
Essentials Of
Computer Organization

Douglas Comer

Computer Science Department
Purdue University

http://www.cs.purdue.edu/people/comer

 Copyright 2009. All rights reserved. This document may not
be reproduced by any means without written consent of the author.

I

Course Introduction
And Overview

Computer Architecture -- Chapt. 1 1 Fall, 2009

Questions To Consider

Computer Architecture -- Chapt. 1 2 Fall, 2009

Questions To Consider

d Most CS programs require an architecture course

Computer Architecture -- Chapt. 1 2 Fall, 2009

Questions To Consider

d Most CS programs require an architecture course

d But is architecture useful?

Computer Architecture -- Chapt. 1 2 Fall, 2009

Questions To Consider

d Most CS programs require an architecture course

d But is architecture useful?

Is a knowledge of computer organization
and the underlying hardware relevant for
someone who intends to write software ?

d In other words:

Why should you take this course seriously?

Computer Architecture -- Chapt. 1 2 Fall, 2009

The Answers

Computer Architecture -- Chapt. 1 3 Fall, 2009

The Answers

d The best programmers understand how programs affect the
underlying hardware

– Instructions

– Memory accesses

– I/O and timing

Computer Architecture -- Chapt. 1 3 Fall, 2009

The Answers

d The best programmers understand how programs affect the
underlying hardware

– Instructions

– Memory accesses

– I/O and timing

d Knowledge of computer architecture is needed for later
courses — it will help you understand topics like compilers
and operating systems

Computer Architecture -- Chapt. 1 3 Fall, 2009

The Answers

d The best programmers understand how programs affect the
underlying hardware

– Instructions

– Memory accesses

– I/O and timing

d Knowledge of computer architecture is needed for later
courses — it will help you understand topics like compilers
and operating systems

d Knowing about architecture can help you land and retain a
good job

Computer Architecture -- Chapt. 1 3 Fall, 2009

How This Course Helps

Computer Architecture -- Chapt. 1 4 Fall, 2009

How This Course Helps

d Allows a programmer to write computer programs that are:

– Faster

– Smaller

– Less prone to errors

Computer Architecture -- Chapt. 1 4 Fall, 2009

How This Course Helps

d Allows a programmer to write computer programs that are:

– Faster

– Smaller

– Less prone to errors

d Is key for programming embedded systems

– Cell phones

– Video games

– MP3 players

– Set-top boxes

Computer Architecture -- Chapt. 1 4 Fall, 2009

The Bad News

Computer Architecture -- Chapt. 1 5 Fall, 2009

The Bad News

d Hardware is ugly

– Many details

– Can be counter-intuitive

Computer Architecture -- Chapt. 1 5 Fall, 2009

The Bad News

d Hardware is ugly

– Many details

– Can be counter-intuitive

d The subject is extensive

– Cannot be mastered in one course

– Requires background in electricity and electronics

– Complexity is non-linear — small increases in size can
produce large increases in hardware complexity

Computer Architecture -- Chapt. 1 5 Fall, 2009

The Good News

Computer Architecture -- Chapt. 1 6 Fall, 2009

The Good News

d It is possible to understand architectural components without
knowing all low-level technical details

Computer Architecture -- Chapt. 1 6 Fall, 2009

The Good News

d It is possible to understand architectural components without
knowing all low-level technical details

d Programmers only need to know the essentials

– Characteristics of major components

– Role in overall system

– Consequences for software

Computer Architecture -- Chapt. 1 6 Fall, 2009

Goals Of The Course

d Explore basics of digital hardware

d Build simple circuits

d Learn about functional units in a computer

d Understand

– How processors work

– How memories are organized

– How I/O operates

d Become better programmers

Computer Architecture -- Chapt. 1 7 Fall, 2009

Organization Of The Course

Computer Architecture -- Chapt. 1 8 Fall, 2009

Organization Of The Course

d Basics

– A taste of digital logic

– Data representations

Computer Architecture -- Chapt. 1 8 Fall, 2009

Organization Of The Course

d Basics

– A taste of digital logic

– Data representations

d Processors

– Types of processors

– Instruction sets and operands

– Assembly languages and programming

Computer Architecture -- Chapt. 1 8 Fall, 2009

Organization Of The Course
(continued)

d Memory

– Storage mechanisms

– Physical and virtual memories and addressing

– Caching

Computer Architecture -- Chapt. 1 9 Fall, 2009

Organization Of The Course
(continued)

d Memory

– Storage mechanisms

– Physical and virtual memories and addressing

– Caching

d Input/Output

– Devices and interfaces

– Buses and bus address spaces

– Role of device drivers

Computer Architecture -- Chapt. 1 9 Fall, 2009

Organization Of The Course
(continued)

d Advanced topics

– Parallelism and parallel computers

– Pipelining

– Performance and performance assessment

– Architectural hierarchy

Computer Architecture -- Chapt. 1 10 Fall, 2009

What We Will Not Cover

d The course emphasizes breadth over depth

d Omissions

– Most low-level details (e.g., discussion of electrical
properties of resistance, voltage, current)

– Quantitative analysis that engineers use to design
hardware circuits

– Design rules that specify how logic gates may be
interconnected

– VLSI chip design and tools (e.g., Verilog)

Computer Architecture -- Chapt. 1 11 Fall, 2009

Terminology

d Three basic aspects of computer hardware

– Architecture

– Design

– Implementation

Computer Architecture -- Chapt. 1 12 Fall, 2009

Computer Architecture

d Refers to overall organization of computer system

d Analogous to a blueprint

d Specifies:

– Functionality of major components

– Interconnections among components

d Abstracts away details

Computer Architecture -- Chapt. 1 13 Fall, 2009

Design

d Needed before a computer can be built

d Translates architecture into components

d Fills in details that the architectural specification omits

d Specifies items such as:

– How components are grouped onto boards

– How power is distributed to boards

d Note: many designs can satisfy a given architecture

Computer Architecture -- Chapt. 1 14 Fall, 2009

Implementation

d All details necessary to build a system

d Includes the following:

– Mechanical specifications of chassis and cases

– Layout of components on boards

– Power supplies and power distribution

– Signal wiring and connectors

– Part numbers to be used

Computer Architecture -- Chapt. 1 15 Fall, 2009

Summary

d Understanding computer hardware is needed for
programming excellence

d Course covers essentials of computer architecture

– Digital logic

– Processors, memory, I / O

– Advanced topics such as parallelism and pipelining

d We will omit details and focus on concepts

d Labs form a key part of the course

Computer Architecture -- Chapt. 1 16 Fall, 2009

Questions?

II

Fundamentals
Of

Digital Logic

Computer Architecture -- Chapt. 2 1 Fall, 2009

Our Goals

d Understand

– Fundamentals and basics

– Concepts

– How computers work at the lowest level

d Avoid whenever possible

– Device physics

– Engineering design rules

– Implementation details

Computer Architecture -- Chapt. 2 2 Fall, 2009

Electrical Terminology

d Voltage

– Quantifiable property of electricity

– Measure of potential force

– Unit of measure: volt

d Current

– Quantifiable property of electricity

– Measure of electron flow along a path

– Unit of measure: ampere (amp)

Computer Architecture -- Chapt. 2 3 Fall, 2009

Analog For Electricity

d Voltage is analogous to water pressure

d Current is analogous to flowing water

d Can have

– High pressure with little flow

– Large flow with little pressure

Computer Architecture -- Chapt. 2 4 Fall, 2009

Voltage

d Device used to measure called voltmeter

d Can only be measured as difference between two points

d To measure voltage

– Assume one point represents zero volts (known as
ground)

– Express voltage of second point wrt ground

Computer Architecture -- Chapt. 2 5 Fall, 2009

In Practice

d Typical digital circuit operates on five volts

d Two wires connect each chip to power supply

– Ground (zero volts)

– Power (five volts)

d Digital logic diagrams do not usually show power and
ground connections

Computer Architecture -- Chapt. 2 6 Fall, 2009

Transistor

d Basic building block of digital circuits

d Operates on electrical current

d Acts like a miniature switch — small input current controls
flow of large current

d Three external connections

– Emitter

– Base (control)

– Collector

d Current between base and emitter controls current between
collector and emitter

Computer Architecture -- Chapt. 2 7 Fall, 2009

Illustration Of A Transistor

B

C

E

small current flows
from point B to E

large current flows
from point C to point E

d Important concept: large current is proportional to small
current (amplification)

Computer Architecture -- Chapt. 2 8 Fall, 2009

Field-Effect Transistors

d Used on digital chips (CMOS)

d Configured to act as a switch

G

S

D

non-zero current flowing
from point G to D

turns on current flowing
from point S to point D

Computer Architecture -- Chapt. 2 9 Fall, 2009

Boolean Logic

d Mathematical basis for digital circuits

d Three basic functions: and, or, and not

A B A and B

0

0

1

1

0

1

0

1

0

0

0

1

A B A or B

0

0

1

1

0

1

0

1

0

1

1

1

A not A

0

1

1

0

Computer Architecture -- Chapt. 2 10 Fall, 2009

Digital Logic

d Can implement Boolean functions with transistors

d Five volts represents Boolean 1

d Zero volts represents Boolean 0

Computer Architecture -- Chapt. 2 11 Fall, 2009

Transistor Implementing Boolean Not

input

output

+5 volts

0 volts

resistor

d When input is zero volts, output is five volts

d When input is five volts, output is zero volts

Computer Architecture -- Chapt. 2 12 Fall, 2009

Logic Gate

d Hardware component

d Consists of integrated circuit

d Implements an individual Boolean function

d To reduce complexity, provide inverse of Boolean functions

– Nand gate implements not and

– Nor gate implements not or

– Inverter implements not

Computer Architecture -- Chapt. 2 13 Fall, 2009

Truth Tables For Nand and Nor Gates

A B A nand B

0

0

1

1

0

1

0

1

1

1

1

0

A B A nor B

0

0

1

1

0

1

0

1

1

0

0

0

Computer Architecture -- Chapt. 2 14 Fall, 2009

Symbols Used In Schematic Diagrams

nand gate nor gate inverter

Computer Architecture -- Chapt. 2 15 Fall, 2009

Example Of Internal Gate Structure (Nor Gate)

input 1

input 2

0 volts

output

5 volts

4 k 4 k 1.6 k

1 k

130

diode

d Solid dot indicates electrical connection

Computer Architecture -- Chapt. 2 16 Fall, 2009

Technology For Logic Gates

d Most popular technology known as Transistor-Transistor
Logic (TTL)

d Allows direct interconnection (a wire can connect output
from one gate to input of another)

d Single output can connect to multiple inputs

– Called fanout

– Limited to a small number

Computer Architecture -- Chapt. 2 17 Fall, 2009

Example Interconnection Of TTL Gates

d Two logic gates needed to form logical and

– Output from nand gate connected to input of inverter

input from
power button

input from
disk

output

Computer Architecture -- Chapt. 2 18 Fall, 2009

Consider The Following Circuit

X

Y

Z

A

B

C output

d Question: what does the circuit implement?

Computer Architecture -- Chapt. 2 19 Fall, 2009

Two Ways To Describe Circuit

d Boolean expression

– Often used when designing circuit

– Can be transformed to equivalent version that takes
fewer gates

d Truth table

– Enumerates inputs and outputs

– Often used when debugging a circuit

Computer Architecture -- Chapt. 2 20 Fall, 2009

Describing A Circuit With Boolean Algebra

X

Y

Z

A

B

C output

d Value at point A is not Y

d Value at B is:

Z nor (not Y)
Computer Architecture -- Chapt. 2 21 Fall, 2009

Describing A Circuit With Boolean Algebra
(continued)

X

Y

Z

A

B

C output

d Output is:

X and (Z nor (not Y))

Computer Architecture -- Chapt. 2 22 Fall, 2009

Describing A Circuit With Boolean Algebra
(continued)

X

Y

Z

A

B

C output

d Output is (alternative):

X and not (Z or (not Y))
Computer Architecture -- Chapt. 2 23 Fall, 2009

Describing A Circuit With A Truth Table
(continued)

X Y Z A B C output

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

0

0

1

1

0

0

0

0

1

0

0

0

1

0

1

1

1

1

1

1

0

1

0

0

0

0

0

0

1

0

d Table lists all possible inputs and output for each

d Can also state values for intermediate points

Computer Architecture -- Chapt. 2 24 Fall, 2009

Avoiding Nand / Nor Operations

d Circuits use nand and nor gates

d Sometimes easier for humans to use and and or operations

d Example circuit or truth table output can be described by
Boolean expression:

X and Y and (not Z))

Computer Architecture -- Chapt. 2 25 Fall, 2009

In Practice

d Only a few connections needed per gate

d Chip has many pins for external connections

d Result: can package multiple gates on each chip

Computer Architecture -- Chapt. 2 26 Fall, 2009

Example Of Logic Gates

d 7400 family of chips

d Package is about one-half inch long

d Implement TTL logic

d Powered by five volts

d Contain multiple gates per chip

Computer Architecture -- Chapt. 2 27 Fall, 2009

Examples Of Gates On 7400-Series Chips

1 2 3 4 5 6 7

891011121314

1 2 3 4 5 6 7

891011121314

1 2 3 4 5 6 7

891011121314

7400 7402 7404

d Pins 7 and 14 connect to ground and power

Computer Architecture -- Chapt. 2 28 Fall, 2009

Logic Gates And Computers

Computer Architecture -- Chapt. 2 29 Fall, 2009

Logic Gates And Computers

d Question: how can computers be constructed from simple
logic gates?

Computer Architecture -- Chapt. 2 29 Fall, 2009

Logic Gates And Computers

d Question: how can computers be constructed from simple
logic gates?

d Answer: they cannot

Computer Architecture -- Chapt. 2 29 Fall, 2009

Logic Gates And Computers

d Question: how can computers be constructed from simple
logic gates?

d Answer: they cannot

d Additional functionality needed

– Circuits that maintain state

– Circuits that operate on a clock

Computer Architecture -- Chapt. 2 29 Fall, 2009

Circuits That Maintain State

d More sophisticated than combinatorial circuits

d Output depends on history of previous input as well as
values on input lines

Computer Architecture -- Chapt. 2 30 Fall, 2009

Example Of Circuit That Maintains State

d Basic flip-flop

d Analogous to push-button power switch

d Each new 1 received as input causes output to reverse

– First input pulse causes flip-flop to turn on

– Second input pulse causes flip-flop to turn off

Computer Architecture -- Chapt. 2 31 Fall, 2009

Output Of A Flip-Flop

flip-flop
input output

in:

out:

time increases

0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1

d Note: output only changes when input makes a transition
from zero to one

Computer Architecture -- Chapt. 2 32 Fall, 2009

Flip-Flop Action Plotted As Transition Diagram

in:

out:

0

1

0

1

time increases

d Output changes on leading edge of input

d Also called rising edge

Computer Architecture -- Chapt. 2 33 Fall, 2009

Binary Counter

d Counts input pulses

d Output is binary value

d Includes reset line to restart count at zero

d Example: 4-bit counter available as single integrated circuit

Computer Architecture -- Chapt. 2 34 Fall, 2009

Illustration Of Counter

counter

input
outputs

(a)

(b)

input outputs decimal

time
increases

0

0

1

0

1

1

0

1

0

1

0

1

0 0 0

0 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 1 0

0 1 1

0 1 1

1 0 0

1 0 0

1 0 1

0

0

1

1

2

2

2

3

3

4

4

5

.

.

.

d Part (a) shows the schematic of a counter chip

d Part (b) shows the output as the input changes

Computer Architecture -- Chapt. 2 35 Fall, 2009

Clock

d Electronic circuit that pulses regularly

d Measured in cycles per second (Hz)

d Digital output of clock is sequence of 0 1 0 1 ...

d Permits active circuits

Computer Architecture -- Chapt. 2 36 Fall, 2009

Demultiplexor

d Takes binary number as input

d Uses input to select one output

d Technical distinction

– decoder simply selects one output

– demultiplexor feeds a special input to the selected output

d In practice: engineers often use the term “demux” for either,
and blur the distinction

Computer Architecture -- Chapt. 2 37 Fall, 2009

Illustration Of Demultiplexor

d Binary value on inputs determines which output is active

demultiplexor

x
y
z

inputs

“000”

“001”

“010”

“011”

“100”

“101”

“110”

“111”

outputs

Computer Architecture -- Chapt. 2 38 Fall, 2009

Example: Execute A Sequence Of Steps

d Desired sequence

– Test the battery

– Power on and test the memory

– Start the disk spinning

– Power up the display

– Read boot sector from disk into memory

– Start the CPU

Computer Architecture -- Chapt. 2 39 Fall, 2009

Circuit To Execute A Sequence

clock
counter

demultiplexor

not used

test battery

test memory

start disk

power CRT

read boot blk

start CPU

not used

Computer Architecture -- Chapt. 2 40 Fall, 2009

Feedback

d Output of circuit used as an input

d Allows more control

d Example: stop sequence when output F becomes active

d Boolean algebra

CLOCK and (not F)

Computer Architecture -- Chapt. 2 41 Fall, 2009

Illustration Of Feedback For Termination

demultiplexor

counterclock

not used

test battery

test memory

start disk

state CRT

read boot blk

start CPU

stopfeedback

these two gates perform
the Boolean and function

d Note additional input needed to restart sequence

Computer Architecture -- Chapt. 2 42 Fall, 2009

Spare Gates

d Note: because chip contains multiple gates, some gates may
be unused

d May be able to substitute spare gates in place of additional
chip

d Example uses spare nand gate as inverter by connecting one
input to five volts:

1 nand x = not x

Computer Architecture -- Chapt. 2 43 Fall, 2009

Practical Engineering Concerns

d Power consumption (wiring must carry sufficient power)

d Heat dissipation (chips must be kept cool)

d Timing (gates take time to settle after input changes)

d Clock synchronization (clock signal must reach all chips
simultaneously)

Computer Architecture -- Chapt. 2 44 Fall, 2009

Illustration Of Clock Skew

IC1

IC2

IC3

clock

d Length of wire determines time required for signal to
propagate

Computer Architecture -- Chapt. 2 45 Fall, 2009

Classification Of Technologies

Name Example Use222

Small Scale Integration (SSI) The most basic logic
such as Boolean gates

Medium Scale Integration (MSI) Intermediate logic
such as counters

Large Scale Integration (LSI) More complex logic such
as embedded processors

Very Large Scale Integration (VLSI) The most complex
processors (i.e., CPUs)

Computer Architecture -- Chapt. 2 46 Fall, 2009

Levels Of Abstraction

Abstraction Implemented With222

Computer Circuit board(s)
Circuit board Components such as processor and memory
Processor VLSI chip
VLSI chip Many gates
Gate Many transistors
Transistor Semiconductor implemented in silicon

Computer Architecture -- Chapt. 2 47 Fall, 2009

Reconfigurable Logic

d Alternative to standard gates

d Allows chip to be configured multiple times

d Can create

– Various gates

– Interconnections

d Most popular form: Field Programmable Gate Array
(FPGA)

Computer Architecture -- Chapt. 2 48 Fall, 2009

Summary

d Computer systems are constructed of digital logic circuits

d Fundamental building block is called a gate

d Digital circuit can be described by

– Boolean algebra (most useful when designing)

– Truth table (most useful when debugging)

d Clock allows active circuit to perform sequence of
operations

d Feedback allows output to control processing

d Practical engineering concerns include

– Power consumption and heat dissipation

– Clock skew and synchronization

Computer Architecture -- Chapt. 2 49 Fall, 2009

Questions?

III

Data And Program
Representation

Computer Architecture -- Chapt. 3 1 Fall, 2009

Digital Logic

d Built on two-valued logic system

d Can be interpreted as

– Five volts and zero volts

– High and low

– True and false

Computer Architecture -- Chapt. 3 2 Fall, 2009

Data Representation

d Builds on digital logic

d Applies familiar abstractions

d Interprets sets of Boolean values as

– Numbers

– Characters

– Addresses

Computer Architecture -- Chapt. 3 3 Fall, 2009

Binary Digit (Bit)

d Direct representation of digital logic values

d Assigned mathematical interpretation

– 0 and 1

d Multiple bits used to represent complex data item

Computer Architecture -- Chapt. 3 4 Fall, 2009

Byte

d Set of multiple bits

d Size depends on computer

d Examples of byte sizes

– CDC: 6-bit byte

– BBN: 10-bit byte

– IBM: 8-bit byte

d On many computers, smallest addressable unit of storage

d Note: following most modern computers, we will assume an
8-bit byte

Computer Architecture -- Chapt. 3 5 Fall, 2009

Byte Size And Values

d Number of bits per byte determines range of values that can
be stored

d Byte of k bits can store 2k values

d Examples

– Six-bit byte can store 64 possible values

– Eight-bit byte can store 256 possible values

Computer Architecture -- Chapt. 3 6 Fall, 2009

Binary Representation

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

d All possible combinations of three bits

Computer Architecture -- Chapt. 3 7 Fall, 2009

Meaning Of Bits

d Bits themselves have no intrinsic meaning

d Byte merely stores string of 0’s and 1’s

d All interpretation determined by use

Computer Architecture -- Chapt. 3 8 Fall, 2009

Example Of Interpretation

d Assume three bits used for status of peripheral devices

– First bit has the value 1 if a disk is connected

– Second bit has the value 1 if a printer is connected

– Third bit has the value 1 if a keyboard is connected

Computer Architecture -- Chapt. 3 9 Fall, 2009

Arithmetic Values

d Combination of bits interpreted as an integer

d Positional representation uses base 2

d Note: interpretation must specify order of bits

Computer Architecture -- Chapt. 3 10 Fall, 2009

Illustration Of Positional Interpretation

2 0 = 12 1 = 22 2 = 42 3 = 82 4 = 162 5 = 32

d Example:

0 1 0 1 0 1

is interpreted as:

0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 21

Computer Architecture -- Chapt. 3 11 Fall, 2009

The Range Of Values

A set of k bits can be interpreted to represent a binary integer.
When conventional positional notation is used, the values that
can be represented with k bits range from 0 through 2k– 1.

Computer Architecture -- Chapt. 3 12 Fall, 2009

Hexadecimal Notation

d Convenient way to represent binary data

d Uses base 16

d Each hex digit encodes four bits

Computer Architecture -- Chapt. 3 13 Fall, 2009

Hexadecimal Digits

Hex Digit Binary Value Decimal Equivalent22

0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 3
4 0 1 0 0 4
5 0 1 0 1 5
6 0 1 1 0 6
7 0 1 1 1 7
8 1 0 0 0 8
9 1 0 0 1 9
A 1 0 1 0 10
B 1 0 1 1 11
C 1 1 0 0 12
D 1 1 0 1 13
E 1 1 1 0 14
F 1 1 1 1 15

Computer Architecture -- Chapt. 3 14 Fall, 2009

Hexadecimal Constants

d Supported in some programming languages

d Typical syntax: constant begins with 0x

d Example:

0xDEC90949

Computer Architecture -- Chapt. 3 15 Fall, 2009

Character Sets

d Symbols for upper and lower case letters, digits, and
punctuation marks

d Set of symbols defined by computer system

d Each symbol assigned unique bit pattern

d Typically, character set size determined by byte size

Computer Architecture -- Chapt. 3 16 Fall, 2009

Example Character Encodings

d EBCDIC

d ASCII

d Unicode

Computer Architecture -- Chapt. 3 17 Fall, 2009

EBCDIC

d Extended Binary Coded Decimal Interchange Code

d Defined by IBM

d Popular in 1960s

d Still used on IBM mainframe computers

d Example encoding: lower case letter a assigned binary value

10000001

Computer Architecture -- Chapt. 3 18 Fall, 2009

ASCII

d American Standard Code for Information Interchange

d Vendor independent: defined by American National
Standards Institute (ANSI)

d Adopted by PC manufacturers

d Specifies 128 characters

d Example encoding: lower case letter a assigned binary value

01100001

Computer Architecture -- Chapt. 3 19 Fall, 2009

Full ASCII Character Set

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0A lf 0B vt 0C np 0D cr 0E so 0F si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 can 19 em 1A sub 1B esc 1C fs 1D gs 1e rs 1F us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’

28 (29) 2A * 2B + 2C , 2D – 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [5C \ 5D] 5E ^ 5F _

60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F del

Computer Architecture -- Chapt. 3 20 Fall, 2009

Unicode

d Each character is 16 bits long

d Can represent larger set of characters

d Motivation: accommodate languages such as Chinese

Computer Architecture -- Chapt. 3 21 Fall, 2009

Integer Representation In Binary

d Each binary integer represented in k bits

d Computers have used k = 8, 16, 32, 60, and 64

d Many computers support multiple integer sizes (e.g., 16 and
32 bit integers)

d 2k possible bit combinations exist for k bits

d Positional interpretation produces unsigned integers

Computer Architecture -- Chapt. 3 22 Fall, 2009

Unsigned Integers

d Straightforward positional interpretation

d Each successive bit represents next power of 2

d No provision for negative values

d Arithmetic operations can produce overflow or underflow
(result cannot be represented in k bits)

d Handled with wraparound and carry bit

Computer Architecture -- Chapt. 3 23 Fall, 2009

Illustration Of Overflow

1 0 0

+ 1 1 0

1 0 1 0

overflow result

d Values wrap around address space

d Hardware records overflow in separate carry indicator

Computer Architecture -- Chapt. 3 24 Fall, 2009

Signed Values

d Needed by most programs

d Several representations possible

d Each has been used in at least one computer

d Some bit patterns used for negative values (typically half)

d Tradeoff: unsigned representation cannot store negative
values, but can store integers that are twice as large as a
signed representation

Computer Architecture -- Chapt. 3 25 Fall, 2009

Example Signed Integer Representations

d Sign magnitude

d One’s complement

d Two’s complement

d Note: each has interesting quirks

Computer Architecture -- Chapt. 3 26 Fall, 2009

Sign Magnitude Representation

d Familiar to humans

d First bit represents sign

d Successive bits represent absolute value of integer

d Interesting quirk: can create negative zero

Computer Architecture -- Chapt. 3 27 Fall, 2009

One’s Complement Representation

d Positive number uses positional representation

d Negative number formed by inverting all bits of positive
value

d Example of 4-bit one’s complement

– 0 0 1 0 represents 2

– 1 1 0 1 represents –2

d Interesting quirk: two representations for zero (all 0’s and
all 1’s)

Computer Architecture -- Chapt. 3 28 Fall, 2009

Two’s Complement Representation

d Positive number uses positional representation

d Negative number formed by subtracting 1 from positive
value and inverting all bits of result

d Example of 4-bit two’s complement

– 0 0 1 0 represents 2

– 1 1 1 0 represents –2

– High-order bit is set if number is negative

d Interesting quirk: one more negative values than positive
values

Computer Architecture -- Chapt. 3 29 Fall, 2009

Example Of Values In Unsigned
And Two’s Complement Representations

Binary Unsigned Two’s Complement
Value Equivalent Equivalent222

1 1 1 1 15 – 1
1 1 1 0 14 – 2
1 1 0 1 13 – 3
1 1 0 0 12 – 4
1 0 1 1 11 – 5
1 0 1 0 10 – 6
1 0 0 1 9 – 7
1 0 0 0 8 – 8
0 1 1 1 7 7
0 1 1 0 6 6
0 1 0 1 5 5
0 1 0 0 4 4
0 0 1 1 3 3
0 0 1 0 2 2
0 0 0 1 1 1
0 0 0 0 0 0

Computer Architecture -- Chapt. 3 30 Fall, 2009

Implementation Of Unsigned
And Two’s Complement

A computer can use a single piece of hardware to provide
unsigned or two’s complement integer arithmetic; software
running on the computer can choose an interpretation for each
integer.

d Example (k = 4)

– Adding 1 to binary 1 0 0 1 produces 1 0 1 0

– Unsigned interpretation goes from 9 to 10

– Two’s complement interpretation goes from –7 to –6

Computer Architecture -- Chapt. 3 31 Fall, 2009

Sign Extension

d Needed when computer has multiple sizes of integers

d Works for unsigned and two’s complement representations

d Extends high-order bit (known as sign bit)

Computer Architecture -- Chapt. 3 32 Fall, 2009

Explanation Of Sign Extension

d Assume computer

– Supports 32-bit and 64-bit integers

– Uses two’s complement representation

d When 32-bit integer assigned to 64-bit integer, correct
numeric value requires upper sixteen bits to be filled with
zeroes for positive number or ones for negative number

d In essence, sign bit from shorter integer must be extended to
fill high-order bits of larger integer

Computer Architecture -- Chapt. 3 33 Fall, 2009

Example Of Sign Extension During Assignment

d The 8-bit version of integer –3 is:

1 1 1 1 1 1 0 1

d The 16-bit version of integer –3 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

d During assignment to a larger integer, hardware copies all
bits of smaller integer and then replicates the high-order
(sign) bit in remaining bits

Computer Architecture -- Chapt. 3 34 Fall, 2009

Example Of Sign Extension During Shift

d Right shift of a negative value should produce a negative
value

d Example

– Shifting –4 one bit should produce –2 (divide by 2)

– Using sixteen-bit representation, –4 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

d After right shift of one bit, value is –2:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

d Solution: replicate high-order bit during right shift

Computer Architecture -- Chapt. 3 35 Fall, 2009

Summary Of Sign Extension

Sign extension: in two’s complement arithmetic, when an
integer Q composed of K bits is copied to an integer of more
than K bits, the additional high-order bits are made equal to
the top bit of Q. Extending the sign bit means the numeric
value remains the same.

Computer Architecture -- Chapt. 3 36 Fall, 2009

A Consequence For Programmers

Because two’s complement hardware performs sign extension,
copying an unsigned integer to a larger unsigned integer
changes the value; to prevent such errors from occurring, a
programmer or a compiler must add code to mask off the
extended sign bits.

Computer Architecture -- Chapt. 3 37 Fall, 2009

Numbering Bits And Bytes

d Need to choose order for

– Storage in physical memory system

– Transmission over serial medium (e.g., a data network)

d Bit order

– Handled by hardware

– Usually hidden from programmer

d Byte order

– Affects multi-byte data items such as integers

– Visible and important to programmer

Computer Architecture -- Chapt. 3 38 Fall, 2009

Possible Byte Order

d Least significant byte of integer in lowest memory location

– Known as little endian

d Most significant byte of integer in lowest memory location

– Known as big endian

d Other orderings

– Digital Equipment Corporation once used an ordering
with sixteen-bit words in big endian order and bytes
within the words in little endian order.

d Note: only big and little endian storage are popular

Computer Architecture -- Chapt. 3 39 Fall, 2009

Illustration Of Big And
Little Endian Byte Order

Little Endian

Big Endian

0123

0 1 2 3

0x010x000x000x00

0x00 0x00 0x00 0x01

d Note: difference is especially important when transferring
data between computers for which the byte ordering differs

Computer Architecture -- Chapt. 3 40 Fall, 2009

Floating Point

d Fundamental idea: follow standard scientific representation

d Store two basic items

d Example: Avogadro’s number

6.022 × 1023

Computer Architecture -- Chapt. 3 41 Fall, 2009

Floating Point Representation

d Use base 2 instead of base 10

d Keep two conceptual items

– Exponent that specifies the order of magnitude in a base

– Mantissa that specifies most significant part of value

Computer Architecture -- Chapt. 3 42 Fall, 2009

Optimizing Floating Point

d Value is normalized

d Leading bit is implicit

d Exponent is biased to allow negative values

d Normalization eliminates leading zeroes

d No need to store leading bit (0 is special case)

Computer Architecture -- Chapt. 3 43 Fall, 2009

Example Floating Point Representation:
IEEE Standard 754

d Specifies single-precision and double-precision
representations

d Widely adopted by computer architects

02331

05263

S exponent mantissa (bits 0 – 22)

S exponent mantissa (bits 0 - 51)

Computer Architecture -- Chapt. 3 44 Fall, 2009

Special Values In IEEE Floating Point

d Zero

d Positive infinity

d Negative infinity

d Note: infinity values handle cases such as the result of
dividing by zero

Computer Architecture -- Chapt. 3 45 Fall, 2009

Range Of Values In IEEE Floating Point

d Single precision range is:

2–126 to 2127

d Decimal equivalent is approximately:

10–38 to 1038

d Double precision range is:

10–308 to 10308

Computer Architecture -- Chapt. 3 46 Fall, 2009

Data Aggregates

d Typically arranged in contiguous memory

d Example: three integers

0 1 2 3 4 5

integer #1 integer #2 integer #3

d More details later in the course

Computer Architecture -- Chapt. 3 47 Fall, 2009

Summary

d Basic output from digital logic is a bit

d Bits grouped into sets to represent

– Integers

– Characters

– Floating point values

d Integers can be represented as

– Sign magnitude

– One’s complement

– Two’s complement

Computer Architecture -- Chapt. 3 48 Fall, 2009

Summary

d One piece of hardware can be used for both

– Two’s complement arithmetic

– Unsigned arithmetic

d Bytes of integer can be numbered in

– Big-endian order

– Little-endian order

d Organizations such as ANSI and IEEE define standards for
data representation

Computer Architecture -- Chapt. 3 49 Fall, 2009

Questions?

IV

Processors

Computer Architecture -- Chapt. 4 1 Fall, 2009

Terminology

d The terms processor and computational engine refer broadly
to any mechanism that drives computation

d Wide variety of sizes and complexity

d Processor is key element in all computational systems

Computer Architecture -- Chapt. 4 2 Fall, 2009

Von Neumann Architecture

d Characteristic of most modern processors

d Reference to mathematician John Von Neumann who was
one of the computer architecture pioneers

d Fundamental concept is a stored program

d Three basic components interact to form a computational
system

– Processor

– Memory

– I/O facilities

Computer Architecture -- Chapt. 4 3 Fall, 2009

Illustration Of Von Neumann Architecture

computer

input/output facilities

processor memory

Computer Architecture -- Chapt. 4 4 Fall, 2009

Processor

d Digital device

d Performs computation involving multiple steps

d Wide variety of capabilities

d Mechanisms available

– Fixed logic

– Selectable logic

– Parameterized logic

– Programmable logic

Computer Architecture -- Chapt. 4 5 Fall, 2009

Fixed Logic Processor

d Least powerful

d Performs a single operation

d Functionality hardwired (cannot be changed)

d Example: math coprocessor that computes sine

Computer Architecture -- Chapt. 4 6 Fall, 2009

Selectable Logic Processor

d Slightly more powerful than fixed logic

d Can perform more than one function

d Exact function specified each time processor invoked

d Example: math coprocessor that computes sine or cosine

Computer Architecture -- Chapt. 4 7 Fall, 2009

Parameterized Logic Processor

d Accepts set of parameters that control computation

d Parameters set for each invocation

d Example

– Compute hash function, h(x), that multiplies argument x
by a constant p and computes the remainder modulo
constant q

– Parameters specify constants p and q used in
computation

Computer Architecture -- Chapt. 4 8 Fall, 2009

Programmable Logic Processor

d Greatest flexibility

d Function to compute can be changed

d Sequence of steps can be specified for each invocation

d Example: conventional CPU

Computer Architecture -- Chapt. 4 9 Fall, 2009

Hierarchical Structure And
Computational Engines

d Most computer architecture follows a hierarchical approach

d Subparts of a large, central processor are sophisticated
enough to meet our definition of processor

d Some engineers use term computational engine for subpiece
that is less powerful than main processor

Computer Architecture -- Chapt. 4 10 Fall, 2009

Illustration Of Processor Hierarchy

CPU

trigonometry
engine

graphics
engine

other
components

query
engine arithmetic

engine

Computer Architecture -- Chapt. 4 11 Fall, 2009

Major Components Of A Conventional Processor

d Controller

d Computational engine (ALU)

d Internal interconnection(s)

d External interface

d Local data storage

Computer Architecture -- Chapt. 4 12 Fall, 2009

Illustration Of A Conventional Processor

controller

internal interconnection(s)

ALU local
storage

external interface

external connection

Computer Architecture -- Chapt. 4 13 Fall, 2009

Parts Of A Conventional Processor

d Controller

– Overall responsibility for execution

– Moves through sequence of steps

– Coordinates other units

d Computational engine

– Operates as directed by controller

– Typically provides arithmetic and Boolean operations

– Performs one operation at a time

Computer Architecture -- Chapt. 4 14 Fall, 2009

Parts Of A Conventional Processor
(continued)

d Internal interconnections

– Allow transfer of values among units of the processor

– Sometimes called data path

d External interface

– Handles communication between processor and rest of
computer system

– Provides connections to external memory as well as
external I/O devices

Computer Architecture -- Chapt. 4 15 Fall, 2009

Parts Of A Conventional Processor
(continued)

d Local data storage

– Holds data values for operations

– Values must be inserted (e.g., loaded from memory)
before the operation can be performed

– Typically implemented with registers

Computer Architecture -- Chapt. 4 16 Fall, 2009

Arithmetic Logic Unit
(ALU)

d Main computational engine in conventional processor

d Complex unit that can perform variety of tasks

d Typical ALU operations

– Arithmetic (integer add, subtract, multiply, divide)

– Shift (left, right, circular)

– Boolean (and, or, not, exclusive or)

Computer Architecture -- Chapt. 4 17 Fall, 2009

Processor Categories And Roles

d Many possible roles for individual processors in

– Coprocessors

– Microcontrollers

– Microsequencers

– Embedded system processors

– General-purpose processors

Computer Architecture -- Chapt. 4 18 Fall, 2009

Coprocessor

d Operates in conjunction with and under the control of
another processor

d Usually

– Special-purpose processor

– Performs a single task

– Operates at high speed

d Example: floating point accelerator

Computer Architecture -- Chapt. 4 19 Fall, 2009

Microcontroller

d Programmable device

d Dedicated to control of a physical system

d Example: run automobile engine or grocery store door

Computer Architecture -- Chapt. 4 20 Fall, 2009

Example Steps A Microcontroller Performs
(Automatic Door)

do forever {
wait for the sensor to be tripped;
turn on power to the door motor;
wait for a signal that indicates the

door is open;
wait for the sensor to reset;
delay ten seconds;
turn off power to the door motor;

}

Computer Architecture -- Chapt. 4 21 Fall, 2009

Microsequencer

d Similar to microcontroller

d Controls coprocessors and other engines within a large
processor

d Example: move operands to floating point unit; invoke an
operation; move result back to memory

Computer Architecture -- Chapt. 4 22 Fall, 2009

Embedded System Processor

d Runs sophisticated electronic device

d Usually more powerful than microcontroller

d Example: control DVD player, including commands
received from a remote control as well as from the front
panel

Computer Architecture -- Chapt. 4 23 Fall, 2009

General-Purpose Processor

d Most powerful type of processor

d Completely programmable

d Full functionality

d Example: CPU in a personal computer

Computer Architecture -- Chapt. 4 24 Fall, 2009

Processor Implementation

d Originally: discrete logic

d Later: single circuit board

d Now

– Single chip

– Part of a chip

Computer Architecture -- Chapt. 4 25 Fall, 2009

Definition Of Programmable Device

To a computer architect, a processor is classified as
programmable if at some level of detail, the processor is
separate from the program it runs. To a user, it may appear
that the program and processor are integrated, and it may not
be possible to change the program without replacing the
processor.

Computer Architecture -- Chapt. 4 26 Fall, 2009

Fetch-Execute Cycle

d Basis for programmable processors

d Allows processor to move through program steps
automatically

d Implemented by processor hardware

d Note:

At some level, every programmable processor implements a
fetch-execute cycle.

Computer Architecture -- Chapt. 4 27 Fall, 2009

Fetch-Execute Algorithm

Repeat forever {

Fetch: access the next step of the program from the
location in which the program has been stored.

Execute: Perform the step of the program.

}

11
1
1
1
1
1
1
1
1
1
1
1
22

11
1
1
1
1
1
1
1
1
1
1
122

d Note: we will discuss in more detail later

Computer Architecture -- Chapt. 4 28 Fall, 2009

Clock Rate And Instruction Rate

d Clock rate

– Rate at which gates are clocked

– Provides a measure of the underlying hardware speed

d Instruction rate

– Measures the number of instructions a processor can
execute per unit time

– Varies because some instructions take more time than
others

Computer Architecture -- Chapt. 4 29 Fall, 2009

Clock Rate And Instruction Rate
(continued)

The fetch-execute cycle does not proceed at a fixed rate because
the time required to execute a given instruction depends on the
operation being performed. An operation such as
multiplication requires more time than an operation such as
addition.

Computer Architecture -- Chapt. 4 30 Fall, 2009

Stopping A Processor

d Processor runs fetch-execute indefinitely

d Software must plan next step

d When last step of application program finishes

– Embedded system: processor enters a loop testing for a
change in inputs

– General purpose system: operating system executes an
infinite loop

d Note: a few processors provide a way to stop the fetch-
execute cycle until I/ O activity occurs

Computer Architecture -- Chapt. 4 31 Fall, 2009

Starting A Processor

d Processor hardware includes a reset line that stops fetch-
execute during power-down

d During power-up, logic holds the reset until the processor
and memory are initialized

d Power-up steps known as bootstrap

Computer Architecture -- Chapt. 4 32 Fall, 2009

Summary

d Processor performs a computation involving multiple steps

d Many types of processors

– Coprocessor

– Microcontroller

– Microsequencer

– Embedded system processor

– General-purpose processor

d Arithmetic Logic Unit (ALU) performs basic arithmetic and
Boolean operations

Computer Architecture -- Chapt. 4 33 Fall, 2009

Summary
(continued)

d Hardware in programmable processor runs fetch-execute
cycle

d Most modern processors consist of single integrated circuit

Computer Architecture -- Chapt. 4 34 Fall, 2009

Questions?

V

Processor Types
And

Instruction Sets

Computer Architecture -- Chapt. 5 1 Fall, 2009

What Instructions Should
A Processor Offer?

Computer Architecture -- Chapt. 5 2 Fall, 2009

What Instructions Should
A Processor Offer?

d Minimum set is sufficient, but inconvenient

Computer Architecture -- Chapt. 5 2 Fall, 2009

What Instructions Should
A Processor Offer?

d Minimum set is sufficient, but inconvenient

d Extremely large set is convenient, but inefficient

Computer Architecture -- Chapt. 5 2 Fall, 2009

What Instructions Should
A Processor Offer?

d Minimum set is sufficient, but inconvenient

d Extremely large set is convenient, but inefficient

d Architect must consider additional factors

– Physical size of processor

– Expected use

– Power consumption

Computer Architecture -- Chapt. 5 2 Fall, 2009

What Instructions Should
A Processor Offer?

d Minimum set is sufficient, but inconvenient

d Extremely large set is convenient, but inefficient

d Architect must consider additional factors

– Physical size of processor

– Expected use

– Power consumption

Computer Architecture -- Chapt. 5 2 Fall, 2009

The Point About Instruction Sets

The set of operations a processor provides represents a tradeoff
among the cost of the hardware, the convenience for a
programmer, and engineering considerations such as power
consumption.

Computer Architecture -- Chapt. 5 3 Fall, 2009

Representation Details

d Architect must choose

– Set of instructions

– Exact representation hardware uses for each instruction
(instruction format)

– Precise meaning when instruction executed

d The definition of an instruction set includes all details

Computer Architecture -- Chapt. 5 4 Fall, 2009

Parts Of An Instruction

d Opcode specifies instruction to be performed

d Operands specify data values on which to operate

d Result location specifies where result will be placed

Computer Architecture -- Chapt. 5 5 Fall, 2009

Instruction Format

d Instruction represented as binary string

d Typically

– Opcode at beginning of instruction

– Operands follow opcode

opcode operand 1 operand 2 . . .

Computer Architecture -- Chapt. 5 6 Fall, 2009

Instruction Length

d Fixed-length

– Every instruction is same size

– Hardware is less complex

– Hardware can run faster

d Variable-length

– Some instructions shorter than others

– Appeals to programmers

– More efficient use of memory

Computer Architecture -- Chapt. 5 7 Fall, 2009

The Point About Fixed-Length Instructions

When a fixed-length instruction set is employed, some
instructions contain extra fields that the hardware ignores. The
unused fields should be viewed as part of a hardware
optimization, not as an indication of a poor design.

Computer Architecture -- Chapt. 5 8 Fall, 2009

General-Purpose Registers

d High-speed storage device

d Usually part of the processor (on chip)

d Each register small size (typically, each register can
accommodate an integer)

d Basic operations are fetch and store

d Numbered from 0 through N–1

d Many processors require operands for arithmetic operations
to be placed in general-purpose registers

Computer Architecture -- Chapt. 5 9 Fall, 2009

Floating Point Registers

d Usually separate from general-purpose registers

d Each holds one floating-point value

d Many processors require operands for floating point
operations to be placed in floating point registers

Computer Architecture -- Chapt. 5 10 Fall, 2009

Example Of Programming With Registers

d Task

– Add the contents of variables X and Y

– Place the result in variable Z

Computer Architecture -- Chapt. 5 11 Fall, 2009

Example Of Programming With Registers

d Task

– Add the contents of variables X and Y

– Place the result in variable Z

d Example steps

– Load a copy of X into register 3

– Load a copy of Y into register 4

– Add the value in register 3 to the value in register 4, and
direct the result to register 5

– Store a copy of the value in register 5 in Z

d Note: the above assumes registers 3, 4, and 5 are available
for use

Computer Architecture -- Chapt. 5 11 Fall, 2009

Terminology

d Register spilling

– Refers to placing current contents of registers in memory
for later recall

– Occurs when registers needed for other computation

d Register allocation

– Choose which values to keep in registers at any time

– Programmer or compiler decides

Computer Architecture -- Chapt. 5 12 Fall, 2009

Double Precision

d Refers to value that is twice as large as usual

d Most hardware does not have dedicated registers for double
precision computation

d Approach taken: programmer can use a contiguous pair of
registers to hold a double precision value

d Example: load a double precision value into registers 3 and
4

Computer Architecture -- Chapt. 5 13 Fall, 2009

Register Banks

d Registers partitioned into disjoint sets called banks

d Additional hardware detail

d Optimizes performance

d Complicates programming

Computer Architecture -- Chapt. 5 14 Fall, 2009

Register Banks

d Registers partitioned into disjoint sets called banks

d Additional hardware detail

d Optimizes performance

d Complicates programming

Computer Architecture -- Chapt. 5 14 Fall, 2009

Typical Register Bank Scheme

d Registers divided into two banks

d ALU instruction that takes two operands must have one
operand from each bank

d Programmer must enforce separation into banks

d Having two operands from the same bank causes a run-time
error

Computer Architecture -- Chapt. 5 15 Fall, 2009

Why Register Banks Are Used

d Parallel hardware facilities for each bank

d Allows both banks to be accessed simultaneously

Processor

0
1
2
3

Bank A

4
5
6
7

Bank B

separate hardware
units used to access
the register banks

Computer Architecture -- Chapt. 5 16 Fall, 2009

Consequence For Programmers

d Operands must be assigned to banks

d Even trivial programs cause problems

d Example

R ← X + Y

S ← Z - X

T ← Y + Z

Computer Architecture -- Chapt. 5 17 Fall, 2009

Register Conflicts

d Occur when operands specify same register bank

d May be reported by compiler / assembler

d Programmer must rewrite code or insert extra instruction to
copy an operand value to the opposite register bank

Computer Architecture -- Chapt. 5 18 Fall, 2009

Two Types Of Instruction Sets

d CISC: Complex Instruction Set Computer

d RISC: Reduced Instruction Set Computer

Computer Architecture -- Chapt. 5 19 Fall, 2009

CISC Instruction Set

d Many instructions (often hundreds)

d Given instruction can require arbitrary time to compute

d Examples of complex CISC instructions

– Move graphical item on bitmapped display

– Copy or clear a region of memory

– Perform a floating point computation

Computer Architecture -- Chapt. 5 20 Fall, 2009

RISC Instruction Set

d Few instructions (typically 32 or 64)

d Each instruction executes in one clock cycle

d Example: MIPS instruction set

d Omits complex instructions

– No floating-point instructions

– No graphics instructions

Computer Architecture -- Chapt. 5 21 Fall, 2009

Summary Of Instruction Sets

A processor is classified as CISC if the instruction set contains
instructions that perform complex computations that can
require long times; a processor is classified as RISC if it
contains a small number of instructions that can each execute
in one clock cycle.

Computer Architecture -- Chapt. 5 22 Fall, 2009

Execution Pipeline

d Important part of processor design

d Optimizes performance

d Permits processor to complete more instructions per unit
time

d Typically used with RISC instruction set

Computer Architecture -- Chapt. 5 23 Fall, 2009

Basic Steps In A Fetch-Execute Cycle

d Fetch the next instruction

d Examine the opcode to determine how many operands are
needed

d Fetch each of the operands (e.g., extract values from
registers)

d Perform the operation specified by the opcode

d Store the result in the location specified (e.g., a register)

Computer Architecture -- Chapt. 5 24 Fall, 2009

To Optimize Instruction Cycle

d Build separate hardware block for each step

d Arrange to pass instruction through sequence of hardware
blocks

d Allows step K of one instruction to execute while step K–1
of next instruction executes

Computer Architecture -- Chapt. 5 25 Fall, 2009

Illustration Of Execution Pipeline

fetch
instruction

stage 1

examine
opcode

stage 2

fetch
operands

stage 3

perform
operation

stage 4

store
result

stage 5

d Example pipeline has five stages

d All stages can operate at a given time

Computer Architecture -- Chapt. 5 26 Fall, 2009

Pipeline Speed

d All stages operate in parallel

d Given stage can start to process a new instruction as soon as
current instruction finishes

d Effect: N-stage pipeline can operate on N instructions
simultaneously

Computer Architecture -- Chapt. 5 27 Fall, 2009

Illustration Of Instructions In A Pipeline

stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

inst. 8

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

-

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

Time

Computer Architecture -- Chapt. 5 28 Fall, 2009

RISC Processors And Pipelines

Although a RISC processor cannot perform all steps of the
fetch-execute cycle in a single clock cycle, an instruction
pipeline with parallel hardware provides approximately
equivalent performance: once the pipeline is full, one
instruction completes on every clock cycle.

Computer Architecture -- Chapt. 5 29 Fall, 2009

Using A Pipeline

d Pipeline is transparent to programmer

d Disadvantage: programmer who does not understand
pipeline can produce inefficient code

d Reason: hardware automatically stalls pipeline if items are
not available

Computer Architecture -- Chapt. 5 30 Fall, 2009

Example Of Instruction Stalls

d Assume

– Need to perform addition and subtraction operations

– Operands and results in registers A through E

– Code is:

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

d Second instruction stalls to wait for operand C

Computer Architecture -- Chapt. 5 31 Fall, 2009

Effect Of Stall On Pipeline

stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. K

inst. K+1

inst. K+2

inst. K+3

-

-

inst. K+4

inst. K+5

inst. K-1

inst. K

inst. K+1

inst. K+2

-

-

inst. K+3

inst. K+4

inst. K-2

inst. K-1

inst. K

(inst. K+1)

(inst. K+1)

inst. K+1

inst. K+2

inst. K+3

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

inst. K+2

inst. K-4

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

Time

d Bubble passes through pipeline

Computer Architecture -- Chapt. 5 32 Fall, 2009

Actions That Cause A Pipeline Stall

d Access external storage

d Invoke a coprocessor

d Branch to a new location

d Call a subroutine

Computer Architecture -- Chapt. 5 33 Fall, 2009

Achieving Maximum Speed

d Program must be written to accommodate instruction
pipeline

d To minimize stalls

– Avoid introducing unnecessary branches

– Delay references to result register(s)

Computer Architecture -- Chapt. 5 34 Fall, 2009

Example Of Avoiding Stalls

C ← add A B C ← add A B

D ← subtract E C F ← add G H

F ← add G H M ← add K L

J ← subtract I F D ← subtract E C

M ← add K L J ← subtract I F

P ← subtract M N P ← subtract M N

(a) (b)

d Stalls eliminated by rearranging (a) to (b)

Computer Architecture -- Chapt. 5 35 Fall, 2009

A Note About Pipelines

Although hardware that uses an instruction pipeline will not
run at full speed unless programs are written to accommodate
the pipeline, a programmer can choose to ignore pipelining and
assume the hardware will automatically increase speed
whenever possible.

Computer Architecture -- Chapt. 5 36 Fall, 2009

No-Op Instructions

d Have no effect on

– Registers

– Memory

– Program counter

– Computation

d Can be inserted to avoid instruction stalls

d Often used by a compiler

Computer Architecture -- Chapt. 5 37 Fall, 2009

Use Of No-Op

d Example

Instruction K: C ← add A B

Instruction L+1: no-op

Instruction K+2: D ← subtract E C

d No-op allows time for result from register C to be fetched
for subtract operation

Computer Architecture -- Chapt. 5 38 Fall, 2009

Forwarding

d Hardware optimization to avoid a stall

d Allows ALU to reference result in next instruction

d Example

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

d Forwarding hardware passes result of add operation directly
to ALU for the next instruction

Computer Architecture -- Chapt. 5 39 Fall, 2009

Types Of Operations

d Operations usually classified into groups

d An example categorization

– Arithmetic instructions (integer arithmetic)

– Logical instructions (also called Boolean)

– Data access and transfer instructions

– Conditional and unconditional branch instructions

– Floating point instructions

– Processor control instructions

Computer Architecture -- Chapt. 5 40 Fall, 2009

Program Counter

d Hardware register

d Used during fetch-execute cycle

d Gives address of next instruction to execute

d Also known as instruction pointer

Computer Architecture -- Chapt. 5 41 Fall, 2009

Fetch-Execute Algorithm Details

Assign the program counter an initial program address.
Repeat forever {

Fetch: access the next step of the program from the
location given by the program counter.

Set an internal address register, A, to the address
beyond the instruction that was just fetched.

Execute: Perform the step of the program.

Copy the contents of address register A to the
program counter.

}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
22

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
122

Computer Architecture -- Chapt. 5 42 Fall, 2009

Branches And Fetch Execute

d Absolute branch

– Typically named jump

– Operand is an address

– Assigns operand value to internal register A

d Relative branch

– Typically named br

– Operand is a signed value

– Adds operand to internal register A

Computer Architecture -- Chapt. 5 43 Fall, 2009

Subroutine Call

d Jump subroutine (jsr instruction)

– Similar to a jump

– Saves value of internal register A

– Replaces A with operand address

d Return from subroutine (ret instruction)

– Retrieves value saved during jsr

– Replaces A with saved value

Computer Architecture -- Chapt. 5 44 Fall, 2009

Passing Arguments

d Multiple methods have been used

d Examples

– Store arguments in memory

– Store arguments in special-purpose hardware registers

– Store arguments in general-purpose registers

d Many techniques also used to return result from function

Computer Architecture -- Chapt. 5 45 Fall, 2009

Register Window

d Hardware optimization for argument passing

d Processor contains many general-purpose registers

d Only a small subset of registers visible at any time

d Caller places arguments in reserved registers

d During procedure call, register window moves to hide old
registers and expose new registers

Computer Architecture -- Chapt. 5 46 Fall, 2009

Illustration Of Register Windows

A B C Dx1 x2 x3 x4 l1 l2 l3 l4

registers 0 - 7
when program runs

current registers 0 - 7
when subroutine runs

Computer Architecture -- Chapt. 5 47 Fall, 2009

Example Instruction Set

d Known as MIPS instruction set

d Early RISC design

d Minimalistic

Computer Architecture -- Chapt. 5 48 Fall, 2009

MIPS Instruction Set (Part 1)

Instruction Meaning22

Arithmetic
add integer addition
subtract integer subtraction
add immediate integer addition (register + constant)
add unsigned unsigned integer addition
subtract unsigned unsigned integer subtraction
add immediate unsigned unsigned addition with a constant
move from coprocessor access coprocessor register
multiply integer multiplication
multiply unsigned unsigned integer multiplication
divide integer division
divide unsigned unsigned integer division
move from Hi access high-order register
move from Lo access low-order register

Logical (Boolean)
and logical and (two registers)
or logical or (two registers)
and immediate and of register and constant
or immediate or of register and constant
shift left logical Shift register left N bits
shift right logical Shift register right N bits

Computer Architecture -- Chapt. 5 49 Fall, 2009

MIPS Instruction Set (Part 2)

Instruction Meaning222

Data Transfer
load word load register from memory
store word store register into memory
load upper immediate place constant in upper sixteen

bits of register
move from coproc. register obtain a value from a coprocessor

Conditional Branch
branch equal branch if two registers equal
branch not equal branch if two registers unequal
set on less than compare two registers
set less than immediate compare register and constant
set less than unsigned compare unsigned registers
set less than immediate compare unsigned register and constant

Unconditional Branch
jump go to target address
jump register go to address in register
jump and link procedure call

Computer Architecture -- Chapt. 5 50 Fall, 2009

MIPS Floating Point Instructions

Instruction Meaning222

Arithmetic

FP add floating point addition
FP subtract floating point subtraction
FP multiply floating point multiplication
FP divide floating point division
FP add double double-precision addition
FP subtract double double-precision subtraction
FP multiply double double-precision multiplication
FP divide double double-precision division

Data Transfer

load word coprocessor load value into FP register
store word coprocessor store FP register to memory

Conditional Branch

branch FP true branch if FP condition is true
branch FP false branch if FP condition is false
FP compare single compare two FP registers
FP compare double compare two double precision values

Computer Architecture -- Chapt. 5 51 Fall, 2009

Aesthetic Aspects Of Instruction Sets

d Elegance

– Balanced

– No frivolous or useless instructions

d Orthogonality

– No unnecessary duplication

– No overlap among instructions

Computer Architecture -- Chapt. 5 52 Fall, 2009

Principle Of Orthogonality

The principle of orthogonality specifies that each instruction
should perform a unique task without duplicating or
overlapping the functionality of other instructions.

Computer Architecture -- Chapt. 5 53 Fall, 2009

Condition Codes

d Extra hardware bits (not part of general-purpose registers)

d Set by ALU on each instruction

d Indicate

– Overflow

– Underflow

– Other exceptions

d Tested in conditional branch instruction

Computer Architecture -- Chapt. 5 54 Fall, 2009

Example Of Condition Code

cmp r4, r5 # compare regs. 4 & 5, and set condition code

be lab1 # branch to lab1 if cond. code specifies equal

mov r3, 0 # place a zero in register 3

lab1: . . .program continues at this point

d Above code places a zero in register 3 if register 4 is not
equal to register 5

Computer Architecture -- Chapt. 5 55 Fall, 2009

Questions?

VI

Operand Addressing
And

Instruction Representation

Computer Architecture -- Chapt. 6 1 Fall, 2009

Number Of Operands Per Instruction

d Four basic architectural types

– 0-address

– 1-address

– 2-address

– 3-address

Computer Architecture -- Chapt. 6 2 Fall, 2009

0-Address Architecture

d No explicit operands in the instruction

d Program

– Pushes operands onto stack in memory

– Executes instruction

d Instruction execution

– Removes top N items from stack

– Leaves result on top of stack

Computer Architecture -- Chapt. 6 3 Fall, 2009

Illustration Of 0-Address Instructions

d Example: add 7 to variable X in memory

push X
push 7
add
pop X

d Add instruction removes two arguments from stack and
leaves result on stack

Computer Architecture -- Chapt. 6 4 Fall, 2009

1-Address Architecture

d Analogous to a calculator

d One explicit operand per instruction

d Processor has special register known as accumulator

– Holds second argment for each instruction

– Used to store result of instruction

Computer Architecture -- Chapt. 6 5 Fall, 2009

Illustration Of 1-Address Instructions

d Example: add 7 to variable X in memory

load X
add 7
store X

d Load places value in accumulator from memory

d Store places accumulator value in memory

d Add increases value in accumulator

Computer Architecture -- Chapt. 6 6 Fall, 2009

2-Address Architecture

d Two explicit operands per instruction

d Result overwrites one of the operands

d Operands known as source and destination

d Works well for instructions such as memory copy

Computer Architecture -- Chapt. 6 7 Fall, 2009

Illustration Of 2-Address Instructions

d Example: add 7 to variable X in memory

add 7, X

d Computes X ← X + 7

Computer Architecture -- Chapt. 6 8 Fall, 2009

3-Address Architecture

d Three explicit operands per instruction

d Operands specify source, destination, and result

Computer Architecture -- Chapt. 6 9 Fall, 2009

Illustration Of 3-Address Instructions

d Example: add variable Y to variable X and place result in
variable Z

add X, Y, Z

Computer Architecture -- Chapt. 6 10 Fall, 2009

Operand Types

d Source operand can specify

– A signed constant

– An unsigned constant

– The contents of a register

– A value in memory

d Destination operand can specify

– A single register

– A pair of contiguous registers

– A memory location

Computer Architecture -- Chapt. 6 11 Fall, 2009

Operand Types

d Each operand has a type

d An operand that specifies a constant is known as immediate
value

d Memory references are usually much more expensive than
immediate values or register accesses

Computer Architecture -- Chapt. 6 12 Fall, 2009

Von Neumann Bottleneck

On a computer that follows the Von Neumann architecture,
the time spent performing memory accesses can limit the overall
performance. Architects use the term Von Neumann bottleneck
to characterize the situation, and avoid the bottleneck with
techniques such as restricting most operands to registers.

Computer Architecture -- Chapt. 6 13 Fall, 2009

Operand Encoding

d Implicit type encoding

– For given opcode, the type of each operand is fixed

– More opcodes required

– Example: opcode is add_signed_immediate_to_register

d Explicit type encoding

– Operand specifies type and value

– Fewer opcodes required

– Example: opcode is add, operands specify register and
immediate

Computer Architecture -- Chapt. 6 14 Fall, 2009

Example Of Implicit Encoding

Opcode Operands Meaning222

Add register R1 R2 R1 ← R1 + R2
Add immediate signed R1 I R1 ← R1 + I
Add immediate unsigned R1 UI R1 ← R1 + UI
Add memory R1 M R1 ← R1 + memory[M]

Computer Architecture -- Chapt. 6 15 Fall, 2009

Examples Of Explicit Encoding

d Add operation with registers 1 and 2 as operands

add

opcode operand 1

register 1

operand 2

register 2

..............

..............

d Add operation with register and signed immediate value of
–93 as operands

add

opcode operand 1

register 1

operand 2

signed
integer –93

..............

..............

Computer Architecture -- Chapt. 6 16 Fall, 2009

Operands That Combine Multiple Types

d Operand contains multiple items

d Processor computes operand value from individual items

d Typical computation: sum

d Example

– A register-offset operand specifies a register and an
immediate value

– Processor adds immediate value to contents of register
and uses result as operand

Computer Architecture -- Chapt. 6 17 Fall, 2009

Illustration Of Register-Offset

add

opcode operand 1

register-
offset 2 –17

..............

..............

operand 2

register-
offset 4 76

..............

..............

d First operand consists of value in register 2 minus 17

d Second operand consists of value in register 4 plus 76

Computer Architecture -- Chapt. 6 18 Fall, 2009

Operand Tradeoffs

d No single style of operands optimal for all purposes

d Tradeoffs among

– Ease of programming

– Fewer instructions

– Smaller instructions

– Larger range of immediate values

– Faster operand fetch and decode

– Decreased hardware size

Computer Architecture -- Chapt. 6 19 Fall, 2009

Operands In Memory And Indirect Reference

d Operand can specify

– Value in memory (memory reference)

– Location in memory that contains the address of the
operand (indirect reference)

d Note: accessing memory is relatively expensive

Computer Architecture -- Chapt. 6 20 Fall, 2009

Types Of Indirection

d Indirection through a register

– Operand specifies register number, R

– Obtain A, the current value from register R

– Interpret A as a memory address, and fetch the operand
from memory location A

d Indirection through a memory location

– Operand specifies memory address, A

– Obtain M, the value in memory location A

– Interpret M as a memory address, and fetch the operand
from memory location M

Computer Architecture -- Chapt. 6 21 Fall, 2009

Illustration Of Operand Addressing Modes

cpu memory

1

2

3

4

5

Immediate value (in the instruction)

Direct register reference

Indirect through a register

Direct memory reference

Indirect memory reference

locations in memory

instruction register

general-purpose register

1

2 3

3

4

5

5

Computer Architecture -- Chapt. 6 22 Fall, 2009

Summary

d Architect chooses the number and types of operands for
each instruction

d Possibilities include

– Immediate (constant value)

– Contents of register

– Value in memory

– Indirect reference to memory

Computer Architecture -- Chapt. 6 23 Fall, 2009

Summary
(continued)

d Type of operand can be encoded

– Implicitly (opcode determines types of operands)

– Explicitly (extra bits in each operand specify the type)

d Many variations exist; each represents a tradeoff

Computer Architecture -- Chapt. 6 24 Fall, 2009

Questions?

VII

CPUs:
Microcode, Protection,

And
Processor Modes

Computer Architecture -- Chapt. 7 1 Fall, 2009

Evolution Of Computers

d Early systems

– Single Central Processing Unit (CPU) controlled entire
computer

– Responsible for all I/O as well as computation

d Modern computer

– Decentralized architecture

– Each I/O device (e.g., a disk) contains processor

– CPU performs computation and controls other
processors

Computer Architecture -- Chapt. 7 2 Fall, 2009

CPU Complexity

d Designed for wide variety of control and processing tasks

d Many special-purpose subunits for speed

d Example: one multi-core Intel processor contains more than
a billion transistors

Computer Architecture -- Chapt. 7 3 Fall, 2009

CPU Characteristics

d Completely general

d Can perform control functions as well as basic computation

d Offers multiple levels of protection and privilege

d Provides mechanism for hardware priorities

d Handles large volumes of data

d Uses parallelism to achieve high speed

Computer Architecture -- Chapt. 7 4 Fall, 2009

Modes Of Execution

d CPU hardware has several possible modes

d At any time, CPU operates in one mode

d Mode dictates

– Instructions that are valid

– Regions of memory that can be accessed

– Amount of privilege

– Backward compatibility with earlier models

d CPU behavior varies widely among modes

Computer Architecture -- Chapt. 7 5 Fall, 2009

An Observation About Modes

A CPU uses an execution mode to determine the current
operational characteristics. In some CPUs, the characteristics
of modes differ so widely that we think of the CPU as having
separate hardware subsystems and the mode as determining
which piece of hardware is used at the current time.

Computer Architecture -- Chapt. 7 6 Fall, 2009

Changing Modes

d Automatic mode change

– Initiated by hardware

– Programmer can specify code for new mode

d Manual mode change

– Program makes explicit request

– Typically used when program calls the operating system

Computer Architecture -- Chapt. 7 7 Fall, 2009

Changing Modes
(continued)

d Mechanisms vary among architectures

d Possibilities

– Invoke a special instruction to change mode

– Assign a value to a mode register

– Mode change is a side-effect of another instruction

Computer Architecture -- Chapt. 7 8 Fall, 2009

Privilege And Protection

Privilege Level

d Determines what resources program can use

d Linked to mode

d Basic scheme: two levels, one for operating system and one
for applications

d Advanced scheme: multiple levels

Computer Architecture -- Chapt. 7 10 Fall, 2009

Illustration Of Basic Privilege Scheme

Operating System

appl. 2appl. 1 appl. N

. . .
low
privilege

high
privilege

d Application-level privilege available to arbitrary program

d System-level privilege restricted to operating system

Computer Architecture -- Chapt. 7 11 Fall, 2009

Microcode

Microcoded Instructions

d Hardware technique used to build complex processors

d Employs two levels of processor hardware

– Microcontroller (microprocessor) provides basic
operations

– Macro instruction set built on microinstructions

d Key concept: it is easier to construct complex processors by
writing programs then by building hardware from scratch

Computer Architecture -- Chapt. 7 13 Fall, 2009

Illustration Of Microcoded Instruction Set

(implemented with microcode)

macro instruction set

(implemented with digital logic)

micro instruction set

Microcontroller

CPU

visible to
programmer

hidden
(internal)

Computer Architecture -- Chapt. 7 14 Fall, 2009

Implementation Of Microcoded Instructions

d Microcontroller

– Lowest level of processor

– Implemented with digital logic

– Offers basic instructions

d Macro instructions

– Implemented as microcode subroutines

– Can be entirely different than micro instructions

Computer Architecture -- Chapt. 7 15 Fall, 2009

Data And Register Sizes

d Data size used by micro instructions can differ from size
used by macro instructions

d Example

– 16-bit hardware used for micro instructions

– 32-bit hardware used for macro instructions

Computer Architecture -- Chapt. 7 16 Fall, 2009

Example Of Microcoded Arithmetic

d Assume

– Macro registers

* Each 32 bits wide

* Named R0, R1, ...

– Micro registers

* Each 16 bits wide

* Named r0, r1, ...

d Devise microcode to add values from R5 and R6

Computer Architecture -- Chapt. 7 17 Fall, 2009

Example Of Microcoded Arithmetic
(continued)

add32:
move low-order 16 bits from R5 into r2
move low-order 16 bits from R6 into r3
add r2 and r3, placing result in r1
save value of the carry indicator
move high-order 16 bits from R5 into r2
move high-order 16 bits from R6 into r3
add r2 and r3, placing result in r0
copy the value in r0 to r2
add r2 and the carry bit, placing the result in r0
check for overflow and set the condition code
move the thirty-two bit result from r0 and r1

to the desired destination

Computer Architecture -- Chapt. 7 18 Fall, 2009

Microcode Variations

d Restricted or full scope

– Special-purpose instructions only (e.g., extensions to
normal instruction set)

– All instructions

d Partial or complete use

– Entire fetch-execute cycle

– Instruction fetch and decode

– Opcode processing

– Operand decode and fetch

Computer Architecture -- Chapt. 7 19 Fall, 2009

Why Use Microcode Instead Of Circuits?

d Higher level of abstraction

d Easier to build and less error prone

d Easier to change

– Easy upgrade to next version of chip

– Can allow field upgrade

Computer Architecture -- Chapt. 7 20 Fall, 2009

Disadvantages Of Microcode

d More overhead

d Macro instruction performance depends on micro instruction
set

d Microcontroller hardware must run at extremely high clock
rate to accommodate multiple micro instructions per macro
instruction

Computer Architecture -- Chapt. 7 21 Fall, 2009

Visibility To Programmers

d Fixed microcode

– Approach used by most CPUs

– Microcode only visible to CPU designer

d Alterable microcode

– Microcode loaded dynamically

– May be restricted to extensions (creating new macro
instructions)

– User software written to use new instructions

– Known as a reconfigurable CPU

Computer Architecture -- Chapt. 7 22 Fall, 2009

Reconfigurable CPU

Some CPUs provide a mechanism that allows microcode to
be rewritten. The motivation for allowing such change arises
from the desire for flexibility and optimization: the CPU’s
owner can create a macro instruction set that is optimized for a
specific task.

Computer Architecture -- Chapt. 7 23 Fall, 2009

In Practice

d Writing microcode is tedious and time-consuming

d Results are difficult to test

d Performance of microcode can be much worse than
performance of dedicated hardware

d Result: reconfigurable CPUs have not enjoyed much success

Computer Architecture -- Chapt. 7 24 Fall, 2009

Two Fundamental Types Of Microcode

d What programming paradigm is used for microcode?

d Two fundamental types

– Vertical

– Horizontal

Computer Architecture -- Chapt. 7 25 Fall, 2009

Vertical Microcode

d Microcontroller similar to standard processor

d Vertical microcode similar to conventional assembly
language

d Typically performs one operation at a time

d Has access to all facilities macro instruction set uses

– ALU

– General-purpose registers

– Memory

– I/O buses

Computer Architecture -- Chapt. 7 26 Fall, 2009

Example Of Vertical Microcode

d Macro instruction set is CISC

d Microcontroller is fast RISC processor

d Programmer writes microcode for each macro instruction

d Hardware decodes macro instruction and invokes correct
microcode routine

Computer Architecture -- Chapt. 7 27 Fall, 2009

Advantages And Disadvantages
Of Vertical Microcode

d Easy to read

d Programmers are comfortable using it

d Unattractive to hardware designers because higher clock
rates needed

d Generally has low performance (many micro instructions
needed for each macro instruction)

Computer Architecture -- Chapt. 7 28 Fall, 2009

Horizontal Microcode

d Alternative to vertical microcode

d Exploits parallelism in underlying hardware

d Controls functional units and data movement

d Extremely difficult to program

Computer Architecture -- Chapt. 7 29 Fall, 2009

The Important Tradeoff With Horizontal Microcode

Horizontal microcode allows the hardware to run faster, but
is more difficult to program.

Computer Architecture -- Chapt. 7 30 Fall, 2009

Horizontal Microcode Paradigm

d Each instruction controls a set of hardware units

d Instruction specifies

– Transfer of data

– Which hardware units operate

Computer Architecture -- Chapt. 7 31 Fall, 2009

Horizontal Microcode Example

d Consider the internal structure of a CPU

d Data can only move along specific paths between functional
units

d Example:

data transfer mechanism

operand 1 operand 2

Arithmetic
Logic
Unit

(ALU)

result 1 result 2

register access

. ...
..
..
..
..
..
..
..
..
..
...

macro
general-
purpose
registers

Computer Architecture -- Chapt. 7 32 Fall, 2009

Example Hardware Control Commands
22

Unit Command Meaning22

0 0 0 No operation
0 0 1 Add
0 1 0 Subtract

ALU 0 1 1 Multiply
1 0 0 Divide
1 0 1 Left shift
1 1 0 Right shift
1 1 1 Continue previous operation

22

operand 0 No operation
1 or 2 1 Load value from data transfer mechanism

22

result 0 No operation
1 or 2 1 Send value to data transfer mechanism

22

0 0 x x x x No operation
register 0 1 x x x x Move register xxxx to data transfer mechanism
interface 1 0 x x x x Move data transfer mechanism to register xxxx

1 1 x x x x No operation
221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Computer Architecture -- Chapt. 7 33 Fall, 2009

Microcode Instruction Format For Example

x x x x x x x x x x x x x

.........

.........

.........

.........

.........

ALU Oper. 1 Oper. 2 Res. 1 Res. 2 Register interface

d Diagram shows how instruction is interpreted

d Bit fields in instruction encode hardware control commands

Computer Architecture -- Chapt. 7 34 Fall, 2009

Example Horizontal Microcode Steps

d Move the value from register 4 to the hardware unit for
operand 1

d Move the value from register 13 to the hardware unit for
operand 2

d Arrange for the ALU to perform addition

d Move the value from the hardware unit for result 2 (the
low-order bits of the result) to register 4

Computer Architecture -- Chapt. 7 35 Fall, 2009

Example Horizontal Microcode
(In Binary)

...

...

...

...

...

Instr. ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1

2

3

4

0 0 0 1 0 0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0 1 1 1 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 0 0

d Note: code is unlike a conventional program

Computer Architecture -- Chapt. 7 36 Fall, 2009

Horizontal Microcode And Timing

d Each microcode instruction takes one cycle

d Functional unit may require more than one cycle to
complete an operation

d Programmer must accommodate hardware timing or errors
can result

d To wait for functional unit, insert microcode instructions
that continue the operation

Computer Architecture -- Chapt. 7 37 Fall, 2009

Example Of Continuing An Operation

.............

.............

.............

.............

.............

ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1 1 1 0 0 0 0 0 0 0 0 0 0

d Assume ALU operation 1 1 1 acts as a delay to continue the
previous operation

Computer Architecture -- Chapt. 7 38 Fall, 2009

Example Of Parallel Execution

.............

.............

.............

.............

.............

ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1 1 1 1 0 0 0 0 1 0 1 1 1

d A single microcode instruction can continue the ALU
operation and also load the value from register 7 into
operand unit 1.

Computer Architecture -- Chapt. 7 39 Fall, 2009

Horizontal Microcode And Parallel Execution

Because an instruction contains separate fields that each
correspond to one hardware unit, horizontal microcode makes
it easy to specify simultaneous, parallel operation of multiple
hardware units.

Computer Architecture -- Chapt. 7 40 Fall, 2009

Intelligent Microcontroller

d Schedules instructions by assigning work to functional units

d Handles operations in parallel

d Performs branch prediction by beginning to execute both
paths of a branch

d Constrains results so instructions have sequential semantics

– Keeps results separate

– Decides which path to use when branch direction finally
known

Computer Architecture -- Chapt. 7 41 Fall, 2009

The Important Concept Of Branch Prediction

A CPU that offers parallel instruction execution can handle
conditional branches by precomputing values on both branches
and choosing which values to use at a later time when the
computation of the branch condition completes.

Computer Architecture -- Chapt. 7 42 Fall, 2009

Taming Parallel Execution Units

d Parallel hardware runs wild

d CPU must preserve sequential execution semantics (as
expected by programmer)

d Mechanisms used

– Scoreboard

– Re-Order Buffer (ROB)

d Note: when results computed from two paths, CPU
eventually discards results that are not needed

Computer Architecture -- Chapt. 7 43 Fall, 2009

Summary

d CPU offers modes of execution that determine protection
and privilege

d Complex CPU usually implemented with microcode

d Vertical microcode uses conventional instruction set

d Horizontal microcode uses unconventional instructions

Computer Architecture -- Chapt. 7 44 Fall, 2009

Summary
(continued)

d Each horizontal microcode instruction controls
underlying hardware units

d Horizontal microcode offers parallelism

d Most complex CPUs have mechanism to schedule
instructions on parallel execution units

d Scoreboard and Re-Order Buffer used to maintain
sequential semantics

Computer Architecture -- Chapt. 7 45 Fall, 2009

Questions?

VIII

Assembly Languages
And

Programming Paradigm

Computer Architecture -- Chapt. 8 1 Fall, 2009

The Two Types Of Programming Languages

d Low-level (close to hardware)

d High-level (abstracted away from hardware)

Computer Architecture -- Chapt. 8 2 Fall, 2009

Characteristics Of High-Level Language

d One-to-many translation

d Hardware independence

d Application orientation

d General-purpose

d Powerful abstractions

Computer Architecture -- Chapt. 8 3 Fall, 2009

Characteristics Of Low-Level Language

d One-to-one translation

d Hardware dependence

d Systems programming orientation

d Special-purpose

d Few abstractions

Computer Architecture -- Chapt. 8 4 Fall, 2009

A Note About Abstractions

d A low-level language forces a programmer to construct
abstractions from low-level mechanisms

d Computer scientist Alan Perlis once said that a
programming language is low-level if programming requires
attention to irrelevant details

d Perlis’ point: because most applications do not need direct
control of hardware, a low-level language increases
programming complexity without providing benefits

Computer Architecture -- Chapt. 8 5 Fall, 2009

Terminology

d Assembly language

– Refers to a special type of low-level language

– Specific to given processor

d Assembler

– Refers to software that translates assembly language into
binary code

– Analogous to compiler

Computer Architecture -- Chapt. 8 6 Fall, 2009

An Important Concept

Because an assembly language is a low-level language that
incorporates specific characteristics of a processor, such as the
instruction set, operand addressing, and registers, one assembly
language exists for each type of processor.

d All assembly languages share the same general structure

d A programmer who understands one assembly language can
learn another quickly

Computer Architecture -- Chapt. 8 7 Fall, 2009

Our Approach

d We will discuss general concepts in class

d You will use a specific assembly language in lab

Computer Architecture -- Chapt. 8 8 Fall, 2009

Assembly Statement Format

d General format is:

label: opcode operand1 , operand2 , ...

d Label is optional

d Opcode and operands are processor specific

Computer Architecture -- Chapt. 8 9 Fall, 2009

Opcode Names

d Specific to each assembly language

d Most assembly languages use short mnemonics

d Examples

– ld instead of load_value_into_register

– jsr instead of jump_to_subroutine

Computer Architecture -- Chapt. 8 10 Fall, 2009

Comment Syntax

d Typically

– Character reserved to start a comment

– Comment extends to end of line

d Examples of comment characters

– Pound sign (#)

– Semicolon (;)

Computer Architecture -- Chapt. 8 11 Fall, 2009

Commenting Conventions

d Block comment to explain overall purpose of large section
of code

d One comment per line explaining purpose of the instruction

Computer Architecture -- Chapt. 8 12 Fall, 2009

Block Comment Example

##

#

Search linked list of free memory blocks to find a block

of size N bytes or greater. Pointer to list must be in

register 3 and N must be in register 4. The code also

destroys the contents of register 5, which is used to

walk the list.

#

##

Computer Architecture -- Chapt. 8 13 Fall, 2009

Per-Line Comment Example

ld r5, r3 # load the address of list into r5

loop_1: cmp r5, r0 # test to see if at end of list

bz notfnd # if reached end of list go to notfnd

d It is typical to find a comment on each line of an assembly
language program

Computer Architecture -- Chapt. 8 14 Fall, 2009

Operand Order

d Annoying fact: assembly languages differ on operand order

d Example

– Instruction to load a register

– Possible orders are:

ld r5, r3 # load the address of list into r5

ld r3, r5 # load the address of list into r5

d Note: in one historic case, two assembly languages for the
same processor used opposite orders for operands!

Computer Architecture -- Chapt. 8 15 Fall, 2009

Remembering Operand Order

d When programming assembly language that uses

(source, destination)

remember that we read left-to-right

d When programming assembly language that uses

(destination, source),

remember that the operands are in the same order as an
assignment statement

Computer Architecture -- Chapt. 8 16 Fall, 2009

Names For General-Purpose Registers

d Registers used heavily

d Most assembly languages use short names for registers

d Typical format is letter r followed by a number

d Syntax that has been used in various assembly languages

– reg10

– r10

– R10

– $10

Computer Architecture -- Chapt. 8 17 Fall, 2009

Symbolic Definitions

d Some assemblers use long names, but permit a programmer
to define abbreviations

d Example definitions

#

Define register names used in the program

#

r1 register 1 # define name r1 to be register 1

r2 register 2 # and so on for r2, r3, and r4

r3 register 3

r4 register 4

Computer Architecture -- Chapt. 8 18 Fall, 2009

Using Meaningful Names

d Symbolic definition also allows meaningful names

d Example: registers used for a linked list

#

Define register names for a linked list program

#

listhd register 6 # holds starting address of list

listptr register 7 # moves along the list

Computer Architecture -- Chapt. 8 19 Fall, 2009

Denoting Operands

d Assembly language provides a way to code each possible
operand type (e.g., immediate, register, memory reference,
indirect memory reference)

d Typically, compact syntax is used

d Example

mov r2, r1 # copy contents of reg. 1 into reg. 2

mov r2, (r1) # treat r1 as a pointer to memory and

copy from the mem. location to reg. 2

Computer Architecture -- Chapt. 8 20 Fall, 2009

Assembly Language And Idioms

d No high-level abstractions

d Programmer writes sequence of code instead

d Best if programmer follows idioms

Computer Architecture -- Chapt. 8 21 Fall, 2009

Assembly Language For Conditional Execution

if (condition) {
body

}
next statement

code to test condition and
set condition code

branch not true to label
code to perform body

label: code for next statement

Computer Architecture -- Chapt. 8 22 Fall, 2009

Assembly Language For If-Then Else

if (condition) {
then_part

} else {
else_part

}
next statement

code to test condition and
set condition code

branch not true to label1
code to perform then_part
branch to label2

label1: code for else_part
label2: code for next statement

Computer Architecture -- Chapt. 8 23 Fall, 2009

Assembly Language For Definite Iteration

for (i=0; i<10; i++) {
body

}
next statement

set r4 to zero
label1: compare r4 to 10

branch to label2 if >=
code to perform body
increment r4
branch to label1

label2: code for next statement

Computer Architecture -- Chapt. 8 24 Fall, 2009

Assembly Language For Indefinite Iteration

while (condition) {
body

}
next statement

label1: code to compute condition
branch to label2 if not true
code to perform body
branch to label1

label2: code for next statement

Computer Architecture -- Chapt. 8 25 Fall, 2009

Assembly Language For Procedure Call

x () {
body of procedure x

}

x();
other statement;
x ();
next statement

x: code for body of x
ret

jsr x
code for other statement
jsr x
code for next statement

Computer Architecture -- Chapt. 8 26 Fall, 2009

Argument Passing

d Hardware possibilities

– Stack in memory used for arguments

– Register windows used to pass arguments

– Special-purpose argument registers used

d Assembly language depends on hardware

Computer Architecture -- Chapt. 8 27 Fall, 2009

Consequence For Programmers

No single argument passing paradigm is used in assembly
languages because a variety of hardware mechanisms exist for
argument passing. In addition, programmers sometimes use
alternatives to the basic mechanism to optimize performance
(e.g., passing values in registers).

Computer Architecture -- Chapt. 8 28 Fall, 2009

Example Procedure Invocation
(Using Registers 1 - 8)

x (a, b) {
body of function x

}

x(-4, 17);
other statement;
x (71, 27);
next statement

x: code for body of x that assumes
reg. 1 contains parameter a
and reg. 2 contains b

ret

load -4 into register 1
load 17 into register 2
jsr x
code for other statement
load 71 into register 1
load 27 into register 2
jsr x
code for next statement

Computer Architecture -- Chapt. 8 29 Fall, 2009

Function Invocation

d Like procedure invocation

d Also returns result

d Hardware exists that returns value

– On a stack in memory

– In a special-purpose register

– In a general-purpose register

Computer Architecture -- Chapt. 8 30 Fall, 2009

Interaction With High-Level Language

d Assembly language program can call procedure written in
high-level language (e.g., to avoid writing in assembly
language)

d High-level language program can call procedure written in
assembly language

– When higher speed is needed

– When access to special-purpose hardware is required

d Assembly language coded to follow calling conventions of
high-level language

Computer Architecture -- Chapt. 8 31 Fall, 2009

In Practice

Because writing application programs in assembly language
is difficult, assembly language is reserved for situations where
a high-level language has insufficient functionality or results in
poor performance.

Computer Architecture -- Chapt. 8 32 Fall, 2009

Declaration Of Variable In Assembly Language

d Most assembly languages have no declarations or typing

d Programmer can reserve blocks of storage (for variables)
and use labels

d Typical directives

– .word

– .byte or .char

– .long

Computer Architecture -- Chapt. 8 33 Fall, 2009

Examples Of Equivalent Declarations

int x, y, z;

short w, q;

statement

x: .long
y: .long
z: .long
w: .word
q: .word

code for statement

Computer Architecture -- Chapt. 8 34 Fall, 2009

Specifying Initial Values

d Usually allowed as arguments to directives

d Example to declare 16-bit storage with initial value 949:

x: .word 949

Computer Architecture -- Chapt. 8 35 Fall, 2009

Assembler

d Software component

d Accepts assembly language program as input

d Produces binary form of program as output

d Uses two-pass algorithm

Computer Architecture -- Chapt. 8 36 Fall, 2009

Difference Between Assembler And Compiler

Although both a compiler and an assembler translate a
source program into equivalent binary code, a compiler has
more freedom to choose which values are kept in registers, the
instructions used to implement each statement, and the
allocation of variables to memory. An assembler merely
provides a one-to-one translation of each statement in the
source program to the equivalent binary form.

Computer Architecture -- Chapt. 8 37 Fall, 2009

What An Assembler Provides

d Statements are 1-to-1 with hardware instructions

d Assembler

– Computes relative location for each label

– Fills in branch offsets automatically

d Consequence: programmer can insert or delete statements
without recomputing offsets manually

Computer Architecture -- Chapt. 8 38 Fall, 2009

Example Of Code Offsets

locations assembly code22

0x00 – 0x03 x: .word

0x04 – 0x07 label1: cmp r1, r2

0x08 – 0X0B bne label2

0X0C – 0x0F jsr label3

0x10 – 0x13 label2: load r3, 0

0x14 – 0x17 br label4

0x18 – 0x1B label3: add r5, 1

0X1C – 0x1F ret

0x20 – 0x23 label4: load r1, 1

0x24 – 0x27 ret

Computer Architecture -- Chapt. 8 39 Fall, 2009

General Concept

Conceptually, an assembler makes two passes over an
assembly language program. During the first pass, the
assembler assigns a location to each statement. During the
second pass, the assembler uses the assigned locations to
generate code.

Computer Architecture -- Chapt. 8 40 Fall, 2009

Assembly Language Macros

d Syntactic substitution

d Parameterized for flexibility

d Programmer supplies macro definitions

d Code contains macro invocations

d Assembler handles macro expansion in extra pass

d Known as macro assembly language

Computer Architecture -- Chapt. 8 41 Fall, 2009

Macro Syntax

d Varies among assembly languages

d Typical definition bracketed by keywords

d Example keywords

– macro

– endmacro

d Typical invocation uses macro name

Computer Architecture -- Chapt. 8 42 Fall, 2009

Example Of Macro Definition

macro addmem(a, b, c)

load r1, a # load 1st arg into register 1

load r2, b # load 2nd arg into register 2

add r1, r2 # add register 2 to register 1

store r3, c # store the result in 3rd arg

endmacro

d Invocation has arguments that correspond to parameters a,
b, and c

Computer Architecture -- Chapt. 8 43 Fall, 2009

Example Of Macro Expansion

#

note: code below results from addmem(xxx, YY, zqz)

#

load r1, xxx # load 1st arg into register 1

load r2, YY # load 2nd arg into register 2

add r1, r2 # add register 2 to register 1

store r3, zqz # store the result in 3rd arg

Computer Architecture -- Chapt. 8 44 Fall, 2009

Programming With Macros

d Many assembly languages use syntactic substitution

– Parameters treated as string of characters

– Arbitrary text permitted

– No error checking performed

d Consequences for programmers

– Macro can generate invalid code

– May be difficult to debug

Computer Architecture -- Chapt. 8 45 Fall, 2009

Example Of Illegal Code That
Results From A Macro Expansion

#

note: code below results from addmem(1+, %*J , +)

#

load r1, 1+ # load 1st arg into register 1

load r2, %*J # load 2nd arg into register 2

add r1, r2 # add register 2 to register 1

store r3, + # store the result in 3rd arg

endmacro

d Assembler substitutes macro arguments literally

d Error messages refer to expanded code, not macro definition

Computer Architecture -- Chapt. 8 46 Fall, 2009

Summary

d Assembly language is low-level and incorporates details of a
specific processor

d Many assembly languages exist, one per processor

d Each assembly language statement corresponds to one
machine instruction

d Same basic programming paradigm used in most assembly
languages

d Programmers must code assembly language equivalents of
abstractions such as

– Conditional execution

– Definite and indefinite iteration

– Procedure call

Computer Architecture -- Chapt. 8 47 Fall, 2009

Summary
(continued)

d Assembler translates assembly language program into binary
code

d Assembler uses two-pass processing

– First pass assigns relative locations

– Second pass generates code

d Some assemblers have additional pass to expand macros

Computer Architecture -- Chapt. 8 48 Fall, 2009

Questions?

IX

Memory And Storage

Computer Architecture -- Chapt. 9 1 Fall, 2009

Key Aspects Of Memory

d Technology

– Type of underlying hardware

– Differ in cost, persistence, performance

– Many variants available

d Organization

– How underlying hardware is used to build memory
system

– Directly visible to programmer

Computer Architecture -- Chapt. 9 2 Fall, 2009

Memory Characteristics

d Volatile or nonvolatile

d Random or sequential access

d Read-write or read-only

d Primary or secondary

Computer Architecture -- Chapt. 9 3 Fall, 2009

Memory Volatility

d Volatile memory

– Contents disappear when power is removed

– Least expensive

d Nonvolatile memory

– Contents remain without power

– More expensive than volatile memory

– May have slower access times

– One possibility: “cheat” by using a battery to maintain
contents

Computer Architecture -- Chapt. 9 4 Fall, 2009

Memory Access Paradigm

d Random access

– Typical for most applications

d Sequential access

– Special purpose hardware

– Known as FIFO (First-In-First-Out)

Computer Architecture -- Chapt. 9 5 Fall, 2009

Permanence Of Values

d ROM (Read Only Memory)

– Values can be read, but not changed

– Useful for firmware

d PROM (Programmable Read Only Memory)

– Contents can be altered, but doing so is time-consuming

– Change may involve removal from a circuit and
exposure to ultraviolet light

Computer Architecture -- Chapt. 9 6 Fall, 2009

Permanence Of Values
(continued)

d EEPROM

– Form of PROM that can be changed while installed

– Variants such as Flash ROM used in digital cameras

Computer Architecture -- Chapt. 9 7 Fall, 2009

Primary And Secondary Memory

d Broad classification of memory technologies

d Terminology is qualitative

Computer Architecture -- Chapt. 9 8 Fall, 2009

Traditional Terminology

d Primary memory

– Highest speed

– Most expensive, therefore smallest

– Typically solid state technology

d Secondary memory

– Lower speed

– Less expensive, therefore can be larger

– Typically magnetic media and electromechanical drive
mechanism

Computer Architecture -- Chapt. 9 9 Fall, 2009

In Practice

d Distinction between primary and secondary storage blurred

d Solid state technology replacing electromechanical
technology

d Examples

– Memory cards used in digital cameras

– Solid-state hard drives used in laptop computers

Computer Architecture -- Chapt. 9 10 Fall, 2009

Memory Hierarchy

d Key concept to memory design

d Related to definitions of primary / secondary memory

d Arise as tradeoff

– Highest performance memory costs the most

– Architect chooses set of memories to satisfy both
performance and cost constraints

Computer Architecture -- Chapt. 9 11 Fall, 2009

Memory Hierarchy
(continued)

d Small amount of memory has highest performance

d Slightly larger amount of memory has somewhat lower
performance

d Large amount of memory has lowest performance

d Example hierarchy

– Dozens of general-purpose registers

– One or two gigabyte of main memory

– Hundreds of gigabytes of secondary storage

Computer Architecture -- Chapt. 9 12 Fall, 2009

General Principle

To optimize memory performance for a given cost, a set of
technologies are arranged in a hierarchy that contains a
relatively small amount of fast memory and larger amounts of
less expensive, but slower memory.

Computer Architecture -- Chapt. 9 13 Fall, 2009

Two Possibilities For Computer Memory

d Separate memories, one for programs and another for data

d A single memory that holds both programs and data

Computer Architecture -- Chapt. 9 14 Fall, 2009

Instruction Store And Data Store

d Early computers had separate memories known as

– Instruction store

– Data store

d Most modern computers

– One memory for both instructions and data

d Note: single memory design is known as a Von Neumann
architecture

Computer Architecture -- Chapt. 9 15 Fall, 2009

Consequence Of A Von Neumann Architecture

Computer Architecture -- Chapt. 9 16 Fall, 2009

Consequence Of A Von Neumann Architecture

d Instructions and data occupy the same memory

Computer Architecture -- Chapt. 9 16 Fall, 2009

Consequence Of A Von Neumann Architecture

d Instructions and data occupy the same memory

d Consider the following C code:

short main[] = {
-25117, -16480, 16384, 28, -28656, 8296, 16384, 26, -28656, 8293, 16384,
24, -28656, 8300, 16384, 22, -28656, 8300, 16384, 20, -28656, 8303,
16384, 18, -28656, 8224, 16384, 16, -28656, 8311, 16384, 14, -28656,
8303, 16384, 12, -28656, 8306, 16384, ’\n’, -28656, 8300, 16384, ’\b’,
-28656, 8292, 16384, 6, -28656, 8238, 16384, 4, -28656, 8202, -32313,
-8184, -32280, 0, -25117, -16480, 4352, 5858, -18430, 8600, -4057,
-24508, -17904, 8192, -17913, 24577, -32601, 16412, 9919, -1, -17913,
24577, -27632, 8193, -28656, 8193, 16384, 4, -28153, -24505, -32313,
-8184, -32280, 0, -32240, 8196, -28208, 8192, 6784, 4, 6912, ’\b’, -26093,
24800, -32317, 16384, 256, 0, -32317, -8184, 256, 0, 0, 0, -32240, 8193,
-28208, 8192, 768, ’\b’, -12256, 24816, -32317, -8184, -28656, 16383
};

Computer Architecture -- Chapt. 9 16 Fall, 2009

Consequence Of A Von Neumann Architecture

d Instructions and data occupy the same memory

d Consider the following C code:

short main[] = {
-25117, -16480, 16384, 28, -28656, 8296, 16384, 26, -28656, 8293, 16384,
24, -28656, 8300, 16384, 22, -28656, 8300, 16384, 20, -28656, 8303,
16384, 18, -28656, 8224, 16384, 16, -28656, 8311, 16384, 14, -28656,
8303, 16384, 12, -28656, 8306, 16384, ’\n’, -28656, 8300, 16384, ’\b’,
-28656, 8292, 16384, 6, -28656, 8238, 16384, 4, -28656, 8202, -32313,
-8184, -32280, 0, -25117, -16480, 4352, 5858, -18430, 8600, -4057,
-24508, -17904, 8192, -17913, 24577, -32601, 16412, 9919, -1, -17913,
24577, -27632, 8193, -28656, 8193, 16384, 4, -28153, -24505, -32313,
-8184, -32280, 0, -32240, 8196, -28208, 8192, 6784, 4, 6912, ’\b’, -26093,
24800, -32317, 16384, 256, 0, -32317, -8184, 256, 0, 0, 0, -32240, 8193,
-28208, 8192, 768, ’\b’, -12256, 24816, -32317, -8184, -28656, 16383
};

d Does the code specify instructions or data?

Computer Architecture -- Chapt. 9 16 Fall, 2009

A Note About Memory Types

d Some special-purpose processors require separate instruction
and data store

d Motivation

– Separate caches (described later)

– Allows memory technology to be optimized for pattern
of use

d Access patterns

– Instruction store: typically sequential

– Data store: typically random

Computer Architecture -- Chapt. 9 17 Fall, 2009

The Fetch-Store Paradigm

d Access paradigm used by memory

d Two operations

– Fetch a value from a specified location

– Store a value into a specified location

d Two operations also called

– Read

– Write

d We will discuss the implementation and consequences of
fetch / store later

Computer Architecture -- Chapt. 9 18 Fall, 2009

Summary

d The two key aspects of memory are

– Technology

– Organization

d Memory can be characterized as

– Volatile or nonvolatile

– Random or sequential access

– Permanent or nonpermanent

– Primary or secondary

Computer Architecture -- Chapt. 9 19 Fall, 2009

Summary
(continued)

d Memory systems use fetch / store paradigm

d Only two operations available

– Fetch (Read)

– Store (Write)

Computer Architecture -- Chapt. 9 20 Fall, 2009

Questions?

X

Physical Memory
And

Physical Addressing

Computer Architecture -- Chapt. 10 1 Fall, 2009

Computer Memory

d Main memory known as Random Access Memory (RAM)

d Usually volatile

d Two basic technologies available

– Static RAM

– Dynamic RAM

Computer Architecture -- Chapt. 10 2 Fall, 2009

Static RAM (SRAM)

d Easiest to understand

d Similar to flip-flop

Computer Architecture -- Chapt. 10 3 Fall, 2009

Illustration Of Static RAM

circuit
for

one bit

input output

write enable

d When enable is high, output is same as input

d Otherwise, output holds last value

Computer Architecture -- Chapt. 10 4 Fall, 2009

Advantages And Disadvantages Of SRAM

d Chief advantage

– High speed

– No extra refresh circuitry required

d Chief disadvantages

– Power consumption

– Heat

– High cost

Computer Architecture -- Chapt. 10 5 Fall, 2009

Dynamic RAM (DRAM)

d Alternative to SRAM

d Consumes less power

d Acts like a capacitor that stores an electrical charge

Computer Architecture -- Chapt. 10 6 Fall, 2009

The Facts Of Electronic Life

Computer Architecture -- Chapt. 10 7 Fall, 2009

The Facts Of Electronic Life

d Entropy increases

Computer Architecture -- Chapt. 10 7 Fall, 2009

The Facts Of Electronic Life

d Entropy increases

d Any electronic storage device gradually loses charge

Computer Architecture -- Chapt. 10 7 Fall, 2009

The Facts Of Electronic Life

d Entropy increases

d Any electronic storage device gradually loses charge

d When left for a long time, a bit in DRAM changes from
logical 1 to logical 0

Computer Architecture -- Chapt. 10 7 Fall, 2009

The Facts Of Electronic Life

d Entropy increases

d Any electronic storage device gradually loses charge

d When left for a long time, a bit in DRAM changes from
logical 1 to logical 0

d Discharge time can be less than a second

Computer Architecture -- Chapt. 10 7 Fall, 2009

The Facts Of Electronic Life

d Entropy increases

d Any electronic storage device gradually loses charge

d When left for a long time, a bit in DRAM changes from
logical 1 to logical 0

d Discharge time can be less than a second

d Conclusion: although it is inexpensive, DRAM is an
imperfect memory device!

Computer Architecture -- Chapt. 10 7 Fall, 2009

Making DRAM Work

d Need extra hardware that operates independently

d Repeatedly steps through each location of DRAM

d Reads value from location in DRAM

d Writes value back into same location (recharges the memory
bit)

d Extra hardware known as a refresh circuit

Computer Architecture -- Chapt. 10 8 Fall, 2009

Illustration Of Bit In DRAM

circuit
for

one bit

refresh

input output

write enable

Computer Architecture -- Chapt. 10 9 Fall, 2009

DRAM Refresh Circuit

d More complex than figure implies

d Must coordinate with normal read and write operations

d Needed for all bits in memory

Computer Architecture -- Chapt. 10 10 Fall, 2009

Measures Of Memory Technology

d Density

d Latency and cycle time

Computer Architecture -- Chapt. 10 11 Fall, 2009

Measuring Memory

d Density

– Refers to memory cells per square area of silicon

– Usually stated as number of bits on standard size chip

– Example: 4 meg chip holds four megabits of memory

– Note: higher density chip generates more heat

d Latency

– Time that elapses between the start of an operation and
the completion of the operation

– Not a constant

Computer Architecture -- Chapt. 10 12 Fall, 2009

Separation Of Read And Write Latency

In many memory technologies, the time required to fetch
information from memory differs from the time required to store
information in memory, and the difference can be dramatic.
Therefore, any measure of memory performance must give two
values: the performance of read operations and the performance
of write operations.

Computer Architecture -- Chapt. 10 13 Fall, 2009

Memory Organization

d Hardware unit connects processor to physical memory chips

d Called a memory controller

processor control-
ler

physical
memory

d Main point: because all memory requests go through the
controller, the interface a processor “sees” can differ from
the underlying hardware organization

Computer Architecture -- Chapt. 10 14 Fall, 2009

Honoring A Memory Request

d Processor

– Presents request to controller

– Waits for response

d Controller

– Translates request into signals for physical memory
chips

– Returns answer to processor immediately

– Sends signals to reset physical memory for next request

Computer Architecture -- Chapt. 10 15 Fall, 2009

Consequence Of The Need To Reset Memory

Because a memory controller may need extra time between
operations to reset the underlying physical memory, latency is
an insufficient measure of performance; a performance measure
needs to measure the time required for successive operations.

Computer Architecture -- Chapt. 10 16 Fall, 2009

Memory Cycle Time

d Time that must elapse between two successive memory
operations

d More accurate measure than latency

d Two separate measures

– Read cycle time (tRC)

– Write cycle time (tWC)

Computer Architecture -- Chapt. 10 17 Fall, 2009

The Point About Cycle Times

The read cycle time and write cycle time are used as
measures of memory system performance because they measure
how quickly the memory system can handle successive requests.

Computer Architecture -- Chapt. 10 18 Fall, 2009

Synchronized Memory Technologies

d Both memory and processor use a clock

d Synchronized memory uses same hardware clock as
processor

d Avoids unnecessary delays

d Technique can be used with SRAM or DRAM

d Terminology

– Synchronized Static Random Access Memory (SSRAM)

– Synchronized Dynamic Random Access Memory
(SDRAM)

d Note: the RAM in many computers is SDRAM

Computer Architecture -- Chapt. 10 19 Fall, 2009

Multiple Data Rate Memory Technologies

d Technique to improve memory performance

d Avoids a memory bottleneck

d Memory hardware runs at a multiple of CPU clock

d Examples

– Double Data Rate SDRAM (DDR-SDRAM)

– Quad Data Rate SRAM (QDR-SRAM)

Computer Architecture -- Chapt. 10 20 Fall, 2009

Example Memory Technologies

Technology Description22

DDR-DRAM Double Data Rate Dynamic RAM

DDR-SDRAM Double Data Rate Synchronized Dynamic RAM

FCRAM Fast Cycle RAM

FPM-DRAM Fast Page Mode Dynamic RAM

QDR-DRAM Quad Data Rate Dynamic RAM

QDR-SRAM Quad Data Rate Static RAM

SDRAM Synchronized Dynamic RAM

SSRAM Synchronized Static RAM

ZBT-SRAM Zero Bus Turnaround Static RAM

RDRAM Rambus Dynamic RAM

RLDRAM Reduced Latency Dynamic RAM

d Many others exist

Computer Architecture -- Chapt. 10 21 Fall, 2009

Memory Organization

processor control-
ler

physical
memory...

parallel interface

d Parallel interface used between computer and memory

d Called a bus (more later in the course)

Computer Architecture -- Chapt. 10 22 Fall, 2009

Memory Transfer Size

d Amount of memory that can be transferred to computer
simultaneously

d Determined by bus between computer and controller

d Example memory transfer sizes

– 16 bits

– 32 bits

– 64 bits

d Important to programmers

Computer Architecture -- Chapt. 10 23 Fall, 2009

Physical Memory And Word Size

d Bits of physical memory are divided into blocks of N bits
each

d Terminology

– Group of N bits is called a word

– N is known as the width of a word or the word size

d Computer is often characterized by its word size (e.g., one
might speak of a 64-bit computer)

Computer Architecture -- Chapt. 10 24 Fall, 2009

Physical Memory Addresses

d Each word of memory is assigned a unique number known
as a physical memory address

d Underlying hardware views physical memory as an array of
words

d Note: hardware must transfer an entire word

Computer Architecture -- Chapt. 10 25 Fall, 2009

Illustration Of Physical Memory

word 0

word 1

word 2

word 3

word 4

word 5

.

.

.

physical
address

0

1

2

3

4

5

32 bits

d Figure depicts a 32-bit word size

Computer Architecture -- Chapt. 10 26 Fall, 2009

Summary of Physical Memory Organization

Physical memory is organized into words, where a word is
equal to the memory transfer size. Each read or write
operation applies to an entire word.

Computer Architecture -- Chapt. 10 27 Fall, 2009

Choosing A Physical Word Size

d Word size represents a tradeoff

d Larger word size

– Results in higher performance

– Requires more parallel wires and circuitry

– Has higher cost and more power consumption

d Note: architect usually designs all parts of computer to use
one size for:

– Memory word

– Integers (general-purpose registers)

– Floating point numbers

Computer Architecture -- Chapt. 10 28 Fall, 2009

Byte Addressing

d View of memory presented to processor

d Each byte of memory assigned an address

d Convenient for programmers

d Underlying memory can still use word addressing

Computer Architecture -- Chapt. 10 29 Fall, 2009

Translation Between Byte And Word Addresses

d Performed by memory controller

d Allows processor to use byte addressing (convenient)

d Allows physical memory to use word addressing (efficient)

Computer Architecture -- Chapt. 10 30 Fall, 2009

Illustration Of Address Translation

d Assume 32-bit physical word

d Four 8-bit bytes per word

d Bytes numbered sequentially as follows

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

.

.

.

physical
address

0

1

2

3

4

5

32 bits

Computer Architecture -- Chapt. 10 31 Fall, 2009

Mathematics Of Translation

d Word address given by:

W =
J
J
Q

N
B33

J
J
P

d Offest given by:

O = B mod N

d Example

– N = 4

– Byte address 11

– Found in word 2 at offset 3

Computer Architecture -- Chapt. 10 32 Fall, 2009

Efficient Translation

d Choose word size as power of 2

d Word address computed by extracting high-order bits

d Offset computed by extracting low-order bits

Computer Architecture -- Chapt. 10 33 Fall, 2009

The Important Point

To avoid arithmetic calculations such as division or
remainder, physical memory is organized such that the number
of bytes per word is a power of two, which means the
translation from a byte address to word address and offset can
be performed by extracting bits.

Computer Architecture -- Chapt. 10 34 Fall, 2009

Example Of Byte-To-Word Translation

1000100 . ..

Byte Address, B (17)

Word Address, W (4) Offset, O (1)

Computer Architecture -- Chapt. 10 35 Fall, 2009

Byte Alignment

d Refers to integer storage in memory

d In some architectures

– Integer in memory must correspond to word in
underlying physical memory

d In other architectures

– Integer can be unaligned, but fetch and store operations
are much slower

Computer Architecture -- Chapt. 10 36 Fall, 2009

The Point For Programmers

The organization of physical memory affects programming:
even if a processor allows unaligned memory access, aligning
data on boundaries that correspond to the physical word size
can improve program performance.

Computer Architecture -- Chapt. 10 37 Fall, 2009

Memory Size And Address Space

d Size of address limits maximum memory

d Example: 32-bit address can represent

232 = 4,294,967,296

unique addresses

d Known as address space

d Note: word addressing allows larger memory than byte
addressing

Computer Architecture -- Chapt. 10 38 Fall, 2009

Programming On A Computer
That Uses Word Addressing

d To obtain a single byte

– Fetch word from memory

– Extract byte from word

d To store a single byte

– Fetch word from memory

– Replace byte in word

– Write entire word back to memory

d Programmer can optimize performance by keeping word in a
register until no longer needed

Computer Architecture -- Chapt. 10 39 Fall, 2009

Measures Of Physical Memory Size

Physical memory is organized into a set of M words that
each contain N bytes; to make controller hardware efficient, M
and N are each chosen to be powers of two.

d Consequence of the above: memory sizes expressed as
powers of two, not powers of ten

– Kilobyte defined to be 210 bytes

– Megabyte defined to be 220 bytes

Computer Architecture -- Chapt. 10 40 Fall, 2009

Consequence To Programmers

d Speeds of data networks and other I/O devices are usually
expressed in powers of ten

– Example: a Gigabit Ethernet operates at 109 bits per
second

d Programmer must accommodate differences between
measures for storage and transmission

Computer Architecture -- Chapt. 10 41 Fall, 2009

C Programming And Memory Addressability

d C has a heritage of both byte and word addressing

d Example of byte pointer declaration

char *iptr;

d Example of integer pointer declaration

int *iptr;

d If integer size is four bytes, iptr + + increments by four

Computer Architecture -- Chapt. 10 42 Fall, 2009

Memory Dump

d Used for debugging

d Printable representation of bytes in memory

d Each line of output specifies memory address and bytes
starting at that address

Computer Architecture -- Chapt. 10 43 Fall, 2009

Example Memory Dump

d Assume linked list in memory

d Head consists of pointer

d Each node has the following structure:

struct node {
int count;
struct node *next;

}

Computer Architecture -- Chapt. 10 44 Fall, 2009

Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

Computer Architecture -- Chapt. 10 45 Fall, 2009

Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

head

d Assume head located at address 0x0001bde4

Computer Architecture -- Chapt. 10 45 Fall, 2009

Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

head
node 1

d Assume head located at address 0x0001bde4

d First node at 0x0001bdf8 contains 192 (0xc0)

Computer Architecture -- Chapt. 10 45 Fall, 2009

Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

head
node 1

node 2

d Assume head located at address 0x0001bde4

d First node at 0x0001bdf8 contains 192 (0xc0)

d Second node at 0x0001be14 contains 200 (0xc8)

Computer Architecture -- Chapt. 10 45 Fall, 2009

Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

head
node 1

node 2
node 3

d Assume head located at address 0x0001bde4

d First node at 0x0001bdf8 contains 192 (0xc0)

d Second node at 0x0001be14 contains 200 (0xc8)

d Last node at 0x001be00 contains 100 (0x64)

Computer Architecture -- Chapt. 10 45 Fall, 2009

Increasing Memory Performance

d Two major techniques

– Memory banks

– Interleaving

d Both employ parallel hardware

Computer Architecture -- Chapt. 10 46 Fall, 2009

Memory Banks

d Alternative to single memory and single memory controller

d Processor connects to multiple controllers

d Each controller connects to separate physical memory

d Controllers and memories can all operate simultaneously

Computer Architecture -- Chapt. 10 47 Fall, 2009

Programming With Memory Banks

d Two approaches

d Transparent

– Programmer is not concerned with banks

– Hardware automatically finds and exploits parallelism

d Opaque

– Banks visible to programmer

– To optimize performance, programmer must place items
that will be accessed simultaneously in separate banks

Computer Architecture -- Chapt. 10 48 Fall, 2009

Interleaving

d Related to memory banks

d Transparent to programmer

d Hardware places consecutive bytes in separate physical
memory

d Technique: use low-order bits of address to choose module

d Known as N-way interleaving, where N is number of
physical memories

Computer Architecture -- Chapt. 10 49 Fall, 2009

Illustration Of 4-Way Interleaving

interface

module 0 module 1 module 2 module 3

0 1 2 3
4 5 6 7
8 9 10 11
...

requests

d Consecutive bytes stored in separate physical memory

Computer Architecture -- Chapt. 10 50 Fall, 2009

Content Addressable Memory (CAM)

d Blends two key ideas

– Memory technology

– Memory organization

d Includes parallel hardware for high-speed search

Computer Architecture -- Chapt. 10 51 Fall, 2009

CAM

d Think of memory as a two-dimensional array

d Row in the array is called a slot

d Special hardware

– Can answer the question: “is X stored in any row of the
CAM?”

– Operates in parallel to make search fast

d Query is known as a key

Computer Architecture -- Chapt. 10 52 Fall, 2009

Illustration Of CAM

CAM Storage

Key

...

one slot

Computer Architecture -- Chapt. 10 53 Fall, 2009

Lookup In A CAM

d CAM presented with key for lookup

d Hardware searches slots to determine whether key is present

– Search operation performed in parallel on all slots

– Result is index of slot where value found

d Note: parallel search hardware makes CAM expensive

Computer Architecture -- Chapt. 10 54 Fall, 2009

Ternary CAM (T-CAM)

d Variation of CAM that adds partial match searching

d Each bit in slot can have one of three possible values:

– Zero

– One

– Don’t care

d T-CAM ignores “don’t care” bits and reports match

d T-CAM can either report

– First match

– All matches (bit vector)

Computer Architecture -- Chapt. 10 55 Fall, 2009

Summary

d Physical memory

– Organized into fixed-size words

– Accessed through a controller

d Controller can use

– Byte addressing when communicating with a processor

– Word addressing when communicating with a physical
memory

d To avoid arithmetic, use powers of two for

– Address space size

– Bytes per word

Computer Architecture -- Chapt. 10 56 Fall, 2009

Summary
(continued)

d Many memory technologies exist

d A memory dump that shows contents of memory in a
printable form can be an invaluable tool

d Two techniques used to optimize memory access

– Separate memory banks

– Interleaving

d Content Addressable Memory (CAM) permits parallel
search; variation of CAM known as Ternary Content
Addressable Memory (T-CAM) allows partial match
retrieval

Computer Architecture -- Chapt. 10 57 Fall, 2009

Questions?

XI

Virtual Memory Technologies
And

Virtual Addressing

Computer Architecture -- Chapt. 11 1 Fall, 2009

Virtual Memory

d Broad concept

d Hides the details of the underlying physical memory

d Provides a view of memory that is more convenient to a
programmer

d Can overcome limitations of physical memory and physical
addressing

Computer Architecture -- Chapt. 11 2 Fall, 2009

A Basic Example: Byte Addressing

d CPU uses byte addresses

d Underlying physical memory uses word addresses

d Memory controller translates automatically

d Fits our definition of virtual memory

Computer Architecture -- Chapt. 11 3 Fall, 2009

Virtual Memory Terminology

d Memory Management Unit (MMU)

– Hardware unit

– Provides translation between virtual and physical
memory schemes

d Virtual address

– Address generated by processor

– Translated into corresponding physical address by MMU

Computer Architecture -- Chapt. 11 4 Fall, 2009

Virtual Memory Terminology
(continued)

d Virtual address space

– Set of all possible virtual addresses

– Can be larger or smaller than physical memory

d Virtual memory system

– All of the above

Computer Architecture -- Chapt. 11 5 Fall, 2009

Multiple Physical Memory Systems

d Many computers have more than one physical memory
system

d Each physical memory

– Can be optimized for a specific purpose

– Can use a unique technology (e.g., SRAM or DRAM)

d Virtual memory system can provide uniform address space
for all physical memories

Computer Architecture -- Chapt. 11 6 Fall, 2009

Illustration Of Virtual Address Space
That Covers Two Memories

physical
memory

#1

physical
memory

#2

physical
controller

physical
controller

MMU

processor

Computer Architecture -- Chapt. 11 7 Fall, 2009

Virtual Addressing

d Processor must have unique address for each location in
memory

d MMU translates from virtual space to underlying physical
memories

d Example:

– Two physical memories with 1000 bytes each

– Virtual addresses 0 through 999 correspond to memory 1

– Virtual addresses 1000 through 1999 correspond to
memory 2

Computer Architecture -- Chapt. 11 8 Fall, 2009

Illustration Of Virtual Addressing
That Spans Two Physical Memories

memory 1

memory 2

Address

0

999

1000

1999

Processor sees a
single contiguous
memory

Computer Architecture -- Chapt. 11 9 Fall, 2009

Address Translation

d Performed by MMU

d Also called address mapping

d For our example

– To determine which physical memory, test if address is
above 999

– Subtract 1000 from address when forwarding a request
to memory 2

Computer Architecture -- Chapt. 11 10 Fall, 2009

Algorithm To Perform The Example
Address Translation

receive memory request from processor;
let A be the address in the request;
if (A >= 1000) {

A = A – 1000;
pass the modified request to memory 2;

} else {
pass the unmodified request to memory 1;

}

Computer Architecture -- Chapt. 11 11 Fall, 2009

Avoiding Arithmetic Calculation

d Arithmetic computation

– Is expensive

– Can be avoided

d Divide virtual address space along boundaries that
correspond to powers of two

d Select bits of virtual address to

– Choose among underlying physical memories

– Specify an address in the physical memory

Computer Architecture -- Chapt. 11 12 Fall, 2009

Example Using Powers Of Two

d Two physical memories

d Each memory contains 1024 bytes

d Virtual addresses 0 through 1023 map to memory 1

d Virtual addresses 1024 through 2047 map to memory 2

d No arithmetic is required

Computer Architecture -- Chapt. 11 13 Fall, 2009

Example Addresses In Binary

Addresses Values In Binary222222222222222222222222222222222

0 0 0 0 0 0 0 0 0 0 0 0 0
to to

1023 0 1 1 1 1 1 1 1 1 1 1 1

1024 1 0 0 0 0 0 0 0 0 0 0 0
to to

2047 1 1 1 1 1 1 1 1 1 1 1 1

d Values above 1023 are the same as previous set except for
high-order bit

d High-order bit determines physical memory (0 or 1)

Computer Architecture -- Chapt. 11 14 Fall, 2009

The Important Point

Dividing a virtual address space on a boundary that
corresponds to a power of two allows the MMU to choose a
physical memory and perform the necessary address translation
without requiring arithmetic operations.

Computer Architecture -- Chapt. 11 15 Fall, 2009

Address Space Continuity

d Contiguous address space

– All locations correspond to physical memory

– Inflexible: requires all memory sockets to be populated

d Discontiguous address space

– One or more blocks of address space do not correspond
to physical memory

– Called hole

– Fetch or store to address in a hole causes an error

– Flexible: allows owner to decide how much memory to
install

Computer Architecture -- Chapt. 11 16 Fall, 2009

Illustration Of Discontiguous Address Space

memory 1

memory 2

Address

0

N/2– 1

N/2

N

Hole
(not present)

Hole
(not present)

Computer Architecture -- Chapt. 11 17 Fall, 2009

Consequence To A Programmer

A virtual address space can be contiguous, in which case
every address maps to a location of an underlying physical
memory, or noncontiguous, in which case the address space
contains one or more holes. If a processor attempts to read or
write any address that does not correspond to physical memory,
an error results.

Computer Architecture -- Chapt. 11 18 Fall, 2009

Motivations For Virtual Memory

d Homogeneous integration of hardware

d Programming convenience

d Support for multiprogramming

d Protection of programs and data

Computer Architecture -- Chapt. 11 19 Fall, 2009

Multiple Virtual Spaces And Multiprogramming

d Goal: allow multiple application programs to run
concurrently

d Prevent one program from interfering with another

d Trick: provide each program with a separate virtual address
space

Computer Architecture -- Chapt. 11 20 Fall, 2009

Illustration Of Four Virtual Address Spaces
Mapped To A Single Physical Address Space

physical
memory

. .

. .

. .

0

N / 4

N / 2

3 N / 4

N

virtual
space

1

0

M

virtual
space

2

0

M

virtual
space

3

0

M

virtual
space

4

0

M

Computer Architecture -- Chapt. 11 21 Fall, 2009

Dynamic Address Space Creation

d Processor configures MMU

d Address space mapping can be changed at any time

d Typically

– Access to MMU restricted to operating system

– OS runs in real mode (access to physical address space)

– Changes to virtual memory only affect application
programs

Computer Architecture -- Chapt. 11 22 Fall, 2009

Technologies For Dynamic
Address Space Manipulation

d Base-bound registers

d Segmentation

d Demand paging

Computer Architecture -- Chapt. 11 23 Fall, 2009

Base-Bound Registers

d Two hardware registers in MMU

d Base register specifies starting address

d Bound register specifies size of address space

d Values changed by operating system

– Set before application runs

– Changed by operating system when switching to another
application

Computer Architecture -- Chapt. 11 24 Fall, 2009

Illustration Of Virtual Memory Using
Base-Bound Registers

physical
memory

. .

. .

0

N

virtual
space

0

M

base

M

bound

Computer Architecture -- Chapt. 11 25 Fall, 2009

Protection

d Multiple applications each allocated separate area of
physical memory

d OS sets base-bound registers before application runs

d MMU hardware checks each memory reference

d Reference to any address outside the valid range results in
an error

Computer Architecture -- Chapt. 11 26 Fall, 2009

The Concept Of Protection

A virtual memory system that supports multiprogramming
must also provide protection that prevents one program from
reading or altering memory that has been allocated to another
program.

Computer Architecture -- Chapt. 11 27 Fall, 2009

Segmentation

d Alternative to base-bound

d Provides fine-granularity mapping

– Divides program into segments (typical segment
corresponds to one procedure)

– Maps each segment to physical memory

d Key idea

– Segment is only placed in physical memory when
needed

– When segment is no longer needed, OS moves it to disk

Computer Architecture -- Chapt. 11 28 Fall, 2009

Problems With Segmentation

d Need hardware support to make moving segments efficient

d Two choices

– Variable-size segments cause memory fragmentation

– Fixed-size segments may be too small or too large

Computer Architecture -- Chapt. 11 29 Fall, 2009

Summary Of Segmentation

Segmentation refers to a virtual memory scheme in which
programs are divided into variable-size blocks, and only the
blocks currently needed are kept in memory. Because it leads
to a problem known as memory fragmentation, segmentation is
seldom used.

Computer Architecture -- Chapt. 11 30 Fall, 2009

Demand Paging

d Alternative to segmentation and base-bounds

d Most popular virtual memory technology

d Divides program into fixed-size pieces called pages

d No attempt to align page boundary with procedure

d Typical page size 4K bytes

Computer Architecture -- Chapt. 11 31 Fall, 2009

Support Needed For Demand Paging

d Hardware that handles address mapping and detects missing
pages

d Software that moves pages between external store and
physical memory

Computer Architecture -- Chapt. 11 32 Fall, 2009

Paging Hardware

d Part of MMU

d Intercepts each memory reference

d If referenced page is present in memory, translate address

d If referenced page not present in memory, generate a page
fault (error condition)

d Allow operating system to handle the fault

Computer Architecture -- Chapt. 11 33 Fall, 2009

Demand Paging Software

d Part of the operating system

d Works closely with hardware

d Responsible for overall memory management

d Determines which pages of each application to keep in
memory and which to keep on disk

d Records location of all pages

d Fetches pages on demand

d Configures the MMU

Computer Architecture -- Chapt. 11 34 Fall, 2009

Page Replacement

d Initially

– Applications reference pages

– Each referenced page is placed in physical memory

d Eventually

– Memory is full

– Existing page must be written to disk before memory
can be used for new page

d Choosing a page to expel is known as page replacement

d Should replace a page that will not be needed soon

Computer Architecture -- Chapt. 11 35 Fall, 2009

Paging Terminology

d Page: fixed-size piece of program’s address space

d Frame: slot in memory exactly the size of one page

d Resident: a page that is currently in memory

d Resident set: pages from a given application that are present
in memory

Computer Architecture -- Chapt. 11 36 Fall, 2009

Paging Data Structure

d Page table

– One per application

– Think of each as one-dimensional array indexed by page
number

– Stores the location of each page in the application (either
in memory or on disk)

Computer Architecture -- Chapt. 11 37 Fall, 2009

Illustration Of A Page Table

physical
memory

0

N

page
table

0

P

d Typical system has 4K bytes per page

Computer Architecture -- Chapt. 11 38 Fall, 2009

Address Translation

d Given virtual address V, find physical memory address P

d Three conceptual steps

– Determine the number of the page on which address V
lies

– Use the page number as an index into the page table to
find the location in memory that corresponds to the first
byte of the page

– Determine how far into the page V lies, and convert to a
position in the frame in memory

Computer Architecture -- Chapt. 11 39 Fall, 2009

Mathematical View Of Address Translation

d Page number computed by dividing the virtual address by
the number of bytes per page, K:

N =
J
J
Q

K
V33

J
J
P

d Offset within the page, O, can be computed as the
remainder:

O = V modulo K

Computer Architecture -- Chapt. 11 40 Fall, 2009

Mathematical View Of Address Translation
(continued)

d Use N and O to translate virtual address V to physical
address P:

P = pagetable [N] + O

Computer Architecture -- Chapt. 11 41 Fall, 2009

Using Powers Of Two

d Cannot afford division or remainder operation for each
memory reference

d Use powers of two to eliminate arithmetic

d Let number of bytes per page be 2k

– Offset O given by low-order k bits

– Page number given by remaining (high-order) bits

d Computation is:

P = pagetable [high_order_bits (V)] or low_order_bits (V)

Computer Architecture -- Chapt. 11 42 Fall, 2009

Illustration Of Translation With MMU Hardware

page table

oN

virtual address

f o

physical address

f

Computer Architecture -- Chapt. 11 43 Fall, 2009

Presence, Use, And Modified Bits

d Found in most paging hardware

d Shared by hardware and software

d Purpose of each bit:

Control Bit Meaning
222

Presence bit Tested by hardware to determine whether

page is currently present in memory

Use bit Set by hardware whenever page is referenced

Modified bit Set by hardware whenever page is changed

Computer Architecture -- Chapt. 11 44 Fall, 2009

Page Table Storage

d Page tables occupy space

d Two possibilities for page table storage

– In MMU

– In main memory

Computer Architecture -- Chapt. 11 45 Fall, 2009

Illustration Of Page Tables
Stored In Physical Memory

operating
system

page
tables frame storage

memory

Computer Architecture -- Chapt. 11 46 Fall, 2009

Paging Efficiency

d Paging must be used

– For each instruction fetch

– For each data reference

d Can become a bottleneck

d Must be optimized

Computer Architecture -- Chapt. 11 47 Fall, 2009

Translation Lookaside Buffer (TLB)

d Hardware mechanism

d Optimizes paging system

d Form of Content Addressable Memory (CAM)

d Stores pairs of

(virtual address, physical address)

d If mapping in TLB

– No page table reference needed

– MMU can return mapping quickly

Computer Architecture -- Chapt. 11 48 Fall, 2009

In Practice

d Virtual memory system without TLB is unacceptable

d TLB works well because application programs tend to
reference given page many times

Computer Architecture -- Chapt. 11 49 Fall, 2009

The Importance Of A TLB

A special high-speed hardware device called a Translation
Lookaside Buffer (TLB) is used to optimize performance of a
paging system. A virtual memory that does not have a TLB can
be unacceptably slow.

Computer Architecture -- Chapt. 11 50 Fall, 2009

Consequences For Programmers

d Can optimize performance by accommodating paging
system

d Examples

– Group related data items on same page

– Reference arrays in order that accesses contiguous
memory locations

Computer Architecture -- Chapt. 11 51 Fall, 2009

Array Reference

d Illustration of array in row-major order

row 0 row 1 row 2 row 3 row 4 row 5 row N

. . .

d Location of A [i , j] given by:

location(A) + i×Q + j

where Q is number of bytes per row

Computer Architecture -- Chapt. 11 52 Fall, 2009

Programming To Optimize Array Access

d Optimal
for i = 1 to N {

for j = 1 to M {
A [i, j] = 0;

}
}

d Nonoptimal
for j = 1 to M {

for i = 1 to N {
A [i, j] = 0;

}
}

Computer Architecture -- Chapt. 11 53 Fall, 2009

Summary

d Virtual memory systems present illusion to processor and
programs

d Many virtual memory architectures are possible

d Examples include

– Hiding details of word addressing

– Create uniform address space that spans multiple
memories

– Incorporate heterogeneous memory technologies into
single address space

Computer Architecture -- Chapt. 11 54 Fall, 2009

Summary
(continued)

d Virtual memory offers

– Convenience for programmer

– Support for multiprogramming

– Protection

d Three technologies used for virtual memory

– Base-bound registers

– Segmentation

– Demand paging

Computer Architecture -- Chapt. 11 55 Fall, 2009

Summary
(continued)

d Demand paging

– The most popular technology

– Combination of hardware and software

– Uses page tables to map virtual addresses to physical
addresses

– High-speed lookup mechanism known as TLB makes
demand paging practical

Computer Architecture -- Chapt. 11 56 Fall, 2009

Questions?

XII

Caches And Caching

Computer Architecture -- Chapt. 12 1 Fall, 2009

Caching

d Key concept in computing

d Used in hardware and software

d Memory cache essential to reduce the Von Neumann
bottleneck

Computer Architecture -- Chapt. 12 2 Fall, 2009

Cache

d Acts as an intermediary

d Located between source of requests and source of replies

large data storage

requester
cache

d Cache contains temporary local storage

– Very high-speed

– Limited size

d Copy of selected items kept in local storage

d Cache answers requests from local copy when possible

Computer Architecture -- Chapt. 12 3 Fall, 2009

Cache Characteristics

d Small (usually much smaller than storage needed for entire
set of items)

d Active (makes decisions about which items to save)

d Transparent (invisible to both requester and data store)

d Automatic (uses sequence of requests; does not receive extra
instructions)

Computer Architecture -- Chapt. 12 4 Fall, 2009

Generality Of Caching

d Implemented in hardware, software, or a combination

d Small or large data items (a byte of memory or a complete
file)

d Generic data items (e.g., disk block)

d Specific data item (e.g., document from a word processor)

d Textual data (e.g., an email message)

d Nontextual data (e.g., an image, an audio file, or a video
clip)

Computer Architecture -- Chapt. 12 5 Fall, 2009

Generality Of Caching
(continued)

d A single computer system (e.g., between a processor and a
memory)

d Many computer systems (e.g., between a set of desktop
computers and a database server)

d Systems that are designed to retrieve data (e.g., the World
Wide Web)

d Systems that store as well as retrieve data (e.g., a physical
memory)

Computer Architecture -- Chapt. 12 6 Fall, 2009

The Importance Of Caching

Caching is a fundamental optimization technique used
throughout most hardware and software systems that retrieve
information. Caching is a broad concept; data items kept in a
cache are not limited to a specific type, form, or size.

Computer Architecture -- Chapt. 12 7 Fall, 2009

Cache Terminology

d Cache hit

– Request that can be satisfied from cache

– No need to access data store

d Cache miss

– Request cannot be satisfied from cache

– Cache retrieves item from data store

Computer Architecture -- Chapt. 12 8 Fall, 2009

Cache Terminology
(continued)

d Locality of reference

– Refers to repetitions of same request

– High locality means many repetitions

– Low locality means few repetitions

d Note: cache works well with high locality of reference

Computer Architecture -- Chapt. 12 9 Fall, 2009

Cache Performance

d Cost measured with respect to requester

large data storagerequester cache

Ch

Cm

d Ch is the cost of an item found in the cache (hit)

d Cm is the cost of an item not found in the cache (miss)

Computer Architecture -- Chapt. 12 10 Fall, 2009

Analysis Of Cache Performance

Computer Architecture -- Chapt. 12 11 Fall, 2009

Analysis Of Cache Performance

d Worst case for sequence of N requests

Computer Architecture -- Chapt. 12 11 Fall, 2009

Analysis Of Cache Performance

d Worst case for sequence of N requests

Cworst = N Cm

Computer Architecture -- Chapt. 12 11 Fall, 2009

Analysis Of Cache Performance

d Worst case for sequence of N requests

Cworst = N Cm

d Best case for sequence of N requests

Computer Architecture -- Chapt. 12 11 Fall, 2009

Analysis Of Cache Performance

d Worst case for sequence of N requests

Cworst = N Cm

d Best case for sequence of N requests

Cbest = Cm + (N − 1) Ch

Computer Architecture -- Chapt. 12 11 Fall, 2009

Analysis Of Cache Performance

d Worst case for sequence of N requests

Cworst = N Cm

d Best case for sequence of N requests

Cbest = Cm + (N − 1) Ch

d For best cast, the average cost per request is:

N

Cm + (N − 1) Ch333333333333333 =
N

Cm3333 −
N

Ch333 + Ch

Computer Architecture -- Chapt. 12 11 Fall, 2009

Analysis Of Cache Performance

d Worst case for sequence of N requests

Cworst = N Cm

d Best case for sequence of N requests

Cbest = Cm + (N − 1) Ch

d For best cast, the average cost per request is:

N

Cm + (N − 1) Ch333333333333333 =
N

Cm3333 −
N

Ch333 + Ch

d Note: as N → ∞, average cost becomes Ch

Computer Architecture -- Chapt. 12 11 Fall, 2009

Summary Of Costs

If we ignore overhead, in the worst case, the performance of
caching is no worse than if the cache were not present. In the
best case, the cost per request is approximately equal to the
cost of accessing the cache, which is lower than the cost of
accessing the data store.

Computer Architecture -- Chapt. 12 12 Fall, 2009

Definition Of Hit and Miss Ratios

d Hit ratio

– Percentage of requests satisfied from cache

– Given as value between 0 and 1

d Miss ratio

– Percentage of requests not satisfied from cache

– Equal to 1 minus hit ratio

Computer Architecture -- Chapt. 12 13 Fall, 2009

Cache Performance On A Typical Sequence

d Access cost depends on hit ratio

Cost = r Ch + (1 − r) Cm

where r is the hit ratio

d Note: performance improves if hit ratio increases or cost of
access from cache decreases

Computer Architecture -- Chapt. 12 14 Fall, 2009

Cache Replacement Policy

d Recall: a cache is smaller than data store

d Once cache is full, existing item must be ejected before
another can be inserted

d Replacement policy chooses items to eject

d Most popular replacement policy known as Least Recently
Used (LRU)

– Easy to implement

– Tends to retain items that will be requested again

– Works well in practice

Computer Architecture -- Chapt. 12 15 Fall, 2009

Multi-level Cache Hierarchy

d Can use multiple caches to improve performance

d Arranged in hierarchy by speed

d Example: insert an extra cache in previous diagram

large data storagerequester new cache original cache

Computer Architecture -- Chapt. 12 16 Fall, 2009

Analysis Of Two-Level Cache

d Cost is:

Cost = r 1 Ch 1 + r 2 Ch 2 + (1 − r 1 − r 2)Cm

d r 1 is fraction of hits for the new cache

d r 2 is fraction of hits for the original cache

d Ch 1 is cost of accessing the new cache

d Ch 2 is cost of accessing the original cache

Computer Architecture -- Chapt. 12 17 Fall, 2009

Preloading Caches

d Optimization technique

d Stores items in cache before requests arrive

d Works well if data accessed in related groups

d Examples

– When web page is fetched, web cache can preload
images that appear on the page

– When byte of memory is fetched, memory cache can
preload succeeding bytes

Computer Architecture -- Chapt. 12 18 Fall, 2009

Memory Cache

d Several memory mechanisms operate as a cache

– TLB used in a virtual memory system

– Pages in a demand paging system

– Words of memory in a physical memory system

Computer Architecture -- Chapt. 12 19 Fall, 2009

Demand Paging Performance

Cache analysis shows that using demand paging on a
computer system with a small physical memory can perform
almost as well as if the computer had a physical memory large
enough for the entire virtual address space.

Computer Architecture -- Chapt. 12 20 Fall, 2009

Physical Memory Cache

d Located between processor and physical memory

d Smaller than physical memory

d Note: sophisticated cache hardware operates in parallel to
achieve high performance:

– Search local cache

– Send request to underlying memory

d If answer found in cache, cancel request to memory

Computer Architecture -- Chapt. 12 21 Fall, 2009

Two Basic Types Of Cache

d Differ in how the caches handle a write operation

d Write-through

– Place a copy of item in cache

– Also send (write) a copy to physical memory

d Write-back

– Place a copy of item in cache

– Only write the copy to physical memory when necessary

– Works well for frequent updates (e.g., a loop increments
a value)

Computer Architecture -- Chapt. 12 22 Fall, 2009

Writes On A System With Multiple Caches

processor
1

processor
2

cache 1 cache 2

physical memory

d Write-back means each cache can retain copy of item

d Cache coherence needed to ensure correctness

Computer Architecture -- Chapt. 12 23 Fall, 2009

Motivation For Multi-Level Memory Cache

d Traditional memory cache was separate from both the
memory and the processor

d To access traditional memory cache, a processor used pins
that connect the processor chip to the rest of the computer

d Using pins to access external hardware takes much longer
than accessing functional units that are internal to the
processor chip

d Advances in technology have made it possible to increase
the number of transistors per chip, which means a processor
chip can contain a larger cache

Computer Architecture -- Chapt. 12 24 Fall, 2009

Multi-Level Memory Cache Terminology

d Level 1 cache (L1 cache) on the processor chip

d Level 2 cache (L2 cache) external to the processor

d Level 3 cache (L3 cache) built into the physical memory

Computer Architecture -- Chapt. 12 25 Fall, 2009

Cost Of Accessing Memory

Computer systems use a multi-level cache hierarchy in which
an L1 cache is embedded on the processor chip, an L2 cache is
external to the processor, and an L3 cache is built into the
physical memory. In the best case, a multi-level cache makes
the cost of accessing memory approximately the same as the
cost of accessing a register.

Computer Architecture -- Chapt. 12 26 Fall, 2009

Instruction And Data Caches

d Instruction references are typically sequential

– High locality of reference

– Amenable to prefetching

d Data references typically exhibit more randomness

– Lower locality of reference

– Prefetching does not work well

d Question: does performance improve with separate caches
for data and instructions?

Computer Architecture -- Chapt. 12 27 Fall, 2009

Instruction And Data Caches
(continued)

d Cache tends to work well with sequential references

d Adding many random references tends to lower cache
performance

d Therefore, separating instruction and data caches can
improve performance

d However: if cache is “large enough”, separation doesn’t help

Computer Architecture -- Chapt. 12 28 Fall, 2009

Virtual Memory Caching

d Can build a system that caches

– Physical memory address and contents

– Virtual memory address and contents

d Notes

– If MMU is off-chip, L1 cache must use virtual addresses

– Multiple applications use same virtual address space

Computer Architecture -- Chapt. 12 29 Fall, 2009

Handling Overlapping Virtual Addresses

d Each application uses virtual addresses 0 through N

d System must insure that an application does not receive data
from another application’s memory

d Two possible approaches

– OS performs cache flush operation when changing
applications

– Cache includes disambiguating tag with each entry
(i.e., an application ID)

Computer Architecture -- Chapt. 12 30 Fall, 2009

Illustration Of ID Register

address used by cache

ID virtual address

Computer Architecture -- Chapt. 12 31 Fall, 2009

Two Technologies For Memory Caching

d Direct mapping memory cache

d Set associative memory cache

Computer Architecture -- Chapt. 12 32 Fall, 2009

Direct Mapping Memory Cache

d Divides memory into K numbered blocks, where K is
number of slots in cache

d Tag used to distinguish among blocks

d Example: block size of 4 bytes

memory block

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

...

d Only block numbered i can be placed in cache slot i

Computer Architecture -- Chapt. 12 33 Fall, 2009

Illustration Of Tags

memory

cache

tag value

0

1

2

3

block

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

tag 0

tag 1

tag 2

tag 3

d Use of tags saves space

Computer Architecture -- Chapt. 12 34 Fall, 2009

Using Powers Of Two

d If all values are powers of two, bits of an address can be
used to specify a tag, block, and offset

tag block offset

Computer Architecture -- Chapt. 12 35 Fall, 2009

Algorithm For Cache Lookup

Given:
A memory address

Find:
The data byte at that address

Method:

Extract the tag number, t, block number, b, and offset,
o, from the address.

Examine the tag in slot b of the cache. If the tag
matches t, extract the value from slot b of the cache.

If the tag in slot b of the cache does not match t, use
the memory address to extract the block from
memory, place a copy in slot b of the cache, replace
the tag with t, and use o to select the appropriate byte
from the value.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
22

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
122

Computer Architecture -- Chapt. 12 36 Fall, 2009

Set Associative Memory Cache

d Alternative to direct mapping memory cache

d Uses parallel hardware

d Maintains multiple, independent caches

tag tagvalue value
0
1
2
3

0
1
2
3

Hardware For Parallel Test

Computer Architecture -- Chapt. 12 37 Fall, 2009

Advantage Of Set Associative Cache

d Assume two memory addresses A1 and A2

– Both have block number zero

– Have different tags

d In direct mapped cache

– A1 and A2 contend for single slot

– Only one can be cached at a given time

d In set associative cache

– A1 and A2 can be placed in separate caches

– Both can be cached at a given time

Computer Architecture -- Chapt. 12 38 Fall, 2009

Fully Associative Cache

d Generalization of set associative cache

d Many parallel caches

d Each cache has exactly one slot

d Slot can hold arbitrary item

Computer Architecture -- Chapt. 12 39 Fall, 2009

Conceptual Continuum Of Caches

d No parallelism corresponds to direct mapped cache

d Some parallelism corresponds to set associative cache

d Full parallelism corresponds to Content Addressable
Memory

Computer Architecture -- Chapt. 12 40 Fall, 2009

Consequences For Programmers

d In many programs caching works well without extra work

d To optimize cache performance

– Group related data items into same cache line (e.g.,
related bytes into a word)

– Perform all operations on one data item before moving
to another data item

Computer Architecture -- Chapt. 12 41 Fall, 2009

Summary

d Caching is fundamental optimization technique

d Cache intercepts requests, automatically stores values, and
answers requests quickly, whenever possible

d Caching can be used with both physical and virtual memory
addresses

d Memory cache uses hierarchy

– L1 onboard processor

– L2 between processor and memory

– L3 built into memory

Computer Architecture -- Chapt. 12 42 Fall, 2009

Summary
(continued)

d Two technologies used for memory cache

– Direct mapped

– Set associative

Computer Architecture -- Chapt. 12 43 Fall, 2009

Questions?

XIII

Input / Output
Concepts

And
Terminology

Computer Architecture -- Chapt. 13 1 Fall, 2009

I/O Devices

d Third major component of computer system

d Wide range of types

– Keyboards

– Mice

– Monitors

– Hard disks

– Printers

– Cameras

– Audio speakers

Computer Architecture -- Chapt. 13 2 Fall, 2009

Conceptual Organization Of Basic I/O Device

d Operates independent of processor

d Separate power supply

d Digital signals used for control

d Example: panel lights

external device

processor

circuit

...

to power source

digital signals

electrical signals lights

Computer Architecture -- Chapt. 13 3 Fall, 2009

Illustration Of Modern Interface Controller

d Controller placed at each end of physical connection

d Allows arbitrary voltage and signals to be used

processor device

controller controller

external
connection

Computer Architecture -- Chapt. 13 4 Fall, 2009

Two Types Of Interfaces

d Parallel interface

– Composed of many wires

– Each wire carries one bit at any time

– Width is number of wires

– Complex hardware with higher cost

d Serial interface

– Single signal wire (also need ground)

– Bits sent one-at-a-time

– Slower than parallel interface

– Less complex hardware with lower cost

Computer Architecture -- Chapt. 13 5 Fall, 2009

Self-Clocking Data

d Ends of connection use separate clocks

– Processor

– I/ O device

d Transmission is self-clocking if signal is encoded in such a
way that receiver can determine boundary of bits without
knowing sender’s clock

Computer Architecture -- Chapt. 13 6 Fall, 2009

Duplex Terminology

d Full-duplex

– Simultaneous, bi-directional transfer

– Example: disk drive supports simultaneous read and
write operations

d Half-duplex

– Transfer in one direction at a time

– Interfaces must negotiate access before transmitting

– Example: processor can read or write to a disk, but can
only perform one operation at a time

Computer Architecture -- Chapt. 13 7 Fall, 2009

Latency And Throughput

The latency of an interface is a measure of the time required
to perform a transfer, the throughput of an interface is a
measure of the data that can be transferred per unit time.

Computer Architecture -- Chapt. 13 8 Fall, 2009

Data Multiplexing

d Fundamental idea

d Arises from hardware limits on parallelism (pins or wires)

d Allows sharing

d Multiplexor

– Accepts input from many sources

– Sends small amount from one source before accepting
another

d Demultiplexor

– Receives transmission of pieces

– Sends each piece to appropriate destination

Computer Architecture -- Chapt. 13 9 Fall, 2009

Illustration Of Multiplexing

d Example: sixty-four bits of data multiplexed over 16-bit
path

unit 1 unit 2 unit 3 unit 4

64 bits of data to be transferred

multiplexing hardware

demultiplexing hardware

unit 1 unit 2 unit 3 unit 4

data reassembled after transfer

parallel interface
sends 16 at a time

Computer Architecture -- Chapt. 13 10 Fall, 2009

Multiplexing And I/O Interfaces

Multiplexing is used to construct an I/O interface that can
transfer arbitrary amounts of data over a fixed number of
parallel wires. Multiplexing hardware divides the data into
blocks, and transfers each block independently.

Computer Architecture -- Chapt. 13 11 Fall, 2009

Multiple Devices Per External Interface

d Cannot have a separate physical interconnect per device

– Too many physical wires

– Not enough pins on processor chip

– Interface hardware adds economic cost

d Sharing allows multiple devices to use a given
interconnection

d The next section of the course discusses connection sharing

Computer Architecture -- Chapt. 13 12 Fall, 2009

Processor’s View Of I/O

A processor does not access external devices directly.
Instead, the processor uses a programming interface to pass
requests to an interface controller, which translates the requests
into the appropriate external signals.

Computer Architecture -- Chapt. 13 13 Fall, 2009

Questions?

XIV

Buses
And

Bus Architecture

Computer Architecture -- Chapt. 14 1 Fall, 2009

Definition Of A Bus

d Digital interconnection mechanism

d Allows two or more functional units to transfer data

d Typical use: connect processor to

– Memory

– I/O devices

d Design can be

– Proprietary (owned by one company)

– Open standard (available to many companies)

Computer Architecture -- Chapt. 14 2 Fall, 2009

Illustration Of A Bus

d Double-headed arrow often used to denote a bus

d Connection to bus shown from components

d Example

bus

processor
devicememory

Computer Architecture -- Chapt. 14 3 Fall, 2009

Sharing

d Most buses shared by multiple devices

d Need an access protocol

– Determines which device can use the bus at any time

– All attached devices follow the protocol

d Note: it is possible to have multiple buses in one computer

Computer Architecture -- Chapt. 14 4 Fall, 2009

Characteristics Of A Bus

d Parallel data transfer

– Hardware to transfer multiple bits at the same time

– Typical width is 32 or 64 bits

d Essentially passive

– Bus does not contain many electronic components

– Attached devices handle communication

d Conceptual view: think of a bus as parallel wires

d Bus may have arbiter that manages sharing

Computer Architecture -- Chapt. 14 5 Fall, 2009

Physical Bus Connections

d Several possibilities

d Can consist of

– Physical wires

– Traces on a circuit board

d Usually, bus has sockets into which devices plug

Computer Architecture -- Chapt. 14 6 Fall, 2009

Illustration Of Bus On A Motherboard

mother board

sockets placed
near the edge

of the board

bus formed from
parallel wires

area on mother board
for the processor,

memory, and other units

Computer Architecture -- Chapt. 14 7 Fall, 2009

Side View Of Circuit Board
And Corresponding Sockets

d Each I/ O device on a circuit board

d I/ O devices plug into sockets on the mother board

circuit board
(device interface)

mother board

socket

Computer Architecture -- Chapt. 14 8 Fall, 2009

Bus Interface

d Access protocol is nontrivial

d Controller circuit required

d Circuitry part of each I/ O device

Computer Architecture -- Chapt. 14 9 Fall, 2009

Conceptual Division Of A Bus

d Three functions

– Control (devices determine whether bus is currently in
use and which device will use it next)

– Address specification (requester specifies an address)

– Data being transferred (responder uses bus to send
requested item)

d Conceptually separate group of wires (lines) for each
function

Computer Architecture -- Chapt. 14 10 Fall, 2009

Illustration Of Lines In A Bus

d In simplest case, separate hardware exists for control,
address, and data

control
lines

address
lines

data
lines

d To lower cost, some bus designs arrange to share address
and data lines (value sent in request is address; value sent in
response is data)

Computer Architecture -- Chapt. 14 11 Fall, 2009

Bus Access

d Bus only supports two operations

– Fetch (also called read)

– Store (also called write)

d Access paradigm known as fetch-store paradigm

d Obvious for memory access

d Surprise: all bus operations, including communication
between a processor and an I/O device must be performed
using fetch-store paradigm

Computer Architecture -- Chapt. 14 12 Fall, 2009

Fetch-Store Over A Bus

d Fetch

– Place an address on the address lines

– Use control line to signal fetch operation

– Wait for control line to indicate operation complete

– Extract data item from the data lines

d Store

– Place an address on the address lines

– Place data item on the data lines

– Use control line to signal store operation

– Wait for control line to indicate operation complete

Computer Architecture -- Chapt. 14 13 Fall, 2009

Width Of A Bus

d Larger width

– Higher performance

– Higher cost

– Requires more pins

d Smaller width

– Lower cost

– Lower performance

– Requires fewer pins

d Compromise: multiplex transfers to reduce cost

Computer Architecture -- Chapt. 14 14 Fall, 2009

Multiplexing

d Same as multiplexing on a parallel interface

d Reuses lines for multiple purposes

d Extreme case

– Serial bus has one line

d Typical case

– Bus has K lines

– Address can be K bits wide

– Data can be K bits wide

Computer Architecture -- Chapt. 14 15 Fall, 2009

Illustration Of A Bus Using Multiplexing

d Bus has control and value lines

d Value lines used to pass both addresses and data

control
lines

address or data
lines

d Transfer takes longer with multiplexing

d Controller hardware is more sophisticated

Computer Architecture -- Chapt. 14 16 Fall, 2009

Effect Of Bus Multiplexing Architecture

Addresses and data values can be multiplexed over a bus.
To optimize performance of the hardware, an architect chooses
a single size for both data items and addresses.

Computer Architecture -- Chapt. 14 17 Fall, 2009

Illustration Of Connection To Memory Bus

d Bus provides path between processor and memory

d Memory hardware includes bus controller

bus

processor
memory

1
memory

N. . .

bus
interface

d Bus defines an address space

Computer Architecture -- Chapt. 14 18 Fall, 2009

Control Hardware And Addresses

Although bus interface hardware receives all requests that
pass across the bus, the interface only responds to requests that
contain an address for which the interface has been configured.

Computer Architecture -- Chapt. 14 19 Fall, 2009

Example Of Steps A
Memory Interface Takes

Let R be the range of addresses assigned to the memory
Repeat forever {

Monitor the bus until a request appears;
if (the request specifies an address in range R) {

respond to the request
} else {

ignore the request
}

}

Computer Architecture -- Chapt. 14 20 Fall, 2009

Potential Errors On A Bus

d Address conflict

– Two devices attempt to respond to a given address

d Unassigned address

– No device responds to a given address

Computer Architecture -- Chapt. 14 21 Fall, 2009

Address Configuration And Sockets

d Two options for address configuration

– Configure each interface with set of addresses

– Arrange sockets so that wiring limits each socket to a
range of addresses

d Latter avoids misconfiguration: owner can plug in additional
boards without configuring the hardware

d Note: some systems allow MMU to detect and configure
boards automatically

Computer Architecture -- Chapt. 14 22 Fall, 2009

Example Of Using Fetch-Store With Devices

d Imagine a device with lights used to display status

– Contains sixteen separate lights

– Connects to 32-bit bus

d Desired functions are

– Turn the display on

– Turn the display off

– Set the display brightness

– Turn the ith status light on or off

Computer Architecture -- Chapt. 14 23 Fall, 2009

Example Of Meaning Assigned To Addresses

d Device designer chooses semantics for fetch and store

d Example

Address Oper. Meaning222

100 – 103 store nonzero data value turns the display on,
and a zero data value turns the display off

100 – 103 fetch returns zero if display is currently off,
and nonzero if display is currently on

104 – 107 store Change brightness. Low-order four bits of
the data value specify brightness value
from zero (dim) through sixteen (bright)

108 – 111 store The low order sixteen bits each control a
status light, where a zero bit sets the
corresponding light off and one sets it on.

Computer Architecture -- Chapt. 14 24 Fall, 2009

Interpretation Of Operations

d Semantics are

if (address == 100 && op == store && data != 0)
turn_on_display;

d And

if (address == 100 && op == store && data == 0)
turn_off_display;

Computer Architecture -- Chapt. 14 25 Fall, 2009

Asymmetry

d Fetch and store operations

– Are defined independently

– Do not always mean “fetch data” or “store data”

d Note: operations do not need to be defined for all addresses

Computer Architecture -- Chapt. 14 26 Fall, 2009

Unification Of Memory And Device Addressing

d Single bus can attach

– Multiple memories

– Multiple devices

d Bus address space includes all units

Computer Architecture -- Chapt. 14 27 Fall, 2009

Example System

d Bus connects processor to

– Multiple physical memory units

– Multiple I/ O devices

d Architectural illustration

bus

processor memory
1

memory
2

device
1

device
2

Computer Architecture -- Chapt. 14 28 Fall, 2009

Address Assignments
For Example System

Device Address Range22

Memory 1 0x000000 through 0x0 f f f f f
Memory 2 0x100000 through 0x1 f f f f f
Device 1 0x200000 through 0x20000b
Device 2 0x20000c through 0x200017

Computer Architecture -- Chapt. 14 29 Fall, 2009

Illustration Of Bus Address Space
For Example System

memory
1

0

memory
2

device 1 device 2

d Bus address space may contain holes

Computer Architecture -- Chapt. 14 30 Fall, 2009

Example Address Map For 16-Bit Bus

available
for

memory

available
for

memory

available
for devices

0xffff

0xdfff

0xbfff

0x7fff

0x3fff

0x0000

Hole
(not available)

Hole
(not available)

Computer Architecture -- Chapt. 14 31 Fall, 2009

A Note About The Bus Address Space

In a typical computer, the part of the address space available to
devices is sparsely populated — only a small percentage of possible
addresses are used.

Computer Architecture -- Chapt. 14 32 Fall, 2009

Example Code To Manipulate A Bus

d Software such as an OS that has access to the bus address space
can fetch or store to a device

d Example code:

int *p; /* declare p to be a pointer to an integer */

p = (*int)100; /* set pointer to address 100 */

p = 1; / store nonzero value in addresses 100 - 103 */

Computer Architecture -- Chapt. 14 33 Fall, 2009

A Note About Programming With Multiple Buses

A processor that has multiple buses provides special instructions to
access each; a processor that has one bus interprets normal memory
operations as referencing locations in the bus address space.

Computer Architecture -- Chapt. 14 34 Fall, 2009

Illustration Of Bridge Between Two Buses

d Bus interconnection device is called a bridge

bus 2

bus 1

bridge

d Maps range of addresses

d Forwards operations and replies from one bus to the other

d Especially useful for adding an auxiliary bus

Computer Architecture -- Chapt. 14 35 Fall, 2009

Illustration Of Address Mapping

available
for

memory

0

available
for

memory

available
for devices. .

address space
of main bus

0

address space
of auxiliary bus

not
mappedmapping the

bridge supplies

Computer Architecture -- Chapt. 14 36 Fall, 2009

Switching Fabric

d Alternative to bus

d Connects multiple devices

d Sender supplies data and destination device

d Fabric delivers data to specified destination

Computer Architecture -- Chapt. 14 37 Fall, 2009

Conceptual Crossbar Fabric

input 1

input 2

input 3

input N

output 1 output 2 output 3 output M. . .

..

.

d Solid dot indicates a connection

Computer Architecture -- Chapt. 14 38 Fall, 2009

Summary

d Bus is fundamental mechanism that interconnects

– Processor

– Memory

– I/O devices

d Bus uses fetch-store paradigm for all communication

d Each unit assigned set of addresses in bus address space

d Bus address space can contain holes

d Bridge maps subset of addresses on one bus to another bus

Computer Architecture -- Chapt. 14 39 Fall, 2009

Summary
(continued)

d Programmer uses conventional memory address mechanism to
communicate over a bus

d Switching fabric is alternative to bus that allows parallelism

Computer Architecture -- Chapt. 14 40 Fall, 2009

Questions?

XV

Programmed
And

Interrupt-driven
I / O

Computer Architecture -- Chapt. 15 1 Fall, 2009

Two Basic Approaches To I/O

d Programmed I/O

d Interrupt-driven I/O

Computer Architecture -- Chapt. 15 2 Fall, 2009

Programmed I/O

d Used in earliest computers and smallest embedded systems

d CPU does all the work

d Device has no intelligence (called dumb)

d Processor

– Handles all synchronization

– Is much faster than device

– Starts operation on device

– Waits for device to complete

Computer Architecture -- Chapt. 15 3 Fall, 2009

Polling

d Technique used when processor waits for a device

d Processor executes a loop

– Repeatedly requests status from device

– Loop continues until device indicates “ready”

Computer Architecture -- Chapt. 15 4 Fall, 2009

Example Of Polling

d Cause the printer to advance the paper

d Poll to determine when paper has advanced

d Move the print head to the beginning of the line

d Poll to determine when the print head reaches the beginning
of the line

d Specify a character to print

d Start the ink jet spraying ink

d Poll to determine when the ink jet has finished

d Cause the print head to move to the next character position

. . . Continue with each successive character

Computer Architecture -- Chapt. 15 5 Fall, 2009

Example Specification Of Addresses
Used For Device Polling

Addresses Oper. Meaning
222

0 through 3 store Nonzero starts paper advance

4 through 7 store Nonzero starts head moving to left margin

8 through 11 store Character to print (low-order byte)

9 through 12 store Nonzero starts inkjet spraying

13 through 16 fetch Busy: nonzero when device is busy

Computer Architecture -- Chapt. 15 6 Fall, 2009

Example C Code For Device Polling

int *p; /* declare an integer pointer */

p = 0x110000; /* point to lowest address of device */
p = 1; / start paper advance */
while (*(p+4) != 0) /* poll for paper advance */

;
(p+1) = 1; / start print head moving */
while (*(p+4) != 0) /* poll for print head movement */

;
(p+2) = ’C’; / select character “C” */
while (*(p+4) != 0) /* poll for character selection */

;
(p+3) = 1; / start inkjet spraying */
while (*(p+4) != 0) /* poll for inkjet */

;

d Note: code does not contain any infinite loops!

Computer Architecture -- Chapt. 15 7 Fall, 2009

C Code Rewritten To Use A Struct

struct dv { /* device control structure */
int d_adv; /* nonzero starts paper advance */
int d_strt; /* nonzero starts head moving */
int d_char; /* character to print */
int d_strk; /* nonzero starts inkjet spraying */
int d_busy; /* nonzero when device busy */

}
struct dv *p; /* pointer to use */

p = (struct dv *)0x110000; /* initialize pointer */

p –> d_adv = 1; /* start paper advance */
while (p –> d_busy) ; /* poll for paper advance */

p –> d_strt = 1; /* start print head moving */
while (p –> d_busy) ; /* poll for print head movement */

p –> d_char = ’C’; /* select character “C” */
while (p –> d_busy) ; /* poll for character selection */

p –> = 1; /* start inkjet spraying */
while (p –> d_busy) ; /* poll for inkjet */

Computer Architecture -- Chapt. 15 8 Fall, 2009

Control And Status Registers

d Terminology for the set of bus addresses a device uses

d Abbreviated CSRs

d Each CSR can respond to

– Fetch operation

– Store operation

– Both

d Individual CSR bits may be assigned meaning

d Operations on CSRs control the device

Computer Architecture -- Chapt. 15 9 Fall, 2009

A Note About Polling And Speed

Because a typical processor is much faster than an I/O device,
the speed of a system that uses polling depends only on the speed of
the I/O device; using a fast processor will not increase the rate at
which I/O is performed.

d Bottom line: polling wastes processor cycles

Computer Architecture -- Chapt. 15 10 Fall, 2009

Generations Of Computers

Generation Description
22

1 Vacuum tubes used to build digital circuits

2 Transistors used to build digital circuits

3 Interrupt mechanism used to control I/O

Computer Architecture -- Chapt. 15 11 Fall, 2009

Interrupt-Driven I/O

d Eliminates polling

d Allows processor to perform computation while I/O occurs

d Affects

– I/O device hardware

– Bus architecture and functionality

– Processor architecture

– Programming paradigm

Computer Architecture -- Chapt. 15 12 Fall, 2009

Bus Architecture For Interrupts

d Must support two-way communication

d Processor controls device

d Device informs processor when task is complete

Computer Architecture -- Chapt. 15 13 Fall, 2009

Programming Paradigms

d Polling uses synchronous paradigm

– Code is sequential

– Programmer includes device polling for each I/ O operation

d Interrupts use asynchronous paradigm

– Device temporarily “interrupts” processor

– Processor services device and returns to computation in
progress

– Programmer creates separate piece of software to handle
interrupts

Computer Architecture -- Chapt. 15 14 Fall, 2009

Hardware Interrupt Mechanism

As the name implies, an interrupt mechanism temporarily
borrows the processor to handle an I/O device. When an interrupt
occurs, the hardware saves the state of the computation, and
restarts the computation when interrupt processing finishes.

Computer Architecture -- Chapt. 15 15 Fall, 2009

Fetch-Execute Cycle With Interrupts

Repeat forever {

Test: if any device has requested interrupt, handle the
interrupt and then continue with the next iteration of the
loop.

Fetch: access the next step of the program from the
location in which the program has been stored.

Execute: Perform the step of the program.
}

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
222

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1222

d Note: interrupt appears to occur between two instructions

Computer Architecture -- Chapt. 15 16 Fall, 2009

Handling An Interrupt

d Save the current execution state

d Determine which device interrupted

d Call the procedure that handles the device

d Clear the interrupt signal on the bus

d Restore the current execution state

Computer Architecture -- Chapt. 15 17 Fall, 2009

Saving And Restoring State

d Processor

– Saves state when interrupt occurs

– Provides a return from interrupt instruction to restore
hardware state

d State includes

– Values in registers

– Program counter

– Condition code

d Usually, a return from interrupt accepts the same format the
processor uses when saving state

Computer Architecture -- Chapt. 15 18 Fall, 2009

Interrupt Vectors

d Array of addresses

d Stored at known location

d Point to software handler for each of the devices

d Used when device interrupts

d When device i interrupts, hardware follows pointer i

Computer Architecture -- Chapt. 15 19 Fall, 2009

Illustration Of Interrupt Vectors

interrupt vectors

in memory

0

1

2

3

.

.

.

code for
device 1

code for
device 0

code for
device 2

code for
device 3

Computer Architecture -- Chapt. 15 20 Fall, 2009

Initialization Of Interrupt Vectors

d Performed by software

d Usually performed by operating system

d Notes

– Processor mode determines whether interrupts are permitted

– Processor begins running with interrupts disabled

– After interrupts initialized, operating system enables
interrupts

Computer Architecture -- Chapt. 15 21 Fall, 2009

Preventing Interrupt Code From Being Interrupted

d Multiple devices can interrupt

d Need to prevent simultaneous interrupts

d Technique: temporarily disable further interrupts while handling
an interrupt

d Usually occurs when state saved / restored

d Consequence: only one interrupt can occur at any time

Computer Architecture -- Chapt. 15 22 Fall, 2009

Multiple Interrupt Levels

d Advanced technique used in systems with many devices

d Assigns each device a priority level: devices that need faster
service are assigned a higher priority

d General rule: at most one device at each level can be
interrupting

d Important in real-time systems

d Note: lowest priority (usually zero) used when executing an
application program

Computer Architecture -- Chapt. 15 23 Fall, 2009

Priority Rule

When operating at priority level K, a processor can only be
interrupted by a device that has been assigned to level K+1 or
higher.

Computer Architecture -- Chapt. 15 24 Fall, 2009

Interrupt Assignments

d Each device assigned unique interrupt vector

d Usually, device is assigned a small integer (think of it as an
index into the interrupt vector array)

d Possibility 1: fixed, manual assignment

– Tedious and prone to human error

– Used on small, embedded systems

d Possibility 2: automated assignment at system startup

– Flexible and less error prone

– Only feasible if hardware allows each device to be assigned
a unique number dynamically

Computer Architecture -- Chapt. 15 25 Fall, 2009

Automated Interrupt Assignment

d Only possible if devices are smart

d Handled at system startup, usually by the operating system

d Either

– Processor probes devices on the bus

– Devices notify the processor of their presence

Computer Architecture -- Chapt. 15 26 Fall, 2009

Dynamic Bus Connections And Pluggable Devices

d Some bus architectures allow devices to be connected at run-
time

d Example Universal Serial Bus (USB)

d Single hardware bus controller handles interrupts for all USB
devices

d Software to handle specific device linked at run-time

d No need for separate hardware interrupt vector

Computer Architecture -- Chapt. 15 27 Fall, 2009

Advantage Of Interrupts

A computer that uses interrupts is both easier to program and
offers better I/O performance than a computer that uses polling.

Computer Architecture -- Chapt. 15 28 Fall, 2009

Dumb Device

d Processor performs all the work

d Example of interaction

– Processor starts the disk spinning

– Disk interrupts when it reaches full speed

– Processor starts disk arm moving to the desired location

– Disk interrupts when arm is in position

– Processor starts a read operation to transfer data to memory

– Disk interrupts when the transfer completes

Computer Architecture -- Chapt. 15 29 Fall, 2009

Smart Devices

d Device contains embedded processor

d Offloads work from CPU

d Allows each device to operate independently

d Improves performance of both I/O and processor

d Example of interaction

– Processor requests a read operation by specifying the
location on the disk and the location in memory

– Disk performs all steps of the operation and interrupts when
the operation completes

Computer Architecture -- Chapt. 15 30 Fall, 2009

Further I/O Optimizations

d Direct Memory Access (DMA)

d Buffer Chaining

d Operation Chaining

Computer Architecture -- Chapt. 15 31 Fall, 2009

Direct Memory Access (DMA)

d Important optimization

d Needed for high-speed I/O

d Device moves data across the bus to / from memory without
using processor

d Requires smart device

d Example: disk device can read an entire block and place in a
specified buffer in memory

Computer Architecture -- Chapt. 15 32 Fall, 2009

Buffer Chaining

d Handles multiple transfers without the processor

d Device given linked list of buffers

d Device hardware uses next buffer on list automatically

data buffer 1 data buffer 2 data buffer 3

address passed
to device

Computer Architecture -- Chapt. 15 33 Fall, 2009

Scatter Read And Gather Write

d Special case of buffer chaining

d Large data transfer formed from separate blocks

d Example: to write a network packet, combine packet header
from buffer 1 and packet data from buffer 2

d Eliminates application program from copying data into single,
large buffer

Computer Architecture -- Chapt. 15 34 Fall, 2009

Operation Chaining

d Further optimization for smart device

d Processor gives series of commands to device

d Device carries out successive commands automatically

d Illustration

data buffer 1 data buffer 2 data buffer 3

R W R17 29 61
address passed

to device

Computer Architecture -- Chapt. 15 35 Fall, 2009

Summary

d Devices can use

– Programmed I/O

– Interrupt-driven I/O

d Interrupts

– Introduced in third-generation computers

– Allow processor to continue running while waiting for I/O

– Use vector (usually in memory)

– Occur “between” instructions in fetch-execute cycle

Computer Architecture -- Chapt. 15 36 Fall, 2009

Summary
(continued)

d Multi-level interrupts handle high-speed and low-speed devices
on same bus

d Smart device has some processing power built-in

d Optimizations include

– Direct Memory Access (DMA)

– Buffer chaining

– Operation chaining

Computer Architecture -- Chapt. 15 37 Fall, 2009

Questions?

XVI

A Programmer’s View
Of I / O

And
Buffering

Computer Architecture -- Chapt. 16 1 Fall, 2009

Device Driver

d Piece of software

d Responsible for communicating with specific device

d Usually part of operating system

d Classified as low-level code

d Performs basic functions

– Manipulates device’s CSRs to start operations when I/ O
is needed

– Handles interrupts from device

Computer Architecture -- Chapt. 16 2 Fall, 2009

Purposes Of Device Driver

d Device independence: application is not written for specific
device(s)

d Encapsulation and hiding: details of device hidden from
other software

Computer Architecture -- Chapt. 16 3 Fall, 2009

Conceptual Parts Of A Device Driver

d Lower half

– Handler code that is invoked when the device interrupts

– Communicates directly with device (e.g., to reset
hardware)

d Upper half

– Set of functions that are invoked by applications

– Allows application to request I/O operations

d Shared variables

– Used by both halves to coordinate

Computer Architecture -- Chapt. 16 4 Fall, 2009

Illustration Of Device Driver Organization

shared
variables

upper half
invoked by

applications

applications programs

lower half
invoked by
interrupts

device hardware

Computer Architecture -- Chapt. 16 5 Fall, 2009

Types Of Devices

d Character-oriented

– Transfer one byte at a time

– Examples

* Keyboard

* Mouse

d Block-oriented

– Transfer block of data at a time

– Examples

– Disk

– Network interface

Computer Architecture -- Chapt. 16 6 Fall, 2009

Example Flow Through A Device Driver

computer

application

upper half

variables

lower half

device

operating
system

external
hardware

Steps Taken

1. The application writes data

2. The OS passes control to the driver

3. The driver records information

4. The driver waits for the device

5. The driver starts the transfer

6. The driver returns to the application

7. The device interrupts

1

2

3

4

5

6

7

Computer Architecture -- Chapt. 16 7 Fall, 2009

Queued Output Operations

d Used by most device drivers

d Shared variable area contains queue of requests

d Upper-half places request on queue

d Lower-half moves to next request on queue when an
operation completes

Computer Architecture -- Chapt. 16 8 Fall, 2009

Illustration Of A Device Driver Request Queue

upper half

lower half

request
queue

d Queue is shared among both halves

d Each half must insure that the other half will not attempt to
examine or change the queue at the same time

Computer Architecture -- Chapt. 16 9 Fall, 2009

Steps Taken On Output

d Initialization (computer system starts)

– Initialize input queue to empty

d Upper half (application performs write)

– Deposit data item in queue

– Force the device to interrupt

– Return to application

d Lower half (interrupt occurs)

– If the queue is empty, stop the device from interrupting

– If the queue is nonempty, extract the next item from the
queue and start output

– Return from interrupt

Computer Architecture -- Chapt. 16 10 Fall, 2009

Forcing An Interrupt

d Many devices have a CSR bit, B, that can be used to force
the device to interrupt

d If the device is idle, setting bit B causes the device to
generate an interrupt

d If the device is currently performing an operation, setting bit
B has no effect

d Above makes device driver code especially elegant

Computer Architecture -- Chapt. 16 11 Fall, 2009

Queued Input Operations

d Initialization (computer system starts)

– Initialize input queue to empty

– Force the device to interrupt

d Upper half (application performs read)

– If input queue is empty, temporarily stop the application

– Extract the next item from the input queue

– Return the item to the application

d Lower half (interrupt occurs)

– If the queue is not full, start another input operation

– If an application is stopped waiting for input, allow the
application to run

– Return from interrupt

Computer Architecture -- Chapt. 16 12 Fall, 2009

Devices That Support Bi-Directional Transfer

d Most devices include two-way communication

d Example: although printer is primarily an output device,
most printers allow the processor to check status

d Drivers can

– Treat device as two separate devices, one used for input
and one used for output

– Treat the device as a single device that handles two
types of commands, one for input and one for output

Computer Architecture -- Chapt. 16 13 Fall, 2009

Asynchronous Vs. Synchronous Paradigm

d Synchronous programming

– Used for many applications

– Processor follows single path through the code

d Asynchronous programming

– Used for interrupts

– Programmer writes set of handlers

– Each handler invoked when corresponding event occurs

– More challenging than synchronous programming

d Device drivers use the asynchronous paradigm

Computer Architecture -- Chapt. 16 14 Fall, 2009

Mutual Exclusion

d Needed when events occur asynchronously

d Guarantees only one operation will be performed at a time

d For device drivers: must provide mutual exclusion between
processor and smart device that can each change shared data

Computer Architecture -- Chapt. 16 15 Fall, 2009

I/O Interface For Applications

d Few programmers write device drivers

d Most programmers use high-level abstractions

– Files

– Windows

– Documents

d Compiler generates calls to run-time library functions

d Chief advantage: I/O hardware and/or device drivers can
change without changing applications

Computer Architecture -- Chapt. 16 16 Fall, 2009

Conceptual Arrangement Of Library And OS

application

run-time library

device driver

device hardware

interface 1

interface 2

d Example

– Interface 1: standard I/O library

– Interface 2: system calls in the Unix kernel

Computer Architecture -- Chapt. 16 17 Fall, 2009

Example Of Interfaces

d UNIX library functions

Operation Meaning22

printf Generate formatted output from a set of variables
fprintf Generate formatted output for a specific file
scanf Read formatted data into a set of variables

d UNIX system calls

Operation Meaning22

open Prepare a device for use (e.g., power up)
read Transfer data from the device to the application
write Transfer data from the application to the device
close Terminate use of the device
seek Move to a new location of data on the device
ioctl Misc. control functions (e.g., change volume)

Computer Architecture -- Chapt. 16 18 Fall, 2009

Reducing The Cost Of I/O Operations

d Two principles

The overhead involved in using a system call to communicate
with a device driver is extremely high; a system call is much
more expensive than a conventional procedure call, such as the
call used to invoke a library function.

To reduce overhead and optimize I/O performance, a
programmer must reduce the number of system calls that an
application invokes. The key to reducing system calls involves
transferring more data per call.

Computer Architecture -- Chapt. 16 19 Fall, 2009

Buffering

d Important optimization

d Used heavily

d Automated and usually invisible to programmer

d Key idea: make large I/O transfers

– Accumulate outgoing data before transfer

– Transfer large block of incoming data and then extract
individual items

Computer Architecture -- Chapt. 16 20 Fall, 2009

Hiding Buffering From Programmers

d Typically performed with library functions

d Application

– Uses functions in the library for all I/O

– Transfers data in arbitrary size blocks

d Library functions

– Buffer data from applications

– Transfer data to underlying system in large blocks

Computer Architecture -- Chapt. 16 21 Fall, 2009

Example Library Functions For Output

Operation Meaning22

setup Initialize the buffer
input Perform an input operation

output Perform an output operation
terminate Discontinue use of the buffer

flush Force contents of buffer to be written

d Note: an operating system may also perform buffering

Computer Architecture -- Chapt. 16 22 Fall, 2009

Use Of Library

d Setup

– Called to initialize buffer

– May allocate buffer

– Typical buffer sizes 8K to 128K bytes

d Output

– Called when application needs to emit data

– Places data item in buffer

– Only writes to I/ O device when buffer is full

d Terminate

– Called when all data has been emitted

– Forces remaining data to be written

Computer Architecture -- Chapt. 16 23 Fall, 2009

Implementation Of Output Buffer Functions

Setup(N)
1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to the
address of the first byte of the buffer.

Output(D)
1. Place data byte D in the buffer at the position

given by pointer p, and move p to the next byte.

2. If the buffer is full, make a system call to write
the contents of the entire buffer, and reset
pointer p to the start of the buffer.

Computer Architecture -- Chapt. 16 24 Fall, 2009

Implementation Of Output Buffer Functions
(continued)

Terminate

1. If the buffer is not empty, make a system call to
write the contents of the buffer prior to pointer p.

2. If the buffer was dynamically allocated,
deallocate it.

Computer Architecture -- Chapt. 16 25 Fall, 2009

Flushing An Output Buffer

d Allows a programmer to force data out

d Needed for interactive programs

d When flush is called

– If buffer contains data, write to I/ O device

– If buffer is empty, flush has no effect

Computer Architecture -- Chapt. 16 26 Fall, 2009

Implementation Of Flush And Terminate

Flush

1. If the buffer is currently empty, return to the caller
without taking any action.

2. If the buffer is not currently empty, make a system
call to write the contents of the buffer and set the
global pointer p to the address of the first byte of
the buffer.

Terminate

1. Call flush to insure that any remaining data is
written.

2. Deallocate the buffer.

Computer Architecture -- Chapt. 16 27 Fall, 2009

Summary Of Buffer Flushing

A programmer uses a flush function to specify that outgoing
data in a buffer should be sent to the device. A flush operation
has no effect if a buffer is currently empty.

Computer Architecture -- Chapt. 16 28 Fall, 2009

Buffering On Input

Setup(N)
1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to
indicate that the buffer is empty.

Input(N)
1. If the buffer is empty, make a system call to fill

the entire buffer, and set pointer p to the start of
the buffer.

2. Extract a byte, D, from the position in the buffer
given by pointer p, move p to the next byte, and
return D to the caller.

Terminate
1. If the buffer was dynamically allocated,

deallocate it.

Computer Architecture -- Chapt. 16 29 Fall, 2009

Important Note About Implementation

d Both input and output buffering are straightforward

d Only a trivial amount of code needed

Computer Architecture -- Chapt. 16 30 Fall, 2009

Effectiveness Of Buffering

d Buffer of size N reduces number of system calls by a factor
of N

d Example

– Minimum size buffer is typically 8K bytes

– Resulting number of system calls is S / 8192, where S is
the original number of system calls

Computer Architecture -- Chapt. 16 31 Fall, 2009

Buffering In An Operating System

d Buffering is used extensively inside the OS

d Important part of device drivers

d Goal: reduce number of external transfers

d Reason: external transfers are slower than system calls

Computer Architecture -- Chapt. 16 32 Fall, 2009

Relation Between Buffering And Caching

d Closely related concepts

d Chief difference

– Cache handles random access

– Buffer handles sequential access

Computer Architecture -- Chapt. 16 33 Fall, 2009

Example Of I/ O Functions That Buffer

d Standard I/O library in UNIX

Function Meaning222

fopen Set up a buffer
fgetc Buffered input of one byte
fread Buffered input of multiple bytes
fwrite Buffered output of multiple bytes
fprintf Buffered output of formatted data
fflush Flush operation for buffered output
fclose Terminate use of a buffer

d Each function buffers extensively

d Dramatically improves I/O performance

Computer Architecture -- Chapt. 16 34 Fall, 2009

Summary

d Two aspects of I/O pertinent to programmers

– Device details important to systems programmers who
write device drivers

– Application programmer must understand relative costs of
I/O

d Device driver divided into three parts

– Upper-half called by application

– Lower-half handles device interrupts

– Shared data area accessed by both halves

Computer Architecture -- Chapt. 16 35 Fall, 2009

Summary
(continued)

d Buffering

– Fundamental technique used to enhance performance

– Useful with both input and output

d Buffer of size N reduces system calls by a factor of N

Computer Architecture -- Chapt. 16 36 Fall, 2009

Questions?

XVII

Parallelism

Computer Architecture -- Chapt. 17 1 Fall, 2009

Techniques Used To Increase Performance

Computer Architecture -- Chapt. 17 2 Fall, 2009

Techniques Used To Increase Performance

d Software:

Computer Architecture -- Chapt. 17 2 Fall, 2009

Techniques Used To Increase Performance

d Software: many techniques available

– Caching

– Buffering

– Ordering of references (e.g., in arrays)

– Data placement

– New algorithms

– . . . and many more

Computer Architecture -- Chapt. 17 2 Fall, 2009

Techniques Used To Increase Performance

d Software: many techniques available

– Caching

– Buffering

– Ordering of references (e.g., in arrays)

– Data placement

– New algorithms

– . . . and many more

d Hardware:

Computer Architecture -- Chapt. 17 2 Fall, 2009

Techniques Used To Increase Performance

d Software: many techniques available

– Caching

– Buffering

– Ordering of references (e.g., in arrays)

– Data placement

– New algorithms

– . . . and many more

d Hardware: only two techniques

– Parallelism

– Pipelining

Computer Architecture -- Chapt. 17 2 Fall, 2009

Parallelism

d Employs multiple copies of a hardware unit

d All copies can operate simultaneously

d General idea

– Distribute data items among parallel hardware units

– Gather (and possibly combine) results

d Occurs at many levels of architecture

d Term parallel computer applied when parallelism dominates
the entire architecture

Computer Architecture -- Chapt. 17 3 Fall, 2009

Characterizations Of Parallelism

d Microscopic vs. macroscopic

d Symmetric vs. asymmetric

d Fine-grain vs. coarse-grain

d Explicit vs. implicit

Computer Architecture -- Chapt. 17 4 Fall, 2009

Microscopic Vs. Macroscopic Parallelism

Parallelism is so fundamental that virtually all computer
systems contain some form of parallel hardware. We use the
term microscopic parallelism to characterize parallel facilities
that are present, but not especially visible, and macroscopic
parallelism to describe parallelism of which a programmer is
aware.

Computer Architecture -- Chapt. 17 5 Fall, 2009

Examples Of Microscopic Parallelism

d Parallel operations in an ALU

d Parallel access to general-purpose registers

d Parallel data transfer to/from physical memory

d Parallel transfer across an I/O bus

Computer Architecture -- Chapt. 17 6 Fall, 2009

Examples Of Macroscopic Parallelism

d Symmetric parallelism

– Refers to multiple, identical processors

– Example: computer with quad-core processor

d Asymmetric parallelism

– Refers to multiple, dissimilar processors

– Example: computer with a CPU and a graphics
processor

Computer Architecture -- Chapt. 17 7 Fall, 2009

Level Of Parallelism

d Fine-grain

– Parallelism among individual instructions or data
elements

d Coarse-grain parallelism

– Parallelism among programs or large blocks of data

Computer Architecture -- Chapt. 17 8 Fall, 2009

Explicit And Implicit Parallelism

d Explicit

– Visible to programmer

– Requires programmer to initiate and control parallel
activities

d Implicit

– Invisible to programmer

– Hardware runs multiple copies of program or
instructions automatically

Computer Architecture -- Chapt. 17 9 Fall, 2009

Parallel Architectures

d Design in which computer has reasonably large number of
processors

d Intended for scaling

d Example: computer with thirty-two processors

d Not generally classified as parallel computer

– Computer with dual-core or quad-core processor

– Computer with multiple hard drives

Computer Architecture -- Chapt. 17 10 Fall, 2009

Types Of Parallel Architectures

Name Meaning22

SISD Single Instruction Single Data stream
SIMD Single Instruction Multiple Data streams
MIMD Multiple Instructions Multiple Data streams

d Known as the Flynn classification

d Only provides a broad, intuitive classification

Computer Architecture -- Chapt. 17 11 Fall, 2009

SISD: A Conventional (Nonparallel) Architecture

d Processor executes

– One instruction at a time

– Operation applies to one set of data items

d Synonyms include

– Sequential architecture

– Uniprocessor

Computer Architecture -- Chapt. 17 12 Fall, 2009

SIMD: Single Instruction Multiple Data

d Each instruction specifies a single operation

d Hardware applies operation to multiple data items

d Example

– Add operation performs pairwise addition on two one-
dimensional arrays

– Store operation can be used to clear a large block of
memory

Computer Architecture -- Chapt. 17 13 Fall, 2009

Vector Processor

d Special case of SIMD

d Usual focus is on floating point operations

d Applies a given operation to an entire array of values

d Example use: normalize values in a set

Computer Architecture -- Chapt. 17 14 Fall, 2009

Normalization Example

d On a conventional computer

for i from 1 to N {

V [i] ← V [i] × Q ;

}

d On a vector processor

V ← V × Q ;

d Vector code is trivial (no iteration)

d Special vector instruction is invoked

d If vector V contains more items than the hardware has
parallel execution units, multiple steps are required

Computer Architecture -- Chapt. 17 15 Fall, 2009

Graphics Processors

d Graphics hardware uses sequential bytes in memory to store
pixels

d To move a window, the image must be copied from one
location in the frame buffer to another

d SIMD architecture allows copies to proceed in parallel

d Special-purpose graphics processors are available that offer
parallel hardware for graphics operations

d Sometimes called a Graphics Processing Unit (GPU)

Computer Architecture -- Chapt. 17 16 Fall, 2009

MIMD: Multiple Instructions Multiple Data

d Parallel architecture with many physical processors

d Each processor

– Can run an independent program

– May have dedicated I/ O devices (e.g., its own disk)

d Visible to programmer

d Works best for applications where computation can be
divided into separate, independent pieces

Computer Architecture -- Chapt. 17 17 Fall, 2009

Two Popular Categories Of Multiprocessors

d Symmetric

d Asymmetric

Computer Architecture -- Chapt. 17 18 Fall, 2009

Symmetric Multiprocessor (SMP)

d Most well-known MIMD architecture

d Set of N identical processors

d Examples of groups that built SMP computers

– Carnegie Mellon University (C.mmp)

– Sequent Corporation (Balance 8000 and 21000)

– Encore Corporation (Multimax)

d Current example: Intel multicore designs

Computer Architecture -- Chapt. 17 19 Fall, 2009

Illustration Of A Symmetric Multiprocessor

Main
Memory
(various
modules)

Devices

P1

Pi

P2

Pi+1

PN

Pi+2

d Major problem with SMP architecture: contention for
memory and I/ O devices

d To improve performance: provide each processor with its
own copy of a device

Computer Architecture -- Chapt. 17 20 Fall, 2009

Asymmetric Multiprocessor (AMP)

d Set of N processors

d Multiple types of processors

d Processors optimized for specific tasks

d Often use master-slave paradigm

Computer Architecture -- Chapt. 17 21 Fall, 2009

Example AMP Architectures

d Math (or graphics) coprocessor

– Special-purpose processor

– Handles floating point (or graphics) operations

– Called by main processor as needed

d I/O Processor

– Optimized for handling interrupts

– Programmable

Computer Architecture -- Chapt. 17 22 Fall, 2009

Examples Of Programmable I/O Processors

d Channel (IBM mainframe)

d Peripheral Processor (CDC mainframe)

Computer Architecture -- Chapt. 17 23 Fall, 2009

Multiprocessor Overhead

d Having many processors is not always a clear win

d Overhead arises from

– Communication

– Coordination

– Contention

Computer Architecture -- Chapt. 17 24 Fall, 2009

Communication

d Needed

– Among processors

– Between processors and I/O devices

d As number of processors increases, communication becomes
a bottleneck

Computer Architecture -- Chapt. 17 25 Fall, 2009

Coordination

d Needed when processors work together

d May require one processor to wait for another to compute a
result

d One possibility: designate a processor to perform
coordination tasks

Computer Architecture -- Chapt. 17 26 Fall, 2009

Contention

d Processors contend for resources

– Memory

– I/O devices

d Speed of resources can limit overall performance

– Example: N – 1 processors wait while one processor
accesses memory

Computer Architecture -- Chapt. 17 27 Fall, 2009

Performance Of Multiprocessors

d Has been disappointing

d Bottlenecks include

– Contention for operating system (only one copy
of OS can run)

– Contention for memory and I/O

d Another problem: caching

– One centralized cache means contention problems

– Coordinated caches means complex interaction

d Many applications are I/O bound

Computer Architecture -- Chapt. 17 28 Fall, 2009

According To John Harper

“Building multiprocessor systems that scale while
correctly synchronising the use of shared resources is very
tricky, whence the principle: with careful design and
attention to detail, an N-processor system can be made to
perform nearly as well as a single-processor system. (Not
nearly N times better, nearly as good in total performance as
you were getting from a single processor). You have to be
very good — and have the right problem with the right
decomposability — to do better than this.”

http:/ / www.john-a-harper.com/ principles.htm

Computer Architecture -- Chapt. 17 29 Fall, 2009

Definition Of Speedup

d Defined relative to single processor

Speedup =
τ1

τN333

d τN denotes the execution time on a multiprocessor

d τ1 denotes the execution time on a single processor

d Goal: speedup that is linear in number of processors

Computer Architecture -- Chapt. 17 30 Fall, 2009

Ideal And Typical Speedup

Speedup

Number of processors (N)

1

4

8

12

16

1 4 8 12 16

ideal

actual

Computer Architecture -- Chapt. 17 31 Fall, 2009

Speedup For N >> 1 Processors

Speedup

Number of processors (N)

1

8

16

24

32

1 8 16 24 32

ideal

actual

d At some point, performance begins to decrease!

Computer Architecture -- Chapt. 17 32 Fall, 2009

Summary Of Speedup

When used for general-purpose computing, a multiprocessor
may not perform well. In some cases, added overhead means
performance decreases as more processors are added.

Computer Architecture -- Chapt. 17 33 Fall, 2009

Consequences For Programmers

d Writing code for multiprocessors is difficult

– Need to handle mutual exclusion for shared items

– Typical mechanism: locks

Computer Architecture -- Chapt. 17 34 Fall, 2009

The Need For Locking

d Consider a trivial assignment statement:

{x = x + 1;}

d Typical code might be something like this:

load x, R5
incr R5
store R5, x

d On a uniprocessor, no problems arise

d Consider a multiprocessor

Computer Architecture -- Chapt. 17 35 Fall, 2009

The Need For Locking
(continued)

d Suppose two processors attempt to increment item x

d The following sequence can result

– Processor 1 loads x into its register 5

– Processor 1 increments its register 5

– Processor 2 loads x into its register 5

– Processor 1 stores its register 5 into x

– Processor 2 increments its register 5

– Processor 2 stores its register 5 into x

Computer Architecture -- Chapt. 17 36 Fall, 2009

Hardware Locks

d Prevent simultaneous access

d Separate lock assigned to each item

d Each lock assigned an ID

d If lock 17 is used, code becomes

lock 17
load x, R5
incr R5
store R5, x
release 17

d Hardware allows one processor to hold a given lock at a
given time, and blocks others

Computer Architecture -- Chapt. 17 37 Fall, 2009

Programming Parallel Computers

d Implicit parallelism

– Programmer writes sequential code

– Hardware runs many copies automatically

d Explicit parallelism

– Programmer writes code for parallel architecture

– Code must use locks to prevent interference

d Conclusion: explicit parallelism makes computers extremely
difficult to program

Computer Architecture -- Chapt. 17 38 Fall, 2009

The Point About Parallel Programming

From a programmer’s point of view, a system that uses
explicit parallelism is significantly more complex to program
than a system that uses implicit parallelism.

Computer Architecture -- Chapt. 17 39 Fall, 2009

Programming Symmetric And
Asymmetric Multiprocessors

d Both types can be difficult to program

d Symmetric has two advantages

– One instruction set

– Programmer does not need to choose processor type for
each task

d Asymmetric has an advantage

– Programmer can use processor that is best-suited to a
given task

– Example: using a special-purpose graphics processor
may be easier than implementing graphics operations on
a standard processor

Computer Architecture -- Chapt. 17 40 Fall, 2009

Redundant Parallel Architectures

d Used to increase reliability

d Do not improve performance

d Multiple copies of hardware perform same function

d Watchdog circuitry detects whether all units computed the
same result

d Can be used to

– Test whether hardware is performing correctly

– Serve as backup in case of hardware failure

Computer Architecture -- Chapt. 17 41 Fall, 2009

Loose And Tight Coupling

d Tightly coupled multiprocessor

– Multiple processors in single computer

– Buses or switching fabrics used to interconnect
processors, memory, and I/O

– Usually one operating system

d Loosely coupled multiprocessor

– Multiple, independent computer systems

– Computer networks used to interconnect systems

– Each computer runs its own operating system

– Known as distributed computing

Computer Architecture -- Chapt. 17 42 Fall, 2009

Cluster Computer

d Special case of distributed computer system

d All computers work on a single problem

d Works best if problem can be partitioned into pieces

d Currently popular in large data centers

Computer Architecture -- Chapt. 17 43 Fall, 2009

Grid Computing

d Form of loosely-coupled distributed computing

d Uses computers on the Internet

d Popular for large, scientific computations

d One application: Search for Extra-terrestrial Intelligence
(SETI)

Computer Architecture -- Chapt. 17 44 Fall, 2009

Summary

d Parallelism is fundamental

d Flynn scheme classifies computers as

– SISD (e.g., conventional uniprocessor)

– SIMD (e.g., vector computer)

– MIMD (e.g., multiprocessor)

d Multiprocessors can be

– Symmetric or asymmetric

– Explicitly or implicitly parallel

d Multiprocessor speedup usually less than linear

Computer Architecture -- Chapt. 17 45 Fall, 2009

Summary
(continued)

d Programming multiprocessors is usually difficult

– Programmer must divide tasks onto multiple processors

– Locks needed for shared items

d Parallel systems can be

– Tightly-coupled (single computer)

– Loosely-coupled (computers connected by a network)

Computer Architecture -- Chapt. 17 46 Fall, 2009

Questions?

XVIII

Pipelining

Computer Architecture -- Chapt. 18 1 Fall, 2009

Concept Of Pipelining

d One of the two major hardware optimization techniques

d Information flows through a series of stations (processing
components)

d Each station can

– Inspect

– Interpret

– Modify

d Station known as a stage of the pipeline

Computer Architecture -- Chapt. 18 2 Fall, 2009

Illustration Of Pipelining

stage 1 stage 2 stage 3 stage 4

information
arrives

information
leaves

Computer Architecture -- Chapt. 18 3 Fall, 2009

Characteristics Of Pipelines

d Hardware or software implementation

d Large or small scale

d Synchronous or asynchronous flow

d Buffered or unbuffered flow

d Finite chunks or continuous bit streams

d Automatic data feed or manual data feed

d Serial or parallel path

d Homogeneous or heterogeneous stages

Computer Architecture -- Chapt. 18 4 Fall, 2009

Implementation

d Pipeline can be implemented in hardware or software

d Software pipeline

– Programmer convenience

– More efficient than intermediate files

– Output from one process becomes input of another

d Hardware pipeline

– Separate hardware units in each stage

– Much higher performance

– Stages can be tightly integrated (e.g., within a chip)

Computer Architecture -- Chapt. 18 5 Fall, 2009

Scale

d Range of scales

d Example of small scale: pipeline within an ALU

d Example of large scale: pipeline composed of programs
running on separate computers connected by the Internet

Computer Architecture -- Chapt. 18 6 Fall, 2009

Synchrony

d Synchronous pipeline

– Operates like an assembly line

– Items move between stages at exactly the same time

– Cannot work faster than slowest stage

d Asynchronous pipeline

– Allows variable-processing time at each stage

– Each station forwards whenever it is ready

– Slow stage may block previous stages

Computer Architecture -- Chapt. 18 7 Fall, 2009

Buffering

d Buffered flow

– Buffer placed between each pair of stages

– Useful when processing time per item varies

d Unbuffered flow

– Stage blocks until next stage can accept item

– Works best if processing time per stage is constant

Computer Architecture -- Chapt. 18 8 Fall, 2009

Size Of Items

d Finite chunks

– Discrete items pass through pipeline

– Example: sequence of Ethernet packets

d Continuous bit stream

– Stream of bits flows through pipeline

– Example: video feed

Computer Architecture -- Chapt. 18 9 Fall, 2009

Data Feed Mechanism

d Automatic

– Built into pipeline itself

– Integrates hardware for computation and data movement

d Manual

– Separate hardware to move items between stages

– Separate computation from data movement

Computer Architecture -- Chapt. 18 10 Fall, 2009

Width Of Data Path

d Serial

– One bit at a time

d Parallel

– N bits at a time

Computer Architecture -- Chapt. 18 11 Fall, 2009

Homogeneity Of Stages

d Homogeneous

– All stages use the same hardware

– Example: five identical processors

d Heterogeneous

– Can have unique hardware at each stage

– Example: each stage optimized for one function

Computer Architecture -- Chapt. 18 12 Fall, 2009

Software Pipelining

d Popularized by Unix command interpreter (shell)

d User can specify pipeline as a command

d Example:

cat x | sed ’s/friend/partner/g’ | sed ’/W/d’ | more

– Substitutes “partner” for “friend”

– Deletes lines that contain “W”

– Passes result to more for display

d Note: example can be optimized by swapping the order of
the two sed commands

Computer Architecture -- Chapt. 18 13 Fall, 2009

Implementation Of Software Pipeline

d Uniprocessor

– Each stage is a process or task

d Multiprocessor

– Each stage executes on separate processor

– Hardware assist can speed inter-stage data transfer

Computer Architecture -- Chapt. 18 14 Fall, 2009

Hardware Pipelining

d Two broad categories

– Instruction pipeline

– Data pipeline

Computer Architecture -- Chapt. 18 15 Fall, 2009

Instruction Pipeline

d Recall that instruction pipelining was covered in Chapter 5

d General idea

– Optimizes performance

– Heavily used with RISC architecture

– Each instruction processed in stages

– Exact details and number of stages depend on instruction
set and operand types

Computer Architecture -- Chapt. 18 16 Fall, 2009

Data Pipeline

d Data passes through pipeline

d Each stage handles data item and passes item to next stage

d Requires designer to divide work into stages

d Among the most interesting uses of pipelining

Computer Architecture -- Chapt. 18 17 Fall, 2009

Hardware Pipelining And Performance

d A data pipeline can dramatically increase performance
(throughput)

d To see why, consider an example

– Internet router handles packets

– Assume that a router

* Processes one packet at a time

* Performs six functions on each packet

Computer Architecture -- Chapt. 18 18 Fall, 2009

Example Of Internet Router Processing

1. Receive a packet (i.e., transfer the packet into memory).

2. Verify packet integrity (i.e., verify that no changes occurred
between transmission and reception).

3. Check for routing loops (i.e., decrement a value in the
header, and reform the header with the new value).

4. Route the packet (i.e., use the destination address field to
select one of the possible output networks and a destination
on that network).

5. Prepare for transmission (i.e. compute information that will
be used to verify packet integrity).

6. Transmit the packet (i.e., transfer the packet to the output
device).

Computer Architecture -- Chapt. 18 19 Fall, 2009

Illustration Of A Processor In
A Router And The Algorithm Used

processor
input

from one
network

outputs

...

do forever {

Wait to receive packet

Verify integrity

Check for loops

Route packet

Prepare for transmission

Enqueue packet for output

}
(a) (b)

d (a) is an Internet router with multiple outgoing network
connections

d (b) describes the computational steps the router must take
for each packet

Computer Architecture -- Chapt. 18 20 Fall, 2009

Example Pipeline Implementation

d Consider a router that uses a data pipeline

Computer Architecture -- Chapt. 18 21 Fall, 2009

Example Pipeline Implementation

d Consider a router that uses a data pipeline

verify
integrity

check
for loops

route
packet

prepare for
transmission

packets
arrive

packets
leave

Computer Architecture -- Chapt. 18 21 Fall, 2009

Example Pipeline Implementation

d Consider a router that uses a data pipeline

verify
integrity

check
for loops

route
packet

prepare for
transmission

packets
arrive

packets
leave

d Imagine a packet passing through the pipeline

Computer Architecture -- Chapt. 18 21 Fall, 2009

Example Pipeline Implementation

d Consider a router that uses a data pipeline

verify
integrity

check
for loops

route
packet

prepare for
transmission

packets
arrive

packets
leave

d Imagine a packet passing through the pipeline

d Assume zero delay between stages

Computer Architecture -- Chapt. 18 21 Fall, 2009

Example Pipeline Implementation

d Consider a router that uses a data pipeline

verify
integrity

check
for loops

route
packet

prepare for
transmission

packets
arrive

packets
leave

d Imagine a packet passing through the pipeline

d Assume zero delay between stages

d Question: how long will the pipeline take to process the
packet?

Computer Architecture -- Chapt. 18 21 Fall, 2009

Example Pipeline Implementation

d Consider a router that uses a data pipeline

verify
integrity

check
for loops

route
packet

prepare for
transmission

packets
arrive

packets
leave

d Imagine a packet passing through the pipeline

d Assume zero delay between stages

d Question: how long will the pipeline take to process the
packet?

d Answer: the same amount of time as a conventional router!

Computer Architecture -- Chapt. 18 21 Fall, 2009

The Bad News

In a pipeline system, data passes through a series of stages
that each examine or modify the data. If it uses the same speed
processors as a nonpipeline architecture, a data pipeline will
not improve the overall time needed to process a given data
item.

Computer Architecture -- Chapt. 18 22 Fall, 2009

The Good News

d If a pipeline takes the same total time to process a given
item, how does it help?

Computer Architecture -- Chapt. 18 23 Fall, 2009

The Good News

d If a pipeline takes the same total time to process a given
item, how does it help?

d Surprise: by overlapping computation on multiple items, a
pipeline increases throughput

d To summarize:

Even if a data pipeline uses the same speed processors as a
nonpipeline architecture, a data pipeline has higher overall
throughput (i.e., number of data items processed per second).

Computer Architecture -- Chapt. 18 23 Fall, 2009

Pipelining Can Only Be Used If

d It is possible to partition processing into independent stages

d Overhead required to move data from one stage to another is
insignificant

d The slowest stage of the pipeline is faster than a single
processor

Computer Architecture -- Chapt. 18 24 Fall, 2009

Understanding Pipeline Speed

d Assume

– The task is packet processing

– Processing a packet requires exactly 500 instructions

– A processor executes 10 instructions per µsec

d Total time required for one packet is:

time =
10 instr. per µsec
500 instructions3333333333333333 = 50 µsec

d Throughput for a non-pipelined system is:

Tnp =
50 µsec
1 packet33333333 =

50 sec
1 packet × 106
3333333333333 = 20,000 packets per second

Computer Architecture -- Chapt. 18 25 Fall, 2009

Understanding Pipeline Speed
(continued)

d Suppose the problem can be divided into four stages and
that the stages require:

– 50 instructions

– 100 instructions

– 200 instructions

– 150 instructions

d The slowest stage takes 200 instructions

d So, the time required for the slowest stage is:

total time =
10 inst / µsec

200 inst333333333333 = 20 µsec

Computer Architecture -- Chapt. 18 26 Fall, 2009

Understanding Pipeline Speed
(continued)

d Throughput of the pipeline is limited by the slowest stage

d Overall throughput can be calculated:

Tp =
20 µsec
1 packet33333333 =

20 sec
1 packet × 106
3333333333333 = 50,000 packets per second

d Note: throughput of pipelined version is 150% greater than
throughput of the non-pipelined version!

Computer Architecture -- Chapt. 18 27 Fall, 2009

Pipeline Architectures

d Term refers to architectures that are primarily formed
around data pipelining

d Most often used for special-purpose systems

d Pipeline usually organized around functions

d Less relevant to general-purpose computers

Computer Architecture -- Chapt. 18 28 Fall, 2009

Organization Of A Data Pipeline

d Easiest to form one stage per function

d Illustration

h()g()f()
f()
g()
h()

(a) (b)

d (a) shows a single processor handling three functions

d (b) shows processing divided into a 3-stage pipeline with
each stage handling one function

Computer Architecture -- Chapt. 18 29 Fall, 2009

Pipeline Terminology

d Setup time

– Refers to time required to start the pipeline initially

d Stall time

– Refers to time required to restart the pipeline after a
stage blocks to wait for a previous stage

d Flush time

– Refers to time that elapses between the cessation of
input and the final data item emerging from the pipeline
(i.e., the time required to shut down the pipeline)

Computer Architecture -- Chapt. 18 30 Fall, 2009

Superpipelining

d Most often used with instruction pipelining

d Subdivides a stage into smaller stages

d Example: subdivide operand processing into

– Operand decode

– Fetch immediate value or value from register

– Fetch value from memory

– Fetch indirect operand

d Technique: subdivide the slowest pipeline stage

Computer Architecture -- Chapt. 18 31 Fall, 2009

Summary

d Pipelining

– Broad, fundamental concept

– Can be used with hardware or software

– Applies to instructions or data

– Can be synchronous or asynchronous

– Can be buffered or unbuffered

Computer Architecture -- Chapt. 18 32 Fall, 2009

Summary
(continued)

d Pipeline performance

– Unless faster processors are used, data pipelining does
not decrease the overall time required to process a single
data item

– Using a pipeline does increase the overall throughput
(items processed per second)

– The stage of a pipeline that requires the most time to
process an item limits the throughput of the pipeline

Computer Architecture -- Chapt. 18 33 Fall, 2009

Questions?

XIX

Assessing Performance

Computer Architecture -- Chapt. 19 1 Fall, 2009

Measuring Computational Power

Computer Architecture -- Chapt. 19 2 Fall, 2009

Measuring Computational Power

d Difficult to assess computer performance

Computer Architecture -- Chapt. 19 2 Fall, 2009

Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

Computer Architecture -- Chapt. 19 2 Fall, 2009

Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks

Computer Architecture -- Chapt. 19 2 Fall, 2009

Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks

– Architecture that is optimal for some tasks is suboptimal
for others

Computer Architecture -- Chapt. 19 2 Fall, 2009

Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks

– Architecture that is optimal for some tasks is suboptimal
for others

– Memory and I/O costs can dominate processing

Computer Architecture -- Chapt. 19 2 Fall, 2009

The Point About Performance

Because a computer is designed to perform a wide variety of
tasks and no architecture is optimal for all tasks, the
performance of a system depends on the task being performed.

Computer Architecture -- Chapt. 19 3 Fall, 2009

Consequences

d Many groups try to assess computer performance

d A variety of performance measures exist

d No single measure suffices for all situations

Computer Architecture -- Chapt. 19 4 Fall, 2009

Measures Of Computational Power

d Two primary measures

d Integer computation speed

– Pertinent to most applications

– Example measure is millions of instructions per second
(MIPS)

d Floating point computation speed

– Used for scientific calculations

– Typically involve matrices

– Example measure is floating point operations per second
(FLOPS)

Computer Architecture -- Chapt. 19 5 Fall, 2009

Average Floating Point Performance

d Assume

– Addition or subtraction takes Q nanoseconds

– Multiplication or division takes 2Q nanoseconds

d Average cost of floating point operation is:

Tavg =
4

Q + Q + 2 Q + 2 Q333333333333333333333 = 1.5 Q ns per instr.

d Notes

– Addition or subtraction costs 33% less than average, and
multiplication or division costs 33% more

– A typical program may not have equal numbers of
multiply and add operations

Computer Architecture -- Chapt. 19 6 Fall, 2009

A Note About Average Execution Times

Because some instructions take substantially longer to
execute than others, the average time required to execute an
instruction only provides a crude approximation of
performance. The actual time required depends on which
instructions are executed.

Computer Architecture -- Chapt. 19 7 Fall, 2009

Application Specific Instruction Counting

d More accurate assessment of performance for specific
application

d Examine application to determine how many times each
instruction occurs

d Example: multiplication of two N × N matrices

– N 3 floating point multiplications

– N 3 − N 2 floating point additions

– Time required is:

Ttotal = 2 × Q × N 3 + Q × (N 3 − N 2)

Computer Architecture -- Chapt. 19 8 Fall, 2009

Weighted Average

d Alternative to precise count of operations

d Typically obtained by instrumentation

d Program run on many input data sets and each instruction
counted

d Counts averaged over all runs

d Example

Instruction Type Count Percentage222

Add 8513508 72
Subtract 1537162 13
Multiply 1064188 9
Divide 709458 6

Computer Architecture -- Chapt. 19 9 Fall, 2009

Computation Of Weighted Average

d Uses instruction counts and cost of each instruction

d Example

Tavg′ = .72 × Q + .13 × Q + .09 × 2 Q + .06 × 2 Q

d Or

Tavg′ = 1.16 Q ns per instruction

d Note: the weighted average given here is %23 less than
uniform average obtained above

Computer Architecture -- Chapt. 19 10 Fall, 2009

Instruction Mix

d Measure a large set of programs

d Obtain relative weights for each type of instruction

d Use relative weights to assess the performance of a given
architecture on the example set

d Try to choose set of programs that represent a “typical”
workload

Computer Architecture -- Chapt. 19 11 Fall, 2009

Use Of Instruction Mix

An instruction mix consists of a set of instructions along with
relative weights that have been obtained by counting instruction
execution in example programs. An architect can use an
instruction mix to assess how a proposed architecture will
perform.

Computer Architecture -- Chapt. 19 12 Fall, 2009

Standardized Benchmarks

d Provides workload used to measure computer performance

d Represent “typical” applications

d Independent corporation formed in 1980s to create
benchmarks

– Named Standard Performance Evaluation Corporation
(SPEC)

– Not-for-profit

– Avoids having each vendor choose benchmark that is
tailored to their architecture

Computer Architecture -- Chapt. 19 13 Fall, 2009

Examples Of Benchmarks Developed By SPEC

d SPEC cint2000

– Used to measure integer performance

d SPEC cfp2000

– Used to measure floating point performance

d Result of measuring performance on a specific architecture
is known as the computer’s SPECmark

Computer Architecture -- Chapt. 19 14 Fall, 2009

I/O And Memory Bottlenecks

d CPU performance is only one aspect of system performance

d Bottleneck can be

– Memory

– I/O

d Some benchmarks focus on memory operations or I/O
performance rather than computational speed

Computer Architecture -- Chapt. 19 15 Fall, 2009

Increasing Overall Performance

To optimize performance, move operations that account for
the most CPU time from software into hardware.

Computer Architecture -- Chapt. 19 16 Fall, 2009

Which Items Should Be Optimized?

d Of course, adding additional hardware increases cost

d An architect cannot use high-speed hardware for all
operations

d Computer architect Gene Amdahl observed that it is a waste
of resources to optimize functions that are seldom used

Computer Architecture -- Chapt. 19 17 Fall, 2009

Amdahl’s Law

The performance improvement that can be realized from
faster hardware technology is limited to the fraction of time the
faster technology can be used.

Computer Architecture -- Chapt. 19 18 Fall, 2009

Amdahl’s Law And Parallel Systems

d Amdahl’s law

– Applies directly to parallel systems

– Explains why adding processors does not always
increase performance

Computer Architecture -- Chapt. 19 19 Fall, 2009

Summary

d A variety of performance measures exist

d Simplistic measures include MIPS and FLOPS

d More sophisticated measures use a weighted average derived
by counting the instructions in a program or set of programs

d Set of weights corresponds to an instruction mix

d Benchmark refers to a standardized program or set of
programs used to measure performance

d Best-known benchmarks, known as SPECmarks, are
produced by the SPEC Corporation

d Amdahl’s Law helps architects select functions to be
optimized (moved from software to hardware)

Computer Architecture -- Chapt. 19 20 Fall, 2009

Questions?

XX

Architecture Examples
And

Hierarchy

Computer Architecture -- Chapt. 20 1 Fall, 2009

General Idea

d Computer architecture can be presented at multiple levels of
abstraction

d Known as architectural hierarchy

Computer Architecture -- Chapt. 20 2 Fall, 2009

Architecture Range

d Macroscopic

– Example: entire computer system

d Microscopic

– Single integrated circuit

Computer Architecture -- Chapt. 20 3 Fall, 2009

Architecture Terminology

Level Description22

System A complete computer with processor(s), memory, and
I/O devices. A typical system architecture describes
the interconnection of components with buses.

Board An individual circuit board that forms part of a computer
system. A typical board architecture describes the
interconnection of chips and the interface to a bus.

Chip An individual integrated circuit that is used on a
circuit board. A typical chip architecture describes
the interconnection of functional units and gates.

Computer Architecture -- Chapt. 20 4 Fall, 2009

Example System-Level Architecture
(A Personal Computer)

d Functional units

– Processor

– Memory

– I/O interfaces

d Interconnections

– High-speed buses for high-speed devices and functional
units

– Low-speed buses for lower-speed devices

Computer Architecture -- Chapt. 20 5 Fall, 2009

Bus Interconnection And Bridging

d Bridge technology used to interconnect buses

d Allows

– Multiple buses in a computer system

– Processor only connects to one bus

d Bridge maps between bus address spaces

d Permits backward compatibility (e.g., old I/O device can
connect to old bus and still be used with newer processor
and newer bus)

Computer Architecture -- Chapt. 20 6 Fall, 2009

Example Of Bridging

d Consider a PC

d Processor uses Peripheral Component Interconnect bus
(PCI)

d I/O devices use older Industry Standard Architecture (ISA)

d Buses are incompatible (cannot be directly connected)

d Solution: have two buses connected by a bridge

Computer Architecture -- Chapt. 20 7 Fall, 2009

Illustration Of PC Architecture Using A Bridge

PCI bus

CPU
. . .

bridge

ISA bus

. . .

memory

devices with PCI interfaces

devices with ISA interfaces

d Interconnection can be transparent

Computer Architecture -- Chapt. 20 8 Fall, 2009

Physical Architecture

d Implementation of bridge is more complex than our
conceptual diagram implies

d Uses special-purpose controller chips

d Separates high-speed and low-speed units onto separate
chips

Computer Architecture -- Chapt. 20 9 Fall, 2009

Controller Chips And Interconnections

Architects use a controller chip to provide interconnection
among components in a computer because doing so is less
expensive than equipping each unit with a set of interfaces or
building a set of discrete bridges to interconnect buses.

A controller chip can provide the illusion of a bus over a
direct connection; the wiring and sockets normally used to
construct a bus are optional.

Computer Architecture -- Chapt. 20 10 Fall, 2009

Typical PC Architecture

d Two controller chips used

d Northbridge chip connects higher-speed units

– Processor

– Memory

– Advanced Graphics Port (AGP) interface

d Southbridge chip connects lower-speed units

– Local Area Network (LAN) interface

– PCI bus

– Keyboard, mouse, or printer ports

Computer Architecture -- Chapt. 20 11 Fall, 2009

Illustration Of Physical Interconnections

Northbridge

Southbridge

DDR
SDRAM

DDR
SDRAM

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
...

dual-ported
memory

AGP
port

Stream
Comm.

CISC
CPU
(x86)

P
C
I

U
S
B

6-chan.
audio

LAN
interface

ISA bus

proprietary hub connectioncontroller

controller

Computer Architecture -- Chapt. 20 12 Fall, 2009

Example Products

d Northbridge: Intel 82865PE

d Southbridge: Intel ICH5

Computer Architecture -- Chapt. 20 13 Fall, 2009

Example Connection Speeds

d Rates increase over time

d Look at relative speeds, not absolute numbers in the
following examples

Connection Clock Rate Width Throughput222

AGP 100-200 MHz 64-128 bits 2.0 GBps
Memory 200-800 MHz 64-128 bits 6.4 GBps

CPU 400-800 MHz 64-128 bits 3.2-6.4 GBps
Hub 100-200 MHz 64 bits 800 MBps
USB 33 MHz 32 bits 133 MBps
PCI 33 MHz 32 bits 133 MBps

Computer Architecture -- Chapt. 20 14 Fall, 2009

Bridging Functionality And Virtual Buses

d Controller chips can virtualize hardware

d Example: controller presents the illusion of multiple buses
to the processor

d One possible form: controller presents three virtual buses

– Bus 1 contains the host and memory

– Bus 2 contains a high-speed graphics device

– Bus 3 corresponds to the external PCI slots for I/ O
devices

Computer Architecture -- Chapt. 20 15 Fall, 2009

Example Board-Level Architecture

d LAN interface

– Connects computer to Local Area Network

– Transfers data between computer and network

– Physically consists of separate circuit board

– Usually contains a processor and buffer memory

Computer Architecture -- Chapt. 20 16 Fall, 2009

Example Board-Level Architecture

d LAN interface

network

processor

SRAM

DRAM

DRAM
bus

SRAM
bus

host interface

network interface

Computer Architecture -- Chapt. 20 17 Fall, 2009

Memory On A LAN Interface

d SRAM

– Highest speed

– Typically used for instructions

– May be used to hold packet headers

d DRAM

– Lower speed

– Typically used to hold packet

d Designer decides which data items to place in each memory

Computer Architecture -- Chapt. 20 18 Fall, 2009

Chip-Level Architecture

d Describes structure of single integrated circuit

d Components are functional units

d Can include on-board processors, memory, or buses

Computer Architecture -- Chapt. 20 19 Fall, 2009

Example Chip-Level Architecture
(Intel Network Processor)

DRAM
access

SRAM
access

onboard
scratch
memory

Embedded
RISC

processor
(XScale)

Microengine 1

Microengine 2

Microengine 3

Microengine 4

Microengine 5

Microengine N

...

PCI bus
access unit

media
access unit

serial
line

multiple,
independent

internal
buses

Computer Architecture -- Chapt. 20 20 Fall, 2009

The Point Of Architectural Level

A chip-level architecture reveals details about the internal
structure of an integrated circuit that are hidden in a board-
level architecture.

Computer Architecture -- Chapt. 20 21 Fall, 2009

Structure Of Functional Units On A Chip
(Example Of Further Detail)

SRAM access unit

SRAM
pin

inter-
face

SRAM

AMBA
bus

inter-
face

service priority
arbitration

microengine addr.
& command queues

AMBA addr.
queuescommand

decoder
& addr.

generator

memory
& FIFO

addr

microengine data

data

AMBA

from
XScale

Microengine
commands

clock

signals

address

data

d Note: each item composed of logic gates

Computer Architecture -- Chapt. 20 22 Fall, 2009

Summary

d Architecture of a digital system can be viewed at several
levels of abstraction

d System architecture shows entire computer system

d Board architecture shows individual circuit board

d Chip architecture shows individual IC

d Functional unit architecture shows individual functional unit
on an IC

Computer Architecture -- Chapt. 20 23 Fall, 2009

Summary
(continued)

d We examined an example hierarchy

– Entire PC

– Physical interconnections of a PC

– LAN interface in a PC

– Network processor chip on a LAN interface

– SRAM access unit on a network processor chip

Computer Architecture -- Chapt. 20 24 Fall, 2009

Questions?

EXTRA
Examples Of Chip-Level Architecture

(Network Processors)

Computer Architecture -- Extra 1 Fall, 2009

Definition Of A Network Processor

A network processor is a special-purpose, programmable
hardware device that combines the low cost and flexibility of a
RISC processor with the speed and scalability of custom silicon
(i.e., ASIC chips), and is designed to provide computational
power for packet processing systems such as Internet routers.

Computer Architecture -- Extra 2 Fall, 2009

Network Processor Architectures

d What is known

– Must partition packet processing into separate functions

– To achieve highest speed, must handle each function
with separate hardware

d Still being researched

– Overall chip organization

– Hardware building blocks

– Interconnect of building blocks

– Programming paradigm

Computer Architecture -- Extra 3 Fall, 2009

Commercial Network Processors

Computer Architecture -- Extra 4 Fall, 2009

Commercial Network Processors

d First emerged in late 1990s

Computer Architecture -- Extra 4 Fall, 2009

Commercial Network Processors

d First emerged in late 1990s

d Used in products in 2000

Computer Architecture -- Extra 4 Fall, 2009

Commercial Network Processors

d First emerged in late 1990s

d Used in products in 2000

d By 2003, more than thirty vendors existed

Computer Architecture -- Extra 4 Fall, 2009

Commercial Network Processors

d First emerged in late 1990s

d Used in products in 2000

d By 2003, more than thirty vendors existed

d Currently, only a handful of vendors remain viable

Computer Architecture -- Extra 4 Fall, 2009

Commercial Network Processors

d First emerged in late 1990s

d Used in products in 2000

d By 2003, more than thirty vendors existed

d Currently, only a handful of vendors remain viable

d Large variety of architectures

Computer Architecture -- Extra 4 Fall, 2009

Commercial Network Processors

d First emerged in late 1990s

d Used in products in 2000

d By 2003, more than thirty vendors existed

d Currently, only a handful of vendors remain viable

d Large variety of architectures

d Optimizations: parallelism and pipelining

Computer Architecture -- Extra 4 Fall, 2009

Augmented RISC (Alchemy)

fast IrDA

EJTAG

DMA controller

Ethernet MAC

LCD controller

USB-Host contr.

USB-Device contr.

interrupt controller

GPIO

I2S

Serial line UART (2)

SDRAM controller

MAC

MIPS-32
embed.
proc.

instruct.
cache

bus unit

data
cache

SRAM controller

AC ’97 controller

SSI (2)

power management

RTC (2)

SRAM
bus

to
SDRAM

Computer Architecture -- Extra 5 Fall, 2009

Parallel Processors Plus Coprocessors (AMCC)

control iface debug port inter mod. test iface

input outputpacket transform engine

external search
interface

external memory
interface

host
interface

memory access unit

onboard
memory

six
nP cores

policy
engine

metering
engine

Computer Architecture -- Extra 6 Fall, 2009

Pipeline Of Homogeneous Processors (Cisco)

input

output

MAC classify

Accounting & ICMP

FIB & Netflow

MPLS classify

Access Control

CAR

MLPPP

WRED

Computer Architecture -- Extra 7 Fall, 2009

Pipeline Of Parallel Heterogeneous
Processors (EZchip)

TOPparse TOPsearch TOPresolve TOPmodify

memory memory memory memory

...........

...........

...........

...........

Computer Architecture -- Extra 8 Fall, 2009

Extensive And Diverse Processors (Hifn)

ingress
data
store

SRAM
for

ingress
data

egress
data
store

traffic
manag.

and
sched.

ingress
switch

interface

egress
switch

interface
internal
SRAM

Embedded Processor Complex
(EPC)

ingress
physical

MAC
multiplexor

egress
physical

MAC
multiplexor

to switching
fabric

PCI
bus

external DRAM
and SRAM

from switching
fabric

egress
data store

packets from
physical devices

packets to
physical devices

Computer Architecture -- Extra 9 Fall, 2009

Hifn’s Embedded Processor Complex

control memory arbiter

H0 H1 H2 H3 H4 S D0 D1 D2 D3 D4 D5 D6

frame dispatch

instr. memory classifier assist bus arbiter

ingress
data
iface egress

data
iface

embed.
PowerPC

inter. bus controlhardware regs.

completion unit

debug & inter.

programmable
protocol processors

(16 picoengines)

...

ingress
data
store

egress
data
store

to onboard memory to external memory

internal
bus

PCI
bus

egress
queue

ingress
data
store egress

data
store

ingress
queue

interrupts

exceptions

Computer Architecture -- Extra 10 Fall, 2009

Short Pipeline Of Unconventional
Processors (Agere)

APP550

Classification:
pattern processor

Forwarding:
traffic manager

and
packet modifier

State Engine:
statistics and

host communication

in out

d Classifier uses programmable pattern matching engine

d Traffic manager includes 256,000 queues

Computer Architecture -- Extra 11 Fall, 2009

Extremely Long Pipeline (Xelerated)

. . .

packet
arrives

packet
leaves

200 processors

d Each processor executes four instructions per packet

d External coprocessor calls used to pass state

Computer Architecture -- Extra 12 Fall, 2009

Parallel Packet Processors (Intel)

IXP2xxx chip

SRAM

coprocessor

DRAM

FLASH

DRAM
access

SRAM
access

Slowport
access

scratch
memory

Embedded
RISC

processor
(Xscale)

Microengine 1

Microengine 2

Microengine 3

...
Microengine N

PCI access

MSF
access

serial
line

PCI bus

receive bus transmit bus

SRAM
buses

DRAM
bus

multiple,
independent

internal
buses

optional host connection

High-speed
I/O buses

Slowport

Computer Architecture -- Extra 13 Fall, 2009

Example Of Complexity (PCI Access Unit)

PCI bus access unit

. ...
..
..
..
..
..
..
..
..
..

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

Master interface Command Bus Master

Slave
Interface

Core interface

Command Bus Slave

initiator
addr. FIFO

initiator
read FIFO

initiator
write FIFO

PCI
config.

target
read FIFO

target
write FIFO

target
addr. FIFO

PCI bus
host fcns.

Master
Address

Reg.
DMA

read/write buf.
Direct
Buffer

Direct
interface

DMA SRAM
interface

DMA DRAM
interface

PCI
CSRs

Slave
Write
Buffer

Slave
Address
Register

Slave
interface

DRAM Data
interface

SRAM Data
interface

Address
interface

pull
SRAM

push
bus

cmd.
bus

cmd.
bus

pull
SRAM

push
bus

pull
DRAM

push
bus

to PCI bus

Computer Architecture -- Extra 14 Fall, 2009

Programming Network Processors

d The bad news

– Hardware determines programming paradigm

– Low-level hardware often means low-level programming

d Most network processors are really microcontrollers

d Typically, programmer must

– Control parallelism explicitly

– Allocate data to registers

– Position data items in specific memories

– Be concerned with banks and interleaving for memory
and registers

Computer Architecture -- Extra 15 Fall, 2009

Programming A Network Processor
(continued)

d Unexpected surprises

– Assembly language usually required

– Programmer must be concerned with hardware contexts

– Memory access costs many cycles

– Separate interface hardware for each external connection

– Simulator/emulator usually not accurate nor complete

Computer Architecture -- Extra 16 Fall, 2009

Programming A Network Processor
(continued)

d More unexpected surprises

– Code is optimized by hand

– Assembler cannot resolve all register conflicts

– No easy way to find bottlenecks

Computer Architecture -- Extra 17 Fall, 2009

Programming Network Processors
(The Good News)

d A few exceptions exist

d Agere

– Focuses on pattern matching and packet classification

– Uses high-level languages

– Offers implicit parallelism

d IP Fabrics

– Focuses on programming simplicity

– Uses very high-level language

Computer Architecture -- Extra 18 Fall, 2009

Questions?

CS250
SEMESTER WRAP-UP

Computer Architecture -- Wrap Up 1 Fall, 2009

What You Learned

d Overall organization of hardware

d How digital circuits work

d Basics of

– Processors

– Memory

– I/O devices

d Fundamental ideas of

– Parallelism

– Pipelining

Computer Architecture -- Wrap Up 2 Fall, 2009

Reasons For Studying Architecture

Computer Architecture -- Wrap Up 3 Fall, 2009

Reasons For Studying Architecture

d Understand how a computer works

Computer Architecture -- Wrap Up 3 Fall, 2009

Reasons For Studying Architecture

d Understand how a computer works

d Know what’s going on underneath a program

Computer Architecture -- Wrap Up 3 Fall, 2009

Reasons For Studying Architecture

d Understand how a computer works

d Know what’s going on underneath a program

d Relate programming constructs to hardware

Computer Architecture -- Wrap Up 3 Fall, 2009

Reasons For Studying Architecture

d Understand how a computer works

d Know what’s going on underneath a program

d Relate programming constructs to hardware

d Appreciate reasons for hardware quirks

Computer Architecture -- Wrap Up 3 Fall, 2009

Reasons For Studying Architecture

d Understand how a computer works

d Know what’s going on underneath a program

d Relate programming constructs to hardware

d Appreciate reasons for hardware quirks

d Write optimized code

Computer Architecture -- Wrap Up 3 Fall, 2009

Reasons For Studying Architecture

d Understand how a computer works

d Know what’s going on underneath a program

d Relate programming constructs to hardware

d Appreciate reasons for hardware quirks

d Write optimized code

d Be able to tell when a compiler contains an error

Computer Architecture -- Wrap Up 3 Fall, 2009

Reasons For Studying Architecture

d Understand how a computer works

d Know what’s going on underneath a program

d Relate programming constructs to hardware

d Appreciate reasons for hardware quirks

d Write optimized code

d Be able to tell when a compiler contains an error

d Prepare for later courses

Computer Architecture -- Wrap Up 3 Fall, 2009

Reasons For Studying Architecture

d Understand how a computer works

d Know what’s going on underneath a program

d Relate programming constructs to hardware

d Appreciate reasons for hardware quirks

d Write optimized code

d Be able to tell when a compiler contains an error

d Prepare for later courses

Computer Architecture -- Wrap Up 3 Fall, 2009

The Key Idea You Have Mastered

d Computing involves multiple levels of abstraction

– High-level language

– Assembly language

– Instruction set

– Program in memory

– Individual bits and bytes

– Logic gates

d Note: to debug or optimize at one level, need to know the
next lower level

d Example: to optimize a C program, use the asm() function

Computer Architecture -- Wrap Up 4 Fall, 2009

What Comes Next

Computer Architecture -- Wrap Up 5 Fall, 2009

What Comes Next

d Compilers: you will learn how to parse a high-level
language and translate into assembly language

Computer Architecture -- Wrap Up 5 Fall, 2009

What Comes Next

d Compilers: you will learn how to parse a high-level
language and translate into assembly language

d Operating systems: you will learn how an operating system
uses the hardware to provide concurrent execution

Computer Architecture -- Wrap Up 5 Fall, 2009

What Comes Next

d Compilers: you will learn how to parse a high-level
language and translate into assembly language

d Operating systems: you will learn how an operating system
uses the hardware to provide concurrent execution

d Computer networks: you will learn about computer
communication and see how the Internet works

Computer Architecture -- Wrap Up 5 Fall, 2009

What You Should Do

Computer Architecture -- Wrap Up 6 Fall, 2009

What You Should Do

d Think about your career, not just a degree

Computer Architecture -- Wrap Up 6 Fall, 2009

What You Should Do

d Think about your career, not just a degree

d Don’t assume courses are enough

Computer Architecture -- Wrap Up 6 Fall, 2009

What You Should Do

d Think about your career, not just a degree

d Don’t assume courses are enough

d Practice on your own: program, program, program

Computer Architecture -- Wrap Up 6 Fall, 2009

What You Should Do

d Think about your career, not just a degree

d Don’t assume courses are enough

d Practice on your own: program, program, program

d Get experience configuring hardware and software

Computer Architecture -- Wrap Up 6 Fall, 2009

What You Should Do

d Think about your career, not just a degree

d Don’t assume courses are enough

d Practice on your own: program, program, program

d Get experience configuring hardware and software

– Get an old, slow computer

Computer Architecture -- Wrap Up 6 Fall, 2009

What You Should Do

d Think about your career, not just a degree

d Don’t assume courses are enough

d Practice on your own: program, program, program

d Get experience configuring hardware and software

– Get an old, slow computer

– Put Linux on it

Computer Architecture -- Wrap Up 6 Fall, 2009

What You Should Do

d Think about your career, not just a degree

d Don’t assume courses are enough

d Practice on your own: program, program, program

d Get experience configuring hardware and software

– Get an old, slow computer

– Put Linux on it

– Add a second Ethernet NIC

Computer Architecture -- Wrap Up 6 Fall, 2009

What You Should Do

d Think about your career, not just a degree

d Don’t assume courses are enough

d Practice on your own: program, program, program

d Get experience configuring hardware and software

– Get an old, slow computer

– Put Linux on it

– Add a second Ethernet NIC

– Increase or decrease memory size

Computer Architecture -- Wrap Up 6 Fall, 2009

What You Should Do

d Think about your career, not just a degree

d Don’t assume courses are enough

d Practice on your own: program, program, program

d Get experience configuring hardware and software

– Get an old, slow computer

– Put Linux on it

– Add a second Ethernet NIC

– Increase or decrease memory size

– Program: see what you can make it do

Computer Architecture -- Wrap Up 6 Fall, 2009

Questions?

STOP

