## APRIORI Algorithm

## Professor Anita Wasilewska

Lecture Notes

## The Apriori Algorithm: Basics

The Apriori Algorithm is an influential algorithm for mining frequent itemsets for boolean association rules.

## Key Concepts :

- Frequent Itemsets: The sets of item which has minimum support (denoted by $\mathrm{L}_{\mathrm{i}}$ for $\mathrm{i}^{\text {th }}$ Itemset).
- Apriori Property: Any subset of frequent itemset must be frequent.
- Join Operation: To find $L_{k}$, a set of candidate k-itemsets is generated by joining $L_{k-1}$ with itself.


## The Apriori Algorithm in a Nutshell

- Find the frequent itemsets: the sets of items that have minimum support
- A subset of a frequent itemset must also be a frequent itemset
- i.e., if $\{A B\}$ is a frequent itemset, both $\{A\}$ and $\{B\}$ should be a frequent itemset
- Iteratively find frequent itemsets with cardinality from 1 to $k$ ( $k$-itemset)
- Use the frequent itemsets to generate association rules.


## The Apriori Algorithm : Pseudo code

- Join Step: $\mathrm{C}_{\mathrm{k}}$ is generated by joining $\mathrm{L}_{\mathrm{k}-1}$ with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code:
$C_{k}$ : Candidate itemset of size k
$L_{k}$ : frequent itemset of size $k$
$L_{1}=\{$ frequent items $\} ;$
for ( $k=1 ; L_{k}!=\varnothing ; k++$ ) do begin
$C_{k+1}=$ candidates generated from $L_{k}$;
for each transaction $t$ in database do
increment the count of all candidates in $C_{k+1}$ that are contained in $t$
$L_{\text {k+1 }}=$ candidates in $C_{k+1}$ with min_support
return $\cup_{k} L_{k}$;


## The Apriori Algorithm: Example

| TID | List of Items |
| :---: | :--- |
| T100 | $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$ |
| T100 | $\mathrm{I} 2, \mathrm{I} 4$ |
| T100 | $\mathrm{I} 2, \mathrm{I} 3$ |
| T100 | $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 4$ |
| T100 | $\mathrm{I} 1, \mathrm{I} 3$ |
| T100 | $\mathrm{I} 2, \mathrm{I} 3$ |
| T100 | $\mathrm{I} 1, \mathrm{I} 3$ |
| T100 | $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$ |
| T100 | $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$ |

- Consider a database, D, consisting of 9 transactions.
- Suppose min. support count required is 2 (i.e. min_sup = 2/9 = 22 \% )
- Let minimum confidence required is 70\%.
- We have to first find out the frequent itemset using Apriori algorithm.
- Then, Association rules will be generated using min. support \& min. confidence.


## Step 1: Generating 1-itemset Frequent Pattern

| Scan D for count of each candidate | Itemset | Sup.Count | Compare candidate support count with minimum support count | Itemset | Sup.Count |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | \{11\} | 6 |  | \{11\} | 6 |
|  | \{12\} | 7 |  | \{12\} | 7 |
|  | \{13\} | 6 |  | \{13\} | 6 |
|  | \{14\} | 2 |  | \{14\} | 2 |
|  | \{15\} | 2 |  | \{15\} | 2 |
| $\mathrm{C}_{1}$ |  |  |  | $L_{1}$ |  |

- The set of frequent 1-itemsets, $L_{1}$, consists of the candidate 1itemsets satisfying minimum support.
- In the first iteration of the algorithm, each item is a member of the set of candidate.


## Step 2: Generating 2-itemset Frequent Pattern



## Step 2: Generating 2-itemset Frequent Pattern

- To discover the set of frequent 2-itemsets, $\mathrm{L}_{2}$, the algorithm uses $L_{1}$ Join $L_{1}$ to generate a candidate set of 2-itemsets, $\mathrm{C}_{2}$.
- Next, the transactions in D are scanned and the support count for each candidate itemset in $\mathrm{C}_{2}$ is accumulated (as shown in the middle table).
- The set of frequent 2-itemsets, $L_{2}$, is then determined, consisting of those candidate 2 -itemsets in $\mathrm{C}_{2}$ having minimum support.
- Note: We haven't used Apriori Property yet.


## Step 3: Generating 3-itemset Frequent Pattern



- The generation of the set of candidate 3-itemsets, $\mathrm{C}_{3}$, involves use of the Apriori Property.
- In order to find $C_{3}$, we compute $L_{2}$ Join $L_{2}$.
- $\mathrm{C}_{3}=\mathrm{L} 2$ Join $\mathrm{L} 2=\{\{\mid 1, \mathrm{I} 2, I 3\},\{\mid 1, I 2, I 5\},\{\mid 1, I 3, I 5\},\{\mid 2, I 3, I 4\},\{\mid 2, I 3$, $15\},\{12,14,15\}\}$.
- Now, Join step is complete and Prune step will be used to reduce the size of $\mathrm{C}_{3}$. Prune step helps to avoid heavy computation due to large $\mathrm{C}_{\mathrm{k}}$.


## Step 3: Generating 3-itemset Frequent Pattern

- Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we can determine that four latter candidates cannot possibly be frequent. How ?
- For example , lets take $\{\mid 1, I 2, I 3\}$. The 2 -item subsets of it are $\{I 1, I 2\},\{I 1$, $I 3\} \&\{I 2, I 3\}$. Since all 2 -item subsets of $\{11, I 2, I 3\}$ are members of $L_{2}$, We will keep $\{11, \mathrm{I} 2, \mathrm{I} 3\}$ in $\mathrm{C}_{3}$.
- Lets take another example of $\{I 2, I 3, I 5\}$ which shows how the pruning is performed. The 2 -item subsets are $\{I 2, I 3\},\{I 2, I 5\} \&\{I 3, I 5\}$.
- BUT, $\{I 3, I 5\}$ is not a member of $L_{2}$ and hence it is not frequent violating Apriori Property. Thus We will have to remove $\{I 2, I 3, I 5\}$ from $\mathrm{C}_{3}$.
- Therefore, $\mathrm{C}_{3}=\{\{I 1, I 2, I 3\},\{I 1, I 2, I 5\}\}$ after checking for all members of result of Join operation for Pruning.
- Now, the transactions in $D$ are scanned in order to determine $L_{3}$, consisting of those candidates 3-itemsets in $\mathrm{C}_{3}$ having minimum support.


## Step 4: Generating 4-itemset Frequent Pattern

- The algorithm uses $L_{3}$ Join $L_{3}$ to generate a candidate set of 4 -itemsets, $\mathrm{C}_{4}$. Although the join results in $\{\{11, \mathrm{I} 2$, $13,15\}\}$, this itemset is pruned since its subset $\{\{\mid 2, I 3,15\}\}$ is not frequent.
- Thus, $\mathrm{C}_{4}=\varphi$, and algorithm terminates, having found all of the frequent items. This completes our Apriori Algorithm.
- What's Next?

These frequent itemsets will be used to generate strong association rules ( where strong association rules satisfy both minimum support \& minimum confidence).

## Step 5: Generating Association Rules from Frequent Itemsets

- Procedure:
- For each frequent itemset "I", generate all nonempty subsets of $I$.
- For every nonempty subset $s$ of $I$, output the rule " $s \rightarrow$ (l-s)" if support_count(I) / support_count(s) >= min_conf where min_conf is minimum confidence threshold.
- Back To Example:

We had $L=\{\{\mid 1\},\{\mid 2\},\{\mid 3\},\{\mid 4\},\{\mid 5\},\{|1| 2\},,\{|1| 3\},,\{|1| 5\},,\{|2| 3$,$\} ,$ $\{\mid 2,14\},\{\mid 2, I 5\},\{11,12,13\},\{11,12, I 5\}\}$.

- Lets take $I=\{11, I 2, I 5\}$.
- Its all nonempty subsets are $\{11,12\},\{11, I 5\},\{12,15\},\{11\},\{12\},\{15\}$.


## Step 5: Generating Association Rules from Frequent Itemsets

- Let minimum confidence threshold is , say $70 \%$.
- The resulting association rules are shown below, each listed with its confidence.
$-\mathrm{R} 1: \mathrm{I} 1^{\wedge} \mathrm{I} 2 \rightarrow \mathrm{I} 5$
- Confidence $=s c\{11, I 2, I 5\} / s c\{11, I 2\}=2 / 4=50 \%$
- R1 is Rejected.
$-R 2: 11^{\wedge}$ I5 $\rightarrow$ I2
- Confidence $=\operatorname{sc}\{I 1, I 2, I 5\} / \operatorname{sc}\{I 1, I 5\}=2 / 2=100 \%$
- R2 is Selected.
- R3: I2 ${ }^{\wedge}$ I5 $\rightarrow$ I1
- Confidence = sc\{I1,I2,I5\}/sc\{I2,I5\} = 2/2 = 100\%
- R3 is Selected.


## Step 5: Generating Association Rules from Frequent Itemsets

- R4: I1 $\rightarrow$ I2 ^ 15
- Confidence = sc\{I1,I2,I5\}/sc\{I1\} = 2/6 = 33\%
- R4 is Rejected.
$-\mathrm{R} 5: \mathrm{I} 2 \rightarrow \mathrm{I} 1^{\wedge} \mathrm{I} 5$
- Confidence = sc\{I1,I2,I5\}/\{12\}=2/7=29\%
- R5 is Rejected.
-R 6 : I5 $\rightarrow$ I1 ^ I2
- Confidence = sc\{11,I2,I5\}/\{I5\}=2/2=100\%
- R6 is Selected.

In this way, We have found three strong association rules.

## Methods to Improve Apriori's Efficiency

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.
- Transaction reduction: A transaction that does not contain any frequent $k$-itemset is useless in subsequent scans.
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.
- Sampling: mining on a subset of given data, lower support threshold + a method to determine the completeness.
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent.


## Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact, FrequentPattern tree (FP-tree) structure
- highly condensed, but complete for frequent pattern mining
- avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
- A divide-and-conquer methodology: decompose mining tasks into smaller ones
- Avoid candidate generation: sub-database test only!


## FP-Growth Method: An Example

| TID | List of Items |
| :---: | :--- |
| T100 | $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5$ |
| T100 | $\mathrm{I} 2, \mathrm{I} 4$ |
| T100 | $\mathrm{I} 2, \mathrm{I} 3$ |
| T 100 | $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 4$ |
| T 100 | $\mathrm{I}, \mathrm{I} 3$ |
| T 100 | I 13 |
| T 100 | I 3 |
| T 100 | $\mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 5$ |
| T 100 | I 3 |

- Consider the same previous example of a database, D , consisting of 9 transactions.
- Suppose min. support count required is 2 (i.e. min_sup = $2 / 9=22 \%$ )
- The first scan of database is same as Apriori, which derives the set of 1-itemsets \& their support counts.
- The set of frequent items is sorted in the order of descending support count.
- The resulting set is denoted as $L=\{12: 7,11: 6,13: 6,14: 2,15: 2\}$


## FP-Growth Method: Construction of FP-Tree

- First, create the root of the tree, labeled with "null".
- Scan the database D a second time. (First time we scanned it to create 1-itemset and then L).
- The items in each transaction are processed in L order (i.e. sorted order).
- A branch is created for each transaction with items having their support count separated by colon.
- Whenever the same node is encountered in another transaction, we just increment the support count of the common node or Prefix.
- To facilitate tree traversal, an item header table is built so that each item points to its occurrences in the tree via a chain of node-links.
- Now, The problem of mining frequent patterns in database is transformed to that of mining the FP-Tree.


## FP-Growth Method: Construction of FP-Tree



An FP-Tree that registers compressed, frequent pattern information

## Mining the FP-Tree by Creating Conditional (sub) pattern bases

Steps:

1. Start from each frequent length-1 pattern (as an initial suffix pattern).
2. Construct its conditional pattern base which consists of the set of prefix paths in the FP-Tree co-occurring with suffix pattern.
3. Then, Construct its conditional FP-Tree \& perform mining on such a tree.
4. The pattern growth is achieved by concatenation of the suffix pattern with the frequent patterns generated from a conditional FP-Tree.
5. The union of all frequent patterns (generated by step 4) gives the required frequent itemset.

## FP-Tree Example Continued

| Item | Conditional pattern base | Conditional FP-Tree | Frequent pattern generated |
| :---: | :---: | :---: | :---: |
| 15 | $\{(12 \mathrm{I} 1: 1),(12 \mathrm{I} 1 \mathrm{I} 3: 1)\}$ | <12:2, 11:2> | I2 15:2, I1 15:2, I2 I1 I5: 2 |
| 14 | $\{(1211: 1),(12: 1)\}$ | <12: 2> | 12 14: 2 |
| 13 | \{(12 I1: 1),(I2: 2), (I1: 2) \} | $\begin{aligned} & <12: 4,11: \\ & 2>,<11: 2> \end{aligned}$ | $\begin{aligned} & \text { I2 I3:4, I1, I3: } 2 \text {, I2 I1 I3: } \\ & 2 \end{aligned}$ |
| 12 | $\{(12: 4)\}$ | <12: 4> | 12 11: 4 |

Mining the FP-Tree by creating conditional (sub) pattern bases
Now, Following the above mentioned steps:

- Lets start from I5. The I5 is involved in 2 branches namely $\{12 \mathrm{I} 1 \mathrm{I}: 1\}$ and $\{\mathrm{I} 2$ 11 I3 I5: 1\}.
- Therefore considering 15 as suffix, its 2 corresponding prefix paths would be $\{|2| 1: 1\}$ and $\{|2 \mathrm{I}| \mathrm{I}: 1$ \}, which forms its conditional pattern base.


## FP-Tree Example Continued

- Out of these, Only I1 \& I2 is selected in the conditional FP-Tree because I 3 is not satisfying the minimum support count.
For I1, support count in conditional pattern base $=1+1=2$
For 12 , support count in conditional pattern base $=1+1=2$
For I3, support count in conditional pattern base $=1$
Thus support count for I 3 is less than required min_sup which is 2 here.
- Now, We have conditional FP-Tree with us.
- All frequent pattern corresponding to suffix I5 are generated by considering all possible combinations of $I 5$ and conditional FP-Tree.
- The same procedure is applied to suffixes I4, I3 and I1.
- Note: I2 is not taken into consideration for suffix because it doesn't have any prefix at all.


## Why Frequent Pattern Growth Fast ?

- Performance study shows
- FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection
- Reasoning
- No candidate generation, no candidate test
- Use compact data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building

