

NOT(A)   ≡  A|A  
A AND B  ≡  (A|A)|(B|B)  
 

Informally, NOT(A) is "neither A nor A"; A AND B is "neither 
NOT(A) nor NOT(B)."  More formally, here are the truth tables.  
First, NOT:   
 

A │ A|A │ NOT(A) 
───┼─────┼──────── 
t │  f  │   f 
t │  t  │   f 
f │  t  │   t  
f │  f  │   t  
 
A │ B │ A|A │ B|B │ (A|A)|(B|B) │ A AND B  
───┼───┼─────┼─────┼─────────────┼───────── 
t │ t │  f  │  f  │      t      │    t 
t │ f │  f  │  t  │      f      │    f 
f │ t │  t  │  f  │      f      │    f 
f │ f │  t  │  t  │      f      │    f 
 

As the exercise says, NOR is thus a "generating" operator for the 
whole of 2VL.  Can you find an operator that performs an analogous 
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function for 3VL?  4VL?  nVL?  No answers provided (reference 
[19.20] might help).   
 
19.8 c.  For further discussion, see reference [19.5].  Subsidiary 
exercise:  Give a relational calculus formulation for 
interpretation b.  Answer:   
 

S WHERE MAYBE EXISTS SP ( SP.S# = S.S# AND  
SP.P# = P# ( 'P2' ) ) 
 

19.9 We briefly describe the representation used in DB2.  In DB2, 
a column that can accept nulls is physically represented in the 
stored database by two columns, the data column itself and a 
hidden indicator column, one byte wide, that is stored as a prefix 
to the actual data column.  An indicator column value of binary 
ones indicates that the corresponding data column value is to be 
ignored (i.e., taken as null); an indicator column value of binary 
zeros indicates that the corresponding data column value is to be 
taken as genuine.  But the indicator column is always (of course) 
hidden from the user.   
 
19.10 Brief definitions:   
 
•   EXISTS (<table exp>) returns FALSE if the table denoted by 

the <table exp> is empty and TRUE otherwise.   
 
•   UNIQUE (<table exp>) returns TRUE if the table denoted by the 

<table exp> contains no two distinct rows, r1 and r2 say, such 
that the comparison r1 = r2 gives TRUE, and FALSE otherwise.   

 
•   Left IS DISTINCT FROM Right (where Left and Right are 

expressions denoting rows of the same degree, n say, and the 
ith components of Left and Right are comparable) returns FALSE 
if and only if, for all i, either (a) "Li = Ri" gives TRUE, or 
(b) Li and Ri are both null; otherwise it returns TRUE.   

 
The operators are not primitive.  Loosely:   
 

•   EXISTS(T) gives TRUE if SELECT COUNT(*) FROM T gives a 
nonzero result and FALSE otherwise.   

 
•   UNIQUE(T) gives TRUE if SELECT COUNT(*) FROM T = SELECT 

COUNT(*) FROM (SELECT DISTINCT * FROM T)) gives TRUE and FALSE 
otherwise.   

 
•   IS DISTINCT FROM is clearly shorthand (it is effectively 

defined as such).   
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For some reason there's no IS NOT DISTINCT FROM operator (another 
example of "it would be inconsistent to fix the inconsistencies of 
SQL"?).   
 

Consider this query:   
 
SELECT SPJX.S# FROM SPJ AS SPJX 
WHERE  SPJX.P# = P# ( 'P1' ) 
AND    NOT EXISTS ( SELECT * FROM SPJ AS SPJY 

WHERE  SPJY.S# = SPJX.S# 
AND    SPJY.P# = SPJX.P#  
AND    SPJY.QTY = 1000 ) ; 
 

("Get supplier numbers for suppliers who supply part P1 to at 
least one project, but only if they do not supply part P1 to any 
of those projects in a quantity of 1000").  Suppose relvar SPJ 
contains just one tuple, with supplier number S1, part number P1, 
project number J1, and QTY null.  Then the query returns supplier 
S1, whereas in fact we don't know whether supplier S1 qualifies.  
The result is thus incorrect.   
 

Consider this query:   
 
SELECT UNIQUE ( SPJ.QTY ) 
FROM   SPJ  
WHERE  SPJ.S# = S# ( 'S1' ) 
AND    SPJ.P# = P# ( 'P1' ) ; 
 

("Is it true that there are no two projects to which supplier S1 
supplies part P1 in the same quantity?").  Suppose relvar SPJ 
contains just two tuples, (S1,P1,J1,null) and (S1,P1,J2,null).  
Then the query returns TRUE, whereas in fact we don't know whether 
it should return TRUE or FALSE.  The result is thus incorrect.   
 
 
 
 
          *** End of Chapter 19 *** 
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          Chapter 20 
 
 
          T y p e   I n h e r i t a n c e 
 
 
Principal Sections 
 
•  Type hierarchies 
•  Polymorphism and substitutability 
•  Variables and assignments 
•  S by C  
•  Comparisons 
•  Operators, versions, and signatures 
•  Is a circle an ellipse? 
•  S by C revisited 
•  SQL facilities  
 
 

General Remarks 
 
Note the opening remarks:   
 

This chapter relies heavily on material first discussed in 
Chapter 5.  If you originally gave that chapter a "once over 
lightly" reading, therefore, you might want to go back and 
revisit it now before studying the present chapter in any 
depth.   
 

To be more specific, a clear understanding of the following is 
prerequisite:   
 
•  What a type is (reviewed in Section 20.1).   
 
•   The crucial distinction between values and variables (see 

Section 5.2).  Note:  Object-based discussions typically fall 
foul of this distinction, since they're often unclear as to 
whether an "object" is a value, or a variable, or both, or 
neither.  This failure seems to be at the root of the famous 
(infamous?) debate as to whether, e.g., a circle is an 
ellipse.  See Section 20.8.   

 
•   The crucial distinction between read-only and update 

operators (again, see Section 5.2).  Note:  The point is that 
read-only operators apply to values (possibly values that are 
the current values of variables), while update operators apply 
to variables.   
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•  Every type has all of the following (among other things):   
 

■  An associated type constraint, which defines the set of 
legal values of the type in question  

 
■  At least one declared possible representation, together 

with a corresponding selector operator and a corresponding 
set of THE_ operators (or logical equivalents of same)  

 
■  "=" and ":=" operators  
 
■  Certain type testing operators, to be discussed in Section 

20.6 (these operators might be unnecessary in the absence 
of inheritance support); also TREAT DOWN, to be discussed 
in Section 20.4  

 
All of these bullet items except the last are also explained 
in Chapter 5.   
 
The following preliminaries from Section 20.1 are also 

important:   
 

•  Values are typed (i.e., have actual "most specific" types).   
 
•  Variables are typed (i.e., have declared types).   
 
•  We consider single inheritance only in this chapter, for 

simplicity, though our model in fact supports multiple 
inheritance too.   

 
•   We consider scalar inheritance only in this chapter, for 

simplicity, though our model in fact supports tuple and 
relation inheritance too.  Throughout the chapter, value, 
variable, and so on, thus mean scalar value, scalar variable, 
and so on.   

 
•   We're not talking about "subtables and supertables"!──we'll 

do that in Chapter 26.   
 

The chapter overall is somewhat forward-looking (most database 
products don't provide any inheritance support, yet).  In fact, at 
the time of writing, this book appears to be the only database 
textbook to include a serious discussion of type inheritance at 
all.  (Of course, it's true that the topics are somewhat 
orthogonal──data doesn't have to be in a database for the concept 
of inheritance to apply to it──but we might say the same about the 
relational model, in a way.)  Also, what discussions there are in 
other books (i.e., nondatabase books──typically books on object 
orientation) seem to confuse some very fundamental issues.  In 
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this connection, note the remarks in the annotation to reference 
[20.2]!  Note too the discussion in Chapter 26, Section 26.3, 
subsection "Pointers and a Good Model of Inheritance Are 
Incompatible," which claims, implicitly, that it's really objects 
and a good model of inheritance that are incompatible (since, as 
we'll see in Chapter 25, pointers in the shape of object IDs are a 
sine qua non of object orientation*).  An odd state of affairs, in 
a way, since most of the work on inheritance seems to have been 
done in an object context specifically.   

 
 

────────── 
 
*  I note in passing that this remark applies to SQL in 
particular, again as we'll see in Chapter 26.  But it doesn't 
apply just to languages in which the pointers are explicit, as 
they are in SQL──it also applies to languages like Java where 
they're supposed to be completely implicit.   
 
────────── 
 
 

Be that as it may, the chapter──which can be skipped or 
skimmed if desired──presents a new model for inheritance, based on 
the proposals of reference [3.3].  It's concerned primarily with 
inheritance as a semantic modeling tool rather than as a software 
engineering tool, though we (i.e., Hugh Darwen and myself) believe 
the model described can meet the usual software engineering 
objectives──in particular, the code reuse objective──as well.  
Note:  We justify the emphasis on the first of these two 
objectives by appealing to the fact that semantic modeling is more 
directly pertinent to the database world than software engineering 
is.   

 
Our model regards operators and constraints (i.e., type 

constraints) as inheritable and structure as not inheritable.  
This position is uncontroversial with respect to operators but 
possibly controversial with respect to constraints and structure.*  
We insist on inheriting constraints because if (e.g.) a given 
circle violates the constraint for type ELLIPSE, then that circle 
isn't an ellipse!  We insist on not inheriting structure because 
in our model there isn't any structure to inherit (structure is 
part of the implementation, not part of the model).   

 
 

────────── 
 
*  Note in particular that SQL doesn't support type constraints at 
all, and therefore certainly doesn't support type constraint 
inheritance.  On the other hand, it does support a form of 
structural inheritance.  See Section 20.10 for further discussion.   
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────────── 
 
 

Some further points to note:   
 

•  This chapter is deliberately included in this part of the book 
instead of Part VI in order to stress the point that the topic 
of inheritance, though much discussed in connection with 
object orientation, doesn't necessarily have anything to do 
with OO, and is in fact best discussed outside the OO context.   

 
•   Indeed, OO confuses the picture considerably, because (as 

already noted) the distinction between values and variables is 
absolutely crucial in this context, and that's a distinction 
that some people, at least, in the object world seem unwilling 
to make.  Perhaps this fact explains why previous attempts at 
inheritance models haven't been very successful?   

 
•   What's more (I've already mentioned this point, but it's 

worth repeating and emphasizing), it's our contention that if 
"OO" is understood to include the notion of OIDs (see Chapter 
25), then in fact it's incompatible with the notion of a 
reasonable inheritance model (i.e., one that's "faithful to 
reality").  In other words, OIDs and a good inheritance model 
can't possibly coexist, in our opinion.  See the notes on 
Section 20.8.   

 
•   To quote Section 20.1:  "The subject of type inheritance 

really has to do with data in general──it isn't limited to 
just database data in particular.  For simplicity, therefore, 
most examples in the chapter are expressed in terms of local 
data (ordinary program variables, etc.) rather than database 
data."   

 
 

20.2 Type Hierarchies 
 
Type hierarchies are pictures──they're not really part of our 
inheritance model as such (much as "tables" are pictures, not part 
of the relational model as such).  In other words, type 
hierarchies are just a convenient way of depicting certain 
relationships among types (supertype-subtype relationships, to be 
precise).   
 

In case anyone asks:  Type (e.g.) CIRCLE is not really "just 
circles," it's "circles at a certain position in the plane."  This 
point notwithstanding, the book deliberately uses a rather 
academic example in order that the semantics can be crystal clear 
to everyone (?).   
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The subsection entitled "Terminology" is important, though 

fortunately straightforward.  Ditto "The Disjointness Assumption," 
and its corollary that every value has exactly one most specific 
type.   

 
A slightly unfortunate fact:  Although we're primarily 

concerned with an inheritance model, there are certain 
implementation issues that you do need to understand in order to 
understand the overall concept of inheritance properly.  One 
example:  The fact that B is a subtype of A doesn't necessarily 
mean that the actual (hidden) representation of B values is the 
same as that of A values.  Implication:  Distinct implementations 
("versions") of operators might be necessary under the covers.  
This point will become significant in the next section, among 
others.   

 
The section includes this text:  "So long as (a) there's at 

least one type and (b) there are no cycles──i.e., there's no 
sequence of types T1, T2, T3, ..., Tn such that T1 is an immediate 
subtype of T2, T2 is an immediate subtype of T3, ..., and Tn is an 
immediate subtype of T1──then at least one type must be a root 
type.  Note:  In fact, there can't be any cycles (why not?)."  
Answer:  Suppose types A and B were each a subtype of the other (a 
cycle of length two).  Then the set of values constituting A would 
be a subset of the set of values constituting B and vice versa; 
hence, both types would consist of exactly the same set of values.  
Likewise, the set of operators that applied to values of type A 
would be a subset of the set of operators that applied to values 
of type B and vice versa (and, of course, the set of constraints 
that applied to values of type A would be a subset of the set of 
constraints that applied to values of type B and vice versa).  In 
other words, A and B would effectively be identical, except for 
their names, so they might as well be collapsed into a single type 
(in fact, we would have a violation of the model on our hands if 
they weren't).  And, of course, an analogous argument applies to 
cycles of any length.   

 
 

20.3 Polymorphism and Substitutability 
 
Really the same thing.  Note the need to be careful over the 
distinction between arguments and parameters (logical 
difference!).  Distinguish between overloading and inclusion 
polymorphism; in this chapter, "polymorphism" means the latter 
unless otherwise stated.  Caveat:  Unfortunately, many writers use 
the term "overloading" to mean, specifically, inclusion 
polymorphism ... No wonder this subject is so confusing.   
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Run-time binding:  CASE statements and expressions move under 
the covers.  "Old code can invoke new code."  Note:  As a matter 
of fact, an implementation that did all binding at compile time 
(on the basis, obviously, of declared types, not most specific 
types) would almost conform to our model, because we require the 
semantics of operators not to change as we travel down paths in 
the type hierarchy (see Section 20.7).  The reason I say "almost" 
here, however, is that compile-time binding clearly won't work──in 
fact, it's impossible──for dummy types.  Dummy types aren't 
discussed in detail in the book, however; see reference [3.3] for 
further details.   

 
Substitutability──more precisely, value substitutability──is 

the justification for inheritance!   
 
 

20.4 Variables and Assignments 
 
Important message:  Values retain their most specific type on 
assignment to variables of less specific declared type (type 
conversion does not occur on such assignment).  Hence, a variable 
of declared type T can have a value whose most specific type is 
any subtype of T.  So we also need to be careful over the 
difference between the declared type of a given variable and the 
actual (most specific) type of the current value of that variable 
(another important logical difference).  Formal model of a 
variable, and more generally of an expression: DT, MST, v 
components.   
 

If operator Op is defined to have a result of declared type T, 
then the actual result of an invocation of Op can be of any 
subtype of type T.  Note:  We deliberately do not drag in the (in 
our experience, rather confusing and unhelpful) terms and concepts 
result covariance and argument contravariance.  "Result 
contravariance" is just an obvious consequence of substitutability 
(what's more, the term doesn't seem to capture the essence of the 
phenomenon properly).  And we don't believe in "argument 
contravariance" at all, for reasons articulated in reference 
[3.3].   

 
TREAT DOWN (important); possibility of run-time type errors 

(in this context and nowhere else).   
 
 

20.5 S by C  
 
Basic idea:  If variable E of declared type ELLIPSE is updated in 
such a way that now THE_A(E) = THE_B(E), then MST(E) is now 
CIRCLE.  After all, human beings know that an ellipse with equal 
semiaxes is really a circle, so the system ought to know the same 
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thing──otherwise the model can hardly be said to be "faithful to 
reality" or "a good model of reality."   
 

Caveat:  Most inheritance models do not support S by C; in 
fact, some writers are on record as arguing that an inheritance 
model should explicitly not support it (see, e.g., reference 
[20.12]).  By contrast, we believe an inheritance model is useful 
as "a model of reality" only if it does support S by C (and we 
believe we know how to implement it efficiently, too).   

 
Be warned that the term "S by C" (or something very close to 

it, anyway) is used elsewhere in the literature with a very 
different meaning; see, e.g., reference [20.14], where it's used 
to refer to what would better be called just type constraint 
enforcement.  Here's the definition from that reference:   

 
(Begin quote) 
 
"Specialization via constraints happens whenever the following is 
permitted:   
 

B subtype_of A and T subtype_of S and 
 f(...b:T,...) returns r:R in Ops(B) and  
 f(...b:S,...) returns r:R in Ops(A)  
 

That is, specialization via constraints occurs whenever the 
operation redefinition on a subtype constrains one of the 
arguments to be from a smaller value set than the corresponding 
operation on the supertype."   
 
(End quote) 
 
This definition lacks somewhat in clarity, it might be felt.   
 

Anyway, S by C (in our sense) implies, very specifically, that 
a selector invocation might have to return a value of more 
specific type than the specified "target" type.  In other words, 
the implementation code for S by C is embedded in selector code.  
(That implementation code can probably be provided automatically, 
too.)   

 
Explain G by C as well.   
 
 

20.6 Comparisons 
 
Self-explanatory──though the implications for join etc. sometimes 
come as a bit of a surprise.   
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Explain IS_T and the new relational operator R:IS_T(A).  Note:  
Generalized versions of these operators are defined in reference 
[3.3].   

 
 

20.7 Operators, Versions, and Signatures 
 
Much confusion in the literature over different kinds of 
signatures!  Need to distinguish specification signature (just one 
of these) vs. version signatures (many) vs. invocation signatures 
(also many).  More logical differences here, in fact ...  
 

Changing operator semantics as we travel down the type 
hierarchy is, regrettably, possible but (we believe) nonsense.  
Arguments in favor are (we believe) based on a confusion between 
inclusion and overloading polymorphism and smack of "the 
implementation tail wagging the model dog" [3.3].  Changing 
semantics is illegal in our model.   

 
Discuss union types briefly (or at least mention them).  Note:  

Some proposals──e.g., ODMG [25.11]──use union types as a way of 
providing type generator functionality.  E.g., RELATION might be a 
union type in such a system (with generic operators JOIN, UNION, 
and so forth), and every specific relation type would then be a 
proper subtype of that union type.  We don't care for this 
approach ourselves, because we certainly don't want our support 
for type generators to rely on support for type inheritance.  
What's more, the approach seems to imply that specific──i.e., 
explicitly specialized──implementation code must be provided for 
each specific join, each specific union, etc., etc.: surely not a 
very desirable state of affairs?  How can it be justified?   

 
The section shows an explicit implementation of the MOVE 

operator (read-only version) that moves circles instead of 
ellipses, and then remarks that "there's little point in defining 
such an explicit [implementation] in this particular example (why, 
exactly?)."  Answer:  Because S by C will take care of the 
problem!   

 
 

20.8 Is a Circle an Ellipse? 
 
IMPORTANT!──albeit self-explanatory, more or less.*  But you 
should be aware that this is another, and major, area where we 
depart from "classical" inheritance models.  To be specific, it's 
here that the value vs. variable and read-only vs. update operator 
distinctions come into play.  Other approaches don't make these 
distinctions; they thus allow operators (update as well as read-
only operators) to be inherited indiscriminately──with the result 
that they have to support "noncircular circles" and similar 
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nonsenses, and they can't support type constraints at all!  (SQL 
is very unfortunately a case in point here.  See Section 20.10.)   
 
 
────────── 
 
*  I don't much care for "advertisements for myself," but I do 
think you should take a look at reference [20.6] if you propose to 
teach the material of this section.   
 
────────── 
 
 

The section includes the following text:  "[Let] type ELLIPSE 
have another immediate subtype NONCIRCLE; let the constraint a > b 
apply to noncircles; and consider an assignment to THE_A for a 
noncircle that, if accepted, would set a equal to b.  What would 
be an appropriate semantic redefinition for that assignment?  
Exactly what side effect would be appropriate?"  No answer 
provided!──the questions are rhetorical, as should be obvious.   

 
 

20.9 S by C Revisited 
 
This section begins by criticizing the common example of colored 
circles as a subtype of circles.  Note that there can't be more 
instances (meaning more values) of a subtype than of any supertype 
of that subtype, yet there are clearly more colored circles than 
there are circles.  And colored circles can't be obtained from 
circles via S by C, either.  Note the remark to the effect that 
"COLORED_CIRCLE is a subtype of CIRCLE to exactly the same extent 
that it is a subtype of COLOR (which is to say, not at all)."  In 
my experience, most students find this point telling.   
 

Discussion of this example leads to the position that S by C 
is the only conceptually valid means of defining subtypes──the 
exact opposite of the position articulated in reference [20.12] 
and subscribed to by much of the object world.   

 
 

20.10 SQL Facilities  
 
Extremely unorthogonal!──basically single inheritance only, for 
"structured types" only.*  (Multiple inheritance might be added in 
SQL:2003.)   
 
 
────────── 
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*  As the book says:  SQL has no explicit inheritance support for 
generated types, no explicit support for multiple inheritance, and 
no inheritance support at all for built-in types or DISTINCT 
types.  But it does have some very limited implicit support for 
inheritance of generated types and for multiple inheritance.   
 
────────── 
 
 

Explain the SQL analog of circles and ellipses.  Inheritance 
not of constraints and (read-only) operators but structure and 
(all) operators; explain implications!  Functions, procedures, and 
methods.  Observers, mutators, and constructors.  No type 
constraints; this omission is staggering but a necessary 
consequence of SQL's inheritance model (?).  Do not get into 
details of reference types or subtables and supertables here 
(we'll cover them in Chapter 26, after we've discussed OO in 
Chapter 25).   

 
Explain delegation──it's pragmatically important, but it's not 

inheritance (in our opinion).   
 
 

References and Bibliography 
 
We repeat the opening paragraph from this section:   
 
(Begin quote)  
 
For interest, we state here without further elaboration the sole 
major changes required to [our single] inheritance model ... in 
order to support multiple inheritance.  First, we relax the 
disjointness assumption by requiring only that root types must be 
disjoint.  Second, we replace the definition of "most specific 
type" by the following requirement:  Every set of types T1, T2, 
..., Tn (n ≥ 0) must have a common subtype T' such that a given 
value is of each of the types T1, T2, ..., Tn if and only if it is 
of type T'.  See reference [3.3] for a detailed discussion of 
these points, also of the extensions required to support tuple and 
relation inheritance.   
 
(End quote)  
 
Reference [20.1] describes a commercial implementation of the 
inheritance model as described in the body of the chapter.  
Reference [20.10] is a good example of what happens if the value 
vs. variable and read-only vs. update operator distinctions are 
ignored; unfortunately, it very much reflects what SQL does (see 
Section 20.10).  Reference [20.12] is interesting as an example of 
how the object world thinks about inheritance, though we caution 
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you that (as indicated earlier) we reject almost all of its stated 
positions.   
 
 
Answers to Exercises 
 
20.1 Some of the following definitions elaborate slightly on those 
given in the body of the chapter.   
 
•  Code reuse means a given program might be usable on data that 

is of a type that didn't even exist when the program was 
written.   

 
•   Delegation means the responsibility for implementing certain 

operators associated with a given type is "delegated" to the 
type of some component of that type's representation.  It's 
related to operator overloading.   

 
•   Let T' be a proper subtype of T, let V be a variable of 

declared type some supertype of T, and let MST(V) be T'.  The 
term generalization by constraint refers to the fact that, 
after assignment to V, MST(V) will be generalized (revised 
upward) to T if v(V) satisfies the type constraint for T but 
not for any proper subtype of T.   

 
•   Type T' is an immediate subtype of type T if it's a subtype 

of T and there's no type T'' that's both a proper supertype of 
T' and a proper subtype of T.   

 
•   Inheritance:  If type T' is a subtype of type T, then all 

constraints and read-only operators that apply to values of 
type T are inherited by values of type T' (because values of 
type T' are values of type T).  Update operators that apply to 
variables of declared type T might or might not be inherited 
by variables of declared type T'.   

 
•  A leaf type is a type with no proper subtype.   
 
•   The term polymorphism refers to the possibility that a given 

operator can take arguments of different types on different 
invocations.  Several different kinds of polymorphism exist: 
inclusion polymorphism (the principal kind of interest for the 
present chapter); overloading polymorphism (where distinct 
operators happen to have the same name); generic polymorphism 
(e.g., the relational project operator is generic in the sense 
that it applies generically to relations of all possible 
relation types); and so on.   
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•   Type T' is a proper subtype of type T if it's a subtype of T 
and T' and T are distinct.   

 
•  A root type is a type with no proper supertype.   
 
•  Run-time binding is the process of determining at run time 

which particular implementation version of a polymorphic 
operator to execute in response to a particular invocation.   

 
•   The term signature means, loosely, the combination of the 

name of some operator and the types of the operands to the 
operator in question (note, however, that different writers 
and different languages ascribe slightly different meanings to 
the term; e.g., the result type is sometimes regarded as part 
of the signature, and so too are operand and result names).  
It is important to distinguish specification signature vs. 
version signatures vs. invocation signatures (see Section 
20.7).   

 
•   Let T' be a proper subtype of T, let V be a variable of 

declared type some supertype of T, and let MST(V) be T.  The 
term specialization by constraint refers to the fact that, 
after assignment to V, MST(V) will be specialized (revised 
downward) to T' if v(V) satisfies the type constraint for T' 
but not for any proper subtype of T'.   

 
•   The term substitutability (of values) refers to the fact that 

wherever the system expects a value of type T, we can always 
substitute a value of type T' instead, where T' is a subtype 
of T.  The term "substitutability of variables" refers to the 
fact that wherever the system expects a variable of declared 
type T, we might be able to substitute a variable of declared 
type T' instead, where (again) T' is a subtype of T.   

 
•   A union type (also known as an "abstract" or 

"noninstantiable" type, or sometimes just as an "interface") 
is a type that isn't the most specific type of any value at 
all.  Such a type provides a way of specifying operators that 
apply to several different regular types, all of them proper 
subtypes of the union type in question.   

 
20.2 Consider the expression TREAT_DOWN_AS_T(X), where X is an 
expression.  MST(X) must be a subtype of T (this is a run-time 
check).  If this condition is satisfied, the result Y has DT(Y) 
equal to T, MST(Y) equal to MST(X), and v(Y) equal to v(X).   
 
20.3 No answer provided.   
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20.4 The least specific type of any value of any of the types 
shown in Fig. 20.1 is PLANE_FIGURE, of course.   
 
20.5 22 (this count includes the empty hierarchy).   
 
20.6 Since all rectangles are centered on the origin, a rectangle 
ABCD can be uniquely identified by any two adjacent vertices, say 
A and B.  To pin matters down more precisely (and using Cartesian 
coordinates), let A be the point (xa,ya) and B the point (xb,yb); 
then C is (-xa,-ya) and D is (-xb,-yb).  Since A, B, C, and 
clearly lie on a circle with center the origin, we clearly must 
have xa² + ya² = xb² + yb².  Thus, we can define type RECTANGLE as 
follows:   
 

TYPE RECTANGLE IS PLANE_FIGURE 
POSSREP { A POINT, B POINT  
CONSTRAINT THE_X ( A ) ** 2 + THE_Y ( A ) ** 2 = 

THE_X ( B ) ** 2 + THE_Y ( B ) ** 2 } ;  
 

Such a rectangle is a square if and only if the vertex B = 
(xb,yb) = (ya,-xa).  Thus, we can define type SQUARE as follows:   

 
TYPE SQUARE IS RECTANGLE  

CONSTRAINT THE_X ( THE_B ( RECTANGLE ) ) =  
THE_Y ( THE_A ( RECTANGLE ) ) AND  
THE_Y ( THE_B ( RECTANGLE ) ) = 

- THE_X ( THE_A ( RECTANGLE )  
POSSREP { A = THE_A ( RECTANGLE ) } ;  
 

Note:  For a detailed explanation of the syntax of the POSSREP and 
CONSTRAINT specifications (which as you can see is different in 
the two cases shown here), see reference [3.3].   
 

For interest, we give another solution involving a polar 
possrep instead:   

 
TYPE RECTANGLE IS PLANE_FIGURE  

POSSREP { A POINT, B POINT  
CONSTRAINT THE_R ( A ) = THE_R ( B ) } ;  
 

TYPE SQUARE IS RECTANGLE  
CONSTRAINT ABS ( THE_θ ( THE_A ( RECTANGLE ) ) -  

THE_θ ( THE_B ( RECTANGLE ) ) ) = Π / 2  
POSSREP { A = THE_A ( RECTANGLE ) } ;  
 

20.7 The operators defined below are update operators 
specifically.   
 

OPERATOR ROTATE ( T RECTANGLE ) UPDATES T  
VERSION ROTATE_RECTANGLE ; 
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THE_X ( THE_A ( T ) )  :=  - THE_X ( THE_B ( T ) ) , 
THE_Y ( THE_A ( T ) )  :=    THE_Y ( THE_B ( T ) ) , 
THE_X ( THE_B ( T ) )  :=  - THE_X ( THE_A ( T ) ) , 
THE_Y ( THE_B ( T ) )  :=    THE_Y ( THE_A ( T ) ) ; 

END OPERATOR ; 
 
OPERATOR ROTATE ( S SQUARE ) UPDATES S  

VERSION ROTATE_SQUARE ; 
END OPERATOR ; 
 

Note that the ROTATE_SQUARE version is (reasonably enough) 
essentially just a "no-op."   
 

Polar analogs:   
 

OPERATOR ROTATE ( T RECTANGLE ) UPDATES T  
VERSION ROTATE_RECTANGLE ; 
THE_θ ( THE_A ( T ) )  :=  THE_θ ( THE_A ( T ) ) + Π / 2 ,  
THE_θ ( THE_B ( T ) )  :=  THE_θ ( THE_B ( T ) ) + Π / 2 ;  

END OPERATOR ; 
 
OPERATOR ROTATE ( S SQUARE ) UPDATES S  

VERSION ROTATE_SQUARE ; 
END OPERATOR ; 
 
As a subsidiary exercise, define some read-only analogs of 

those operators.  Answer:   
 
OPERATOR ROTATE ( T RECTANGLE ) RETURNS RECTANGLE  

VERSION ROTATE_RECTANGLE ; 
RETURN RECTANGLE ( POINT ( - THE_X ( THE_B ( T ) ), 

THE_Y ( THE_B ( T ) ) ), 
POINT ( - THE_X ( THE_A ( T ) ), 

THE_Y ( THE_A ( T ) ) ) ) ; 
END OPERATOR ; 
 
OPERATOR ROTATE ( S SQUARE ) RETURNS SQUARE  

VERSION ROTATE_SQUARE ; 
RETURN S ; 

END OPERATOR ; 
 
Polar analogs:   
 
OPERATOR ROTATE ( T RECTANGLE ) RETURNS RECTANGLE  

VERSION ROTATE_RECTANGLE ; 
RETURN  

RECTANGLE ( POINT ( THE_R ( THE_A ( T ) ), 
THE_θ ( THE_A ( T ) ) + Π / 2 ), 

POINT ( THE_R ( THE_B ( T ) ), 
THE_θ ( THE_B ( T ) ) + Π / 2 ) ) ; 
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END OPERATOR ; 
 
OPERATOR ROTATE ( S SQUARE ) RETURNS SQUARE  

VERSION ROTATE_SQUARE ; 
RETURN S ; 

END OPERATOR ; 
 

20.8  
 
a. The specified expression will fail on a compile-time type 

error, because THE_R requires an argument of type CIRCLE and 
the declared type of A is ELLIPSE, not CIRCLE.  (Of course, if 
the compile-time type check were not done, we would get a run-
time type error instead as soon as we encountered a tuple in 
which the A value was just an ellipse and not a circle.)   

 
b.  The specified expression is valid, but it yields a relation 

with the same heading as R, not one in which the declared type 
of attribute A is CIRCLE instead of ELLIPSE.   

 
20.9 The expression is shorthand for an expression of the form  
 

( ( EXTEND ( R ) ADD ( TREAT_DOWN_AS_T ( A ) ) AS A' )  
{ ALL BUT A } ) RENAME A' AS A 
 

(where A' is an arbitrary name not already appearing as an 
attribute name in the result of evaluating R).   
 
20.10 The expression is shorthand for an expression of the form  
 

( R WHERE IS_T ( A ) ) TREAT_DOWN_AS_T ( A ) 
 

Moreover, this latter expression is itself shorthand for a longer 
one, as we saw in the answer to Exercise 20.9.   
 
20.11 No answer provided.   
 
20.12 No answer provided.   
 
 
 
 
          *** End of Chapter 20 *** 
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          Chapter 21 
 
 
          D i s t r i b u t e d   D a t a b a 
s e s 
 
 
Principal Sections 
 
•  Some preliminaries 
•  The twelve objectives 
•  Problems of distributed systems 
•  Client/server systems 
•  DBMS independence 
•  SQL facilities 
 
 

General Remarks 
 
Distributed databases can arise in two distinct ways:   
 
1.  The database was always intended to be unified from a logical 

point of view, and was designed that way, but is physically 
distributed for performance or similar reasons.   

 
2.  The database is an after-the-fact unification of a set of 

previously existing databases at a set of distinct sites.   
 

Both cases are important.  More recently, however, the emphasis 
(for a variety of obvious pragmatic reasons) has been on Case 2 
rather than Case 1.  Case 2 is often referred to as "federated" or 
(this term is less widespread) "multi-database" systems; the term 
"middleware" is relevant here, too.  Possibly mention the Web.  
Data integration is a hot topic!──see, e.g., reference [21.9].   
 

It should be clear that federated systems are likely to run 
into nasty problems of semantic mismatch and the like (see Section 
21.6), though the problems of Case 1 are hardly trivial either.   

 
Distributed systems as parallel processing systems?   
 
Client/server systems as a simple special case of distributed 

systems in general.   
 
This is mostly implementation stuff, not model stuff!  The 

chapter can be skipped or skimmed if desired.   
 
 

21.2 Some Preliminaries 
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The strict homogeneity assumption effectively means we're dealing 
with Case 1, until further notice.  The assumption is adopted 
primarily for pedagogic reasons (it simplifies the presentation); 
we consider what happens when it's relaxed in Section 21.6.   
 

The fundamental principle of distributed database (which 
ideally ought to apply to both Case 1 and Case 2):   

 
To the user, a distributed system should look exactly like a 
nondistributed system.   
 
The twelve objectives (useful as an organizing principle for 

discussion but not necessarily hard and fast requirements, and not 
necessarily all equally important):   

 
1. Local autonomy   
2. No reliance on a central site  
3. Continuous operation  
4. Location independence  
5. Fragmentation independence  
6. Replication independence  
7. Distributed query processing  
8. Distributed transaction management  
9. Hardware independence  

10. Operating system independence  
11. Network independence  
12. DBMS independence  
 
 
21.3 The Twelve Objectives 
 
Mostly self-explanatory.  A few notes on individual objectives are 
appropriate, however.   
 
Local autonomy:  Obviously desirable, but not 100 percent 
achievable.  The following list of cases where it isn't is taken 
from the annotation to reference [21.13]:   
 
•   Individual fragments of a fragmented relvar can't normally be 

accessed directly, not even from the site at which they're 
stored.   

 
•   Individual copies of a replicated relvar (or fragment) can't 

normally be accessed directly, not even from the site at which 
they're stored.  (Actually, certain of today's so-called 
"replication products" do allow such direct access, but 
they're using the term "replication" in a rather different 
sense.  See Section 21.4, subsection "Update Propagation."  
See also Chapter 22.)   
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•   Let P be the primary copy of some replicated relvar (or 

fragment) R, and let P be stored at site X.  Then every site 
that accesses R is dependent on site X, even if another copy 
of R is in fact stored at the site in question.   

 
•   (Important!)  A relvar that participates in a multi-site 

integrity constraint can't be accessed for update purposes 
within the local context of the site at which it's stored, but 
only within the context of the distributed database in which 
the constraint is defined.  Note the implications for 
defining, e.g., a foreign key constraint on existing data that 
spans sites! (probably can't do things like cascade 
delete)──especially in a "federated" system.   

 
•   A site that's acting as a participant in a two-phase commit 

process must abide by the decision (i.e., commit or rollback) 
of the corresponding coordinator site.   

 
No reliance on a central site:  One implication is that we want 
distributed solutions to various problems (e.g., lock management, 
deadlock detection).   
 
Continuous operation:  Define reliability and availability.  No 
planned shutdowns!  Note in particular the implication that 
Release N+1 of the DBMS at site A must be able to work with 
Release N at site B (upgrading the DBMS release level 
simultaneously at every site is infeasible).   
 
Location independence:  An extension of the familiar concept of 
(physical) data independence; in fact, every objective in the list 
that has "independence" in its name is an extension of physical 
data independence.   
 
Fragmentation independence:  Note the parallels with view 
processing.  The section includes the following text:  "[Relvar] 
EMP as perceived by the user might be regarded, loosely, as a 
[union] view of the underlying fragments N_EMP and L_EMP ... 
Exercise:  Consider what is involved on the part of the optimizer 
in dealing with the request EMP WHERE SALARY > 40K."  Answer:  
First, it transforms the user's original request into the 
following:   
 

( N_EMP UNION L_EMP ) WHERE SALARY > 40K  
 

This expression can then be transformed further into:   
 

( N_EMP WHERE SALARY > 40K ) 
UNION 

( L_EMP WHERE SALARY > 40K ) 
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The system can thus execute the two restrictions at the 
appropriate sites and then form the union of the results.   
 
Replication independence:  Replication with replication 
independence is a special case of controlled redundancy (see 
Chapter 1).  Mention update propagation but defer detailed 
discussion.   
 
Distributed query processing:  Self-explanatory.   
 
Distributed transaction management:  Note the term "agent"──it 
doesn't seem to be used much in the literature, but some term is 
clearly needed for the concept.   
 
Hardware, operating system, and network independence:  Self-
explanatory.   
 
DBMS independence:  Forward pointer to Section 21.6.   
 
 
21.4 Problems of Distributed Systems 
 
All of these "problems"──as already noted──ideally require 
distributed solutions.   
 
Query processing:  Stress the importance of optimizability (as 
opposed to optimization per se).  Distributed systems really must 
be relational if they're ever going to perform (unless, perhaps, 
"the seams show," meaning performance is back, partly, in the 
hands of the user).   
 
Catalog management:  Naming is crucial.  The R* scheme is elegant 
and worth describing, but you can substitute discussion of some 
alternative (commercial?) scheme if you prefer.  Question:  If 
TABLE is the catalog relvar that lists all named relvars, what 
does the query SELECT * FROM TABLE do (in any particular system 
you happen to be familiar with)?  What should it do?  These 
questions might be useful as the basis of a class discussion.   
 
Update propagation:  Describe the primary copy scheme, plus any 
more sophisticated scheme you might care to (but are such schemes 
actually implemented anywhere?).  Explain the difference between 
"true" replication as described here and the typical "replication" 
product as supported by today's commercial DBMS vendors, which is 
probably asynchronous and might not provide replication 
independence.  Refer backward to snapshots (Chapter 10) and 
forward to data warehouses (Chapter 22).   
 



Copyright (c) 2003 C. J. Date                            page 21.5 
 

Recovery control:  Explain two-phase commit very carefully──the 
basic version, plus any refinements you think are worth discussing 
(presumed commit and presumed abort, at least).  Consider the 
possibility of failures at various points in the overall process.  
It's impossible to make the process 100 percent resilient to any 
conceivable kind of failure.  (So what do real systems do?  
Answer:  They sometimes force a rollback when a commit would have 
been OK.)   
 
Concurrency control:  Discuss the primary copy scheme and the 
possibility of global deadlock.   
 
 
21.5 Client/Server Systems 
 
Be clear on the fact that the term "client/server" refers 
primarily to an architecture, or logical division of 
responsibilities; the client is the application and the server is 
the DBMS.  Usually but not necessarily at different sites (on 
different hardware platforms).  Mention the term "two-tier 
system."   
 

Set-level processing is important!  So too might be stored 
procedures and RPC (= remote procedure call).   

 
Mention RDA and DRDA, perhaps also the four DRDA levels of 

functionality [21.22] (remote request, remote unit of work, 
distributed unit of work, distributed request).   

 
 

21.6 DBMS Independence 
 
First, discuss gateways (aka, more specifically, point-to-point 
gateways, and more recently wrappers).  Serious technical 
problems, even in this limited case!──especially if the target 
system is nonrelational.  (The reason for mentioning this obvious 
fact is that's there a huge amount of hype out there regarding the 
capabilities of this kind of system, and that hype needs to be 
challenged.  As the chapter says, it's obviously possible to 
provide some useful functionality, but it's not possible to do a 
100 percent job.)   
 

Next, discuss data access middleware (the "federated database" 
stuff).  An increasingly important kind of product, but (again) 
there's no magic ... Certain seams are going to show, despite what 
the vendor might say.   

 
A useful way to think about a data access middleware product 

(though not the way such products are usually characterized in the 
literature) is as follows:  From the point of view of an 
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individual client, it looks like a regular DBMS.*  However, the 
data is stored, mostly, not at the middleware site, but rather at 
any number of other sites behind the scenes, under the control of 
a variety of other DBMSs (or even file managers).  In other words, 
the middleware product uses the combination of those other DBMSs 
and/or file managers as its own storage manager (and coordinates 
their operation, of course).   

 
 

────────── 
 
*  In the case of DataJoiner, at least, it is a DBMS (among other 
things).  Why would you buy DB2 when you can buy DataJoiner 
instead?  (The question is hypothetical, or rhetorical, but the 
point is that not all technical questions have technical answers!  
The answer to this particular question probably has more to do 
with IBM's marketing and pricing strategies than it does with 
technical issues.)   
 
────────── 
 
 
21.7 SQL Facilities 
 
Explain client/server capabilities──CONNECT, DISCONNECT, SET 
CONNECTION (not in too much detail).  By the way, note the syntax:  
CONNECT TO but not DISCONNECT FROM (this point isn't mentioned in 
the book).  You could elaborate on SQL/PSM's stored procedure 
support if you like, but it's complicated (see reference [4.20]).   
 
 
Answers to Exercises 
 
21.1 Location independence means users can behave (at least from a 
logical standpoint) as if the data were all stored at their own 
local site.  Fragmentation independence means users can behave (at 
least from a logical standpoint) as if the data weren't 
fragmented.  Replication independence means users can behave (at 
least from a logical standpoint) as if the data weren't 
replicated.   
 
21.2 Here are some of the reasons:   
 
•  Ease of data fragmentation  
 
•  Ease of data reconstruction  
 
•  Set-level operations  
 
•  Optimizability  
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21.3 See Section 21.2.   
 
21.4 See Section 21.4.   
 
21.5 See Section 21.4.   
 
21.6 No answer provided.   
 
21.7 No answer provided.   
 
21.8 No answer provided.   
 
 
 
 
          *** End of Chapter 21 *** 
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           Chapter 22  
 
 
          D e c i s i o n   S u p p o r t 
 
 
Principal Sections 
 
•  Aspects of decision support 
•  DB design for decision support 
•  Data preparation 
•  Data warehouses and data marts 
•  OLAP  
•  Data mining  
•  SQL facilities  
 
 

General Remarks 
 
David McGoveran was the original author of this chapter.   
 

The term decision support covers a multitude of sins!  (After 
all, classical query processing could certainly be regarded as 
decision support, of a kind; so too could traditional transaction 
processing, perhaps with a bit of a stretch.)  This chapter begins 
by giving some historical perspective, then concentrates on the 
currently fashionable notions of (a) "data warehouses," "data 
marts," and so forth, and (b) "online analytical processing" 
(OLAP).  It also includes with a brief look at the application of 
statistical techniques to discover patterns in very large volumes 
of data──data mining (a comparatively new field, made possible by 
the combined availability of cheap computer storage and fast 
computer processing).  It concludes with a sketch of the pertinent 
features of SQL.   

 
The chapter is, primarily, a high-level overview of what by 

now is a large subject in its own right.  An important quote from 
Section 22.1:  "We remark immediately that one thing [these areas] 
all have in common is that good logical design principles are 
rarely followed in any of them!  The practice of decision support 
is, regrettably, not as scientific as it might be; often, in fact, 
it's quite ad hoc.  In particular, it tends to be driven by 
physical considerations much more than by logical ones──indeed, it 
tends to blur the logical vs. physical distinction considerably."  
Caveat lector.   

 
We use SQL, not Tutorial D, as the basis for examples; we use 

the "fuzzy" terminology of rows, columns, and tables in place of 
tuples, attributes, and relation values and variables (relvars); 
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we use logical schema and physical schema in place of conceptual 
schema and internal schema.   

 
The chapter can be skipped or skimmed if desired.   
 

22.2 Aspects of Decision Support 
 
Key point:  The database is primarily read-only (except for 
periodic load or refresh operations).  Also:   
 
•  Columns tend to be used in combination.   
 
•   Integrity in general is not a concern; the data is assumed to 

be correct when first loaded and isn't subsequently updated.  
(These facts don't mean we don't have to declare integrity 
constraints, though!──see the next section.)   

 
•  Keys often include a temporal component.   
 
•  The database tends to be large.   
 
•  The database tends to be heavily indexed.   
 
•   The database often involves various kinds of controlled 

redundancy (including "summary tables" as well as straight 
data replication).   

 
Decision support queries tend to be quite complex.  Here are 

some of the kinds of complexities that can arise:   
 

•  Boolean expression complexity  
 
•  Join complexity  
 
•  Function complexity  
 
•  Analytical complexity  
 

All of the foregoing factors lead to a strong emphasis on 
designing for performance.  Of course, this fact should affect 
only the physical design of the database, not the logical design, 
but (as previously noted) vendors and users both typically fail to 
distinguish properly between the two ... segue into the next 
section.   

 
 

22.3 DB Design for Decision Support 
 
Self-explanatory.  Observe in particular:   
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•  The treatment of composite columns  
 
•   The fact that integrity constraints need to be considered and 

stated, even though the database is read-only  
 
•   The issues concerning "temporal keys" (forward pointer to 

Chapter 23)  
 

Note especially the remarks concerning physical design and the 
subsection on common design errors (especially with respect to 
"star schemas"──forward pointer to Section 22.5).   

 
 

22.4 Data Preparation  
 
Also self-explanatory.  Note the discussion of extract in 
particular (if the section is covered at all──but it could easily 
be skipped).   
 
 
22.5 Data Warehouses and Data Marts 
 
Note first that these terms aren't very precisely defined!  
Loosely, however, a data mart is (a copy of) some "hot subset" of 
the data warehouse.  Discuss the desirability of separating 
decision support and operational processing.  There are arguments 
(in fact, they seem to be warming up a little these days) in favor 
of integrating them, too.   
 

Describe dimensional schemas ... star schemas ... fact and 
dimension tables.  Explain "star join."  What's the difference 
between a star schema and a normal schema?  This question is hard 
to answer with simple examples, because a simple star schema can 
look very similar (even identical) to a good relational design.  
In fact, however, there are several problems with the star schema 
approach in general:   

 
•  It's ad hoc (based on intuition, not principle).   
 
•  Star schemas tend to be physical, not logical.   
 
•  Sometimes information is lost.   
 
•   The fact table often contains several different types of 

facts.   
 
•  The dimension tables can become nonuniform, too.   
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•  The dimension tables are often less than fully normalized.   
 

Note:  One reviewer of the previous edition said:  "[This 
section] is critical of the star schema [approach] but proposes no 
alternative."  Actually, the section isn't so much critical of 
star schemas as such (how could it be, without a precise 
definition of the concept?); rather, it's critical of the fact 
that, very often, what people call a "star schema" is simply a bad 
logical design.  And, of course, the section does implicitly 
propose an alternative: namely, good logical design (i.e., design 
done in accordance with well-established relational design 
principles, as described in Chapters 12 and 13).   

 
 

22.6 OLAP  
 
Analytical processing always implies data aggregation, usually 
according to many different groupings.  In classical relational 
languages (and in SQL too, prior to SQL:1999), each individual 
query involves at most one grouping (perhaps implicit) and 
produces just one table as its result; hence, n distinct groupings 
require n distinct queries, producing n distinct results.  It thus 
seems worth trying to find a way:   
 
a.  Of requesting several levels of aggregation in a single 

query, and thereby  
 
b.  Offering the implementation the opportunity to compute all of 

those aggregations more efficiently (i.e., in a single pass).   
 

Such considerations are the motivation behind the GROUPING SETS, 
ROLLUP, and CUBE options on the GROUP BY clause found in certain 
SQL implementations and also (since SQL:1999) in the SQL standard 
as well.   
 

Bundling several queries into one statement might be a good 
idea, but bundling the results into one table isn't (basically 
because the result isn't a relation).  What's the predicate? 
(Always a good question to ask!)   

 
Explain crosstabs.  Note that crosstabs aren't a very good way 

to display a result involving more than two dimensions──and the 
more dimensions there are, the worse it gets (see Exercise 22.9).   

 
Describe multi-dimensional databases (relate to crosstabs).  

ROLAP vs. MOLAP.  Sparse arrays (point out that these are an 
artifact of the representation, not a "feature"!).   

 
Please criticize the position that "relations are two-

dimensional."  There's massive confusion out there in the 



Copyright (c) 2003 C. J. Date                            page 22.5 
 

marketplace on this extremely simple point.  A couple of genuine 
(bad) quotes in this regard:   

 
•   "When you're well trained in relational modeling, you begin 

to believe the world is two-dimensional.  You think you can 
get anything into the rows and columns of a table" [Douglas 
Barry, Executive Director, ODMG].   

 
•   "There is simply no way to mask the complexities involved in 

assembling two-dimensional data into a multi-dimensional form" 
[Richard Finkelstein].   

 
 

22.7 Data Mining 
 
Data mining is a huge subject in its own right (there are whole 
books devoted to the topic).  The purpose of this section is only 
to scratch the surface of the subject, nothing more.  Probably 
sufficient just to go through the simple SALES example.  Explain 
the terms population, support level, confidence level.   
 

The purpose of the final paragraph in this section is simply 
to make the student aware of the names of certain techniques and 
(perhaps) to give the faintest of ideas of what each of those 
techniques can do.  It's deliberately not meant to be fully 
understandable.   

 
 

22.8 SQL Facilities 
 
GROUPING SETS, ROLLUP, and CUBE were included in the SQL:1999 
standard as originally published; other facilities were added the 
following year in the "OLAP amendment" [22.21].  But this stuff 
isn't database, it's statistics──and the details don't belong in a 
database book, in my opinion.  (They might belong in an SQL book, 
of course.)  Thus, the intent of this section is merely to give a 
sense of the scope of that "OLAP amendment," nothing more.   
 
 
References and Bibliography 
 
Note the introductory remark:   
 
(Begin quote)  
 
The "views" mentioned in the titles of references [22.3-22.5], 
[22.10], [22.12], [22.16], [22.25], [22.28], [22.30], and [22.35] 
are not views but snapshots.  Annotation to those references talks 
in terms of snapshots, not views.    
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(End quote)  
 
 
Answers to Exercises 
 
22.1 To quote from Section 22.5:  "Operational systems usually 
have strict performance requirements, predictable workloads, small 
units of work, and high utilization.  By contrast, decision 
support systems typically have varying performance requirements, 
unpredictable workloads, large units of work, and erratic 
utilization.  These differences can make it very difficult to 
combine operational and decision support processing within a 
single system──conflicts arise over capacity planning, resource 
management, and system performance tuning, among other things.  
For such reasons, operational system administrators are usually 
reluctant to allow decision support activities on their systems; 
hence the familiar dual-system approach."   
 
22.2 To quote from Section 22.4:  "The data must be extracted 
(from various sources), cleansed, transformed and consolidated, 
loaded into the decision support database, and then periodically 
refreshed."   
 
22.3 Controlled redundancy is redundancy that's known to and 
managed by the DBMS (involving, in particular, automatic update 
propagation).  Such redundancies might or might not be visible to 
the user.  Uncontrolled redundancy is (of course) redundancy that 
isn't controlled in the foregoing sense and must therefore be 
managed by the user.   
 

Indexes and the transaction log are both examples of 
controlled redundancy; so too is replication in the sense of 
Chapter 21.  Maintaining separate detail and summary information 
"by hand" is an example of uncontrolled redundancy.   

 
Redundancy is important for decision support because it can 

make query formulation simpler and query execution faster.  Such 
redundancy is obviously better if it's controlled, however, 
because (as with declarative support for queries and the like) 
"controlled" means the system does the work, while "uncontrolled" 
means the user does the work.   

 
22.4 No answer provided.   
 
22.5 No answer provided.   
 
22.6 No answer provided.   
 
22.7 In ROLAP, the user sees the data in relational form and 
issues relational-style queries.  In MOLAP, the user sees the data 
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as a multi-dimensional array and issues array-style queries (more 
or less).   
 
22.8 There are eight (= 23) possible groupings for each hierarchy, 
so the total number of possibilities is 84 = 4,096.  As a 
subsidiary exercise, you might like to consider what's involved in 
using SQL to obtain all of these summarizations.  No further 
answer provided (the question is rhetorical, somewhat).   
 
22.9 With respect to the SQL queries, we show the GROUP BY clauses 
only:   
 
a. GROUP BY GROUPING SETS ( (S#,P#), (P#,J#), (J#,S#) ) 
 
b. GROUP BY GROUPING SETS ( J#, (J#,P#), () )  
 
c.  The trap is that the query is ambiguous──the term (e.g.) 

"rolled up along the supplier dimension" has many possible 
meanings.  However, one possible interpretation of the 
requirement will lead to a GROUP BY clause looking like this:   

 
GROUP BY ROLLUP (S#), ROLLUP (P#)  
 

d. GROUP BY CUBE ( S#, P# )  
 

We omit the SQL result tables.  As for the crosstabs, it 
should be clear that crosstabs aren't a very good way to display a 
result that involves more than two dimensions (and the more 
dimensions there are, the worse it gets).  For example, one such 
crosstab──corresponding to GROUP BY S#, P#, J#──might look like 
this (in part):   

 
┌───────────────────────┬───────────────────────┬───── 
│           P1          │           P2          │ ... 
├─────┬─────┬─────┬─────┼─────┬─────┬─────┬─────┼───── 
│ J1  │ J2  │ J3  │ ... │ J1  │ J2  │ J3  │ ... │ ... 

┌────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼───── 
│ S1 │ 200 │   0 │   0 │ ... │   0 │   0 │   0 │ ... │ ... 
│ S2 │   0 │   0 │   0 │ ... │   0 │   0 │   0 │ ... │ ... 
│ S3 │   0 │   0 │   0 │ ... │   0 │   0 │   0 │ ... │ ... 
│ S4 │   0 │   0 │   0 │ ... │   0 │   0 │   0 │ ... │ ... 
│ S5 │   0 │ 200 │   0 │ ... │   0 │   0 │   0 │ ... │ ... 
│ .. │ ... │ ... │ ... │ ... │ ... │ ... │ ... │ ... │ ... 
 
In a nutshell:  The headings are clumsy, and the arrays are 

sparse.   
 

22.10 No answer provided.   
 
22.11 Perhaps.  Debate!   
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22.12 No answer provided.   
 
 
 
 
          *** End of Chapter 22 *** 
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          Chapter 23 
 
 
          T e m p o r a l   D a t a b a s e s 
 
 
Principal Sections 
 
•  What's the problem? 
•  Intervals 
•  Packing and unpacking relations  
•  Generalizing the relational operators  
•  DB design  
•  Integrity constraints  
 
 

General Remarks 
 
The problem of how to handle temporal data has always been 
important but in recent times has become much more so, thanks in 
part to the increasing interest in data warehouses (recall the 
references to temporal issues in Chapter 22).  And a sizable 
section of the research community has been at work for some years 
on a temporal proposal called TSQL2.  It's therefore as well to 
say right up front that Chapter 23 is not based on TSQL2, because 
TSQL2 suffers from certain serious technical flaws, the most 
fundamental of which is that it violates The Information Principle 
and is thus not truly relational.  (Just as an aside, I note that 
most of the work reported in the literature on temporal matters 
describes itself as relational but really isn't.  It took me a 
while to realize this fact!  Once I'd done so, however, I found it 
very helpful in understanding just what it was that the various 
researchers were proposing.  Thus, I seriously suggest that you 
take this observation on board──the observation, that is, that 
"relational" in the literature doesn't always mean relational.  I 
think you might find it helpful too.)   
 

To say it again, Chapter 23 is not based on TSQL2.  Instead, 
it's based on sound relational principles (what else?).  It 
describes an approach, originally due to Nikos Lorentzos and 
elaborated in reference [23.4], that, we hope and believe,* will 
soon be of more than just theoretical significance.  Like Chapter 
20 on type inheritance, therefore, this chapter is forward-
looking, in the sense that it describes not how systems work today 
but, rather, how we think they ought to work in the future.  
(Incidentally, it turns out that the inheritance model described 
in Chapter 20 is relevant to the temporal proposals of reference 
[23.4], though the aspects in question are beyond the scope of the 
present book.  FYI, they have to do with what's called 
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"granularity"──i.e., the ability to perceive the very same period 
of time, say the year 2003, sometimes as a sequence of 12 months 
and sometimes as a sequence of 365 days.)   

 
 

────────── 
 
*  We = Hugh Darwen, Nikos, and myself.   
 
────────── 
 
 

The chapter can be skipped if desired but probably shouldn't 
just be skimmed (individual topics are tightly interwoven).  If 
you do cover it, you should probably have a copy of reference 
[23.4] to hand, for reference purposes if nothing else.  That book 
covers a lot of material that there wasn't room for in Chapter 23.  
Of course, it also goes into much more detail on the topics there 
was room for.   

 
Section 23.1 is longer than most if not all of the other 

chapter introductions.  It lays some important groundwork.  
Explain the following concepts carefully:   

 
•   Timestamped propositions, corresponding (external) 

predicates, and the careful and precise interpretations we 
give to since and during;  

 
•  Intuitive idea of points and intervals (closed-closed style);  
 
•   "Beginning of time" and "end of time" points and the notion 

of successor (and predecessor);  
 
•   A little more formally:  The interval with begin point b and 

end point e is the sequence of all points p such that b ≤ p ≤ 
e (where "<" means "earlier than").   

 
Explain the first (i.e., nontemporal) version of the running 

example──"suppliers and shipments," a drastically simplified and 
reinterpreted version of suppliers and parts.  Note:  This 
database looks much too simple to be useful, but in fact it's 
sufficient to illustrate the vast majority of ideas introduced in 
the chapter.  What's more, if we made the database more 
"realistic" by, say, not discarding supplier city information, 
we'd get into some difficulties (having to do with database 
design) that I don't want to discuss──actually, we're not equipped 
to discuss──at this early juncture.   

 
Explain the primary and foreign key constraints, also Queries 

A and B.  Sketch the plan of the rest of the chapter.  Note:  FYI, 
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here are some of the topics not included in this chapter but 
covered in reference [23.4]: general queries; updates; "valid time 
vs. transaction time"; implementation and optimization; "cyclic 
point types"; granularity and scale; continuous point types; and 
(important!) syntactic shorthands for many of the foregoing.   

 
Although the chapter is called "Temporal Databases" and 

concentrates on temporal issues, the ideas are actually of wider 
applicability:  As we've already seen, the basic construct we're 
dealing with is intervals, and intervals don't necessarily have to 
be temporal (as we'll see).  Note too that:   

 
•   A lot of the terminology we'll be using──"packed form," 

U_key, and much more──is nonstandard (but then there are no 
standard terms for many of these concepts).   

 
•   There's no "SQL Facilities" section in this chapter.  A while 

back, however, the standards committee was seriously 
considering an "SQL/Temporal" component, and it was leaning 
heavily toward an approach very similar to that described in 
this chapter.  We can expect interest to revive in this 
subject at some point in the future, so we might eventually 
see some SQL support for what we're going to be talking about.  
In fact, we hope our work in reference [23.4] will exert some 
positive influence on the committee!  We have a chance to do 
it right, since none of the vendors has done it wrong (yet).   

 
•   This is not a closed subject!──certain interesting research 

issues remain.  Some of those issues are touched on here and 
there in passing.   

 
One final introductory point (paraphrased remark from Section 

23.3):  "It's worth pointing out that the INTERVAL type generator 
is the sole construct introduced in this chapter that isn't just 
shorthand.  Our approach to temporal databases──unlike others that 
have been described in the literature──thus involves no changes at 
all to the classical relational model (although it does involve 
certain generalizations, as we'll see in Sections 23.5 and 
23.7)."*  In other words, almost everything we're going to be 
talking about──the new operators and other new constructs──can be 
expressed (albeit only very longwindedly, in many cases) in terms 
of features already available in a complete relational language 
such as Tutorial D.  This point is important, and it illustrates 
what is in my opinion the "right" way to do language design in 
general.   

 
 

────────── 
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*  The generalizations in question are generalizations of joins, 
unions, keys, and other familiar relational concepts──but even 
these generalizations are really still just shorthand.   
 
────────── 
 
 
23.2 What's the Problem?  
 
This section extends suppliers and shipments to:   
 
a. A "semitemporal" version, and then  
 
b.  A "fully temporal" version, without using intervals as such 

(the fully temporal version with intervals as such comes in 
the next section).   

 
It traces what happens to (a) the simple primary and foreign key 
constraints, and (b) Queries A and B, as we move from the 
nontemporal version of the database through these two temporal 
versions.  Note the very careful wording of the various extended 
versions of Queries A and B.  The overall message of the section 
is that life gets complicated, fast, if we stay with traditional 
data types and traditional operators only.  We need something 
new!──though (as far as possible) we'd like that "something new" 
to be basically just a set of carefully thought-out shorthands.   
 

Regarding the semitemporal ("since") version, note:   
 

a. The revised predicates; 
 
b. The additional constraint XST1; 
 
c.  The fact that an appropriately extended version of Query B 

can't be done (because the database is only semitemporalized, 
so far).  We need to keep historical records showing which 
suppliers were able to supply which parts when.   

 
Regarding the first fully temporal ("from-to") version, note:   
 

a.  The further revisions to the predicates, plus additional 
semantic assumptions;  

 
b.  The further revisions to the key constraints and the 

additional constraints S_FROM_TO_OK, SP_FROM_TO_OK, XFT1 ("no 
overlapping and no abutting"), XFT2, and especially XFT3 
(complicated!);  

 
c.  The fact that the queries are now staggeringly complex (we 

don't even attempt to give formulations).   
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Note too:   
 
a. The first mention of combining tuples;  
 
b. The assumption that today is day 10;  
 
c.  The questions arising from that assumption (forward pointer 

to Section 23.6).   
 

The closing sentence from this section:  "In a nutshell, then, 
the problem of temporal data is that it quickly leads to 
constraints and queries (not to mention updates, which are beyond 
the scope of this chapter) that are unreasonably complex to 
express: unreasonably complex, that is, unless the system provides 
some appropriate shorthands, which commercial DBMSs currently 
don't."   

 
 

23.3 Intervals 
 
Intervals are the abstraction we need.  Show the fully temporal 
version of the running example with intervals.  Note the 
predicates.  Explain:   
 
•   Point types: total ordering, FIRST_T, LAST_T, NEXT_T, PRIOR_T 

(NEXT_T is the successor function).  Note:  The need for those 
"_T" qualifiers is explained in reference [23.4] but not in 
Chapter 23.  I wouldn't get into it unless asked (and even 
then I'd take it offline).   

 
•   The INTERVAL type generator and interval types: generic 

possrep, generic operators, generic constraints; selectors and 
"THE_" operators BEGIN and END.   

 
Mention examples of nontemporal point types and intervals.  

Discuss other operators on points and intervals: IS_NEXT_T, 
IS_PRIOR_T, MAX, MIN, ε and its inverse, COUNT, POINT FROM, PRE 
and POST.  Allen's operators (our version!).  UNION, INTERSECT, 
MINUS (you might want to leave MINUS as an exercise, it's a bit 
tricky and possibly not as important as the other two).   

 
Show some sample queries.   
 
Note:  The text suggests that students might like to try 

drawing some pictures to illustrate Allen's operators.  This is 
the kind of thing I had in mind:   

 
•  OVERLAPS:  (i1 OVERLAPS i2) ≡ (b1 ≤ e2 AND b2 ≤ e1)    
 

b1            e1 
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├──────i1──────┤ 
 

├───────i2───────┤ 
b2              e2 
 

Pictures like this can be useful as an aid to memory, especially 
since the operator names aren't always all that self-explanatory.   
 
 
23.4 Packing and Unpacking Relations 
 
First explain EXPAND and COLLAPSE (unary-relation versions only; 
other versions are described in reference [23.4]).  Crucial notion 
of equivalence for such unary relations.  The operators are 
shorthand, though they might not look like it!  State without 
attempting to justify the nullary-relation versions too.   
 

Very carefully explain PACK and UNPACK on one interval 
attribute.  Work through Query A, leading up to the point where it 
can be formulated thus:   

 
PACK SP_DURING { S#, DURING } ON DURING  

 
Shorthand!  Mention analogy with grouping, but (to quote) "while r 
GROUP {A} ... is guaranteed to return a result with exactly one 
tuple for each distinct value of B (where B is all of the 
attributes of r apart from A), PACK r ON A might return a result 
with several tuples for any given value of B" (explain).   
 

Note that the definition of PACK──and UNPACK too, when we get 
there──relies, at least conceptually, on support for relation-
valued attributes (so it's not "just shorthand" if such support 
isn't available).   

 
Work through Query B, probably less exhaustively:   
 
PACK  

( ( UNPACK S_DURING { S#, DURING } ON DURING ) 
MINUS 
( UNPACK SP_DURING { S#, DURING } ON DURING ) )  

ON DURING  
 

Shorthand!  Mention analogy with grouping (etc.).  Note:  This is 
still not the final formulation of Query B──we'll come back to it 
in the next section.   
 

Do some further examples (those in the book or some of your 
own).  Include at least one nontemporal one.   

 
Quote from the end of the section:  "There is much, much more 

to the PACK and UNPACK operators than we have room for in this 
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chapter.  Detailed discussions can be found in reference [23.4]; 
here we simply list without proof or further commentary some of 
the most important points."  You should at least mention each of 
the four bulleted points:   

 
•  Packing and unpacking on no attributes  
 
•  Unpacking on two or more attributes (straightforward)  
 
•  Packing on two or more attributes (tricky)  
 
•  Extended notion of equivalence  
 
 

23.5 Generalizing the Relational Operators  
 
Use the Query B discussion by way of motivation, leading up to 
U_MINUS.  By the way:  That discussion suggests, but never quite 
states explicitly, that we don't really want the implementation to 
do unpacks.  Very true!  UNPACK is a conceptually important 
component of our approach, but we want to avoid actual unpackings 
if possible──and we can (see reference [23.4], Appendix A).   
 

We use "arrowhead brackets" (* and *) for clarity in our 
exposition, but parentheses would probably be OK in a real 
concrete syntax.   
 

Run through U_UNION, U_INTERSECT, U_JOIN, U_project.  See 
reference [23.4] for the rest (U_SUMMARIZE in particular, which is 
also quite useful; U_restrict etc. are not all that useful but are 
included for completeness).  All just more shorthand.  Show 
"final" formulations of Queries A and B:   

 
USING DURING * SP_DURING { S#, DURING } * 
 
USING DURING * S_DURING { S#, DURING }  

MINUS 
SP_DURING { S#, DURING } *  

 
Relational comparisons:  Explain "U_=" in particular.  Relate to 
the previously discussed notion of equivalence.   
 
The regular relational operations revisited:  Regular operations 
are just special cases of their generalized counterparts!  A most 
pleasing and important state of affairs.   
 
 
23.6 DB Design  
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"Special issues arise in connection with the design of temporal 
databases."  True ... First let's revise our running example:   
 
•  Drop shipments entirely.   
 
•  Reinstate supplier name, status, and city information.   
 

Show preferred design immediately, noting that (a) S_SINCE in that 
design is not the same as S_SINCE in Section 23.2 and (b) S_DURING 
in that design is not the same as S_DURING in Section 23.3.  State 
the predicates.  Introduce the terms horizontal decomposition and 
vertical decomposition.   
 

Regarding horizontal decomposition:  Explain the logical 
difference between historical and current information.  Explain 
why "timestamping tuples" doesn't work (the timestamps timestamp 
too much, and updating is ugly).   

 
Regarding vertical decomposition:  Without it, the timestamps 

timestamp too much, and updating is very ugly.  Segue into sixth 
normal form (6NF) ... 6NF basically just means irreducibility, but 
the reduction (or decomposition) operator is not plain old 
projection any longer but generalized projection.  Likewise, the 
recomposition operator is generalized join.  The definition of 6NF 
relies on generalized JDs (all classical JDs are generalized JDs, 
but some generalized JDs aren't classical JDs).  All 6NF relvars 
are in 5NF, but some 5NF relvars aren't in 6NF.  Note:  Because 
6NF relies on generalized JDs, its existence doesn't undermine 
statements elsewhere to the effect that 5NF is "the final normal 
form"!  5NF is the final normal form, so long as we limit 
ourselves to classical projection and join.  On the other hand, 
it's utterly reasonable to think of 6NF as another step in the 
same old progression from 1NF to 2NF to ... to 5NF.   

 
Return to horizontal decomposition to introduce (and debunk, 

or──more politely──deconstruct) a notion mentioned in the 
literature that goes by the general name of "the moving point now" 
... Point out some of the logical nonsenses that this notion leads 
us into; perhaps draw a parallel between NOW and NULL ("from the 
people who brought you NULL, we now present ...").*  "[It's] 
precisely an argument in favor of horizontal decomposition that 
NOW isn't needed."   

 
 

────────── 
 
*  Indeed, NOW is really a variable, and the notion of values 
containing variables makes no sense.   
 
────────── 
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Note:  We could have "during" relvars only (i.e., no 
horizontal decomposition), if we really wanted──but only if we 
have no objection to our database telling lies.  ("Telling lies" = 
using "the end of time" to mean "until further notice").  Not a 
good idea!──the propositions in the database are supposed to be 
true ones.   

 
 

23.7 Integrity Constraints  
 
Now we have the conceptual apparatus we need to deal with the 
issue of constraints* (recall how complicated constraints were 
when we first examined them, without benefit of the interval 
abstraction, associated operators, and so forth).  Focus on 
S_STATUS_DURING until further notice ... We examine three general 
problems: redundancy, circumlocution, contradiction.   
 
 
────────── 
 
*  Also with the issues of query and update, but we're not going 
to get into details of those here.   
 
────────── 
 
 

Regarding redundancy:  KEY is inadequate; tuples need to be 
packed.  Need to enforce the following constraint:  If at any 
given time relvar S_STATUS_DURING contains two distinct tuples 
that are identical except for their DURING values i1 and i2, then 
i1 OVERLAPS i2 must be false.   

 
Regarding circumlocution:  Again, KEY is inadequate; tuples 

need to be packed.  Need to enforce the following constraint:  If 
at any given time relvar S_STATUS_DURING contains two distinct 
tuples that are identical except for their DURING values i1 and 
i2, then i1 MEETS i2 must be false.   

 
Since OVERLAPS OR MEETS ≡ MERGES, we can fix both of the 

foregoing problems via PACKED ON (explain).  Note:  PACKED ON is 
just a constraint──it's not intended to cause automatic repacking 
after updates (if anybody asks).  Automatic repacking, if 
supported, would be a "compensating action" (like cascade delete).  
We don't say that's wrong, but we don't regard it as fundamental, 
and foundations are what we're interested in here (as always).  We 
do believe the possibility of compensating actions would need 
careful study, however, if seriously proposed (they've led to some 
complexity in the past).   
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Regarding contradiction:  PACKED ON and KEY are still 
inadequate, even together.  Need to enforce the following 
constraint:  If at any given time relvar S_STATUS_DURING contains 
two tuples that have the same S# value but differ on their STATUS 
value, then their DURING values i1 and i2 must be such that i1 
OVERLAPS i2 is false.  WHEN / THEN does the trick (explain).   

 
Explain U_keys.  Shorthand!  Regular keys a special case!  

Foreign keys can be treated analogously, but we omit the details 
(just give an example).  Note:  Although the chapter doesn't 
discuss updating, you might like to mention that we have "U_" 
versions of INSERT, DELETE, and UPDATE too ... and the regular 
versions are all degenerate special cases of those U_ versions.  
(We ought really to have "U_assign" too, but reference [23.4] 
doesn't explicitly discuss such a possibility.)   

 
Integrity is much more than just keys ... To quote:  

"Reference [23.4] presents a careful and detailed analysis of the 
overall problem; to be specific, it considers, in in very general 
terms, a set of nine requirements that we might want a typical 
temporal database like the suppliers-and-shipments database to 
satisfy."  Show the nine requirements; perhaps justify 
intuitively; don't try to get into details, unless you have a lot 
of time available!  It's tricky stuff.  In any case, the details 
aren't in the book.   

 
 

References and Bibliography  
 
Note the following:  "Rather than giving what could easily be a 
very lengthy list of references here, we draw your attention to 
the extensive bibliography in reference [23.4], q.v."  Note too 
reference [23.3], which analyzes and criticizes TSQL2, if you want 
to be prepared for questions on that topic.  (You might well be 
asked such questions, since TSQL2 has received a certain amount of 
emphasis in the literature.  In fact, there's a book available on 
how to deal with the time dimension in the absence of system 
support, and that book is heavily based on the TSQL2 ideas:   
 
•   Richard T. Snodgrass: Developing Time-Oriented Database 

Applications in SQL.  San Francisco, Calif.: Morgan Kaufmann 
(2000).   

 
 

Answers to Exercises 
 
23.1 A time quantum (also known as a chronon) is the smallest time 
unit the system is capable of representing.  A time point is the 
time unit that is relevant for some particular purpose.  
Granularity is the "size" or duration of the applicable time 
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points, or equivalently the "size" or duration of the gap between 
adjacent points.   
 
23.2 See Section 23.3.   
 
23.3 The following edited extract from reference [23.4] goes part 
way to answering this exercise.   
 
(Begin quote)  
 
Replacing the pair of attributes FROM and TO by the single 
attribute DURING in each of the two relvars brings with it a 
number of immediate advantages.  Here are some of them: 
 
•   It avoids the problem of having to make an arbitrary choice 

as to which of two candidate keys should be regarded as 
primary.  For example, relvar S_FROM_TO had two candidate 
keys, {S#,FROM} and {S#,TO}, but relvar S_DURING has just one, 
{S#,DURING}, which we can therefore designate as "primary" (if 
we wish) without any undesirable arbitrariness.  Similarly, 
relvar SP_FROM_TO also had two candidate keys but relvar 
SP_DURING has just one, {S#,P#,DURING}, which again we can 
designate as "primary" if we wish.   

 
•   It also avoids the problem of having to decide whether the 

FROM-TO intervals in the previous version of the database are 
to be interpreted as closed or open with respect to FROM and 
TO.  Previously, those intervals were implicitly taken to be 
closed with respect to both FROM and TO.  But now, e.g., 
[d04:d10], [d04:d11), (d03:d10], and (d03:d11) are four 
distinct possible representations of the very same interval, 
and we have no need to know which, if any, is the actual 
physical representation.  (See reference [23.4] for further 
explanation of the terms "open" and "closed" as used here.)   

 
•   Yet another advantage is that integrity constraints to guard 

against the absurdity of a FROM-TO pair appearing in which the 
TO value is less than the FROM value are no longer necessary, 
because the constraint "FROM ≤ TO" is implicit in the very 
notion of an interval type.  That is, constraints of the form 
"FROM ≤ TO" are effectively replaced by a generic constraint 
that implicitly applies to each and every individual interval 
type.   

 
•   Suppose relations r1 and r2 were both to include distinct 

FROM and TO attributes (albeit with different names in each 
case), instead of a single DURING attribute, and suppose we 
were to join r1 and r2 to produce r3.  Then r3 would contain 
two FROM-TO attribute pairs, and it would be the user's 
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responsibility, not the system's, to match up the FROMs and 
TOs appropriately.  Clearly, this problem (though admittedly 
psychological, not logical, in nature) will only get worse as 
the number of joins increases, and it has the potential to 
give rise to serious human errors.  What's more, the 
difficulties would be compounded if we were to discard some of 
the FROMs and/or TOs by means of projections.  Such problems 
don't arise──or, at least, are much less severe──with DURING 
attributes.   

 
(End quote)  
 

In addition, of course, treating intervals as values in their 
own right is what enables us to define all of the new operators 
and other constructs that we need to formulate queries, 
constraints, and so forth in an intellectually manageable way.   

 
23.4 INTERVAL_INTEGER ( [ BEGIN(i) - COUNT(i) :  

END(i)   + COUNT(i) ] )  
 

Evaluation of this expression will fail at run time if either of 
the following expressions evaluates to TRUE:   
 
•  FIRST_INTEGER() + COUNT(i) > BEGIN(i)  
 
•  LAST_INTEGER()  - COUNT(i) < END(i)    
 

23.5 INTERVAL_INTEGER ( [ BEGIN(i) + COUNT(i) / 3 :  
END(i)   - COUNT(i) / 3 ] ) 
 

23.6 INTERVAL_INTEGER  
[ MIN ( MIN ( BEGIN(i1), BEGIN(i2) ), BEGIN(i3) ) :  
MAX ( MAX ( END(i1),   END(i2) ),   END(i3)   ) ]  
 

We've assumed for definiteness that INTEGER is the underlying 
point type.  Note that the following expression── 
 

i1 UNION i2 UNION i3  
 

──might not work, because UNION isn't necessarily defined for 
every pair of intervals taken from the given three.   
 
23.7 Yes, if the expression on the right side is defined; 
otherwise no.  Here are three examples (simplified notation):   
 
•   a = [2:6], b = [4:9]; a INTERSECT b = [4:6], a MINUS (a MINUS 

b) = [2:6] MINUS [2:3] = [4:6].   
 
•   a = [4:6], b = [2:6]; a INTERSECT b = [4:6], a MINUS b (and 

hence a MINUS (a MINUS b) undefined.   
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•   a = [4:6], b = [8:9]; a INTERSECT b undefined, a MINUS b = 

[4:6], a MINUS (a MINUS b) undefined.   
 
23.8 (a) Suppose there's a total ordering on part numbers, say P1 
< P2 < P3 (etc.).  Then the following relation might be 
interpreted to mean that certain suppliers were able to supply 
certain ranges of parts during certain intervals of time:   
 

┌────┬─────────┬───────────┐ 
│ S# │ PARTS   │ DURING    │ 
├════┼═════════┼═══════════┤ 
│ S1 │ [P1:P3] │ [d01:d04] │ 
│ S1 │ [P2:P4] │ [d07:d08] │ 
│ S1 │ [P5:P6] │ [d09:d09] │ 
│ S2 │ [P1:P1] │ [d08:d09] │ 
│ S2 │ [P1:P2] │ [d08:d08] │ 
│ S2 │ [P3:P4] │ [d07:d08] │ 
│ S3 │ [P2:P4] │ [d01:d04] │ 
│ S3 │ [P3:P5] │ [d01:d04] │ 
│ S3 │ [P2:P4] │ [d05:d06] │ 
│ S3 │ [P2:P4] │ [d06:d09] │ 
│ S4 │ [P3:P4] │ [d05:d08] │ 
└────┴─────────┴───────────┘ 
 

(b) The following relation might be interpreted to mean that 
certain ranges of suppliers were able to supply certain ranges of 
parts during certain intervals of time:   
 

┌───────────┬─────────┬───────────┐ 
│ SUPPLIERS │ PARTS   │ DURING    │ 
├═══════════┼═════════┼═══════════┤ 
│ [S1:S2]   │ [P2:P3] │ [d03:d03] │ 
│ [S1:S2]   │ [P2:P2] │ [d04:d04] │  
│ [S1:S3]   │ [P3:P3] │ [d04:d04] │  
│ [S2:S3]   │ [P3:P4] │ [d05:d05] │ 
│ [S2:S3]   │ [P4:P4] │ [d04:d04] │ 
└───────────┴─────────┴───────────┘ 
 

(c) See (b) above.   
 
23.9 The first assertion is valid, the second isn't.  For proof, 
see reference [23.4].   
 
23.10 WITH ( FEDERAL_GOVT RENAME DURING AS FD ) AS FG , 

( STATE_GOVT   RENAME DURING AS SD ) AS SG , 
( FG JOIN SG ) AS T1 , 
( T1 WHERE FD OVERLAPS SD ) AS T2 , 
( EXTEND T2 ADD ( FD INTERSECT SD ) AS DURING ) AS T3 : 

T3 { ALL BUT FD, SD }  
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23.11 The following example is taken from reference [23.4].  We're 
given a relvar INFLATION representing the inflation rate for a 
certain country during certain specified time intervals.  A sample 
value is given below; it shows that the inflation rate was 18 
percent for the first three months of the year, went up to 20 
percent for the next three months, stayed at 20 again for the next 
three months (but went up to 25 percent in month 7), ..., and 
averaged out at 20 percent for the year as a whole.   
 

┌───────────┬────────────┐ 
│ DURING    │ PERCENTAGE │ 
├═══════════┼────────────┤ 
│ [m01:m03] │         18 │ 
│ [m04:m06] │         20 │ 
│ [m07:m09] │         20 │ 
│ [m07:m07] │         25 │ 

.....             ..   
│ [m01:m12] │         20 │ 
└───────────┴────────────┘ 
 

The constraint PACKED ON DURING mustn't be specified for this 
relvar because (in terms of the sample value shown above) such a 
constraint would cause the three tuples with PERCENTAGE = 20 to be 
"packed" into one, and we'd lose the information that the 
inflation rate for months 4-6 and months 7-9 (as well as for the 
year overall) was 20 percent.   
 
23.12 Let r1 and r2 be as follows: 
 

r1                   r2 
┌───────────┐        ┌───────────┐ 
│ A         │        │ A         │ 
├═══════════┤        ├═══════════┤ 
│ [d01:d05] │        │ [d02:d02] │ 
│ [d08:d10] │        │ [d04:d09] │ 
└───────────┘        └───────────┘ 
 

Then the cardinality of the relation produced by USING A * r1 
INTERSECT r2 * is three:   
 

┌───────────┐ 
│ A         │ 
├═══════════┤ 
│ [d02:d02] │ 
│ [d04:d05] │ 
│ [d08:d09] │ 
└───────────┘ 
 

23.13 We need to show that  
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UNPACK T6 ON A  ≡  ( UNPACK r1 ON A ) JOIN ( UNPACK r2 ON A ) 
 

Assume first that r1 and r2 each have just the one attribute A.  
Then T6 consists of every possible intersection of a DURING value 
from r1 and a DURING value from r2.  It follows that the unpacked 
form of T6 consists (loosely) of every unit interval that's 
contained in at least one of those intersections (and therefore in 
some DURING value in r1 and in some DURING value in r2).  It's 
clear that the join of the unpacked forms of r1 and r2 consists 
(loosely) of the very same unit intervals.   
 

Now assume that r1 and r2 have some additional attributes, B 
say.  If we partition each relation on the basis of B values, we 
can apply an argument analogous to that given above to each pair 
of partitions, one each from r1 and r2.   

 
"Confirm also that if r1 and r2 are both initially packed on 

A, then the final PACK step is unnecessary":  No answer provided.   
 

23.14 See Section 23.6.  The answer to the second part of the 
exercise is yes (again, see Section 23.6).   
 
23.15 No answer provided.   
 
23.16  
 
a. ( ( SUMMARIZE SP_SINCE BY S#  

ADD ( COUNT AS CT, MIN ( SINCE ) AS MS ) ) 
WHERE CT > 1 ) { S#, MS }  
 

b.  Can't be done.  We can get the supplier numbers but not the 
dates:   

 
( ( SUMMARIZE SP_SINCE BY S# ADD COUNT AS CT ) 

WHERE CT = 1 ) { S# }  
 

23.17 See Section 23.7.   
 
23.18 See Section 23.7.   
 
 
 
 
          *** End of Chapter 23 *** 
 
 



Copyright (c) 2003 C. J. Date                            page 24.1 
 

          Chapter 24 
 
 
          L o g i c - B a s e d   D a t a b a 
s e s 
 
 
Principal Sections 
 
•  Overview  
•  Propositional calculus 
•  Predicate calculus 
•  A proof-theoretic view of databases 
•  Deductive database systems 
•  Recursive query processing 
 
 

General Remarks 
 
No "SQL Facilities" section in this chapter, for obvious reasons.   
 

The following remarks from Section 24.1 should be pretty much 
self-explanatory:   

 
(Begin quote) 
 
In the mid 1980s or so, a significant trend began to emerge in the 
database research community toward database systems that are based 
on logic.  Expressions such as logic database, inferential DBMS, 
expert DBMS, deductive DBMS, knowledge base, knowledge base 
management system (KBMS), logic as a data model, recursive query 
processing, etc., etc., began to appear in the research 
literature.  However, it isn't always easy to relate such terms 
and the ideas they represent to familiar database terms and 
concepts, nor to understand the motivation underlying the research 
from a traditional database perspective; in other words, there's a 
clear need for an explanation of all of this activity in terms of 
conventional database ideas and principles.  This chapter is an 
attempt to meet that need.  Our aim is to explain what logic-based 
systems are all about from the viewpoint of someone who's familiar 
with traditional database technology but perhaps not so much with 
logic as such.  As each new idea from logic is introduced, 
therefore, we'll explain it in conventional database terms, where 
possible or appropriate.  (Of course, we've discussed certain 
ideas from logic in this book already, especially in our 
description of relational calculus in Chapter 8.  Relational 
calculus is directly based on logic.  However, there's more to 
logic-based systems than just the relational calculus, as we'll 
see.)   
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(End quote) 
 

There's still no consensus on whether logic-based systems as 
such will ever make it into the mainstream, but certainly a lot of 
research is still going on, as evidenced by the annual SIGMOD 
proceedings, VLDB proceedings, etc.  (On the other hand, most of 
the functionality provided by logic-based systems is finding its 
way into the SQL standard and/or mainstream products in some shape 
or form; recursive queries are a case in point.)   

 
Note the summarized definitions of terms in Section 24.8 (in 

particular, explain the concept of "logic as a data model").   
 
The chapter can be skipped if desired.  In particular, it 

probably should be skipped if Chapter 8 (on relational calculus) 
was skipped earlier.   

 
 

24.2 Overview 
 
Explain model-theoretic vs. proof-theoretic perceptions (in 
outline).  Discuss deductive axioms (rules by which, given certain 
facts, we're able to deduce additional facts).  Of course, 
deductive axioms are really just views by another name (and facts 
are really just tuples, as should already be clear from 
discussions in numerous earlier chapters).   
 
 
24.3 Propositional Calculus 
 
A tutorial for database people.  Basically straightforward.  
Describe the resolution technique carefully.   
 
 
24.4 Predicate Calculus 
 
Again, a tutorial for database people.  Note the big difference 
between propositional and predicate calculus:  Predicate calculus 
allows formulas to contain (logic) variables and quantifiers.  
E.g., "Supplier S1 supplies part p" and "Some supplier s supplies 
part p" aren't legal formulas in the propositional calculus, but 
they are legal in the predicate calculus.  Thus, predicate 
calculus provides a basis for expressing queries such as "Which 
parts are supplied by supplier S1?" or "Get suppliers who supply 
some part."   
 

Review free and bound variable references and open and closed 
WFFs (all previously explained in Chapter 8).  Explain 
interpretations and models:   
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•   An interpretation of a set of WFFs is the combination of a 

universe of discourse, plus the mapping of individual 
constants to objects in that universe, plus the defined 
meanings for the predicates and functions with respect to that 
universe.   

 
•   A model of a set of WFFs is an interpretation for which all 

WFFs in the set are true.   
 

Describe clausal form and resolution and unification.   
 
 
24.5 A Proof-Theoretic View of Databases 
 
A clause is an expression of the form  
 

A1 AND A2 AND ... AND Am  ═*  B1 OR B2 OR ... OR Bn 
 

where the A's and B's are all terms of the form  
 

r ( x1, x2, ..., xt ) 
 

(where r is a predicate and x1, x2, ..., xt are the arguments to 
that predicate).  Two important special cases:   
 
1. m = 0, n = 1:  The clause is basically just  
 

r ( x1, x2, ..., xt ) 
 
for some predicate r and some set of arguments x1, x2, ..., 
xt.  If the x's are all constants, the clause represents a 
ground axiom──i.e., it is a statement (a closed WFF, in fact) 
that is unequivocally true.  In database terms, such a 
statement corresponds to a tuple of some relvar R.   
 

2. m > 0, n = 1:  The clause takes the form  
 

A1 AND A2 AND ... AND Am  ═*  B 
 
which can be regarded as a deductive axiom; it gives a 
definition of the predicate on the right side in terms of 
those on the left side.  Alternatively, it can be regarded as 
an integrity constraint.   
 
Explain (properly this time!) the difference between model- 

and proof-theoretic perceptions.  Summarize the axioms for a given 
database (proof-theoretic view).  Introduce the term extensional 
database.   

 



Copyright (c) 2003 C. J. Date                            page 24.4 
 

 
24.6 Deductive Database Systems 
 
The axioms mentioned in the previous section don't mention 
integrity constraints──because (in the proof-theoretic view) 
adding constraints converts the system into a deductive system.  A 
deductive system is one that supports the proof-theoretic view, 
and in particular one that can deduce additional facts from the 
given facts in the extensional database by applying specified 
deductive axioms or rules of inference.  The deductive axioms, 
plus integrity constraints, constitute the intensional database.   
 

Sketch the "deductive" version of suppliers and parts 
(including the recursive axioms needed to represent part 
structure).  Explain Datalog briefly ("the entire deductive 
database can be regarded as a Datalog program") and mention 
possible extensions to that language.   

 
 

24.7 Recursive Query Processing 
 
As the title indicates, this section is concerned with (simple) 
implementation techniques, not with how to formulate recursive 
queries (that's already been covered).  Note that many more 
sophisticated techniques are described in the references.  Briefly 
discuss:   
 
•  Unification and resolution  
 
•  Naïve evaluation  
 
•  Seminaïve evaluation  
 
•  Static filtering  
 
•   Other algorithms as desired (the so-called "magic" techniques 

[24.16-24.19] might be worth some discussion, but stress that 
they aren't applicable only to "logic-based systems"──they can 
be used in conventional systems too, as the annotation to 
reference [18.22] explains)  

 
 

Answers to Exercises 
 
24.1 a. Valid.  b. Valid.  c. Not valid.   
 
24.2 In the following, a, b, and c are Skolem constants and f is a 
Skolem function with two arguments.   
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a. p ( x, y ) ═* q ( x, f ( x, y ) ) 
 
b. p ( a, b ) ═* q ( a, z ) 
 
c. p ( a, b ) ═* q ( a, c ) 
 

24.3 We consider part a. only.  We have:   
 
1. WOMAN ( Eve ) 
2. PARENT ( Eve, Cain ) 
3. MOTHER ( x, y ) *═ PARENT ( x, y ) AND WOMAN ( x ) 
 

Rewrite 3. to eliminate "*═":   
 

4. MOTHER ( x, y ) OR NOT PARENT ( x, y ) OR NOT WOMAN ( x ) 
 

Negate the conclusion and adopt as a premise:   
 

5. NOT MOTHER ( Eve, Cain ) 
 

Substitute Eve for x and Cain for y in line 4 and resolve with 
line 5:   
 
6. NOT PARENT ( Eve, Cain ) OR NOT WOMAN ( Eve ) 
 

Resolve 2. and 6.:   
 

7. NOT WOMAN ( Eve )  
 

Resolve 1. and 7.: We obtain the empty set of clauses [].   
 

24.4 An interpretation of a set of WFFs is the combination of a 
universe of discourse, plus the mapping of individual constants to 
objects in that universe, plus the defined meanings for the 
predicates and functions with respect to that universe.  A model 
of a set of WFFs is an interpretation for which all WFFs in the 
set are true.   
 
24.5 No answer provided.   
 
24.6 In accordance with our usual practice, we have numbered the 
following solutions as 24.6.n, where 7.n is the number of the 
original exercise in Chapter 7.  As in the body of the chapter, we 
write 300 as a convenient shorthand for QTY(300), etc.   
 
24.6.13 ? *═ J ( j, jn, jc ) 
 
24.6.14 ? *═ J ( j, jn, London ) 
 
24.6.15 RES ( s ) *═ SPJ ( s, p, J1 ) 
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? *═ RES ( s ) 
 

24.6.16 ? *═  SPJ ( s, p, j, q ) AND 300 ≤ q AND q ≤ 750 
 
24.6.17 RES ( pl, pc ) *═ P ( p, pn, pl, w, pc ) 

? *═ RES ( pl, pc ) 
 

24.6.18 RES ( s, p, j ) *═ S ( s, sn, st, c ) AND 
P ( p, pn, pl, w, c ) AND 

J ( j, jn, c ) 
? *═ RES ( s, p, j ) 
 

24.6.19-24.6.20 Can't be done without negation.   
 
24.6.21 RES ( p ) *═ SPJ ( s, p, j, q ) AND  

S ( s, sn, st, London ) 
? *═ RES ( p ) 
 

24.6.22 RES ( p ) *═ SPJ ( s, p, j, q ) AND  
S ( s, sn, st, London ) AND 
J ( j, jn, London ) 

? *═ RES ( p ) 
 

24.6.23 RES ( c1, c2 ) *═ SPJ ( s, p, j, q ) AND  
S ( s, sn, st, c1 ) AND 
J ( j, jn, c2 ) 

? *═ RES ( c1, c2 ) 
 
24.6.24 RES ( p ) *═ SPJ ( s, p, j, q ) AND  

S ( s, sn, st, c ) AND 
J ( j, jn, c ) 

? *═ RES ( p ) 
 

24.6.25 Can't be done without negation.   
 
24.6.26 RES ( p1, p2 ) *═ SPJ ( s, p1, j1, q1 ) AND 

SPJ ( s, p2, j2, q2 ) 
? *═ RES ( p1, p2 ) 
 

24.6.27-24.6.30 Can't be done without grouping and aggregation.   
 
24.6.31 RES ( jn ) *═ J ( j, jn, jc ) AND 

SPJ ( S1, p, j, q ) 
? *═ RES ( jn ) 
 

24.6.32 RES ( pl ) *═ P ( p, pn, pl, w, pc ) AND 
SPJ ( S1, p, j, q ) 

? *═ RES ( pl ) 
 

24.6.33 RES ( p ) *═ P ( p, pn, pl, w, pc ) AND 
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SPJ ( s, p, j, q ) AND 
J ( j, jn, London ) 

? *═ RES ( p ) 
 

24.6.34 RES ( j ) *═ SPJ ( s, p, j, q ) AND 
SPJ ( S1, p, j2, q2 ) 

? *═ RES ( j ) 
 

24.6.35 RES ( s ) *═ SPJ ( s, p, j, q ) AND 
SPJ ( s2, p, j2, q2 ) AND 
SPJ ( s2, p2, j3, q3 ) AND 
P ( p2, pn, Red, w, c ) 

? *═ RES ( s ) 
 

24.6.36 RES ( s ) *═ S ( s, sn, st, c ) AND 
S ( S1, sn1, st1, c1 ) AND st < st1 

? *═ RES ( s ) 
 

24.6.37-24.6.39 Can't be done without grouping and aggregation.   
 
24.6.40-24.6.44 Can't be done without negation.   
 
24.6.45 RES ( c ) *═ S ( s, sn, st, c ) 

RES ( c ) *═ P ( p, pn, pl, w, c ) 
RES ( c ) *═ J ( j, jn, c ) 
? *═ RES ( c ) 
 

24.6.46 RES ( p ) *═ SPJ ( s, p, j, q ) AND  
S ( s, sn, st, London ) 

RES ( p ) *═ SPJ ( s, p, j, q ) AND  
J ( j, jn, London ) 

? *═ RES ( p ) 
 
24.6.47-24.6.48 Can't be done without negation.   
 
24.6.49-24.6.50 Can't be done without grouping.   
 
24.7 We show the constraints as conventional implications instead 
of in the "backward" Datalog style.   
 
a. CITY ( London )    

CITY ( Paris )     
CITY ( Rome )      
CITY ( Athens )    
CITY ( Oslo ) 
CITY ( Stockholm ) 
CITY ( Madrid ) 
CITY ( Amsterdam ) 
 
S ( s, sn, st, c )     ═* CITY ( c ) 
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P ( p, pn, pc, pw, c ) ═* CITY ( c ) 
J ( j, jn, c )         ═* CITY ( c ) 
 

b. Can't be done without appropriate scalar operators.   
 
c. P ( p, pn, Red, pw, pc ) ═* pw < 50 
 
d. Can't be done without negation or aggregate operators.   
 
e. S ( s1, sn1, st1, Athens ) AND 

S ( s2, sn2, st2, Athens ) ═* s1 = s2 
 

f. Can't be done without grouping and aggregation.   
 
g. Can't be done without grouping and aggregation.   
 
h. J ( j, jn, c ) ═* S ( s, sn, st, c ) 
 
i. J ( j, jn, c ) ═* SPJ ( s, p, j, q ) AND S ( s, sn, st, c ) 
 
j. P ( p1, pn1, pl1, pw1, pc1 ) ═* P ( p2, pn2, Red, pw2, pc2 )   
 
k. Can't be done without aggregate operators.   
 
l. S ( s, sn, st, London ) ═* SP ( s, P2, q ) 
 
m. P ( p1, pn1, pl1, pw1, pc1 ) ═*  

P ( p2, pn2, Red, pw2, pc2 ) AND pw2 < 50 
 

n.-o. Can't be done without aggregate operators.   
 
p.-q. Can't be done (these are transition constraints).   
 

24.8 No answer provided.   
 
 
          *** End of Chapter 24 *** 
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          P A R T   V I 
 
 
          O B J E C T S ,   R E L A T I O N S 
,   A N D   X M L 
 
 
The introduction to Part VI in the book itself is more or less 
self-explanatory:   
 
(Begin quote) 
 
Like Chapter 20, the chapters in this part of the book rely 
heavily on material first discussed in Chapter 5.  If you 
originally gave that chapter a "once over lightly" reading, 
therefore, you might want to go back and revisit it now (if you 
haven't already done so) before studying these chapters in any 
depth.   
 

Object technology is an important discipline in the field of 
software engineering in general.  It's therefore natural to ask 
whether it might be relevant to the field of database management 
in particular, and if so what that relevance might be.  While 
there's less agreement on these questions than there might be, 
some kind of consensus does seem to be emerging.  When object 
database systems first appeared, some industry figures claimed 
they would take over the world, replacing relational systems 
entirely; other authorities felt they were suited only to certain 
very specific problems and would never capture more than a tiny 
fraction of the overall market.  While this debate was raging, 
systems supporting a "third way" began to appear: systems, that 
is, that combined object and relational technologies in an attempt 
to get the best of both worlds.  And it now looks as if those 
"other authorities" were right:  Pure object systems might have a 
role to play, but it's a niche role, and relational systems will 
continue to dominate the market for the foreseeable future──not 
least because those "object/relational" systems are really just 
relational systems after all, as we'll see.   

 
More recently, one particular kind of object that's attracted 

a great deal of attention is XML documents; the problem of keeping 
such documents in a database and querying and updating them has 
rapidly become a problem of serious pragmatic significance.  "XML 
databases"──that is, databases that contain XML documents and 
nothing else──are possible; however, it would clearly be 
preferable, if possible, to integrate XML documents with other 
kinds of data in either an object or a relational (or 
"object/relational") database.   
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The chapters in this part of the book examine such matters in 
depth.  Chapter 25 considers pure object systems; Chapter 26 
addresses object/relational systems; and Chapter 27 discusses XML.   

 
(End quote) 
 

Note:  The book deliberately doesn't use the abbreviation "OO" 
very much.  It also prefers "object" over "object-oriented" in 
adjectival positions.   

 
 
 
 

          *** End of Introduction to Part VI 
*** 
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          Chapter 25 
 
 
          O b j e c t   D a t a b a s e s 
 
 
Principal Sections 
 
•  Objects, classes, methods, and messages 
•  A closer look  
•  A cradle-to-grave example 
•  Miscellaneous issues 
•  Summary  
 
 

General Remarks 
 
No "SQL Facilities" section in this chapter──discussion of the 
impact of "objects" on SQL is deferred to Chapter 26, q.v.  There 
are, however, a few references to SQL in passing.   
 

I have strong opinions on the subject of object databases, 
opinions that not everyone agrees with (and for that reason some 
instructors might find themselves out of sympathy with this 
chapter).  Those opinions──stated in so many words at the end of 
Section 25.6──can be summed up as follows:   

 
The one good idea of objects is proper data type support; 
everything else, including in particular the notion of user-
defined operators, follows from that basic idea.   
 

(What's more, that idea is hardly new, but this point is 
unimportant.)  Note:  The foregoing should not be taken to mean 
that I think object databases have no role to play; rather, it 
means I think we need to be very clear on just what that role is.  
See the further discussion of this point in the notes on Section 
25.6.   
 

Be that as it may, the chapter is meant, first, as a tutorial 
on object concepts (as those concepts apply to database technology 
specifically); second, as a lead-in to the discussion of 
object/relational databases in Chapter 26.  It shouldn't be 
skipped, though it might perhaps be condensed somewhat.  Section 
25.5 could be skipped.   

 
Please note the following (paraphrased from reference [3.3]):   
 

(Begin quote) 
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The label "object-oriented" (or just "object") is applied to a 
wide variety of distinct disciplines.  It's used among other 
things to describe a certain graphic interface style; a certain 
programming style; certain programming languages (not the same 
thing as programming style, of course); certain analysis and 
design techniques; and, of course, a certain approach to database 
management.  And it's quite clear that the term doesn't mean the 
same thing in all of these different contexts ... In this chapter, 
we're naturally interested in the applicability of object concepts 
and technology to database management specifically.  Please 
understand, therefore, that all remarks made in this chapter 
concerning object concepts and technology must be understood in 
this light; we offer no opinion whatsoever regarding the 
suitability of object ideas in any context other than that of 
database management specifically.   
 
(End quote) 
 

Note too that the chapter describes object concepts──object 
database concepts, that is──from a database perspective.  Much of 
the object database literature, by contrast, presents the ideas 
very much from a programming perspective instead; thus, it often 
simply ignores issues that the database community regards as 
crucial──ad hoc query, views, declarative integrity, concurrency, 
security, etc., etc.  Part of the problem is that there aren't 
just two distinct technologies out there, there are two distinct 
communities as well.  And the database community and the object 
community don't seem to understand each other, or each other's 
issues, very well.  In particular, the object community doesn't 
seem to understand the database community's insistence on 
separating logical and physical, and it doesn't seem to understand 
the database community's emphasis on declarative solutions──for 
"business rules" in particular.  And, to be very specific, it 
doesn't seem to understand the relational model (at least, such is 
my own personal experience).   

 
Note the motivating discussions in Section 25.1, especially 

the rectangles example (forward pointer to Section 26.1).  Note:  
The text says:  "Convince yourself that [the original long SQL 
query] is correct."  No answer provided!   

 
 

25.2 Objects, Classes, Methods, and Messages 
 
The table of rough equivalences in Fig. 25.3 (reproduced below) 
summarizes this section:   
 

┌──────────────────┬─────────────────────┐ 
│ Object term      │ Traditional term    │ 
├══════════════════┼─────────────────────┤ 
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│ immutable object │ value               │ 
│ mutable object   │ variable            │ 
│ object class     │ type                │ 
│ method           │ operator            │ 
│ message          │ operator invocation │ 
└──────────────────┴─────────────────────┘ 
 
Note carefully the discussion of encapsulation and some of the 

confusion that surrounds this term.  Myself, I greatly prefer the 
term scalar (the two terms do mean the same thing, but scalar has 
a longer and more respectable pedigree).   

 
Explain public vs. private instance variables very carefully 

(many people seem to be confused over this issue).  Pure systems 
don't support public instance variables, but most systems aren't 
pure.   

 
Mention OIDs but don't get into detail (yet).   
 
 

25.3 A Closer Look 
 
Explain containment hierarchies ("objects contain 
objects"──though, more usually, they contain OIDs of objects, not 
objects per se).  Note:  One reason (mentioned only briefly, later 
in the chapter) for choosing a containment hierarchy design is 
performance.  An example of mixing logical and physical 
considerations?   
 

Objects are really tuples (though probably tuples with RVAs, 
or something somewhat analogous to RVAs).   

 
Object systems support a variety of "collection" type 

generators (LIST, BAG, etc.); another example of mixing logical 
and physical?   

 
Discuss object IDs vs. "user keys" (but don't confuse OIDs and 

surrogates).   
 
Discuss class vs. instance vs. collection and "constructor 

functions."  Caveat:  "Constructor functions" are not the same 
thing as selectors.  See the notes on Section 25.6.   

 
Note the cumbersome circumlocutions in this section──e.g.:   
 
"The effect of the ADD method invocation is to add the OID of 
the EMP object whose OID is given in the program variable E to 
the (previously empty) set of OIDs whose OID is given in the 
EMP_COLL object whose OID is given in the program variable 
ALL_EMPS."   
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In practice, of course, we don't really talk like this; we say, 
rather, things like "The ADD method adds employee E to the set of 
all employees."  But this latter abbreviated form skips several 
levels of indirection.  It's OK to use such abbreviations if 
everyone understands what's really going on, but while people are 
learning I think it's better to spell it all out (tedious though 
it might seem to do so).   
 

The parallel to PL/I (or any other language that supports 
"explicit dynamic variables") is illuminating if the audience has 
the appropriate background, but can be skipped otherwise.   

 
Mention class hierarchies (unless Chapter 20 was skipped; 

either way, don't try to explain inheritance in depth at this 
juncture!).   

 
 

25.4 A Cradle-to-Grave Example 
 
Most books and papers on object databases show only snippets of 
code (or pseudocode), not whole programs.  (Reference [25.35] is 
an exception.)  But without looking at whole programs, or 
something close to whole programs, it's hard to get the big 
picture.  The present section──which is, it might as well be 
admitted right away, more than a little tedious*──is intended to 
help in this regard.  The details are messy but the section as a 
whole should be essentially self-explanatory.   
 
 
────────── 
 
*  That's part of the point, of course.   
 
────────── 
 
 

The Smalltalk exanples could be replaced by equivalent 
examples in Java or C++ or whatever, if desired (though Java and 
C++ aren't as "pure" as Smalltalk, which is why the book uses 
Smalltalk in the first place).   

 
The section doesn't discuss the point, but SET is an example 

of a union type (class) in the sense of Chapter 20.  There are 
some mysteries involved in defining ESET, CSET, and the rest as 
subclasses of SET, but they aren't mentioned in the book and I 
wouldn't mention them in a live class, either.   

 
The section closes by saying:  "Note finally that REMOVE can 

be used to emulate a relational DROP operation──e.g., to drop the 
ENROLLMENT class.  The details are left as an exercise."  This 
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exercise is suitable for class discussion.  Note that it will 
probably lead to a discussion of the catalog.  See also Exercise 
25.9 and Section 25.5.  No further answer provided.   

 
 

25.5 Miscellaneous Issues 
 
This section could be skipped or condensed.   
 

Originally, object systems couldn't do ad hoc query etc. (nor 
did they need to).  Present-day systems can, but they do it via 
public instance variables──i.e., by "violating encapsulation," 
thereby undermining the whole point of objects!  (See reference 
[25.31].)  Note our own recommended approach to this issue 
(explained in the text).  Note too the important rhetorical 
question:  What class is the query result?  If you don't have a 
good answer to this question, you don't really have a system (see 
Section 26.2 in the next chapter).   

 
By the way:  There's no objection to supporting "path 

expressions" that are merely shorthand for certain relational 
expressions.  Rather, the objection is to being limited to using 
"path expressions" only──i.e., to being limited to traversing only 
predefined paths in the database (it's germane to observe that we 
used to be limited in exactly this way in IMS and other 
prerelational systems, and we know what problems that limitation 
led to).   

 
Regarding integrity:  The (procedural) object approach to this 

issue is a giant step backward!   
 
Regarding relationships:  In addition to the issues raised in 

the text, note the point (made previously in Chapter 14) that it's 
not a good idea to make a formal distinction between "objects" (= 
entities?) and relationships.   

 
Regarding database programming languages:  Some people, myself 

included, do like this idea, but of course it doesn't really have 
anything to do with objects.  Indeed, Tutorial D is a database 
programming language──it makes no artificial and unnecessary 
distinctions between primary and secondary memory.  Mention the 
business of impedance mismatch (though this term has several 
interpretations, none of them very precise).   

 
Regarding performance:  Self-explanatory.  But note that (a) 

there's no reason why the techniques discussed──assuming they're a 
good idea──shouldn't be used in (e.g.) relational systems as well 
as object systems; (b) it could be argued that object systems 
achieve improved performance──to the extent they do──by "moving 
users closer to the metal."   
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"Is an object DBMS really a DBMS?"  Self-explanatory.  But the 

point, perhaps, is this:  "Object DBMSs" do surely have a role to 
play; there are surely problems out there for which an "object 
DBMS" is the right solution.  No argument here.  No:  The 
argument, rather, is simply that those "DBMSs" are not──for all 
kinds of reasons──DBMSs in the sense in which the database 
community understands and uses that term.  It might have been 
better not to call them DBMSs.   

 
Reject the jingle "persistence orthogonal to type"!   
 
 

25.6 Summary 
 
For this chapter, alone out of the whole book, it seems worth 
including most of the summary section in these notes, because it 
really serves not just as a summary per se but also as a critical 
analysis of the material discussed and as a lead-in to what might 
constitute a "good" object model.  So here goes (the following is 
reworded just a little from the original):   
 
(Begin quote) 
 
•   Object classes (i.e., types):  Obviously essential (indeed, 

they're the most fundamental construct of all).   
 
•   Objects:  Objects themselves, both "mutable" and "immutable," 

are clearly essential──though I'd prefer to call them simply 
variables and values, respectively.*   

 
 
────────── 
 
*  Actually it might be argued that "mutable objects" aren't quite 
the same thing as variables in the classical sense.  The one 
operator that must be available for a variable V is "assignment to 
V"──it's precisely the availability of that operator that makes V 
variable!  But objects aren't required to have an associated 
assignment "method" (and indeed they typically don't); instead, 
such a method exists only if the class definer defines it.   
 
────────── 
 
 
•   Object IDs:  Unnecessary, and in fact undesirable (at the 

model level, that is), because they're basically just 
pointers.  Note too the argument, elaborated in the next 
chapter, that OIDs are fundamentally incompatible with a good 
model of inheritance.  One problem──not the only one──is that 



Copyright (c) 2003 C. J. Date                            page 25.7 
 

OIDs lead to the possibility of shared variables, a 
possibility that doesn't exist (nor do we want it to) in the 
relational world.   

 
Note:  Two points arise here:   
 

1. Since I first wrote that sentence about shared variables 
(in the Instructor's Manual for the seventh edition), the 
possibility in question has been introduced into the SQL 
world.  I regard this state of affairs as further evidence 
that the relational world and the SQL world are not the 
same ... Worlds apart, in fact.   

 
2. Don't fall into the trap of thinking that if two distinct 

tuples in a relational database contain the same foreign 
key value and thus reference the same target tuple, that 
target tuple is a "shared variable."  It isn't.  It isn't a 
variable at all, in fact (tuples are values).  See further 
discussion in the next chapter.   

 
•  Encapsulation:  As explained in Section 25.2, "encapsulated" 

just means scalar, and I would prefer to use that term (always 
remembering that some "objects" aren't scalar anyway).   

 
•   Instance variables:  First, private instance variables are by 

definition merely implementation matters and hence not 
relevant to the definition of an abstract model, which is what 
we're concerned with here.  Second, public instance variables 
don't exist in a pure object system and are thus also not 
relevant.  I conclude that instance variables can be ignored; 
"objects" should be manipulable solely by "methods" (see 
below).   

 
•   Containment hierarchy:  We saw in Section 25.3 that 

containment hierarchies are misleading and in fact a misnomer, 
since they typically contain OIDs, not "objects."  Note:  A 
(nonencapsulated) hierarchy that really did include objects 
per se would be permissible, however, though usually 
contraindicated; it would be analogous, somewhat, to a relvar 
with relation-valued attributes (see Parts II and III of this 
book).  Though we'd have to be careful yet again over the 
values vs. variables distinction ...  

 
•   Methods:  The concept is essential, of course, though I would 

prefer to use the more conventional term operators.*  Bundling 
methods with classes is not essential, however, and leads to 
several problems [3.3]; I would prefer to define "classes" 
(types) and "methods" (operators) separately, as in Chapter 5, 
and thereby avoid the notion of "target objects" and "selfish 
methods."  (It's worth noting, incidentally, that the problems 
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introduced by bundling are not just syntactic ones.  Again, 
see reference [3.3].)   

 
 
────────── 
 
*  Another reason for avoiding the term "method" is that the term 
is used in the literature in two different senses:  Sometimes it 
seems to mean the operator as seen by the user, sometimes it seems 
to mean the code that implements that operator.  Yet another 
example of confusing model and implementation?   
 
────────── 
 
 

There are certain operators I'd insist on, too:  Selectors 
(which among other things effectively provide a way of writing 
literal values of the relevant type), THE_ operators, 
assignment and equality comparison operators, and type testing 
and TREAT DOWN operators (see Chapter 20).  I reject 
"constructor functions," however.  Constructors construct 
variables; since the only kind of variable we want in the 
database is, specifically, the relvar, the only "constructor" 
we need is an operator that creates a relvar (e.g., CREATE 
TABLE, in SQL terms).  Selectors, by contrast, select values.  
Also, of course, constructors return pointers to the 
constructed variables, while selectors return the selected 
values per se.   

 
I would also stress the distinction between read-only and 

update operators (see Chapter 5).   
 

•   Messages:  Again, the concept is essential, though I'd prefer 
to use the more conventional term invocation (and, again, I'd 
avoid the notion that such invocations have to be directed at 
some "target object" but instead treat all arguments equally).   

 
•   Class hierarchy (and related notions──inheritance, 

substitutability, inclusion polymorphism, and so on):  
Desirable but orthogonal (I see class hierarchy support, if 
provided, as just part of support for classes──i.e., 
types──per se).   

 
•   Class vs. instance vs. collection:  The distinctions are 

essential, of course, but orthogonal (the concepts are 
distinct, and that's really all that needs to be said).   

 
•   Relationships:  To repeat a point made earlier in these 

notes, it's not a good idea to treat "relationships" as a 
formally distinct construct──especially if it's only binary 
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relationships that receive such special treatment.  I also 
don't think it's a good idea to treat the associated 
referential integrity constraints in some manner that's 
divorced from the treatment, if any, of integrity constraints 
in general (see below).   

 
•   Integrated database programming language:  Nice to have, but 

orthogonal.  However, the languages actually supported in 
today's object systems are typically procedural (3GLs) and 
therefore──I would argue──nasty to have (another giant step 
backward, in fact).   

 
And here's a list of features that "the object model" 

typically doesn't support, or doesn't support well:   
 

•  Ad hoc queries:  Early object systems typically didn't support 
ad hoc queries at all.  More recent systems do, but they do 
so, typically, either by breaking encapsulation or by imposing 
limits on the queries that can be asked* (meaning in this 
latter case that the queries aren't really ad hoc after all).   

 
 
────────── 
 
*  I.e., by restricting them, via path expressions, to predefined 
paths in the database──as in IMS.   
 
────────── 
 
 
•  Views:  Typically not supported (for essentially the same 

reasons that ad hoc queries are typically not supported).  
Note:  Some object systems do support "derived" or "virtual" 
instance variables (necessarily public ones); e.g., the 
instance variable AGE might be derived by subtracting the 
value of the instance variable BIRTHDATE from the current 
date.  However, such a capability falls far short of a full 
view mechanism──and in any case I've already rejected the 
notion of public instance variables.   

 
•  Declarative integrity constraints:  Typically not supported 

(for essentially the same reasons that ad hoc queries and 
views are typically not supported).  In fact, they're 
typically not supported even by systems that do support ad hoc 
queries.   

 
•   Foreign keys:  The "object model" has several different 

mechanisms for dealing with referential integrity, none of 
which is quite the same as the relational model's more uniform 
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foreign key mechanism.  Such matters as ON DELETE RESTRICT and 
ON DELETE CASCADE are typically left to procedural code 
(probably methods, possibly application code).   

 
•   Closure:  What's (or, rather, where's) the object analog of 

the relational closure property?   
 
•   Catalog:  Where's the catalog in an object system?  What does 

it look like?  Are there any standards?  Note:  These 
questions are rhetorical, of course.  What actually happens is 
that a catalog has to be built by the professional staff whose 
job it is to tailor the object DBMS for whatever application 
it has been installed for, as discussed at the end of Section 
25.5.  (That catalog will then be application-specific, as 
will the overall tailored DBMS.)   

 
To summarize, then, the good (essential, fundamental) features 

of the "object model"──i.e., the ones we really want to 
support──are as shown in the following table:   

 
┌──────────────────┬─────────────────────┬───────────────────────┐ 
│ Feature          │ Preferred term      │ Remarks               │ 
├══════════════════┼─────────────────────┼───────────────────────┤ 
│ object class     │ type                │ scalar & nonscalar;   │ 
│                  │                     │ possibly user-defined │ 
│ immutable object │ value               │ scalar & nonscalar    │ 
│ mutable object   │ variable            │ scalar & nonscalar    │ 
│ method           │ operator            │ including selectors,  │ 
│                  │                     │ THE_ ops, ":=", "=",  │ 
│                  │                     │ & type test operators │ 
│ message          │ operator invocation │ no "target" operand   │ 
└──────────────────┴─────────────────────┴───────────────────────┘ 
 
(End quote) 
 
 
Answers to Exercises 
 
25.1 We comment here on the term object itself (only; see the body 
of the chapter for the rest).  Here are some "definitions" from 
the literature:   
 
•  "Objects are reusable modules of code that store data, 

information about relationships between data and applications, 
and processes that control data and relationships" (from a 
commercial product announcement; this sentence is hard enough 
to parse, let alone understand).   

 
•   "An object is a chunk of private memory with a public 

interface" (from reference [25.38]; the definition is true 
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enough, but hardly very precise; note too that it supports the 
position argued in reference [25.16] to the effect that the 
object model is really a storage model, not a data model).   

 
•   "An object is an abstract machine that defines a protocol 

through which users of the object may interact" (from the 
introduction to reference [25.42]).   

 
•   "An object is a software structure that contains data and 

programs" (from reference [25.24]; actually, objects don't 
contain programs, in general──class-defining objects contain 
programs).   

 
And my "favorite" (at the time of writing, at any rate) is this 
one:   
 
•  "Object:  A concrete manifestation of an abstraction; an 

entity with a well-defined boundary that encapsulates state 
and behavior; an instance of a class ... Instance:  A concrete 
manifestation of an abstraction; an entity to which a set of 
operations can be applied and that has a state that stores the 
effects of the operations" (from reference [14.5]).*   

 
Note that none of these "definitions" gets to what we would regard 
as the heart of the matter──viz., that an object is essentially 
just a value (if immutable) or a variable (otherwise).   
 
 
────────── 
 
*  If object and instance mean the same thing, why are there two 
terms?  If they don't, what's the difference?   
 
────────── 
 
 

It's worth commenting too on the notion that "everything's an 
object."  Here are some examples of constructs that aren't objects 
(at least, they aren't in most object systems): instance 
variables; relationships (at least in ODMG [25.11]); methods; 
OIDs; program variables.  And in some systems (again including 
ODMG) values aren't objects either.   

 
25.2 Some of the advantages of OIDs are as follows:   
 
•  They aren't "intelligent."  See reference [14.10] for an 

explanation of why this state of affairs is desirable.   
 
•   They never change so long as the object they identify remains 

in existence.   
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•  They're noncomposite.  See references [14.11] and [19.8] for 

an explanation of why this state of affairs is desirable.   
 
•   Everything in the database is identified in the same uniform 

way (contrast the situation with relational databases).   
 
•   There's no need to repeat user keys in referencing objects.  

There's thus no need for any ON UPDATE rules.   
 

Some of the disadvantages──the fact that they don't avoid the 
need for user keys, the fact that they lead to a low-level pointer 
chasing style of programming, and the fact that they apply to 
"base" (nonderived) objects only──were discussed briefly in 
Sections 25.2-25.4.  And the huge disadvantage, to the effect that 
they're incompatible with what I would regard as a "good" model of 
inheritance, is discussed in detail in the next chapter.   

 
Possible OID implementation techniques include:   
 

•  Physical disk addresses (fast but poor data independence)  
 
•  Logical disk addresses (i.e., page and offset addresses; 

fairly fast, better data independence)  
 
•   Artificial IDs (e.g., timestamps, sequence numbers; need 

mapping to actual addresses)  
 

25.3 See reference [25.15].   
 
25.4 No answer provided.   
 
25.5 We don't give a detailed answer to this exercise, but we do 
offer a few comments on the question of object database design in 
general.  It's sometimes claimed that object systems make database 
design (as well as database use) easier, because they provide 
high-level modeling constructs and support those constructs 
directly in the system.  (By contrast, relational systems involve 
an extra level of indirection: namely, the mapping process from 
real-world objects to relvars, attributes, foreign keys, and so 
on.)  And this claim does have some merit.  However, it overlooks 
the larger question:  How is object database design done in the 
first place?  The fact is, "the object model" as usually 
understood involves far more degrees of freedom──in other words, 
more choices──than the relational model does; and I, at least, am 
not aware of any good guidelines that might help in making those 
choices.  For example, how do we decide whether to represent, say, 
the set of all employees as an array, or a list, or a set (etc., 
etc.)?  "A powerful data model needs a powerful design methodology 
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... and this is a liability of the object model" (paraphrased 
somewhat from reference [25.24]; I would argue that that qualifier 
"powerful" should really be "complicated").   
 
25.6 No answer provided (it's straightforward, but tedious).   
 
25.7 No answer provided (ditto).   
 
25.8 No answer provided (ditto).   
 
25.9 We don't give a detailed answer to this exercise, but we do 
make one remark concerning its difficulty.  First, let's agree to 
use the term "delete" as a shorthand to mean "make a candidate for 
physical deletion" (i.e., by erasing all references to the object 
in question).  Then in order to delete an object X, we must first 
find all objects Y that include a reference to X; for each such 
object Y, we must then either delete that object Y, or at least 
erase the reference in that object Y to the object X (by setting 
that reference to the special value (?) nil).  And part of the 
problem is that it isn't possible to tell from the data definition 
alone exactly which objects include a reference to X, nor even how 
many of them there are.  Consider employees, for example, and the 
object class ESET.  In principle, there could be any number of 
ESET instances, and any subset of those ESET instances could 
include a reference to some specific employee.   
 
25.10 There are at least nine possible hierarchies:   
 

S contains ( P contains ( J ) ) 
S contains ( J contains ( P ) ) 
S contains ( P and J ) 
P contains ( J contains ( S ) ) 
P contains ( S contains ( J ) ) 
P contains ( J and S ) 
J contains ( S contains ( P ) ) 
J contains ( P contains ( S ) ) 
J contains ( S and P ) 
 
"Which is best?" is unanswerable without additional 

information, but almost certainly all of them are bad.  That is, 
whichever hierarchy is chosen, there'll always be numerous 
problems that are hard to solve in terms of that particular 
hierarchy.   

 
25.11 First of all, there are the nine "obvious" designs discussed 
in the previous answer.  But there are many other candidate 
designs as well──for example, an "SP" class that shows directly 
which suppliers supply which parts and also includes two embedded 
sets of projects, one for the supplier and one for the part.  
There's also a very simple design involving no (nontrivial) 
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hierarchies at all, consisting of an "SP" class, a "PJ" class, and 
a "JS" class.   
 
25.12 The performance factors discussed were clustering, caching, 
pointer swizzling, and executing methods at the server.  All of 
these techniques are applicable to any system that provides a 
sufficient level of data independence; they are thus not truly 
"object-specific."  In fact, the idea of using the logical 
database definition to decide what physical clustering to use, as 
some object systems do, could be seen as potentially undermining 
data independence.  Note:  It should be pointed out too that 
another very important performance factor, namely optimization, 
typically does not apply to object systems.   
 
25.13 Declarative support, if feasible, is always better than 
procedural support (for everything, not just integrity 
constraints).  In a nutshell, as pointed out several times earlier 
in this manual (and in the book), declarative support means the 
system does the work instead of the user.  That's why relational 
systems support declarative queries, declarative view definitions, 
declarative integrity constraints, and so on.   
 
25.14 See the discussion of relationships in Section 25.5.   
 
 
 
 
          *** End of Chapter 25 *** 
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          Chapter 26 
 
 
          O b j e c t  /  R e l a t i o n a l   
D a t a b a s e s 
 
 
Principal Sections 
 
•  The First Great Blunder 
•  The Second Great Blunder 
•  Implementation issues 
•  Benefits of true rapprochement 
•  SQL facilities  
 
 

General Remarks 
 
At first blush, this chapter might be thought a little lightweight 
(at least, until we get to the section on SQL).  But there's a 
reason for this state of affairs!  The fact is, the label 
"object/relational" is, primarily, vendor hype ... As the text 
asserts:   
 

A true "object/relational" system would be nothing more than a 
true relational system!   
 

For consider:   
 
•   "Object/relational," if it means anything at all, has to mean 

marrying (good) object ideas with relational ideas.   
 
•   We saw in Chapter 25 that "good object ideas" simply means 

proper data type support.   
 
•   The relational model presupposes proper data type support 

(that's what domains are, data types, as we saw in Chapter 5).   
 
•   So we don't have to do anything to the relational 

model──except implement it, an idea that doesn't seem to have 
been tried very much──in order to achieve the object 
functionality we desire.   

 
It follows that much of the stuff one might have been led by 

vendor hype to expect in this chapter──the stuff regarding user-
defined types and type inheritance in particular (or "data 
blades," or "data cartridges," etc.)──has already been discussed 
earlier in the book.   
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To repeat, a true "object/relational" system is really nothing 

more than a true relational system.  But, of course, the meaning 
of the term "relational" has become polluted over the years, 
thanks to SQL, so a new label such as "object/relational" has 
become necessary, at least for marketing purposes.   

 
Emphasize the point that the all too common misconception that 

relational systems can support only a limited number of very 
simple data types is exactly that──a misconception.   

 
Note the "good" (relational) solution to the rectangles 

problem.  (The book gives that solution in Tutorial D; producing 
an SQL analog is left as an exercise.  No answer provided.)   

 
The chapter should not be skipped.   
 
 

26.2 The First Great Blunder 
 
So are there any "true object/relational" systems?  Well, the sad 
fact is that we can observe two Great Blunders being committed out 
there in the marketplace (and in research, too, I'm sorry to have 
to add).  And any system that commits either of these blunders can 
hardly be said to be relational, or "object/relational."  And just 
about every system available is committing the second blunder, if 
not the first as well ... Draw your own conclusions.   
 

By the way, I recognize that blunder is a pretty strong term, 
but I'm not trying to win friends here; I think the mistakes are 
severe enough to merit the term.  Note added later:  As it says in 
the book itself, one reviewer of an early draft objected to the 
use of the term blunder, observing correctly that it isn't a term 
commonly found in textbooks.  Well, I admit I chose it partly for 
its shock value.  But if some system X is supposed to be an 
implementation of the relational model, and then──some 25 years 
after the relational model was first defined──somebody adds a 
"feature" to that system X that totally violates the prescriptions 
of that model, it seems quite reasonable to me to describe the 
introduction of that "feature" as a blunder.   

 
The first blunder is described in the present section.  It 

consists of equating relvars and domains (or tables and classes, 
if you prefer).  I should immediately explain that, along with 
Hugh Darwen, I've been arguing against this false equation for 
several years, and it's probably true to say that few products are 
actually adhering to it any more (in other words, I'd like to feel 
our arguments didn't completely fall on deaf ears).  As already 
noted, however, just about every product on the market seems to be 
committing the second blunder!──in fact, it's at least arguable 
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that the SQL standard commits it (see Section 26.6).  In other 
words, (a) the first blunder seems to lead inevitably to the 
second (i.e., if you commit the first, you'll commit the second 
too), but (b) sadly, it's possible to commit the second even if 
you don't commit the first.   

 
Explain the "crucial preliminary question" (and say why it's 

crucial).  Work through the detailed example.  Note carefully that 
the tables really contain pointers to tuples and relations, not 
tuples and relations as such.  Note too that PERSON and EMP are 
"supertable" and "subtable," respectively, but not supertype and 
subtype!──in particular, there's no substitutability [3.3].   
 

Showstopping criticisms of the equation "relvar = class":   
 

•   A relvar is a variable and a class is a type.  There's a huge 
logical difference here.   

 
•   A true object class has methods and no public instance 

variables (at least if it's "encapsulated").  By contrast, a 
relvar "object class" has public instance variables and only 
optionally has methods (it's definitely not "encapsulated").  
So one has A and not B, while the other has B and only 
optionally has A!  Another logical difference.   

 
•   There's yet another huge logical difference between the 

column definitions "SAL NUMERIC" and "WORKS_FOR COMPANY":  
NUMERIC is a data type, COMPANY is a relvar.   

 
•   People who advocate the equation "table = class" really mean 

"base table = class."  Another serious mistake (a violation of 
The Principle of Interchangeability, in fact).   

 
Introducing pointers into relations (The Second Great 

Blunder──forward pointer to the next section) undermines the 
conceptual integrity of the relational model.  "Conceptual 
integrity" is a useful idea, by the way, and it's worth spending a 
minute or two on it──with examples (see reference [3.3]).  Note:  
There are plenty of bad examples in SQL!  Here are a few:   

 
•  The interpretation of null depends on context:   
 

■  Comparisons  : value unknown 
■  Outer join   : value not applicable (?) 
■  AVG ()       : value undefined 
■  SUM ()       : value zero 
■  Type BOOLEAN : third truth value 

etc., etc., etc. 
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•  SQL tables are bags of rows, yet "bag union" etc. aren't 
directly supported, nor are they easily simulated  

 
•   SQL concepts aren't agreeably few, and many are downright 

disagreeable: e.g., nulls, 3VL, left-to-right column ordering, 
duplicate rows, subtables and supertables, etc., etc.   

 
Note very carefully the discussion of where The First Great 

Blunder might have come from!  (A confidence trick?)   
 
 

26.3 The Second Great Blunder 
 
Don't mix pointers and relations!  See reference [26.15] for 
detailed arguments in defense of this position (which really 
shouldn't need defending, but those who don't know history are 
doomed to repeat it ...).   
 

Note the further analysis in this section of some of the ideas 
involved in the example in the previous section (most of which 
were rather confused, as it turns out).  The first is, precisely 
(though implicitly), mixing pointers and relations.  Key point:  
Pointers point to variables, not values (because variables have 
addresses* and values don't; recall that values "have no location 
in time or space").  Hence, if relvar R1 includes an attribute 
whose values are pointers "into" relvar R2, then those pointers 
point to tuple variables, not to tuple values.  But there's no 
such thing as a tuple variable in the relational model.  (Relation 
variables contain relation values, and relation values can hardly 
be regarded as containing tuple variables!  In fact, of course, as 
pointed out in the notes on Chapter 23 in connection with the 
special variable NOW, the notion of any kind of value containing 
any kind of variable is obviously nonsense, logically speaking.)   

 
 

────────── 
 
*  After all, a variable represents an abstraction of a chunk of 
storage.   
 
────────── 
 
 

The quote from Ted Codd [6.2] is worth emphasizing.  Also (to 
quote the text):  "Actually there's another powerful argument 
against supporting pointers, one that Codd couldn't possibly have 
been aware of when he was writing reference [6.2]"──namely, 
pointers and a good model of inheritance are incompatible.*  Go 
through the example (drawing pictures can help).  Note:  The 
example is expressed in Tutorial D style──not really Tutorial D, 
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because Tutorial D doesn't have any pointer support──but you might 
prefer to replace it by (e.g.) a Java equivalent.   

 
 

────────── 
 
*  To repeat a remark from the notes on Chapter 20, this fact 
implies that objects and a good model of inheritance are 
incompatible, since objects rely on pointers.   
 
────────── 
 
 

Note the discussion of where the second blunder might have 
come from, too.  The Wilkes quote is nice.   

 
 

26.4 Implementation Issues 
 
Mostly self-explanatory.  Note the implication that, even though 
user-defined data type support might be thought of as simply an 
add-on to existing SQL support (and so it is, logically), it's 
certainly not just an add-on in implementation terms.  That is, a 
good object/relational system can't be built by simply adding a 
new layer on top of an existing SQL implementation.  Rather, the 
DBMS has to be ripped apart and rebuilt "from the ground up" 
(because good user-defined data type support affects so many 
different components of the system).  These observations might 
help in the evaluation and comparison of commercial offerings in 
this arena.   
 
 
26.5 Benefits of True Rapprochement  
 
Stonebraker's "DBMS classification matrix" is, of course, very 
simplistic, but it can serve as a useful organizing principle for 
discussion.  Note Stonebraker's position that "object/relational 
systems are in everyone's future"; they're not just a passing fad, 
soon to be replaced by some other briefly fashionable idea.  And I 
agree with this position, strongly──though I'm not sure I agree 
with Stonebraker on exactly what an object/relational system is!  
In particular, Stonebraker never states explicitly that a true 
"object/relational" system would be nothing more than a true 
relational system, nor does he ever discuss "the equation wars" 
(domain = class vs. table = class).   
 

In addition to the benefits listed, it would be a shame to 
walk away from nearly 35 years of solid relational R&D.   
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26.6 SQL Facilities  
 
To quote:  "SQL:1999's object/relational features are the most 
obvious and extensive difference between it and its predecessor 
SQL:1992."  Remind students that:   
 
•  SQL supports two kinds of user-defined types, DISTINCT types 

and structured types, both of which can be used as a basis for 
defining columns in base tables (among other things)──see 
Chapter 5.   

 
•   Structured types (only) can also be used as the basis for 

defining "typed tables"──see Chapter 6.   
 
•   SQL-style inheritance applies to structured types (only)──see 

Chapter 20.   
 

Now we need to add to the foregoing some discussion of (a) the REF 
type generator and (b) subtables and supertables.   
 

Regarding REF types:  Explain carefully why "typed tables" 
aren't really "of" the type they're said to be!  Note the "self-
referencing column" terminology.  Note:  This stuff is very hard 
to explain, because it doesn't really make sense when you get 
right down to it.  Note the footnote regarding circularity ... In 
the last analysis, it all boils down to a confusion over values 
vs. variables.  Note the ambiguity (confusion?) over 
encapsulation, too.   
 

Show some data manipulation examples.  Explain (SQL-style) 
dereferencing.  "Typed tables" have two different types at the 
same time!  "It's all just shorthand, really" (?).   

 
This section includes the following text:  "Note the NOT NULL 

specifications on the columns of table EMP.  Specifying that the 
columns of table DEPT also have nulls not allowed is not so easy!  
The details are left as an exercise."  Answer:  Explicit 
constraints will be necessary──e.g.:   

 
CREATE ASSERTION BUDGET_NOT_NULL  

CHECK ( NOT EXISTS ( SELECT *  
FROM   DEPT 
WHERE  DEPT.BUDGET IS NULL ) ) ;  
 

Regarding subtables and supertables:  Explain the semantics 
and "behavior."  What's this feature for?  Good question!  Note 
that the only things that might be useful at the model level can 
be achieved via views anyway [3.3]; in fact, we could implement 
subtables and supertables with views.  It's my own strong 
suspicion that the real point is to allow a subtable and 
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supertable to be stored as a single table on the disk.  If I'm 
right here, then it's a horrible model vs. implementation 
confusion.   

 
"[If] SQL does not quite commit The Two Great Blunders, it 

certainly sails very close to the wind ...":  Explain.  Note (a) 
the "extent" stuff, (b) the fact that SQL suffers from the problem 
discussed earlier under the heading "Pointers and a Good Model of 
Inheritance Are Incompatible."  What's the justification for all 
of this stuff?  Note the following annotation to reference [26.21] 
(that reference consists of an overview of the additions made to 
the standard with SQL:1999):   

 
(Begin quote)  
 
[When] this article first appeared, Hugh Darwen and the present 
author wrote to the SIGMOD Record editor as follows:  "With 
reference to [the subject article]──in particular, with reference 
to the sections entitled 'Objects ... Finally' and 'Using REF 
Types'──we have a question:  What useful purpose is served by the 
features described in those sections?  To be more specific, what 
useful functionality is provided that can't be obtained via 
features already found in SQL:1992?"  Our letter wasn't published.   
 
(End quote)  
 
 
Answers to Exercises  
 
26.1 See Section 26.1.   
 
26.2 Essentially the same thing happens as happened with the code 
from Section 26.3 (whichever of the three possibilities that might 
have been); the overall conclusion is the same, too.   
 
26.3 An analogous problem does not arise with foreign keys.  In 
order to show why, we return to the original example from Section 
26.3.  Note:  The following explanation is taken from reference 
[3.3], Appendix G, pages 421-422.   
 

VAR E  ELLIPSE ; 
VAR XC REF_TO_CIRCLE ; 
 
E   :=  CIRCLE ( LENGTH ( 5.0 ), POINT ( 0.0, 0.0 ) ) ; 
XC  :=  TREAT_DOWN_AS_REF_TO_CIRCLE ( REF_TO ( E ) ) ; 
THE_A ( E )  :=  LENGTH ( 6.0 ) ; 
 
Ignoring irrelevancies, a relational analog of this example 

might look something like this:   
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VAR R1 ... RELATION { K ELLIPSE ... } KEY { K } ; 
 
VAR R2 ... RELATION { K CIRCLE ... } 

FOREIGN KEY { K } REFERENCES R1 ; 
 

For simplicity, assume no "referential actions"──cascade 
update, etc.──are specified (this simplifying assumption doesn't 
materially affect the argument in any way).  Note that every K 
value in R1 that "matches" some K value in R2 must be of type 
CIRCLE, not just of type ELLIPSE.   

 
Now let's insert a relation containing just one tuple into 

each of the two relvars:   
 
INSERT R1  
RELATION { 
TUPLE { K CIRCLE ( LENGTH ( 5.0 ), POINT ( 0.0, 0.0 ) ) } } ; 
 
INSERT R2  
RELATION { 
TUPLE { K CIRCLE ( LENGTH ( 5.0 ), POINT ( 0.0, 0.0 ) ) } } ; 
 
Finally, let's try to update the tuple in R1:   
 
UPDATE R1 { THE_A ( K ) := LENGTH ( 6.0 ) } ; 
 
This UPDATE attempts to update the circle in the single tuple 

in R1 to make it of type ELLIPSE (we're speaking pretty loosely 
here, of course!).  If that attempt were to succeed, the K value 
in R2 would refer to a "noncircular circle"──but that attempt does 
not succeed; instead, the UPDATE fails on a referential integrity 
violation.   

 
Note:  It's true that run-time errors can occur──referential 

integrity errors, to be precise──but run-time integrity violations 
are always possible, in general.  At least we do have a system in 
which S by C and G by C are supported, type constraints are 
supported too, and noncircular circles and the like can't occur.  
(And run-time type errors specifically can occur only in the 
context of TREAT DOWN.)   

 
26.4 Yes and no (probably more no than yes).  No further answer 
provided.   
 
26.5 It might make sense, but the variable won't be automatically 
maintained (i.e., if the row the variable points to is deleted, 
it'll be up to the user to realize that the variable now contains 
a dangling reference and deal with it appropriately).   
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26.6 No answer provided (it's tedious but essentially 
"straightforward").   
 
26.7 No answer provided.   
 
26.8 No answer provided.   
 
 
 
 
          *** End of Chapter 26 *** 
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          Chapter 27 
 
 
          T h e   W o r l d   W i d e   W e b 
 
 
          a n d   X M L 
 
 
Principal Sections 
 
•  The Web and the Internet 
•  An overview of XML  
•  XML data definition  
•  XML data manipulation  
•  XML and DBs  
•  SQL facilities  
 
 

General Remarks 
 
Nick Tindall of IBM was the original author of this chapter.  You 
probably don't want to skip it.   
 

There's a huge amount of interest these days in the Web, the 
Internet, and XML (trite but true observation).  And there's a 
huge amount of material currently available on these topics, in 
all kinds of places.  Comparatively little of that material seems 
to be written from a database perspective, however──and what 
little there is on database issues usually seems to come from 
people not knowledgeable in database technology.  As a 
consequence, although XML in particular clearly does have 
implications for databases, the true nature of those implications 
doesn't seem to be well understood.*  Indeed, there are some 
people who think XML is going to take over the database world 
completely──all databases will become XML databases, SQL will 
disappear (or be subsumed by XML), the relational model just won't 
be relevant any more, and on and on.  Pretty strong claims for 
something that started out to be, in essence, nothing more than an 
approach to the data interchange problem!  (To quote the XML 
specification [27.25], the original purpose of XML was "to allow 
generic SGML to be served, received, and processed on the Web like 
HTML.")   

 
 

────────── 
 
*  In this connection, see the annotation to reference [27.3].   
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────────── 
 
 

My own opinions regarding those "pretty stong claims" is 
summed up in the subsection "XML Databases" at the end of Section 
27.6.  To quote:   

 
"[We] saw in Chapter 3 that the relational model is both 
necessary and sufficient to represent any data whatsoever.  We 
also know there's a huge investment in terms of research, 
development, and commercial products in what might be called 
relational infrastructure (i.e., support for recovery, 
concurrency, security, and optimization──not to mention 
integrity!──and all of the other topics we've been discussing 
in this book).  In our opinion, therefore, it would be unwise 
to embark on the development of a totally new kind of database 
technology when there doesn't seem to be any overwhelming 
reason to do so ... Not to mention the fact that any such 
technology would obviously suffer from problems similar to 
those that hierarchic database technology already suffers from 
(see, e.g., Chapter 13 of reference [1.5] or the annotation to 
references [27.3] and [27.6])."   
 
Note here the reference to hierarchic database technology, by 

the way.  XML documents are hierarchic; XML databases (by which I 
mean what are sometimes called "native" XML databases) are thus 
hierarchic databases, and all of the old arguments against 
hierarchic databases apply directly (just as they do to object 
databases, as discussed in Chapter 25).  In this connection, see 
the annotation to reference [27.6].   

 
The purpose of this chapter, then, is to try to get at the 

true nature of what the relationship is or should be between XML 
and database technology.  No prior knowledge of XML is assumed.   

 
 

27.2 The Web and the Internet  
 
You can skip this section if you like──most people are familiar 
with the Web and the Internet these days.  The purpose of the 
section is simply to present some background for the XML 
discussions to follow, and in particular to introduce a few terms 
that are thrown around a lot in such contexts without (sometimes) 
a very clear understanding of what they mean: hypertext, URL, 
HTML, HTTP, website, web page, web browser, web server, web 
crawler, search engine, etc.   
 
 
27.3 An Overview of XML  
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To repeat, no prior knowledge of XML is needed for this chapter.  
That's why there are three sections on XML per se: this overview 
section, plus the next two on XML data definition and XML data 
manipulation, respectively.  Note that there's very little on 
databases as such in these three sections.  However, they're 
definitely written from a database viewpoint:  They downplay some 
aspects──e.g., namespaces, stylesheets──that XML aficionados might 
think are important but database people probably don't; at the 
same time, they emphasize others──e.g., integrity, data 
types──that XML people don't seem to be very interested in but 
database people are (or should be!).  As a consequence, I think 
you should at least "hit the highlights" of these three sections, 
even if your audience is already "XML-aware."  In the case of the 
present section, the highlights are as follows:   
 
•   An XML document is a document created using XML facilities 

(loose definition; the definition is loose because XML 
documents are really created using, not XML per se, but rather 
some "XML derivative"; XML is really a metalanguage or, more 
precisely, a metametalanguage).   

 
•   Explain elements; tags (note that there's some confusion over 

the precise meaning of this term); attributes; empty elements.  
Note:  This latter is another misnomer, really──an empty 
element is an element that contains an empty character string 
(which isn't the same as being empty, which would mean it 
contains nothing at all), and it often has attributes too.   

 
•   Mention development history: proprietary──and somewhat 

procedural──markup languages such as Script; then GML; 
Standard GML; HTML; XML.  XML has not exactly met its original 
goal of replacing HTML, but it has been widely used for other 
purposes.  That's why there's a need to keep XML data in 
databases.  The DRAWING example is worth discussing (note the 
message, implicit in that example, that an XML document might 
very reasonably appear in a relational database as an 
attribute value within some tuple).   

 
•   Definitely discuss the PartsRelation example.  Point out that 

(to quote) "the XML document ... isn't a very faithful 
representation of a parts relation, because it imposes a top-
to-bottom sequence on the tuples and a left-to-right sequence 
on the attributes of those tuples (actually lexical sequence 
in both cases)."  By contrast, XML attributes are unordered, 
so it might be preferable to represent relational attributes 
by XML ditto.  Note, however, that the "XML collection" 
support in SQL/XML (see Section 27.7) does map relational 
attributes to XML elements, not attributes; SQL/XML is thus 
subject to the foregoing criticism, and it isn't "stacking the 
deck" to introduce such an example.   
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•   Explain "XML derivatives" (the official term is "XML 

applications") and XML document structure (nodes).  The root 
or document node does not correspond to the document root 
element (trap for the unwary).  Explain the information set 
("infoset"); mention DOM.  Another quote:  "It might help to 
point out that the infoset for a given document is very close 
to being a possrep for that document, in the sense of Chapter 
5."   

 
•   Introduce "the semistructured data model" (I set this phrase 

in quotes because I'm highly skeptical, or suspicious, 
regarding that term "semistructured"*).  Relations are no more 
and no less "structured" than XML documents are.  Anything 
that can be represented as an XML document can equally well be 
represented relationally──possibly as a tuple, possibly as a 
set of tuples, possibly otherwise.  See Exercise 27.26.   

 
 
────────── 
 
*  I'm also highly skeptical, or suspicious, regarding the term 
"schemaless," which is also much encountered in this context.  See 
Exercise 27.27.   
 
────────── 
 
 
•   Indeed, as the book says, I see no substantial difference 

between "the semistructured model" and the old-fashioned 
hierarchic model (or, at least, the structural aspects of the 
hierarchic model).  See Exercise 27.29.   

 
 

27.4 XML Data Definition  
 
 
Regarding DTDs, explain:   
 
•  The fact that they're part of the XML standard per se.   
 
•  The revised PartsRelation example, with its DTD.   
 
•   Well-formedness.  Note:  This term is slightly strange, in a 

way, since if a document isn't well-formed then it just isn't 
an XML document in the first place (all XML documents are 
well-formed, by definition).  It's kind of like saying a 
relation isn't well-formed if it involves (say) a left-to-
right ordering to its attributes; if it involves a left-to-



Copyright (c) 2003 C. J. Date                            page 27.5 
 

right ordering to its attributes, then it just isn't a 
relation.   

 
•  Validity (= conformance to some DTD).   
 
•   DTD support for integrity constraints: legal values, 

attributes of type ID and IDREF.   
 
•  Limitations of DTDs (with respect to integrity in particular).   
 

Regarding XML Schema, explain:   
 
•  XML schemas are XML documents.   
 
•  The further revised PartsRelation example, with its schema.   
 
•   Types and type constraints (but they're really just PICTUREs, 

á la COBOL, in traditional programming language terms).   
 
•  Mention additional advantages vis-á-vis DTDs.   
 
•  Mention schema validation.   
 

Finally, a word on "metametalanguages":  XML defines (among 
other things) the rules for constructing DTDs; and a DTD in turn 
is a metalanguage that defines the rules for constructing 
conforming documents.  So a DTD is a metalanguage, and XML itself 
is, as claimed, really a metametalanguage.  A quote:  "[All] of 
those rules are, primarily, syntax rules; neither XML in general 
nor a given DTD in particular ascribes any meaning to documents 
created in accordance with those rules."   

 
 

27.5 XML Data Manipulation  
 
XQuery: 
 
•  Subsumes XPath, which we'll get to in a minute.   
 
•  Is read-only (= no updating──it really is just for query).   
 
•   Is large and complex──not to mention somewhat procedural, and 

(in my opinion) badly designed in certain respects ("from the 
folks who brought you SQL ...?").   

 
•   Doesn't operate on XML documents, as such, at all!  This is 

the sort of thing that happens if you focus purely on data 
structure first (ignoring operators), and then try to graft 
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operators on afterward; in other words, if you're not a 
database person and you don't know about data models, or if 
you're not a languages person and you don't know about types.  
To elaborate:  There was an attempt for a while to define an 
"XML document algebra" (retroactively), but the task was 
obviously impossible.  To be specific, if X is an XML 
document, then X MINUS X would have to return something that 
isn't an XML document (there's no such thing as a completely 
empty XML document──there has to be a root element, even if 
that element itself is "empty").  So the algebra had to be 
defined, not over XML documents as such, but over certain 
abstractions of such documents, called sequences (and an empty 
sequence was legal).  Some of the ideas of that algebra were 
subsequently incorporated into XQuery.  Note:  There are other 
reasons, noted in the chapter, why XQuery can't deal with XML 
documents as such, but the foregoing is a conceptually 
important one.   

 
We need to cover XPath first.  Explain path expressions 

(relate to path expressions in object systems; XML documents are 
like OO containment hierarchies!).  "Manual navigation" look and 
feel.  Currency ("context nodes").  A quote:  "One problem with 
XPath is that it's fundamentally just an addressing mechanism; its 
path expressions can navigate to existing nodes in the hierarchy, 
but they can't construct nodes that don't already exist."  Analogy 
with a "relational" language that supports restrictions and 
projections but not joins.  Hence XQuery, which does have the 
ability to construct new nodes.  Explain:   
 
•   Similarities and differences between XQuery expressions and 

relational calculus ditto.   
 
•   Similarities and differences between XQuery expressions and 

nested loops in a 3GL.  In my opinion, the parallels here are 
stronger.  Note in particular that XQuery effectively hand-
codes joins; note too that the particular nesting used in that 
hand-coding affects the result ("A JOIN B" and "B JOIN A" are 
logically different!).*   

 
 
────────── 
 
*  Part of the problem, it seems to me, is that sequences are the 
wrong abstraction; sets would have been better.  Of course, this 
point is one large part of the old argument between hierarchies 
and relations.  Once again, those who don't know history are 
doomed to repeat it?   
 
────────── 
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•   FLWOR expressions in general (albeit in outline only).  

Difference between for and let.  The fact that order by 
precedes return needs some explanation.   

 
•  At least one nontrivial hierarchic example.   
 

A question:  Is there any notion of completeness in XQuery, 
analogous to relational completeness in the relational world?   

 
 

27.6 XML and DBs  
 
Two requirements:   
 
•  Store XML data in databases and retrieve and update it.   
 
•  Convert "regular" (nonXML) data to XML form.   
 

Regarding the first:   
 

1.  We might store the entire XML document as the value of some 
attribute within some tuple.   

 
2.  We might shred the document (technical term!) and represent 

various pieces of it as various attribute values within 
various tuples within various relations.   

 
3.  We might store the document not in a conventional database at 

all, but rather in a "native XML" database (i.e., one that 
contains XML documents as such instead of relations).   

 
The third possibility has already been dismissed in these 

notes──though of course commercial products do exist that embrace 
that approach.  The first possibility (documents as attribute 
values or "XML column") was touched on in the DRAWING example in 
Section 27.3; we haven't discussed the second possibility 
previously.   

 
To elaborate on "XML column":   
 

•   Define a new data type, say XMLDOC, values of which are XML 
documents; then allow specific attributes of specific relvars 
to be of that type.   

 
•   Tuples containing XMLDOC values can be inserted and deleted 

using conventional INSERTs and DELETEs.  XMLDOC values within 
such tuples can be replaced in their entirety using 
conventional UPDATEs.  XMLDOC values can participate in read-
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only operations in the conventional manner (SELECT and WHERE 
clauses, in SQL terms, loosely speaking).   

 
•   Type XMLDOC will have its own operators to support retrieval 

and update capabilities on XMLDOC-valued attributes at a more 
fine-grained level (e.g., at the level of individual elements 
or individual XML attributes).  For retrieval, the operators 
might be like those of XQuery (they might even be invoked by 
means of an "escape" to XQuery).   

 
"XML column" is appropriate for document-centric applications.   
 

To elaborate on the second possibility──shred and publish, aka 
"XML collection":   

 
•   No new data types; instead, XML documents are "shredded" into 

pieces and those pieces are stored as values of various 
relational attributes in various places in the database.   

 
•   Hence, the DB doesn't contain XML documents as such.  The 

DBMS has no knowledge of such documents.  The fact that 
certain values in the database can be combined in certain ways 
to create such documents is understood by some application 
program (perhaps a web server), not by the DBMS.   

 
•   Since that application program can create an XML document 

from regular data, we've now met the second of our original 
objectives:  We have a means of taking regular (nonXML) data 
and converting it to XML form (publishing): XML views of 
nonXML data (publishing for retrieval, shredding for update).  
Relate to ANSI/SPARC architecture:  Hierarchic external level 
defined over relational conceptual level.   

 
"XML collection" is appropriate for data-centric applications.   
 
 
27.7 SQL Facilities  
 
"SQL/XML" will probably be part of SQL:2003.  It includes both 
"XML collection" and "XML column"──though just why it includes the 
first of these is very unclear to me, since (as we saw in the 
previous section) XML collection support has nothing to do with 
the DBMS, and SQL is supposed to a standard that relates to DBMSs 
(meaning functionality that DBMSs are supposed to support).   
 

Briefly describe the XML collection support (XML views, 
retrieval only; equivalently, publishing only, no shredding).  
Discuss the simplified parts example.  Several mysteries here!  
E.g., what about keys?  What about user-defined types?  What about 
NOT NULL specifications?  More generally, what about integrity 
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constraints of any kind?  Also, observe that (as noted earlier) 
publishing imposes an order on the tuples (rows in SQL).   

 
Regarding the XML column support:  Well, actually there isn't 

much.  Mention type XML, plus operators to produce values of that 
type from conventional SQL data (e.g., XMLGEN).  But almost no 
operators are defined for type XML──not even equality!*  "However, 
this state of affairs is likely to be corrected by the time 
SQL/XML is formally ratified."   

 
 

────────── 
 
*  In case anyone asks, note that XMLGEN is not an operator for 
type XML!  It returns a value of type XML, but it operates on 
conventional SQL data.   
 
────────── 
 
 

Sketch the proprietary support as outlined in the chapter, 
just to give an idea of the kind of functionality we might 
eventually expect to see in SQL/XML (as well as illustrating the 
kind of functionality already supported in some commercial 
products).  See also Exercise 27.25.   

 
 

Answers to Exercises  
 
27.1 Some of the following definitions elaborate slightly on those 
given in the book per se.   
 
•   An attribute (in XML) is an expression of the form 

name="value"; it appears in a start tag or an empty-element 
tag, and it provides additional information for the relevant 
element.   

 
•   An element consists of a start tag, an end tag, and the 

"content" appearing between those tags.  The content can be 
character data or other elements or a mixture of both.  If the 
content is the empty string, the element is said to be empty, 
and the start and end tags can be combined into a single 
special tag, called an empty-element tag.   

 
•   HTML (Hypertext Markup Language) is a language for creating 

documents──in particular, documents stored on the Web──that 
include instructions on how they're to be displayed on a 
computer screen.  HTML is an SGML derivative (i.e., it's 
defined using the facilities of SGML).   
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•   HTTP (Hypertext Transfer Protocol) is a protocol for 
transmitting information over the Web.  It's based on a 
request-response pattern:  A client program establishes a 
connection with a server and sends a request to the server in 
a standard form; the server then responds with status 
information, again in a standard form, and optionally the 
requested information.   

 
•   The Internet is a supernetwork (actually a network of 

networks) of interconnected computers, communicating with each 
other via a common transmission and communication protocol 
called TCP/IP.  Users have a variety of tools available for 
locating information and sending and receiving it over the 
Internet.   

 
•   Markup is metadata included in a document that describes the 

document content and optionally specifies how that content 
should be processed or displayed.  Markup is typically 
distinguished from document content by "trigger" characters 
that indicate the start and end of pieces of markup──for 
example, semicolons or (as in XML) angle brackets.   

 
•   A search engine is a program that searches the Web for data 

that includes certain specified search arguments.   
 
•   SGML (Standard GML) is a standard form of GML (Generalized 

Markup Language).  SGML and GML are metalanguages for defining 
specific markup languages.  For example, HTML is a markup 
language defined using SGML (i.e., it's an SGML derivative).   

 
•   A tag is a piece of markup providing information about, and 

usually introducing or terminating, some fragment of textual 
information in a document.  XML in particular defines three 
kinds of tags: start tags, end tags, and the special empty-
element tag.   

 
•   A URL (Uniform Resource Locator) is the identifier of some 

resource available via the Internet.  URLs have the general 
form:   

 
<scheme>:<scheme-specific part> 
 
The <scheme> identifies the relevant "scheme" or protocol in 
use (e.g., http); it determines how the <scheme-specific part> 
is to be interpreted.   

 
•   A web browser is a program that allows information to be 

retrieved from or submitted to the Web.  Retrieved information 
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is displayed as web pages in graphical windows on the display 
screen.   

 
•   A web crawler is a continuously running program that analyzes 

and indexes web pages, with a view to speeding up subsequent 
searches for the information those pages contain.   

 
•   A web page is a unit of information, typically expressed in 

HTML, either stored on the Web or (possibly) manufactured on 
demand.   

 
•   A web server consists of a specialized computer and 

associated software whose role is to provide web content, 
particularly web pages, upon receiving requests from Web 
users.  Note:  The term is also used (and indeed was used in 
the body of the chapter) to refer to the software component 
alone.   

 
•   A website consists of a collection of related web pages, one 

of which (the home page) allows the user to navigate to the 
others.   

 
•   The World Wide Web is the agggregate of information stored on 

the Internet, together with the associated Web standards for 
interfaces and protocols by which that information can be 
stored, processed, and transmitted.   

 
•   XML is a proper subset of SGML.  Its purpose is "to allow 

generic SGML to be served, received, and processed on the Web 
like HTML" (reworded slightly from reference [27.25]).  It's 
really a metametalanguage (see Section 27.4); that is, it's a 
language for defining languages for defining languages (these 
last being markup languages specifically).   

 
•   An XML derivative (or "XML application") is a specific markup 

language, such as the Wireless Markup Language (WML) or Scalar 
Vector Graphics (SVG), that's defined using XML.   

 
•   XML Schema is an XML derivative whose purpose is to support 

the definition (i.e., of structure and content) of documents 
constructing using other XML derivatives.   

 
•   XPath is a language for addressing parts of an XML document.  

XPath is designed to be embedded as a sublanguage inside 
"host" languages such as XQuery and XSLT.  XPath also has a 
natural subset, consisting of path expressions, that can be 
used by itself for a limited form of pattern matching──i.e., 
testing whether a given node matches a given pattern.   
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•   XQuery is a query language, somewhat procedural in nature, 
for XML documents (more precisely, for a certain abstract form 
of such documents).  An XQuery expression can access any 
number of existing documents; it can also construct new ones.  
At the time of writing, however, it provides no update 
facilities.   

 
27.2 XML is a proper subset of SGML.  The purpose of both is, 
loosely, to support the definition of other languages.  HTML is a 
language whose definition is expressed in SGML; thus, SGML is the 
metalanguage for HTML.  Similarly, XML is the metalanguage for 
languages such as Scalar Vector Graphics (SVG) that are defined 
using XML.   
 

However, XML and SGML also include the specification of a 
document type definition (DTD) language, whose purpose is to 
specify some of the rules for languages defined using XML and 
SGML.  So XML and SGML define a language for defining other 
languages, and they're thus really metametalanguages.  In fact, 
starting with either XML or SGML, it's possible to construct an 
arbitrarily deep hierarchy of languages and metalanguages.   

 
27.3 The following answer has been simplified in a variety of ways 
in the interest of brevity; for example, chapter and section 
numbers have been omitted, as have page numbers.*  But what's left 
should be adequate to give the general idea.   
 
 
────────── 
 
*  Because elements appear in a specific order, however, chapter 
and section numbers, at least, can be derived from the XML 
representation.  Page numbers, by contrast, obviously can't be.   
 
────────── 
 
 

<?xml version="1.0"?> 
<!-- XML document representing the table of contents. --> 
<!DOCTYPE Contents [ 

<!ELEMENT Contents (Preface?, Part+, Appendixes*, Index)> 
<!ELEMENT Preface (#PCDATA)> 
<!ELEMENT Part (Chapter+)> 

<!ATTLIST Part title CDATA #REQUIRED> 
<!ELEMENT Chapter (Introduction, Section+, Summary, 

Exercises?, Refs-Bib, Answers?)> 
<!ATTLIST Chapter title CDATA #REQUIRED> 

<!ELEMENT Introduction EMPTY> 
<!ELEMENT Section (#PCDATA)> 
<!ELEMENT Summary EMPTY> 
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<!ELEMENT Exercises EMPTY> 
<!ELEMENT Refs-Bib EMPTY> 
<!ELEMENT Answers EMPTY> 
<!ELEMENT Appendixes (Appendix+)> 
<!ELEMENT Appendix (Introduction?, Section*)> 

<!ATTLIST Appendix title CDATA #REQUIRED> 
<!ELEMENT Index EMPTY> 

]> 
<Contents> 

<Preface>Eighth Edition</Preface> 
<Part title="Preliminaries"> 

<Chapter title="An Overview of Database Management"> 
<Introduction/> 
<Section>What is a database system?</Section> 
<Section>What is a database?</Section> 
<Section>Why database?</Section> 
<Section>Data independence</Section> 
<Section>Relational systems and others</Section> 
<Summary/> 
<Exercises/> 
<Refs-Bib/> 

</Chapter> 
<Chapter title="Database System Architecture"> 

... 
</Chapter> 

</Part> 
<Part title="The Relational Model"> 

... 
</Part> 
<Appendixes> 

...  
<Appendix title="SQL Expressions"> 

<Introduction> 
... 

</Appendix> 
</Appendixes> 
<Index/> 

</Contents> 
 
Here's another possible answer.  This one has fewer structural 

constraints and makes less use of features not covered in the body 
of the chapter.   

 
<?xml version="1.0"?> 
<!-- XML document representing the table of contents. --> 
<!DOCTYPE Contents [ 

<!ELEMENT Contents (Preface?, Part+, Appendixes*, Index)> 
<!ELEMENT Preface (#PCDATA)> 
<!ELEMENT Part (Chapter+)> 

<!ATTLIST Part title CDATA #REQUIRED> 
<!ELEMENT Chapter (Section+)> 
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<!ATTLIST Chapter title CDATA #REQUIRED> 
<!ELEMENT Section (#PCDATA)> 
<!ELEMENT Appendixes (Appendix+)> 
<!ELEMENT Appendix (Section*)> 

<!ATTLIST Appendix title CDATA #REQUIRED> 
<!ELEMENT Index EMPTY> 

]> 
<Contents> 

<Preface>Eighth Edition</Preface> 
<Part title="Preliminaries"> 

<Chapter title="An Overview of Database Management"> 
<Section>Introduction</Section> 
<Section>What is a database system?</Section> 
<Section>What is a database?</Section> 
<Section>Why database?</Section> 
<Section>Data independence</Section> 
<Section>Relational systems and others</Section> 
<Section>Summary</Section> 
<Section>Exercises</Section> 
<Section>References and bibliography</Section> 
<Section>Answers to selected exercises</Section> 

</Chapter> 
<Chapter title="Database System Architecture"> 

... 
</Chapter> 

</Part> 
<Part title="The Relational Model"> 

... 
</Part> 
<Appendixes> 

...  
<Appendix title="SQL Expressions"> 

<Section>Introduction</Section> 
... 

</Appendix> 
</Appendixes> 
<Index/> 

</Contents> 
 

27.4 Revise either of the answers given above for Exercise 27.3 as 
follows:   
 
1. Move the text between  
 

<!DOCTYPE Contents [ 
 
and  
 
]>  
 
to a separate file called Contents.dtd (say).   
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2. Replace the text  
 

<!DOCTYPE Contents [  
 
by  
 
<!DOCTYPE Contents SYSTEM "Contents.dtd">  
 
and delete the text  
 
]>  
 

The advantage of an external DTD is that such a DTD can more 
easily be shared by distinct documents.   
 
27.5 An XML document is well-formed if and only if all three of 
the following are true:  It's syntactically correct according to 
the XML specification; it complies with all of the well-formedness 
rules in that specification; and all documents it refers to, 
directly or indirectly, are well-formed in turn.  Strictly 
speaking, a piece of text isn't an XML document at all unless it's 
well-formed, so an "ill-formed XML document" is a contradiction in 
terms.   
 

An XML document is valid if and only if all three of the 
following are true:  It's well-formed (which it must be, otherwise 
it's not an XML document at all); it has a DTD or a schema; and it 
follows all the rules specified in that DTD or schema.  Note:  
Validation with respect to a schema (as opposed to a DTD) is known 
as schema validation.  The term validation without that "schema" 
qualifier refers to validation with respect to a DTD.   

 
27.6 An empty element is an element whose content is the empty 
string.  For example:   
 

<EmptyExample></EmptyExample> 
 

Equivalently:   
 

<EmptyExample/> 
 

Note:  Although an element can be "empty," its tag(s) can contain 
attributes and/or white space, as here:   
 

<EmptyExample attr="val" another="more" andSoOn=""/>  
 

27.7 Yes, they are.  See Chapter 25 for a critical discussion of 
containment hierarchies in general.   
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27.8 It's true that data definitions in SQL are expressed using a 
special "data definition language" (CREATE TABLE, etc.).  However, 
those definitions are represented in the database just like any 
other data──i.e., by means of tables (actually tables in the 
catalog).  As we saw in Exercise 6.16, moreover, the operators of 
that data definition language are all, in the final analysis, 
shorthand for certain conventional SQL operators or operator 
combinations that could in principle be applied directly to those 
catalog tables.  So no, an analogous criticism does not really 
apply to SQL.  Similar remarks apply to the relational model.   
 
27.9  
 

<?xml version="1.0"?> 
<!-- This is an XML version of the Projects relation --> 
<ProjectsRelation> 

<ProjectTuple> 
<JNUM>J1</JNUM> 
<JNAME>Sorter</JNAME> 

  <CITY>Paris</CITY> 
</ProjectTuple> 
<ProjectTuple> 

<JNUM>J2</JNUM> 
<JNAME>Display</JNAME> 

  <CITY>Rome</CITY> 
</ProjectTuple> 
<ProjectTuple> 

<JNUM>J3</JNUM> 
<JNAME>OCR</JNAME> 

  <CITY>Athens</CITY> 
</ProjectTuple> 
<ProjectTuple> 

<JNUM>J4</JNUM> 
<JNAME>Console</JNAME> 

  <CITY>Athens</CITY> 
</ProjectTuple> 
<ProjectTuple> 

<JNUM>J5</JNUM> 
<JNAME>RAID</JNAME> 

  <CITY>London</CITY> 
</ProjectTuple> 
<ProjectTuple> 

<JNUM>J6</JNUM> 
<JNAME>EDS</JNAME> 

  <CITY>Oslo</CITY> 
</ProjectTuple> 
<ProjectTuple> 

<JNUM>J7</JNUM> 
<JNAME>Tape</JNAME> 

  <CITY>London</CITY> 
</ProjectTuple> 
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</ProjectsRelation> 
 

There's no direct way to enforce the desired uniqueness constraint 
on JNUM.   
 
27.10  
 

<?xml version="1.0"?> 
<!-- Another XML version of the Projects relation --> 
<!DOCTYPE ProjectsRelation [ 

<!ELEMENT ProjectsRelation (ProjectTuple*)> 
<!ATTLIST ProjectsRelation 

JNUM ID #REQUIRED 
      JNAME CDATA #REQUIRED 
      CITY CDATA #REQUIRED> 

]> 
<ProjectsRelation> 

<ProjectTuple JNUM="J1" JNAME="Sorter" CITY="Paris"/> 
<ProjectTuple JNUM="J2" JNAME="Display" CITY="Rome"/> 
<ProjectTuple JNUM="J3" JNAME="OCR" CITY="Athens"/> 
<ProjectTuple JNUM="J4" JNAME="Console" CITY="Athens"/> 
<ProjectTuple JNUM="J5" JNAME="RAID" CITY="London"/> 
<ProjectTuple JNUM="J6" JNAME="EDS" CITY="Oslo"/> 
<ProjectTuple JNUM="J7" JNAME="Tape" CITY="London"/> 

</ProjectsRelation> 
 

Regarding uniqueness of JNUM values, see Section 27.4, subsection 
"Attributes of Type ID and IDREF."  As for the relative advantages 
and disadvantages of using attributes, here are some relevant 
considerations:   
 
•   Elements can contain links to other resources (using XLink 

and XPointer), attributes can't.   
 
•  Elements are ordered, attributes aren't.   
 
•   Elements can appear any number of times (including zero), 

attributes can't.   
 
•  Attributes can specify defaults, elements can't.   
 
•   Attributes can provide some limited support for referential 

integrity, elements can't.   
 
•   Attributes don't work very well for composite values such as 

arrays.   
 

27.11 See Section 27.4, subsection "Attributes of Type ID and 
IDREF."   
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27.12 Schemas can be formulated in a variety of different ways.  
One extreme is to make all elements global (i.e., immediate 
children of the xsd:schema element), cross-referencing them as 
necessary.  This approach is particularly useful when type or 
element definitions are to be shared; it helps avoid redundant and 
potentially inconsistent definitions.  The other extreme, 
illustrated by the answer below, is to make just the root element 
global, defining all child elements to be contained within that 
root element (at some level).  Note the need to repeat the 
definition of the Section element (because chapters and appendixes 
both have sections).  Since the Section element is quite simple, 
however (involving as it does just data of type xsd:string), the 
repetition isn't all that burdensome.   
 

<?xml version="1.0"?> 
<!-- Schema for second answer to Exercise 27.3 --> 
<!DOCTYPE xsd:schema SYSTEM  

"http://www.w3.org/2001/XMLSchema.dtd"> 
 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
 

<xsd:element name="Contents"> 
<xsd:complexType> 

<xsd:sequence> 
 

<xsd:element name="Preface" type="xsd:string"  
minOccurs="0"/> 

<xsd:element name="Part" maxOccurs="unbounded"> 
<xsd:complexType> 

<xsd:sequence> 
 

<xsd:element name="Chapter"> 
<xsd:complexType> 

<xsd:sequence> 
 

<xsd:element name="Section"  
type="xsd:string" 
maxOccurs="unbounded"/> 
 

</xsd:sequence> 
<xsd:attribute name="title"  

type="xsd:string"/> 
</xsd:complexType> 

                 </xsd:element> 
 

</xsd:sequence> 
<xsd:attribute name="title"  

type="xsd:string"/> 
</xsd:complexType> 

</xsd:element> 
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<xsd:element name="Appendixes"> 

<xsd:complexType> 
<xsd:sequence> 
 

<xsd:element name="Appendix"> 
<xsd:complexType> 

<xsd:sequence> 
 

                          <xsd:element name="Section"  
type="xsd:string" 
maxOccurs="unbounded"/> 

 
</xsd:sequence> 
<xsd:attribute name="title"  

type="xsd:string"/> 
</xsd:complexType> 

</xsd:element> 
 

</xsd:sequence> 
</xsd:complexType> 

</xsd:element> 
 
        <xsd:element name="Index" type="xsd:string"/> 
 

</xsd:sequence> 
</xsd:complexType> 

</xsd:element> 
 

</xsd:schema> 
 

27.13 Consider the XML schema shown for PartsRelation documents in 
Section 27.4, subsection "XML Schema."  The only change required 
is in the definition of the "complex type" called PartTupleType.  
Replace the second line of that definition──the start tag 
"<xsd:sequence>"──by:   
 

<xsd:all>  
 

Also, replace the corresponding end tag "<xsd:sequence/>" by:   
 

<xsd:all/>  
 

The effect of these changes is precisely that elements directly 
contained within a PartTuple element can appear in any order, as 
desired.   
 
27.14 A type as usually understood is a set of values (i.e., all 
possible values of the type in question), along with an associated 
set of operators that can be applied to values and variables of 
the type in question (see Chapters 5 and 20 for further 



Copyright (c) 2003 C. J. Date                            page 
27.20 
 

explanation).  In XML Schema, by contrast, a type, though it does 
have a specified set of values, has almost no operators!  (To be 
specific, it does have "=", and possibly "<", but no others.)  
Thus, although they have names like "string," "boolean," 
"decimal," etc., all of which have an obvious intuitive meaning, 
the corresponding XML "types" are certainly not string, boolean, 
decimal (etc.) types as usually understood.  In fact, as noted in 
the body of the chapter, XML Schema "type definitions" are really 
closer to the PICTURE specifications found in languages like COBOL 
and PL/I; i.e., all they really do is define certain character-
string representations for the "types" in question.   
 
27.15 Infoset is a contraction of "information set."  Every XML 
document has one.  The infoset for a given document can be thought 
of as an abstract representation* of that document as a hierarchy 
of nodes or information items [27.26], each of which has a set of 
named properties (e.g., parent, children, "normalized value").  A 
given infoset can be augmented with additional properties 
(discovered, e.g., during schema validation); indeed, XPath and 
XQuery are defined in terms of such an augmented infoset, the Post 
Schema Validation Infoset (PSVI).  For further discussion, see 
Section 27.3, subsection "XML Document Structure."   
 
 
────────── 
 
*  It might be thought of as a "possible representation" in the 
sense of Chapter 5.   
 
────────── 
 
 
27.16 A path expression in XPath and XQuery is an expression that, 
when evaluated, navigates through some specific infoset to some 
specific node or sequence of nodes (i.e., it returns a value that 
is a sequence of information items──see the answer to Exercise 
27.15).  It consists of a sequence of steps, each of which 
generates a sequence of nodes and then optionally eliminates some 
of those nodes via predicates.  Each step thus returns a sequence 
of nodes, which become the context for the next step if any.  For 
further discussion, see Section 27.5, subsection "XPath."   
 
27.17 A FLWOR expression is a fundamental XQuery building-block.  
It consists of one or more of the following clauses (in sequence 
as indicated):   
 
•   A for clause, which binds variables iteratively to sequences 

of items selected by expressions with optional predicates  
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•   A let clause, which binds variables (without iteration) to 
entire sequences of items selected by expressions as in the 
for clause  

 
•   A where clause, which applies filtering criteria to the items 

specified by the for and/or let clauses  
 
•   An order by clause, which imposes a sequence on the results 

generated by the return clause (see next)  
 
•   A return clause, which generates the resulting sequence(s) of 

items  
 

As the foregoing indicates, the crucial difference between the 
for and let clauses is that the for clause binds the items in the 
specified sequence to the specified variable one at a time──in 
other words, iteratively──whereas the let clause binds the 
specified sequence to the specified variable as a whole, without 
any iteration.   

 
In many cases, predicates and where clauses are equivalent.  

Predicates might be more "natural" when they apply to the current 
context.  Where clauses are perhaps more general (they can refer 
to arbitrary nodes, etc.).  By way of example, here are two 
formulations of query 1.1.9.1 Q1 from the W3C XML Query Use Cases 
document (see reference [27.29]):   

 
•  Using predicates:   
 

<bib> 
{ 

for $b in document("http://www.bn.com/bib.xml")/bib/book 
[publisher = "Addison-Wesley"][@year > 1991] 
return 

<book year="{ $b/@year }"> 
{ $b/title } 

</book> 
} 

</bib>  
 

•  Using a where clause:   
 

<bib> 
{ 

for $b in document("http://www.bn.com/bib.xml")/bib/book 
  where $b/publisher = "Addison-Wesley" and $b/@year > 1991 

return 
<book year="{ $b/@year }"> 

{ $b/title } 
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</book> 
} 

</bib>  
 

•  Result (for both queries):*   
 

<bib> 
<book year="1994"> 

<title>TCP/IP Illustrated</title> 
</book> 
<book year="1992"> 

<title>Advanced Unix Programming</title> 
</book> 

</bib> 
 
 

────────── 
 
*  We've altered the "official" result very slightly here for 
formatting reasons.   
 
────────── 
 
 
27.18  
 

<Result> 
{ document("PartsRelation.xml")//PartTuple[NOTE] } 

</Result> 
 

27.19  
 

<Result> 
{ for $p in document("PartsRelation.xml")//PartTuple 

[@COLOR = "Green"] 
return <GreenPart> {$p} </GreenPart> 

} 
</Result> 
 

27.20 The result looks like this:   
 

<Parts>  
6 

</Parts> 
 

27.21  
 

<Result> 
{ for $sx in document("SuppliersOverShipments.xml")//Supplier 

where document("PartsRelation.xml")//PartTuple 
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[PNUM = $sx//PNUM][@COLOR = 'Blue'] 
return 

<Supplier> 
{ $sx/SNUM, $sx/SNAME, $sx/STATUS, $sx/CITY } 

</Supplier> 
} 
</Result> 
 

27.22 Since the document doesn't have any immediate child elements 
of type Supplier, the return clause is never executed, and the 
result is the empty sequence.  Note:  If the query had been 
formulated slightly differently, as follows── 
 

<Result> 
{ for $sx in document("SuppliersOverShipments.xml")/ 

Supplier[CITY = 'London']  
return 

<whatever> 
{ $sx/SNUM, $sx/SNAME, $sx/STATUS, $sx/CITY }  

</whatever> 
} 
</Result>  
 

──then the result would have looked like this:   
 

<Result> 
</Result>  
 

27.23 There appears to be no difference.  Here's an actual example 
(query 1.1.9.3 Q3 from the W3C XML Query Use Cases document──see 
reference [27.29]):   
 
•  Query:   
 

<results> 
{ 

for $b in document("http://www.bn.com/bib.xml")/bib/book, 
$t in $b/title, 
$a in $b/author 

return 
<result> 

{ $t }     
{ $a } 

</result> 
} 
</results> 
 

•  Query (modified):   
 

<results> 
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{ 
for $b in document("http://www.bn.com/bib.xml")/bib/book, 

$t in $b/title, 
$a in $b/author 

return 
<result> 

{ $t, $a } 
</result> 

} 
</results> 
 

•  Result (for both queries):*   
 

<results> 
<result> 

<title>TCP/IP Illustrated</title> 
<author> 

<last>Stevens</last> 
<first>W.</first> 

</author> 
</result> 
<result> 

<title>Advanced Unix Programming</title> 
<author> 

<last>Stevens</last> 
<first>W.</first> 

</author> 
</result> 
<result> 

<title>Data on the Web</title> 
<author> 

<last>Abiteboul</last> 
<first>Serge</first> 

</author> 
</result> 

... 
</results> 
 
 

────────── 
 
*  Again we've altered the "official" result very slightly for 
formatting reasons.   
 
────────── 
 
 
27.24 See Section 27.6.   
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27.25 The following observations, at least, spring to mind 
immediately:   
 
•   Several of the functions perform what is essentially type 

conversion.  The expression XMLFILETOCLOB ('BoltDrawing.svg'), 
for example, might be more conventionally written something 
like this:   

 
CAST_AS_CLOB ( 'BoltDrawing.svg' ) 
 
In other words, XMLDOC should be recognized as a fully fledged 
type (see Section 27.6, subsection "Documents as Attribute 
Values").   
 

•   Likewise, the expression XMLCONTENT (DRAWING, 
'RetrievedBoltDrawing.svg') might more conventionally be 
written thus:   

 
DRAWING := CAST_AS_XMLDOC ( 'RetrievedBoltDrawing.svg' ) ;  
 
In fact, XMLCONTENT is an update operator (see Chapter 5), and 
the whole idea of being able to invoke it from inside a read-
only operation (SELECT in SQL) is more than a little suspect 
[3.3].   
 

•   Consider the expression XMLFILETOCLOB ('BoltDrawing.svg') 
once again.  The argument here is apparently of type character 
string.  However, that character string is interpreted (in 
fact, it is dereferenced──see Chapter 26), which means that it 
can't be just any old character string.  In fact, the 
XMLFILETOCLOB function is more than a little reminiscent of 
the EXECUTE IMMEDIATE operation of dynamic SQL (see Chapter 
4).   

 
•   Remarks analogous to those in the previous paragraph apply 

also to arguments like  
 

'//PartTuple[PNUM = "P3"]/WEIGHT'  
 
(see the XMLEXTRACTREAL example).   
 

27.26 The suggestion is correct, in the following sense.  Consider 
any of the PartsRelation documents shown in the body of the 
chapter.  Clearly it would be easy, albeit tedious, to show a 
tuple containing exactly the same information as that 
document──though it's true that the tuple in question would 
contain just one component, corresponding to the XML document in 
its entirety.  That component in turn would contain a list or 
sequence of further components, corresponding to the first-level 
content of the XML document in their "document order"; those 
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components in turn would (in general) contain further components, 
and so on.  Omitted elements can be represented by empty 
sequences.  Note in particular that tuples in the relational model 
carry their attribute types with them, just as XML elements carry 
their tags with them──implying that (contrary to popular opinion!) 
tuples too, like XML documents, are self-describing, in a sense.   
 
27.27 The claim that XML data is "schemaless" is absurd, of 
course; data that was "schemaless" would have no known structure, 
and it would be impossible to query it──except by playing games 
with SUBSTRING operations, if we stretch a point and think of such 
game-playing as "querying"──or to design a query language for it.*  
Rather, the point is that the schemas for XML data and (say) SQL 
data are expressed in different styles, styles that might seem 
distinct at a superficial level but aren't really so very 
different at a deep level.   
 
 
────────── 
 
*  In fact, it would be a BLOB──i.e., an arbitrarily long bit 
string, with no internal structure that the DBMS is aware of.   
 
────────── 
 
 
27.28 In one sense we might say that an analogous remark does 
apply to relational data.  Given that XML fundamentally supports 
just one data type, viz., character strings, it's at least 
arguable that the options available for structuring such data 
(i.e., character-string data specifically) in a relational 
database are exactly the same as those available in XML.  As a 
trivial example, an address might be represented by a single 
character string; or by separate strings for street, city, state, 
and zip; or in a variety of other ways.   
 

In a much larger sense, however, an analogous remark does not 
apply.  First, relational systems provide a variety of additional 
(and genuine) data types over and above character strings, as well 
as the ability for users to define their own types; they therefore 
don't force users to represent everything in character-string 
form, and indeed they provide very strong incentives not to.  
Second, there's a large body of design theory available for 
relational databases that militates against certain bad designs.  
Third, relational systems provide a wide array of operators, the 
effect of which is (in part) that there's no logical incentive for 
biasing designs in such a way as to favor some applications at the 
expense of others (contrast the situation in XML).   
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27.29 This writer is aware of no differences of substance──except 
that the hierarchic model is usually regarded as including certain 
operators and constraints, while it's not at all clear that the 
same is true of "the semistructured model."   
 
27.30 No answer provided.   
 
 
 
 
          *** End of Chapter 27 *** 
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          A P P E N D I X E S 
 
 
The following text speaks for itself:   
 
(Begin quote) 
 
There are four appendixes.  Appendix A is an introduction to a new 
implementation technology called The TransRelationaltm Model.  
Appendix B gives further details, for reference purposes, of the 
syntax and semantics of SQL expressions.  Appendix C contains a 
list of the more important abbreviations, acronyms, and symbols 
introduced in the body of the text.  Finally, Appendix D (online) 
provides a tutorial survey of common storage structures and access 
methods.   
 
(End quote)  
 
 
 
 
          *** End of Introduction to 
Appendixes *** 
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          Appendix A 
 
 
          T h e   T r a n s R e l a t i o n a 
ltm   M o d e l  
 
 
Principal Sections 
 
•  Three levels of abstraction  
•  The basic idea  
•  Condensed columns  
•  Merged columns  
•  Implementing the relational operators  
 
 

General Remarks 
 
This is admittedly only an appendix, but if I was the instructor I 
would certainly cover it in class.  "It's the best possible time 
to be alive, when almost everything you thought you knew is wrong" 
(from Arcadia, by Tom Stoppard).  The appendix is about a 
radically new implementation technology, which (among other 
things) does mean that an awful lot of what we've taken for 
granted for years regarding DBMS implementation is now "wrong," or 
at least obsolete.  For example:   
 
•   The data occupies a fraction of the space required for a 

conventional database today.   
 
•   The data is effectively stored in many different sort orders 

at the same time.   
 
•   Indexes and other conventional access paths are completely 

unnecessary.   
 
•   Optimization is much simpler than it is with conventional 

systems; often, there's just one obviously best way to 
implement any given relational operation.  In particular, the 
need for cost-based optimizing is almost entirely eliminated.   

 
•   Join performance is linear!──meaning, in effect, that the 

time it takes to join twenty relations is only twice the time 
it takes to join ten (loosely speaking).  It also means that 
joining twenty relations, if necessary, is feasible in the 
first place; in other words, the system is scalable.   

 



Copyright (c) 2003 C.J.Date                               page A.2 
 

•   There's no need to compile database requests ahead of time 
for performance.   

 
•   Performance in general is orders of magnitude better than it 

is with a conventional system.   
 
•   Logical design can be done properly (in particular, there is 

never any need to "denormalize for performance").   
 
•  Physical database design can be completely automated.   
 
•   Database reorganization as conventionally understood is 

completely unnecessary.   
 
•   The system is much easier to administer, because far fewer 

human decisions are needed.   
 
•   There's no such thing as a "stored relvar" or "stored tuple" 

at the physical level at all!   
 

In a nutshell, the TransRelational model allows us to build DBMSs 
that──at last!──truly deliver on the full promise of the 
relational model.  Perhaps you can see why it's my honest opinion 
that "The TransRelationaltm Model" is the biggest advance in the 
DB field since Ted Codd gave us the relational model, back in 
1969.   
 

Note:  We're supposed to put that trademark symbol on the term 
TransRelational, at least the first time we use it, also in titles 
and the like.  Also, you should be aware that various aspects of 
the TR model──e.g., the idea of storing the data "attribute-wise" 
rather than "tuple-wise"──do somewhat resemble various ideas that 
have been described elsewhere in the literature; however, nobody 
else (so far as I know) has described a scheme that's anything 
like as comprehensive as the TR model; what's more, there are many 
aspects of the TR model that (again so far as I know) aren't like 
anything else, anywhere.   

 
The logarithms analogy from reference [A.1] is helpful:  "As 

we all know, logarithms allow what would otherwise be complicated, 
tedious, and time-consuming numeric problems to be solved by 
transforming them into vastly simpler but (in a sense) equivalent 
problems and solving those simpler problems instead.  Well, it's 
my claim that TR technology does the same kind of thing for data 
management problems."  Give some examples.   

 
Explain and justify the name: The TransRelationaltm Model 

(which we abbreviate to "TR" in the book and in these notes).  
Credit to Steve Tarin, who invented it.  Discuss data independence 
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and the conventional "direct image" style of implementation and 
the problems it causes.   

 
Note the simplifying assumptions:  The database is (a) read-

only and (b) in main memory.  Stress the fact that these 
assumptions are made purely for pedagogic reasons; TR can and does 
do well on updates and on disk.   

 
 

A.2 Three Levels of Abstraction  
 
Straightforward──but stress the fact that the files are 
abstractions (as indeed the TR tables are too).  Be very careful 
to use the terminology appropriate to each level from this point 
forward.  Show but do not yet explain in detail the Field Values 
Table and the (or, rather, a) Record Reconstruction Table for the 
file of Fig. A.3.  Note:  Each of those tables is derived from the 
file independently of the other.  Point out that we're definitely 
not dealing with a direct-image style of implementation!   
 
 
A.3 The Basic Idea  
 
Explain "the crucial insight": Field Values in the Field Values 
Table, linkage information in the Record Reconstruction Table.  By 
the way, I deliberately don't abbreviate these terms to FVT and 
RRT.  Students have so much that's novel to learn here that I 
think such abbreviations get in the way (the names, by contrast, 
serve to remind students of the functionality).  Note:  Almost all 
of the terms in this appendix are taken from reference [A.1] and 
do not appear in reference [A.2]──which, to be frank, is quite 
difficult to understand, in part precisely because its terminology 
isn't very good (or even consistent).   
 

Regarding the Field Values Table:  Built at load time (so 
that's when the sorting is done).  Explain intuitively obvious 
advantages for ORDER BY, value lookup, etc.  The Field Values 
Table is the only TR table that contains user data as such.  
Isomorphic to the file.   

 
Regarding the Record Reconstruction Table:  Also isomorphic, 

but contains pointers (row numbers).  Those row numbers identify 
rows in the Field Values Table or the Record Reconstruction Table 
or both, depending on the context.  Explain the zigzag algorithm.  
Can enter the rings (zigzags) anywhere!  Explain simple equality 
restriction queries (binary search).  TR lets us do a sort/merge 
join without having to do the sort!──or, at least, without having 
to do the run-time sort (explain).  Implications for the 
optimizer:  Little or no access path selection.  Don't need 
indexes.  Physical database design is simplified (in fact, it 
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should become clear later that it can be automated, given the 
logical design).  No need for performance tuning.  A boon for the 
tired DBA.   

 
Explain how the Record Reconstruction Table is built (or you 

could set this subsection as a reading assignment).  Not unique; 
we can turn this fact to our advantage, but the details are beyond 
the scope of this appendix; suffice it to say that some Record 
Reconstruction Tables are "preferred."  See reference [A.1] for 
further discussion.   

 
 

A.4 Condensed Columns  
 
An obvious improvement to the Field Values Table ... but one with 
far-reaching consequences.  Note the implications for update in 
particular (we're pretending the database is read-only, but this 
point is worth highlighting in passing).  The compression 
advantages are staggering!──but note that we're compressing at the 
level of field values, not of bit string encodings ... Don't have 
to pay the usual price of extra machine cycles to do the 
decompressing!   
 

Explain row ranges.*  Emphasize the point that these are 
conceptual:  Various more efficient internal representations are 
possible.  Histograms ... The TR representation is all about 
permutations and histograms.  Immediately obvious implications for 
certain kinds of queries──e.g., "How many parts are there of each 
color?"  Explain the revised record reconstruction process.   

 
 

────────── 
 
*  Row ranges look very much like intervals as in Chapter 23.  But 
we'll see in the next section that we sometimes need to deal with 
empty row ranges, whereas intervals in Chapter 23 were always 
nonempty.   
 
────────── 
 
 
A.5 Merged Columns  
 
An extension of the condensed-columns idea (in a way).  Go through 
the bill-of-materials example.  Explain the implications for join!  
In effect, we can do a sort/merge join without doing the sort and 
without doing the merge, either!  (The sort and merge are done at 
load time.  Do the heavy lifting ahead of time! ... As with 
logarithms, in fact.)   
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Merged columns can be used across files as well as within a 
single file (important!).  Explain implications for suppliers and 
parts.  "As a matter of fact, given that TR allows us to include 
values in the Field Values Table that don't actually appear at 
this time in any relation in the database, we might regard TR as a 
true domain-oriented representation of the entire database!"   

 
 

A.6 Implementing the Relational Operators  
 
Self-explanatory (but important!).  The remarks about symmetric 
exploitation and symmetric performance are worth some attention.  
Note:  The same is true for the unanswered questions at the end of 
the summary section (fire students up to find out more for 
themselves!).   
 

Where can I buy one?   
 
 
 
 

          *** End of Appendix A *** 
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          Appendix C 
 
 
          S Q L   E x p r e s s i o n s 
 
 
Principal Sections 
 
•  Table expressions  
•  Boolean expressions 
 
 

General Remarks 
 
This appendix is primarily included for reference purposes.  I 
wouldn't expect detailed coverage of the material in a live class.  
Also, note the following:   
 
(Begin quote)   
 
[We] deliberately omit:   
 
•  Details of scalar expressions  
 
•  Details of the RECURSIVE form of WITH  
 
•  Nonscalar <select item>s  
 
•  The ONLY variants of <table ref> and <type spec>  
 
•  The GROUPING SETS, ROLLUP, and CUBE options on GROUP BY  
 
•  BETWEEN, OVERLAPS, and SIMILAR conditions  
 
•  Everything to do with nulls  
 

We should also explain that the names we use for syntactic 
categories and SQL language constructs are mostly different from 
those used in the standard itself [4.23], because in our opinion 
the standard terms are often not very apt.   

 
(End quote)   
 

Here for your information are a couple of examples of this 
last point:   

 
•   The standard actually uses "qualified identifier" to mean, 

quite specifically, an identifier that is not qualified!   
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•   It also uses "table definition" to refer to what would more 
accurately be called a "base table definition" (the standard's 
usage here obscures the important fact that a view is also a 
defined table, and hence that "table definition" ought to 
include "view definition" as a special case).   

 
Actually, neither of these examples is directly relevant to the 
grammar presented in the book, but they suffice to illustrate the 
point.   
 
 
 
 
          *** End of Appendix B *** 
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          Appendix B 
 
 
          A b b r e v i a t i o n s ,   A c r 
o n y m s , 
 
 
          a n d   S y m b o l s 
 
 
Like Appendix B, this appendix is primarily included for reference 
purposes.  I wouldn't expect detailed coverage of the material in 
a live class.  However, I'd like to explain the difference between 
an abbreviation and an acronym, since the terms are often 
confused.  An abbreviation is simply a shortened form of 
something; e.g., DBMS is an abbreviation of database management 
system.  An acronym, by contrast, is a word that's formed from the 
initial letters of other words; thus, DBMS isn't an acronym, but 
ACID is.*  It's true that some abbreviations become treated as 
words in their own right, sooner or later, and thus become 
acronyms──e.g., laser, radar──but not all abbreviations are 
acronyms.   
 
 
────────── 
 
*  Thus, the well-known "TLA" (= three letter acronym) is not an 
acronym!   
 
────────── 
 
 
 
 
          *** End of Appendix C *** 
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          Appendix D 
 
 
       S t o r a g e   S t r u c t u r e s   a n d 
 
 
       A c c e s s   M e t h o d s 
 
 
Principal Sections 
 
•  Database access: an overview  
•  Page sets and files  
•  Indexing  
•  Hashing  
•  Pointer chains  
•  Compression techniques  
 
 

General Remarks 
 
Personally, I wouldn't include the material of this appendix in a 
live class (it might make a good reading assignment).  In the 
early days of database management (late 1960s, early 1970s) it 
made sense to cover it live, because (a) storage structures and 
access methods were legitimately regarded as part of the subject 
area, and in any case (b) not too many people were all that 
familiar with it.  Neither of these reasons seems valid today:   
 
a.  First, storage structures and access methods have grown into 

a large field in their own right (see the "References and 
Bibliography" section in this appendix for evidence in support 
of this claim).  In other words, I think that what used to be 
regarded as the field of database technology has now split, or 
should now be split, into two more or less separate 
fields──the field of database technology as such (the subject 
of the present book), and the supporting field of file 
management.   

 
b.  Second, most students now do have a basic understanding of 

that file management field.  There are certainly college 
courses and whole textbooks devoted to it.  (Regarding the 
latter, see, e.g., references [D.1], [D.10], and [D.49].)   

 
If you do decide to cover the material in a live class, however, 
then I leave it to you as to which topics you want to emphasize 
and which omit (if any).  Note that the appendix as a whole is 
concerned only with traditional techniques (B-trees and the like); 
Appendix A offers a very different perspective on the subject.   
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Section D.7 includes the following inline exercise.  We're 

given that the data to be represented involves only the characters 
A, B, C, D, E, also that those five characters are Huffman-coded 
as indicated in the following table:   
 

┌───────────┬──────┐ 
│ Character │ Code │ 
├───────────┼──────┤ 
│ E         │ 1    │ 
│ A         │ 01   │ 
│ D         │ 001  │ 
│ C         │ 0001 │ 
│ B         │ 0000 │ 
└───────────┴──────┘ 
 

Exercise:  What English words do the following strings represent?   
 

00110001010011 
 
010001000110011 
 

Answers:  DECADE; ACCEDE.   
 
 
Answers to Exercises 
 
Note the opening remarks:  "Exercises D.1-D.8 might prove suitable 
as a basis for group discussion; they're intended to lead to a 
deeper understanding of various physical database design 
considerations.  Exercises D.9 and D.10 have rather a mathematical 
flavor."   
 
D.1 No answer provided.   
 
D.2 No answer provided.   
 
D.3 No answer provided.   
 
D.4 No answer provided.   
 
D.5 The advantages of indexes include the following:   
 
•   They speed up direct access based on a given value for the 

indexed field or field combination.  Without the index, a 
sequential scan would be required.   

 
•   They speed up sequential access based on the indexed field or 

field combination.  Without the index, a sort would be 
required.   
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The disadvantages include:   
 

•   They take up space on the disk.  The space taken up by 
indexes can easily exceed that taken up by the data itself in 
a heavily indexed database.   

 
•   While an index will probably speed up retrieval operations, 

it will at the same time slow down update operations.  Any 
INSERT or DELETE on the indexed file or UPDATE on the indexed 
field or field combination will require an accompanying update 
to the index.   

 
See the body of the chapter and Appendix A for further discussion 
of the advantages and disadvantages, respectively.   
 
D.6 In order to maintain the desired clustering, the DBMS needs to 
be able to determine the appropriate physical insert point for a 
new supplier record.  This requirement is basically the same as 
the requirement to be able to locate a particular record given a 
value for the clustering field.  In other words, the DBMS needs an 
appropriate access structure──for example, an index──based on 
values of the clustering field.  Note:  An index that's used in 
this way to help maintain physical clustering is sometimes called 
a clustering index.  A given file can have at most one clustering 
index, by definition.   
 
D.7 Let the hash function be h, and suppose we wish to retrieve 
the record with hash field value k.   
 
•   One obvious problem is that it isn't immediately clear 

whether the record stored at hash address h(k) is the desired 
record or is instead a collision record that has overflowed 
from some earlier hash address.  Of course, this question can 
easily be resolved by inspecting the value of the hash field 
in the record in question.   

 
•   Another problem is that, for any given value of h(k), we need 

to be able to determine when to stop the process of 
sequentially searching for any given record.  This problem can 
be solved by keeping an appropriate flag in the record prefix.   

 
•   Third, as pointed out in the introduction to the subsection 

on extendable hashing, when the file gets close to full, it's 
likely that most records won't be stored at their hash address 
location but will instead have overflowed to some other 
position.  If record r1 overflows and is therefore stored at 
hash address h2, a record r2 that subsequently hashes to h2 
might be forced to overflow to h3──even though there might as 
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yet be no records that actually hash to h2 as such.  In other 
words, the collision-handling technique itself can lead to 
further collisions.  As a result, the average access time will 
go up, perhaps considerably.   

 
D.8 This exercise is answered, in part, in Section D.6.   
 
D.9 (a) 3.  (b) 6.  For example, if the four fields are A, B, C, 
D, and if we use the appropriate ordered combination of field 
names to denote the corresponding index, the following indexes 
will suffice: ABCD, BCDA, CDAB, DABC, ACBD, BDAC.  (c) In general, 
the number of indexes required is equal to the number of ways of 
selecting n elements from a set of N elements, where n is the 
smallest integer greater than or equal to N/2──i.e., the number is 
N! / ( n! * (N-n)! ).  For proof see Lum [D.21].   
 
D.10 The number levels in the B-tree is the unique positive 
integer k such that − < ≤1k kn N n . Taking logs to base n, we have 

1 lognk N k− < ≤  
 

ceil(log )nk N= , 
 
where ceil(x) denotes the smallest integer greater than or equal 
to x.  
 Now let the number of pages in the ith level of the index be 
iP  (where 1i =  corresponds to the lowest level). We show that 

 

ceili i

N
P

n
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
and hence that the total number of pages is 
 

1

ceil
i k

i
i

N
n

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

 
Consider the expression 
 

ceilceil i

N
xn

n

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ =⎝ ⎠

⎜ ⎟
⎜ ⎟
⎝ ⎠

, say. 
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Suppose (0 1)i iN qn r r n= + ≤ ≤ − . Then 
 
(a) If 0r = , 

 1

1

ceil

ceil

ceil

i

i

i

q
x

n

qn
n

N
n

+

+

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 

(b) If 0r > , 
1

ceil
q

x
n
+⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 
 
Suppose (0 1)q q n r r n′ ′ ′= + ≤ ≤ − . Then 

1 1( ) ( )i i iN q n r n r q n r n r+ +′ ′ ′ ′= + + = + + ; since 0 1ir n< ≤ −  and 
0 1ir n≤ ≤ − , 
 

1 1 10 ( ) ( )i i i i ir n r n n n n+ + +′< + ≤ − − <  
 

hence 1ceil 1i

N
q

n +
⎛ ⎞ ′= +⎜ ⎟
⎝ ⎠

. 

But 
 

1
ceil

1

q n r
x

n
q

′ ′+ +⎛ ⎞= ⎜ ⎟
⎝ ⎠

′= +
 

 
since 1 1r n′≤ + ≤ . Thus in both cases (a) and (b) we have that 

 

1

ceilceil ceili
i

N N
n n

n
+

⎛ ⎞
⎛ ⎞⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟ = ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

 

 
Now, it is immediate that 1 ceil( / )P N n= . It is also immediate that 

1 1 ceil( / )iP P n+ = , 1 i k≤ ≤ . Thus, if ceil( / )iiP N n= , then 
 

1 1
i

i i

N Nceil
P ceil ceiln

n
n

+ +

⎛ ⎞
⎛ ⎞⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟= = ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

 

 
The rest follows by induction. 
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D.11 Values recorded in index     Expanded form  
 

0 - 2 - Ab                   Ab 
1 - 3 - cke                  Acke 
3 - 1 - r                    Ackr 
1 - 7 - dams,T+              Adams,T+ 
7 - 1 - R                    Adams,TR 
5 - 1 - o                    Adamso 
1 - 1 - l                    Al 
1 - 1 - y                    Ay 
0 - 7 - Bailey,              Bailey, 
6 - 1 - m                    Baileym 
 

Points arising:   
 
1.  The two figures preceding each recorded value represent, 

respectively, the number of leading characters that are the 
same as those in the preceding value and the number of 
characters actually stored.   

 
2.  The expanded form of each value shows what can be deduced 

from the index alone (via a sequential scan) without looking 
at the indexed records.   

 
3. The "+" characters in the fourth line represent blanks.   
 
4.  We assume the next value of the indexed field doesn't have 

"Baileym" as its first seven characters.   
 

The percentage saving in storage space is 100 * (150 - 35) / 
150 percent = 76.67 percent.   

 
The index search algorithm is as follows.  Let V be the 

specified value (padded with blanks if necessary to make it 15 
characters long).  Then:   

 
found := false ; 
do for each index entry in turn ; 

expand current index entry and let expanded length = N ; 
if expanded entry = leftmost N characters of V 
then do ; 

retrieve corresponding record ; 
if value in that record = V 
then found := true ; 
leave loop ; 

end ; 
if expanded entry > leftmost N characters of V 
then leave loop ; 

end ; 
if found = false 
then /* no record for V exists */ ; 
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else /* record for V has been found */ ; 
 
For "Ackroyd,S" we get a match on the third iteration; we 

retrieve the corresponding record and find that it is indeed the 
one we want.   

 
For "Adams,V" we get "index entry high" on the sixth 

iteration, so no corresponding record exists.   
 
For "Allingham,M" we get a match on the seventh iteration; 

however, the record retrieved is for "Allen,S", so it's 
permissible to insert a new one for "Allingham,M".  (We're 
assuming here that indexed field values are required to be 
unique.)  Inserting "Allingham,M" involves the following steps.   

 
1. Finding space and storing the new record  
 
2. Adjusting the index entry for "Allen,S" to read  
 

1 - 3 - lle  
 

3.  Inserting an index entry between those for "Allen,S" and 
"Ayres,ST" to read  

 
3 - 1 - i 
 

Note that the preceding index entry has to be changed.  In 
general, inserting a new entry into the index can affect the 
preceding entry or the following entry, or possibly neither──but 
never both.   
 
 
 
 
          *** End of Appendix D *** 
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